


                       C++ Reserved Keywords 
 C++ reserves and gives predefi ned meanings to the following keywords. You may not redefi ne key-
words or use them for other purposes. Keywords that appear in color are new since C++11.        

  alignas    decitype    namespace    struct  

  alignof    default    new    switch  

  and    delete    noexcept    template  

  and_eq    do    not    this  

  asm    double    not_eq    thread_local  

  auto    dynamic_cast    nullptr    throw  

  bitand    else    operator    true  

  bitor    enum    or    try  

  bool    explicit    or_eq    typedef  

  break    export    private    typeid  

  case    extern    protected    typename  

  catch    false    public    union  

  char    fl oat    register    unsigned  

  char16_t    for    reinterpret_cast    using  

  char32_t    friend    return    virtual  

  class    goto    short    void  

  compl    if    signed    volatile  

  const    inline    sizeof    wchar_t  

  const_cast    int    static    while  

  constexpr    long    static_assert    xor  

  continue    mutable    static_cast    xor_eq  



 Operator  Meaning  Associativity  Usage 
  *   multiply  left   expr   *   expr  
  /   divide  left   expr   /   expr  
  %   modulo  left   expr   %   expr  

            
  +   add  left   expr   +   expr  
  -   subtract  left   expr   -   expr  

            

  <<   bitwise shift left‡  left   expr   <<   expr  
  >>   bitwise shift right‡  left   expr   >>   expr  
            

  <   less than  left   expr   <   expr  
  <=   less than or equal to  left   expr   <=   expr  
  >   greater than  left   expr   >   expr  
  >=   greater than or equal to  left   expr   >=   expr  
            

  ==   equal  left   expr   ==   expr  
  !=   not equal  left   expr   !=   expr  
            

  &   bitwise AND  left   expr   &   expr  
            

  ̂    bitwise EXCLUSIVE OR  left   expr   ̂    expr  
            

  |   bitwise OR  left   expr   |   expr  
            

  &&   logical AND  left   expr   &&   expr  
            

  ||   logical OR  left   expr   ||   expr  
            

  ? :   conditional  left   expr   ?   expr   :   expr  
            

  =   assign  left   lvalue   =   expr  
  *=   multiply and assign  left   lvalue   *=   expr  
  /=   divide and assign  left   lvalue   /=   expr  
  %=   modulo and assign  left   lvalue   %=   expr  
  +=   add and assign  left   lvalue   +=   expr  
  -=   subtract and assign  left   lvalue   -=   expr  
  <<=   shift left and assign  left   lvalue   <<=   expr  
  >>=   shift right and assign  left   lvalue   >>=   expr  
  &=   AND and assign  left   lvalue   &=   expr  
  |=   OR and assign  left   lvalue   |=   expr  
  ̂ =   EXCLUSIVE OR and assign  left   lvalue   ̂ =   expr  
            
  ,   comma  left   expr  ,   expr  

 ‡ Typically overloaded for I/O 
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eWelcome to the sixth edition of Data Abstraction & Problem Solving with C++: Walls and Mirrors . Since 
the publication of the fi rst edition, we all have gained experience with teaching data abstraction in an object-
oriented way using C++. This edition refl ects that experience and the many comments and suggestions received 
from faculty and students alike. 

 I am happy to introduce Dr. Timothy Henry, my co-author and colleague at the University of Rhode Island. 
Together, we have given this book a much needed revision and a new look. However, our goal remains to give 
students a superior foundation in data abstraction, object-oriented programming, and other modern problem-
solving techniques. All C++ code has been rewritten with a focus on safe and secure programming practices. It 
also adheres to the C++11 standard. 

 We hope that you enjoy reading this book. Like many others before you, you can learn—or teach—data 
structures in an effective and sustainable way. 

  Talk to Us 
Walls and Mirrors  continues to evolve. Your comments, suggestions, and corrections will be greatly appreciated. Here 
are a few ways to reach us: 

•       E-mail:  carrano@acm.org   
•      Facebook:  www.facebook.com/makingitreal   
•      Twitter: twitter.com/Frank_M_Carrano  
•      Blog: frank-m-carrano.com/makingitreal        

www.facebook.com/makingitreal
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s The topics that we cover in this book deal with the various ways of organizing data so that a given application 

can access and manipulate data in an effi cient way. These topics are fundamental to your future study of compu-
ter science, as they provide you with the foundation of knowledge required to create complex and reliable soft-
ware. Whether you are interested in designing video games or software for robotic-controlled surgery, the study 
of data structures is vital to your success. Even if you do not study all of the topics in this book now, you are 
likely to encounter them later. We hope that you will enjoy reading the book, and that it will serve as a useful 
reference tool for your future courses. 

 The walls and mirrors in the title represent two fundamental problem-solving techniques that appear 
throughout the presentation. Data abstraction isolates and hides the implementation details of a module from the 
rest of the program, much as a wall can isolate and hide you from your neighbor. Recursion is a repetitive tech-
nique that solves a problem by solving exactly the same but smaller problems, much as images in facing mirrors 
grow smaller with each refl ection. 

 Please be sure to browse the rest of this preface to see the features that will help you in your studies. To help 
you learn and to review for exams, we have included such learning aids as video tutorials (VideoNotes), check-
point questions with answers, margin notes, programming tips, chapter summaries, and a glossary. As a help 
during programming, you will fi nd C++ reference material in the appendices and inside the covers. You should 
review the list of this book’s features given later in this preface in the section “Features to Enhance Learning.” 

 The presentation makes some basic assumptions about your knowledge of C++. Some of you may need to 
review this language or learn it for the fi rst time by consulting the appendices of this book. This book covers C++ 
classes and other relevant aspects of the language in new C++ Interludes that occur throughout the book be-
tween certain chapters. These interludes do not assume that you already know their topics. We assume no experi-
ence with recursive functions, which are included in  Chapters   2    and    5   . 

 All of the C++ source code that appears in this book is available for your use. Later in this preface, the de-
scription of supplementary materials tells you how to obtain these fi les, as well as the VideoNotes and other on-
line documents.  
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This book’s organization, sequencing, and pace of topic coverage make learning and teaching easier by focusing 
your attention on one concept at a time, by providing fl exibility in the order in which you can cover topics, and by 
clearly distinguishing between the specifi cation and implementation of abstract data types, or ADTs. To accomplish 
these goals, we have organized the material into 21 chapters. Most chapters focus on either the specifi cation and use of 
an ADT or its various implementations. You can choose to cover the specifi cation of an ADT followed by its imple-
mentations, or you can treat the specifi cation and use of several ADTs before you consider any implementation issues. 
The book’s organization makes it easy for you to choose the topic order that you prefer. 

  Table of Contents at a Glance 
 The following list shows the overall composition of the book. A further chapter-by-chapter description appears 
later. Note that gray highlighted sections are available online. 

Chapter   1      Data Abstraction: The Walls  
  C++ Interlude 1 C++ Classes  
   Chapter   2      Recursion: The Mirrors  
    Chapter   3      Array-Based Implementations   
  C++ Interlude 2  Pointers, Polymorphism, and Memory Allocation  
   Chapter   4      Link-Based Implementations  
   Chapter   5      Recursion as a Problem-Solving Technique  
   Chapter   6      Stacks  
  C++ Interlude 3  Exceptions  
    Chapter   7      Stack Implementations   
   Chapter   8      Lists  
   Chapter   9      List Implementations  
   Chapter   10     Algorithm Effi ciency  
   Chapter   11     Sorting Algorithms and Their Effi ciency  
  C++ Interlude 4  Class Relationships and Reuse  
    Chapter   12     Sorted Lists and Their Implementations   
   Chapter   13     Queues and Priority Queues  
   Chapter   14     Queue Implementations  
  C++ Interlude 5  Overloaded Operators and Friend Access  
   Chapter   15     Trees  
    Chapter   16     Tree Implementations   
  C++ Interlude 6  Iterators  
   Chapter   17     Heaps  
   Chapter   18     Dictionaries and Their Implementations  
   Chapter   19     Balanced Search Trees  
   Chapter   20     Graphs  
   Chapter   21     Processing Data in External Storage  
  C++ Interlude 7  The Standard Template Library  
  Appendix A  Review of C++ Fundamentals  
  Appendix B  Important Themes in Programming  
  Appendix C  The Unifi ed Modeling Language  
  Appendix D  The Software Life Cycle  
  Appendix E  Mathematical Induction  
  Appendix F  Algorithm Verifi cation  
  Appendix G  Files  
  Appendix H  C++ Header Files and Standard Functions  
  Appendix I  C++ Documentation Systems  
  Appendix J  ASCII Character Codes  
  Appendix K  C++ for Java Programmers  
  Appendix L  C++ for Python Programmers  
  Index  
  Glossary  
  Answers to Checkpoint Questions     
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  What’s New? 

This edition of Walls and Mirrors is a signifi cant revision of the previous edition, yet remains committed to a 
pedagogical approach that makes the material accessible to students at the introductory level. Although 
everything looks new, you will fi nd the coverage that you enjoyed in previous editions is still here. At a glance, 
the book has more—but shorter—chapters, a second color, and new C++ Interludes. Let’s examine the details. 

Organization.  The book begins with a shorter  Chapter   1   , so that it can focus on the specifi cation of abstract data 
types (ADTs). After general discussions of problem solving, good programming practices, and ADTs, we spec-
ify a simple ADT—the bag. We defi ne the bag’s operations within a C++ template interface in a non-threatening 
way. We have moved some sections from the original fi rst chapter to the appendices. 

 By introducing the bag as the fi rst ADT we consider, we make the diffi cult topic of linked data more acces-
sible to students. Adding or removing the fi rst node in a chain of linked nodes is the easiest task, and these simple 
manipulations are the ones we need to use for a linked implementation of the bag. The next ADT that we con-
sider is the stack, a more useful data container that has the same simple chain in one of its defi nitions. Moreover, 
many students are already familiar with stacks. Later, the treatment of lists looks at the more involved operations 
of adding and removing a node that lies between existing nodes of a chain. 

 The rest of the coverage will be familiar to previous users of  Walls and Mirrors  but often you will fi nd ADTs 
presented in two chapters rather than one. These chapters separate the discussions of specifi cation and imple-
mentation. We will describe each chapter later in this preface. To summarize, this organization 

•       Replaces  Chapter   1    with an introduction to ADTs and template interfaces using the ADT bag.  
•       Provides a more focused introduction to array-based implementations and link-based implementations 

using the ADT bag.  
•       Makes the topic of linked data more accessible to students by discussing it progressively as we introduce 

the ADTs bag, stack, and list.  
•      Places greater emphasis on data abstraction as a problem solving tool.  
•       Enhances the separation between specifi cation and implementation of basic ADTs by placing them in 

successive chapters.  
•      Specifi es ADTs informally at fi rst, then in UML, and ultimately in C++ template interfaces.  
•       Demonstrates safe and secure programming practices in completely revised code that adheres to the 

C++11 standard.  
•      Covers the ADT heap in its own chapter.  
•      Reorganizes the coverage of the ADT dictionary (formerly called the ADT table) into two chapters.   

C++ Interludes.  The introduction of C++ classes and other aspects of C++ that we need for our presentation 
and were previously covered in  Chapters   3   ,    4   , and    8    of the previous edition are now featured in C++ Interludes.
Seven of these “mini-chapters” appear throughout the book to cover relevant C++ topics as we need them. Note 
that these interludes separate the details of C++ from the discussion of data structures. 

VideoNotes.  Online tutorials are a Pearson feature that provides visual and audio support to the presentation 
given throughout the book. They offer students another way to recap and reinforce key concepts. VideoNotes 
allow for self-paced instruction with easy navigation, including the ability to select, play, rewind, fast-forward, 
and stop within each video. Unique VideoNote icons appear throughout this book whenever a video is available 
for a particular concept or problem. A detailed list of the 49 VideoNotes for this text and their associated loca-
tions in the book can be found on page  xxiii . VideoNotes are free with the purchase of a new textbook. To pur-
chase access to VideoNotes, please go to 

   www.pearsonhighered.com/carrano   

www.pearsonhighered.com/carrano
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Other features.   Walls and Mirrors  now has many new features that enhance its usefulness to both readers and 
instructors. This edition 

•        Adds a second color to enhance the effectiveness of the illustrations, distinguish pseudocode from C++ 
code, and provide visual interest.  

•      Includes Notes and Programming Tips to emphasize key material and offer programming advice.  
•      Distinguishes major pieces of code in a new Listing element.  
•       Replaces the self-test exercises at the ends of chapters with Checkpoint Questions placed throughout the 

chapters.
•      Numbers sections and subsections for easy reference.  
•      Includes transition guides from Python to C++ and Java to C++.     
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  Features to Enhance Learning 

The pedagogical features and organization of this book were carefully designed to facilitate learning and to 
allow instructors to tailor the material easily to a particular course. These features help students not only during 
their fi rst reading of the material, but also during subsequent review. 

    Notes  Important ideas are presented or summarized in highlighted paragraphs and are meant to be read 
in line with the surrounding text. 

    Programming Tips  Suggestions to improve or facilitate programming are featured as soon as they 
become relevant. 

    Examples   Numerous examples illuminate new concepts. 

    Checkpoint Questions  Questions are posed throughout each chapter, integrated within the text, that 
reinforce the concept just presented. These “checkpoint” questions help readers to understand the
 material, since answering them requires pause and refl ection. Solutions to these questions are provided 
online.

    VideoNotes  Online tutorials provide additional instruction in a more dynamic form than a static 
textbook. 

Margin Notes  Brief phrases in the margins help you review material or locate particular content. 

Chapter Summaries  Each chapter ends with a list of key ideas that summarize what was presented. 

Glossary of Terms  A glossary of all terms introduced in this book is available online. 

Exercises and Programming Projects  Further practice is available by solving the exercises and pro-
gramming projects at the end of each chapter. Unfortunately, we cannot give readers the answers to 
these exercises and programming projects, even if they are not enrolled in a class. Only instructors who 
adopt the book can receive selected answers from the publisher. For help with these exercises and 
projects, you will have to contact your instructor.   

CHECK POINT

VideoNote
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  Accessing Instructor and Student Resource Materials 
 The following items are available on the publisher’s website at 

   www.pearsonhighered.com/carrano   

•       C++ code as it appears in the book  
•      A link to any misprints that have been discovered since the book was published  
•      Links to additional online content, which is described next    

  Instructor Resources 
 The following protected material is available to instructors who adopt this book by logging onto Pearson’s In-
structor Resource Center, accessible from 

   www.pearsonhighered.com/carrano   

•       PowerPoint lecture slides  
•      Test bank  
•      Instructor solutions manual  
•      Figures from the book   

 Additionally, instructors can access the book’s Companion Website for the following online premium content, 
also accessible from 

   www.pearsonhighered.com/carrano   

•       Instructional VideoNotes  
•      Answers to the Checkpoint Questions  
•      A glossary of terms   

 Please contact your Pearson sales representative for an instructor access code. Contact information is available 
at   www.pearsonhighered.com/replocator.

  Student Resources 
 The following material is available to students by logging onto the book’s Companion Website accessible from 
www.pearsonhighered.com/carrano  : 

•       Instructional VideoNotes  
•      Answers to the Checkpoint Questions  
•      A glossary of terms   

 Students must use the access card located in the front of the book to register for and then enter the Companion 
Website. Students without an access code can purchase access from the Companion Website by following the 
instructions listed there.   

www.pearsonhighered.com/carrano
www.pearsonhighered.com/carrano
www.pearsonhighered.com/carrano
www.pearsonhighered.com/replocator
www.pearsonhighered.com/carrano
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  Chapter Overview 

R eaders of this book should have completed a programming course, preferably in C++. Appendix A covers 
the essentials of C++ that we assume readers will know. You can use this appendix as a review or as the basis for 
making the transition to C++ from another programming language. Note that Appendices K and L offer some 
help for those who are transitioning from Java or Python, respectively. 

•    Chapters   1    through    5   :    Chapter   1    introduces object-oriented concepts and focuses on the specifi cation of ab-
stract data types (ADTs). Our ADTs now store data whose data type is chosen by the client. To accomplish this, 
each specifi cation of an ADT includes a C++ template interface. As an example,  Chapter   1    introduces the ADT 
bag. Much of the software engineering material that was in  Chapter   1    is now in the appendices. 

   Next is C++ Interlude 1, which presents C++ classes. It gives more details about template interfaces—like 
the one presented in  Chapter   1   —and shows how to use inheritance to defi ne a class derived from an interface. 

  As it did in earlier editions,  Chapter   2    introduces recursion, and  Chapter   5    develops it as a problem-
solving tool. Recursion is revisited often throughout the book.  

  We clearly separate the specifi cation, use, and implementation of the bag by dividing the material across 
several chapters. For example,  Chapter   1    specifi es the bag and provides several examples of its use.  Chapter 
  3    covers implementations that use arrays. Just before  Chapter   4    introduces chains of linked nodes and 
uses one in the defi nition of a class of bags, C++ Interlude 2 covers pointers, polymorphism, and dynamic 
memory allocation. Both  Chapters   3    and    4    include recursion in their presentation.  

  In a similar fashion, we separate specifi cation from implementation throughout most of the book 
when we discuss various other ADTs. You can choose to cover the chapters that specify and use the ADTs 
and then later cover the chapters that implement them. Or you can cover the chapters as they appear, im-
plementing each ADT right after studying its specifi cation and use. A list of chapter prerequisites appears 
later in this preface to help you plan your path through the book.  

   Chapter   3    does more than simply implement the ADT bag. It shows how to approach the implementa-
tion of a class by initially focusing on core methods. When defi ning a class, it is often useful to implement 
and test these core methods fi rst and to leave defi nitions of the other methods for later.  Chapter   4    follows 
this approach in its development of a link-based implementation of the ADT bag.    

•         Chapters   6    and    7   :   Chapter   6    discusses stacks, giving examples of their use, and  Chapter   7    implements 
the stack using an array and then again using a chain. Between these chapters is C++ Interlude 3, which 
discusses C++ exceptions.  Chapter   7    then shows how to use an exception in the implementation of the 
ADT stack, when a client violates a method’s precondition.  

•         Chapters   8    and    9   :  The next two chapters introduce the ADT list. We discuss this container abstractly and 
then implement it by using an array and then a chain of linked nodes. Once again, we use exceptions to 
enforce method preconditions.  

•         Chapters   10    and    11   :   Chapter   10    introduces the complexity of algorithms, a topic that we integrate into 
future chapters.  Chapter   11    discusses various sorting techniques and their relative complexities. We con-
sider both iterative and recursive versions of these algorithms.  

•         Chapter   12   :   Chapter   12    introduces the sorted list, looking at a linked implementation and its effi ciency. 
We then talk about the relationship between a list and a sorted list and show how to use the list as a base 
class for the sorted list. Note that  Chapter   12    is preceded by C++ Interlude 4 that discusses class relation-
ships and the various ways a class can be reused.  Chapter   12    puts that discussion into immediate use.  

•         Chapters   13    and    14   :   Chapter   13    presents the ADTs queue and priority queue, along with some uses of 
these containers. In doing so, we give an example of simulation that uses both ADTs, and fi nally summa-
rize the difference between position oriented and value oriented ADTs.  Chapter   14    implements the queue, 
and introduces tail pointers, circularly linked chains, and circular arrays. We offer an implementation of a 
priority queue by using a sorted list, but note that a better approach will come later when we introduce the 
ADT heap.  
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•         Chapters   15    through    17   :  Before we begin the next chapter, C++ Interlude 5 introduces overloaded oper-
ators and friend access. We overload operators when we defi ne classes of trees in this group of chapters. 
 Chapter   15    discusses trees—binary, binary search, and general—and their possible uses.  Chapter   16    con-
siders implementations of these trees, and briefl y introduces the tree sort. C++ Interlude 6 presents itera-
tors in the context of a list.  Chapter   17    introduces the ADT heap and shows how to implement it by using 
an array. We then use a heap to implement the priority queue and to sort an array.  

•         Chapter   18   :  This chapter covers the specifi cation and use of the ADT dictionary (formerly called the 
table in the previous edition). We look at implementations of the dictionary that use an array or a binary 
search tree. We then introduce hashing and use it as a dictionary implementation.  

•         Chapter   19   :   Chapter   19    introduces balanced search trees. Included in this chapter are the 2-3, 2-4, and red-
black trees, as well as AVL trees. These trees are considered as implementations of the ADT dictionary. 

•         Chapter   20   :  Next, we discuss graphs, suggest two ways to implement them, and look at several applications. 
•         Chapter   21   :  This last chapter considers data storage in external direct access fi les. Merge sort is modifi ed 

to sort such data, and external hashing and B-tree indexes are used to search it. These searching algorithms 
are generalizations of the internal hashing schemes and 2-3 trees already developed. Finally, C++ Inter-
lude 7 ends the main presentation by discussing the containers and algorithms available in the C++ 
Standard Template Library (STL).  

•        Appendices A through L:  The appendices provide supplemental information. As we mentioned earlier, 
Appendix A reviews C++ up to but not including classes. Appendices B, C, D, and F contain sections that 
were in  Chapter   1    of the previous edition, namely important aspects of programming, the Unifi ed Mod-
eling Language (UML), the software life cycle, and algorithm verifi cation. Appendix E covers mathemat-
ical induction, and Appendix G covers input and output with external fi les. Appendix H provides a list of 
C++ header fi les and standard functions, and Appendix I considers the  javadoc  commenting style and 
defi nes the tags that we use in this book. Appendix J is simply a chart of the ASCII character codes. Final-
ly, Appendices K and L are brief transition guides to C++ for those who know Java or Python, respectively.     
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2 CHAPTER 1 Data Abstraction: The Walls

This chapter summarizes several fundamental principles that serve as the basis for dealing with the 
complexities of large programs. The discussion both reinforces the basic principles of programming 
and demonstrates that writing well-designed and well-documented programs is essential. The chapter 
also introduces algorithms and data abstraction and indicates how these topics relate to the book’s 
main theme of problem solving. Data abstraction is a technique for increasing the modularity of a 
program—for building “walls” between a program and its data structures. During the design of a 
solution, you will discover that you need to support several operations on the data and therefore need 
to defi ne abstract data types (ADTs). Only after you have clearly specifi ed the operations of an ADT 
should you consider data structures for implementing it. This chapter will introduce a simple ADT 
and use it to demonstrate the advantages of ADTs in general. 

 In subsequent chapters, we examine ways of organizing and using data. As we focus on these 
new ideas, pay attention to how all of the solutions we look at adhere to the basic principles discussed 
in this chapter.   

      1.1 Object-Oriented Concepts 
 Where did you begin when you wrote your last program? After reading the problem specifi cations 
and going through the requisite amount of procrastination, most novice programmers simply begin to 
write code. Obviously, their goal is to get their programs to execute, preferably with correct results. 
Therefore, they run their programs, examine error messages, insert semicolons, change the logic, 
delete semicolons, pray, and otherwise torture their programs until they work. Most of their time is 
probably spent checking both syntax and program logic. Certainly, your programming skills are bet-
ter now than when you wrote your fi rst program, but are you able to write a really large program by 
using the approach just described? Maybe, but there are better ways.   

 Whereas a fi rst course in computer science typically emphasizes programming issues, the focus 
of this book is on the broader issues of problem solving. Here the term  problem solving  refers to the 
entire process of taking the statement of a problem and developing a computer program that solves 
that problem. This process requires you to pass through many phases, from gaining an understanding 
of the problem to be solved, through designing a conceptual solution, to implementing the solution as 
a computer program. In a large software project, problem solving requires not only the development 
of a computer program, but also the examination of user workfl ows and possible changes to how a 
user performs daily tasks. 

Object-oriented analysis and design (OOAD)  is a process for solving problems. From an 
object-oriented perspective, a  solution  is a computer program consisting of a system of interacting 
classes of objects. An  object  has a set of characteristics and behaviors related to the solution. Each 
object is responsible for some aspect of the solution. A set of objects having the same type is called a 
class . An object of a class is also known as an  instance  of the class. When you create an object of a 
class, you  instantiate  the object.   

 OOAD helps us to discover and describe these objects and classes. These techniques give us a 
starting place for moving from a problem statement to a solution.   

   1.1.1  Object-Oriented Analysis and Design 

Object-oriented analysis (OOA)  is the process of understanding what the problem is and what the 
requirements of a solution are. It is the initial stage in problem solving. During analysis you get an 
accurate perception of what  end users  expect the solution to be and do. The  requirements  of a solu-
tion give you a description of  what  a solution must be and  what  a solution must do—without impos-
ing how  to design or implement that solution.       
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 During OOA ,  you express the problem and the requirements of a solution in terms of relevant 
objects. These objects may represent real-world objects, software systems, or ideas. Using OOA, you 
describe these objects and their interactions among one another. Analysis work involves the discov-
ery associated with understanding the problem .  It does not involve thinking about a solution to the 
problem, and instead focuses on thinking about the problem itself.   

 The results of analysis act as input to the process of design. During  object-oriented design 
(OOD) , you describe a solution to the problem, fulfi lling the requirements you discovered during 
analysis. You express the solution in terms of software objects, and you note how those objects will 
collaborate . Objects collaborate when they send each other  messages ; that is, objects call on one 
another to perform operations. The interactions among objects are as important as the objects them-
selves and require careful planning. To solve the problem effi ciently, the collaborations among 
objects should be meaningful and minimal.   

 During OOD, you typically create one or more  models  of a solution for the problem. Some of 
the models emphasize the interactions among objects; others show the relationships among the 
objects. Taken together, the models create a design that can be implemented in C++ or any other 
object-oriented language.     

   1.1.2  Aspects of an Object-Oriented Solution 

 Unless otherwise stated, a solution to a problem in this book is a computer program. A program com-
prises modules  working together. A module is a self-contained unit of code and could be a single, 
stand-alone function , a class  method , a class itself, a group of several functions or classes that work 
closely together, or other blocks of code. Exactly how a module is defi ned depends on the type and 
size of the application. Functions and methods implement algorithms , which are step-by-step reci-
pes for performing a task within a fi nite period of time. One action that an algorithm often performs is 
operating on a collection of data. 

 When designing a solution, your challenge is to create a good set of modules. These modules 
must store, move, and alter data. They also use methods to communicate with one another. When con-
structing a solution, you must organize your data collection so that you can operate on the data easily 
in the manner that an algorithm requires. In fact, most of this book describes ways of organizing data. 

 Object-oriented programming languages allow us to build classes of objects. A class combines 
the attributes —or characteristics—of objects of a single type together with the objects’ operations—
or behaviors —into a single unit. The individual data items specifi ed in a class are called  data mem-
bers . The operations specifi ed in the class are referred to as methods or  member functions . Attributes 
are typically data, and the behaviors, or methods, often operate on that data. In programming lan-
guages such as C++ and Java, classes specify the attributes and operations for the objects.   

Encapsulation  is a technique that hides inner details. Whereas functions encapsulate behavior, 
objects encapsulate data as well as behavior. For example, a clock encapsulates the time—an 
attribute—along with certain operations, such as setting or displaying the time. You can request that a 
clock perform those operations but you cannot see how they are done (unless you have a mechanical 
clock with see-through sides!).   

 Classes can inherit properties and operations from other classes. For example, once you have 
defi ned a base class of clocks, you can design a subclass of alarm clocks that inherits the properties of 
a clock but adds operations that provide the functionality of an alarm. You can produce an alarm clock 
quickly, because the clock portion is done. Thus,  inheritance —another object-oriented concept—
allows you to reuse classes you defi ned earlier for a related purpose by extending that implementation 
or making slight modifi cations.   

 Inheritance may make it impossible for the compiler to determine which operation you require in 
a particular situation. However,  polymorphism —which literally means  many forms —enables this 
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determination to be made at execution time. That is, the outcome of a particular operation depends 
upon the object that performs the operation. For example, you can create a pointer to a clock object, 
myClock , in your program in such a way that it could reference either a clock object or an alarm clock. 
When myClock  is asked to display the time, the compiler cannot determine whether it should use the 
clock implementation to display the time or the alarm clock implementation, since it does not know 
to which class of clocks the object referenced by  myClock  belongs. Polymorphism allows the com-
piler to simply note that the meaning of an operation is unknown until execution time. 

     Note:   Three principles of object-oriented programming  

1.   Encapsulation: Objects combine data and operations.  
2.   Inheritance: Classes can inherit properties from other classes.  
3.   Polymorphism: Objects can determine appropriate operations at execution time.   

   1.2 Achieving a Better Solution 
 The last program you wrote most likely solved the given problem correctly. However, was it the best 
possible solution? If you spent little—if any—time doing analysis and design, the solution probably 
left something to be desired. If you were to code the same program again, you would doubtless pro-
duce a better solution than your fi rst attempt. However, if you spent some extra time analyzing the 
problem and designing a solution, you would probably get your best solution.   

 Suppose that you generated three correct but different solutions. Can you identify aspects of 
each solution that makes it better than the other solutions? What are these aspects? What should you 
focus on to create better solutions? 

 Creating a good set of modules for a moderate-sized problem is more art than science. It requires 
experience on the part of the programmer. A given problem likely has no “best” set of modules. Some 
sets of modules—and their interactions—might be better than others in light of certain measures. 
Moreover, for a suffi ciently large problem, several different sets of modules could be considered 
“best,” depending upon the measure used. The “better” designs, however, do adhere to certain princi-
ples, which we examine next. 

   1.2.1  Cohesion 

 Each module should perform one well-defi ned task; that is, it should be highly  cohesive . A highly 
cohesive module brings several immediate benefi ts to a design or solution.   

 First, the module, if well named, promotes self-documenting, easy-to-understand code. For 
example, a highly cohesive function called  sort  should do nothing but sort. What this function does 
is clear from its name: If this function also prints the sorted values, it is not cohesive. 

 Second, a highly cohesive module is easy to reuse in other software projects. If a solution for 
another problem is being developed, the highly cohesive  sort  function can be used without change. If 
this function also prints the sorted values, it is much less likely to be the right sorting routine for the job. 

 Third, a highly cohesive module is much easier to maintain. Because the highly cohesive  sort
function does nothing but sort, fi xing a logical error is simpler. If this function prints the sorted val-
ues, too, the printing code will complicate the function’s maintenance. A highly cohesive module has 
but one task that might need revision. 

 Fourth, a highly cohesive module is more  robust ; that is, it is less likely to be affected by change. 
The highly cohesive  sort  function will require change only if the system requires a different kind of 
sort. For example, you might need to sort data into descending, rather than ascending, order, or you 
might need a faster sort.   
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 Like many object-oriented principles, cohesion can be described in human terms. A person with 
low cohesion has “too many irons in the fi re.” Such people tend to get bogged down in everything that 
they need to get done, and nothing they do gets done well. They could become more cohesive by del-
egating some of their responsibilities to others. 

