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ABSTRACT
This paper presents work that uses Latent Semantic Indexing (LSI)
for text classification. However, in addition to relying on labeled
training data, we improve classification accuracy by also using un-
labeled data and other forms of available “background” text in the
classification process. Rather than performing LSI’s singular value
decomposition (SVD) process solely on the training data, we in-
stead use an expanded term-by-document matrix that includes both
the labeled data as well as any available and relevant background
text. We report the performance of this approach on data sets both
with and without the inclusion of the background text, and compare
our work to other efforts that can incorporate unlabeled data and
other background text in the classification process.

1. INTRODUCTION
The task of classifying textual data is both difficult and intensively
studied [11, 16, 14]. Traditional machine learning programs use a
training corpus of often hand-labeleddata to classify new test exam-
ples. Training sets are sometimes extremely small, due to the diffi-
cult and tedious nature of labeling, and decisions can therefore be
difficult to make with high confidence.

Given the huge number of unlabeled examples, articles, Web sites,
and other sources of information that often exist, it would be useful
to take advantage of this additional information in some automatic
fashion. These sources can be looked at as background knowledge
that can aid in the classification task. For example, a number of re-
searchers have explored the use of large corpora of unlabeled data to
augment smaller amounts of labeled data for classification (such as
augmenting a collection of labeled Web-pagetitles with large amounts
of unlabeledWeb-page titles obtained directly from the Web). Nigam
et al. [14] use such background examples by first labeling them us-
ing a classifier formed on the original labeled data, adding them to
the training data to learn a new classifier on the resulting expanded
data and then repeating anew the labeling of the originally unlabeled
data. This approach yielded classification results that exceed those
obtained without the extra unlabeled data.

Blum and Mitchell’s [3] co-training algorithm also applies to cases
where there is a source of unlabeled data [13], only in cases where
the target concept can be described in two redundant ways (such as
through two different subsets of attributes describing each exam-
ple). Each view of the data is used to create a predictor, and each
predictor is used to classify unlabeled data. The data labeled by one
classifier can then be used to train the other classifier. Blum and
Mitchell prove that under certain conditions, the use of unlabeled
examples in this way is sufficient to PAC-learn a concept given only
an initial weak learner.

A second example of background knowledge concerns cases where
the data to which the learned classifier will be applied is available at
the start of learning. For such learning problems, called transduc-
tive learning [12], these unlabeled examples may also prove helpful
in improving the results of learning. For example, in transductive
support vector machines [12, 1] the hyperplane that is chosen by the
learner is based on both the labeled training data and the unlabeled
test data. Joachims shows that this is a method for incorporating
priors in the text classification process and performs well on such
tasks.

Zelikovitz and Hirsh [18] consider an even broader range of back-
ground text for use in classification, where the background text is
hopefully relevant to the text classification domain, but doesn’t nec-
essarily take the same general form of the training data. For exam-
ple, a classification task given labeled Web-page titles might have
access to large amounts of Web-page contents. Rather than viewing
these as items to be classified or otherwise manipulated as if they
were unlabeled examples, the pieces of background knowledge are
used as indices into the set of labeled training examples. If a piece
of background knowledge is close to both a training example and
a test example, then the training example is considered close to the
test example, even if they do not share any words. The background
text provides a mechanism by which a similarity metric is defined,
and nearest neighbor classification methods can be used. Zelikovitz
and Hirsh [18] show that their approach is especially useful in cases
with small amounts of training data and when each item in the data
has few words.

This paper describes yet another way of using this broader range of
background knowledge to aid classification. It neither classifies the
background knowledge, nor does it directly compare it to any train-
ing or test examples. Instead, it exploits the fact that knowing that
certain words often co-occur may be helpful in learning, and that
this could be discovered from large collections of text in the domain.



To do this we use Latent Semantic Indexing (LSI) [6]. LSI is an au-
tomatic method that re-describes textual data in a new smaller se-
mantic space. LSI assumes that there exists some inherent seman-
tic structure between documents and terms in a corpus. The new
space that is created by LSI places documents that appear related in
close proximity to each other. LSI is believed to be especially use-
ful in combating polysemy (one word can have different meanings)
and synonymy (different words are used to describe the same con-
cept), which can make classification tasks more difficult. The key
idea here is to use the background text in the creation of this new
re-description of the data, rather than relying solely on the training
data to do so.

In the next section we give a brief review of LSI, and describe how
we use it for traditional text classification as well as for classifica-
tion in the presence of background text. We then present and de-
scribe the results of the system on four different data sets, compar-
ing those results to other systems that incorporate unlabeled data.
We conclude with a discussion of our current and ongoing work in
this area.

