
32 3 Untyped Arithmetic Expressions

Proof: By induction on t.

Case: t = true

. . . show P(true) . . .

Case: t = false

. . . show P(false) . . .

Case: t = if t1 then t2 else t3

. . . show P(if t1 then t2 else t3), using P(t1), P(t2), and P(t3) . . .

(And similarly for the other syntactic forms.) �

For many inductive arguments (including the proof of 3.3.3), it is not really

worth writing even this much detail: in the base cases (for terms t with no

subterms) P(t) is immediate, while in the inductive cases P(t) is obtained by

applying the induction hypothesis to the subterms of t and combining the

results in some completely obvious way. It is actually easier for the reader

simply to regenerate the proof on the fly (by examining the grammar while

keeping the induction hypothesis in mind) than to check a written-out argu-

ment. In such cases, simply writing “by induction on t” constitutes a perfectly

acceptable proof.

3.4 Semantic Styles

Having formulated the syntax of our language rigorously, we next need a

similarly precise definition of how terms are evaluated—i.e., the semantics of

the language. There are three basic approaches to formalizing semantics:

1. Operational semantics specifies the behavior of a programming language

by defining a simple abstract machine for it. This machine is “abstract” in

the sense that it uses the terms of the language as its machine code, rather

than some low-level microprocessor instruction set. For simple languages,

a state of the machine is just a term, and the machine’s behavior is defined

by a transition function that, for each state, either gives the next state

by performing a step of simplification on the term or declares that the

machine has halted. The meaning of a term t can be taken to be the final

state that the machine reaches when started with t as its initial state.2

2. Strictly speaking, what we are describing here is the so-called small-step style of operational

semantics, sometimes called structural operational semantics (Plotkin, 1981). Exercise 3.5.17

introduces an alternate big-step style, sometimes called natural semantics (Kahn, 1987), in

which a single transition of the abstract machine evaluates a term to its final result.



3.4 Semantic Styles 33

It is sometimes useful to give two or more different operational semantics

for a single language—some more abstract, with machine states that look

similar to the terms that the programmer writes, others closer to the struc-

tures manipulated by an actual interpreter or compiler for the language.

Proving that the behaviors of these different machines correspond in some

suitable sense when executing the same program amounts to proving the

correctness of an implementation of the language.

2. Denotational semantics takes a more abstract view of meaning: instead of

just a sequence of machine states, the meaning of a term is taken to be

some mathematical object, such as a number or a function. Giving denota-

tional semantics for a language consists of finding a collection of semantic

domains and then defining an interpretation function mapping terms into

elements of these domains. The search for appropriate semantic domains

for modeling various language features has given rise to a rich and elegant

research area known as domain theory.

One major advantage of denotational semantics is that it abstracts from

the gritty details of evaluation and highlights the essential concepts of

the language. Also, the properties of the chosen collection of semantic do-

mains can be used to derive powerful laws for reasoning about program

behaviors—laws for proving that two programs have exactly the same be-

havior, for example, or that a program’s behavior satisfies some specifi-

cation. Finally, from the properties of the chosen collection of semantic

domains, it is often immediately evident that various (desirable or unde-

sirable) things are impossible in a language.

3. Axiomatic semantics takes a more direct approach to these laws: instead

of first defining the behaviors of programs (by giving some operational

or denotational semantics) and then deriving laws from this definition, ax-

iomatic methods take the laws themselves as the definition of the language.

The meaning of a term is just what can be proved about it.

The beauty of axiomatic methods is that they focus attention on the pro-

cess of reasoning about programs. It is this line of thought that has given

computer science such powerful ideas as invariants.

During the ’60s and ’70s, operational semantics was generally regarded as

inferior to the other two styles—useful for quick and dirty definitions of

language features, but inelegant and mathematically weak. But in the ’80s,

the more abstract methods began to encounter increasingly thorny technical

problems,3 and the simplicity and flexibility of operational methods came

3. The bête noire of denotational semantics turned out to be the treatment of nondeterminism

and concurrency; for axiomatic semantics, it was procedures.