Note:   A guiding principle of OOD is that each class should have a single, well-defi ned 
responsibility. The methods of a class should be highly cohesive and related directly to 
supporting the responsibility of the class. The responsibilities of a class are functionally 
equivalent to the tasks that the class needs to perform. If a class has too many responsi-
bilities, it should be split into multiple classes, each with a single responsibility taken 
from the original class. 

     1.2.2  Coupling 

Coupling  is a measure of the dependence among modules. This dependence, for example, could 
involve sharing data structures or calling each other’s methods. Ideally, the modules in a design 
should be independent of one another. However, some degree of coupling is necessary to get work 
done. That is, modules should be  loosely coupled , and  highly coupled  modules should be avoided.   

 Loose coupling benefi ts a system in several ways. First, a module with loose coupling tends to 
create a system that is more adaptable to change. If class  A  depends on—that is, is highly coupled 
to—a class B  and class  B  is changed, it is very likely that these changes will affect class  A  and break it. 

 Second, a module with loose coupling creates a system that is easier to understand. If class  A
depends on a class B , understanding how class  A  works requires an understanding of class  B . Thus, 
class A  is diffi cult to understand in isolation. A solution with a high degree of coupling can become 
nearly impossible to understand. 

 Third, a module with loose coupling increases the reusability of that module. If class  A  depends 
on a class B , reusing class  A  in another program is complicated by the need to include class  B  in that 
program as well. Reusing coupled modules requires reusing all of the modules together as a unit. 
Often this is not desirable, or possible. 

 Fourth, a module with loose coupling has increased cohesion. Moreover, highly cohesive mod-
ules tend to be loosely coupled. As the level of cohesion associated with a module goes down, that 
module does more unrelated work, as we saw in the previous section. This has the side effect of caus-
ing the module to be coupled with many other modules from other areas in the program. 

 Again, realize that some coupling is required; coupling cannot and should not be eliminated 
from designs and solutions. To get work done, objects must collaborate. But collaboration requires 
objects to depend on one another. Tasks that an object has delegated to other objects create coupling 
between these objects. This coupling is necessary, but it should be kept to a minimum. However, other 
factors may infl uence a design. Thus, some designs with more coupling are better than other designs 
with less coupling because of these other factors. 

A loosely coupled 
module is 
independent

     Note:   If, in the past, you have spent little or no time on analysis and design for your 
programs, you must change this habit! The end result of OOD should be a modular solu-
tion that is easy to translate into the constructs of a particular programming language. By 
spending adequate time with analysis and design, you will spend less time writing and 
debugging your program. 
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      1.3 Specifi cations 
 When you design a modular solution to a problem, each module simply states what it does but not 
how it does it. No one module may “know” how any other module performs its task—it may know 
only what that task is. For example, if one part of a solution is to sort some data, one of the modules 
may be a sorting algorithm, as  Figure   1-1    illustrates. The other modules know that the sorting module 
sorts, but they do not know how it sorts. In this way, the various components of a solution are kept 
isolated from one another. 

 Using this idea, you can write the modules in relative isolation from one another, knowing what 
each one will do but not necessarily  how  each will eventually do it. It is essential that a module’s 
specifi cations be written and understood.   

   1.3.1  Operation Contracts 

 An  operation contract  documents how a method can be used and what limitations it has. You should 
begin specifying this contract during analysis, fi nish the specifi cation during design, and then docu-
ment the contract in your code, particularly within the header fi les. In this way, programmers who use 
your code can understand what contract they need to honor for the method to generate correct results.   

 There is certain information you need to provide for each method. A method’s  interface  will 
specify how to call the method and the number, order, and types of arguments it expects—as already 
discussed. You also need to specify what should be true before the method is called and what will be 
true after the method fi nishes execution.   

 During design, it is also important that you clearly specify not only the purpose of each module, 
but also the data fl ow  among modules. For example, you should provide answers to these questions 
for each module: What data is available to the module before its execution? What does the module 
assume? What actions have taken place, and what does the data look like, after the module executes? 
Thus, you should specify in detail the assumptions, input, and output for each module. 

 For example, if you as program designer needed to sort an array of integers, you might write the 
following specifi cations for a sort function: 

   The function will receive an array of  num  integers, where  num  > 0.  
  The function will return the array with the integers sorted.   
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FIGURE 1-1         The task  sort  is a module separate from the  MyProgram  module   
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 First-draft 
specifi cations 

 You can view these specifi cations as the terms of a contract between your function and the module 
that calls it.   

 This contract helps programmers understand what responsibilities the module will have to the 
other modules in the solution. Whoever writes the sort function must live up to this contract. After the 
sort function has been written and tested, the contract tells the rest of the program how to call the sort 
function properly, as well as the result of doing so. 

 Notice, however, that a module’s contract does not commit the module to a particular way of 
performing its task. If another part of the program assumes anything about the algorithm, it does 
so at its own risk. Thus, for example, if at some later date you rewrite your function to use a differ-
ent sorting algorithm, you should not need to change the rest of the program at all. As long as the 
new function honors the terms of the original contract, the rest of the program should be oblivious 
to the change.   

 This should not be news to you. Although you might not have explicitly used the term  con-
tract  before, the concept should be familiar. You write a contract when you write a function’s  pre-
condition , which is a statement of the conditions that must exist at the beginning of a function, as 
well as when you write its  postcondition , which is a statement of the conditions at the end of a 
function. For example, the sort function that adheres to the previous contract could appear in 
pseudocode1   as      

  // Sorts an array.  
// Precondition:  anArray  is an array of num integers;  num > 0.  
// Postcondition: The integers in anArray are sorted.  
sort(anArray, num) 

 These particular pre- and postconditions actually are defi cient, as can be the case in a fi rst-draft 
contract. For example, does  sorted  mean ascending order or descending order? How large can  num
be? While implementing this function, you might assume that  sorted  means ascending order and that 
num  will not exceed 100. Imagine the diffi culties that can arise when another person tries to use  sort
to sort an array of 500 integers into descending order. This user will not know your assumptions 
unless you documented them by revising the contract as follows:   

  // Sorts an array into ascending order.  
// Precondition:  anArray is an array of  num integers and 1 <=  num <= MAX_ARRAY,
// where  MAX_ARRAY  is a global constant that specifi es the maximum size of  anArray .
 // Postcondition: anArray[0]<= anArray[1]<= … <= anArray[num - 1];  
// num  is unchanged.  
sort(anArray, num) 

 When you write a precondition, begin by describing the method or function’s input arguments, 
mention any global named constants that it uses, and fi nally list any assumptions that it makes. When 
you write a postcondition, describe what changes the module has made. Note that in the case of a 
method or function that returns a value—which is technically a part of the postcondition—the value 
should be described. 

 Novice programmers tend to dismiss the importance of precise documentation, particularly 
when they are simultaneously designer, programmer, and user of a small program. If you design  sort
but do not write down the terms of the contract, will you remember them when you later implement 
the function? Will you remember how to use  sort  weeks after you have written it? To refresh your 
memory, would you rather examine your program code or read a simple set of pre- and postcondi-
tions? As the size of a program increases, good documentation becomes even more important, regard-
less of whether you are sole author or part of a team.   
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      1.3.2  Unusual Conditions 

 You as a class designer need to make decisions about how to treat unusual conditions and include 
these decisions in your specifi cations. The documentation for methods and functions should refl ect 
these decisions. 

 In general, you can address unusual situations in several ways. You can 

•  Assume that the invalid situations will not occur.   This assumption is not as naive as it might 
sound. A method could state as an assumption—that is, a precondition—restrictions to which 
a client must adhere. It is then up to the client to check that the precondition is satisfi ed before 
invoking the method. As long as the client obeys the restriction, the invalid situation will not 
occur.  

•  Ignore the invalid situations.   A method could simply do nothing when given invalid data. 
Doing absolutely nothing, however, leaves the client without knowledge of what happened.  

•  Guess at the client’s intention.   Like the previous option, this choice can cause problems for 
the client.  

•  Return a value that signals a problem.   For example, a method can return a boolean value 
that indicates its success or failure.  

•  Throw an exception.   Throwing an exception is often a desirable way for a C++ method to 
react to unusual events that occur during its execution. The method can simply report a prob-
lem without deciding what to do about it. The exception enables each client to act as needed in 
its own particular situation. For simplicity right now, we will adopt the philosophy that meth-
ods should throw exceptions only in truly unusual circumstances, when no other reasonable 
solution exists. You can learn about exceptions in C++ Interlude 3.   

Note:   An operation contract completely specifi es a module’s purpose, assumptions, 
input, and output. 

Note:   The program component that uses a module is the module’s  client . The  user  is a 
person who uses a program. 

Note:   A fi rst draft of a module’s specifi cations often overlooks or ignores situations 
that you really need to consider. You might intentionally make these omissions to sim-
plify this fi rst draft. Once you have written the major portions of the specifi cations, you 
can concentrate on the details that make the specifi cations complete. 

     1.3.3  Abstraction 

Abstraction  separates the purpose of a module from its implementation. Modularity breaks a solu-
tion into modules; abstraction specifi es each module clearly  before  you implement it in a program-
ming language. For example, what does the module assume, and what action does it take? What task 
is this module responsible for when called on? Such specifi cations clarify the design of your solution, 
because you can focus on its high-level functionality without the distraction of implementation 
details. In addition, they help you modify one part of a solution without signifi cantly affecting the 
other parts. For example, you should be able to change the sorting algorithm in the previous example 
without affecting the rest of the solution.   
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 As the problem-solving process proceeds, you gradually refi ne the modules until eventually you 
implement their actions by writing code—typically, classes and their methods. Separating the pur-
pose of a module from its implementation is known as  functional  (or  procedural )  abstraction . Once 
a module is written, you can use it without knowing the particulars of its algorithm as long as you 
have a statement of its purpose and a description of its arguments. Assuming that the module is docu-
mented properly, you can use it knowing only its specifi cations. You do not need to look at its imple-
mentation.

 Functional abstraction is essential to team projects. After all, in a team situation, you have to use 
modules written by others, frequently without knowledge of their algorithms. Can you actually use 
such a module without studying its code? In fact, you do this each time you use a C++ Standard 
Library function, such as  sqrt  in the C++ math library  cmath . Because  sqrt  is precompiled, you do 
not have access to its source statements. Furthermore, it may be that  sqrt  was written in a language 
other than C++! There is so much about  sqrt  that you do not know; yet you can use it in your program 
without concern, as long as you know its specifi cations. If you pass  sqrt  a fl oating-point expression, 
it will return the fl oating-point square root of the value of that expression. You can use  sqrt  even 
though you do not know its implementation. 

 Consider now a collection of data and a set of operations on the data. The operations might 
include ones that add new data to the collection, remove data from the collection, or search for some 
data. Data abstraction  focuses on what the operations do with the collection of data, instead of on 
how you implement them. The other modules of the solution “know”  what  operations they can per-
form, but they do not know  how  the data is stored or  how  the operations are performed.   

 For example, you have used an array, but have you ever stopped to think about what an array actu-
ally is? There are many pictures of arrays throughout this book. They might resemble the way a C++ 
array is implemented on a computer, and then again they might not. In either case, you can use an 
array without knowing what it “looks like”—that is, how it is implemented. Although different sys-
tems may implement arrays in different ways, the differences are transparent to the programmer. 

 For instance, regardless of how the array  years  is implemented, you can always store the value 
1492 in location index  of the array by using the statement 

  years[index] = 1492; 

 and later display the value by using the statement 

  cout << years[index] << endl; 

 Thus, you can use an array without knowing the details of its implementation, just as you can use the 
function sqrt  without knowing the details of its implementation. Let’s explore this idea in more 
detail.  

   1.3.4  Information Hiding 

 As you have seen, abstraction tells you to write functional specifi cations for each module that describe 
its outside, or public, view. However, abstraction also helps you identify details that you should hide 
from public view—details that should not be in the specifi cations but rather should be private. The 
principle of information hiding  tells you not only to hide such details within a module, but also to 
ensure that no other module can tamper with these hidden details. 

 While writing a module’s specifi cations, you must identify details that you can hide within the 
module. The principle of information hiding involves not only hiding these details, but also making 
them inaccessible  from outside a module. One way to understand information hiding is to imagine 
walls around the various tasks a program performs. These walls prevent the tasks from becoming entan-
gled. The wall around each task prevents the other tasks from “seeing” how that task is performed. 
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 The isolation of the modules cannot be total, however. Although  MyProgram  does not know  how
the task sort  is performed, it must know  what  the task  sort  is and how to initiate it. For example, sup-
pose your program needs to operate on a sorted array of names. The program may, for instance, need 
to search the array for a given name or display the names in alphabetical order. The program thus 
needs a function sort  that sorts an array of names. Although the rest of the program knows that  sort
can sort an array, it should not care how  sort  accomplishes its task. 

 Thus, imagine a tiny slit in the wall, as  Figure   1-2    illustrates. The slit is not large enough to allow 
the outside world to see the function’s inner workings, but items can pass through the slit into and out 
of the function. This slit is the  prototype ,  declaration , or  header  of the function. The slit comprises 
the function or method’s name, parameter list, and return type. For example, you can pass the array 
into the function sort , and the function can pass the sorted array out to you. What goes in and comes 
out is governed by the terms of the function’s specifi cations, or contract:  If you use the function in this 
way, this is exactly what it will do for you . 

FIGURE 1-2         Tasks communicate through a slit in the wall   
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  Suppose that a faster sort algorithm is developed. Since the function  sort  is isolated from the 
other modules in the program, the new algorithm can be implemented in the  sort  function without 
affecting those other modules. Thus, if  MyProgram  uses the task  sort , and if the algorithm and imple-
mentation for performing the sort changes,  MyProgram  will not be affected. As  Figure   1-3    illustrates, 
the wall prevents  MyProgram ’s algorithm from depending on  sort’s algorithm. 

Note:   Information hiding limits the ways in which you need to deal with modules and 
data. As a user of a module, you do not worry about the details of its implementation. As 
an implementer of a module, you do not worry about its uses. 

A module’s interface 
is the only way to 
interact with that 
module

     1.3.5  Minimal and Complete Interfaces 

 The interface for a class is made up of the publicly accessible methods and data. Typically, a class 
interface contains only methods, as you will see, because publicly accessible data fi elds generally 
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cause problems. The interface for a class describes the only way for programmers to interact with that 
class. Thus, interfaces are where collaboration between objects takes place. It is through its interface 
that a class is coupled to other classes. Designing good class interfaces is an important skill.   

 Each class should be easy to understand. Thus, when designing a class, you should keep the 
number of its methods small. However, your classes should provide programmers the power to do 
what they need to do easily. These desires are at odds. 

 A  complete interface  for a class is one that will allow programmers to accomplish any reasona-
ble task, given the responsibilities of that class. A  minimal interface  for a class is one that contains a 
method if and only if that method is essential to that class’s responsibilities. Programmers can more 
easily learn how to interact with a class that has a minimal interface, as it has fewer methods to under-
stand. Classes with minimal interfaces are also much easier to maintain. Changes to a class with an 
extensive interface could affect many of its methods. 

 You should evaluate classes in terms of how complete and minimal their interfaces are. It is 
important that interfaces be complete. Of somewhat less importance is having a minimal interface; 
sometimes a nonessential method is just too useful to omit. 

 The interface to a function or method is more accurately called its  signature . The signature con-
sists of a function’s name; the number, order, and types of its arguments; and any qualifi ers such as 
const  that might apply. A signature looks very much like the function’s prototype, but does not 
include its return type. You use the interface to a function or method when you call it, sending it the 
correct number, order, and type of arguments.   

   1.4 Abstract Data Types 
 Often the solution to a problem requires operations on data. Such operations are broadly described in 
one of three ways:   

• Add  data to a data collection.  
• Remove  data from a data collection.  
• Ask questions  about the data in a data collection.   

FIGURE 1-3         A revised implementation communicates through the same slit in the wall   
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 The details of the operations, of course, vary from application to application, but the overall theme is the 
management of data. Realize, however, that not every problem uses or requires all of these operations. 

 Most of this book is about data abstraction. To enable you to think abstractly about data, you 
should defi ne an  abstract data type , or  ADT . An ADT is a collection of data  and  a set of operations 
on the data. You can use an ADT’s operations, if you know their specifi cations, without knowing how 
the operations are implemented or how the data is stored. 

 Ultimately, someone—perhaps you—will implement the ADT by using a  data structure , which is 
a construct that you can defi ne within a programming language to store a collection of data. For exam-
ple, you might store the data in a C++ array of strings or in an array of objects or in an array of arrays. 

 For example, suppose that you need to store a collection of names in a manner that allows you to 
search rapidly for a given name.  A collection of name items providing for rapid searches  is the descrip-
tion of a simple ADT. The description of an ADT’s operations must be rigorous enough to specify 
completely their effect on the data, yet must specify neither how to store the data nor how to carry out 
the operations. For example, the ADT operations should not specify whether to store the data in con-
secutive memory locations or in disjoint memory locations. You choose a particular data structure 
when you  implement  an ADT.   

 When a program must perform data operations that are not directly supported by the language, 
you should fi rst design an ADT and carefully specify what the ADT operations are to do (the con-
tract). Then —and only then— should you implement the operations with a data structure. If you 
implement the operations properly, the rest of the program will be able to assume that the operations 
perform as specifi ed—that is, that the terms of the contract are honored. However, the program must 
not depend on a particular technique for supporting the operations.   

An ADT is not a 
fancy name for a 
data structure 

Specifi cations 
indicate what ADT 
operations do, but 
not how to 
implement them 

Carefully specify 
an ADT’s 
operations before 
you implement 
them

Note:    ADTs versus data structures

•    An abstract data type is a specifi cation for a group of values and the operations on 
those values.  

•   A data structure is an implementation of an ADT within a programming language.   

 To give you a better idea of the conceptual difference between an ADT and a data structure, con-
sider a refrigerator’s ice dispenser, as  Figure   1-4    illustrates. It has water as input and produces as out-
put either chilled water, crushed ice, or ice cubes, according to which one of three buttons you push. 

ADTs and data 
structures are not 
the same 

FIGURE 1-4         A dispenser of chilled water, crushed ice, and ice cubes   
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It also has an indicator that lights when no ice is available. The water is analogous to data; the opera-
tions are chill ,  crush ,  cube , and  isEmpty  (or  noIce ). At this level of design, the dispenser is analogous 
to an ADT; you are not concerned with how the dispenser will perform its operations, only that it per-
forms them. If you want crushed ice, do you really care how the dispenser accomplishes its task, as 
long as it does so correctly? Thus, after you have specifi ed the dispenser’s operations, you can design 
many uses for crushed ice without knowing how the dispenser accomplishes its tasks and without the 
distraction of engineering details.   

 Eventually, however, someone must build the dispenser. Exactly how will this machine produce 
crushed ice, for example? It could fi rst make ice cubes and then either crush them between two steel 
rollers or smash them into small pieces by using hammers. Many other techniques are possible. The 
internal structure of the dispenser corresponds to the implementation of the ADT in a programming 
language, that is, to a data structure. 

 Although the owner of the dispenser does not care about its inner workings, he or she does want 
a design that is as effi cient in its operation as possible. Similarly, the dispenser’s manufacturer wants a 
design that is as easy and inexpensive to build as possible. You should have these same concerns when 
you choose a data structure to implement an ADT. Even if you do not implement the ADT yourself, 
but instead use an already implemented ADT, you—like the person who buys a refrigerator—should 
care about at least the ADT’s effi ciency. 

 Notice that steel walls surround the dispenser. The only breaks in the walls accommodate the 
input (water) to the machine and its output (chilled water, crushed ice, or ice cubes). Thus, the 
machine’s interior mechanisms are not only hidden from the user, but also inaccessible. In addition, 
the mechanism of one operation is hidden from and inaccessible to another operation. 

 This modular design has benefi ts. For example, you can improve the operation  crush  by modify-
ing its implementation without affecting the other modules. You could also add an operation to the 
machine without affecting the original three operations. Thus, both abstraction and information hid-
ing are at work here. 

 To summarize, data abstraction results in a wall of ADT operations between data structures and 
the program that accesses the data within these data structures, as  Figure   1-5    illustrates. If you are on 

A program should 
not depend on the 
details of  an ADT’s 
implementation 

FIGURE 1-5         A wall of ADT operations isolates a data structure from the program that uses it   
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the program’s side of the wall, you will see an interface that enables you to communicate with the data 
structure. That is, you ask the ADT operations to manipulate the data in the data structure, and they 
pass the results of these manipulations back to you.   

 This process is analogous to using a vending machine. You press buttons to communicate with 
the machine and obtain something in return. The machine’s external design dictates how you use it, 
much as an ADT’s specifi cations govern what its operations are and what they do. As long as you use 
a vending machine according to its design, you can ignore its inner technology. As long as you agree 
to access data only by using ADT operations, your program can be oblivious to any change in the data 
structures that implement the ADT.   

 The following pages describe several abstract data types, focusing on the specifi cations of their 
operations, but not their implementations. 

   1.4.1  Designing an ADT 

 The design of an abstract data type should evolve naturally during the problem-solving process. As an 
example of how this process might occur, suppose that you want to determine the dates of all the holi-
days in a given year. One way to do this is to examine a calendar. That is, you could consider each day 
in the year and ascertain whether that day is a holiday. The following pseudocode is a possible solu-
tion to this problem: 

  // Displays the dates of all holidays in a given year.  
 listHolidays(year) 

   date =  date of fi rst day of year  
while (date  is before the fi rst day of year + 1) 

   {   
if (date is a holiday)

         write (date," is a holiday") 

      date = date of next day
   } 

 What data is involved here? Clearly, this problem operates on dates, where a date consists of a 
month, day, and year. What operations will you need to solve the holiday problem? Your ADT must 
specify and restrict the legal operations on the dates, just as the fundamental data type  int  restricts you 
to operations such as addition and comparison. You can see from the previous pseudocode that you must   

•   Determine the date of the fi rst day of a given year.  
•   Decide whether a date is before another date.  
•   Decide whether a date is a holiday.  
•   Determine the date of the day that follows a given date.   

 Thus, you could specify the following operations for an ADT date in pseudocode that uses the nota-
tion of the Unifi ed Modeling Language (UML) , as described in Appendix C: 

  // Returns the date of the fi rst day of a given year.  
+getFirstDay(year: integer): Date 

// Returns true if this date is before the given date; otherwise returns false.  
+isBefore(otherDate: Date): boolean 

 // Returns true if this date is a holiday; otherwise returns false.  
+isHoliday(): boolean

 // Returns the date of the day after this date.  
+getNextDay(): Date

Using an ADT is like 
using a vending 
machine 

What data does a 
problem require? 
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does a problem 
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VideoNote
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 The  listHolidays  pseudocode now appears as follows: 

  // Displays the dates of all holidays in a given year.  
listHolidays(year: integer): void 

    date = getFirstDay(year) 
while (date.isBefore(getFirstDay(year + 1))) 

    { 
if (date.isHoliday()) 

          write (date," is a holiday ") 

       date = date.getNextDay() 
    } 

 Thus, you can design an ADT by identifying data and choosing operations that are suitable to 
your problem. After specifying the operations, you use them to solve your problem independently of 
the implementation details of the ADT. 

  An appointment book.   As another example of an ADT design, imagine that you want to create a 
computerized appointment book that spans a one-year period. Suppose that you make appointments 
only on the hour and half hour between 8 a.m. and 5 p.m. You want your system to store a brief nota-
tion about the nature of each appointment along with the date and time. 

 To solve this problem, you can defi ne an ADT appointment book. The data items in this ADT are 
the appointments, where an appointment consists of a date, time, and purpose. What are the opera-
tions? Two obvious operations are 

•   Make an appointment for a certain date, time, and purpose. (You will want to be careful that 
you do not make an appointment at an already occupied time.)  

•   Cancel the appointment for a certain date and time.   

 In addition to these operations, it is likely that you will want to 

•   Ask whether you have an appointment at a given time.  
•   Get the purpose of your appointment at a given time.   

 Finally, ADTs typically have initialization and destruction operations that we assume but do not spec-
ify at this stage. 

  Thus, the ADT appointment book can have the following operations: 

// Returns true if an appointment exists for the date and time specifi ed,
// false otherwise.  
+isAppointment(apptDate: Date, apptTime: Time): boolean

// Inserts the appointment for the date, time, and purpose specifi ed as long as  
// it does not confl ict with an existing appointment.  
// Returns true if successful, false otherwise.  
+makeAppointment(apptDate: Date, apptTime: Time,
                     apptPurpose: string): boolean 

// Deletes the appointment for the date and time specifi ed.  
// Returns true if successful, false otherwise.  
+cancelAppointment(apptDate: Date, apptTime: Time): boolean 

// Gets the purpose of the appointment at the given date and time, if one exists.  
// Otherwise returns an empty string.  
+getAppointmentPurpose(apptDate: Date, apptTime: Time): string 

 You can use these ADT operations to design other operations on the appointments. For example,
suppose you want to change the date or time of a particular appointment within the existing 
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appointment book apptBook . The following pseudocode indicates how to accomplish this task by 
using the previous ADT operations: 

  // Change the date or time of an appointment.  

  Get the following data from the user: oldDate , oldTime , newDate , newTime 

// Get purpose of appointment.  
oldPurpose = apptBook.getAppointmentPurpose(oldDate, oldTime) 
  if (oldPurpose is not the empty string)
{

// See whether a new date/time is available. 
if (apptBook.isAppointment(newDate, newTime))

// New date/time is booked
        write("You already have an appointment at ", newTime,

" on ", newDate) 
else

    {   
// New date/time is available; cancel old appointment; make new one.  

       apptBook.cancelAppointment(oldDate, oldTime) 
if (apptBook.makeAppointment(newDate, newTime, oldPurpose)) 

            write("Your appointment has been rescheduled to ",
                    newTime, " on ", newDate) 
    }  
}
  else
    write("You do not have an appointment at ", oldTime,

" on ", oldDate) 

 Again notice that you can design applications that use ADT operations without knowing how the 
ADT is implemented. The exercises at the end of this chapter provide examples of other tasks that you 
can perform with this ADT.      

   1.4.2   ADTs That Suggest Other ADTs 

 Both of the previous examples require you to represent a date; the appointment book example also 
requires you to represent the time. C++ has date-time objects specifi ed in  ctime  that you can use 
to represent the date and the time. You can also design ADTs to represent these items in a more 
object-oriented way. It is not unusual for the design of one ADT to suggest other ADTs. In fact, you 
can use one ADT to implement another ADT.   

 This fi nal example also describes an ADT that suggests other ADTs for its implementation. Sup-
pose that you want to design a database of recipes. You could think of this database as an ADT. The 
recipes are the data items, and some typical operations on the recipes could include the following: 

  // Inserts a recipe into the database.  
+insertRecipe(aRecipe: Recipe): boolean 

// Deletes a recipe from the database.  
+deleteRecipe(aRecipe: Recipe): boolean 

// Gets the named recipe from the database.  
+getRecipe(name: string): Recipe 

 This level of the design does not indicate such details as where  insertRecipe will place a recipe into 
the database. 

 Now imagine that you want to design an operation that scales a recipe retrieved from the data-
base: If the recipe is for n  people, you want to revise it so that it will serve  m  people. Suppose that 

You can use an ADT 
without knowledge 
of  its 
implementation 
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the recipe contains measurements such as 2½ cups, 1 tablespoon, and ¼ teaspoon. That is, the 
quantities are given as mixed numbers—integers and fractions—in units of cups, tablespoons, and 
teaspoons. 

 This problem suggests another ADT—measurement—with the following operations: 

  // Returns this measure.  
+getMeasure(): Measurement 

// Sets this measure to another one.  
+setMeasure(m: Measurement) 

// Returns this measure multiplied by a fractional scale factor, which has no units.  
+scaleMeasure(scaleFactor: float): Measurement 

// Returns this measure converted from its old units to new units.  
+convertMeasure(oldUnits: MeasureUnit,
                    newUnits: MeasureUnit): Measurement 

 Suppose that you want the ADT measurement to perform exact fractional arithmetic. Because 
our planned implementation language C++ does not have a data type for fractions, and fl oating-
point arithmetic is not exact, another ADT called fraction is in order. Its operations could include 
addition, subtraction, multiplication, and division of fractions. For example, you could specify 
addition as 

  //  Returns the sum, reduced to lowest terms, of this fraction and the given fraction.  
+add(other: Fraction): Fraction 

 Moreover, you could include operations to convert a mixed number to a fraction and vice versa 
when feasible. When you fi nally implement the ADT measurement, you can use the ADT fraction. 
That is, you can use one ADT to implement another ADT.   

   1.5 The ADT Bag 
 Imagine a paper bag, a reusable cloth bag, or even a plastic bag. People use bags when they shop, pack 
a lunch, or eat potato chips. A bag contains things; it is a  container  of a collection of objects. We 
could consider the bag to be an abstract data type.   

 Let’s specify and use the ADT  bag . Knowing just its interface, you can use a bag in a program. 
You do not need to know how the entries in the bag are represented or how the bag operations are 
implemented. These specifi cs are hidden behind the bag’s wall of abstraction, and your program will 
not depend on these specifi cs. As you will see, this important program characteristic is what data 
abstraction is all about. 

 What distinguishes a bag from other ADTs? A bag doesn’t do much more than contain its items. 
It doesn’t order them in a particular way, nor does it prevent duplicate items. While describing the 
behaviors for the ADT bag that we’ll design in this chapter, let’s keep in mind that we are specifying 
an abstraction inspired by an actual physical bag. For example, a paper bag holds things of various 
dimensions and shapes in no particular order and without regard for duplicates. Our abstract bag will 
hold unordered and possibly duplicate objects, but let’s insist that these objects have the same or 
related types.  

A bag is a container 

Note:   A bag is a container of a fi nite number of objects having the same data type and 
in no particular order. A bag can contain duplicate items. 
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   1.5.1   Identifying Behaviors 

 Since a bag contains a fi nite number of objects, reporting how many objects it contains could be one 
of a bag’s behaviors: 

•   Get the number of items currently in the bag.    

 A related behavior detects if a bag is empty: 

•   See whether the bag is empty.    

 We should be able to add and remove objects: 

•   Add a given object to the bag.  
•   Remove an occurrence of a specifi c object from the bag, if possible.   
•   Remove all objects from the bag.   

 Note that the add operation does not indicate where in the bag an object should go. Remember 
that a bag does not order its contents. The remove operation looks for a particular item in the bag. If it 
fi nds it, it takes it out. If the bag contains several objects equal to the removed one, they remain in the 
bag. If the operation can’t fi nd the specifi c object in the bag, it can’t remove it, and just says so. 
Finally, the second remove operation simply empties the bag of all objects. 

 What is in a particular bag? The answer to this question can be answered by the following 
operations: 

•   Count the number of times a certain object occurs in the bag.   
•   Test whether the bag contains a particular object.  
•   Look at all objects that are in the bag.   

