
Chapter 4
Textbook Exercises



Q1: Which Linear Regression training algorithm can you use
if you have a training set with millions of features?

If you have a training set with millions of features you can use
Stochastic Gradient Descent or Mini-batch Gradient Descent, and
perhaps Batch Gradient Descent if the training set fits in memory.
But you cannot use the Normal Equation because the
computational complexity grows quickly (more than quadratically)
with the number of features.
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Q2: Suppose the features in your training set have very
different scales. Which algorithms might suffer from this,
and how? What can you do about it?

If the features in your training set have very different scales, the
cost function will have the shape of an elongated bowl, so the
Gradient Descent algorithms will take a long time to converge. To
solve this you should scale the data before training the model.
Note that the Normal Equation will work just fine without scaling.
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Q3: Can Gradient Descent get stuck in a local minimum
when training a Logistic Regression model?

Gradient Descent cannot get stuck in a local minimum when
training a Logistic Regression model because the cost function is
convex.

(Convex: If you draw a straight line between any two points on the curve,

the line never crosses the curve.)
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Q4: Do all Gradient Descent algorithms lead to the same
model, provided you let them run long enough?

If the optimization problem is convex (such as Linear Regression or
Logistic Regression), and assuming the learning rate is not too
high, then all Gradient Descent algorithms will approach the global
optimum and end up producing fairly similar models. However,
unless you gradually reduce the learning rate, Stochastic GD and
Mini-batch GD will never truly converge; instead, they will keep
jumping back and forth around the global optimum. This means
that even if you let them run for a very long time, these Gradient
Descent algorithms will produce slightly different models.
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Q5: Suppose you use Batch Gradient Descent and you plot
the validation error at every epoch. If you notice that the
validation error consistently goes up, what is likely going on?
How can you fix this?

If the validation error consistently goes up after every epoch, then
one possibility is that the learning rate is too high and the
algorithm is diverging. If the training error also goes up, then this
is clearly the problem and you should reduce the learning rate.
However, if the training error is not going up, then your model is
overfitting the training set and you should stop training.
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Q6: Is it a good idea to stop Mini-batch Gradient Descent
immediately when the validation error goes up?

Due to their random nature, neither Stochastic Gradient Descent
nor Mini-batch Gradient Descent is guaranteed to make progress at
every single training iteration. So if you immediately stop training
when the validation error goes up, you may stop much too early,
before the optimum is reached. A better option is to save the
model at regular intervals; then, when it has not improved for a
long time (meaning it will probably never beat the record), you can
revert to the best saved model.
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Q7: Which Gradient Descent algorithm (among those we
discussed) will reach the vicinity of the optimal solution the
fastest? Which will actually converge? How can you make
the others converge as well?

Stochastic Gradient Descent has the fastest training iteration since
it considers only one training instance at a time, so it is generally
the first to reach the vicinity of the global optimum (or Mini-batch
GD with a very small mini-batch size). However, only Batch
Gradient Descent will actually converge, given enough training
time. As mentioned, Stochastic GD and Mini-batch GD will bounce
around the optimum, unless you gradually reduce the learning rate.



Q7: Which Gradient Descent algorithm (among those we
discussed) will reach the vicinity of the optimal solution the
fastest? Which will actually converge? How can you make
the others converge as well?

Stochastic Gradient Descent has the fastest training iteration since
it considers only one training instance at a time, so it is generally
the first to reach the vicinity of the global optimum (or Mini-batch
GD with a very small mini-batch size). However, only Batch
Gradient Descent will actually converge, given enough training
time. As mentioned, Stochastic GD and Mini-batch GD will bounce
around the optimum, unless you gradually reduce the learning rate.



Q8: Suppose you are using Polynomial Regression. You plot
the learning curves and you notice that there is a large gap
between the training error and the validation error. What is
happening? What are three ways to solve this?

If the validation error is much higher than the training error, this is
likely because your model is overfitting the training set. One way
to try to fix this is to reduce the polynomial degree: a model with
fewer degrees of freedom is less likely to overfit.
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Q11: Suppose you want to classify pictures as outdoor/indoor
and daytime/nighttime. Should you implement two Logistic
Regression classifiers or one Softmax Regression classifier?

If you want to classify pictures as outdoor/indoor and
daytime/nighttime, since these are not exclusive classes (i.e., all
four combinations are possible) you should train two Logistic
Regression classifiers.
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