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Abstract—In this paper, we realized a memory efficient
general parallel Pollard’s rho method for collision search on
hash functions introduced by Van Oorschot and Wiener in
1996. This utilizes the principles of the birthday paradox to
greatly increase the probability of a finding a collision, while
using significantly less memory than the classic birthday attack,
and allowing a larger portion of the subject hash function to
be searched before running out of memory by saving only
a few select digests called distinguished points. Using our
implementation, we are able to find an average of 50 MD5
half collisions in the first hour of searching using a distributed
memory high performance computing system called Penzias
(one of CUNY HPC systems) on 32 processors. We then extend
the technique with Cyrillic character replacement to search
for meaningful MD5 half collisions. Next we analyze and
measure how the performance of our implementation scales
with different processor counts. Finally, we experiment with
how the rarity of distinguished points affects the rate at which
collisions are found at varying numbers of processors.

Keywords-Hash function collisions; rho method; distin-
guished points; MD5; MPI; HPC.

I. INTRODUCTION

A cryptographic hash function takes an arbitrary size
(much longer) message and produces a fixed size (much
shorter) message digest (or hash). Inevitably there will be
a lot of distinct messages being hashed to the same digest,
this is called hash collisions. But due to the properties
of preimage, second preimage, and collision resistances,
hash collisions are not easy to find. The previous two
crypto groups from the REU (Research Experiences for
Undergraduates) Site at the College of Staten Island have
done investigations on finding hash collisions by utilizing
the CUNY High Performance Computing facilities. The
first group was to find second preimage collisions using
brute force parallel programming in C and MPI [3]. The
second group was to use the classic birthday attack to
find arbitrary and meaningful collisions for MD5 and its
simplified versions [2].

In this paper, we explore a memory efficient parallel
Pollard’s rho method with distinguished points, introduced
in [15], to search for hash collisions. A distinguished point
(DP) is a message digest with a certain number of leading
zeros. Searching for DPs is the first important step in
searching for hash collisions. The DP search has been used in
the mining of bitcoin and other cryptocurrencies. In order to

get the reward for creating a block, a bitcoin mining machine
or a node needs to find a nonce (a number used only once)
such that the digest of the concatenation of this nonce, the
digest of previous block, and the list of transactions that
make up this block, should be less than a target [8]. The
target is a DP. Because this is to find a second preimage
of the target, the only way to find such a nonce is to hash
(brute-force) enough nonces one by one until you hit one
by luck. In bitcoin case, the number of leading zeros in a
DP increases over the time to increase the difficulty of the
search.

The DP search has also been used in the time memory
trade-off (TMTO) attack [7] for breaking ciphers (or one-
way functions), which consists of an offline pre-computation
phase to prepare tables (a kind of rainbow table) and an
online phase. In the offline phase we pre-compute t tables,
each contains m pairs of tuples (start-point, endpoint, l).
Each chain starts with the start-point, ends at a DP as the
endpoint after l iterations, where l > t. During the online
phase, instead of t2 table lookups (time complexity), we only
need t of these whenever a DP is encountered. This is really
good for hardware and parallel implementation [14].

The rest of the paper is organized as follows. In Sec-
tion II, we briefly introduce hash functions MD5 and its
simplified versions, and birthday paradox. In Section III,
we introduce Pollard’s rho method for collision search and
distinguished point. We describe our experiment implemen-
tation and search results in Section IV. We give an applica-
tion of the collision search method to forge two meaningful
documents that hash to the same digest in Section V, and
we conclude the paper in Section VI.

II. HASH FUNCTIONS AND BIRITHDAY PARADOX

As a cryptographic primitive, hash function is extremely
useful in data and information integrity checking, digital
signature schemes, secret sharing schemes [5], Bloom filters
[4], and many other security protocols.

A. MD5 and Simplified MD5

MD5 is an iterative hash function based on Merkle-
Damgard construction. After padding the message is
chopped into 512-bit long blocks. Each block, together with
the previous block’s hash result, is hashed (compressed)
iteratively. The result of last block’s hash is the digest
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of the entire message. Let H be the hash function MD5,
m be a message, h be the digest, i.e. h = H(m). h is
a 128-bit long bit-string represented in four 32-bit words
A,B,C, and D. Then we have h = A||B||C||D, where “||”
is the concatenation operator.

