
5 The Untyped Lambda-Calculus

This chapter reviews the definition and some basic properties of the untyped

or pure lambda-calculus, the underlying “computational substrate” for most

of the type systems described in the rest of the book.

In the mid 1960s, Peter Landin observed that a complex programming lan-

guage can be understood by formulating it as a tiny core calculus capturing

the language’s essential mechanisms, together with a collection of conve-

nient derived forms whose behavior is understood by translating them into

the core (Landin 1964, 1965, 1966; also see Tennent 1981). The core lan-

guage used by Landin was the lambda-calculus, a formal system invented

in the 1920s by Alonzo Church (1936, 1941), in which all computation is

reduced to the basic operations of function definition and application. Fol-

lowing Landin’s insight, as well as the pioneering work of John McCarthy

on Lisp (1959, 1981), the lambda-calculus has seen widespread use in the

specification of programming language features, in language design and im-

plementation, and in the study of type systems. Its importance arises from

the fact that it can be viewed simultaneously as a simple programming lan-

guage in which computations can be described and as a mathematical object

about which rigorous statements can be proved.

The lambda-calculus is just one of a large number of core calculi that have

been used for similar purposes. The pi-calculus of Milner, Parrow, and Walker

(1992, 1991) has become a popular core language for defining the semantics

of message-based concurrent languages, while Abadi and Cardelli’s object cal-

culus (1996) distills the core features of object-oriented languages. Most of

the concepts and techniques that we will develop for the lambda-calculus can

be transferred quite directly to these other calculi. One case study along these

lines is developed in Chapter 19.

The examples in this chapter are terms of the pure untyped lambda-calculus, λ (Figure 5-3),

or of the lambda-calculus extended with booleans and arithmetic operations, λNB (3-2). The

associated OCaml implementation is fulluntyped.

52 5 The Untyped Lambda-Calculus

The lambda-calculus can be enriched in a variety of ways. First, it is often

convenient to add special concrete syntax for features like numbers, tuples,

records, etc., whose behavior can already be simulated in the core language.

More interestingly, we can add more complex features such as mutable refer-

ence cells or nonlocal exception handling, which can be modeled in the core

language only by using rather heavy translations. Such extensions lead even-

tually to languages such as ML (Gordon, Milner, and Wadsworth, 1979; Mil-

ner, Tofte, and Harper, 1990; Weis, Aponte, Laville, Mauny, and Suárez, 1989;

Milner, Tofte, Harper, and MacQueen, 1997), Haskell (Hudak et al., 1992), or

Scheme (Sussman and Steele, 1975; Kelsey, Clinger, and Rees, 1998). As we

shall see in later chapters, extensions to the core language often involve ex-

tensions to the type system as well.

5.1 Basics

Procedural (or functional) abstraction is a key feature of essentially all pro-

gramming languages. Instead of writing the same calculation over and over,

we write a procedure or function that performs the calculation generically, in

terms of one or more named parameters, and then instantiate this function

as needed, providing values for the parameters in each case. For example, it

is second nature for a programmer to take a long and repetitive expression

like

(5*4*3*2*1) + (7*6*5*4*3*2*1) - (3*2*1)

and rewrite it as factorial(5) + factorial(7) - factorial(3), where:

factorial(n) = if n=0 then 1 else n * factorial(n-1).

For each nonnegative number n, instantiating the function factorial with

the argument n yields the factorial of n as result. If we write “λn. ...” as

a shorthand for “the function that, for each n, yields. . .,” we can restate the

definition of factorial as:

factorial = λn. if n=0 then 1 else n * factorial(n-1)

Then factorial(0) means “the function (λn. if n=0 then 1 else ...) ap-

plied to the argument 0,” that is, “the value that results when the argument

variable n in the function body (λn. if n=0 then 1 else ...) is replaced by

0,” that is, “if 0=0 then 1 else ...,” that is, 1.

The lambda-calculus (or λ-calculus) embodies this kind of function defi-

nition and application in the purest possible form. In the lambda-calculus

everything is a function: the arguments accepted by functions are themselves

functions and the result returned by a function is another function.

5.1 Basics 53

The syntax of the lambda-calculus comprises just three sorts of terms.1 A

variable x by itself is a term; the abstraction of a variable x from a term t1,

written λx.t1, is a term; and the application of a term t1 to another term t2,

written t1 t2, is a term. These ways of forming terms are summarized in the

following grammar.

t ::= terms:

x variable

λx.t abstraction

t t application

The subsections that follow explore some fine points of this definition.

Abstract and Concrete Syntax

When discussing the syntax of programming languages, it is useful to dis-

tinguish two levels2 of structure. The concrete syntax (or surface syntax) of

the language refers to the strings of characters that programmers directly

read and write. Abstract syntax is a much simpler internal representation of

programs as labeled trees (called abstract syntax trees or ASTs). The tree rep-

resentation renders the structure of terms immediately obvious, making it

a natural fit for the complex manipulations involved in both rigorous lan-

guage definitions (and proofs about them) and the internals of compilers and

interpreters.