 We have enough behaviors for now. At this point, we would have written all the behaviors on a 
piece of paper or, as  Appendix   C    suggests, on the  class-responsibility-collaboration (CRC)   card
pictured in  Figure   1-6   . 

FIGURE 1-6         A CRC card for a class  Bag
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 Since a bag is an abstract data type, we only describe its data and specify its operations. We do 
not indicate how to store the data or how to implement its operations. Don’t think about arrays, for 
example. You fi rst need to clearly know what the bag operations do: Focus on what the operations do, 
not on how they do them. That is, you need a detailed set of specifi cations before you can use a bag in 
a program. In fact, you should specify the bag operations before you even decide on a programming 
language.

   1.5.2  Specifying Data and Operations 

 Before we can implement a bag in C++, we need to describe its data and specify in detail the methods 
that correspond to the bag’s behaviors. We’ll name the methods, choose their parameters, decide their 
return types, and write comments to fully describe their effect on the bag’s data. Our eventual goal, of 
course, is to write a C++ header fi le and comments for each method. However, we fi rst will express 
the methods in pseudocode and then in UML notation.   

 The fi rst behavior on our CRC card gives rise to a method that returns a count of the current 
number of entries in the bag. The corresponding method has no parameters and returns an integer. In 
pseudocode, we have the following specifi cation, again using UML notation: 

  // Returns the current number of entries in the bag. 
+getCurrentSize(): integer

 We can test whether the bag is empty by using a boolean-valued method, again without parameters. 
Its specifi cation in pseudocode is 

  // Returns true if the bag is empty.  
+isEmpty(): boolean 

 We now want to add a given object to the bag. We can name the method  add  and give it a param-
eter to represent the new entry. We could write the following pseudocode: 

  // Adds a new entry to the bag.  
 add(newEntry) 

 We might be tempted to make  add  a void method, but if the bag is full, we cannot add a new entry to it. 
What should we do in this case? 

 Here are two options that we can take when  add  cannot complete its task: 

•   Do nothing. We cannot add another item, so we ignore it and leave the bag unchanged.  
•   Leave the bag unchanged, but signal the client that the addition is impossible.   

 The fi rst option is easy, but it leaves the client wondering what happened. Of course, we could state as 
a precondition of add  that the bag must not already be full. Then the client has the responsibility to 
avoid adding a new entry to a full bag. 

 The second option is the better one, and it is not too hard to specify or implement. How can we 
indicate to the client whether the addition was successful? We could throw an exception if the addi-
tion is not successful, but we will leave this approach for later and use another way. Displaying an 
error message is not a good choice, as you should let the client dictate all written output. Since the 
addition is either successful or not, we can simply have the method  add  return a boolean value. 

 Thus, we can specify the method  add  more completely as 

  +add(newEntry: ItemType): boolean 

 where  newEntry ’s data type is  ItemType . In C++ Interlude 1, we will discuss the implementation 
details of using templates and  typedef  statements to give us fl exibility in the type of data our ADT 
can hold. 

Use the UML to 
describe classes at 
various stages of  
their development 
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 Two behaviors involve removing entries from a bag: remove a particular entry and remove all 
entries. Suppose we name the methods and any parameters and begin to specify them in pseudocode 
as follows: 

  // Removes one occurrence of a particular entry from the bag, if possible.  
 remove(anEntry) 

// Removes all entries from the bag.  
 clear() 

 What return types are these methods? 
 The  remove method won’t be able to remove a given entry if it isn’t in the bag. We will have the 

method return a boolean value, much as  add  does, so it can indicate success or not. Thus, the UML 
specifi cation for the method is 

  +remove(anEntry: ItemType): boolean 

 The method  clear  can be a void method: We just want to empty the bag, not get any of its con-
tents. Thus, we refi ne its specifi cation as follows: 

  +clear(): void 

 The remaining behaviors do not change the contents of the bag. One of these behaviors counts 
the number of times a given object occurs within the bag. Its specifi cation in pseudocode is 

  // Counts the number of times a given entry appears in the bag.   
+getFrequencyOf(anEntry: ItemType): integer 

 Another method tests whether the bag contains a given object. We specify it in pseudocode as follows: 

  // Tests whether the bag contains a given entry.   
+contains(anEntry: ItemType): boolean 

 Finally, we want to look at the contents of the bag. Rather than providing a method that displays 
the entries in the bag, we will defi ne one that places these entries into a vector. The client is then free 
to display any or all of them in any way desired. Here is the specifi cation for our last method: 

  //  Gets all entries in the bag.   
 +toVector( ): vector 

 As we developed the previous specifi cations for the bag’s methods, we represented them using 
UML notation.  Figure   1-7    shows the result of doing so. 

FIGURE 1-7         UML notation for the class  Bag

Bag

+getCurrentSize(): integer
+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(anEntry: ItemType): boolean
+clear(): void
+getFrequencyOf(anEntry: ItemType): integer
+contains(anEntry: ItemType): boolean
+toVector(): vector
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 Notice that the CRC card and UML diagram do not refl ect all of the details, such as assumptions 
and unusual circumstances. However, after you have identifi ed such conditions, you should specify 
how your methods will behave under each one. You should write down your decisions about how you 
want your methods to behave, as we have done in the following table. Later, you can incorporate these 
informal descriptions into the C++ comments that document your methods.      

 ABSTRACT DATA TYPE: BAG

 DATA    

•    A fi nite number of objects, not necessarily distinct, in no particular order, and having the same data type.  
•    The number of objects in this collection.   

 OPERATIONS    

 PSEUDOCODE  DESCRIPTION

  getCurrentSize()  Task: Reports the current number of objects in this bag. 
 Input: None. 
 Output: The number of objects currently in the bag. 

  isEmpty()  Task: Sees whether this bag is empty. 
 Input: None. 
 Output: True or false according to whether the bag is empty. 

  add(newEntry)  Task: Adds a given object to this bag. 
 Input:  newEntry  is an object. 
 Output: True or false according to whether the addition succeeds. 

  remove(anEntry)  Task: Removes an occurrence of a particular object from this bag, if possible. 
 Input:  anEntry  is an object. 
 Output: True or false according to whether the removal succeeds. 

  clear()  Task: Removes all objects from this bag. 
 Input: None. 
 Output: None. 

  getFrequencyOf(anEntry)  Task: Counts the number of times an object occurs in this bag. 
 Input:  anEntry  is an object. 
 Output: The integer number of times  anEntry  occurs in the bag. 

  contains(anEntry)  Task: Tests whether this bag contains a particular object. 
 Input:  anEntry  is an object. 
 Output: True or false according to whether  anEntry  occurs in the bag. 

  toVector()  Task: Gets all objects in this bag. 
 Input:   None.
 Output:   A vector containing all entries currently in the bag. 
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    1.5.3  An Interface Template for the ADT 

 As your specifi cations become more detailed, they increasingly should refl ect your choice of pro-
gramming language. Ultimately, you can write C++ headers for the bag’s methods and organize them 
into a header fi le for the class that will implement the ADT. 

 The C++ header fi le in Listing 1-1 contains the methods for an ADT bag and detailed comments 
that describe their behaviors. If you are unfamiliar with C++ classes, templates, and virtual methods, 
C++ Interlude 1 provides a refresher on C++ classes and discusses C++ templates, virtual methods, 
and abstract base classes. By using templates and abstract base classes, we can take advantage of the 
object-oriented design concepts of encapsulation, polymorphism, and inheritance beginning with our 
fi rst ADT. 

Note: Dealing with unusual conditions 

 As mentioned earlier, you must make decisions about how to treat unusual conditions. 
The documentation for the ADT bag should refl ect both these decisions and the details in 
the previous discussion. For example, our specifi cation of the method  remove  indicates 
that it will return false if a client tries to remove an entry from an empty bag. Instead, 
we could have given the method the precondition that the bag not be empty. It is then up 
to the client to check that the precondition is satisfi ed before invoking the method. 
Notice that the client can use other methods of the ADT bag, such as  isEmpty  and 
getCurrentSize , to help with this task. 

     Note:   A fi rst draft of an ADT’s specifi cations often overlooks or ignores situations that 
you really need to consider. You might intentionally make these omissions to simplify this 
fi rst draft. Once you have written the major portions of the specifi cations, you can con-
centrate on the details that make the specifi cations complete. 

     Question 1   Write specifi cations using UML notation for a function that computes the 
sum of the fi rst fi ve positive integers in an array of  n  arbitrary integers. 

CHECK POINT

     Note:   To emphasize the distinction between the design of an ADT and its implementa-
tion with a data structure, this textbook uses templates and abstract base classes in the 
description of our ADTs. We will call the header fi le containing the abstract base class a 
client   interface .2   A programmer should not need anything more than the client interface 
to use a class in your program, as it completely specifi es the methods of the ADT.  

 2   If you are familiar with Java, the interfaces for our ADTs correspond to Java interfaces. Both provide a public interface 
consisting of methods that the programmer of our ADT must implement. 

 As you examine the interface in Listing 1-1, notice the decisions that were made to address the 
unusual situations mentioned in the previous section. In particular, each of the methods  add ,  remove , 
and contains  returns a value. Note the commenting tags, which begin with  @  and are described in 
 Appendix   I   , that we use to specify the methods. 



LISTING 1-1 A fi le containing a C++ interface for bags 

  /** @file BagInterface.h */
#ifndef _BAG_INTERFACE 
 #define _BAG_INTERFACE 

#include <vector> 

  template < class ItemType> 
  class BagInterface
 { 
  public :

/** Gets the current number of entries in this bag.
     @return  The integer number of entries currently in the bag. */

virtual int  getCurrentSize()  const = 0; 

/** Sees whether this bag is empty. 
     @return  True if the bag is empty, or false if not. */

virtual bool isEmpty() const = 0;

/** Adds a new entry to this bag. 
     @post  If successful, newEntry is stored in the bag and 
        the count of items in the bag has increased by 1. 
     @param newEntry  The object to be added as a new entry. 
     @return  True if addition was successful, or false if not. */

virtual bool add(const ItemType& newEntry) = 0; 

/** Removes one occurrence of a given entry from this bag, 
         if possible. 
     @post  If successful, anEntry has been removed from the bag
         and the count of items in the bag has decreased by 1. 
     @param anEntry  The entry to be removed. 
     @return  True if removal was successful, or false if not. */

virtual bool remove(const ItemType& anEntry) = 0; 

/** Removes all entries from this bag.
     @post  Bag contains no items, and the count of items is 0. */

virtual void clear() = 0; 

/** Counts the number of times a given entry appears in bag. 
     @param anEntry  The entry to be counted. 
     @return  The number of times anEntry appears in the bag. */

virtual int getFrequencyOf(const ItemType& anEntry) const = 0; 
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 For now, the items in the bag will be objects of the same class. To accommodate entries of 
any single class type, the bag methods use a  generic type   ItemType  for each entry. To give meaning 
to the identifi er  ItemType , we must write  template<class ItemType>  on the line before the class 
header. Once the actual data type is chosen by a client, the compiler will use that data type wherever 
ItemType  appears. 

 The class  BagInterface  is a C++ abstract base class. An  abstract base class , or simply an 
abstract class , in C++ contains at least one method that is declared as virtual and has no implementa-
tion. An abstract class cannot be instantiated; it can only be used as a base class. The subclass must 
then implement the methods specifi ed but not defi ned in the abstract class. 

(continues)
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/** Tests whether this bag contains a given entry. 
     @param anEntry  The entry to locate. 
     @return  True if bag contains anEntry, or false otherwise. */

virtual bool contains(const ItemType& anEntry) const = 0; 

/** Empties and then f ills a given vector with all entries that
         are in this bag. 
     @return  A vector containing all the entries in the bag. */

virtual vector<ItemType> toVector()  const = 0;
 }; // end BagInterface   

     Note:   Although writing an interface before implementing a class is certainly not 
required, doing so enables you to document your specifi cations in a concise way. You 
then can use the code in the interface as an outline for the actual class. Having an inter-
face also provides a data type for an ADT that is independent of a particular class defi nition. 
 Chapters   3    and    4    will develop different implementations of a class of bags. Code 
written with respect to an interface allows you to more easily replace one implementa-
tion of a bag with another. 

    1.5.4  Using the ADT Bag 

 Imagine that we hire a programmer to implement the ADT bag in C++, given the interface 
and specifi cations that we have developed so far. If we assume that these specifi cations are clear 
enough for the programmer to complete the implementation, we can use the bag’s operations in 
a program without knowing the details of the implementation. That is, we do not need to know how 
the programmer implemented the bag to be able to use it. We need to know only what the ADT 
bag does. 

 The following example demonstrates how we can use a bag and assumes that we have a C++ 
class, Bag , that implements the C++ abstract class  BagInterface  given in Listing 1-1. 

      Example.   Suppose you invited three friends to your home to watch your favorite soccer team on tel-
evision. To make the commercial breaks more interesting, you make up the following game. From a 
deck of cards, you remove the entire suit of clubs: the cards Ace, Two, Three, …, Jack, Queen, and 
King of clubs. You randomly select six of these cards and place them into a bag. Your friends then 
guess which cards are in the bag. Each time they correctly guess a card, it is removed from the bag. 

 The specifi cations of these operations are the sole terms of the contract for the ADT bag:  If you 
request that these operations be performed, this is what will happen . The specifi cations contain no 
mention of how to store the bag or how to perform the operations; they tell you only what you can do 
to the bag. It is of fundamental importance that the specifi cation of an ADT  not  include implementa-
tion issues. This restriction on the specifi cation of an ADT is what allows you to build a wall between 
an implementation of an ADT and the program that uses it—that is, the client. The behavior of the 
operations is the only thing on which a program should depend. 
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When the bag is empty, the friend with the most cards wins. Listing 1-2 shows a simple program that 
plays this game.  

LISTING 1-2 A program for a card guessing game 

  #include <iostream> // For cout and cin
#include <string> // For string objects 
#include "Bag.h" // For ADT bag
  using namespace std; 

  int main() 
 { 
    string clubs[] = { "Joker", "Ace",  "Two", "Three", 
                           "Four",  "Five", "Six", "Seven", 
                           "Eight", "Nine", "Ten", "Jack", 
                           "Queen", "King" }; 

// Create our bag to hold cards.
    Bag<string> grabBag; 

// Place six cards in the bag. 
    grabBag.add(clubs[1]); 
    grabBag.add(clubs[2]); 
    grabBag.add(clubs[4]); 
    grabBag.add(clubs[8]); 
    grabBag.add(clubs[10]); 
    grabBag.add(clubs[12]); 

// Get friend’s guess and check it.
int guess = 0; 
while (!grabBag.isEmpty())

    { 
       cout << "What is your guess?" 

       << "(1 for Ace to 13 for King):"; 
       cin >> guess; 

// Is card in the bag?
if (grabBag.contains(clubs[guess])) 

       { 
// Good guess – remove card from the bag. 

     cout << "You get the card!\n"; 
     grabBag.remove(clubs[guess]); 
       } 

else
       { 

     cout << "Sorry, card was not in the bag.\n"; 
       }  // end if 
    }  // end while 
    cout << "No more cards in the bag. Game over!\n"; 

return 0; 
 }; // end main         
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     SUMMARY       

Programming Tip:   After you design a class, try writing some code that uses your 
class before you implement the class. You will not only see whether your design works for 
the problem at hand, but also test your understanding of your own design and check the 
comments that document your specifi cations. You might discover problems with either 
your class design or your specifi cations. If so change your design and specifi cations, and 
try using the class again. 

Question 2   What is an abstract data type? 

CHECK POINT      Question 3   What steps should you take when designing an ADT? 

1.  Object-oriented analysis (OOA) is used during the initial stage in problem solving to understand what the prob-
lem is and what the requirements of a solution are. 

2.  During object-oriented design (OOD), you describe a solution to a problem whose requirements are discovered 
during OOA. You express the solution in terms of software objects. 

3.  Encapsulation is a principle of object-oriented programming whereby you hide the inner details of functions 
and objects. Functions encapsulate behavior, and objects—that is, instances of a class—encapsulate data as 
well as behavior. 

4.  Inheritance is another concept related to object-oriented programming, allowing you to reuse already defi ned 
classes by extending their defi nitions or making slight modifi cations. 

5.  Polymorphism is the third principle of object-oriented programming, whereby objects determine appropriate 
operations at execution time. 

6.  Each module should be highly cohesive; that is, it should perform one well-defi ned task.  

7.  Coupling is a measure of the dependence among modules. Module should be loosely coupled. A function or 
method should be as independent as possible and perform one well-defi ned task. 

8.  UML is a modeling language used to express object-oriented designs. It provides a notation to specify the data 
and operations and uses diagrams to show relationships among classes. 

9.  An operation contract documents how a module can be used and what limitations it has. 

10.  A function or method should always include an initial comment that states its purpose, its precondition—that 
is, the conditions that must exist at the beginning of a module—and its postcondition—the conditions at the 
end of a module’s execution. 

11.  For problems that primarily involve data management, encapsulate data with operations on that data by design-
ing classes. Practice abstraction—that is, focus on what a module does instead of how it does it. 

12.  Data abstraction is a technique for controlling the interaction between a program and its data structures. It 
builds walls around a program’s data structures, just as other aspects of modularity build walls around a pro-
gram’s algorithms. Such walls make programs easier to design, implement, read, and modify. 
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  EXERCISES   

13.  The specifi cation of a set of data-management operations, together with the data values on which they operate, 
defi nes an abstract data type (ADT). 

14.  Only after you have fully defi ned an ADT should you think about how to implement it. The proper choice of a 
data structure to implement an ADT depends both on the details of the ADT operations and on the context in 
which you will use the operations. 

1.  The price of an item you want to buy is given in dollars and cents. You pay for it in cash by giving the clerk 
 d  dollars and  c  cents. Write specifi cations for a function that computes the change, if any, that you should 
receive. Include a statement of purpose, the preconditions and postconditions, and a description of the 
arguments. 

2.  A date consists of a month, day, and year. Consider the class  Date  of such dates. Suppose that  Date  represents 
the month, day, and year as integers. For example, July 4, 1776, is month 7, day 4, and year 1776.  

a.   Write specifi cations for a method within  Date  that advances any given date by one day. Include a 
statement of purpose, the preconditions and postconditions, a description of the arguments, and a 
description of any return value.  

b.   Write a C++ implementation of this method. Design and specify any other method that you need. 
Include comments that will be helpful to someone who will maintain your implementation in the 
future.

3.  Write a pseudocode function in terms of the ADT appointment book, described in Section 1.4.1, for each of 
the following tasks. Do you need to add operations to the ADT to perform these tasks? 

a.   Change the purpose of the appointment at a given date and time.  
b.   Display all the appointments for a given date.   

4.  Imagine that you have just left a store with a bag of groceries. You are concerned that the fragile items will 
not survive the trip home, so when you reach your car, you place those items into their own bag. If Bag is a 
class of bags, write C++ statements that remove all the items from storeBag and place them into one of two 
new bags, as follows: Place all occurrences of bread and eggs into fragileBag, and all other items into 
groceryBag. When you are done, storeBag should be empty. Assume that grocery items are represented by 
strings. 

5.  Suppose that a bag contains strings that represent various grocery items. Write a C++ function that removes 
and counts all occurrences of a given string from such a bag. Your function should return this number. Use 
comments in  javadoc  style to fully specify your function. Accommodate the possibility that the given bag is 
either empty or does not contain any occurrences of the given string. 

6.  The  union  of two bags is a new bag containing the combined contents of the original two bags. Design and 
specify a method  union  for the ADT bag that returns as a new bag the union of the bag receiving the call to the 
method and the bag that is the method’s one argument. Include suffi cient comments to fully specify the method. 

 Note that the union of two bags might contain duplicate items. For example, if object  x  occurs fi ve times in 
one bag and twice in another, the union of these bags contains  x  seven times. Specifi cally, suppose that  bag1 
and  bag2  are bags;  bag1  contains the strings  a ,  b , and  c ; and  bag2  contains the strings  b ,  b ,  d , and  e . The expres-
sion  bag1.union(bag2)  returns a bag containing the strings  a ,  b ,  b ,  b ,  c ,  d , and  e . Note that  union  does not 
affect the contents of  bag1  and  bag2 .
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1.  Add a  Transaction  class to the banking example in Figure C-4 of Appendix C. This class keeps track of the 
date, time, amount, and type of transaction (checking or savings). 

2.  Consider a program that will read employee data, sort the data by employee identifi cation number, write out the 
sorted data, and compute various statistics about the data, such as the average age of an employee. Design a modu-
lar solution to this problem using UML notation. What classes and methods did you identify during the design of 
your solution? Write complete specifi cations, including preconditions and postconditions, for each module. 

  PROGRAMMING PROBLEMS   

7.  The  intersection  of two bags is a new bag containing the entries that occur in both of the original two bags. 
Design and specify a method  intersection  for the ADT bag that returns as a new bag the intersection of the 
bag receiving the call to the method and the bag that is the method’s one argument. Include suffi cient comments 
to fully specify the method. 

 Note that the intersection of two bags might contain duplicate items. For example, if object  x  occurs fi ve 
times in one bag and twice in another, the intersection of these bags contains  x  two times. Specifi cally, suppose 
that  bag1  and  bag2  are bags;  bag1  contains the strings  a ,  b , and  c ; and  bag2  contains the strings  b ,  b ,  d , and  e .
The expression  bag1.intersection(bag2)  returns a bag containing only the string  b . Note that  intersection 
does not affect the contents of  bag1  and  bag2 .

8.  The  difference  of two bags is a new bag containing the entries that would be left in one bag after removing those 
that also occur in the second. Design and specify a method  difference  for the ADT bag that returns as a new 
bag the difference of the bag receiving the call to the method and the bag that is the method’s one argument. 
Include suffi cient comments to fully specify the method. 

 Note that the difference of two bags might contain duplicate items. For example, if object  x  occurs fi ve 
times in one bag and twice in another, the difference of these bags contains  x  three times. Specifi cally, suppose 
that  bag1  and  bag2  are bags;  bag1  contains the strings  a ,  b , and  c ; and  bag2  contains the strings  b ,  b ,  d , and  e .
The expression  bag1.difference(bag2)  returns a bag containing only the strings  a  and  c . Note that  
difference  does not affect the contents of  bag1  and  bag2 .

9.  Consider the ADT polynomial—in a single variable  x —whose operations include the following: 

  degree() //  Returns the degree of a polynomial.  
 coefficient(power) // Returns the coeffi cient of the  xpower term.  
 changeCoefficient(newCoefficient, power) // Replaces the coeffi cient of  
                                            //  the xpower term with  newCoefficient.   

 For this problem, consider only polynomials whose exponents are nonnegative integers. For example, 

p  = 4 x5  + 7 x 3  –  x2  + 9 

 The following examples demonstrate the ADT operations on this polynomial. 

p.degree()  is 5 (the highest power of a term with a nonzero coeffi cient)  
   p.coefficient(3) is 7 (the coeffi cient of the x3  term)  
   p.coefficient(4) is 0 (the coeffi cient of a missing term is implicitly 0)  
p.changeCoefficient(-3, 7)  changes the polynomial  p  to –3 x7  + 4 x5  + 7 x3  –  x2  + 9   

 Using these ADT operations, write statements to perform the following tasks: 

a.   Display the coeffi cient of the term that has the highest power.  
b.   Increase the coeffi cient of the  x3  term by 8.  
c.   Compute the sum of two polynomials.    
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3.  A  matrix  is a rectangular array of numerical values. You can add or multiply two matrices to form a third 
matrix. You can multiply a matrix by a scalar, and you can transpose a matrix. Design an ADT that represents a 
matrix that has these operations. 

 Specify each ADT operation by stating its purpose, by describing its parameters, and by writing a pseu-
docode version of its header. Then write a C++ interface for the methods of a matrix. Include  javadoc -style
comments in your code. 

4.  A  ring  is a collection of items that has a reference to a current item. An operation—let’s call it advance—moves 
the reference to the next item in the collection. When the reference reaches the last item, the next advance opera-
tion moves the reference back to the fi rst item. A ring also has operations to get the current item, add an item, and 
remove an item. The details of where an item is added and which item is removed are up to you. 

 Design an ADT to represent a ring of objects. Specify each operation by stating its purpose, by describing 
its parameters, and by writing a pseudocode version of its header. Then write a C++ interface for a ring’s meth-
ods. Include  javadoc -style comments in your code. 

5.  A  set  is a special bag that does not allow duplicates. Specify each operation for a set of objects by stating its 
purpose, by describing its parameters, and by writing preconditions, postconditions, and a pseudocode version 
of its header. Then write a C++ interface for the set. Include  javadoc -style comments in your code. 

6.  Imagine a pile of books on your desk. Each book is so large and heavy that you can remove only the top one 
from the pile. You cannot remove a book from under another one. Likewise, you can add another book to the 
pile only by placing it on the top of the pile. You cannot add a book beneath another one. 

 If you represent books by their titles alone, design a class that you can use to track the books in the pile on 
your desk. Specify each operation by stating its purpose, by describing its parameters, and by writing a pseu-
docode version of its header. Then write a C++ interface for the pile’s methods. Include  javadoc -style com-
ments in your code. 



This page intentionally left blank 



 C++ Classes     1
     Contents 
    C1.1  A Problem to Solve   32  

    C1.1.1  Private Data Fields   33   
    C1.1.2  Constructors and Destructors   33   
    C1.1.3  Methods   34   
    C1.1.4  Preventing Compiler Errors   35    

    C1.2  Implementing a Solution   36   
    C1.3  Templates   37   
    C1.4  Inheritance   40  

    C1.4.1  Base Classes and Derived Classes   40   
    C1.4.2  Overriding Base-Class Methods   42    

    C1.5  Virtual Methods and Abstract Classes   44  
    C1.5.1  Virtual Methods   44   
    C1.5.2  Abstract Classes   45      

  Prerequisites 
 Appendix A Review of C++ Fundamentals 
  Chapter   1    Data Abstraction: The Walls 

Throughout this book we design abstract data types and implement them as data 
structures using C++. This C++ Interlude provides a refresher on C++ classes and then 
introduces additional C++ tools we can use to defi ne our abstract data types in a fl exible 
manner that maintains the wall between our design and the implementation. 

 After reviewing classes, we will look at  class templates . This C++ construct gives 
us the power to specify the data type of the items contained in a data structure in a very 
generic way. For example, if you had spent two weeks developing a great class to repre-
sent a bag of integers, wouldn’t it be great if you could easily use the same code for a bag 
that holds strings? Class templates allow you to defi ne classes that are independent of 
the type of data stored in the data structure. When a client is ready to instantiate an ob-
ject of the class, the client can specify the type of data the object holds. 

C++
Interlude 
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Header  ( .h ), or  specifi cation ,  fi les  in C++ provide a mechanism to partially separate the design 
of a class from the implementation in the source , or  implementation  ( .cpp ),  fi le . The header fi le 
must also contain a description of both the data fi elds for the class and any private methods used by 
the class. A client does not need to know about the private methods or data fi elds to use the class in a 
program. To provide a public interface for an ADT, you can write an abstract base class, thereby 
separating design from implementation. An abstract base class allows the client to take full advan-
tage of polymorphism when using our class. 

 To introduce these concepts, let’s look at a simple problem that illustrates all three of the funda-
mental concepts of object-oriented programming: encapsulation, inheritance, and polymorphism.   

      C1.1 A Problem to Solve 
 Suppose that a friend who is creating a video game asked you to design and develop a group of 
classes to represent three types of boxes carried by the characters in the game. Each type of box can 
only hold one item. A character can put an item in the box or look at the item in the box. The three 
types of boxes are: 

•  Plain box  —a plain old box that holds only one item.  
•  Toy box  —a box that has color and holds only one item.  
•  Magic box  —a box that holds only one item, but magically changes it to the fi rst item that was 

ever stored in the box.   

 Let’s begin by designing an ADT plain box. It is the simplest of the three boxes, and we may be 
able to use aspects of its implementation for the other two boxes. Since game characters can only 
place items in the box or look at them, the box needs only two public methods,  setItem  to place an 
item in the box and  getItem  to get the stored item. Here is the UML notation for those methods: 

  +setItem(theItem: ItemType) 
+getItem(): ItemType 

 We can defi ne  ItemType  as the type of item stored in the box by using a  typedef  statement. For 
example, to have the box hold a  double , we can write 

typedef double  ItemType; 

 To have the box hold another type of data, we need only to replace the word  double  with the new 
data type. Listing C1-1 shows the declaration of our class  PlainBox  that would appear in a header 
fi le. To save space here, we show only comments that describe the class element type and omit the 
specifi cations, preconditions, and postconditions. We have used the object-oriented concept of 
encapsulation to group together data—the item stored in the box—with the methods that operate on 
that data: the two constructors, a method  setItem  to change the item’s value, and a method  getItem
to return the item’s value.  

LISTING C1-1 The header fi le for the class PlainBox

/** @file PlainBox.h */

#ifndef _PLAIN_BOX 
 #define _PLAIN_BOX 

// Set the type of data stored in the box 
  typedef double ItemType; 

VideoNote

C++ classes
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 Let’s look in detail at this C++ class declaration. 

   C1.1.1  Private Data Fields 

 The data fi eld  item  is declared in a private section of the class declaration. Every data fi eld in every 
class presented in this textbook is in a private section. This restricts access to the data fi eld to just the 
class in which it is defi ned. Typically, we provide methods—such as  setItem  and  getItem— to 
access the data fi elds. In this way, the class controls how and whether other classes can access the 
data fi elds. This design principle should lead to programs that not only are easier to debug, but also 
have fewer logical errors from the beginning. 

 Clients and derived classes should not have direct access to the data fi elds of a class. If a class 
designer believes that a derived class might need to access or modify the data fi elds of the base class, 
you should still make the data fi elds private but provide protected methods so that any derived classes 
can access or modify the data. More information on access modifi ers, such as  private  and  pro-
tected , is presented in a later C++ Interlude. 

 As we build more complex data structures, we need to guarantee their integrity. This is simpler to 
do if we restrict access to the data fi elds to only our class. For example, suppose we have a class that 
stores items in an array and maintains a count of the number of items used in the array. Each time our 
class adds or removes an item from the array, the item count needs to be modifi ed to refl ect the change. 
If a client of our class had direct access to the array, the client could add and remove entries in the array 
and neglect to update the item counter. This counter would not accurately refl ect the number of entries 
in the array, resulting in, for example, the loss of data or an abnormal termination of the program. 