2. OUR APPROACH
2.1 Latent Semantic Indexing
Latent Semantic Indexing [8] is basedupon the assumption that there
is an underlying semantic structure in textual data, and that the re-
lationship between terms and documents can be re-described in this
semantic structure form. Textual documents are represented as vec-
tors in a vector space. Each position in a vector represents a term
(typically a word), with the value of a position i equal to 0 if the term
does not appear in the document, and having a positive value other-
wise. Based upon previous research we represent the positive val-
ues as the log of the total frequency in that document [7] weighted
by the entropy of the term. As a result, the corpus can be looked at
as a large term-by-document (t × d) matrix X , with each position
xij corresponding to the presence or absence of a term (a row i) in
a document (a column j). This matrix is typically very sparse, as
most documents contain only a small percentage of the total num-
ber of terms seen in the full collection of documents.

Unfortunately, in this very large space many documents that are re-
lated to each other semantically might not share any words and thus
appear very distant, and occasionally documents that are not related
to each other might share common words and thus appear to be closer.
This is due to the nature of text, where the same concept can be rep-
resented by many different words, and words can have ambiguous
meanings. LSI reduces this large space to one that hopefully cap-
tures the true relationships between documents.

The singular value decomposition (SVD) of the t× d matrix, X , is
the product of three matrices: TSDT , whereT andD are the matri-
ces of the left and right singular vectors andS is the diagonal matrix
of singular values. The diagonal elements of S are ordered by mag-
nitude, and therefore these matrices can be simplified by setting the
smallest k values in S to zero.1 The columns of T andD that corre-
spond to the values of S that were set to zero are deleted. The new
product of these simplified three matrices is a matrix X̂ that is an
approximation of the term-by-document matrix. This new matrix
represents the original relationships as a set of orthogonal factors.

1The choice of the parameter k can be very important. Previous
work has shown that a small number of factors (100-300) often
achieves effective results. We discuss this further in our section on
current work.

We can think of these factors as combining meanings of different
terms and documents; documents are then re-expressed using these
factors.

When LSI is used for retrieval, a query is represented in the same
new small spacethat the document collection is represented in. This
is done by multiplying the transpose of the term vector of the query
with matrices T and S−1 . Once the query is represented this way,
the distance between the query and documents can be computed us-
ing the cosine metric, which represents a numerical similarity mea-
surement between documents. LSI returns the distance between the
query and all documents in the collection. Those documents that
have higher cosine distance value than some cutoff point can be re-
turned as relevant to the query.

2.2 LSI for Text Classification
We are using LSI for text classification, so we can henceforth refer
to the document collection as the training examples and the query as
a test example.2 Given that a single example to be labeled may be
judged by this method as similar to a range of different training ex-
amples, it is necessary to decide how the different examples “vote”
on the label of the new example. To do this we take an approach
used by Cohen and Hirsh [4]. We can look at the result of the LSI
query as a table containing the tuples

〈train-example, train-class, cosine-distance〉
with one line in the table per document in the training collection.
There are many lines in the table with the same train-class value that
must be combined to arrive at one score for each class. Cohen and
Hirsh [4] use the noisy-or operation to combine the similarity values
that are returned by LSI to arrive at one single value per class. If the
cosine values for documents of a given class are {s1, . . . , sn}, the
final score for that class is 1− � n

i=1(1− si). Whichever class has
the highest score is returned as the answer to the classification task.
Based upon [17, 4] only the thirty closest neighbors are kept and
combined.

2.3 Incorporating Background Knowledge
The power of LSI lies in the fact that it can place documents that
do not share any words in close proximity to each other. However,
when there is little data LSI can suffer drastically. With few training
examples, there are many terms that occur only once, hence limiting
the power of LSI to create a space that reflects interesting properties
of the data.

What is most interesting to us about the singular value decompo-
sition transformation is that it does not deal with the classes of the
training examples at all. This gives us an extremely flexible learner,
for which the addition of background knowledge is quite easy. In-
stead of simply creating the term-by-document matrix from the train-
ing examples alone, we combine the training examples with other
sources of knowledge to create a much larger term-by-“document”
matrix, Xn.