The transformation from concrete to abstract syntax takes place in two

stages. First, a lexical analyzer (or lexer) converts the string of characters writ-

ten by the programmer into a sequence of tokens—identifiers, keywords, con-

stants, punctuation, etc. The lexer removes comments and deals with issues

such as whitespace and capitalization conventions, and formats for numeric

and string constants. Next, a parser transforms this sequence of tokens into

an abstract syntax tree. During parsing, various conventions such as operator

precedence and associativity reduce the need to clutter surface programs with

parentheses to explicitly indicate the structure of compound expressions. For

example, * binds more tightly than +, so the parser interprets the unparen-

1. The phrase lambda-term is used to refer to arbitrary terms in the lambda-calculus. Lambda-

terms beginning with a λ are often called lambda-abstractions.

2. Definitions of full-blown languages sometimes use even more levels. For example, following

Landin, it is often useful to define the behaviors of some languages constructs as derived

forms, by translating them into combinations of other, more basic, features. The restricted

sublanguage containing just these core features is then called the internal language (or IL),

while the full language including all derived forms is called the external language (EL). The

transformation from EL to IL is (at least conceptually) performed in a separate pass, following

parsing. Derived forms are discussed in Section 11.3.

54 5 The Untyped Lambda-Calculus

thesized expression 1+2*3 as the abstract syntax tree to the left below rather

than the one to the right:

3

1

2

*

+

1 2

3

*

+

The focus of attention in this book is on abstract, not concrete, syntax.

Grammars like the one for lambda-terms above should be understood as de-

scribing legal tree structures, not strings of tokens or characters. Of course,

when we write terms in examples, definitions, theorems, and proofs, we will

need to express them in a concrete, linear notation, but we always have their

underlying abstract syntax trees in mind.

To save writing too many parentheses, we adopt two conventions when

writing lambda-terms in linear form. First, application associates to the left—

that is, s t u stands for the same tree as (s t) u:

apply u

apply

s t

Second, the bodies of abstractions are taken to extend as far to the right

as possible, so that, for example, λx. λy. x y x stands for the same tree as

λx. (λy. ((x y) x)):

x

apply

apply

y

λy

λx

x

Variables and Metavariables

Another subtlety in the syntax definition above concerns the use of metavari-

ables. We will continue to use the metavariable t (as well as s, and u, with or

5.1 Basics 55

without subscripts) to stand for an arbitrary term.3 Similarly, x (as well as

y and z) stands for an arbitrary variable. Note, here, that x is a metavariable

ranging over variables! To make matters worse, the set of short names is lim-

ited, and we will also want to use x, y, etc. as object-language variables. In

such cases, however, the context will always make it clear which is which. For

example, in a sentence like “The term λx. λy. x y has the form λz.s, where

z = x and s = λy. x y,” the names z and s are metavariables, whereas x and

y are object-language variables.

Scope

A final point we must address about the syntax of the lambda-calculus is the

scopes of variables.

An occurrence of the variable x is said to be bound when it occurs in the

body t of an abstraction λx.t. (More precisely, it is bound by this abstraction.

Equivalently, we can say that λx is a binder whose scope is t.) An occurrence

of x is free if it appears in a position where it is not bound by an enclosing

abstraction on x. For example, the occurrences of x in x y and λy. x y are

free, while the ones in λx.x and λz. λx. λy. x (y z) are bound. In (λx.x) x,

the first occurrence of x is bound and the second is free.

A term with no free variables is said to be closed; closed terms are also

called combinators. The simplest combinator, called the identity function,

id = λx.x;

does nothing but return its argument.

Operational Semantics

In its pure form, the lambda-calculus has no built-in constants or primitive

operators—no numbers, arithmetic operations, conditionals, records, loops,

sequencing, I/O, etc. The sole means by which terms “compute” is the ap-

plication of functions to arguments (which themselves are functions). Each

step in the computation consists of rewriting an application whose left-hand

component is an abstraction, by substituting the right-hand component for

the bound variable in the abstraction’s body. Graphically, we write

(λx. t12) t2 -→ [x, t2]t12,

where [x , t2]t12 means “the term obtained by replacing all free occur-

rences of x in t12 by t2.” For example, the term (λx.x) y evaluates to y and

3. Naturally, in this chapter, t ranges over lambda-terms, not arithmetic expressions. Through-

out the book, t will always range over the terms of calculus under discussion at the moment.

A footnote on the first page of each chapter specifies which system this is.

56 5 The Untyped Lambda-Calculus

the term (λx. x (λx.x)) (u r) evaluates to u r (λx.x). Following Church,

a term of the form (λx. t12) t2 is called a redex (“reducible expression”),

and the operation of rewriting a redex according to the above rule is called

beta-reduction.

Several different evaluation strategies for the lambda-calculus have been

studied over the years by programming language designers and theorists.