   C1.1.2  Constructors and Destructors 

 Classes have two types of special methods, called constructors and destructors. A  constructor  allo-
cates memory for new instances of a class and can initialize the object’s data to specifi ed values. A 
destructor  destroys an instance of a class when the object’s lifetime ends. A typical class has several 

// Declaration for the class PlainBox
  class PlainBox 
 { 
  private : 

// Data field
    ItemType item; 

  public : 
// Default constructor

    PlainBox(); 

// Parameterized constructor
    PlainBox( const ItemType& theItem); 

// Method to change the value of the data field
void setItem( const ItemType& theItem); 

// Method to get the value of the data field
    ItemType getItem() const ; 
}; // end PlainBox

 #endif 
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constructors but only one destructor. For many classes, you can omit the destructor. In such cases, the 
compiler generates a destructor for you. For the classes in this C++ Interlude, the compiler-generated 
destructor is suffi cient. C++ Interlude 2 discusses how and why you would write your own destructor. 

 In C++, a constructor has the same name as the class. Constructors have no return type—not even 
void— and cannot use  return  to return a value. A class can have more than one constructor, as is the 
case for the class PlainBox . One of the constructors, the  default constructor , has no parameters. 
Typically, a default constructor initializes data fi elds to values that the class implementation chooses. 
Other constructors have parameters. These  parameterized constructors  initialize data fi elds to val-
ues chosen by the client but approved by the constructor. The compiler decides which constructor to 
call by matching the argument list supplied by the client with the parameters of the available construc-
tors. A match occurs when the arguments and parameters correspond in number, data type, and order. 

      Note:   If you do not defi ne any constructors for a class, the compiler creates a default 
constructor—one without parameters. Once you defi ne a constructor, the compiler does 
not create any of its own. Therefore, if you defi ne a parameterized constructor but not a 
default constructor, your class will not have a default constructor.  

 When you declare an instance of the class, a constructor is invoked implicitly. For example, the 
statement

PlainBox myBox; 

 invokes the default constructor, which creates the object  myBox  and initializes the data fi eld  item  to a 
value given in the constructor’s defi nition. Notice that you do not include parentheses after  myBox
when invoking the default constructor. The statement 

PlainBox myBox(specialValue); 

 invokes the parameterized constructor, which, as you will see, initializes the data fi eld  item  to 
specialValue . Thus,  specialValue  is stored in the box.  

   C1.1.3  Methods 

 As discussed in  Chapter   1   , methods implement the algorithms that solve a problem. A method proto-
type conveys three important pieces of information to a client wishing to use our class: the method 
name, the number and types of its parameters, and the method’s return type. The prototype describes 
the slit in the wall of abstraction. Prototypes for methods a client can use are in the public section of 
the class declaration. 

 An  accessor method  in a class accesses, or gets, the value of a data fi eld. Its name often begins 
with the word  get . Accessor methods do not change the data fi elds of an object. An important part of the 
PlainBox  class declaration is the accessor method  getItem , which is labeled with the keyword  const : 

ItemType getItem() const ; 

 This keyword is a signal to both the compiler and other programmers that the method does not change 
the data fi elds of the object. Another way to think of a  const  method is that the object is the same after 
calling this kind of method as it was before calling the method. Using  const  in a method declaration 
protects you as a programmer when you implement the algorithm for the method. As you write the 
code for a method declared with const , the compiler can check your code to verify that you did not 
modify any data fi elds. 
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 A  mutator method  in a class changes the value of a data fi eld. Often, the name of a mutator 
method begins with the word  set . The method  setItem  is an example of a mutator method. Mutator 
methods cannot be declared as const . Likewise, constructors cannot be declared  const , because they 
must initialize the data fi elds of an object. 

Passing parameters by constant reference.  The method  setItem  and the parameterized construc-
tor both have a parameter  theItem  that is  passed by constant reference , as you can see from their 
declarations:

   void setItem( const ItemType& theItem); 

 PlainBox( const ItemType& theItem); 

 Passing a parameter by constant reference provides several benefi ts to both the client of a class and the 
programmer implementing the class. Passing an argument by reference to a method, especially when 
the argument is a complex object, saves time and memory, since the method can access or modify the 
object without copying it. The risk with this technique is that the method has access to data declared 
outside of its class; the method has “broken through the wall” and can modify an item owned by the 
client that invoked the method. To keep the effi ciency of passing by reference and still protect the data 
of our client, we use the keyword  const  before the declaration of that parameter. The method treats the 
parameter as a constant that cannot be modifi ed. Using  const  with parameters passed by reference 
protects client objects and reduces the chance of side effects. Our method can still access and use an 
object passed by constant reference, but the compiler fl ags any modifi cations to the object as errors. 

      Programming Tip:   Methods declared  const  can access and use data fi elds, so 
labeling all accessor methods with the const  declaration is appropriate and a good idea.  

Note: Guidelines for safe and secure programming 

•   Declare all data fi elds in the private section of the class declaration.  
•   Declare as  const  any method that does not change the object (accessor methods).  
•    Declare any parameter passed by reference as  const , unless you are certain it must 

be modifi ed by the method, in which case the method should be either protected or 
private.     

   C1.1.4  Preventing Compiler Errors 

 You can declare C++ variables only once within each program block. A second declaration, or redef-
inition, of a variable in the same block results in a compiler error. For example, suppose you have the 
following loop: 

   for ( int index = 0; index < count; index++) 
 { 

int index = count / 6; // index is redefined in loop - compiler error! 
   total += index; 

} // end for 

 Redefi ning  index  inside the loop results in a compile-time error, since  index  was already defi ned 
in the for  statement. The same restriction on redefi nition applies to entire classes. Let’s see how we 
could accidentally redefi ne our  PlainBox  class. 
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 If we want to use a  PlainBox  object in our program, for instance in our  main  function, we must 
include PlainBox.h  in the fi le containing the  main  function,  main.cpp , so the compiler knows about 
the public interface for our class. We also need to include the header fi le for our PlainBox  class in 
PlainBox.cpp  so the compiler knows about the data fi elds and methods of the class when it compiles 
the class’s implementation. 

 This creates a problem, since the compiler reads our  PlainBox  defi nition twice, even though the 
class needs to be defi ned only once. We don’t know which fi le the compiler will try to compile fi rst, so 
both fi les must include  PlainBox.h . This duplication results in the class being redefi ned when the 
header fi le is read again. We need a way to prevent the compiler from reading the class defi nition a 
second time. The  #ifndef ,  #define , and  #endif   preprocessor directives  provide a solution. 

 You are already familiar with the  #include  directive, which includes the contents of another fi le 
in the current fi le. You use  #ifndef  to conditionally include a class defi nition. For example, the 
header fi le for  PlainBox  in Listing C1-1 contains 

  #ifndef _PLAIN _BOX
 #define _PLAIN _BOX

 as its fi rst two lines. The directive  #ifndef  means “If  _PLAIN_BOX  is not defi ned, then ...” If the com-
piler had not defi ned the name  _PLAIN_BOX , it would process the code that follows until it reached the 
#endif  directive at the end of the fi le. 

 The  #define  directive defi nes the name  _PLAIN_BOX . If another fi le includes the class defi nition of 
PlainBox , the name  _PLAIN_BOX  will already have been defi ned. That fi le’s  #ifndef  directive will 
cause the preprocessor to skip any of the code that follows; that is, the code will be hidden from the 
compiler, and so the compiler will not see our class defi nition more than once. 

 In this textbook, all header fi les use these preprocessor directives to protect against including 
class defi nitions multiple times. Though you can use any names in the directives, the name to test in 
#ifndef  and the name defi ned by  #define  must be the same. We write such names in uppercase and 
begin them with an underscore character.   

   C1.2 Implementing a Solution 
 After we have designed our solution, the next step is to implement each of the methods we declared in 
the header fi le. Listing C1-2 shows the implementation, or source code, fi le for the class  PlainBox . 
The method implementations are simple, but there are a few syntax items we should discuss.  

LISTING C1-2 Implementation fi le for the PlainBox class

/** @file PlainBox.cpp */

#include "PlainBox.h" 

 PlainBox::PlainBox() 
 { 
} // end default constructor

PlainBox::PlainBox(const  ItemType& theItem)
 { 
    item = theItem; 
} // end constructor

  void PlainBox::setItem( const ItemType& theItem) 
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 The header fi le  PlainBox.h  contains our class declaration. We must use the preprocessor direc-
tive  #include  to include the  PlainBox  class declaration so the compiler can validate our method 
headers and provide access to class data fi elds. The method headers must match those provided in the 
class declaration. Including the header fi le does not tell the compiler that the methods defi ned here are 
part of the  PlainBox  class. To do so, you must precede the constructor and method names with the 
class name followed by two colons—that is, 

  PlainBox:: 

 The reason for this requirement is that C++ allows a source fi le to contain the implementations of 
methods for several classes and stand-alone functions. The  namespace indicator   PlainBox::  is a 
prefi x that indicates to the compiler that the method is a part of the  PlainBox  namespace. A C++ 
namespace  is a syntax structure, such as a class, that allows you to group together declarations of 
data and methods under a common name, such as PlainBox . Once a method has been defi ned as part 
of a namespace, it has access to all the data and methods in that namespace. Thus, the constructor and 
methods in Listing C1-2 have access to  PlainBox ’s data fi elds and methods. 

Note:   To better modularize our code, the implementation fi les in this book will contain 
only methods from a single class.   

   C1.3 Templates 
 At this point, our  PlainBox  class looks similar to many of the classes you probably have imple-
mented in a previous C++ course. The class works well, as long as the characters in the game want to 
store a double  value in a box. But what do we do if one character wants to store a  double  and a second 
has a string  or  MagicWand  object to store? Since our current  PlainBox  class can store only a  double , 
we would need to create new classes— PlainBoxForStrings  and  PlainBoxForWands , for example—
to hold different object types. These classes would function in exactly the same way as the  PlainBox
class, so we could copy the code with only a few changes. For example, we have to change the  typedef
in each header fi le. For the  PlainBoxForStrings  class, the  typedef  would be 

   typedef string ItemType; 

 and for the  PlainBoxForWands  class, the  typedef  would be 

  typedef MagicWand ItemType; 

 We also would need to change the names of the constructors and the namespace indicators to 
refl ect the new class names. If we had a more complex class, these changes would require a sub-
stantial amount of effort and would be an error-prone process. Later, if our friend changed the 

 { 
    item = theItem; 
} // end setItem

ItemType PlainBox::getItem() const  
 { 

return item; 
} // end getItem
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requirements for PlainBox , we would need to go through each of the  PlainBox  class variations and 
make the required changes. 

 The root of the problem in this scenario is that the programmer must know what types of objects 
will be stored in the box before the program is built. The programmer must then write a different class 
for each type of object that is to be stored. The  functionality  of each box is the same, but the  type of 
data  differs.  Templates  enable the programmer to separate the functionality of an implementation 
from the type of data used in the class. Listing C1-3 contains the header fi le for a template version of 
the class PlainBox . 

LISTING C1-3 Template header fi le for the PlainBox class

/** @file PlainBox.h */

#ifndef _PLAIN_BOX 
 #define _PLAIN_BOX 

  template<class ItemType>; // Indicates this is a template definition

// Declaration for the class PlainBox
  class PlainBox 
 { 
  private : 

// Data field
    ItemType item; 

  public : 
// Default constructor 

    PlainBox(); 

// Parameterized constructor 
    PlainBox( const ItemType& theItem); 

// Mutator method that can change the value of the data field
void setItem( const ItemType& theItem); 

// Accessor method to get the value of the data field
    ItemType getItem() const ; 
 }; // end PlainBox

#include "PlainBox.cpp" // Include the implementation file
 #endif 

 As you can see from Listing C1-3, changing our earlier defi nition of the class  PlainBox  in 
Listing C1-1 to be a template requires the change of only one line in our header fi le: The  typedef  was 
removed and replaced with a statement to indicate this class is a template: 

   template < class ItemType>; 

 However, we also must include the implementation fi le just prior to the  #endif  directive by writing 

  #include "PlainBox.cpp" 

 This addition is necessary because the compiler does not compile a template class until it sees 
the client’s instantiation of the template and knows the actual data type corresponding to the 
data-type parameter ItemType . 
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Programming Tip:   In your development environment, do not add the implementa-
tion fi le— PlainBox.cpp , for example—to the project. It will automatically be included 
when it is needed.  

 The implementation fi le  PlainBox.cpp  requires a few changes, but these changes all follow a 
pattern. Prior to  each  method’s defi nition, you write the same  template  statement: 

   template < class ItemType>; 

 to indicate that the method is a template. The namespace indicator,  PlainBox<ItemType>:: , must 
also precede each method name to refl ect that the method’s defi nition is based on  ItemType . These 
changes are shown in Listing C1-4. 

LISTING C1-4 Implementation fi le for the PlainBox template class 

/** @file PlainBox.cpp */

  template < class ItemType>; 
 PlainBox<ItemType>::PlainBox() 
 { 
} // end default constructor

  template < class ItemType>; 
 PlainBox<ItemType>::PlainBox( const ItemType& theItem) 
 { 
    item = theItem; 
} // end constructor

  template < class ItemType>; 
  void PlainBox<ItemType>::setItem( const ItemType& theItem) 
 { 
    item = theItem; 
} // end setItem

  template < class ItemType>; 
ItemType PlainBox<ItemType>::getItem() const  
 { 

return item; 
} // end getItem  

 To instantiate an instance of  PlainBox , you write the data type of the item to be placed in a box, 
surrounded by angle brackets: 

  PlainBox <double> numberBox; // A box to hold a double 

PlainBox<string> nameBox; // A box to hold a string object 

PlainBox<MagicWand> wandBox; // A box to hold a MagicWand object 

 Methods of these box instances are invoked as before: 

   double health = 6.5; 
 numberBox.setItem(health); 
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string secretName = "Rumpelstiltskin"; 
 nameBox.setItem(secretName); 
MagicWand elfWand; 
 wandBox.setItem(elfWand); 

Note:   By using templates, you can defi ne a class that involves data of any type, even 
data types that are created after you designed and implemented your class.   

   C1.4 Inheritance 
 Now that the class  PlainBox  has been written, we will look at the other two boxes. The toy box is very 
similar to our plain box, but it has an additional characteristic, color, which we can represent with an 
enumerated type Color . We set the color of our toy box when it is created. The characters in the game 
can ask about the box’s color but cannot change it. Here is the UML notation for those methods: 

  +getColor(): string
+setItem(ItemType theItem) 
+getItem(): ItemType  

 The methods  setItem  and  getItem  behave exactly the same as the similarly named methods imple-
mented for the PlainBox  class. We can reuse the code in  PlainBox  by using inheritance. Inheritance 
allows us to reuse and extend work we have already completed and tested. 

   C1.4.1  Base Classes and Derived Classes 

 We can use  PlainBox  as a  base class , or  superclass , for our  ToyBox  class. You can think of a base class 
as a parent class. The  ToyBox  class is the  derived class , or  subclass , of the  PlainBox  class. To indicate 
that ToyBox  is derived from  PlainBox , we use the following syntax in the class header of  ToyBox : 

   class ToyBox : public PlainBox<ItemType> 

 Any instance of the derived class is also considered to be an instance of the base class and can be 
used in a program anywhere that an instance of the base class can be used. Also, when the keyword 
public  is used with the base class, any of the publicly defi ned methods or data fi elds in the base class 
can be used by instances of the derived class. In C++, a derived class inherits all the members of its 
base class, except the constructors and destructor. That is, a derived class has the data fi elds and 
methods of the base class in addition to the members it defi nes, though it can access only publicly 
defi ned members. A derived class can also revise any inherited public method. 

 As you can see in Listing C1-5,  ToyBox  defi nes only the constructors and new methods specifi c 
to it, if it has not needed to revise any methods of the base class. The methods  setItem  and  getItem
are inherited from the PlainBox  class and can be used in our  ToyBox  class. 

LISTING C1-5 Template header fi le for the class ToyBox

/** @file ToyBox.h */ 

#ifndef _TOY_BOX 
 #define _TOY_BOX 
#include "PlainBox.h" 
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  enum Color {BLACK, RED, BLUE, GREEN, YELLOW, WHITE}; 

  template < class ItemType> 
  class ToyBox : public PlainBox<ItemType> 
 { 
  private : 
   Color boxColor; 

  public : 
   ToyBox(); 
   ToyBox( const Color& theColor); 
   ToyBox( const ItemType& theItem, const Color& theColor); 
   Color getColor() const ; 
 }; // end ToyBox
#include "ToyBox.cpp" 
 #endif 

 An instance of the class  ToyBox  has two data fi elds— item , which is inherited, and  boxColor , 
which is new. Because an instance of a derived class can invoke any public method in the base class, 
an instance of ToyBox  has all the methods that  PlainBox  defi nes; new constructors; a new, compiler-
generated destructor; and a new method  getColor . Although an instance of a derived class contains 
copies of inherited data fi elds, the code for inherited methods is not copied. 

 A derived class cannot access the private members of the base class directly, even though they are 
inherited. Inheritance does not imply access . After all, you can inherit a locked vault but be unable to 
open it. In the current example, the data fi eld  item  of  PlainBox  is private, so you can reference it only 
within the defi nition of the class  PlainBox  and not within the defi nition of  ToyBox . However, the class 
ToyBox  can use  PlainBox ’s public methods  setItem  and  getItem  to set or obtain the value of  item
indirectly. 

LISTING C1-6 Implementation fi le for the class ToyBox

/** @file ToyBox.cpp */

  template < class ItemType> 
 ToyBox<ItemType>::ToyBox() 
 { 
    PlainBox<ItemType>(); 
    boxColor = BLACK; 
} // end default constructor

  template < class ItemType> 
 ToyBox<ItemType>::ToyBox( const Color& theColor) 
 { 
    PlainBox<ItemType>(); 
    boxColor = theColor;  
} // end constructor

  template < class ItemType> 
 ToyBox<ItemType>::ToyBox( const ItemType& theItem, 

const Color& theColor) 
 (continues)
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{
    PlainBox<ItemType>(); 
    PlainBox<ItemType>::setItem(theItem); 
    boxColor = theColor; 
} // end constructor

  template < class ItemType> 
Color ToyBox<ItemType>::getColor() const  
 { 

return boxColor; 
} // end getColor

 Inheritance enables you to reuse software components when you defi ne a new class. Our  ToyBox
class does not inherit the constructors from  PlainBox , but it can use a  PlainBox  constructor or 
method to initialize the private data fi eld in  PlainBox . To use the default constructor of our base class, 
we place the statement 

  PlainBox<ItemType>(); 

 as the fi rst statement in each of the  ToyBox  constructors. This ensures that the data fi elds in the base 
class are correctly initialized. Only the default constructor can be called in this way. If we need more 
control over setting base-class data fi elds, a derived-class constructor must call the appropriate base-
class mutator methods, as shown in the third  ToyBox  constructor. In this event, the base-class name-
space indicator should precede the method name, so the compiler knows where to fi nd the method’s 
code. Using the namespace indicator is necessary only within constructors, as you’ll see when we 
implement the MagicBox  class. 

 A client of our  ToyBox  class can create and use a  ToyBox  object in much the same way that we did 
for PlainBox : 

  string favoriteToy = "Jack-in-the-Box"; 

ToyBox<string> myToyCase(favoriteToy, RED); // A red toy box

string oldToy = myToyCase.getItem(); // oldToy is a Jack-in-the-Box 
favoriteToy = "Spinning Top"; 

myToyCase.setItem(favoriteToy); // myToyCase now holds a Spinning Top   

   C1.4.2  Overriding Base-Class Methods 

 You can add as many new members to a derived class as you like. Although you cannot revise a base 
class’s private data fi elds and should not reuse their names, you can redefi ne inherited methods; this 
is called overriding a base-class method. A method in a derived class  overrides , or redefi nes, a 
method in the base class if the two methods have the same name and parameter declarations—that is, 
if they have the same signatures. 

 To see an example of when we may need to redefi ne a base-class method, let’s consider the 
implementation of the class MagicBox . This box magically changes any item placed inside to 
a copy of the fi rst item it ever held. A simple way to do this is to store only the fi rst item. Future 
calls to setItem  will do nothing. Therefore, every call to  getItem  returns the fi rst item stored in 
the box. 

 As with the toy box, we can derive our class from the  PlainBox  class, but we also need a data fi eld 
to indicate if an initial item has been stored in our box. We can use a boolean fi eld,  firstItemStored , 
which is set to true once the fi rst item has been stored in the box. We can then check this fl ag to 
see what  setItem  should do. If  firstItemStored  is false, we know that the argument passed to 
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setItem  is the fi rst item we are asked to store. If  firstItemStored  is true, we know this is not the fi rst 
item, and we simply do nothing. 

 Here is the UML notation for our  MagicBox  methods: 

  +setItem(ItemType theItem) 
+getItem(): ItemType 

 These methods are like those in the class  PlainBox , but we need a different implementation of 
setItem  to meet the special requirements of this box. Therefore, we need to override the  PlainBox
implementation of setItem . Listing C1-7 gives the header fi le for our class  MagicBox . It has the pri-
vate data fi eld firstItemStored , a default constructor, a parameterized constructor, and the special 
version of  setItem  that we need. 

LISTING C1-7 Header fi le for the class MagicBox

/** @file MagicBox.h */

#ifndef _MAGIC_BOX 
 #define _MAGIC_BOX 
#include "PlainBox.h" 

  template < class ItemType> 
  class MagicBox : public PlainBox<ItemType> 
 { 

  private : 
bool firstItemStored;

  public : 
   MagicBox(); 
   MagicBox( const ItemType& theItem); 

void setItem( const ItemType& theItem); 
 }; // end MagicBox
#include "MagicBox.cpp" 
 #endif 

 The implementation of the default constructor must call the base-class constructor and then 
initialize the data fi eld  firstItemStored  to true to indicate that the fi rst item has not been stored yet. 
The method setItem  must check this data fi eld and, if no item has been stored, call the base-class 
method setItem  to store the parameter in the data fi eld  item . You can see these implementations in 
Listing C1-8. 

LISTING C1-8 Implementation fi le for the class MagicBox

/** @file MagicBox.cpp */

  template < class ItemType> 
 MagicBox<ItemType>::MagicBox() 
 { 
    PlainBox<ItemType>(); 

 (continues)
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    firstItemStored = false; // Box has no magic initially
} // end default constructor 

  template < class ItemType> 
 MagicBox<ItemType>::MagicBox( const ItemType& theItem) 
 { 
    firstItemStored = false; // Box has no magic initially
    setItem(theItem); 

// Box has magic now
} // end constructor

  template < class ItemType> 
  void MagicBox<ItemType>::setItem( const ItemType& theItem) 
 { 

if (!firstItemStored)
    { 
       PlainBox<ItemType>::setItem(theItem); 
       firstItemStored = true ; // Box now has magic
    }  // end if 
 } // end setItem  

 To simplify the parameterized constructor, we can call the  setItem  method to set the fi rst item 
stored in the box. However, the  MagicBox  class has two  setItem  methods available, its own and the 
base-class version. As discussed earlier, we would precede a method name with the base-class name-
space indicator to tell the compiler to use the base-class version of the method. To use this class’s 
setItem  method, we can simply invoke the method as shown in the parameterized constructor. With-
out a namespace indicator in front of the method name, the compiler assumes that the programmer is 
referring to the current class and inserts code to call that version of the method.    

   C1.5 Virtual Methods and Abstract Classes 
 When we designed the interface for our ADT bag in  Chapter   1   , we created an abstract class that 
describes each of the public methods. Recall that an abstract class in C++ contains at least one method 
declared as virtual that has no implementation. An abstract class can only serve as a base class; it can-
not be instantiated. The derived class must defi ne the methods specifi ed but not already implemented 
by the abstract class. 

   C1.5.1  Virtual Methods 

 Using the keyword  virtual  in front of the prototype, or header, of the method tells the C++ compiler that 
the code this method executes is determined at runtime, not when the program is compiled. A method 
declared this way is referred to as a  virtual method . Why should we declare a method as virtual? 

 The rules of inheritance allow us to use a derived class anywhere that its base class is used. For 
example, we could declare a variable that is a plain box: 

  PlainBox<string> cardBox; 

Question 1   Revise the parameterized constructor to call the base-class’s constructor 
instead of MagicBox ’s constructor.

CHECK POINT
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 Then we could create a  MagicBox  object and assign it to the variable  cardBox : 

  cardBox = MagicBox<string>("Queen of Hearts"); 

 Later, the player might store a different string in the box, and so we execute 

  cardBox.setItem("Jack of Spades"); 

 Because the compiler considers the object  cardBox  to be of type  PlainBox<string> , the  PlainBox
version of the method  setItem  is used in the previous statement. The  PlainBox  implementation of 
setItem  stores the value of its parameter in  item . Thus, a problem arises when our client calls the 
method getItem : 

  string myFirstCard = cardBox.getItem(); 

 The method  getItem  returns the string  "Jack of Spades"  instead of  "Queen of Hearts" . This is not 
the behavior the client desires, because  cardBox  was assigned an instance of  MagicBox . 

 If we declare  PlainBox ’s method  setItem  to be virtual in the  PlainBox  header fi le by writing 

   virtual ItemType setItem() const ; 

 the version of  setItem  invoked during execution is determined by the specifi c type of object 
stored in nameBox . In our example, the  MagicBox  version of  setItem  would be called, since that is the 
type of object most recently stored in  cardBox . Having this decision delayed until the program exe-
cutes is an example of polymorphism and is a key benefi t of object-oriented programming. 

 To fully implement our box example as a demonstration of polymorphic code, and to thor-
oughly discuss virtual methods and abstract classes, we need to use pointers. Pointers are intro-
duced in C++ Interlude 2, and so we will delay further discussion and the completion of this example 
until then.  

   C1.5.2  Abstract Classes 

 The previous example used a virtual method so that a choice could be made during program execu-
tion between two implementations of the  setItem  method. We can use this same idea to assist with 
our goal of designing each ADT as a public interface that describes its functionality and is implemen-
tation independent. Declaring our ADT methods as virtual allows an application using our class to 
take advantage of polymorphism when the ADT’s methods are invoked. 

 One signifi cant difference between such an ADT and the previous example that uses the 
PlainBox  class is that we do not want to provide an implementation of the ADT methods. Instead, we 
want to force the classes derived from the ADT to provide the implementations. Yet if we do not pro-
vide an implementation of the ADT, the compiler or linker will issue an error message when we try to 
build a program using our class. 

 We can avoid this error by writing our methods as  pure virtual methods . A pure virtual 
method is a virtual method that has no implementation. We can now say that an abstract class is one 
that has at least one pure virtual method. To tell the compiler that a virtual method is a pure virtual 
method, you write  =   0  before the semicolon at the end of the method prototype, as in the following 
example: 

   virtual void setItem( const ItemType& theItem) = 0; 

 Listing C1-9 defi nes the template class  BoxInterface  that provides a public interface for the box 
classes described earlier in this interlude. BoxInterface  is an abstract class, because it contains at 
least one pure virtual method. Remember that abstract classes cannot be directly instantiated. 
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LISTING C1-9 An abstract class that is an interface for the ADT box

/** @file BoxInterface.h */ 

#ifndef _BOX_INTERFACE 
 #define _BOX_INTERFACE 

  template < class ItemType> 
  class BoxInterface 
{
  public : 

virtual void setItem( const ItemType& theItem) = 0; 
virtual ItemType getItem() const = 0; 

 }; // end BoxInterface
 #endif 

 We can indicate that our class  PlainBox  is derived from  BoxInterface  by changing its class 
header to 

   class PlainBox : public BoxInterface<ItemType> 

 In the future when we design the public interface for an ADT, we will express that interface as 
an abstract class. When we introduce pointers in C++ Interlude 2, we will explore the importance 
and use of abstract classes in depth. Until then, we will use only abstract classes as a design tool for 
our ADTs.         
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The goal of this chapter is to ensure that you have a basic understanding of recursion, which is one 
of the most powerful techniques available to the computer scientist. This chapter assumes that you 
have had little or no previous introduction to recursion. If, however, you have already studied 
recursion, you can review this chapter as necessary. 

 By presenting several relatively simple problems, the chapter demonstrates the thought proc-
esses that lead to recursive solutions. These problems are diverse and include examples of counting, 
searching, and organizing data. In addition to presenting recursion from a conceptual viewpoint, this 
chapter discusses techniques that will help you understand the mechanics of recursion. These tech-
niques are particularly useful for tracing and debugging recursive functions. 

 Some recursive solutions are far more elegant and concise than the best of their nonrecursive 
counterparts. For example, the classic Towers of Hanoi problem appears to be quite diffi cult, yet it 
has an extremely simple recursive solution. On the other hand, some recursive solutions are terribly 
ineffi cient, as you will see, and should not be used. 

  Chapter   5    continues the formal discussion of recursion by examining more diffi cult problems. 
Recursion will play a major role in many of the solutions that appear throughout the remainder of 
this book.   

      2.1 Recursive Solutions 
 Recursion is an extremely powerful problem-solving technique. Problems that at fi rst appear to 
be quite diffi cult often have simple recursive solutions. Like other problem-solving techniques, 
recursion breaks a problem into several smaller problems. What is striking about recursion is that 
these smaller problems are of  exactly the same type  as the original problem—mirror images, so 
to speak.   

 Did you ever hold a mirror in front of another mirror so that the two mirrors face each 
other? You will see many images of yourself, each behind and slightly smaller than the other. 
Recursion is like these mirror images. That is, a recursive solution solves a problem by solv-
ing a smaller instance of the same problem! It then solves this new problem by solving an even 
smaller instance of the same problem. Eventually, the new problem will be so small that its 
solution will be either obvious or known. This solution will lead to the solution of the original 
problem. 

 For example, suppose that you could solve problem  P
1
  if you had the solution to problem  P

2
 , 

which is a smaller instance of  P
1
 . Suppose further that you could solve problem  P

2
  if you had the solu-

tion to problem  P
3
 , which is a smaller instance of  P

2
 . If you knew the solution to  P

3
  because it was 

small enough to be trivial, you would be able to solve  P
2
 . You could then use the solution to  P

2
  to 

solve the original problem  P
1
 .

 Recursion can seem like magic, especially at fi rst, but as you will see, it is a very real and impor-
tant problem-solving approach that is an alternative to  iteration . An iterative solution involves loops. 
You should know at the outset that not all recursive solutions are better than iterative solutions. In 
fact, some recursive solutions are impractical because they are so ineffi cient. Recursion, however, 
can provide elegantly simple solutions to problems of great complexity.   

 As an illustration of the elements in a recursive solution, consider the problem of looking up a 
word in a dictionary. Suppose you wanted to look up the word  “vademecum.”  Imagine starting at the 
beginning of the dictionary and looking at every word in order until you found  “vademecum.”   That is 
precisely what a  sequential search  does, and for obvious reasons, you want a faster way to perform 
the search. 

