
Chapter 11
Textbook Exercises



What is the problem that Glorot/Xavier initialization and He
initialization aim to fix?

Glorot/Xavier initialization and He initialization were designed to
make the output standard deviation as close as possible to the
input standard deviation, at least at the beginning of training. This
reduces the vanishing/exploding gradients problem.



What is the problem that Glorot/Xavier initialization and He
initialization aim to fix?

Glorot/Xavier initialization and He initialization were designed to
make the output standard deviation as close as possible to the
input standard deviation, at least at the beginning of training. This
reduces the vanishing/exploding gradients problem.



Is it OK to initialize all the weights to the same value as long
as that value is selected randomly using He initialization?

No, all weights should be sampled independently; they should not
all have the same initial value. One important goal of sampling
weights randomly is to break symmetry. Concretely, this means
that all the neurons in any given layer will always have the same
weights. It’s like having just one neuron per layer, and much
slower. It is virtually impossible for such a configuration to
converge to a good solution.



Is it OK to initialize all the weights to the same value as long
as that value is selected randomly using He initialization?

No, all weights should be sampled independently; they should not
all have the same initial value. One important goal of sampling
weights randomly is to break symmetry. Concretely, this means
that all the neurons in any given layer will always have the same
weights. It’s like having just one neuron per layer, and much
slower. It is virtually impossible for such a configuration to
converge to a good solution.



What may happen if you set the momentum hyperparameter
too close to 1 (e.g., 0.99999) when using an SGD optimizer?

If you set the momentum hyperparameter too close to 1 (e.g.,
0.99999) when using an SGD optimizer, then the algorithm will
likely pick up a lot of speed, hopefully moving roughly toward the
global minimum, but its momentum will carry it right past the
minimum. Then it will slow down and come back, accelerate
again, overshoot again, and so on. It may oscillate this way many
times before converging, so overall it will take much longer to
converge than with a smaller momentum value.



What may happen if you set the momentum hyperparameter
too close to 1 (e.g., 0.99999) when using an SGD optimizer?

If you set the momentum hyperparameter too close to 1 (e.g.,
0.99999) when using an SGD optimizer, then the algorithm will
likely pick up a lot of speed, hopefully moving roughly toward the
global minimum, but its momentum will carry it right past the
minimum. Then it will slow down and come back, accelerate
again, overshoot again, and so on. It may oscillate this way many
times before converging, so overall it will take much longer to
converge than with a smaller momentum value.



Does dropout slow down training? Does it slow down
inference (i.e., making predictions on new instances)?

Yes, dropout does slow down training, in general roughly by a
factor of two. However, it has no impact on inference speed since
it is only turned on during training.



Does dropout slow down training? Does it slow down
inference (i.e., making predictions on new instances)?

Yes, dropout does slow down training, in general roughly by a
factor of two. However, it has no impact on inference speed since
it is only turned on during training.



In which cases would you want to use each of the following
activation functions: SELU, leaky ReLU, ReLU, tanh,
logistic, and softmax?

The SELU activation function is a good default. If you need the
neural network to be as fast as possible, you can use the leaky
ReLU. The simplicity of the ReLU activation function makes it
many people’s preferred option. The hyperbolic tangent (tanh) can
be useful in the output layer if you need to output a number
between –1 and 1. The logistic activation function is also useful in
the output layer when you need to estimate a probability for binary
classification. Finally, the softmax activation function is useful in
the output layer to output probabilities for mutually exclusive
classes.



In which cases would you want to use each of the following
activation functions: SELU, leaky ReLU, ReLU, tanh,
logistic, and softmax?

The SELU activation function is a good default. If you need the
neural network to be as fast as possible, you can use the leaky
ReLU. The simplicity of the ReLU activation function makes it
many people’s preferred option. The hyperbolic tangent (tanh) can
be useful in the output layer if you need to output a number
between –1 and 1. The logistic activation function is also useful in
the output layer when you need to estimate a probability for binary
classification. Finally, the softmax activation function is useful in
the output layer to output probabilities for mutually exclusive
classes.