LSI is run on this new term-by-document matrix to obtain X̂n. X̂n

is a model of the space that was unobtainable with the training ex-
amples alone. The larger matrix contains words that did not occur
in the training examples at all; it also provides us with richer and

2This is in contrast to other uses of LSI for classification [10, 8, 9],
in which one centroid vector is formed for each class, and a new ex-
ample is labeled by those classes whose vector is sufficiently close
to it.



more reliable patterns for data in the given domain. To classify a
test example incorporating the background knowledge in the deci-
sion process, the test example is re-described in the new space and
then compared only to the columns of X̂n that correspond to the
original training examples. The scores that are obtained from this
comparison are combined with the noisy-or operation, to return a
final class for classification. Clearly, it is important for the back-
ground knowledge to be similar in content to the original training
set that it is combined with. If the background knowledge is totally
unrelated to the training corpus, for example, LSI might success-
fully model the background knowledge, but the features would be
unrelated to the actual classification task.

To give a concrete example of how LSI with background can help,
we can look at one test example in the NetVet domain [4]. The train-
ing and test examples are titles of Web pagesfrom http://netvet.wustl.-
edu, and each piece of background knowledge consists of the first
100 words of the contents of Web pages that are not in the train-
ing or test set. The training data in the example below consists of
277 documents. Removing all terms that occur only once creates
a t × d matrix with 109 terms. With the added 1158 entries in the
background knowledge the matrix grows to 4694 × 1435.

For the test example

british mule

of class horse the three closest training document returned were:

livestock nutrient manag univers
manag of the foal mare purdu univers
avitech exot

which are of class cow, horse, and bird. (In this example stemming
[15] is used to find the morphological roots of the words in the doc-
uments). Since LSI creates a totally new space it is not unusual to
find, as in this sample, that none of the original words from the test
example are found in the three closest training examples. This test
example is misclassifiedby LSI without backgroundknowledge. This
is not surprising since the word mule in the test example does not
occur in the training examples at all. With the addition of the back-
ground knowledge, the three closest training examples returned are:

british columbia cattlemen
donkei
sicilian donkei preserv

of classes cow, horse, and horse. The correct class is returned. No-
tice that two of the closest training examples have the word donkei
which is related to both mule and horse. The addition of the back-
ground knowledge allowed the learner to find this association.

3. EMPIRICAL RESULTS
To evaluate our approach we use four datasets previously used by
work on text classification in the presence of background text [4, 5,
12, 14, 18]. We first describe the data sets, and then the results that
we obtained.

3.1 Data Sets
Technical papers. One common text categorization task is assign-
ing discipline or sub-discipline names to technical papers. We cre-
ated a data set from the physics papers archive (http://xxx.lanl.gov),
where we downloaded the titles for all technical papers in two ar-
eas in physics (astrophysics, condensed matter) for the month of
March 1999 [18]. As background knowledge we downloaded the
abstracts of all papers in these same areas from the two previous
months — January and February 1999. In total there were 1530
pieces of knowledge in the background set, and 953 in the training-
test set combined. Since we performed five-fold cross validation,
for each run 80% of these 953 examples were used fro training and
20% were held for testing. The 1530 background knowledge ab-
stracts were downloaded without their labels (i.e., without knowl-
edge of what sub-discipline they were from) so that our learning
program had no access to them.

Web page titles. As discussedabove, the NetVet site (http://netvet-
.wustl.edu) includes the Web page headings for pages concerning
cows, horses, cats, dogs, rodents, birds and primates [4]. Each of
these titles had a URL that linked the title to its associatedWeb page.
For the labeled corpus, we chose half of these titles with their labels,
in total 1789 examples. Once again, five-fold cross-validation was
used on this half of the titles to divide it into training and test sets.
We discarded the other half of the titles, with their labels, and simply
kept the URL to the associated Web page. We used these URLs to
download the first 100 words from each of these pages, to be placed
into a corpus for backgroundknowledge. Those URLs that were not
reachable were ignored by the program that created the background
knowledge database.

WebKB. The WebKB dataset [5] containsa collection of Web pages
from computer science departments. As in [14, 12] we use only
those of the categories student, faculty, course, and project. For this
data set the background knowledge is simply unlabeled examples.
Using information-gain as the criterion, only the top 300 words were
kept. This value was used to be consistent with the data sets used in
[14]; it was optimized for their EM code, and is not clear that it was
the best value to use for LSI. Four test sets, from four different uni-
versities were used, and training was performed on pages from the
other three universities, and results that are reported are averages
across all these sets. Our divisions of the data into training and test
sets are identical to that of [14], with the test data set, depending on
the specific university, ranging from 225 to 307 examples and the
training sets ranging from only four examples, one per class, to two
hundred examples, fifty per class. The size of the background text
remains steady at 2500 examples.