 One such approach is the  binary search , which in spirit is similar to the way in which you actu-
ally use a dictionary. You open the dictionary—maybe to a point near its middle—and by glancing at 

Recursion breaks a 
problem into smaller 
identical problems 

Some recursive 
solutions are 
ineffi cient and 
impractical 

Complex problems 
can have simple 
recursive solutions 
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the page, determine which “half ” of the dictionary contains the desired word. The following pseu-
docode is a fi rst attempt to formalize this process:   

// Search a dictionary for a word by using a recursive binary search  

if (the dictionary contains only one page )
             Scan the page for the word  
 else  

  { 
             Open the dictionary to a point near the middle  
             Determine which half of the dictionary contains the word  

if ( the word is in the fi rst half of the dictionary )
                     Search the fi rst half of the dictionary for the word  

 else  
                     Search the second half of the dictionary for the word  
  } 

 Parts of this solution are intentionally vague: How do you scan a single page? How do you fi nd the 
middle of the dictionary? Once the middle is found, how do you determine which half contains the word? 
The answers to these questions are not diffi cult, but they would only obscure the solution strategy right now. 

 The previous search strategy reduces the problem of searching the dictionary for a word to a prob-
lem of searching half of the dictionary for the word, as  Figure   2-1    illustrates. Notice two important 
points. First, once you have divided the dictionary in half, you already know how to search the appro-
priate half: You can use exactly the same strategy that you employed to search the original dictionary. 
Second, note that there is a special case that is different from all the other cases: After you have divided 
the dictionary so many times that you are left with only a single page, the halving ceases. At this point, 
the problem is suffi ciently small that you can solve it directly by scanning the single page that remains 
for the word. This special case is called the  base case  (or  basis  or  degenerate case ). 

A binary search of  a 
dictionary 

A base case is a 
special case whose 
solution you know 

FIGURE 2-1         A recursive solution   

Search first half of dictionary Search second half of dictionaryOROR

Search dictionary

 This strategy is called  divide and conquer . You solve the dictionary search problem by fi rst 
dividing  the dictionary into two halves and then  conquering  the appropriate half. You solve the 
smaller problem by using the same divide-and-conquer strategy. The dividing continues until you 
reach the base case. As you will see, this strategy is inherent in many recursive solutions. 

 To further explore the nature of the solution to the dictionary problem, consider a slightly more 
rigorous formulation. 

  search(aDictionary: Dictionary, word: string) 

if (aDictionary  is one page in size ) 
Scan the page for word 

else  
   { 

Open aDictionary to a point near the middle  
Determine which half of aDictionary contains word 

A binary search 
uses a divide-and-
conquer strategy 
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if (word is in the fi rst half of aDictionary) 
 search( fi rst half of aDictionary, word) 

else  
   search( second half of aDictionary, word) 

  } 

 Writing the solution as a function allows several important observations:             

1.    One of the actions of the function is to call itself; that is, the function  search  calls the 
function search . This action is what makes the solution recursive. The solution strategy is to 
split aDictionary  in half, determine which half contains  word , and apply the same strategy 
to the appropriate half.  

2.    Each call to the function  search  made from within the function  search  passes a dictionary 
that is one-half the size of the previous dictionary. That is, at each successive call to 
search(aDictionary,   word) , the size of  aDictionary  is cut in half. The function solves the 
search problem by solving another search problem that is identical in nature but smaller in size.  

3.    There is one search problem that you handle differently from all of the others. When 
aDictionary  contains only a single page, you use another approach: You scan the page 
directly. Searching a one-page dictionary is the base case of the search problem. When you 
reach the base case, the recursive calls stop and you solve the problem directly.  

4.    The manner in which the size of the problem diminishes ensures that you will eventually 
reach the base case.   

 These facts describe the general form of a recursive solution. Though not all recursive solutions fi t 
these criteria as nicely as this solution does, the similarities are far greater than the differences. As you 
attempt to construct a new recursive solution, you should keep in mind the following four questions. 

A recursive function 
calls itself  

Each recursive call 
solves an identical, 
but smaller, problem 

A test for the base 
case enables the 
recursive calls to 
stop

Eventually, one of  
the smaller 
problems must be 
the base case 

Note:  Four questions for constructing recursive solutions   

1.   How can you defi ne the problem in terms of a smaller problem of the same type?  
2.   How does each recursive call diminish the size of the problem?  
3.   What instance of the problem can serve as the base case?  
4.   As the problem size diminishes, will you reach this base case?   

 Now consider two relatively simple problems: computing the factorial of a number and writing a 
string backward. Their recursive solutions further illustrate the points raised by the solution to the 
dictionary search problem. These examples also illustrate the difference between a recursive  valued 
function —which returns a value—and a recursive  void function .

   2.2 Recursion That Returns a Value 
 The mechanics of recursion are clearer when the recursive function returns a value instead of just 
performing an action, and so we examine one in detail. 

  2.2.1 A Recursive Valued Function: The Factorial of  n

 Computing the factorial of an integer  n  is a good fi rst example because its recursive solution is easy to 
understand and neatly fi ts the mold described earlier. However, because the problem has a simple and 
effi cient iterative solution, you should not use the recursive solution in practice.   

 To begin, consider the familiar iterative defi nition of  factorial ( n ) (more commonly written as  n !): 

factorial 1n 2 5 n 3 1n 2 1 2 3 1n 2 2 2 3c3 1 for an integer n . 0

factorial 10 2 5 1

Do not use 
recursion if  a 
problem has a 
simple, effi cient 
iterative solution 

An iterative 
defi nition of  factorial 

VideoNote

Recursion: 
The mirrors
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 The factorial of a negative integer is undefi ned. You should have no trouble writing an iterative facto-
rial function based on this defi nition.   

 To defi ne  factorial ( n ) recursively, you fi rst need to defi ne  factorial ( n ) in terms of the factorial of 
a smaller number. To do so, simply observe that the factorial of  n  is equal to the factorial of ( n  – 1) 
multiplied by  n;  that is,   

factorial 1n 2 5 n 3 3 1n 2 1 2 3 1n 2 2 2 3c3 1 4
5 n 3 factorial 1n 2 1 2

 The defi nition of  factorial ( n ) in terms of  factorial ( n  – 1), which is an example of a  recurrence rela-
tion , implies that you can also defi ne  factorial ( n  – 1) in terms of  factorial ( n  – 2), and so on. This proc-
ess is analogous to the dictionary search solution, in which you search a dictionary by searching a 
smaller dictionary in exactly the same way. 

 The defi nition of  factorial ( n ) lacks one key element: the base case. As was done in the dictionary 
search solution, here you must defi ne one case differently from all the others, or else the recursion will 
never stop. The base case for the factorial function is  factorial (0), which you know is 1. Because  n  origi-
nally is greater than or equal to zero and each call to  factorial  decrements  n  by 1, you will always reach the 
base case. With the addition of the base case, the complete recursive defi nition of the factorial function is 

factorial 1n 2 5 e1 if n 5 0

n 3 factorial 1n 2 1 2 if n . 0

 To be sure that you understand this recursive defi nition, apply it to the computation of  facto-
rial (4). Because 4 > 0, the recursive defi nition states that 

factorial (4) � 4 � factorial (3) 

 Similarly, 

factorial (3) � 3 � factorial (2) 
factorial (2) � 2 � factorial (1) 
factorial (1) � 1 � factorial (0) 

 You have reached the base case, and the defi nition directly states that 

factorial (0) � 1 

 At this point, the application of the recursive defi nition stops and you still do not know the 
answer to the original question: What is  factorial (4)? However, the information to answer this ques-
tion is now available: 

 Because  factorial (0) � 1,  factorial (1) � 1 � 1 � 1 
 Because  factorial (1) � 1,  factorial (2) � 2 � 1 � 2 
 Because  factorial (2) � 2,  factorial (3) � 3 � 2 � 6 
 Because  factorial (3) � 6,  factorial (4) � 4 � 6 � 24 

 You can think of recursion as a process that divides a problem into a task that you can do and a task 
that a friend can do for you. For example, if I ask you to compute  factorial (4), you could fi rst determine 
whether you know the answer immediately. You know immediately that  factorial (0) is 1—that is, you 
know the base case—but you do not know the value of  factorial (4) immediately. However, if your friend 
computes factorial (3) for you, you could compute  factorial (4) by multiplying  factorial (3) and 4. Thus, 
your task will be to do this multiplication, and your friend’s task will be to compute  factorial (3). 

 Your friend now uses the same process to compute  factorial (3) as you are using to compute  fac-
torial (4). Thus, your friend determines that  factorial (3) is not the base case, and so asks another 
friend to compute factorial (2). Knowing  factorial (2) enables your friend to compute  factorial (3), 
and when you learn the value of  factorial (3) from your friend, you can compute  factorial (4). 

A recurrence 
relation 

A recursive 
defi nition of  factorial 
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 Notice that the recursive defi nition of  factorial (4) yields the same result as the iterative defi ni-
tion, which gives 4 � 3 � 2 � 1 � 24. To prove that the two defi nitions of  factorial  are equivalent for 
all nonnegative integers, you would use mathematical induction. (See Appendix E.)  Chapter   5    dis-
cusses the close tie between recursion and mathematical induction. 

 The recursive definition of the factorial function has illustrated two points. (1)  Intuitively , 
you can define  factorial ( n ) in terms of  factorial ( n  – 1). (2)  Mechanically , you can apply the 
definition to determine the value of a given factorial. Even in this simple example, applying 
the recursive definition required quite a bit of work. That, of course, is where the computer 
comes in. 

 Once you have a recursive defi nition of  factorial ( n ), it is easy to construct a C++ function that 
implements the defi nition: 

  /** Computes the factorial of the nonnegative integer n. 
 @pre  n must be greater than or equal to 0. 
 @post  None. 
 @return  The factorial of n; n is unchanged. */
  int fact( int n) 
 { 
    if (n == 0) 
        return 1; 
    else  // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
        return n * fact(n - 1); // n * (n-1)! is n!
}   //  end fact 

 Suppose that you use the statement 

  cout << fact(3); 

 to call the function.  Figure   2-2    depicts the sequence of computations that this call would require. 

FIGURE 2-2 fact(3)

return 3*fact(2)

3*2

return 2*fact(1)

2*1

cout << fact(3);
6

return 1*fact(0)

1*1

return 1
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  This function fi ts the model of a recursive solution given earlier in this chapter as follows: 

1.   One action of  fact  is to  call itself .  
2.    At each recursive call to  fact , the integer whose factorial you need to compute is  dimin-

ished by 1 .
3.    The function handles the factorial of 0 differently from all the other factorials: It does not 

generate a recursive call. Rather, you know that  fact(0)  is 1. Thus, the  base case  occurs 
when  n  is 0.  

4.    Given that  n  is nonnegative, item 2 of this list assures you that you will always  reach the base 
case.

Violating  fact’s 
precondition causes 
“infi nite” recursion 

      Note:   A recursive algorithm must have a base case, whose solution you know directly 
without making any recursive calls. Without a base case, a recursive function will gener-
ate an infi nite sequence of calls.  

  fact satisfi es the 
four criteria of  a 
recursive solution 

 The function  fact  requires as its precondition a nonnegative value of  n . At the time of the recur-
sive call  fact(n-1) ,  n  is positive, so  n  – 1 is nonnegative. Because the recursive call satisfi es  fact ’s 
precondition, you can expect that  fact(n-1)  will return the factorial of  n   –  1. Therefore, 
n   *   fact(n-1)  is the factorial of  n .  Chapter   5    uses mathematical induction to prove formally that 
fact(n)  returns the factorial of  n .

 If you ever violated  fact ’s precondition, the function would not behave correctly. That is, if the 
calling program ever passed a negative value to  fact , an infi nite sequence of recursive calls—
terminated only by a system-defi ned limit—would occur, because the function would never reach the 
base case. For example,  fact(-4)  would call  fact(-5) , which would call  fact(-6) , and so on. 

 The function ideally should protect itself by testing for a negative  n . If  n  < 0, the function could, 
for example, either return 0 or set an error fl ag. Appendix B discusses error checking in Sections B.2 
“Style” and B.5 “Fail-Safe Programming”; you might want to review that discussion at this time. 

 At an intuitive level, it should be clear that the function  fact  implements the recursive defi nition of 
factorial.  Now consider the mechanics of executing this recursive function. The logic is straightforward, 
except perhaps for the expression in the  else  clause. This expression can be explained as follows: 

1.   Each operand of the product  n * fact(n-1)  is evaluated.  
2.    The second operand— fact(n-1)— is a call to the function  fact . Although this is a recursive 

call (the function fact  calls the function  fact ), there really is nothing special about it. 
Imagine substituting a call to another function—the standard function abs , for example—for 
the recursive call to  fact . The principle is the same: Simply evaluate the function.   

 In theory, evaluating a recursive function is no more diffi cult than evaluating a nonrecursive 
function. In practice, however, manual bookkeeping can quickly get out of hand. The next section 
introduces a systematic way to trace the actions of a recursive function. For a computer, the book-
keeping is simple but can use more memory than is allocated for such a task.   

Question 1  The following function computes the sum of the fi rst  n � 1 integers. Show 
how this function satisfi es the properties of a recursive function. 

  /** Computes the sum of the integers from 1 through n. 
 @pre  n > 0. 
 @post  None. 
 @param n  A positive integer. 
 @return  The sum 1 + 2 + . . . + n. */ 

CHECK POINT
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  int sumUpTo( int n) 
 { 

int sum = 0; 
if (n == 1) 

     sum = 1; 
else  // n > 1 

     sum = n + sumUpTo(n - 1); 

return sum; 
} // end sumUpTo       

   2.2.2  The Box Trace 

 You can use a  box trace  both to help you understand recursion and to debug recursive functions. 
However, such a mechanical device is no substitute for an intuitive understanding of recursion. The 
box trace illustrates how compilers frequently implement recursion. As you read the following 
description of the technique, realize that each box roughly corresponds to an  activation record , 
which a compiler typically uses in its implementation of a function call. C++ Interlude 2 will discuss 
activation records further. 

 The box trace is illustrated here for the recursive function  fact , which returns a value. 

1.    Label each recursive call in the body of the recursive function. Several recursive calls might 
occur within a function, and it will be important to distinguish among them. These labels 
help you keep track of the correct place to which you must return after a function call 
completes. For example, mark the expression  fact(n - 1)  within the body of the function 
with the letter A: 

if (n == 0) 
return 1; 

else  
return n * fact(n - 1); 

A

 You return to point A after each recursive call, substitute the computed value for the term 
fact(n - 1) , and continue execution by evaluating the expression  n   *   fact(n - 1) .  

2.    Represent each call to the function during the course of execution by a new box in which 
you note the  local environment  of the function. More specifically, each box will 
contain     

•   The values of the arguments of the argument list.  
•   The function’s local variables.  
•    A placeholder for the value returned by each recursive call from the current box. Label this 

placeholder to correspond to the labeling in step 1.  
•   The value of the function itself.   

  When you fi rst create a box, you will know only the values of the input arguments. You fi ll in 
the other values as you determine them from the function’s execution. For example, you 
would create the box in  Figure   2-3    for the call  fact(3) . (You will see in later examples that 
you must handle reference arguments somewhat differently than value arguments and local 
variables.) 

3.    Draw an arrow from the statement that initiates the recursive process to the fi rst box. Then, 
when you create a new box after a recursive call, as described in step 2, you draw an arrow 
from the box that makes the call to the newly created box. Label each arrow to correspond to 

An activation record 
is created for each 
function call 

Label each 
recursive call in the 
function

Each time a function 
is called, a new box 
represents its local 
environment 

FIGURE 2-3 A box

n = 3
A: fact(n-1) = ?
return ?
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the label (from step 1) of the recursive call; this label indicates exactly where to return 
after the call completes. For example,  Figure   2-4    shows the fi rst two boxes generated by 
the call to fact  in the statement  cout   <<   fact(3) .

4.    After you create the new box and arrow as described in steps 2 and 3, start executing the 
body of the function. Each reference to a value in the function’s local environment references 
the corresponding value in the current box, regardless of how you generated the current box.  

5.    On exiting the function, cross off the current box and follow its arrow back to the box that 
called the function. This box now becomes the current box, and the label on the arrow 
specifi es the exact location at which execution of the function should continue. Substitute the 
value returned by the just-terminated function call for the appropriate placeholder in the 
current box.   

             Figure   2-5    is a complete box trace for the call  fact(3) . In the sequence of diagrams in this fi gure, 
the current box is the deepest along the path of arrows and is highlighted in blue, whereas crossed-off 
boxes are dashed and shaded gray. 

n = 3
A: fact(n-1) = ?
return ?

n = 2
A: fact(n-1) = ?
return ?

A
cout << fact(3);

FIGURE 2-4         The beginning of the box trace   

n = 3
A: fact(n-1)=?
return ?

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

The initial call is made, and method fact begins execution: 

At point A a recursive call is made, and the new invocation of the method fact begins execution: 

At point A a recursive call is made, and the new invocation of the method fact begins execution: 

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

A A

A

At point A a recursive call is made, and the new invocation of the method fact begins execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return ?

A A A

FIGURE 2-5         Box trace of  fact(3)

(continues)
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FIGURE 2-5 Box trace of fact(3) (continued)

This is the base case, so this invocation of fact completes and returns a value to the caller: 

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n= 1
A: fact(n-1)=1
return ?

n = 0

return 1

The current invocation of fact completes and returns a value to the caller: 

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A A A

A A

A A

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes and returns a value to the caller: 

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=2
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes and returns a value to the caller:

The value 6 is returned to the initial call.

n = 3
A: fact(n-1)=2
return 6

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A

A

1

2

6

1
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   2.3 Recursion That Performs an Action 
 Recursive functions need not return a value; they can be void functions. 

   2.3.1  A Recursive Void Function: Writing a String Backward 

 Now consider a problem that is slightly more diffi cult: Given a string of characters, write it in reverse 
order. For example, write the string "cat" as "tac". To construct a recursive solution, you should ask 
the four questions in the Note at the end of  Section   2.1   . 

 You can construct a solution to the problem of writing a string of length  n  backward in terms of 
the problem of writing a string of length  n  – 1 backward. That is, each recursive step of the solution 
diminishes by 1 the length of the string to be written backward. The fact that the strings get shorter 
and shorter suggests that the problem of writing some very short strings backward can serve as the 
base case. One very short string is the empty string, the string of length zero. Thus, you can choose for 
the base case the problem    

  Write the empty string backward  

 The solution to this problem is to do nothing at all—a very straightforward solution indeed! (Alterna-
tively, you could use the string of length 1 as the base case.) 

 Exactly how can you use the solution to the problem of writing a string of length  n  – 1 backward 
to solve the problem of writing a string of length  n  backward? This approach is analogous to the one 
used to construct the solution to the factorial problem, where you specifi ed how to use  factorial ( n  – 1) 
in the computation of factorial ( n ). Unlike the factorial problem, however, the string problem does not 
suggest an immediately clear way to proceed. Obviously, not any string of length  n  – 1 will do. For 
example, there is no relation between writing the string "apple" (of length 5) backward and writing 
"pear" (a string of length 4) backward. You must choose the smaller problem carefully so that you 
can use its solution in the solution to the original problem.   

 The string of length  n  – 1 that you choose must be a substring (part) of the original string. 
Suppose that you strip away one character from the original string, leaving a substring of length  n  – 1. 
For the recursive solution to be valid, the ability to write the substring backward, combined with the 
ability to perform some minor task, must result in the ability to write the original string backward. 
Compare this approach with the way you computed  factorial  recursively: The ability to compute 
factorial ( n  – 1), combined with the ability to multiply this value by  n,  resulted in the ability to com-
pute factorial ( n ). 

 You need to decide which character to strip away and which minor task to perform. Consider the 
minor task fi rst. Because you are writing characters, a likely candidate for the minor task is writing a 
single character. As for the character that you should strip away from the string, there are several pos-
sible alternatives. Two of the more intuitive alternatives are 

Note:  The box trace, in conjunction with well-placed  cout  statements, can be a good 
aid in debugging recursive functions. Such statements should report the point in the pro-
gram from which each recursive call occurs, as well as the values of input arguments and 
local variables at both entry to and exit from the function. Be sure to remove these  cout
statements from the fi nal version of the function  

Question 2  Write a box trace of the function given in Checkpoint Question 1.       
CHECK POINT

The base case 

How can you write 
an n -character 
string backward, if  
you can write an 
(n – 1)-character 
string backward? 
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  Strip away the last character  

 or 

  Strip away the fi rst character  

 Consider the fi rst of these alternatives, stripping away the last character, as  Figure   2-6    illustrates. 

FIGURE 2-6         A recursive solution   

writeBackward(s)

writeBackward(s minus last character)

  For the solution to be valid, you must write the last character in the string fi rst. Therefore, you 
must write the last character before you write the remainder of the string backward. A high-level 
recursive solution, given the string  s , is   

  writeBackward(s: string) 

     if ( the string is empty)
         Do nothing—this is the base case  
     else  
  { 

       Write the last character of s 
        writeBackward(s  minus its last character)
    }

  writeBackward  
writes a string 
backward 

Note:   A recursive solution must involve one or more smaller problems that are each 
closer to a base case than is the original problem. You must be sure that these smaller 
problems eventually reach the base case. Failure to do so could result in an algorithm that 
does not terminate.  

 This solution to the problem is conceptual. To obtain a C++ function, you must resolve a few 
implementation issues. Suppose that the function will receive one argument: a string  s  to be written 
backward. All characters, including blanks, are part of the string. The C++ function  writeBackward
appears as follows: 

  /** Writes a character string backward. 
 @pre  The string s to write backward. 
 @post  None. 
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 @param s  The string to write backward. */
  void  writeBackward(string s) 
{

int  length = s.size(); // Length of string 
if  (length > 0)
{

 // Write the last character 
cout << s.substr(length - 1, 1); 

// Write the rest of the string backward 
writeBackward(s.substr(0, length – 1)); // Point A 

} // end if

// length == 0 is the base case - do nothing 
} // end writeBackward 

 Notice that the recursive calls to  writeBackward  use successively shorter versions of the string  s , 
ensuring that the base case will be reached. Because the function does nothing when it reaches the 
base case, it does not deal with the base case explicitly. The base case is implicit. 

 You can trace the execution of  writeBackward  by using the box trace. As was true for the 
function fact , each box contains the local environment of the recursive call—in this case, the 
input argument  s  and the local variable  length . The trace will differ somewhat from the trace of 
fact  shown in  Figure   2-5    because, as a void function,  writeBackward  does not use a  return  state-
ment to return a computed value.  Figure   2-7    traces the call to the function  writeBackward  with 
the string "cat".   

  writeBackward  
does not return a 
computed value 

s = "cat"
length = 3

s = "cat"
length = 3

s = "ca"
length = 2

The initial call is made, and the function begins execution:

Point A (writeBackward(s)) is reached, and the recursive call is made.

The new invocation begins execution:

Point A is reached, and the recursive call is made.

The new invocation begins execution:

A

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A

Output line: t

Output line: ta

FIGURE 2-7 Box trace of writeBackward("cat")

(continues)
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Point A is reached, and the recursive call is made.

The new invocation begins execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A s = ""
length = 0

A

This is the base case, so this invocation completes.

Control returns to the calling box, which continues execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A s = ""
length = 0

This invocation completes. Control returns to the calling box, which continues execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

s = ""
length = 0

This invocation completes. Control returns to the calling box, which continues execution:

This invocation completes. Control returns to the statement following the initial call.

s = "cat"
length = 3

s = "ca"
length = 2

s = "c"
length = 1

s = ""
length = 0

Output line: tac

FIGURE 2-7         Box trace of  writeBackward("cat") (continued )

Another solution.  Now consider a slightly different approach to the problem. Recall the two alterna-
tives for the character that you could strip away from the string: the last character or the fi rst character. 
The solution just given strips away the last character of the string. It will now be interesting to con-
struct a solution based on the second alternative: 

   Strip away the fi rst character   

 To begin, consider a simple modifi cation of the previous pseudocode solution that replaces each 
occurrence of  last  with  fi rst . Thus, the function writes the fi rst character rather than the last and then 
recursively writes the remainder of the string backward. 

  writeBackward1(s: string) 

    if ( the string  s is empty ) 
       Do nothing— this is the base case  
    else  
   {
        Write the fi rst character of s 
        writeBackward1(s minus its fi rst character ) 

}

  Does this solution do what you want it to? If you think about this function, you will realize that it 
writes the string in its normal left-to-right direction instead of backward. After all, the steps in the 
pseudocode are 
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   Write the fi rst character of   s
  Write the rest of   s

 These steps simply write the string  s . Naming the function  writeBackward  does not guarantee 
that it will actually write the string backward—recursion really is not magic! 

 You can write  s  backward correctly by using the following recursive formulation: 

   Write   s   minus its fi rst character backward  
  Write the fi rst character of   s

 In other words, you write the fi rst character of  s  only  after  you have written the rest of  s  backward. 
This approach leads to the following pseudocode solution: 

  writeBackward2(s: string) 

if ( the string s is empty)
Do nothing—this is the base case  

else  
{
    writeBackward2(s minus its fi rst character ) 

Write the fi rst character of s 
}

 The translation of  writeBackward2  into C++ is similar to that of the original  writeBackward  func-
tion and is left as an exercise. 

 It is instructive to carefully trace the actions of the two pseudocode functions  writeBackward
and writeBackward2 . First, add statements to each function to provide output that is useful to the 
trace, as follows:   

  writeBackward(s: string) 

  cout << "Enter writeBackward with string: " << s << endl; 
if ( the string is empty ) 

Do nothing—this is the base case  
else  

  { 
      cout << "About to write last character of string: " 
            << s << endl; 

Write the last character of s 
      writeBackward(s minus its last character ) // Point A  
  } 
  cout << "Leave writeBackward with string: " << s << endl; 

writeBackward2(s: string) 

  cout << "Enter writeBackward2 with string: " 
        << s << endl; 
if (the string is empty)

Do nothing—this is the base case  
else

  { 
     writeBackward2(s minus its fi rst character ) // Point A  
     cout << "About to write first character of string: " 
           << s << endl; 

Write the fi rst character of s 
  } 
  cout << "Leave writeBackward2 with string: " << s << endl; 

   Figures   2-8    and    2-9    show the output of the revised pseudocode functions  writeBackward  and
writeBackward2 , when initially given the string  "cat" . 

  cout statements 
can help you trace 
the logic of  a 
recursive function 
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FIGURE 2-8         Box trace of  writeBackward("cat")  in pseudocode   

s = "cat"

The initial call is made, and the function begins execution:

Output stream:

Enter writeBackward with string: cat
About to write last character of string: cat
t

This invocation completes execution, and a return is made.

s = "cat" s = "ca"

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c

Output stream:

A

s = "cat" s = "ca"
A

s = "c"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

s = "cat" s = "ca"
A

s = "c"
A

s = ""
A

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:
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Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:

Output stream:

This invocation completes execution, and a return is made.

s = "cat" s = "ca"
A

s = "c"
A

s = ""

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c

Output stream:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "ca"
A

s = "c" s = ""

Leave writeBackward with string: c

(continues)
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 You need to be comfortable with the differences between these two functions. The recursive 
calls that the two functions make generate a different sequence of values for the argument  s . 
Despite this fact, both functions correctly write the string argument backward. They compensate 
for the difference in the sequence of values for  s  by writing different characters in the string at dif-
ferent times relative to the recursive calls. In terms of the box traces in  Figures   2-8    and    2-9   , 
writeBackward  writes a character just before generating a new box (just before a new recursive 
call), whereas  writeBackward2  writes a character just after crossing off a box (just after returning 
from a recursive call). When these differences are put together, the result is two functions that 
employ different strategies to accomplish the same task. 

 This example also illustrates the value of the box trace, combined with well-placed  cout  state-
ments, in debugging recursive functions. The  cout  statements at the beginning, interior, and end of 
the recursive functions report the value of the argument  s . In general, when debugging a recursive 
function, you should also report both the values of local variables and the point in the function where 
each recursive call occurred, as in this example:       

  abc(...); 

    cout <<  "Calling function abc from point A.\n"; 
    abc(...) // This is point A

    cout <<  "Calling function abc from point B.\n"; 
    abc(...); // This is point B    

Well-placed but 
temporary  cout  
statements can help 
you debug a 
recursive function 

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:
Leave writeBackward with string: c
Leave writeBackward with string: ca

This invocation completes execution, and a return is made.

Output stream:

g
c
Enter writeBackward with string:
Leave writeBackward with string:
Leave writeBackward with string: c

s = "cat" s = "ca" s = "c" s = ""

Leave writeBackward with string: cat

Leave writeBackward with string: ca

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode (continued)

 Realize that the  cout  statements do not belong in the fi nal version of the function. 

Remove  cout  
statements after you 
have debugged the 
function
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FIGURE 2-9         Box trace of  writeBackward2("cat")  in pseudocode   

s = "cat"

s = "cat" s = "at"

The initial call is made, and the function begins execution:

Output stream:

Enter writeBackward2 with string: cat

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t

Output stream:

A

s = "cat" s = "at"
A

s = "t"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t

This invocation completes execution, and a return is made.

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "at"
A

s = "t"
A A

s = ""

s = "cat" s = "at"
A A

s = "t" s = ""

(continues)
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Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t
Leave writeBackward2 with string: t

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t

Leave writeBackward2 with string: t
About to write first character of string: at
a

Leave writeBackward2, string: at

This invocation completes execution, and a return is made.

Output stream:

A
s = "cat" s = "at" s = "t" s = ""

s = "cat" s = "at" s = "t" s = ""

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t
Leave writeBackward2 with string: t
About to write first character of string: at
a
Leave writeBackward2 with string: at

Output stream:

This invocation completes execution, and a return is made.

About to write first character of string: cat
c
Leave writeBackward2 with string: cat

FIGURE 2-9 Box trace of writeBackward2("cat") in pseudocode (continued)

Question 3  Given an integer  n  > 0, write a recursive function  countDown  that writes the 
integers  n ,  n  – 1, . . . , 1.  Hint:  What task can you do and what task can you ask a friend to do 
for you?       

CHECK POINT
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   2.4 Recursion with Arrays 
 When you are working with an array, recursion can be a practical and powerful tool. For our fi rst 
example, we write the contents of an array backward. We then look at several problems that involve 
searching an array. 

   2.4.1  Writing an Array’s Entries in Backward Order 

 The solution to this problem is much like our fi rst solution in  Section   2.3.1    when we wrote a string 
backward. We can write the following pseudocode: 

  writeArrayBackward(anArray: char[]) 

if ( the array is empty)
Do nothing—this is the base case  

  else  
  { 

 Write the last character in anArray 
      writeArrayBackward(anArray minus its last character ) 
  } 

 How will we pass  anArray  minus its last character to  writeArrayBackward ? We could pass 
the number of characters left in the array. At each recursive call, we would decrease this number 
by 1. Alternatively, we could pass the index of the last character. That is, if  last  is this index, 
writeArrayBackward  would act on the array  anArray[0..last] ,1   that is, the portion  anArray-
[0]  through  anArray[last] . The recursive call would then act on the subarray  anArray[0..
last – 1] . A more general variation of this idea also passes the index of the fi rst array character. 
So instead of assuming that this index is 0, we would pass  anArray[first..last]  to  writeArray-
Backward .  

