1. (5 points) **Palindrome**

Given an Array `arr` of letters, return `true` if `arr` is a palindrome.

An array is a palindrome when it reads the same backward as forward.

For example, `abcba` is a palindrome while `abcda` is not.

--- Example 1 ---

Output: `true`

--- Example 2 ---

Input: `arr = [‘2’, ‘0’, ‘2’, ‘2’]`

Output: `false`
2. (5 points) **Count Negative Numbers in a Sorted Array**

 Given a sorted array `nums` (ascending order), find the number of negative numbers in it.

 -- Example --

 Input: `nums = [-101, -99, -54, -21, -3, 6, 12, 19, 20, 74, 92]`

 Output: 5
3. (5 points) **Prepend Function of a Vector**

Vectors (or **Dynamic Arrays**) are sequence containers representing arrays that can change in size.

Write the `prepend` (add a new element to the beginning) function of a vector.

--- Example ---
```
cout << vec << endl; // output: 3, 1, 4, 2, 8
vec.prepend(5);
cout << vec << endl; // output: 5, 3, 1, 4, 2, 8
```
4. (5 points) **3/4 Place of a Linked List**

Find the node at 3/4 place of a linked list.

--- Example ---

Input: head->(3)->(1)->(4)->(2)->(8)->(9)->(7)->(6)->null

Output: (9) ^

Explanation: There are 8 nodes in all, and 8 * (3/4) = 6.
So, the 3/4 place node is the 6th node which is 9.
5. (5 points) **Group Anagrams**

Given an array of strings \(\text{strs} \) (consist of lowercase English letters), group the anagrams together. You can return the answer in any order.

An **Anagram** is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.

--- Example ---

Input: \(\text{strs} = \text{["eat","tea","tan","ate","nat","bat"]} \)

Output: \(\text{[["bat"],["nat","tan"],["ate","eat","tea"]]} \)
6. (5 points) **Range Sum of BST**

Given a binary search tree \(\text{bst} \) and two integers \(\text{low} \) and \(\text{high} \), return the sum of values of all nodes with a value in the inclusive range \([\text{low}, \text{high}]\). (All node values are unique.)

--- Example 1 ---

Input: \(\text{bst} = [10,5,15,3,7,\text{null},18] \), \(\text{low} = 7 \), \(\text{high} = 15 \)
(see Figure 1)

Output: 32
Explanation: Nodes 7, 10, and 15 are in the range \([7, 15]\). \(7 + 10 + 15 = 32\).

--- Example 2 ---

Input: \(\text{bst} = [10,5,15,3,7,13,18,1,\text{null},6] \), \(\text{low} = 6 \), \(\text{high} = 10 \)
(see Figure 2)

Output: 23
Explanation: Nodes 6, 7, and 10 are in the range \([6, 10]\). \(6 + 7 + 10 = 23\).