Simplified shorter versions of MD5 are introduced in [2]
to make experiment easier. Otherwise, we would be waiting
forever for just a single full collision. Let h2 denote the 64-
bit MD5 half-hash, it is derived from the original hash. We
define h2 as

h2 = (A||B)⊕ (C||D), (1)

where “⊕” is bitwise exclusive-or (XOR) operator. Let h4

be the 32-bit quarter-hash, which is derived from the four
32-bit words of the original hash. We define h4 as

h4 = A⊕B ⊕ C ⊕D. (2)

MD5 Example: Given the message (a character string
without quotes) “The quick brown fox jumps over the
lazy dog.” Its ASCII value in hexadecimal representation
(without spaces) is 54686520 71756963 6b206272 6f776e20
666f7820 6a756d70 73206f76 65722074 6865206c
617a7920 646f672e (length=44).

MD5 full hash: e4d909c290d0fb1ca068ffaddf22cbd0

MD5 half hash: 44b1f66f4ff230cc

MD5 quarter hash: 0b43c6a3

B. Birthday Paradox

Given a set of n people, what is the probability that at
least two people share a birthday? It is easier to calculate the
probability that no two in the set have the same birthday. The
probability for any two people not having the same birthday
is 364

365 , because one takes a day, the other has the remaining
364 days to choose from. There are

(n
2

)
= n(n−1)

2 pairs of
people. The probability that no two have the same birthday
can be obtained by multiplying 364

365 itself
(n
2

)
times, i.e.,

Pr(n) =
(
364
365

)n(n−1)/2
. Thus the probability of any pair

shares a birthday is

Pr(n) = 1− Pr(n) = 1− (364/365)n(n−1)/2. (3)

From the above equation, we only need n = 23 people, the
probability that two people share a birthday reaches 50%.
In general given a set S with |S| values, and n randomly
chosen values from set S,

Pr(n) = 1− ((|S|− 1)/|S|)n(n−1)/2. (4)

The birthday attack is to utilize the birthday paradox to
search for hash collisions. In general it follows the following
steps. (1) Build up a large list of preimages and their digests.
(2) The probability that there will be a collision between any
2 items in the list grows exponentially with respect to the
size of the list. (3) Because of this exponential growth, as a
rule of thumb, given a hash function with an n bit digest,
it should only be treated as strong as a hash function with

n/2 bits. (4) This is because only roughly 2n/2 digests are
needed to have a 50% chance of finding a collision.

But there are severe drawbacks of the naive birthday
attack, for example (1) birthday attacks use a large amount
of memory space (i.e., 2n/2) because you have to save each
message and its digest; (2) this greatly limits the amount of
messages and hashes you can search.

III. POLLARD’S RHO METHOD FOR COLLISION
SEARCH

A. Pollard’s Rho Method

Pollard’s rho method, invented by Pollard [9] in 1975,
is a way of integer factorization. The improvements were
made by Brent [1] in 1980. Due to the birthday paradox, the
smaller prime factor p of a composite number n = pq can
be found in O(

√
p) operations with over 50% probability.

Rho method uses a polynomial modulo n (for example,
u(x) = x2 + 1 mod n) iteratively to generate a pseudo-
random sequence. It only needs to save a few variables,
and is very space efficient. Because it is in the finite space,
the sequence will eventually repeat. The trajectory of the
sequence resembles the shape of the Greek letter ρ (rho)
("the ρ must be drawn starting at the bottom"[9]).

We use Figure 1 to illustrate rho method. Given a
function f with the same domain and range S (f : S → S),
we select a starting value x0 ∈ S. We produce a pseudo-
random sequence xi = f(xi−1), for i = 1, 2, . . .. This
sequence will form a cycle eventually because S is a finite
set. The sequence starts with a leader and then a cycle. Given
xl as the last point on the leader prior to the cycle, xl+1 is
on the cycle. Given xc is the point on the cycle before xl+1,
there is a collision because f(xl) = f(xc), but xl ̸= xc.

