

Introduction

Cloud computing has experienced exponential growth over the last decade. Public cloud computing is when a third-party cloud service provider manages all hardware, software, and other supporting costs, no maintenance, better scalability, and high reliability.

The purpose of this project is to develop a secure index which will allow a user to search encrypted data. This is achieved by creating a trapdoor when building the secure index. A trapdoor can only be key to generate a codeword. The codeword is added to a bloom filter. To search the encrypted data, the user must have the private correct trapdoor which will also cause the codeword to be incorrect.

Hypothesis

party server and search their files without first decrypting?

Terminology

membership of a set.

(MAC) is a string with a fixed length of 160 bits

Figure 0. Passing a secret-key and message into a HMAC-SHA1 function

parameters are the private key and plaintext word

parameters are the trapdoor and document name

Searchable Symmetric Encryption Scheme Implementation of a Secure Index

Student: Jacob Chen Faculty Advisor: Dr. Xiaowen Zhang

For each unique word in a document, create a trapdoor by calling the

- Trapdoor = 89e99f568c08b6a022074a1c7a691a275f7253ac
- Create a codeword by calling the HMAC-SHA1 function again using the trapdoor and document name as the parameters
- Codeword = 0f9b0606f84f83aaf821346cb1c420da25c0**0e7d**
- Take the last two bytes of the codeword and convert it into an integer
- In the bloom filter set the bit in index[3709] to 1.
- This effectively adds the word cup to document1

0	 1	0	0	 0
2	 3709	3710	3711	 65535

Continue this process for each unique word in the document

 1	 1	 1		0
 23654	 37016	 54017	0	65535

Figure 6. A secure index is an array of bloom filters. This figure represents a sample bloom filter for document3. It has three unique words whose index locations are set to 1

- Generate the trapdoor by using the private key and search word
- Trapdoor = f9c97f054ac8cfb31989a7de4c41f701c01300a8
- Generate a codeword using the trapdoor and each document name then convert the last two bytes of the codeword to an integer
- HMAC-SHA1(f9c9...00a8, document1) = 731b = 29467
- HMAC-SHA1(f9c9...00a8, document2) = 5bd6 = 23510
- HMAC-SHA1(f9c9...00a8, document3) = 5c66 = 23654
- HMAC-SHA1(f9c9...00a8, document4) = c52b = 50475
- In document3 index[23654] is set to 1 indicating that the word beef is in

• It takes O(1) time to check an individual bloom filter but there are n bloom filters, therefore the time complexity to search is O(n)

• O(n) = each document has their own bloom filter

• Bloom, Burton H. "Space/time trade-offs in hash coding with allowable errors." *Communications of the ACM* 13.7 (1970): 422-426.

• Chum, Chi Sing, Xinzhou Wei, and Xiaowen Zhang. "A Split Bloom Filter for Better Performance." Journal of Applied Security Research 15.2 (2020): 147-160. • Goh, Eu-Jin. "Secure indexes." *IACR Cryptol. ePrint Arch.* 2003 (2003): 216.