20 Newsgroups. The 20 Newsgroups data set consists of articles
from 20 different newsgroups. The latest 4000 articles are used for
testing, and a random 10000 are used for the background text. As
in the WebKB data, training and test set divisions are the same as
in [14]. Results that are reported are averages across ten runs, and,
as described shortly, the training set sizes that we report range from
twenty examples, with one per class, to four hundredexamples, with
twenty per class.

3.2 Results
3.2.1 The Utility of Background Knowledge with LSI
We obtained the Latent Semantic Indexing Package from Telcor-
dia Technologies, Inc. (http://lsi.research.telcordia.com/) and all re-
sults are with use of this LSI package. We report the classification
accuracyfor text classificationusing LSI both with and without back-



ground knowledgefor the physicsdata in Figure 1 and for the NetVet
data in Figure 2. We label LSI with background knowledge as LSI-
bg. In each case we report error rates as we vary the number of train-
ing examples given to the learner. Each point represents an aver-
age of five cross-validated runs. For each cross-validated run, four-
fifths of the data is used as the training set and one-fifth is used as the
test set. Holding this test set steady, the number of examples in the
training set was varied. Each data set was tested with both LSI and
LSI-bg using 20, 40, 60, 80, and 100 percent of the data [18]. For
both of these domains the incorporation of background knowledge
aided the classification task for training sets of all sizes. In each case
the reduction of error increased as the training size decreased. Also,
although accuracyfor both LSI and LSI-bg decreasedas the training
set size decreased, the accuracy when using LSI-bg changed very
little, as can be seen by the flatness of the lines. This leads us to be-
lieve that the utility of backgroundknowledge is that it compensates
for the limited training data.
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Figure 1: LSI and LSI-bg for the two class paper title problem

Figure 3 presents the results on the WebKB classification task. We
report the classification accuracy of nine different size training sets
ranging from 4 examples (1 per class) to 200 examples(50 per class).
Each accuracy number is an average across multiple runs, ranging
from 7 to 10, depending upon training set size. The horizontal axis
represents this on a log scale. In this domain LSI-bg only outper-
forms LSI on small training sets. As training class size grows, LSI-
bg degrades and actually hurts learning. Since unlabeled examples
are used as background knowledge, coming from the same distri-
bution as the training examples, we are not quite sure of why this is
so. It would seem that the model of the data should be more accurate
with LSI-bg than with LSI. This is a question that we are currently
exploring in our ongoing work.

The results for the 20 Newsgroups data are graphed in Figure 4. The
horizontal axis is once again a log scale, and results are graphed for
training set size varying from 20 (1 per class) to 400 (20 per class).
Each of these numbers are averages across ten unique runs. Even
with much larger training sets (150 per class) the addition of back-
ground knowledge does not cause degradation in accuracy. How-
ever, once again, the unlabeled examples are most useful with small
training sets. Interestingly, on this data set LSI without the addition
of the unlabeled examples performed extremely poorly.
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Figure 2: LSI and LSI-bg for the NetVet problem
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Figure 3: LSI and LSI-bg for WebKB four class problem
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Figure 4: LSI and LSI-bg for the 20 Newsgroups problem



Table 1: Accuracy rates on physics data

Percent of Data EM LSI-bg
20 95.49 92.8
40 95.49 93.5
60 95.8 93.3
80 96 92.7
100 96.3 92.9

Table 2: Accuracy rates on NetVet data

Percent of Data EM LSI-bg
20 49.58 60.90
40 56.12 61.12
60 57.86 62.24
80 59.48 62.02
100 61.43 61.23

3.2.2 Comparison of LSI and EM
One successful method for incorporating unlabeled data in the clas-
sification task is the Expectation Maximization (EM) approach[14].
Using naive Bayes, a classifier is trained with only the labeled train-
ing examples. This classifier is in turn used to probabilistically label
the unlabeled examples; these newly labeled examplesare then used
to retrain the classifier, and obtain more accurate parameters for the
learner. This process iterates until it converges. Although in some
of the problems that we present, the background text is not really
of the same form as the data (such as Web-page titles for data and
Web-page contents for background), methods such as EM can still
be applied, since they treat every text item as a “bag” of the terms
that occur in the item. We therefore present results that compare
the accuracy of our LSI approach for using background text to the
approach for using naive Bayes and EM to learn from labeled and
unlabeled data [14]. We used the rainbow package (http://www.cs-
.cmu.edu/˜mccallum/bow/rainbow/) to run EM on both the physics
set and the NetVet data. EM was run with 7 iterations and since this
number of iterations was not maximized for these data sets we re-
port the highest results out of the seven iterations.3 Although this
skews the results slightly in favor of EM, we can still get a fair pic-
ture of the comparative values of these programs. These results can
be seen in Table 1 and Table 2. The results reported on WebKB and
20 Newsgroups in Table 3 and Table 4 were obtained directly from
[14]. On all tables the highest accuracy rate is shown in bold.