Each strategy defines which redex or redexes in a term can fire on the next

step of evaluation.4

• Under full beta-reduction, any redex may be reduced at any time. At each

step we pick some redex, anywhere inside the term we are evaluating, and

reduce it. For example, consider the term

(λx.x) ((λx.x) (λz. (λx.x) z)),

which we can write more readably as id (id (λz. id z)). This term con-

tains three redexes:

id (id (λz. id z))

id ((id (λz. id z)))

id (id (λz. id z))

Under full beta-reduction, we might choose, for example, to begin with the

innermost redex, then do the one in the middle, then the outermost:

id (id (λz. id z))

-→ id (id (λz.z))

-→ id (λz.z)

-→ λz.z

6-→

• Under the normal order strategy, the leftmost, outermost redex is always

reduced first. Under this strategy, the term above would be reduced as

follows:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

-→ λz.z

6-→

4. Some people use the terms “reduction” and “evaluation” synonymously. Others use “evalu-

ation” only for strategies that involve some notion of “value” and “reduction” otherwise.

5.1 Basics 57

Under this strategy (and the ones below), the evaluation relation is actually

a partial function: each term t evaluates in one step to at most one term t′.

• The call by name strategy is yet more restrictive, allowing no reductions

inside abstractions. Starting from the same term, we would perform the

first two reductions as under normal-order, but then stop before the last

and regard λz. id z as a normal form:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

6-→

Variants of call by name have been used in some well-known program-

ming languages, notably Algol-60 (Naur et al., 1963) and Haskell (Hudak

et al., 1992). Haskell actually uses an optimized version known as call by

need (Wadsworth, 1971; Ariola et al., 1995) that, instead of re-evaluating

an argument each time it is used, overwrites all occurrences of the argu-

ment with its value the first time it is evaluated, avoiding the need for

subsequent re-evaluation. This strategy demands that we maintain some

sharing in the run-time representation of terms—in effect, it is a reduction

relation on abstract syntax graphs, rather than syntax trees.

• Most languages use a call by value strategy, in which only outermost re-

dexes are reduced and where a redex is reduced only when its right-hand

side has already been reduced to a value—a term that is finished comput-

ing and cannot be reduced any further.5 Under this strategy, our example

term reduces as follows:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

6-→

The call-by-value strategy is strict , in the sense that the arguments to func-

tions are always evaluated, whether or not they are used by the body of the

function. In contrast, non-strict (or lazy) strategies such as call-by-name

and call-by-need evaluate only the arguments that are actually used.

5. In the present bare-bones calculus, the only values are lambda-abstractions. Richer calculi

will include other values: numeric and boolean constants, strings, tuples of values, records of

values, lists of values, etc.

58 5 The Untyped Lambda-Calculus

The choice of evaluation strategy actually makes little difference when dis-

cussing type systems. The issues that motivate various typing features, and

the techniques used to address them, are much the same for all the strate-

gies. In this book, we use call by value, both because it is found in most

well-known languages and because it is the easiest to enrich with features

such as exceptions (Chapter 14) and references (Chapter 13).

5.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might

suggest. In this section, we develop a number of standard examples of pro-

gramming in the lambda-calculus. These examples are not intended to sug-

gest that the lambda-calculus should be taken as a full-blown programming

language in its own right—all widely used high-level languages provide clearer

and more efficient ways of accomplishing the same tasks—but rather are in-

tended as warm-up exercises to get the feel of the system.

Multiple Arguments

To begin, observe that the lambda-calculus provides no built-in support for

multi-argument functions. Of course, this would not be hard to add, but it is

even easier to achieve the same effect using higher-order functions that yield

functions as results. Suppose that s is a term involving two free variables x

and y and that we want to write a function f that, for each pair (v,w) of

arguments, yields the result of substituting v for x and w for y in s. Instead

of writing f = λ(x,y).s, as we might in a richer programming language, we

write f = λx.λy.s. That is, f is a function that, given a value v for x, yields a

function that, given a value w for y, yields the desired result. We then apply

f to its arguments one at a time, writing f v w (i.e., (f v) w), which reduces

to ((λy.[x , v]s) w) and thence to [y , w][x, v]s. This transformation

of multi-argument functions into higher-order functions is called currying in

honor of Haskell Curry, a contemporary of Church.

Church Booleans

Another language feature that can easily be encoded in the lambda-calculus

is boolean values and conditionals. Define the terms tru and fls as follows:

tru = λt. λf. t;

fls = λt. λf. f;

5.2 Programming in the Lambda-Calculus 59

(The abbreviated spellings of these names are intended to help avoid confu-

sion with the primitive boolean constants true and false from Chapter 3.)

