Chapter 10

Textbook Exercises



Q1 (a): Why is it generally preferable to use a Logistic
Regression classifier rather than a classical Perceptron?



Q1 (a): Why is it generally preferable to use a Logistic
Regression classifier rather than a classical Perceptron?

A classical Perceptron will converge only if the dataset is linearly
separable, and it won't be able to estimate class probabilities. In
contrast, a Logistic Regression classifier will generally converge to
a reasonably good solution even if the dataset is not linearly
separable, and it will output class probabilities.



Q1 (b): How can you tweak a Perceptron to make it
equivalent to a Logistic Regression classifier?



Q1 (b): How can you tweak a Perceptron to make it
equivalent to a Logistic Regression classifier?

If you change the Perceptron’s activation function to the logistic
activation function, and if you train it using Gradient Descent,
then it becomes equivalent to a Logistic Regression classifier.



Q2: Why was the logistic activation function a key
ingredient in training the first MLPs?



Q2: Why was the logistic activation function a key
ingredient in training the first MLPs?

The logistic activation function was a key ingredient in training the
first MLPs because its derivative is always nonzero, so Gradient
Descent can always roll down the slope. When the activation
function is a step function, Gradient Descent cannot move, as
there is no slope at all.



Q3: Name three popular activation functions. Can you draw
them?



Q3: Name three popular activation functions. Can you draw
them?

Popular activation functions include the step function, the logistic
(sigmoid) function, the hyperbolic tangent (tanh) function, and
the Rectified Linear Unit (ReLU) function.



Q4: Suppose you have an MLP composed of one input layer
with 10 passthrough neurons, followed by one hidden layer
with 50 artificial neurons, and finally one output layer with 3
artificial neurons. All artificial neurons use the ReLU
activation function.



Q4 (a): What is the shape of the input matrix X?



Q4 (a): What is the shape of the input matrix X?

The shape of the input matrix X is m x 10, where m represents
the training batch size.



Q4 (b): What are the shapes of the hidden layer’s weight
vector W, and its bias vector b,?



Q4 (b): What are the shapes of the hidden layer’s weight
vector W, and its bias vector b,?

The shape of the hidden layer’'s weight vector W, is 10 x 50, and
the length of its bias vector by, is 50.



Q4 (c): What are the shapes of the output layer’s weight
vector W, and its bias vector b,?



Q4 (c): What are the shapes of the output layer’s weight
vector W, and its bias vector b,?

The shape of the output layer's weight vector W, is 50 x 3, and
the length of its bias vector b, is 3.



Q4 (d): What is the shape of the network’s output matrix
Y?



Q4 (d): What is the shape of the network’s output matrix
Y?

The shape of the network’s output matrix Y is m x 3.



Q4 (e): Write the equation that computes the network’s
output matrix Y as a function of X, Wy, b,, W,, and b,.



Q4 (e): Write the equation that computes the network’s
output matrix Y as a function of X, Wy, b,, W,, and b,.

Y = ReLU(ReLU(X W}, + by) W, + b, ). Recall that the ReLU
function just sets every negative number in the matrix to zero.
Also note that when you are adding a bias vector to a matrix, it is
added to every single row in the matrix, which is called
broadcasting.



Q5 (a): How many neurons do you need in the output layer
if you want to classify email into spam or ham?



Q5 (a): How many neurons do you need in the output layer
if you want to classify email into spam or ham?

You just need one neuron in the output layer of a neural
network—for example, indicating the probability that the email is
spam. You would typically use the logistic activation function in
the output layer when estimating a probability.



Q5 (b): If instead, you want to tackle MNIST, how many
neurons do you need in the output layer, and which
activation function should you use?



Q5 (b): If instead, you want to tackle MNIST, how many
neurons do you need in the output layer, and which
activation function should you use?

You need 10 neurons in the output layer, and you must replace the
logistic function with the softmax activation function, which can
handle multiple classes, outputting one probability per class.



Q5 (c): What about for getting your network to predict
housing prices, as in Chapter 27



Q5 (c): What about for getting your network to predict
housing prices, as in Chapter 27

You need one output neuron, using no activation function at all in
the output layer.



Q6: What is backpropagation and how does it work?



Q6: What is backpropagation and how does it work?

Backpropagation is a technique used to train artificial neural
networks. It first computes the gradients of the cost function with
regard to every model parameter (all the weights and biases), then
it performs a Gradient Descent step using these gradients. This
backpropagation step is typically performed thousands or millions
of times, using many training batches, until the model parameters
converge to values that (hopefully) minimize the cost function.



Q7 (a): Can you list all the hyperparameters you can tweak
in a basic MLP?



Q7 (a): Can you list all the hyperparameters you can tweak
in a basic MLP?

Here is a list of all the hyperparameters you can tweak in a basic
MLP: the number of hidden layers, the number of neurons in each
hidden layer, and the activation function used in each hidden layer
and in the output layer. In general, the RelLU activation function is
a good default for the hidden layers. For the output layer, in
general you will want the logistic activation function for binary
classification, the softmax activation function for multiclass
classification, or no activation function for regression.



Q7 (b): If the MLP overfits the training data, how could you
tweak these hyperparameters to try to solve the problem?



Q7 (b): If the MLP overfits the training data, how could you
tweak these hyperparameters to try to solve the problem?

You can try reducing the number of hidden layers and reducing the
number of neurons per hidden layer.