Figure 1: Rho method collision diagram

However, the rho method is serial in nature, and difficult
to parallelize it. According to Brent [1] “Parallel implemen-
tation of the ‘rho’ method does not give linear speedup.” This
is true when each processor produces its own independent
sequence of points. A single processor running for a longer
time than multiple processors increases the likelihood of
finding a collision.



B. Floyd’s Algorithm in Collision Search

A smple way to detecting a collision with Pollard’s
rho method is to apply Floyd’s two finger cycle-finding
algorithm [12], also known as “tortoise and hare algorithm.”
We start with two pointers (fingers) a and b at the same
random point x0, i.e., a = x0 and b = x0. Then we advance
pointer a at normal speed (one point at a time) as a = f(a),
and pointer b at double speed (two points at a time) as
b = f(f(b)) until they meet as a = b = xm. From the
meeting point xm, we move any one of the two pointers,
say a, back to the initial point x0. Then we advance both
pointers, a from x0 and b from xm, at equal normal speed
until they collide. If we use Figure 1 as an example, the
preceding points of the two pointers a = xc and b = xl

are not equal, but advance each pointer one more step, they
collide at xl+1, we find a collision, that is the entry point
into the cycle.

When the path has n points and the tail is short, Floyd’s
two finger algorithm needs O(3n) function evaluations to
reach the meeting point, and another O(2n) operations to
find entry point (the collision). The total time complexity is
O(5n). This is not the most efficient method for collision
searching. Moreover, it is not easy to parallelize Floyd’s
algorithm to speedup the collision search.

C. Using Distinguished Points to Find Hash Collisions

Pollard’s rho method for collision search can be par-
allelized when using the distinguished point, which was
introduced by Quisquater and Delescaille for finding DES
collisions [10], [11]. The idea was noted earlier by Rivest
(see [6] p.100), although he called it endpoint.

A distinguished point (DP) is chosen based on a distin-
guishing and easily testable property. We use a certain num-
ber of leading zeros in a message digest as the distinguishing
property, i.e., a message digest with a certain number of
leading zeros is a DP. The parallel collision search works
as follows: (1) Each processor selects a starting point (SP)
and produces a trail of points (or digests) until it reaches a
DP, it also keeps track on the number of digests produced.
(2) When a DP is found, add it to a common list and start a
new search from a new SP (so you don’t find the same DP
from the same SP). (3) A collision is found when there is a
repeated DP in the common list (illustrated in Figure 2).

Once we have a repeated DP on the list, we can locate
the collision without track of all digests. First we hash the
longer trail from its SP until its distance to the DP is the
same as the distance from the DP to the shorter trail’s SP.
Then we alternate hashing on each trail until they both reach
the same digest, the collision is found (see Figure 3).

Since there is a central list, speedup is very close to linear
with increasing processor counts.

The rarity of DPs is a parameter that can be tweaked to
give the behavior wanted by the user. We want to balance
distinguished point rarity by making sure that there are not
too many DPs, otherwise memory will run out too quickly.

Figure 2: DPs lead to collision diagram (SP: starting point,
DP: distinguished point)

Figure 3: Locating the collision after the repeated DP is
found

When there are too many DPs, we can increase the number
of leading zeros of DP. Extremely common DPs may also
cause communication channels to become over saturated.
DPs that are too rare will not be found often enough, and
cause other undesirable effects. The goal is to maximize
memory use without running out, keep communication at
an acceptable level, and keep DPs common enough that they
can be found in a reasonable amount of time.

We can get optimal DP rarity. Let n be the number of
DPs, ∆ the number of leading zeros, and d the number of
bits in digest. The odds of no repeat given n DPs is Q(n) =
(
2d−∆−1
2d−∆

)n(n−1)
2 . Therefore the odds of repeat given n DPs

is P (n) = 1 − Q(n). The average or expected number of
DPs e before a repeat is found is

e =
∞∑

i=0

(
i× P (i)×

i−1∏

j=0

Q(j)

)
. (5)

When DPs are too uncommon, the two things become
more common. (1) Robinhood: when the trail of one starting
point hits another starting point, causing a pseudo collision
(see Figure 4). (2) Unnamed problem: if a distinguished
point if found more than twice, the same collision may be
found more than once, even though there is a new unique
collision to be found. This is because only one starting point
is stored per DP (see Figure 5).