 We can write the function  writeArrayBackward  as follows: 

  /** Writes the characters in an array backward. 
  @pre  The array anArray contains size characters, where size >= 0. 
  @post  None. 
  @param anArray  The array to write backward. 
  @param first  The index of the first character in the array. 
  @param last  The index of the last character in the array. */
  void writeArrayBackward( const char anArray[], int first, int last) 
 { 

if (first <= last) 
   { 
       // Write the last character 
       cout << anArray[last]; 

 // Write the rest of the array backward 
       writeArrayBackward(anArray, first, last - 1); 

   }  // end if 

// first > last is the base case - do nothing 

} // end writeArrayBackward 

 1   You will see this notation in the rest of the book to represent a portion of an array. 

VideoNote

Recursion with 
arrays
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   2.4.2  The Binary Search 

 Searching is an important task that occurs frequently. Often, searches are for a particular entry in an 
array. We now will examine a few searching problems that have recursive solutions. Our goal is to 
develop further your understanding of recursion.   

 This chapter began with an intuitive approach to a binary search algorithm by presenting—at a 
high level—a way to fi nd a word in a dictionary. We now develop this algorithm fully and illustrate 
some important programming issues. 

 Recall the earlier solution to the dictionary problem: 

  search(aDictionary: Dictionary, word: string) 

if (aDictionary is one page in size)
Scan the page for word 

else  
{

Open aDictionary to a point near the middle  
Determine which half of aDictionary contains word 

    if (word is in the fi rst half of aDictionary) 
search(fi rst half of aDictionary, word) 

else  
search(second half of aDictionary, word) 

  } 

 Now alter the problem slightly by searching an array  anArray  of integers for a given value, the 
target . The array, like the dictionary, must be sorted, or else a binary search is not applicable. Hence, 
assume that 

  anArray[0]  anArray[1]  anArray[2]  …  anArray[size - 1] 

 where  size  is the size of the array. A high-level binary search for the array problem is 

  binarySearch(anArray: ArrayType, target: ValueType) 

if (anArray is of size 1)
Determine if anArray ’s value is equal to target 

else  
  { 

Find the midpoint of anArray 
Determine which half of anArray contains target 
if (target is in the fi rst half of anArray) 

 binarySearch( fi rst half of anArray, target) 
else  

 binarySearch( second half of anArray, target) 
  } 

Question 4  In the previous defi nition of  writeArrayBackward , why does the base case 
occur when the value of  first  exceeds the value of  last ?            

Question 5  Write a recursive function that computes and returns the product of the fi rst
n ≥ 1 real numbers in an array.            

Question 6  Show how the function that you wrote for the previous question satisfi es the 
properties of a recursive function.            

Question 7  Write a recursive function that computes and returns the product of the integers 
in the array  anArray[first..last] .      

CHECK POINT

A binary search 
conquers one of  its 
subproblems at 
each step 
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 Although the solution is conceptually sound, you must consider several details before you can 
implement the algorithm: 

1.  How will you pass half of anArray to the recursive calls to binarySearch?   You can pass 
the entire array at each call but have  binarySearch  search only  anArray[first..last] , that 
is, the portion  anArray[first]  through  anArray[last] . Thus, you would also pass the 
integers  first  and  last  to  binarySearch : 

         binarySearch(anArray, first, last, target) 

 With this convention, the new midpoint is given by   

mid = (first + last) / 2 

 Then  binarySearch( fi rst half of anArray, target)  becomes 

  binarySearch(anArray, first, mid - 1, target) 

 and  binarySearch(second half of anArray, target)  becomes 

  binarySearch(anArray, mid + 1, last, target) 

2.   How do you determine which half of the array contains target? One possible 
implementation of 

   if  (target is in the fi rst half of anArray )

 is 

  i f (target < anArray[mid]) 

 However, there is no test for equality between  target  and  anArray[mid] . This omission can 
cause the algorithm to miss target . After the previous halving algorithm splits  anArray  into 
halves,  anArray[mid]  is not in either half of the array. (In this case, two halves do not make 
a whole!) Therefore, you must determine whether  anArray[mid]  is the value you seek  now,
because later it will not be in the remaining half of the array. The interaction between the 
halving criterion and the termination condition (the base case) is subtle and is often a source 
of error. We need to rethink the base case.     

3.   What should the base case(s) be?  As it is written,  binarySearch  terminates only when an 
array of size 1 occurs; this is the only base case. By changing the halving process so that 
anArray[mid]   remains in one of the halves , it is possible to implement the binary search 
correctly so that it has only this single base case. However, it can be clearer to have two 
distinct base cases as follows: 

•    first   >   last . You will reach this base case when  target  is not in the original array.  
•     target   ==   anArray[mid] . You will reach this base case when  target  is in the original array. 

 These base cases are a bit different from any you have encountered previously. In a sense, the 
algorithm determines the answer to the problem from the base case it reaches. Many search 
problems have this fl avor.  

4.   How will binarySearch indicate the result of the search?  If  binarySearch  successfully 
locates target  in the array, it could return the index of the array value that is equal to 
target . Because this index would never be negative,  binarySearch  could return a negative 
value if it does not fi nd  target  in the array.   

 The C++ function  binarySearch  that follows implements these ideas. The two recursive calls to 
binarySearch  are labeled as  X  and  Y  for use in a later box trace of this function. 

The array halves are 
  anArray[first..
mid-1]  
 and anArray
[mid+1..last] ; 
neither half  contains 
anArray[mid]  

Determine whether 
anArray[mid] is 
the target you seek 
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  /** Searches the array anArray[first] through anArray[last] 
     for a given value by using a binary search. 
 @pre  0 <= first, last <= SIZE - 1, where SIZE is the 
     maximum size of the array, and anArray[first] <= 
     anArray[first + 1] <= ... <= anArray[last]. 
 @post  anArray is unchanged and either anArray[index] contains 

the given value or index == -1. 
 @param anArray  The array to search. 
 @param first  The low index to start searching from. 
 @param last  The high index to stop searching at. 
 @param target  The search key. 
 @return  Either index, such that anArray[index] == target, or -1. 
 */
  int binarySearch( const int anArray[], int first, int last, int target) 
{

int index; 
if (first > last) 

       index = -1; // target not in original array 
else  
{

// If target is in anArray, 
// anArray[first] <= target <= anArray[last] 
int mid = first + (last - first) / 2; 
if (target == anArray[mid]) 

           index = mid; // target found at anArray[mid] 
else if (target < anArray[mid]) 

   // Point X 
index = binarySearch(anArray, first, mid - 1, target); 

else  
   // Point Y 

  index = binarySearch(anArray, mid + 1, last, target); 
} // end if 

 return  index; 
 } // end binarySearch

 Notice that if  target  occurs in the array, it must be in the segment of the array delineated by  first  and 
last . That is, the following is true: 

  anArray[first]  target  anArray[last]   

  Figure   2-10    shows box traces of  binarySearch  when it searches the array containing 1, 5, 9, 12, 15, 
21, 29, and 31. Notice how the labels  X  and  Y  of the two recursive calls to  binarySearch  appear in the 
diagram. Exercise 16 at the end of this chapter asks you to perform other box traces with this function. 

Note:   When developing a recursive solution, you must be sure that the solutions to 
the smaller problems really do give you a solution to the original problem. For example, 
binarySearch  works because each smaller array is sorted and the value sought is between 
its fi rst and last values.  

 There is another implementation issue—one that deals specifi cally with C++—to consider. 
Recall that an array is never passed to a function by value and is therefore not copied. This aspect of 
C++ is particularly useful in a recursive function such as  binarySearch . If the array  anArray  is large, 
many recursive calls to  binarySearch  might be necessary. If each call copied  anArray , much 
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memory and time would be wasted. On the other hand, because  anArray  is not copied, the function 
can alter the array’s values unless you specify  anArray  as  const , as was done for  binarySearch .

Because an 
array argument is 
always passed by 
reference, a function 
can alter it unless 
you specify the 
array as  const  

FIGURE 2-10         Box traces of  binarySearch  with  anArray  = <1, 5, 9, 12, 15, 21, 29, 31>: (a) a 
successful search for 9; (b) an unsuccessful search for 6   
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 A box trace of a recursive function that has an array argument requires a new consideration. 
Because the array  anArray  is neither a value argument nor a local variable, it is not a part of the func-
tion’s local environment, and so the entire array  anArray  should not appear within each box. There-
fore, as  Figure   2-11    shows, you represent  anArray  outside the boxes, and all references to  anArray
affect this single representation.   

Represent reference 
arguments outside 
of  the boxes in a box 
trace 

Note:   Notice that the C++ computation of the midpoint  mid  is 

   int mid = first + (last - first) / 2; 

 instead of 

   int mid = (first + last) / 2; 

 as the pseudocode would suggest. If you were to search an array of at least 2 30 , or about 
1 billion, elements, the sum of first  and  last  could exceed the largest possible  int  value 
of 2 30   �  1. Thus, the computation  first + last  would overfl ow to a negative integer and 
result in a negative value for  mid . If this negative value of  mid  was used as an array index, 
it would be out of bounds and cause incorrect results. The computation  first + (last - 
first) / 2  is algebraically equivalent to  (first + last) / 2  and avoids this error.   
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   2.4.3  Finding the Largest Value in an Array 

 Suppose that you have an array  anArray  of integers and you want to fi nd the largest value. You could 
construct an iterative solution without too much diffi culty, but instead let’s consider a recursive for-
mulation: 

   if (anArray has only one entry ) 
    maxArray(anArray) is the entry in anArray 
  else if (anArray has more than one entry )
    maxArray(anArray) is the maximum of  
        maxArray( left half of  anArray) an  d maxArray( right half of  anArray) 

 Notice that this strategy fi ts the divide-and-conquer model that the previous binary search algorithm 
used. That is, we proceed by dividing the problem and conquering the subproblems, as  Figure   2-12    
illustrates. However, there is a difference between this algorithm and the binary search algorithm. 
Although the binary search algorithm conquers only one of its subproblems at each step,  maxArray
conquers both. Because both subproblems are solved recursively, this approach is called  multipath 
recursion . After  maxArray  conquers the subproblems, it must reconcile the two solutions—that is, it 
must fi nd the maximum of the two maximums.  Figure   2-13    illustrates the computations that are neces-
sary to fi nd the largest integer in the array that contains 1, 6, 8, and 3 (denoted here by <1, 6, 8, 3>). 

target = 6

first = 0

last = 7

mid = 3

anArray =

target = 6

first = 0

last = 2

mid = 1

anArray =

X Y

1 5 9 12 15 21 29 31

anArray

FIGURE 2-11         Box trace with a reference argument   

  maxArray  
conquers both of  its 
subproblems at 
each step 

Question 7  Defi ne the recursive C++ function  maxArray  that returns the largest value in an 
array and adheres to the pseudocode just given.      

CHECK POINT

   2.4.4  Finding the  k  th  Smallest Value of an Array 

 Our discussion of searching concludes with a more diffi cult problem. Although you could skip this 
example now,  Chapter   11    uses aspects of it in a sorting algorithm. 
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 The previous two examples presented recursive techniques for fi nding the largest value in an 
arbitrary array and for fi nding an arbitrary value in a sorted array. This example describes a recursive 
solution for fi nding the  kth  smallest value in an arbitrary array  anArray . Would you ever be interested 
in such a value? Statisticians often want the median value in a collection of data. The median value in 
an ordered collection of data occurs in the middle of the collection. In an unordered collection of data, 
the number of values that are smaller than the median value is about the same as the number of values 
that are larger. Thus, if you have 49 values, the 25 th  smallest value is the median value. 

 Obviously, you could solve this problem by sorting the array. Then the  kth  smallest value would be 
anArray[k-1] . Although this approach is a legitimate solution, it does more than the problem 
requires; a more effi cient solution is possible. The solution outlined here fi nds the  kth  smallest value 
without completely sorting the array. 

 By now, you know that you solve a problem recursively by writing its solution in terms of one or 
more smaller problems of the same type in such a way that this notion of  smaller  ensures that you will 
always reach a base case. For all of the earlier recursive solutions, the reduction in problem size 

FIGURE 2-12         Recursive solution to the largest-value problem   

maxArray(left half of anArray) maxArray(right half of anArray)

maxArray(anArray)

AND

FIGURE 2-13         The recursive calls that  maxArray(<1,6,8,3>)  generates   

maxArray(<3>)

return 3

maxArray(<8>)

return 8

maxArray(<6>)

return 6

maxArray(<1>)

return 1

maxArray(<1,6>)

return max(maxArray(<1>), maxArray(<6>))

maxArray(<1,6,8,3>)

return max(maxArray(<1,6>), maxArray(<8,3>))

maxArray(<8,3>)

return max(maxArray(<8>), maxArray(<3>))
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between recursive calls is  predictable . For example, the factorial function always decreases the prob-
lem size by 1; the binary search always halves the problem size. In addition, the base cases for all the 
previous problems except the binary search have a static, predefi ned size. Thus, by knowing only the 
size of the original problem, you can determine the number of recursive calls that are necessary 
before you reach the base case.   

 The solution that you are about to see for fi nding the  kth  smallest value departs from these tech-
niques. Although you solve the problem in terms of a smaller problem, just how much smaller this 
problem is depends on the values in the array and cannot be predicted in advance. Also, the size of the 
base case depends on the values in the array, as it did for the binary search. (Recall that you reach one 
of the base cases for a binary search when the middle value is the one sought.)   

 The unpredictable nature of this solution is caused by the problem itself: The relationship 
between the rankings of the values in any predetermined parts of the array and the ranking of the val-
ues in the entire array is not strong enough to determine the  kth  smallest value. For example, suppose 
that anArray  contains the values shown in  Figure   2-14   . Notice that 6, which is in  anArray[3] , is the 
third-smallest value in the fi rst half of  anArray  and that 8, which is in  anArray[4] , is the third-smallest 
value in the second half of  anArray . Can you conclude from these observations anything about the 
location of the third-smallest value in all of  anArray ? The answer is no; these facts about parts of the 
array do not allow you to draw any useful conclusions about the entire array. You should experiment 
with other fi xed splitting schemes as well. 

For all previous 
examples, you know 
the amount of  
reduction made in 
the problem size by 
each recursive call 

You cannot predict 
in advance the size 
of  either the smaller 
problems or the 
base case in the 
recursive solution to 
the k  th -smallest-
value problem 

FIGURE 2-14         A sample array   

4 7 3 6 8 1 9 2

0 1 2 3 4 5 6 7

First half Second half

  The recursive solution proceeds by 

1.   Selecting a  pivot  value in the array  
2.   Cleverly arranging, or  partitioning , the values in the array about this pivot value  
3.   Recursively applying the strategy to  one  of the partitions   

 Suppose that you want to fi nd the  kth  smallest value in the array segment  anArray[first..last] . 
Let the pivot  p  be any value of the array segment. (For now, ignore how to choose  p .) You can partition 
the values of  anArray[first..last]  into three regions:  S

1
 , which contains the values less than or equal 

to p ; the pivot  p  itself; and  S
2
 , which contains the values greater than or equal to  p . This partition implies 

that all of the values in  S
1
  are no larger than all of the values in  S

2
 .  Figure   2-15    illustrates this partition. 

 All values in  anArray[first..pivotIndex-1]  are less than or equal to  p,  and all values in 
anArray[pivotIndex+1..last]  are greater than or equal to  p . Notice that the sizes of the regions  S

1

and S
2
  depend on both  p  and the other values of  anArray[first..last] . 

 This partition induces three smaller problems, such that the solution to one of the problems will 
solve the original problem: 

1.    If  S
1
  contains  k  or more values,  S

1
  contains the  k  smallest values of the array segment 

anArray[first..last] . In this case, the  kth  smallest value must be in  S
1
 . Since  S

1
  is the array 

segment  anArray[first..pivotIndex-1] , this case occurs if  k  <  pivotIndex – first  + 1.  

Partition anArray
into three parts: 
values  p, p, and 
values ≥ p
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2.    If  S
1
  contains  k  – 1 values, the  kth  smallest value must be the pivot  p . This is the base case; it 

occurs if k =   pivotIndex – first +  1.  
3.    If  S

1
  contains fewer than  k –  1 values, the  kth  smallest value in  anArray[first..last]  must be 

in S
2
 . Because  S

1
  contains  pivotIndex – first  values, the  kth  smallest value in 

anArray[first..last]  is the ( k  – ( pivotIndex – first  + 1))st   smallest value in  S
2
 . This case 

occurs if k  >  pivotIndex – first  + 1.   

 A recursive defi nition can summarize this discussion. Let 

kSmall(k, anArray, first, last)   = kth  smallest value in  anArray[first..last]

 After you select the pivot value  p  and partition  anArray[first..last]  into  S
1
  and  S

2
 , you have that 

kSmall(k, anArray, first, last)  equals 

•    kSmall(k, anArray, first, pivotIndex – 1)  if  k  <  pivotIndex  –  first  + 1  
•   p if k  =  pivotIndex  –  first  + 1  
•    kSmall(k – (pivotIndex – first + 1), anArray, pivotIndex + 1, last)

if k  >  pivotIndex  –  first  + 1   

 There is always a pivot, and because it is not part of either  S
1
  or  S

2
 , the size of the array segment to 

be searched decreases by at least 1 at each step. Thus, you will eventually reach the base case: The 
desired value is a pivot. A high-level pseudocode solution is as follows.   

  // Returns the kth smallest value in  anArray[first..last].
kSmall(k: integer, anArray: ArrayType, 
        first: integer, last: integer): ValueType 

Choose a pivot value p from anArray[first..last]
Partition the values of anArray[first..last] about p 

if (k < pivotIndex - first + 1) 
return kSmall(k, anArray, first, pivotIndex - 1) 

else if (k == pivotIndex - first + 1) 
return p 

else  
return kSmall(k - (pivotIndex - first + 1), anArray, 

 pivotIndex + 1, last) 

 This pseudocode is not far from a C++ function. The only questions that remain are how to 
choose the pivot value  p  and how to partition the array about the chosen  p . The choice of  p  is arbitrary. 
Any  p  in the array will work, although the sequence of choices will affect how soon you reach the 
base case.  Chapter   11    gives an algorithm for partitioning the values about  p . There you will see how 
to turn the function  kSmall  into a sorting algorithm.   

FIGURE 2-15         A partition about a pivot   

S2S1

≤ p ≥ pp

first last

pivotIndex

The k  th smallest 
value in anArray
[first..last]  
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   2.5 Organizing Data 
 Given some data organized in one way, you might need to organize it in another way. Thus, you will 
actually change some aspect of the data and not, for example, simply search it. The problem in this 
section is called the Towers of Hanoi. Although this classic problem probably has no direct real-
world application, we consider it because its solution so well illustrates the use of recursion. 

   2.5.1  The Towers of Hanoi 

 Many, many years ago, in a distant part of the Orient—in the Vietnamese city of Hanoi—the emper-
or’s wiseperson passed on to join his ancestors. The emperor needed a replacement wiseperson. Being 
a rather wise person himself, the emperor devised a puzzle, declaring that its solver could have the job 
of wiseperson. 

FIGURE 2-16         (a) The initial state;   (b) move n – 1 disks from A to C;   (c) move 1 disk from A to 
B;   (d) move n – 1 disks from C to B   

A B C

A B C

A B C

A B C

(a)

(b)

(c)

(d)

  The emperor’s puzzle consisted of  n  disks (he didn’t say exactly how many) and three poles: A (the 
source), B (the destination), and C (the spare). The disks were of different sizes and had holes in the 
middle so that they could fi t on the poles. Because of their great weight, the disks could be placed only 
on top of disks larger than themselves. Initially, all the disks were on pole A, as shown in  Figure   2-16   a. 
The puzzle was to move the disks, one by one, from pole A to pole B. A person could also use pole C in 
the course of the transfer, but again a disk could be placed only on top of a disk larger than itself. 



 Organizing Data 77

 As the position of wiseperson was generally known to be a soft job, there were many applicants. 
Scholars and peasants alike brought the emperor their solutions. Many solutions were thousands of 
steps long, and many contained deeply nested loops and control structures. “I can’t understand these 
solutions,” bellowed the emperor. “There must be an easy way to solve this puzzle.” 

 And indeed there was. A great Buddhist monk came out of the mountains to see the emperor. 
“My son,” he said, “the puzzle is so easy, it almost solves itself.” The emperor’s security chief wanted 
to throw this strange person out, but the emperor let him continue. 

 “If you have only one disk (that is,  n  = 1), move it from pole A to pole B.” So far, so good, 
but even the village idiot could get that part right. “If you have more than one disk (that is,  n  > 1), simply 

1.    Ignore the bottom disk and solve the problem for  n  – 1 disks, with the small modifi cation that 
pole C is the destination and pole B is the spare. (See  Figure   2-16   b.)  

2.    After you have done this,  n  – 1 disks will be on pole C, and the largest disk will remain on 
pole A. So solve the problem for  n  = 1 (recall that even the village idiot could do this) by 
moving the large disk from A to B. (See  Figure   2-16   c.)  

3.    Now all you have to do is move the  n  – 1 disks from pole C to pole B ;  that is, solve the 
problem with pole C as the source, pole B as the destination, and pole A as the spare.” 
(See  Figure   2-16   d.)   

 There was silence for a few moments, and fi nally the emperor said impatiently, “Well, are you 
going to tell us your solution or not?” The monk simply gave an all-knowing smile and vanished. 

 The emperor obviously was not a recursive thinker, but you should realize that the monk’s solution 
is perfectly correct. The key to the solution is the observation that you can solve the Towers problem of  n
disks by solving three smaller—in the sense of number of disks —Towers problems. Let  towers(count,
source,   destination,   spare)  denote the problem of moving  count  disks from pole  source  to pole 
destination , using pole  spare  as a spare. Notice that this defi nition makes sense even if there are more 
than count  disks on pole  source ; in this case, you concern yourself with only the top  count  disks and 
ignore the others. Similarly, the poles  destination  and  spare  might have disks on them before you 
begin; you ignore these, too, except that you may place only smaller disks on top of them. 

 You can restate the emperor’s problem as follows: Beginning with  n  disks on pole A and zero 
disks on poles B and C, solve  towers(n, A, B, C) . You can state the monk’s solution as follows:       

Step 1.  Starting in the initial state—with all the disks on pole A—solve the problem 

  towers(n - 1, A, C, B) 

 That is, ignore the bottom (largest) disk and move the top  n  – 1 disks from pole A to pole C, 
using pole B as a spare. When you are fi nished, the largest disk will remain on pole A, and all 
the other disks will be on pole C. 

Step 2.  Now, with the largest disk on pole A and all others on pole C, solve the problem 

  towers(1, A, B, C) 

 That is, move the largest disk from pole A to pole B. Because this disk is larger than the disks 
already on the spare pole C, you really could not use the spare. However, fortunately—and 
obviously—you do not need to use the spare in this base case. When you are done, the largest 
disk will be on pole B, and all other disks will remain on pole C. 

Step 3.  Finally, with the largest disk on pole B and all the other disks on pole C, solve the problem 

  towers(n - 1, C, B, A) 

 That is, move the  n  – 1 disks from pole C to pole B, using A as a spare. Notice that the destina-
tion pole B already has the largest disk, which you ignore. When you are done, you will have 
solved the original problem: All the disks will be on pole B. 

The problem 
statement 

The solution 
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 The problem  towers(count, source, destination, spare)  has the following pseudocode 
solution:

  solveTowers(count, source, destination, spare) 

if (count is 1)
Move a disk directly from source to destination 

else  
  { 
      solveTowers(count - 1, source, spare, destination) 
      solveTowers(1, source, destination, spare) 
      solveTowers(count - 1, spare, destination, source) 
  } 

 This recursive solution follows the same basic pattern as the recursive solutions you saw earlier 
in this chapter:   

1.   You solve a Towers problem by solving other Towers problems.  
2.    These other Towers problems are smaller than the original problem; they have fewer disks to 

move. In particular, the number of disks decreases by 1 at each recursive call.  
3.   When a problem has only one disk—the base case—the solution is easy to solve directly.  
4.   The way that the problems become smaller ensures that you will reach a base case.   

 Solving the Towers problem requires you to solve many smaller Towers problems recursively. 
 Figure   2-17    illustrates the resulting recursive calls and their order when you solve the problem 
for three disks. 

 Now consider a C++ implementation of this algorithm. Notice that since most computers do not 
have arms (at the time of this writing), the function moves a disk by giving directions to a human. 
Thus, the parameters that represent the poles are of type char , and the corresponding arguments 
could be 'A' ,  'B' , and  'C' . The call  solveTowers(3,   'A',   'B',   'C')  produces this output:   

  Move top disk from pole A to pole B 
Move top disk from pole A to pole C 
Move top disk from pole B to pole C 
Move top disk from pole A to pole B 
Move top disk from pole C to pole A 
Move top disk from pole C to pole B 

Move top disk from pole A to pole B 

FIGURE 2-17         The order of recursive calls that results from  solveTowers(3, A, B, C)

solveTowers(3,A,B,C)

solveTowers(2,A,C,B) solveTowers(1,A,B,C)

1

2 6 7

3 8

4 9

5 10

solveTowers(2,C,B,A)

solveTowers(1,A,B,C) solveTowers(1,C,A,B)

solveTowers(1,A,C,B) solveTowers(1,C,B,A)

solveTowers(1,B,C,A) solveTowers(1,A,B,C)

The solution to the 
Towers problem 
satisfi es the four 
criteria of  a 
recursive solution 

The solution for 
three disks 
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 The C++ function follows: 

   void solveTowers( int count, char source, char destination, char spare) 
 { 

if (count == 1) 
{

cout << "Move top disk from pole " << source 
<< " to pole " << destination << endl; 

 } 
else  

 { 
solveTowers(count - 1, source, spare, destination); / / X 
solveTowers(1, source, destination, spare); / / Y 
solveTowers(count - 1, spare, destination, source); / / Z 

} // end if
} // end solveTowers 

Question 8  Trace the execution of the function  solveTowers  to solve the Towers of Hanoi 
problem for two disks.       

CHECK POINT

   2.6 More Examples 
 The next three problems require you to count certain events or combinations of events or things. They 
are good examples of recursive solutions with more than one base case. However, these solutions are 
tremendously ineffi cient, and so are not practical. Do not let this ineffi ciency discourage you. Recur-
sion can be useful and effi cient, even though it is not always so. Your goal right now is to understand 
recursion by examining simple problems. 

   2.6.1  The Fibonacci Sequence (Multiplying Rabbits) 

 Rabbits are very prolifi c breeders. If rabbits did not die, their population would quickly get out of 
hand. Suppose we assume the following “facts,” which were obtained in a recent survey of randomly 
selected rabbits: 

•   Rabbits never die.  
•   A rabbit reaches sexual maturity exactly two months after birth; that is, at the beginning of its 

third month of life.  
•   Rabbits are always born in male-female pairs. At the beginning of every month, each sexually 

mature male-female pair gives birth to exactly one male-female pair.   

 Suppose that you started with a single newborn male-female pair. How many pairs would there 
be in month 6, counting the births that took place at the beginning of month 6? As 6 is a relatively 
small number, you can fi gure out the solution easily: 

 Month 1: 1 pair, the original rabbits. 

 Month 2: 1 pair still, because the rabbits are not yet sexually mature. 

 Month 3:  2 pairs; the original pair has reached sexual maturity and has given birth to a second pair. 

 Month 4:  3 pairs; the original pair has given birth again, but the pair born at the beginning of 
month 3 are not yet sexually mature. 

 Month 5:  5 pairs; all rabbits alive in month 3 (2 pairs) are now sexually mature. Add their off-
spring to those pairs alive in month 4 (3 pairs) to yield 5 pairs. 

 Month 6: 8 pairs; 3 newborn pairs from the pairs alive in month 4 plus 5 pairs alive in month 5. 
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The number of  pairs 
in month n  

 You can now construct a recursive solution for computing  rabbit ( n ), the number of pairs alive in 
month n . You must determine how you can use  rabbit ( n  – 1) to compute  rabbit ( n ). Observe that 
rabbit ( n ) is the sum of the number of pairs alive just prior to the start of month  n  and the number of 
pairs born at the start of month  n . Just prior to the start of month  n,  there are  rabbit ( n  – 1) pairs of rab-
bits. Not all of these rabbits are sexually mature at the start of month  n . Only those that were alive in 
month n  – 2 are ready to reproduce at the start of month  n . That is, the number of pairs born at the start 
of month n  is  rabbit(n  – 2). Therefore, you have the recurrence relation     

      rabbit ( n ) =  rabbit ( n  – 1) +  rabbit ( n  – 2)

Figure 2-18 illustrates this relationship.

FIGURE 2-18         Recursive solution to the rabbit problem   

rabbit(n-1) rabbit(n-2)

rabbit(n)

AND

 This recurrence relation—like some previous examples—solves a problem by solving more than 
one smaller problem of the same type. This does not add much conceptual diffi culty, but you must be 
very careful when selecting the base case. The temptation is simply to say that  rabbit (1) should be the 
base case because its value is 1 according to the problem’s statement. But what about  rabbit (2)? 
Applying the recursive defi nition to  rabbit (2) would yield 

       rabbit (2) =  rabbit (1) +  rabbit (0)

 Thus, the recursive defi nition would need to specify the number of pairs alive in month 0—an unde-
fi ned quantity. 

 One possible solution is to defi ne  rabbit (0) to be 0, but this approach seems artifi cial. A slightly 
more attractive alternative is to treat  rabbit (2) itself as a special case with the value of 1. Thus, the 
recursive defi nition has two base cases,  rabbit (2) and  rabbit (1). The recursive defi nition becomes   

rabbit 1n 2 5 e1 if n is 1 or 2

rabbit 1n 2 1 2 1 rabbit 1n 2 2 2 if n . 2

 Incidentally, the series of numbers  rabbit (1),  rabbit (2),  rabbit (3), and so on is known as the  Fibon-
acci sequence , which models many naturally occurring phenomena. 

 A C++ function to compute  rabbit ( n ) is easy to write from the previous defi nition:   

  /** Computes a term in the Fibonacci sequence. 
  @pre  n is a positive integer. 
  @post  None. 
  @param n  The given integer. 
  @return  The nth Fibonacci number. */ 
  int rabbit( int n) 
{

if (n <= 2) 
return 1; 

else  // n > 2, so n - 1 > 0 and n - 2 > 0 
return rabbit(n - 1) + rabbit(n - 2); 

 } // end rabbit 

Two base cases are 
necessary because 
there are two 
smaller problems 

  rabbit computes 
the Fibonacci 
sequence but does 
so ineffi ciently 
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FIGURE 2-19         The recursive calls that  rabbit(7)  generates   

rabbit(7)

return rabbit(6) + rabbit(5)

rabbit(6)

return rabbit(5) + rabbit(4)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(1)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1
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return 1
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return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1
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return 1
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return 1

rabbit(4)

return rabbit(3) + rabbit(2)
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 Should you actually use this function?  Figure   2-19    illustrates the recursive calls that 
rabbit(7)  generates. Think about the number of recursive calls that  rabbit(10)  generates. At best, 
the function rabbit  is ineffi cient. Thus, its use is not feasible for large values of  n . This problem is 
discussed in more detail at the end of this chapter, at which time you will see some techniques for 
generating a more effi cient solution from this same recursive relationship. 