The terms tru and fls can be viewed as representing the boolean values

“true” and “false,” in the sense that we can use these terms to perform the

operation of testing the truth of a boolean value. In particular, we can use

application to define a combinator test with the property that test b v w

reduces to v when b is tru and reduces to w when b is fls.

test = λl. λm. λn. l m n;

The test combinator does not actually do much: test b v w just reduces to

b v w. In effect, the boolean b itself is the conditional: it takes two arguments

and chooses the first (if it is tru) or the second (if it is fls). For example, the

term test tru v w reduces as follows:

test tru v w

= (λl. λm. λn. l m n) tru v w by definition

-→ (λm. λn. tru m n) v w reducing the underlined redex

-→ (λn. tru v n) w reducing the underlined redex

-→ tru v w reducing the underlined redex

= (λt.λf.t) v w by definition

-→ (λf. v) w reducing the underlined redex

-→ v reducing the underlined redex

We can also define boolean operators like logical conjunction as functions:

and = λb. λc. b c fls;

That is, and is a function that, given two boolean values b and c, returns c if

b is tru and fls if b is fls; thus and b c yields tru if both b and c are tru

and fls if either b or c is fls.

and tru tru;

ñ (λt. λf. t)

and tru fls;

ñ (λt. λf. f)

5.2.1 Exercise [«]: Define logical or and not functions. �

60 5 The Untyped Lambda-Calculus

Pairs

Using booleans, we can encode pairs of values as terms.

pair = λf.λs.λb. b f s;

fst = λp. p tru;

snd = λp. p fls;

That is, pair v w is a function that, when applied to a boolean value b, applies

b to v and w. By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst and snd

can be implemented simply by supplying the appropriate boolean. To check

that fst (pair v w) -→∗ v, calculate as follows:

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition

-→ fst ((λs. λb. b v s) w) reducing the underlined redex

-→ fst (λb. b v w) reducing the underlined redex

= (λp. p tru) (λb. b v w) by definition

-→ (λb. b v w) tru reducing the underlined redex

-→ tru v w reducing the underlined redex

-→∗ v as before.

Church Numerals

Representing numbers by lambda-terms is only slightly more intricate than

what we have just seen. Define the Church numerals c0, c1, c2, etc., as follows:

c0 = λs. λz. z;

c1 = λs. λz. s z;

c2 = λs. λz. s (s z);

c3 = λs. λz. s (s (s z));

etc.

That is, each number n is represented by a combinator cn that takes two

arguments, s and z (for “successor” and “zero”), and applies s, n times, to z.

As with booleans and pairs, this encoding makes numbers into active entities:

the number n is represented by a function that does something n times—a

kind of active unary numeral.

(The reader may already have observed that c0 and fls are actually the

same term. Similar “puns” are common in assembly languages, where the

same pattern of bits may represent many different values—an int, a float,

5.2 Programming in the Lambda-Calculus 61

an address, four characters, etc.—depending on how it is interpreted, and in

low-level languages such as C, which also identifies 0 and false.)

We can define the successor function on Church numerals as follows:

scc = λn. λs. λz. s (n s z);

The term scc is a combinator that takes a Church numeral n and returns

another Church numeral—that is, it yields a function that takes arguments s

and z and applies s repeatedly to z. We get the right number of applications

of s to z by first passing s and z as arguments to n, and then explicitly

applying s one more time to the result.

5.2.2 Exercise [««]: Find another way to define the successor function on Church

numerals. �

Similarly, addition of Church numerals can be performed by a term plus

that takes two Church numerals, m and n, as arguments, and yields another

Church numeral—i.e., a function—that accepts arguments s and z, applies s

iterated n times to z (by passing s and z as arguments to n), and then applies

s iterated m more times to the result:

plus = λm. λn. λs. λz. m s (n s z);

The implementation of multiplication uses another trick: since plus takes

its arguments one at a time, applying it to just one argument n yields the

function that adds n to whatever argument it is given. Passing this function

as the first argument to m and c0 as the second argument means “apply the

function that adds n to its argument, iterated m times, to zero,” i.e., “add

together m copies of n.”

times = λm. λn. m (plus n) c0;

5.2.3 Exercise [««]: Is it possible to define multiplication on Church numerals

without using plus? �

5.2.4 Exercise [Recommended, ««]: Define a term for raising one number to the

power of another. �

To test whether a Church numeral is zero, we must find some appropriate

pair of arguments that will give us back this information—specifically, we

must apply our numeral to a pair of terms zz and ss such that applying ss

to zz one or more times yields fls, while not applying it at all yields tru.

Clearly, we should take zz to be just tru. For ss, we use a function that

throws away its argument and always returns fls:

62 5 The Untyped Lambda-Calculus

copy +1ss

copy +1ss

copy +1ss

pair c0 c0

copy +1ss

pair c0 c1

pair c1 c2

pair c2 c3

pair c3 c4

...

Figure 5-1: The predecessor function’s “inner loop”

iszro = λm. m (λx. fls) tru;

iszro c1;

ñ (λt. λf. f)

iszro (times c0 c2);

ñ (λt. λf. t)

Surprisingly, subtraction using Church numerals is quite a bit more difficult

than addition. It can be done using the following rather tricky “predecessor

function,” which, given c0 as argument, returns c0 and, given ci+1, returns ci :

zz = pair c0 c0;

ss = λp. pair (snd p) (plus c1 (snd p));

prd = λm. fst (m ss zz);

This definition works by using m as a function to apply m copies of the func-

tion ss to the starting value zz. Each copy of ss takes a pair of numerals

pair ci cj as its argument and yields pair cj cj+1 as its result (see Figure 5-

1). So applying ss, m times, to pair c0 c0 yields pair c0 c0 when m = 0 and

pair cm−1 cm when m is positive. In both cases, the predecessor of m is found

in the first component.