34 3 Untyped Arithmetic Expressions

B (untyped)

Syntax

t ::= terms:

true constant true

false constant false

if t then t else t conditional

v ::= values:

true true value

false false value

Evaluation t -→ t′

if true then t2 else t3 -→ t2 (E-IfTrue)

if false then t2 else t3 -→ t3 (E-IfFalse)

t1 -→ t′1

if t1 then t2 else t3

-→ if t′1 then t2 else t3

(E-If)

Figure 3-1: Booleans (B)

to seem more and more attractive by comparison—especially in the light

of new developments in the area by a number of researchers, beginning

with Plotkin’s Structural Operational Semantics (1981), Kahn’s Natural Se-

mantics (1987), and Milner’s work on CCS (1980; 1989; 1999), which intro-

duced more elegant formalisms and showed how many of the powerful math-

ematical techniques developed in the context of denotational semantics could

be transferred to an operational setting. Operational semantics has become

an energetic research area in its own right and is often the method of choice

for defining programming languages and studying their properties. It is used

exclusively in this book.

3.5 Evaluation

Leaving numbers aside for the moment, let us begin with the operational

semantics of just boolean expressions. Figure 3-1 summarizes the definition.

We now examine its parts in detail.

The left-hand column of Figure 3-1 is a grammar defining two sets of ex-

pressions. The first is just a repetition (for convenience) of the syntax of

terms. The second defines a subset of terms, called values, that are possible

final results of evaluation. Here, the values are just the constants true and

false. The metavariable v is used throughout the book to stand for values.

The right-hand column defines an evaluation relation4 on terms, written

4. Some experts prefer to use the term reduction for this relation, reserving evaluation for the

“big-step” variant described in Exercise 3.5.17, which maps terms directly to their final values.



3.5 Evaluation 35

t -→ t′ and pronounced “t evaluates to t′ in one step.” The intuition is that,

if t is the state of the abstract machine at a given moment, then the machine

can make a step of computation and change its state to t′. This relation is

defined by three inference rules (or, if you prefer, two axioms and a rule, since

the first two have no premises).

The first rule, E-IfTrue, says that, if the term being evaluated is a condi-

tional whose guard is literally the constant true, then the machine can throw

away the conditional expression and leave the then part, t2, as the new state

of the machine (i.e., the next term to be evaluated). Similarly, E-IfFalse says

that a conditional whose guard is literally false evaluates in one step to its

else branch, t3. The E- in the names of these rules is a reminder that they

are part of the evaluation relation; rules for other relations will have different

prefixes.

The third evaluation rule, E-If, is more interesting. It says that, if the guard

t1 evaluates to t′1, then the whole conditional if t1 then t2 else t3 evalu-

ates to if t′1 then t2 else t3. In terms of abstract machines, a machine in

state if t1 then t2 else t3 can take a step to state if t′1 then t2 else t3 if

another machine whose state is just t1 can take a step to state t′1.

What these rules do not say is just as important as what they do say. The

constants true and false do not evaluate to anything, since they do not

appear as the left-hand sides of any of the rules. Moreover, there is no rule

allowing the evaluation of a then- or else-subexpression of an if before eval-

uating the if itself: for example, the term

if true then (if false then false else false) else true

does not evaluate to if true then false else true. Our only choice is to

evaluate the outer conditional first, using E-If. This interplay between the

rules determines a particular evaluation strategy for conditionals, correspond-

ing to the familiar order of evaluation in common programming languages:

to evaluate a conditional, we must first evaluate its guard; if the guard is it-

self a conditional, we must first evaluate its guard; and so on. The E-IfTrue

and E-IfFalse rules tell us what to do when we reach the end of this process

and find ourselves with a conditional whose guard is already fully evaluated.

In a sense, E-IfTrue and E-IfFalse do the real work of evaluation, while E-If

helps determine where the work is to be done. The different character of

the rules is sometimes emphasized by referring to E-IfTrue and E-IfFalse as

computation rules and E-If as a congruence rule.

To be a bit more precise about these intuitions, we can define the evaluation

relation formally as follows.