Note:   A recursive solution that recomputes certain values frequently can be quite 
ineffi cient. In such cases, iteration may be preferable to recursion.    

   2.6.2  Organizing a Parade 

 You have been asked to organize the Fourth of July parade, which will consist of bands and fl oats in a 
single line. Last year, adjacent bands tried to outplay each other. To avoid this problem, the sponsors 
have asked you never to place one band immediately after another. In how many ways can you organ-
ize a parade of length n ? 

 Assume that you have at least  n  marching bands and  n  fl oats from which to choose. When count-
ing the number of ways to organize the parade, assume that the parades  band-fl oat  and  fl oat-band , for 
example, are different parades and count as two ways. 

 The parade can end with either a fl oat or a band. The number of ways to organize the parade is 
simply the sum of the number of parades of each type. That is, let 

P ( n ) be the number of ways to organize a parade of length  n
F ( n ) be the number of parades of length  n  that end with a fl oat 
B ( n ) be the number of parades of length  n  that end with a band 

 Then 

P 1n 2 5 F 1n 2 1 B 1n 2
 First, consider  F ( n ). You will have a parade of length  n  that ends with a fl oat simply by placing a 

fl oat at the end of  any  acceptable parade of length  n –  1. Hence, the number of acceptable parades of 
length n  that end with a fl oat is precisely equal to the total number of acceptable parades of length 
n  – 1; that is   

F 1n 2 5 P 1n 2 1 2
 Next, consider  B ( n ). The only way a parade can end with a band is if the unit just before the end is 

a fl oat. (If it is a band, you will have two adjacent bands.) Thus, the only way to organize an acceptable 
parade of length n  that ends with a band is fi rst to organize a parade of length  n  – 1 that ends with a fl oat 
and then add a band to the end. Therefore, the number of acceptable parades of length  n  that end with a 
band is precisely equal to the number of acceptable parades of length  n  – 1 that end with a fl oat: 

B 1n 2 5 F 1n 2 1 2
 You use the earlier fact that  F ( n ) � P ( n � 1) to obtain 

B 1n 2 5 P 1n 2 2 2
 Thus, you have solved  F ( n ) and  B ( n ) in terms of the smaller problems  P ( n � 1) and P ( n � 2), 

respectively. You then use   

P 1n 2 5 F 1n 2 1 B 1n 2
 to obtain 

P 1n 2 5 P 1n 2 1 2 1 P 1n 2 2 2
 The form of this recurrence relation is identical to the solution for the multiplying rabbits problem. 

The number of  
acceptable parades 
of  length  n that end 
with a fl oat 

The number of  
acceptable parades 
of  length  n that end 
with a band 

The number of  
acceptable parades 
of  length n  
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 As you saw in the rabbit problem, two base cases are necessary, because the recurrence rela-
tion defi nes a problem in terms of two smaller problems. As you did for the rabbit problem, you 
can choose n � 1 and n � 2 for the base cases. Although both problems use the same values of  n
for their base cases, there is no reason to expect that they use the same values for these base 
cases. That is, there is no reason to expect that  rabbit (1) is equal to  P (1) and that  rabbit (2) is 
equal to P (2). 

 A little thought reveals that for the parade problem,   

P (1) � 2 (The parades of length 1 are fl oat  and  band .) 
P (2) � 3 (The parades of length 2 are fl oat - fl oat ,  band - fl oat , and  fl oat - band .) 

 In summary, the solution to this problem is   

P 11 2 5 2

P 12 2 5 3

P 1n 2 5 P 1n 2 1 2 1 P 1n 2 2 2 for n . 2

 This example demonstrates the following points about recursion: 

•   Sometimes you can solve a problem by breaking it up into cases—for example, parades that 
end with a fl oat and parades that end with a band.  

•   The values that you use for the base cases are extremely important. Although the recurrence 
relations for P  and  rabbit  are the same, their base cases (when  n � 1 or 2) are different. This 
difference causes  rabbit ( n ) and  P ( n ) to differ when  n  is greater than 2. For example, 
rabbit (20) � 6,765, while  P (20) � 17,711. The larger the value of  n , the larger the discrep-
ancy. You should think about why this is so.    

   2.6.3  Choosing  k  Out of  n  Things 

 A rock band would like to tour  n  cities. Unfortunately, time will allow for visits to only  k  cities. 
The band’s agent considers the different choices for visiting  k  cities out of the  n  possibilities. 
Because time is short, the band members are not concerned about the order in which they visit the 
same k  cities. 

 Let  g ( n, k ) be the number of groups of  k  cities chosen from  n . If we consider city C, either we visit 
C or we do not. If we do visit city C, we will have to choose  k � 1 other cities to visit from the n � 1 
remaining cities. Thus, the number of groups of cities that include C is g ( n � 1, k � 1). On the other 
hand, if we do not visit city C, we will have to choose  k  cities to visit from the remaining  n � 1 cities. 
The number of groups of cities that do not include C is g ( n � 1, k ). Thus, we can compute  g ( n, k ) by 
solving two smaller counting problems of the same type; that is, 

       g ( n ,  k ) � g(n � 1, k � 1) � g(n � 1, k )

 We still need to fi nd the base case(s) and demonstrate that each of the two smaller problems even-
tually reaches a base case. First, if the band had time to visit all  n  cities—that is, if  k  equals  n— there is 
only one group of all the cities. Thus, the fi rst base case is 

       g ( k ,  k ) � 1  

 If  k  <  n,  the second term  g ( n � 1, k ) in the recursive defi nition will reach this base case, because at 
each successive stage of the recursion,  n � 1 decreases until it reaches k . However, the fi rst term,  g ( n � 1, 
k � 1), does not reach this base case. Since n � 1 and k � 1 both decrease at the same rate, they will never 
become equal. The fi rst term does, in fact, approach another trivial selection problem. Just as there is only 
one group of all the cities ( k � n ), there is also only one group of zero cities ( k � 0). Thus, the second base 
case is 

g ( n , 0) � 1  

Two base cases are 
necessary because 
there are two 
smaller problems 

A recursive solution 

The number of  ways 
to choose  k out of   n  
things is the sum of  
the number of  ways 
to choose  k – 1 out 
of   n – 1 things and 
the number of  ways 
to choose  k out of
n – 1 things 
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 and will be reached by the fi rst term,  g ( n � 1, k � 1). (Alternatively, you could defi ne the second base 
case to be g ( n,  1) � n .) 

Note: When you solve a problem by solving two (or more) smaller problems, each of 
the smaller problems must be closer to a base case than the original problem.  

 For completeness, we add one fi nal part to this recursive solution: 

g ( n ,  k ) � 0  if  k  >  n

 Although  k  could not be greater than  n  in the context of this problem, the addition of this case makes 
the recursive solution more generally applicable. 

 To summarize, the following recursive solution solves the problem of choosing  k  out of  n
things:   

g 1n, k 2 5 μ                      1                          if k 5 0

                     1                          if k 5 n

                     0                          if k . n

g 1n 2 1, k 2 1 2 1 g 1n 2 1, k 2          if 0 , k , n

 You can easily derive the following function from this recursive defi nition: 

  /** Computes the number of groups of k out of n things. 
 @pre  n and k are nonnegative integers. 
 @post  None. 
 @param n  The given number of things. 
 @param k  The given number to choose. 
 @return  g(n, k). */ 
  int getNumberOfGroups( int n, int k) 
 { 

if ( (k == 0) || (k == n) )
return 1; 

else if (k > n) 
return > 0; 

else  
return g(n - 1, k - 1) + g(n - 1, k); 

 } // end getNumberOfGroups 

 Like the  rabbit  function, this function is ineffi cient and not practical to use.  Figure   2-20    shows 
the number of recursive calls that the computation of  g(4,   2)  requires. 

The number of  
groups of   k things 
recursively chosen 
out of   n things 

Note:   When a recursive function contains more than one recursive call, you often will 
need more than one base case.  

Question 9  Compute  g (4,   2) .
CHECK POINT
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FIGURE 2-20         The recursive calls that  g (4, 2)  generates   

g(4,2)

return g(3,1) + g(3,2)

g(3,1)

return g(2,0) + g(2,1)

g(3,2)

return g(2,1) + g(2,2)

g(2,1)

return g(1,0) + g(1,1)

g(2,1)

return g(1,0) + g(1,1)

g(1,0)

return 1

g(1,1)

return 1

g(1,0)

return 1

g(1,1)

return 1

g(2,2)

return 1

g(2,0)

return 1

       2.7 Recursion and Effi ciency 
 Recursion is a powerful problem-solving technique that often produces very clean solutions to even the 
most complex problems. Recursive solutions can be easier to understand and to describe than iterative 
solutions. By using recursion, you can often write simple, short implementations of your solution. 

 The overriding concern of this chapter has been to give you a solid understanding of recursion so 
that you will be able to construct recursive solutions on your own. Most of our examples, therefore, 
have been simple. Unfortunately, many of the recursive solutions in this chapter are so ineffi cient that 
you should not use them. The recursive functions  binarySearch  and  solveTowers  are the notable 
exceptions, as they are quite effi cient.  2

 Two factors contribute to the ineffi ciency of some recursive solutions:   

•   The overhead associated with function calls  
•   The inherent ineffi ciency of some recursive algorithms   

 The fi rst of these factors does not pertain specifi cally to recursive functions but is true of func-
tions in general. In most implementations of C++ and other high-level programming languages, a 
function call incurs a certain amount of bookkeeping overhead. As was mentioned earlier, each func-
tion call produces an activation record, which is analogous to a box in the box trace. Recursive func-
tions magnify this overhead because a single initial call to the function can generate a large number of 
recursive calls. For example, the call  factorial ( n ) generates  n  recursive calls. On the other hand, the 
use of recursion, as is true of modularity in general, can greatly clarify complex programs. This clari-
fi cation frequently more than compensates for the additional overhead.   

Factors that 
contribute to the 
ineffi ciency of  some 
recursive solutions 

 2    Chapters   5    and    11    present other practical, effi cient applications of recursion. 

Recursion can 
clarify complex 
solutions
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 However, you should not use recursion just for the sake of using recursion. For example, you 
probably should not use the recursive  factorial  function in practice. You can easily write an iterative 
factorial  function, given the iterative defi nition that was stated earlier in this chapter. The iterative 
function is almost as clear as the recursive one and is more effi cient. There is no reason to incur the 
overhead of recursion when its use does not gain anything.  Recursion is truly valuable when a prob-
lem has no simple iterative solutions.

 The second point about recursion and effi ciency is that some recursive algorithms are inherently 
ineffi cient. This ineffi ciency is a very different issue than that of overhead. It has nothing to do with 
how a compiler happens to implement a recursive function, but rather is related to the technique that 
the algorithm employs. 

 As an example, recall the recursive solution for the multiplying rabbits problem that you saw 
earlier in this chapter:   

rabbit 1n 2 5 e1 if n is 1 or 2

rabbit 1n 2 1 2 1 rabbit 1n 2 2 2 if n . 2

 The diagram in  Figure   2-19    illustrated the computation of  rabbit (7). Earlier, you were asked to think 
about what the diagram would look like for  rabbit (10). If you thought about this question, you may 
have come to the conclusion that such a diagram would fi ll up most of this chapter. The diagram for 
rabbit (100) would fi ll up most of this universe! 

 The fundamental problem with  rabbit  is that it computes the same values over and over again. 
For example, in the diagram for  rabbit (7), you can see that  rabbit (3) is computed fi ve times. When  n
is moderately large, many of the values are recomputed literally trillions of times. This enormous 
number of computations makes the solution infeasible, even if each computation requires only a 
trivial amount of work.   

 However, do not conclude that the recurrence relation is of no use. One way to solve the rabbit 
problem is to construct an iterative solution based on this same recurrence relation. The iterative 
solution goes forward instead of backward and computes each value only once. You can use the fol-
lowing iterative function to compute  rabbit ( n ) even for very large values of  n . 

  /** Iterative solution to the rabbit problem. */ 
  int iterativeRabbit( int n) 
 { 

// Initialize base cases: 
int previous = 1; // Initially rabbit(1) 
int current = 1; // Initially rabbit(2) 
int next = 1; // Result when n is 1 or 2 

// Compute next rabbit values when n >= 3 
 for ( int i = 3; i <= n; i++) 
 { 

// current is rabbit(i - 1), previous is rabbit(i - 2) 
next = current + previous; // rabbit(i) 
previous = current; // Get ready for next iteration 
current = next; 

} // end for 

return next; 
} // end iterativeRabbit 

 Thus, an iterative solution can be more effi cient than a recursive solution. In certain cases, how-
ever, it may be easier to discover a recursive solution than an iterative solution. Therefore, you may 
need to convert a recursive solution to an iterative solution. This conversion process is easier if your 
recursive function calls itself once, instead of several times. Be careful when deciding whether your 
function calls itself more than once. Although the recursive function  rabbit  calls itself twice, the 

Do not use a 
recursive solution if  
it is ineffi cient and 
you have a clear, 
effi cient iterative 
solution

The recursive 
version of   rabbit  
is inherently 
ineffi cient 

You can use 
rabbit’s 
recurrence relation 
to construct an 
effi cient iterative 
solution

Convert from 
recursion to iteration 
if  it is easier to 
discover a recursive 
solution but more 
effi cient to use an 
iterative solution 
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function binarySearch  calls itself once, even though you see two calls in the C++ code. Those two 
calls appear within an if  statement; only one of them will be executed.   

 Converting a recursive solution to an iterative solution is even easier when the solitary recursive 
call is the last action  that the function takes. This situation is called  tail recursion . For example, the 
function writeBackward  exhibits tail recursion because its recursive call is the last action that the 
function takes. Before you conclude that this is obvious, consider the function  fact . Although its 
recursive call appears last in the function defi nition,  fact ’s last action is the multiplication. Thus, 
fact  is not tail-recursive.     

  Recall the defi nition of  writeBackward : 

  void writeBackward(string s) 
 { 

int length = s.size(); 
if (length > 0) 
{

// Write last character 
cout << s.substr(length - 1, 1); 
writeBackward(s.substr(0, length – 1)); // Write rest 

} // end if 
} // end writeBackward   

 Because this function is tail-recursive, its last recursive call simply repeats the function’s action with 
altered arguments. You can perform this repetitive action by using an iteration that will be straightfor-
ward and often more effi cient. For example, the following defi nition of  writeBackward  is iterative: 

  /** Iterative version. */ 
  void writeBackward(string s) 
 { 

int length = s.size(); 
while (length > 0) 

 { 
cout << s.substr(length - 1, 1); 
length––;

} // end while 
 } // end writeBackward 

 Because tail-recursive functions are often less effi cient than their iterative counterparts, and 
because the conversion of a tail-recursive function to an equivalent iterative function is rather 
mechanical, some compilers automatically replace tail recursion with iteration. Eliminating 
other forms of recursion is usually more complex and is a task that  you  would need to undertake, if 
necessary. 

 Some recursive algorithms, such as  rabbit , are inherently ineffi cient, while other recursive algo-
rithms, such as the binary search,  3   are extremely effi cient. You will learn how to determine the relative 
effi ciency of a recursive algorithm in more advanced courses concerned with the analysis of algo-
rithms.  Chapter   10    introduces some of these techniques briefl y.

  Chapter   5    continues the discussion of recursion by examining several diffi cult problems that have 
straightforward recursive solutions. Other chapters in this book use recursion as a matter of course. 

A tail-recursive 
function

Removing tail 
recursion is often 
straightforward 

 3   The binary search algorithm also has an iterative formulation. 

Question 10  Of the following recursive functions that you saw in this chapter, identify 
those that exhibit tail recursion:  fact ,  writeBackward ,  writeBackward2 ,  rabbit ,  P  in the 
parade problem,  getNumberOfGroups ,  maxArray ,  binarySearch , and  kSmall .    

CHECK POINT
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  EXERCISES   

 1.  The following recursive function getNumberEqual searches the array x of n integers for occurrences of the inte-
ger  desiredValue . It returns the number of integers in  x  that are equal to  desiredValue . For example, if  x  con-
tains the ten integers 1, 2, 4, 4, 5, 6, 7, 8, 9, and 12, then getNumberEqual(x, 10, 4)  returns the value 2, because 
4 occurs twice in  x .

   int  getNumberEqual(const int x[],  int  n,  int  desiredValue) 
 { 

 int  count = 0; 

 if  (n <= 0) 
 return  0; 

 else 
{

 if  (x[n - 1] == desiredValue) 
           count = 1;    

 return  getNumberEqual(x, n - 1, desiredValue) + count; 
} // end else 

} // end getNumberEqual 

 Demonstrate that this function is recursive by listing the criteria of a recursive solution and stating how the 
function meets each criterion. 

 2.  Perform a box trace of the following calls to recursive functions that appear in this chapter. Clearly indicate 
each subsequent recursive call. 

a.    rabbit(5)

b.    countDown(5)  (You wrote  countDown  in Checkpoint Question 3.)   

     SUMMARY   

 1.  Recursion is a technique that solves a problem by solving a smaller problem of the same type. 

 2.  When constructing a recursive solution, keep the following four questions in mind: 

a.   How can you defi ne the problem in terms of a smaller problem of the same type? 
b.   How does each recursive call diminish the size of the problem?  
c.   What instance of the problem can serve as the base case?  
d.   As the problem size diminishes, will you reach this base case?   

 3.  When constructing a recursive solution, you should assume that a recursive call’s result is correct if its precon-
dition has been met. 

 4.  You can use the box trace to trace the actions of a recursive function. These boxes resemble activation records, 
which many compilers use to implement recursion. Although the box trace is useful, it cannot replace an intui-
tive understanding of recursion. 

 5.  Recursion allows you to solve problems—such as the Towers of Hanoi—whose iterative solutions are diffi cult 
to conceptualize. Even the most complex problems often have straightforward recursive solutions. Such solu-
tions can be easier to understand, describe, and implement than iterative solutions. 

 6.  Some recursive solutions are much less effi cient than a corresponding iterative solution due to their inherently 
ineffi cient algorithms and the overhead of function calls. In such cases, the iterative solution can be preferable. 
You can use the recursive solution, however, to derive the iterative solution. 

 7.  If you can easily, clearly, and effi ciently solve a problem by using iteration, you should do so. 
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 3.  Write a recursive function that will compute the sum of the fi rst  n  integers in an array of at least  n  integers. 
 Hint:  Begin with the  n  th integer. 

 4.  Given two integers,  start  and  end , where  end  is greater than  start , write a recursive C++ function that returns 
the sum of the integers from  start  through  end , inclusive. 

 5. a.  Revise the function writeBackward, discussed in Section 2.3.1, so that its base case is a string of 
length 1. 

b.  Write a C++ function that implements the pseudocode function writeBackward2, as given in 
Section 2.3.1.

 6.  Describe the problem with the following recursive function: 

   void  printNum( int  n) 
 { 
    cout << n << endl; 
    printNum(n - 1); 
} // end printNum 

 7.  Given an integer  n  > 0, write a recursive C++ function that writes the integers 1, 2, . . .,  n .

 8.  Given an integer  n  > 0, write a recursive C++ function that returns the sum of the squares of 1 through  n .

 9.  Write a recursive C++ function that writes the digits of a positive decimal integer in reverse order. 

 10. a.    Write a recursive C++ function  writeLine  that writes a character repeatedly to form a line of  n  characters. 
For example, writeLine('*', 5)  produces the line  ***** .

b.    Now write a recursive function  writeBlock  that uses  writeLine  to write  m  lines of  n  characters each. For 
example,  writeBlock('*', 5, 3)  produces the output 

 ***** 

 ***** 

 *****   

 11.  What output does the following program produce? 

   int  getValue( int  a,  int  b,  int  n); 

  int  main() 
 { 

cout << getValue(1, 7, 7) << endl; 
 return  0; 

} // end main 

  int  getValue( int  a,  int  b,  int  n) 
 { 

 int  returnValue = 0; 

cout << "Enter: a = " << a << " b = " << b << endl; 
 int  c = (a + b)/2; 
 if  (c * c <= n) 

       returnValue = c; 
 else 

       returnValue = getValue(a, c-1, n); 

cout << "Leave: a = " << a << " b = " << b << endl; 
 return  returnValue; 

} // end getValue 
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 12.  What output does the following program produce? 

  int  search( int  first,  int  last,  int  n); 
  int  mystery( int  n); 

  int  main() 
 { 

 cout << mystery(30) << endl; 
 return  0; 

} // end main 

  int  search( int  first,  int  last,  int  n) 
 { 

 int  returnValue = 0; 
 cout << "Enter: first = " << first << " last = " 

 << last << endl; 

 int  mid = (first + last)/2; 
 if  ( (mid * mid <= n) && (n < (mid+1) * (mid+1)) ) 

returnValue = mid; 
else if (mid * mid > n) 

returnValue = search(first, mid-1, n); 
 else 

returnValue = search(mid+1, last, n); 

 cout << "Leave: first = " << first << " last = " 
    << last << endl; 

 return  returnValue; 
} // end search 

  int  mystery( int  n) 
 { 

 return  search(1, n, n); 
} // end mystery 

 13.  Consider the following function that converts a positive decimal number to base 8 and displays the result. 

   void  displayOctal( int  n) 
 { 

 if  (n > 0) 
{

 if  (n / 8 > 0) 
           displayOctal(n / 8); 
       cout << n % 8; 
   }   // end if 
} // end displayOctal 

 Describe how the algorithm works. Trace the function with  n  = 100. 

 14.  Consider the following program: 

   int  f( int  n); 

  int  main() 
 { 
 cout << "The value of f(8) is " << f(8) << endl; 
 return  0; 

} // end main 

/** @pre n >= 0. */ 
  int  f( int  n) 
 { 
 cout << "Function entered with n = " << n << endl; 
 switch  (n)     
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 { 
 case  0:  case  1:  case  2: 

 return  n + 1; 
 default :

 return  f(n-2) * f(n-4); 
 } // end switch 

} //  end f 

 Show the exact output of the program. What argument values, if any, could you pass to the function  f  to cause 
the program to run forever? 

 15.  Consider the following function: 

   void  recurse( int  x,  int  y) 
 { 

 if  (y > 0) 
{

     x++;
     y––;
     cout << x << " " << y << endl; 
     recurse(x, y); 
     cout << x << " " << y << endl; 

} // end if 
} // end recurse 

 Execute the function with x = 5 and y = 3. How is the output affected if  x  is a reference argument instead of a 
value argument? 

 16.  Perform a box trace of the recursive function  binarySearch , which appears in Section 2.4.2, with the array 
1, 5, 9, 12, 15, 21, 29, 31 for each of the following search values: 

a.   5  
b.   13  
c.   16

 17.  Imagine that you have 101 Dalmatians; no two Dalmatians have the same number of spots. Suppose that you 
create an array of 101 integers: The fi rst integer is the number of spots on the fi rst Dalmatian, the second integer 
is the number of spots on the second Dalmatian, and so on. Your friend wants to know whether you have a 
Dalmatian with 99 spots. Thus, you need to determine whether the array contains the integer 99. 

a.   If you plan to use a binary search to look for the 99, what, if anything, would you do to the array before 
searching it?  

b.   What is the index of the integer in the array that a binary search would examine fi rst?  
c.   If all of your Dalmatians have more than 99 spots, exactly how many comparisons will a binary search 

require to determine that 99 is not in the array?   

 18.  This problem considers several ways to compute  xn   for some  n ≥ 0. 

a.   Write an iterative function  power1  to compute xn   for  n ≥ 0.  
b.    Write a recursive function  power2  to compute xn   by using the following recursive formulation: 

          
x0 5 1

xn 5 x 3 xn21 if n . 0

c.   Write a recursive function  power3  to compute xn   by using the following recursive formulation: 

         

x0 5 1

xn 5 1xn/2 2 2 if n . 0 and n is even

xn 5 x 3 1xn/2 2 2 if n . 0 and n is odd
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d.    How many multiplications will each of the functions  power1 ,  power2 , and  power3  perform when 
computing 3 32 ? 3 19 ?

e.   How many recursive calls will  power2  and  power3  make when computing 3 32? 3 19 ?  

 19.  Modify the recursive  rabbit  function so that it is visually easy to follow the fl ow of execution. Instead of just 
adding “Enter” and “Leave” messages, indent the trace messages according to how “deep” the current recur-
sive call is. For example, the call  rabbit(4)  should produce the output 

  Enter rabbit:  n = 4 
  Enter rabbit:  n = 3 
      Enter rabbit:  n = 2 
      Leave rabbit:  n = 2  value = 1 
      Enter rabbit:  n = 1 
      Leave rabbit:  n = 1  value = 1 
 Leave rabbit:  n = 3  value = 2 
Enter rabbit:  n = 2 
Leave rabbit:  n = 2  value = 1 

Leave rabbit: n = 4  value = 3 
 Note how this output corresponds to  Figure   2-19   . 

 20.  Consider the following recurrence relation: 

f 11 2 5 1;  f 12 2 5 1;  f 13 2 5 1;  f 14 2 5 3;  f 15 2 5 5;

f 1n 2 5 f 1n 2 1 2 1 3 3 f 1n 2 5 2        for all n . 5.

a.    Compute  f(n ) for the following values of  n : 6, 7, 12, 15.  
b.       If you were careful, rather than computing  f (15) from scratch (the way a recursive C++ function would 

compute it), you would have computed  f (6), then  f (7), then  f(8), and so on up to f(15), recording the 
values as you computed them. This ordering would have saved you the effort of ever computing the 
same value more than once. (Recall the iterative version of the  rabbit  function discussed at the end of 
this chapter.)   

 Note that during the computation, you never need to remember all of the previously computed val-
ues—only the last fi ve. Taking advantage of these observations, write a C++ function that computes 
f ( n ) for arbitrary values of  n . 

 21.  Write iterative versions of the following recursive functions:  fact , writeBackward, binarySearch,

and kSmall.

 22.  Prove that the function iterativeRabbit, which appears in Section 2.7, is correct by using invariants. 
(See Appendix F for a discussion of invariants.) 

 23.  Consider the problem of fi nding the greatest common divisor (gcd) of two positive integers  a  and  b . The algo-
rithm presented here is a variation of Euclid’s algorithm, which is based on the following theorem: 4

  Theorem.  If  a  and  b  are positive integers with  a  >  b  such that  b  is not a divisor of  a , then  gcd ( a ,  b ) =  gcd ( b ,  a 
mod  b ).

 This relationship between  gcd ( a ,  b ) and  gcd ( b ,  a  mod  b ) is the heart of the recursive solution. It specifi es how 
you can solve the problem of computing  gcd ( a ,  b ) in terms of another problem of the same type. Also, if  b  does 
divide  a , then  b  =  gcd ( a ,  b ), so an appropriate choice for the base case is ( a  mod  b ) = 0. 

4 This book uses mod as an abbreviation for the mathematical operation modulo. In C++, the modulo operator is %.
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 This theorem leads to the following recursive defi nition: 

gcd 1a, b 2 5 eb if 1a mod b 2 5 0

gcd 1b, a mod b 2 otherwise

 The following function implements this recursive algorithm: 

   int  gcd( int  a,  int  b) 
 { 

 if  (a % b == 0) // Base case 
 return  b; 

 else 
 return  gcd(b, a % b); 

} // end gcd 

a.   Prove the theorem.  
b.   What happens if  b  >  a ?
c.   How is the problem getting smaller? (That is, do you always approach a base case?) Why is the base case

  appropriate?   

 24.  Let  c ( n ) be the number of different groups of integers that can be chosen from the integers 1 through  n � 1 so 
that the integers in each group add up to  n  (for example,  n � 4 � [1 � 1 � 1 � 1] � [1 � 1 � 2] � [2 � 2] ). 
Write recursive defi nitions for  c ( n ) under the following variations: 

a.    You count permutations. For example, 1, 2, 1 and 1, 1, 2 are two groups that each add up to 4.  
b.   You ignore permutations.   

 25.  Consider the following recursive defi nition: 

Acker1m, n 2 5 μ n 1 1 if m 5 0

Acker1m 2 1, 1 2 if n 5 0

Acker1m 2 1, Acker1m, n 2 1 2 2 otherwise

 This function, called  Ackermann’s function , is of interest because it grows rapidly with respect to the sizes of  m 
and  n.  What is  Acker (1, 2)? Implement the function in C++ and do a box trace of  Acker (1, 2). ( Caution:  Even 
for modest values of  m  and n,  Ackermann’s function requires  many  recursive calls.) 

  PROGRAMMING PROBLEMS   

 1.  Implement a recursive function that computes  an , where  a  is a real number and  n  is a nonnegative integer. 

 2.  Implement the algorithm  maxArray , discussed in Section 2.4.3, as a C++ function. What other recursive defi ni-
tions of  maxArray  can you describe? 

 3.  Implement the  binarySearch  algorithm presented in this chapter for an array of strings. 

 4.  Implement the algorithm  kSmall , discussed in Section 2.4.4, as a C++ function. Use the fi rst value of the array 
as the pivot. 
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You have seen that during the design of a solution, you must support several 
operations on data and therefore need to defi ne abstract data types (ADTs). Only after 
you have clearly specifi ed the operations of an ADT should you consider data structures 
for implementing it. This chapter explores implementation issues that involve arrays as 
the underlying data structures.   
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      3.1 The Approach 
 We have said that a collection of data, together with a set of operations on that data, are called an 
abstract data type, or ADT. For example, suppose that you want to store a collection of names that you 
can search rapidly. The collection of names, together with operations that add a name, remove a 
name, and search for a name, can form an ADT that solves this problem.    

 Previously, we emphasized the specifi cation of an abstract data type. When you design an 
ADT, you concentrate on what its operations do, but you ignore how you will implement them. That 
is, the description of an ADT’s operations must be rigorous enough to specify completely their 
effect on the data, yet it must not specify how to store the data nor how to carry out the operations. 
For example, the operations of an ADT should not specify whether to store the data in consecutive 
memory locations or in disjoint memory locations. The result should be a set of clearly specifi ed 
ADT operations.    

 How do you implement an ADT once its operations are clearly specifi ed? That is, how do you 
store the ADT’s data and carry out its operations? You begin by choosing particular data structures to 
store the data. Recall that a data structure is a construct that you can defi ne within a programming 
language to store a collection of data. For example, C++ arrays are data structures. 