5.2.5 Exercise [««]: Use prd to define a subtraction function. �

5.2 Programming in the Lambda-Calculus 63

5.2.6 Exercise [««]: Approximately how many steps of evaluation (as a function

of n) are required to calculate prd cn? �

5.2.7 Exercise [««]: Write a function equal that tests two numbers for equality

and returns a Church boolean. For example,

equal c3 c3;

ñ (λt. λf. t)

equal c3 c2;

ñ (λt. λf. f) �

Other common datatypes like lists, trees, arrays, and variant records can

be encoded using similar techniques.

5.2.8 Exercise [Recommended, «««]: A list can be represented in the lambda-

calculus by its fold function. (OCaml’s name for this function is fold_left;

it is also sometimes called reduce .) For example, the list [x,y,z] becomes

a function that takes two arguments c and n and returns c x (c y (c z n))).

What would the representation of nil be? Write a function cons that takes

an element h and a list (that is, a fold function) t and returns a similar rep-

resentation of the list formed by prepending h to t. Write isnil and head

functions, each taking a list parameter. Finally, write a tail function for this

representation of lists (this is quite a bit harder and requires a trick analogous

to the one used to define prd for numbers). �

Enriching the Calculus

We have seen that booleans, numbers, and the operations on them can be

encoded in the pure lambda-calculus. Indeed, strictly speaking, we can do all

the programming we ever need to without going outside of the pure system.

However, when working with examples it is often convenient to include the

primitive booleans and numbers (and possibly other data types) as well. When

we need to be clear about precisely which system we are working in, we will

use the symbol λ for the pure lambda-calculus as defined in Figure 5-3 and

λNB for the enriched system with booleans and arithmetic expressions from

Figures 3-1 and 3-2.

In λNB, we actually have two different implementations of booleans and

two of numbers to choose from when writing programs: the real ones and

the encodings we’ve developed in this chapter. Of course, it is easy to convert

back and forth between the two. To turn a Church boolean into a primitive

boolean, we apply it to true and false:

64 5 The Untyped Lambda-Calculus

realbool = λb. b true false;

To go the other direction, we use an if expression:

churchbool = λb. if b then tru else fls;

We can build these conversions into higher-level operations. Here is an equal-

ity function on Church numerals that returns a real boolean:

realeq = λm. λn. (equal m n) true false;

In the same way, we can convert a Church numeral into the corresponding

primitive number by applying it to succ and 0:

realnat = λm. m (λx. succ x) 0;

We cannot apply m to succ directly, because succ by itself does not make

syntactic sense: the way we defined the syntax of arithmetic expressions,

succ must always be applied to something. We work around this by pack-

aging succ inside a little function that does nothing but return the succ of

its argument.

The reasons that primitive booleans and numbers come in handy for ex-

amples have to do primarily with evaluation order. For instance, consider

the term scc c1. From the discussion above, we might expect that this term

should evaluate to the Church numeral c2. In fact, it does not:

scc c1;

ñ (λs. λz. s ((λs’. λz’. s’ z’) s z))

This term contains a redex that, if we were to reduce it, would bring us (in

two steps) to c2, but the rules of call-by-value evaluation do not allow us to

reduce it yet, since it is under a lambda-abstraction.

There is no fundamental problem here: the term that results from evalu-

ation of scc c1 is obviously behaviorally equivalent to c2, in the sense that

applying it to any pair of arguments v and w will yield the same result as

applying c2 to v and w. Still, the leftover computation makes it a bit difficult

to check that our scc function is behaving the way we expect it to. For more

complicated arithmetic calculations, the difficulty is even worse. For example,

times c2 c2 evaluates not to c4 but to the following monstrosity:

times c2 c2;

ñ (λs.

λz.

(λs’. λz’. s’ (s’ z’)) s

((λs’.

5.2 Programming in the Lambda-Calculus 65

λz’.

(λs”. λz”. s” (s” z”)) s’

((λs”. λz”.z”) s’ z’))

s

z))

One way to check that this term behaves like c4 is to test them for equality:

equal c4 (times c2 c2);

ñ (λt. λf. t)

But it is more direct to take times c2 c2 and convert it to a primitive number:

realnat (times c2 c2);

ñ 4

The conversion has the effect of supplying the two extra arguments that

times c2 c2 is waiting for, forcing all of the latent computation in its body.

Recursion

Recall that a term that cannot take a step under the evaluation relation is

called a normal form. Interestingly, some terms cannot be evaluated to a nor-

mal form. For example, the divergent combinator

omega = (λx. x x) (λx. x x);

contains just one redex, and reducing this redex yields exactly omega again!

Terms with no normal form are said to diverge.