Figure 4: Robinhood case



Figure 5: Unnamed problem

IV. EXPERIMENT IMPLEMENTATION AND RESULTS

A. Implementation Overview

In our implementation, we chose to use a master worker
model. A master node coordinates each worker, and assigns
jobs to worker nodes as soon as they complete their tasks.
In this case, workers’ primary task is searching for distin-
guished points, and secondarily searching for the collision
point after repeating DPs have been found. Workers are
assigned a fixed portion of the full search space to look.
After a repeated distinguished point is found, a worker is
paused, and is assigned to find the collision corresponding
to the repeated DPs. Once the collision is found, it is reported
to the master, and the worker resumes where it left off.

The master node is responsible for maintaining a record
of the status of each worker node, as well as maintaining the
list of DPs, and looking for repeats. The list is structured as a
binary search tree for fast sorting and easy repeat detection.

B. Collision Search Results

Our implementation appeared to be relatively effected at
finding collisions. While using quarter MD5, communication
channels were so saturated by DP messages that using lower
processor counts resulted in higher collision rates, due to the
lower amount of communication. Figures 6 through 10 show
some comparisons of different parameters that were tested
in our searches. All relationships match what is theoretically
expected, with some minor exceptions.

Figure 6 shows the number of DPs found vs the number
of processors at different DP rarities. The number of DPs
found increases almost perfectly linearly with increasing
processor amounts, highlighting even with large numbers
of DPs. This highlights the efficiency and scalability of
our implementation. The communication overhead makes no
significant impact on performance.

Figure 7 shows the numer of leading zeros vs the number
of DPs found at different processor counts. As expected, the

number of DPs changes exponentially with a linear change
in the number of leading zeros. This is because the rarity
of distinguished points changes exponentially with a linear
change in the number of leading zeros, which can be seen
through a simple counting argument. In this figure we see
our first discrepancy however. With 32 processors searching
for DPs with 8 leading zeros, communication costs become
very high, drastically reducing performance.

Figure 8 clearly shows that the number of DPs found
increases linearly with time as expected. Figure 9 shows the
birthday paradox in effect. As the number of DPs increases
linearly, the number of collisions begins to increase expo-
nentially. Figures 8 and 9 used three trials of 32 processors
on half MD5 with 20 leading zeros for half an hour. Each
line refers to a different trial at a different starting point.

Finally, in an effort to find the optimal amount of leading
zeros for finding collisions, an experiment comparing the
number of collisions found vs the number of leading zeros
was done at varying number of processors. Figure 10 shows
the results of this experiment, which suggest that the optimal
amount of leading zeros is somewhere around half the length
of the size of the digest for half MD5.

Figure 6: # of DPs found vs # of processors

V. APPLICATIONS

A. Motivations and Digital Signatures

All experiments discussed up to this point serve no
purpose except as a benchmark of how MD5 stands up to
brute force attacks from modern hardware. In order to gain
more useful results, further algorithms must be introduced,
such as a method for forging digital signatures. This section
introduces the method that we chose to implement, and
elaborates on the results that we got.

A digital signature is a cryptographic tool used to bind
messages to their sender, so that the receiver can verify
the authenticity of the messages. The process of sending
a signed message is as follows. First, the sender hashes the
message they would like to send to obtain its digest. Next,



Figure 7: # of DPs found vs # of leading zeros

Figure 8: # of DPs found vs time

the sender encrypts the resulting digest with their private key.
The output of the encryption is the final signature, which is
sent along with the message to the recipient. To verify the
message, the recipient hashes the message to obtain the its
digest, and decrypts the signature using the sender’s public
key. If the two digests match, then the signature is valid.