To summarize the results in the tables, on small data sets in both
the NetVet domain and the 20 Newsgroups domain, LSI-bg outper-
forms EM. As more training examples are added to the these prob-
lems LSI-bg does not perform as well. This has been a phenomenon
that has occurred across all data sets, and is a focus of our current
work. On the physics data, EM is far superior in all cases. It is not
surprising that EM does so well on the physics data. Zelikovitz and
Hirsh [18] showed that in this domain the simple process of labeling
the background text using the training data and then adding the re-
sulting data to the training data, without any further processing, gets
extremely high accuracy as well. Although the background knowl-
edge is not of the same type as the training examples(paper abstracts
versus paper titles), they are from the same source, and abstract and

3We chose the number 7 based on discussionswith Nigam (personal
communication).

Table 3: Accuracy rates on WebKB

Training Documents EM LSI-bg
4 55.14 46.91
8 56.99 55.93
12 62.03 61.12
20 67.22 64.77
40 74.58 69.60
80 76.39 72.55
120 79.14 73.93
160 78.73 75.32
200 78.8 75.56

Table 4: Accuracy rates on 20 Newsgroups

Training Documents EM LSI-bg
20 35.34 40.29
40 43.08 47.39
60 49.23 51.55
100 55.4 54.75
200 62.96 59.86
400 68.21 62.78

titles overlap in many words.

4. FINAL REMARKS
We have presented a method for incorporating background knowl-
edge in text classification using LSI. The singular value decomposi-
tion is performed on a term-by-document matrix that includes both
the training examples and background knowledge. This allows test
examples to be compared to the training examples in a new space
that reflects patterns in the text in the domain that may not be found
when confronted solely with training data. We have shown empiri-
cally that this increases the accuracyrates in classificationon a range
of benchmark problems used in previous work.

There are many different dimensionsalong which a variety of choices
may be made to explore the use of LSI with backgroundknowledge.
Our empirical results have shown what other researchers have al-
ready discovered: background knowledge is most useful when the
training set is small. However there are a number of open questions,
both in the exploration of the use of background knowledge and in
the use of LSI for this purpose.

For example, we are currently studying issues on how the choice
of the number of dimensions to use with SVD affects the useful-
ness of unlabeled data. Some preliminary results show that running
SVD with many factors limits the usefulness of background knowl-
edge. For example, without background knowledge, if we use 300
factors instead of 100 factors on 20% of the NetVet data, accuracy
rises from 50% to 55%. However, accuracy for LSI-bg essentially
remains the same. This same phenomenon is observable in larger
and other data sets as well. We are doing further studies in this area.

Another issue relevant to LSI specifically is that if the training set
is small compared to the background text, it may be sufficient to
use only the background text, without training data, in Xn. SVD
could be performed on the background text alone; both the train-
ing and test examples can be re-described in terms of the new space



using X̂n. This method of updating SVDs by “folding-in” new doc-
uments, has been studied by the LSI community [2]. Although this
SVD will not be identical to the one of the training and background
examples combined, our initial tests have shown that classification
accuracy does not significantly change. This might then provide a
mechanism by which incremental learning is achievable — where
a new example can be added without requiring a new SVD calcu-
lation. In this paper we have primarily focused on the information
value of background text using LSI, without concern for the poten-
tial run-times involved. Such a method for avoiding the often costly
SVD calculation would be one way to manage the otherwise costly
work that would be necessary in obtaining new training data in in-
cremental learning scenarios.

Finally, the nature and type of background knowledge that is used
to improve learning is of central interest to us. The data sets that we
used had background knowledge of different types. Are unlabeled
examples more helpful than backgroundknowledgethat comes from
a different source? For unlabeled examples the size of each piece
of background knowledge is generally well-defined (being similar
to that of the training and test data), but for other sources of data
this is an open issue. The “cleanliness” of background text can also
vary greatly, from encyclopedia entries at one end of the spectrum
to ad hoc collections obtained from uncoordinated Web sites or text
obtained through speech recognition technology. These are some of
the topics we are currently exploring.
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