The omega combinator has a useful generalization called the fixed-point

combinator ,6 which can be used to help define recursive functions such as

factorial.7

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

Like omega, the fix combinator has an intricate, repetitive structure; it is

difficult to understand just by reading its definition. Probably the best way

of getting some intuition about its behavior is to watch how it works on a

specific example.8 Suppose we want to write a recursive function definition

6. It is often called the call-by-value Y-combinator . Plotkin (1975) called it Z.

7. Note that the simpler call-by-name fixed point combinator

Y = λf. (λx. f (x x)) (λx. f (x x))

is useless in a call-by-value setting, since the expression Y g diverges, for any g.

8. It is also possible to derive the definition of fix from first principles (e.g., Friedman and

Felleisen, 1996, Chapter 9), but such derivations are also fairly intricate.

66 5 The Untyped Lambda-Calculus

of the form h = 〈body containing h〉—i.e., we want to write a definition where

the term on the right-hand side of the = uses the very function that we are

defining, as in the definition of factorial on page 52. The intention is that

the recursive definition should be “unrolled” at the point where it occurs; for

example, the definition of factorial would intuitively be

if n=0 then 1

else n * (if n-1=0 then 1

else (n-1) * (if (n-2)=0 then 1

else (n-2) * ...))

or, in terms of Church numerals:

if realeq n c0 then c1

else times n (if realeq (prd n) c0 then c1

else times (prd n)

(if realeq (prd (prd n)) c0 then c1

else times (prd (prd n)) ...))

This effect can be achieved using the fix combinator by first defining g =

λf.〈body containing f〉 and then h = fix g. For example, we can define the

factorial function by

g = λfct. λn. if realeq n c0 then c1 else (times n (fct (prd n)));

factorial = fix g;

Figure 5-2 shows what happens to the term factorial c3 during evaluation.

The key fact that makes this calculation work is that fct n -→∗ g fct n. That

is, fct is a kind of “self-replicator” that, when applied to an argument, sup-

plies itself and n as arguments to g. Wherever the first argument to g appears

in the body of g, we will get another copy of fct, which, when applied to

an argument, will again pass itself and that argument to g, etc. Each time we

make a recursive call using fct, we unroll one more copy of the body of g

and equip it with new copies of fct that are ready to do the unrolling again.

5.2.9 Exercise [«]: Why did we use a primitive if in the definition of g, instead of

the Church-boolean test function on Church booleans? Show how to define

the factorial function in terms of test rather than if. �

5.2.10 Exercise [««]: Define a function churchnat that converts a primitive natural

number into the corresponding Church numeral. �

5.2.11 Exercise [Recommended, ««]: Use fix and the encoding of lists from Exer-

cise 5.2.8 to write a function that sums lists of Church numerals. �

5.2 Programming in the Lambda-Calculus 67

factorial c3

= fix g c3

-→ h h c3

where h = λx. g (λy. x x y)

-→ g fct c3

where fct = λy. h h y

-→ (λn. if realeq n c0

then c1

else times n (fct (prd n)))

c3

-→ if realeq c3 c0

then c1

else times c3 (fct (prd c3))

-→∗ times c3 (fct (prd c3))

-→∗ times c3 (fct c′2)

where c′2 is behaviorally equivalent to c2

-→∗ times c3 (g fct c′2)

-→∗ times c3 (times c′2 (g fct c′1)).

where c′1 is behaviorally equivalent to c1

(by repeating the same calculation for g fct c′2)

-→∗ times c3 (times c′2 (times c′1 (g fct c′0))).

where c′0 is behaviorally equivalent to c0

(similarly)

-→∗ times c3 (times c′2 (times c′1 (if realeq c′0 c0 then c1

else ...)))

-→∗ times c3 (times c′2 (times c′1 c1))

-→∗ c′6
where c′6 is behaviorally equivalent to c6.

Figure 5-2: Evaluation of factorial c3

Representation

Before leaving our examples behind and proceeding to the formal definition

of the lambda-calculus, we should pause for one final question: What, exactly,

does it mean to say that the Church numerals represent ordinary numbers?

To answer, we first need to remind ourselves of what the ordinary numbers

are. There are many (equivalent) ways to define them; the one we have chosen

here (in Figure 3-2) is to give:

• a constant 0,

68 5 The Untyped Lambda-Calculus

• an operation iszero mapping numbers to booleans, and

• two operations, succ and pred, mapping numbers to numbers.

The behavior of the arithmetic operations is defined by the evaluation rules

in Figure 3-2. These rules tell us, for example, that 3 is the successor of 2,

and that iszero 0 is true.

The Church encoding of numbers represents each of these elements as a

lambda-term (i.e., a function):

• The term c0 represents the number 0.

As we saw on page 64, there are also “non-canonical representations” of

numbers as terms. For example, λs. λz. (λx. x) z, which is behaviorally

equivalent to c0, also represents 0.

• The terms scc and prd represent the arithmetic operations succ and

pred, in the sense that, if t is a representation of the number n, then

scc t evaluates to a representation of n + 1 and prd t evaluates to a rep-

resentation of n− 1 (or of 0, if n is 0).