36 3 Untyped Arithmetic Expressions

3.5.1 Definition: An instance of an inference rule is obtained by consistently re-

placing each metavariable by the same term in the rule’s conclusion and all

its premises (if any). �

For example,

if true then true else (if false then false else false) -→ true

is an instance of E-IfTrue, where both occurrences of t2 have been replaced

by true and t3 has been replaced by if false then false else false.

3.5.2 Definition: A rule is satisfied by a relation if, for each instance of the rule,

either the conclusion is in the relation or one of the premises is not. �

3.5.3 Definition: The one-step evaluation relation -→ is the smallest binary rela-

tion on terms satisfying the three rules in Figure 3-1. When the pair (t,t′) is

in the evaluation relation, we say that “the evaluation statement (or judgment)

t -→ t′ is derivable.” �

The force of the word “smallest” here is that a statement t -→ t′ is deriv-

able iff it is justified by the rules: either it is an instance of one of the axioms

E-IfTrue and E-IfFalse, or else it is the conclusion of an instance of rule E-If

whose premise is derivable. The derivability of a given statement can be jus-

tified by exhibiting a derivation tree whose leaves are labeled with instances

of E-IfTrue or E-IfFalse and whose internal nodes are labeled with instances

of E-If. For example, if we abbreviate

s
def
= if true then false else false

t
def
= if s then true else true

u
def
= if false then true else true

to avoid running off the edge of the page, then the derivability of the state-

ment

if t then false else false -→ if u then false else false

is witnessed by the following derivation tree:

E-IfTrue
s -→ false

E-If
t -→ u

E-If
if t then false else false -→ if u then false else false

Calling this structure a tree may seem a bit strange, since it doesn’t contain

any branches. Indeed, the derivation trees witnessing evaluation statements



3.5 Evaluation 37

will always have this slender form: since no evaluation rule has more than

one premise, there is no way to construct a branching derivation tree. The

terminology will make more sense when we consider derivations for other

inductively defined relations, such as typing, where some of the rules do have

multiple premises.

The fact that an evaluation statement t -→ t′ is derivable iff there is a

derivation tree with t -→ t′ as the label at its root is often useful when

reasoning about properties of the evaluation relation. In particular, it leads

directly to a proof technique called induction on derivations. The proof of the

following theorem illustrates this technique.

3.5.4 Theorem [Determinacy of one-step evaluation]: If t -→ t′ and t -→ t′′,

then t′ = t′′. �

Proof: By induction on a derivation of t -→ t′. At each step of the induction,

we assume the desired result for all smaller derivations, and proceed by a

case analysis of the evaluation rule used at the root of the derivation. (Notice

that the induction here is not on the length of an evaluation sequence: we

are looking just at a single step of evaluation. We could just as well say that

we are performing induction on the structure of t, since the structure of

an “evaluation derivation” directly follows the structure of the term being

reduced. Alternatively, we could just as well perform the induction on the

derivation of t -→ t′′ instead.)

If the last rule used in the derivation of t -→ t′ is E-IfTrue, then we know

that t has the form if t1 then t2 else t3, where t1 = true. But now it is

obvious that the last rule in the derivation of t -→ t′′ cannot be E-IfFalse,

since we cannot have both t1 = true and t1 = false. Moreover, the last rule

in the second derivation cannot be E-If either, since the premise of this rule

demands that t1 -→ t′1 for some t′1, but we have already observed that true

does not evaluate to anything. So the last rule in the second derivation can

only be E-IfTrue, and it immediately follows that t′ = t′′.

Similarly, if the last rule used in the derivation of t -→ t′ is E-IfFalse, then

the last rule in the derivation of t -→ t′′ must be the same and the result is

immediate.