B. Forged Documents

Digital signatures can be defeated if an adversary is
able to generate two messages m and m′ that have different
meanings, but the same digest. The messages are written
such that the sender would be willing to sign one, but not
the other. The adversary can repeatedly manipulate the
messages m and m′ such that their digests change, but the
semantic meaning of the messages do not, until he finds a
message pair with the same digest. He can then present the
sender with the benign message to sign, and receive back
a signature that is valid for both the benign and malicious
message.

Figure 9: # of collisions found vs # of DPs found

Figure 10: # of collisions found vs # of leading zeros

Example of Forged Documents:

Document attacker wants signed (m): "Good afternoon,

I agree to pay you $1000000 dollars for your super
expensive, fancy car. I will send you the money on Tuesday,
and will pick it up on Wednesday.

Best, John Smith"

Document victim will sign (m′): "Good afternoon,

I agree to pay you $1000 dollars for your super expen-
sive, fancy car. I will send you the money on Tuesday, and
will pick it up on Wednesday.

Best, John Smith"

The attacker alters both messages and hashes each ver-
sion until the digests are the same. The victim signs the
altered version of m′ and the signature can be copied to the
altered version of m.



C. Generating Two Documents with the Same Digest

In this section, we introduce an algorithm that we used
for obtaining two messages with the same digest.

Let R be the set of all possible digests (h ∈ R). We split
R into two roughly equal sized subsets S1, S2. Let gm(h) :
R → M be an injective function, which takes a digest h
and a message m ∈ M and generates another version of
m with the same semantic meaning. We define a function
f : R→ R as follows

f(h) =

{
H(gm(h)) if (h ∈ S1)
H(gm′(h)) if (h ∈ S2).

(6)

The above function generates deterministic trails of di-
gests, exactly like the cycling experiments shown in the ear-
lier sections. Because of this, the DP algorithm can be used
without modification using this function. Once a collision is
found, as long as the digests are from different messages,
the message pair has been found. However, because the
digests must be from different messages, the probability of
finding a valid collision is reduced by 1/2 from the cycling
experiments.

D. Implementation of Altering Documents

In this subsection, we introduce the function g(h) that
we used to generate altered messages. In UTF-8 encoding,
there are several characters in different alphabets with the
same appearance, but different hex encodings. For example,
the lowercase a in the Latin alphabet looks exactly the same
as the Cryllic small letter a, but have the hex value 0x61
and 0xD0B0, respectively.

We found every such pair for the Latin alphabet and
created a table of each corresponding hex value, see Figures
11 and 12. To modify the messages, we create a list of all
letters in the message that has a valid replacement and assign
it an index, up to the length of the chosen hash function’s
digest - 1, or until the end of the message is reached. The
more replaceable characters there are, the more likely the
collision search is to be successful.

After the indexes have been assigned, we hash. Then, our
g(h) function changes the messages based on the digest in
the following way: if the bit in position n of the digest is a 0,
then the replaceable letter in index n remains a Latin letter,
otherwise, it is changed to its alternate value. For example,
if the digest of the message "Hello" is 0x10, then the letter
e will be replaced with its Cryllic counterpart.

With this technique, we were able to find a collision
for the example messages given in Section V-B. A running
result is shown in Figure 13, and the two messages hash to
the same digest 0xF9F93282FC813DFD for half MD5.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion we were able to implement a memory ef-
ficient collision search algorithm by using the distinguished
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Figure 11: Replacement Table: Concept

Figure 12: Replacement Table: Code

point method. This method is vastly more memory efficient
than the classical birthday attack, while benefiting from
the same exponential speedup as a result of the birthday
paradox. Our implementation is not noticeably affected by
communication overhead, and scales linearly with increas-
ing processor counts. We were also able to extend our
implementation of the distinguished point method to forge
signatures that used half MD5 using methods introduced by
Van Oorschot and Wiener, and using our novel version of
the g(h) function.

In the future, we would like to extend our experiments to
SHA1. We have successfully found collisions for half SHA1,
but have not conducted large scale experiments in the style
we have for MD5. In addition, we would like to port our
implementation to CUDA to make use of GPUs. GPUs have
been shown to be able to calculate message digests an order
of magnitude faster than general purpose CPUs [13].



Figure 13: A sample run result
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