• The term iszro represents the operation iszero, in the sense that, if t is

a representation of 0, then iszro t evaluates to true,9 and if t represents

any number other than 0, then iszro t evaluates to false.

Putting all this together, suppose we have a whole program that does some

complicated calculation with numbers to yield a boolean result. If we replace

all the numbers and arithmetic operations with lambda-terms representing

them and evaluate the program, we will get the same result. Thus, in terms

of their effects on the overall results of programs, there is no observable dif-

ference between the real numbers and their Church-numeral representation.

5.3 Formalities

For the rest of the chapter, we consider the syntax and operational semantics

of the lambda-calculus in more detail. Most of the structure we need is closely

analogous to what we saw in Chapter 3 (to avoid repeating that structure

verbatim, we address here just the pure lambda-calculus, unadorned with

booleans or numbers). However, the operation of substituting a term for a

variable involves some surprising subtleties.

9. Strictly speaking, as we defined it, iszro t evaluates to a representation of true as another

term, but let’s elide that distinction to simplify the present discussion. An analogous story can

be given to explain in what sense the Church booleans represent the real ones.

5.3 Formalities 69

Syntax

As in Chapter 3, the abstract grammar defining terms (on page 53) should be

read as shorthand for an inductively defined set of abstract syntax trees.

5.3.1 Definition [Terms]: Let V be a countable set of variable names. The set of

terms is the smallest set T such that

1. x ∈ T for every x ∈ V ;

2. if t1 ∈ T and x ∈ V , then λx.t1 ∈ T ;

3. if t1 ∈ T and t2 ∈ T , then t1 t2 ∈ T . �

The size of a term t can be defined exactly as we did for arithmetic expres-

sions in Definition 3.3.2. More interestingly, we can give a simple inductive

definition of the set of variables appearing free in a lambda-term.

5.3.2 Definition: The set of free variables of a term t, written FV(t), is defined as

follows:

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1)∪ FV(t2) �

5.3.3 Exercise [««]: Give a careful proof that |FV(t)| ≤ size(t) for every term t. �

Substitution

The operation of substitution turns out to be quite tricky, when examined in

detail. In this book, we will actually use two different definitions, each opti-

mized for a different purpose. The first, introduced in this section, is compact

and intuitive, and works well for examples and in mathematical definitions

and proofs. The second, developed in Chapter 6, is notationally heavier, de-

pending on an alternative “de Bruijn presentation” of terms in which named

variables are replaced by numeric indices, but is more convenient for the

concrete ML implementations discussed in later chapters.

It is instructive to arrive at a definition of substitution via a couple of wrong

attempts. First, let’s try the most naive possible recursive definition. (For-

mally, we are defining a function [x, s] by induction over its argument t.)

[x, s]x = s

[x, s]y = y if x ≠ y

[x, s](λy.t1) = λy. [x, s]t1

[x, s](t1 t2) = ([x, s]t1) ([x, s]t2)

70 5 The Untyped Lambda-Calculus

This definition works fine for most examples. For instance, it gives

[x, (λz. z w)](λy.x) = λy.λz. z w,

which matches our intuitions about how substitution should behave. How-

ever, if we are unlucky with our choice of bound variable names, the definition

breaks down. For example:

[x, y](λx.x) = λx.y

This conflicts with the basic intuition about functional abstractions that the

names of bound variables do not matter—the identity function is exactly the

same whether we write it λx.x or λy.y or λfranz.franz. If these do not

behave exactly the same under substitution, then they will not behave the

same under reduction either, which seems wrong.

Clearly, the first mistake that we’ve made in the naive definition of substitu-

tion is that we have not distinguished between free occurrences of a variable

x in a term t (which should get replaced during substitution) and bound ones,

which should not. When we reach an abstraction binding the name x inside

of t, the substitution operation should stop. This leads to the next attempt:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) =

{

λy. t1 if y = x

λy. [x, s]t1 if y ≠ x

[x, s](t1 t2) = ([x, s]t1) ([x, s]t2)

This is better, but still not quite right. For example, consider what happens

when we substitute the term z for the variable x in the term λz.x:

[x, z](λz.x) = λz.z

This time, we have made essentially the opposite mistake: we’ve turned the

constant function λz.x into the identity function! Again, this occurred only

because we happened to choose z as the name of the bound variable in the

constant function, so something is clearly still wrong.

This phenomenon of free variables in a term s becoming bound when s is

naively substituted into a term t is called variable capture. To avoid it, we

need to make sure that the bound variable names of t are kept distinct from

the free variable names of s. A substitution operation that does this correctly

is called capture-avoiding substitution. (This is almost always what is meant

5.3 Formalities 71

by the unqualified term “substitution.”) We can achieve the desired effect by

adding another side condition to the second clause of the abstraction case:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) =

{

λy. t1 if y = x

λy. [x, s]t1 if y ≠ x and y ∉ FV(s)

[x, s](t1 t2) = ([x, s]t1 ([x, s]t2)

Now we are almost there: this definition of substitution does the right thing

when it does anything at all. The problem now is that our last fix has changed

substitution into a partial operation. For example, the new definition does not

give any result at all for [x, y z](λy. x y): the bound variable y of the term

being substituted into is not equal to x, but it does appear free in (y z), so

none of the clauses of the definition apply.