Finally, if the last rule used in the derivation of t -→ t′ is E-If, then the

form of this rule tells us that t has the form if t1 then t2 else t3, where

t1 -→ t′1 for some t′1. By the same reasoning as above, the last rule in the

derivation of t -→ t′′ can only be E-If, which tells us that t has the form

if t1 then t2 else t3 (which we already know) and that t1 -→ t′′1 for some

t′′1 . But now the induction hypothesis applies (since the derivations of t1 -→

t′1 and t1 -→ t′′1 are subderivations of the original derivations of t -→ t′ and



38 3 Untyped Arithmetic Expressions

t -→ t′′), yielding t′1 = t′′1 . This tells us that t′ = if t′1 then t2 else t3 =

if t′′1 then t2 else t3 = t′′, as required. �

3.5.5 Exercise [«]: Spell out the induction principle used in the preceding proof,

in the style of Theorem 3.3.4. �

Our one-step evaluation relation shows how an abstract machine moves

from one state to the next while evaluating a given term. But as programmers

we are just as interested in the final results of evaluation—i.e., in states from

which the machine cannot take a step.

3.5.6 Definition: A term t is in normal form if no evaluation rule applies to it—

i.e., if there is no t′ such that t -→ t′. (We sometimes say “t is a normal form”

as shorthand for “t is a term in normal form.”) �

We have already observed that true and false are normal forms in the

present system (since all the evaluation rules have left-hand sides whose out-

ermost constructor is an if, there is obviously no way to instantiate any of

the rules so that its left-hand side becomes true or false). We can rephrase

this observation in more general terms as a fact about values:

3.5.7 Theorem: Every value is in normal form. �

When we enrich the system with arithmetic expressions (and, in later chap-

ters, other constructs), we will always arrange that Theorem 3.5.7 remains

valid: being in normal form is part of what it is to be a value (i.e., a fully

evaluated result), and any language definition in which this is not the case is

simply broken.

In the present system, the converse of Theorem 3.5.7 is also true: every

normal form is a value. This will not be the case in general; in fact, normal

forms that are not values play a critical role in our analysis of run-time errors,

as we shall see when we get to arithmetic expressions later in this section.

3.5.8 Theorem: If t is in normal form, then t is a value. �

Proof: Suppose that t is not a value. It is easy to show, by structural induc-

tion on t, that it is not a normal form.

Since t is not a value, it must have the form if t1 then t2 else t3 for

some t1, t2, and t3. Consider the possible forms of t1.

If t1 = true, then clearly t is not a normal form, since it matches the

left-hand side of E-IfTrue. Similarly if t1 = false.

If t1 is neither true nor false, then it is not a value. The induction hy-

pothesis then applies, telling us that t1 is not a normal form—that is, that

there is some t′1 such that t1 -→ t′1. But this means we can use E-If to derive

t -→ if t′1 then t2 else t3, so t is not a normal form either. �



3.5 Evaluation 39

It is sometimes convenient to be able to view many steps of evaluation

as one big state transition. We do this by defining a multi-step evaluation

relation that relates a term to all of the terms that can be derived from it by

zero or more single steps of evaluation.

3.5.9 Definition: The multi-step evaluation relation -→∗ is the reflexive, transitive

closure of one-step evaluation. That is, it is the smallest relation such that (1)

if t -→ t′ then t -→∗ t′, (2) t -→∗ t for all t, and (3) if t -→∗ t′ and t′ -→∗ t′′,

then t -→∗ t′′. �

3.5.10 Exercise [«]: Rephrase Definition 3.5.9 as a set of inference rules. �

Having an explicit notation for multi-step evaluation makes it easy to state

facts like the following:

3.5.11 Theorem [Uniqueness of normal forms]: If t -→∗ u and t -→∗ u′, where u

and u′ are both normal forms, then u = u′. �

Proof: Corollary of the determinacy of single-step evaluation (3.5.4). �

The last property of evaluation that we consider before turning our atten-

tion to arithmetic expressions is the fact that every term can be evaluated to a

value. Clearly, this is another property that need not hold in richer languages

with features like recursive function definitions. Even in situations where it

does hold, its proof is generally much more subtle than the one we are about

to see. In Chapter 12 we will return to this point, showing how a type system

can be used as the backbone of a termination proof for certain languages.