One common fix for this last problem in the type systems and lambda-

calculus literature is to work with terms “up to renaming of bound variables.”

(Church used the term alpha-conversion for the operation of consistently

renaming a bound variable in a term. This terminology is still common—

we could just as well say that we are working with terms “up to alpha-

conversion.”)

5.3.4 Convention: Terms that differ only in the names of bound variables are

interchangeable in all contexts. �

What this means in practice is that the name of any λ-bound variable can

be changed to another name (consistently making the same change in the

body of the λ), at any point where this is convenient. For example, if we want

to calculate [x, y z](λy. x y), we first rewrite (λy. x y) as, say, (λw. x w).

We then calculate [x, y z](λw. x w), giving (λw. y z w).

This convention renders the substitution operation “as good as total,” since

whenever we find ourselves about to apply it to arguments for which it is

undefined, we can rename as necessary, so that the side conditions are satis-

fied. Indeed, having adopted this convention, we can formulate the definition

of substitution a little more tersely. The first clause for abstractions can be

dropped, since we can always assume (renaming if necessary) that the bound

variable y is different from both x and the free variables of s. This yields the

final form of the definition.

5.3.5 Definition [Substitution]:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) = λy. [x, s]t1 if y ≠ x and y ∉ FV(s)

[x, s](t1 t2) = [x, s]t1 [x, s]t2 �

72 5 The Untyped Lambda-Calculus

→ (untyped)

Syntax

t ::= terms:

x variable

λx.t abstraction

t t application

v ::= values:

λx.t abstraction value

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Figure 5-3: Untyped lambda-calculus (λ)

Operational Semantics

The operational semantics of lambda-terms is summarized in Figure 5-3. The

set of values here is more interesting than we saw in the case of arithmetic

expressions. Since (call-by-value) evaluation stops when it reaches a lambda,

values can be arbitrary lambda-terms.

The evaluation relation appears in the right-hand column of the figure.

As in evaluation for arithmetic expressions, there are two sorts of rules: the

computation rule E-AppAbs and the congruence rules E-App1 and E-App2.

Notice how the choice of metavariables in these rules helps control the

order of evaluation. Since v2 ranges only over values, the left-hand side of

rule E-AppAbs can match any application whose right-hand side is a value.

Similarly, rule E-App1 applies to any application whose left-hand side is not

a value, since t1 can match any term whatsoever, but the premise further

requires that t1 can take a step. E-App2, on the other hand, cannot fire until

the left-hand side is a value so that it can be bound to the value-metavariable

v. Taken together, these rules completely determine the order of evaluation

for an application t1 t2: we first use E-App1 to reduce t1 to a value, then

use E-App2 to reduce t2 to a value, and finally use E-AppAbs to perform the

application itself.

5.3.6 Exercise [««]: Adapt these rules to describe the other three strategies for

evaluation—full beta-reduction, normal-order, and lazy evaluation. �

Note that, in the pure lambda-calculus, lambda-abstractions are the only

possible values, so if we reach a state where E-App1 has succeeded in reducing

t1 to a value, then this value must be a lambda-abstraction. This observation

5.4 Notes 73

fails, of course, when we add other constructs such as primitive booleans to

the language, since these introduce forms of values other than abstractions.

5.3.7 Exercise [«« 3]: Exercise 3.5.16 gave an alternative presentation of the op-

erational semantics of booleans and arithmetic expressions in which stuck

terms are defined to evaluate to a special constant wrong. Extend this seman-

tics to λNB. �

5.3.8 Exercise [««]: Exercise 4.2.2 introduced a “big-step” style of evaluation for

arithmetic expressions, where the basic evaluation relation is “term t evalu-

ates to final result v.” Show how to formulate the evaluation rules for lambda-

terms in the big-step style. �

5.4 Notes

The untyped lambda-calculus was developed by Church and his co-workers

in the 1920s and ’30s (Church, 1941). The standard text for all aspects of

the untyped lambda-calculus is Barendregt (1984); Hindley and Seldin (1986)

is less comprehensive, but more accessible. Barendregt’s article (1990) in

the Handbook of Theoretical Computer Science is a compact survey. Mate-

rial on lambda-calculus can also be found in many textbooks on functional

programming languages (e.g. Abelson and Sussman, 1985; Friedman, Wand,

and Haynes, 2001; Peyton Jones and Lester, 1992) and programming language

semantics (e.g. Schmidt, 1986; Gunter, 1992; Winskel, 1993; Mitchell, 1996). A

systematic method for encoding a wide variety of data structures as lambda-

terms can be found in Böhm and Berarducci (1985).

Despite its name, Curry denied inventing the idea of currying. It is com-

monly credited to Schönfinkel (1924), but the underlying idea was familiar to

a number of 19th-century mathematicians, including Frege and Cantor.

There may, indeed, be other applications of the system than its use as a logic.

—Alonzo Church, 1932