Most termination proofs in computer science have the same basic form:5

First, we choose some well-founded set S and give a function f mapping “ma-

chine states” (here, terms) into S. Next, we show that, whenever a machine

state t can take a step to another state t′, we have f (t′) < f (t). We now

observe that an infinite sequence of evaluation steps beginning from t can

be mapped, via f , into an infinite decreasing chain of elements of S. Since

S is well founded, there can be no such infinite decreasing chain, and hence

no infinite evaluation sequence. The function f is often called a termination

measure for the evaluation relation.

3.5.12 Theorem [Termination of Evaluation]: For every term t there is some

normal form t′ such that t -→∗ t′. �

Proof: Just observe that each evaluation step reduces the size of the term

and that size is a termination measure because the usual order on the natural

numbers is well founded. �

5. In Chapter 12 we will see a termination proof with a somewhat more complex structure.



40 3 Untyped Arithmetic Expressions

3.5.13 Exercise [Recommended, ««]:

1. Suppose we add a new rule

if true then t2 else t3 -→ t3 (E-Funny1)

to the ones in Figure 3-1. Which of the above theorems (3.5.4, 3.5.7, 3.5.8,

3.5.11, and 3.5.12) remain valid?

2. Suppose instead that we add this rule:

t2 -→ t′2

if t1 then t2 else t3 -→ if t1 then t
′
2 else t3

(E-Funny2)

Now which of the above theorems remain valid? Do any of the proofs need

to change? �

Our next job is to extend the definition of evaluation to arithmetic expres-

sions. Figure 3-2 summarizes the new parts of the definition. (The notation in

the upper-right corner of 3-2 reminds us to regard this figure as an extension

of 3-1, not a free-standing language in its own right.)

Again, the definition of terms is just a repetition of the syntax we saw in

§3.1. The definition of values is a little more interesting, since it requires

introducing a new syntactic category of numeric values. The intuition is that

the final result of evaluating an arithmetic expression can be a number, where

a number is either 0 or the successor of a number (but not the successor of an

arbitrary value: we will want to say that succ(true) is an error, not a value).

The evaluation rules in the right-hand column of Figure 3-2 follow the

same pattern as we saw in Figure 3-1. There are four computation rules

(E-PredZero, E-PredSucc, E-IszeroZero, and E-IszeroSucc) showing how

the operators pred and iszero behave when applied to numbers, and three

congruence rules (E-Succ, E-Pred, and E-Iszero) that direct evaluation into

the “first” subterm of a compound term.

Strictly speaking, we should now repeat Definition 3.5.3 (“the one-step eval-

uation relation on arithmetic expressions is the smallest relation satisfying

all instances of the rules in Figures 3-1 and 3-2. . .”). To avoid wasting space

on this kind of boilerplate, it is common practice to take the inference rules

as constituting the definition of the relation all by themselves, leaving “the

smallest relation containing all instances. . .” as understood.

The syntactic category of numeric values (nv) plays an important role in

these rules. In E-PredSucc, for example, the fact that the left-hand side is

pred (succ nv1) (rather than pred (succ t1), for example) means that this

rule cannot be used to evaluate pred (succ (pred 0)) to pred 0, since this



3.5 Evaluation 41

B N (untyped) Extends B (3-1)

New syntactic forms

t ::= ... terms:

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values:

nv numeric value

nv ::= numeric values:

0 zero value

succ nv successor value

New evaluation rules t -→ t′

t1 -→ t′1

succ t1 -→ succ t′1
(E-Succ)

pred 0 -→ 0 (E-PredZero)

pred (succ nv1) -→ nv1 (E-PredSucc)

t1 -→ t′1

pred t1 -→ pred t′1
(E-Pred)

iszero 0 -→ true (E-IszeroZero)

iszero (succ nv1) -→ false (E-IszeroSucc)

t1 -→ t′1

iszero t1 -→ iszero t′1
(E-IsZero)

Figure 3-2: Arithmetic expressions (NB)

would require instantiating the metavariable nv1 with pred 0, which is not

a numeric value. Instead, the unique next step in the evaluation of the term

pred (succ (pred 0)) has the following derivation tree:

E-PredZero
pred 0 -→ 0

E-Succ
succ (pred 0) -→ succ 0

E-Pred
pred (succ (pred 0)) -→ pred (succ 0)

3.5.14 Exercise [««]: Show that Theorem 3.5.4 is also valid for the evaluation rela-

tion on arithmetic expressions: if t -→ t′ and t -→ t′′, then t′ = t′′. �

Formalizing the operational semantics of a language forces us to specify

the behavior of all terms, including, in the case at hand, terms like pred 0 and

succ false. Under the rules in Figure 3-2, the predecessor of 0 is defined to

be 0. The successor of false, on the other hand, is not defined to evaluate to

anything (i.e., it is a normal form). We call such terms stuck.

3.5.15 Definition: A closed term is stuck if it is in normal form but not a value. �



42 3 Untyped Arithmetic Expressions

“Stuckness” gives us a simple notion of run-time error for our simple ma-

chine. Intuitively, it characterizes the situations where the operational seman-

tics does not know what to do because the program has reached a “meaning-

less state.” In a more concrete implementation of the language, these states

might correspond to machine failures of various kinds: segmentation faults,

execution of illegal instructions, etc. Here, we collapse all these kinds of bad

behavior into the single concept of “stuck state.”

3.5.16 Exercise [Recommended, «««]: A different way of formalizing meaningless

states of the abstract machine is to introduce a new term called wrong and

augment the operational semantics with rules that explicitly generate wrong

in all the situations where the present semantics gets stuck. To do this in

detail, we introduce two new syntactic categories

badnat ::= non-numeric normal forms:

wrong run-time error

true constant true

false constant false

badbool ::= non-boolean normal forms:

wrong run-time error

nv numeric value

and we augment the evaluation relation with the following rules:

if badbool then t1 else t2 -→ wrong (E-If-Wrong)

succ badnat -→ wrong (E-Succ-Wrong)

pred badnat -→ wrong (E-Pred-Wrong)

iszero badnat -→ wrong (E-IsZero-Wrong)

Show that these two treatments of run-time errors agree by (1) finding a

precise way of stating the intuition that “the two treatments agree,” and (2)

proving it. As is often the case when proving things about programming lan-

guages, the tricky part here is formulating a precise statement to be proved—

the proof itself should be straightforward. �

3.5.17 Exercise [Recommended, «««]: Two styles of operational semantics are in

common use. The one used in this book is called the small-step style, because

the definition of the evaluation relation shows how individual steps of com-

putation are used to rewrite a term, bit by bit, until it eventually becomes a

value. On top of this, we define a multi-step evaluation relation that allows us

to talk about terms evaluating (in many steps) to values. An alternative style,



3.6 Notes 43

called big-step semantics (or sometimes natural semantics), directly formu-

lates the notion of “this term evaluates to that final value,” written t ⇓ v. The

big-step evaluation rules for our language of boolean and arithmetic expres-

sions look like this:

v ⇓ v (B-Value)

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

(B-IfTrue)

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

(B-IfFalse)

t1 ⇓ nv1

succ t1 ⇓ succ nv1

(B-Succ)

t1 ⇓ 0

pred t1 ⇓ 0
(B-PredZero)

t1 ⇓ succ nv1

pred t1 ⇓ nv1

(B-PredSucc)

t1 ⇓ 0

iszero t1 ⇓ true
(B-IszeroZero)

t1 ⇓ succ nv1

iszero t1 ⇓ false
(B-IszeroSucc)

Show that the small-step and big-step semantics for this language coincide,

i.e. t -→∗ v iff t ⇓ v. �

3.5.18 Exercise [«« 3]: Suppose we want to change the evaluation strategy of our

language so that the then and else branches of an if expression are eval-

uated (in that order) before the guard is evaluated. Show how the evaluation

rules need to change to achieve this effect. �

3.6 Notes

The ideas of abstract and concrete syntax, parsing, etc., are explained in

dozens of textbooks on compilers. Inductive definitions, systems of infer-

ence rules, and proofs by induction are covered in more detail by Winskel

(1993) and Hennessy (1990).