 Your fi rst reaction to the implementation question might be to choose a data structure and then 
to write functions that access it in accordance with the ADT’s operations. Although this point of 
view is not incorrect, hopefully you have learned not to jump right into code. In general, you should 
refi ne an ADT through successive levels of abstraction yielding successively more concrete descrip-
tions of the ADT. 

 The choices that you make during the implementation process can affect the execution time of 
your code. For now, our analyses will be intuitive, but  Chapter   10    will introduce you to quantitative 
techniques that you can use to weigh the trade-offs involved. 

 Recall that the client—that is, the program that uses the ADT—should see only a wall of availa-
ble operations that act on data, as  Figure   1-5    in  Chapter   1    illustrates. Both the data structure that you 
choose to contain the data and the implementations of the ADT’s operations are hidden behind the 
wall. By now, you should realize the advantage of this wall and take steps to prevent a client’s direct 
access—either intentional or accidental—to the data structure, as shown in  Figure   3-1   . Why is such 
access undesirable? Public data fi elds allow the client to go around the wall of abstraction and access 
the ADT’s data directly. For example, suppose that you use an array  items  to store an ADT’s data. In a 
program that uses the ADT, you might, for example, accidentally access the fi rst element in the array 
by writing 

  firstItem = items[0]; 

 instead of by invoking an ADT operation. If you changed to another implementation of the ADT, your 
program would be incorrect. To correct your program, you would need to locate and change all occur-
rences of items[0] —but fi rst you would have to realize that  items[0]  is in error! Moreover, by vio-
lating the wall, a client could damage the ADT’s data. If the data were ordered in a certain way, for 
example, the ADT’s operations would ensure that the order was maintained. But if a client could alter 
the data directly, that order could be destroyed. 

An ADT is a 
collection of  data 
and a set of  
operations on that 
data 

Specifi cations 
indicate what ADT 
operations do, but 
not how to 
implement them 

Note:   Implementing an ADT as a C++ class provides a way for you to enforce the wall 
of an ADT, thereby preventing access of the data structure in any way other than by using 
the ADT’s operations. A client then cannot damage the ADT’s data. Moreover, the client 
is independent of the details of the ADT’s implementation, because it adheres only to the 
ADT’s specifi cations. 
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   3.1.1  Core Methods 

 The defi nition of a class that implements an ADT could be fairly involved. In general, you should not 
defi ne the entire class and then attempt to test it. Instead, you should identify a group of  core methods
to both implement and test before continuing with the rest of the class defi nition. By leaving the defi -
nitions of the other methods for later, you can focus your attention and simplify your task. But what 
methods should be part of this group? In general, such methods should be central to the purpose of 
the class and allow reasonable testing. We sometimes will call a group of core methods a  core group . 

 When dealing with a container such as a bag, for example, you cannot test most methods until 
you have created the container and placed items into it. Thus, adding objects to the container is a fun-
damental operation. If the method add  does not work correctly, testing other methods such as  remove
would be pointless. Thus, the  add  method would be part of the group of core methods that we imple-
ment fi rst. 

 To test whether  add  works correctly, we need a method that allows us to see the container’s data. 
For the ADT bag, the method  toVector  serves this purpose, and so it is a core method. Any construc-
tors are also fundamental and are in the core group. Similarly, other methods that a core method 
might call are part of the core group as well. Such methods might be public methods within the ADT 
or private “helper” methods.    

FIGURE 3-1         Violating the wall of ADT operations   

MyProgram
(does interesting things)

Data structurecontains

add

remove

     Note:   Methods such as  add  and  remove  that can alter the underlying data structure of a 
container are likely to have the most involved implementations. In general, you should 
defi ne such methods before the others in the class. But since you can’t test  remove  before 
add  is correct, you should delay implementing it until after  add  is completed and 
thoroughly tested. 
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   3.1.2  Using Fixed-Size Arrays 

 When implementing an ADT that represents a data collection, you need to store the data items and 
track their number. In an  array-based implementation , you store the items in an array. How much of 
the array will the items occupy? Possibly all of it, but this is not likely. That is, you need to keep track 
of the array elements that you have assigned to contain the data and those that are available for use in 
the future. The maximum length of the array—its physical size—is a known, fi xed value such as 
MAX_SIZE . You can keep track of the current number of items in the collection—that is, the collection’s 
logical size—in a variable. An obvious benefi t of this approach is that implementing an operation that 
reports this value will be easy. 

 When you add a fi rst entry to an array, you typically place it in the array’s fi rst element—that is, 
the element whose index is 0. Doing so, however, is not a requirement, especially for arrays that 
implement containers. For example, some container implementations can benefi t by ignoring the 
array element whose index is 0 and using index 1 as the fi rst element in the array. Sometimes you 
might want to use the elements at the end of the array before the ones at its beginning. For the ADT 
bag, we have no reason to be atypical, and so the objects in a bag can begin at index 0 of the array. 

 Another consideration is whether the container’s entries should occupy consecutive elements of 
the array. Requiring the  add  method to place objects into an array consecutively is certainly reasona-
ble, but why should we care, and is this really a concern? It is a concern, because we need to establish 
certain truths, or  assertions , about our planned implementation so that the action of each method is 
not detrimental to other methods. For example, the method  toVector  must “know” where  add  has 
placed the entries. Our decision now also will affect what must happen later when we remove an entry 
from the container. If we insist that the bag’s entries occupy consecutive array elements, will the 
method remove  ensure that they remain so? 

 What happens after  add  places a new entry into the last available array element? A subsequent 
addition will be impossible unless an entry is fi rst removed from the array. An  add  method that 
encounters a full array should either signal its client or allocate a larger array. In this chapter,  add  will 
return a boolean value to indicate whether it was successful. In C++ Interlude 2, which follows this 
chapter, you will learn how to resize the array. Rather than returning a value, a method can signal its 
client by throwing an exception. C++ Interlude 3 will discuss this approach.   

   3.2 An Array-Based Implementation of the ADT Bag 
 We will now make the previous discussion concrete by implementing the ADT bag as a class using an 
array to store its entries. Recall from  Chapter   1    that the ADT bag’s operations are 

  +getCurrentSize(): integer 
+isEmpty(): boolean 
+add(newEntry: ItemType): boolean 
+remove(anEntry: ItemType): boolean 
+clear(): void 
+getFrequencyOf(anEntry: ItemType): integer 
+contains(anEntry: ItemType): boolean 
+toVector(): vector 

 These operations will become public methods in our class. 
 Each method will require access to both the array of bag entries and the current number of entries 

in the bag. Thus, we make the array and a counter data members of the class. Since the length of the 

     Programming Tip:   When defi ning a class, implement and test a group of core methods. 
Begin with methods that add to a container of objects and/or have involved implementations. 

VideoNote

Core ArrayBag
methods



  An Array-Based Implementation of the ADT Bag 99

array defi nes the bag’s capacity—that is, its maximum size—we will defi ne a constant whose value is 
this size. To hide these data members from the clients of the class, we make them private. Thus, we 
defi ne the following private data members within the header fi le for our class:   

   static const int  DEFAULT_CAPACITY = 50; 
ItemType items[DEFAULT_CAPACITY]; // Array of bag items 
  int itemCount; // Current count of bag items
  int maxItems; // Max capacity of the bag 

  Figure   3-2    illustrates these data members, assuming a bag of integers.  

FIGURE 3-2         An array-based implementation of the ADT bag   
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     Note:    Data members should be private

 By making a class’s data members private, you control how a client can access or change 
their values. Doing so also makes debugging a program’s logic easier. If the client could 
manipulate this data directly because the data was public, you would not know where to 
look for errors. 

A client of  the class 
cannot access the 
class’s private 
members directly 

   3.2.1  The Header File 

 Having chosen the data members, and knowing the details of  BagInterface , which we developed in 
 Chapter   1   , we can write the header fi le shown in Listing 3-1 for our class of bags. We name the class 
ArrayBag  and give it a default constructor, which is suffi cient for this example. Notice the small value 
given to the constant  DEFAULT_CAPACITY . It enables us to fi ll a bag completely and easily to verify that 
our class behaves gracefully in this situation. After you study C++ Interlude 2, you will be able to add 
another constructor that enables the client to set the capacity of the bag during program execution. We 
included the data fi eld maxItems in anticipation of this enhancement. 

 Also notice that we declare a private method  getIndexOf . This method returns the index of the ele-
ment within the array  items  that contains a given entry. As you will see later, we can use  getIndexOf  to 
make the methods  contains  and  remove  more time effi cient. You most likely would not decide to add 
getIndexOf  to the header fi le until after you began work on the implementation of the public methods. 

LISTING 3-1 The header fi le for the class ArrayBag  

  /** Header file for an array-based implementation of the ADT bag. 
 @file ArrayBag.h */ 

#ifndef _ARRAY_BAG 
#define _ARRAY_BAG 

#include "BagInterface.h" 
(continues)
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  template<class  ItemType>
  class  ArrayBag : public  BagInterface<ItemType>
{
  private : 

static const int  DEFAULT_CAPACITY = 6;// Small size to test for a full bag
ItemType items[DEFAULT_CAPACITY];     // Array of bag items 
int  itemCount; // Current count of bag items 
int  maxItems;                             // Max capacity of the bag 

// Returns either the index of the element in the array items that 
    // contains the given target or -1, if the array does not contain 
    // the target. 

int  getIndexOf(const  ItemType& target) const;

  public:
    ArrayBag(); 

int  getCurrentSize() const;
bool  isEmpty() const;
bool  add(const  ItemType& newEntry); 
bool  remove(const  ItemType& anEntry); 
void  clear();
bool  contains(const  ItemType& anEntry) const;
int  getFrequencyOf(const  ItemType& anEntry) const;
vector<ItemType> toVector() const;

}; // end ArrayBag 

#include "ArrayBag.cpp" 
 #endif 

     Programming Tip:   When a method does not alter the class’s data members, make it 
a const  method as a safeguard against an implementation error. 

     3.2.2  Defi ning the Core Methods 

  Section   3.1.1    suggests that we consider the methods  add  and  toVector  as core methods and defi ne 
them fi rst. Since we will want to check that  add  correctly increments the count of the bag’s entries, we 
should also implement getCurrentSize  and  isEmpty . Thus, we add these two methods to our core 
group, along with appropriate constructors. 

 As we defi ne the methods for the class  ArrayBag , we place them into the fi le  ArrayBag.cpp , 
which begins as follows: 

  /** Implementation file for the class ArrayBag. 
 @file ArrayBag.cpp */ 

#include "ArrayBag.h" 

The constructor.  The following default constructor initializes the current number of items in the 
bag to zero, as well as the bag’s capacity: 

   template<class  ItemType>
 ArrayBag<ItemType>::ArrayBag() 
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 { 
    itemCount = 0; 
    maxItems = DEFAULT_CAPACITY; 
} // end default constructor 

 Although you can simply use an assignment statement to assign a value to a data member, as we 
have done here, it is preferable to use an  initializer . Each initializer uses a functional notation that 
consists of a data member name followed by its initial value enclosed in parentheses—for example, 
itemCount(0) . If you write more than one initializer, you separate them with commas. A colon pre-
cedes the fi rst (or only) initializer. Thus, a better defi nition of  ArrayBag ’s default constructor is 

   template<class  ItemType>
ArrayBag<ItemType>::ArrayBag(): itemCount(0), maxItems(DEFAULT_CAPACITY) 
 { 
 } // end default constructor 

 Often the implementation of a constructor consists only of initializers, so its body is empty, 
as is the case here. Note that you can use these initializers with constructors but not with other 
methods. 

     Programming Tip:   When a class has several data members, the constructor initial-
izes them in the order in which they appear in the class defi nition instead of the order in 
which the initializers appear in the constructor defi nition. You should use the same order in 
both cases to avoid confusion, even if the initialization order does not make a difference. 

The method add. To add a new item to a bag that is not full, we can place it right after the last item in 
the array by writing the following statement: 

  items[itemCount] = newEntry; 

 If we are adding to an empty bag,  itemCount  will be zero, and the assignment will be to  items[0] . If 
the bag contains one entry, an additional entry will be assigned to  items[1] , and so on. In this way, no 
other items in the array need to move. After each addition to the bag, we increase the counter  item-
Count .  Figure   3-3    depicts this insertion. If  add  is successful, it returns true. Otherwise—if the bag is 
full, for example— add  returns false, as you can see from its defi nition: 

   template<class ItemType> 
  bool  ArrayBag<ItemType>::add(const  ItemType& newEntry) 
 { 

bool hasRoomToAdd = (itemCount < maxItems); 
if  (hasRoomToAdd)

    { 
        items[itemCount] = newEntry; 
        itemCount++; 
    } // end if 

return  hasRoomToAdd;

 } // end add   

     Note:   The entries in a bag have no particular order. Thus, the method  add  can place a 
new entry into any convenient element of the array  items . In the previous defi nition of 
add , that element is the one immediately after the last element used. 
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The method   toVector . The method  toVector  in our initial core group gets the entries that are in a 
bag and returns them to the client within a vector. A simple loop within  toVector  adds the bag’s 
entries to this vector. 

   template<class  ItemType>
   vector<ItemType> ArrayBag<ItemType>:: toVector() const  
{
    vector<ItemType> bagContents; 

for  (int  i = 0; i < itemCount; i++) 
        bagContents.push_back(items[i]); 

return bagContents;
 } // end toVector 

FIGURE 3-3         Inserting a new entry into an array-based bag   
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Note:   An array-based implementation of an ADT restricts the number of items that you 
can store. Thus, the implementation should check whether the array has space available 
before inserting a new item, and the client should take appropriate action if the insertion 
is impossible. 

     Programming Tip:   Variables that are local to a method’s implementation should 
not be data members of the class. 

     Note:   The class  vector  is in the Standard Template Library (STL) and is described in 
 Appendix   A   . 

The methods getCurrentSize  and  isEmpty.  The last two methods in our core group have the 
following straightforward defi nitions: 

   template<class  ItemType>
  int  ArrayBag<ItemType>::getCurrentSize() const  
{

return  itemCount;
 }   // end getCurrentSize

  template<class  ItemType>
  bool  ArrayBag<ItemType>::isEmpty() const  
{

return  itemCount == 0; 
 } // end isEmpty 
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     3.2.3  Testing the Core Methods 

  Getting ready.  After defi ning the core methods, you should test them. But what about the other 
methods in BagInterface ? Since  ArrayBag —as given in Listing 3-1—adheres to the specifi cations 
in BagInterface , the C++ compiler will look for a defi nition of each method declared in this inter-
face. Should we wait until we complete their defi nitions to begin testing? Absolutely not! Testing 
methods as you write them makes fi nding logical errors easier. However, instead of writing a com-
plete implementation of each method in BagInterface , we can provide incomplete defi nitions of the 
methods we choose to temporarily ignore. 

 An incomplete defi nition of a method is called a stub . The stub needs only to keep the syntax 
checker happy. For example, for each method that returns a value, you can avoid syntax errors by add-
ing a return  statement that returns a dummy value. Methods that return a boolean value should 
return false, for example. This result is reasonable, since the method does not perform its specifi ed 
behavior. On the other hand, void methods can simply have an empty body. 

 For instance, the method  remove  ultimately will return true or false, so its stub must contain a 
return  statement and could appear as follows: 

   template<class  ItemType>
  bool  ArrayBag<ItemType>::remove(const  ItemType& anEntry) 
 { 

return false; // STUB 
}   // end remove 

 A stub for the void method  clear  could be 

   template<class  ItemType>
  void  ArrayBag<ItemType>::clear()
 { 

// STUB 
 } // end clear 

 Note that if you plan to call a stub within your test program, the stub should report that it was invoked 
by displaying a message. 

         Question 1  What happens to the array  items  when the method  add  cannot add another 
entry to it, because it is already full?    

         Question 2  If a client of  ArrayBag  creates a vector containing fi ve items, what happens to 
those items after the vector is passed as an argument to the method  toVector ?    

CHECK POINT

     Programming Tip:   Do not wait until you complete the implementation of an ADT 
before testing it. By writing stubs, which are incomplete defi nitions of required methods, 
you can begin testing early in the process. 

A test program.  Listing 3-2 contains a program that tests the core methods  add ,  toVector , 
getCurrentSize , and  isEmpty  of the class  ArrayBag  at this stage of its development. The  main
function creates an empty bag by using the default constructor and passes it to the function 
bagTester . This function calls another function,  displayBag , that tests the methods  toVector
and getCurrentSize . 
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  LISTING 3-2 A program that tests the core methods of the class  ArrayBag

  #include <iostream> 
#include <string> 
#include "ArrayBag.h" 

  using  namespace std; 

  void  displayBag(ArrayBag<string>& bag) 
 { 
    cout << "The bag contains " << bag.getCurrentSize() 
          << " items:" << endl; 
    vector<string> bagItems  = bag.toVector();

int  numberOfEntries = (int)bagItems.size();
for  (int i = 0; i < numberOfEntries; i++) 

    { 
         cout << bagItems[i] << " "; 
    } // end for 
    cout << endl << endl; 
 } // end displayBag 

  void  bagTester(ArrayBag<string>& bag) 
 { 
    cout << "isEmpty: returns " << bag.isEmpty() 
          << "; should be 1 (true)" << endl; 
    displayBag(bag); 

    string items[] = {"one", "two", "three", "four", "five", "one"}; 
    cout << "Add 6 items to the bag: " << endl; 

for (int  i = 0; i < 6; i++) 
    { 
       bag.add(items[i]); 
    } // end for 

    displayBag(bag); 

    cout << "isEmpty: returns " << bag.isEmpty() 
          << "; should be 0 (false)" << endl; 
    cout << "getCurrentSize: returns " << bag.getCurrentSize() 
          << "; should be 6" << endl; 

    cout << "Try to add another entry: add(\"extra\") returns " 
          << bag.add("extra") << endl; 
 }   // end bagTester 

  int  main()
 { 
    ArrayBag<string> bag; 
    cout << "Testing the Array-Based Bag:" << endl; 
    cout << "The initial bag is empty." << endl; 
    bagTester(bag); 
    cout << "All done!" << endl; 

return  0;
 } // end main 
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Note:   If you defi ne a constructor for a class but do not also defi ne a default constructor, 
the compiler will not generate one for you. In this case, a statement such as 

  ArrayBag<string> aBag; 

 is illegal. 

Output

  Testing the Array-Based Bag: 
The initial bag is empty. 
isEmpty: returns 1; should be 1 (true) 
The bag contains 0 items: 

Add 6 items to the bag: 
The bag contains 6 items: 
one two three four five one 

isEmpty: returns 0; should be 0 (false) 
getCurrentSize: returns 6; should be 6 
Try to add another entry: add("extra") returns 0 
All done! 

     3.2.4  Implementing More Methods 

 Now that we can add items to a bag successfully, we can defi ne the other methods. Although we will 
not do so here, you should test each new defi nition as you complete it. 

Programming Tip:   Testing each method as you defi ne it is especially important 
when its logic is not obvious. However, even the simplest method is susceptible to a care-
less mistake, which can lead to hours of frustrating debugging of other methods that 
depend on the supposedly correct method. 

   The method getFrequencyOf. To count the number of times a given object occurs in a bag, we 
count the number of times the object occurs in the array  items . Using a  while  loop to cycle through 
the array’s indices from 0 to  itemCount  – 1, we compare the given object to every object in the array. 
Each time we fi nd a match, we increment a counter. When the loop ends, we simply return the value of 
the counter. 

 The method defi nition follows: 

   template<class  ItemType>
  int  ArrayBag<ItemType>:: getFrequencyOf(const  ItemType& anEntry) const  
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 { 
int  frequency = 0; 
int  curIndex = 0; // Current array index 
while  (curIndex < itemCount) 
 { 

if  (items[curIndex] == anEntry) 
       { 
           frequency++; 
       } // end if 

curIndex++; // Increment to next entry 
} // end while 

return  frequency;
 } // end getFrequencyOf 

The method contains.  One easy way to defi ne the method contains  is to have it call the method 
getFrequencyOf , which we just defi ned. If the frequency of occurrence of a given entry is greater 
than zero, the bag must contain that entry. If the frequency is zero, the bag does not contain the entry. 
Thus, you could defi ne  contains  as follows: 

   template<class ItemType> 
  bool  ArrayBag<ItemType>::contains(const  ItemType& target) const  
 { 

return  getFrequencyOf(target) > 0; 
 }   // end contains 

 Although this method will work, it usually will do more work than necessary. After all,  
getFrequencyOf  must check every entry in the bag, whereas  contains  could quit looking at entries 
as soon as it fi nds one that is the same as the given entry. That is, its logic can be described by the 
following pseudocode: 

   contains(anEntry) 

      while (anEntry  is not found and we have more array elements to check)
    {
          if (anEntry equals the next array entry)
           anEntry is found in the array  

}  

 This loop terminates under one of two conditions: Either  anEntry  has been found in the array or the 
entire array has been searched without success. 

 Based on this pseudocode, a defi nition of the method  contains  follows: 

   template<class ItemType> 
  bool  ArrayBag<ItemType>::contains(const  ItemType& anEntry) const  
 { 

bool  found = false;
      int  curIndex = 0; // Current array index
      while  (!found && (curIndex < itemCount))

 { 
if  (anEntry == items[curIndex]) 

        { 
            found = true;

 } // end if 

curIndex++; // Increment to next entry
 }  // end while

return  found;
 } // end contains
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    3.2.5  Methods That Remove Entries 

 We have postponed the defi nition of the method  remove  until now because it involves more thought 
than the other methods. The method  clear , however, is relatively simple, even though we are leaving 
it until last. 

The method remove.  We now want to remove a given entry—call it  anEntry —from a bag. If the 
entry occurs more than once in the bag, we will remove only one occurrence. Exactly which occur-
rence is removed is unspecifi ed. We will simply remove the fi rst occurrence of  anEntry  that we 
encounter while searching for it. Adhering to our specifi cations in  BagInterface , we will return 
either true or false to indicate whether the removal was successful. 

 Assuming that the bag is not empty, we search the array  items  until either we fi nd  anEntry  in the 
array or we note where it occurs within the array.  Figure   3-4    illustrates the array after a successful 
search.

         Question 3  What is an advantage and a disadvantage of calling the method  getFrequencyOf
from contains ? 

CHECK POINT

     Note: Testing the additional methods 

 As you defi ne additional methods for the class  ArrayBag , you should test them. While 
you could focus only on these additional methods, you really should form a test program 
incrementally. In this way, you test all of the methods you have defi ned so far. By using a 
small value for the constant  DEFAULT_CAPACITY , you easily can test what happens when a 
bag becomes full. 

     Note: Two kinds of loops 

 To count how many times an entry occurs in an array, the method  getFrequencyOf  uses a 
loop that cycles through all of the array’s entries. In fact, the body of the loop executes 
itemCount  times. In contrast, to indicate whether a given entry occurs in an array, the 
loop in the method contains  ends as soon as the desired entry is discovered. The body of 
this loop executes between one and  itemCount  times. You should be comfortable writing 
loops that execute either a defi nitive or a variable number of times. 

FIGURE 3-4         The array  items  after a successful search for the string  "Alice"
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 Now consider how to remove the located item from the array. You could blank it out, but this 
strategy can lead to gaps in the array, as  Figure   3-5   a illustrates. An array that is full of gaps has three 
signifi cant problems: 

• itemCount  – 1 is no longer the index of the last item in the array. You would need another vari-
able,  lastPosition , to contain this index.  

•   Because the items are spread out, the method  contains  might have to look at every element of 
the array, even when only a few items are present.  

•   When  items[maxItems   - 1]  is occupied, the bag could appear full, even when fewer than 
maxItems  items are present.   

 We could get rid of that gap by copying each successive entry to the previous element in the array, beginning 
with the entry after the removed item and ending with the last entry, as shown in  Figure   3-5   b. The result of 
shifting these entries is shown in  Figure   3-5   c. This time-consuming approach is not necessary, however. 

  Remember that we are not required to maintain any particular order for a bag’s entries. So instead 
of shifting array entries after removing an entry, we can replace the entry being removed with the last 
entry in the array, as follows. After locating  anEntry  in  items[index] , as  Figure   3-6   a indicates, we 
copy the entry in  items[itemCount - 1]  to  items[index]  ( Figure   3-6   b). We then ignore the entry in 
items[itemCount - 1]  by decrementing  itemCount . 

  The following pseudocode details the steps needed to remove a given entry from a bag. Note that by 
decrementing itemCount  before using it in an index, we compute  itemCount  – 1 once instead of twice. 

   Search the array  items for anEntry 
  if (anEntry  is in the bag at items[index]) 
{

Decrement the counter itemCount 

FIGURE 3-5         (a) A gap in the array  items  after deleting the entry in  items[index]  and decrementing itemCount; (b) 
shifting subsequent entries to avoid a gap; (c) the array after shifting   
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    items[index] = items[itemCount] 
return true  

 }
  else  

return false   

 The initial search for  anEntry  is the same search as done in the method  contains . Calling  contains
here is not much help, as we want to know not only whether the bag contains  anEntry  but also, if it 
does, where it occurs in the array. Clearly, we could modify the loop in  contains  slightly, but a better 
way places the loop in a private method that both  contains  and  remove  can call. This method is 
getIndexOf , which we declared earlier in the header fi le and whose defi nition follows: 

   template<class  ItemType>
  int  ArrayBag<ItemType>::getIndexOf(const  ItemType& target) const  
{

bool  found = false;
int  result = -1; 
int  searchIndex = 0; 

// If the bag is empty, itemCount is zero, so loop is skipped 
while  (!found && (searchIndex < itemCount)) 

    { 
if  (items[searchIndex] == target) 

        { 
            found = true;

      result = searchIndex; 
        } 

else  
   { 

            searchIndex++; 
        } // end if 
  } // end while 

return  result;
 } // end get IndexOf 

(a)

(b)
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FIGURE 3-6         Avoiding a gap in the array while removing an entry   
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 The method  remove  now has the following defi nition: 

   template<class  ItemType>
  bool  ArrayBag<ItemType>::remove(const  ItemType& anEntry) 
 { 

int  locatedIndex = getIndexOf(anEntry); 
bool  canRemoveItem = !isEmpty() && (locatedIndex > -1); 
if  (canRemoveItem)

    { 
        itemCount–-; 
        items[locatedIndex] = items[itemCount]; 
    } // end if 

return  canRemoveItem;
 } // end remove 

Programming Tip: Should the method getIndexOf  be public or private? 

 You might think that the method  getIndexOf , since it returns the index of an entry in the 
array  items , would be useful to a client. While that might be true, there are important 
reasons why the method should be private. We declared the array  items  as private because 
it is detail of our array-based implementation. The client cannot access the entries in this 
array without invoking a public method of our class. The indices of these entries are also 
implementation details that are of no use to the client because it cannot access the array 
items  by name. Any method that returns an index to a private array should be declared as 
private. 

         Question 4  Revise the defi nition of the method  contains  so that it calls the method 
getIndexOf .    

         Question 5  Should we revise the specifi cation of the method  contains  so that if it locates 
a given entry within the bag, it returns the index of that entry?    

         Question 6  Revise the defi nition of the method  getIndexOf  so that it does not use a 
boolean variable.    

CHECK POINT

The method clear.  The method  clear  can make a bag appear empty simply by setting  itemCount  to 
zero. Thus, we have the following defi nition for this method: 

   template<class  ItemType>
  void  ArrayBag<ItemType>::clear()
 { 
    itemCount = 0; 
 }   // end clear   

   3.2.6  Testing 

 To test our completed class, we can add the following statements to the method  bagTester  that 
appears in Listing 3-2: 

  cout << "contains(\"three\"): returns " << bag.contains("three") 
      << "; should be 1 (true)" << endl; 
cout << "contains(\"ten\"): returns " << bag.contains("ten") 
      << "; should be 0 (false)" << endl; 
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cout << "getFrequencyOf(\"one\"): returns " 
      << bag.getFrequencyOf("one") << " should be 2" << endl; 
cout << "remove(\"one\"): returns " << bag.remove("one") 
      << "; should be 1 (true)" << endl; 
cout << "getFrequencyOf(\"one\"): returns " 
      << bag.getFrequencyOf("one") << " should be 1" << endl; 
cout << "remove(\"one\"): returns " << bag.remove("one") 
      << "; should be 1 (true)" << endl; 
cout << "remove(\"one\"): returns " << bag.remove("one") 
      << "; should be 0 (false)" << endl; 
cout << endl; 

 displayBag(bag); 

cout << "After clearing the bag, "; 
 bag.clear(); 

cout << "isEmpty: returns " << bag.isEmpty() 
      << "; should be 1 (true)" << endl; 

     Note:   References such as  bag.itemCount  and  bag.items[4] would be illegal within 
the client, because itemCount  and  items  are within the private portion of the class. 

Note:   To implement an ADT, given implementation-independent specifi cations of the 
ADT’s operations, you fi rst must choose a data structure to contain the data. Next, you 
declare a class within a header fi le. The ADT’s operations are public methods within the 
class, and the ADT’s data consists of class members that are typically private. You then 
implement the class’s methods within an implementation fi le. The program that uses the 
class will be able to access the data only by using the ADT’s operations. 

     Note:   In practice, when choosing among implementations of an ADT, you must ask 
whether the fi xed-size restriction of an array-based implementation presents a problem in 
the context of a particular application. The answer to this question depends on two fac-
tors. The obvious factor is whether, for a given application, you can predict in advance 
the maximum number of items in the ADT at any one time. If you cannot, it is quite pos-
sible that an operation—and hence the entire program—will fail because the ADT in the 
context of a particular application requires more storage than the array can provide. 

 On the other hand, if for a given application you can predict in advance the maxi-
mum number of items in an ADT at any one time, you must explore a more subtle factor: 
Would you waste storage by declaring an array to be large enough to accommodate this 
maximum number of items? Consider a case in which the maximum number of items is 
large, but you suspect that this number rarely will be reached. For example, suppose that 
a bag could contain as many as 10,000 items, but the actual number of items in the bag 
rarely exceeds 50. If you declare 10,000 array locations at compilation time, at least 
9,950 array locations will be wasted most of the time. 

 We can avoid both of the previous cases by allocating a larger—or smaller—
array during execution. The next C++ Interlude will show you how. 
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      3.3 Using Recursion in the Implementation 
 The previous chapter gave several examples of how to use recursion to process an array. If you exam-
ine the defi nition of  ArrayBag  that we have just developed, you will see two loops that can be replaced 
by recursion: One is in the public method  getFrequencyOf , and the other is in the private method 
getIndexOf . Let’s look at the details. 

   3.3.1  The Method  getIndexOf

 We begin with the private method that searches the array for a given entry. The iterative defi nition 
examines each entry in the array one at a time in sequential order until it either fi nds the desired one or 
reaches the end of the array without success. Suppose that  searchIndex  is the index of the next array 
element to examine. We have two base cases: 

•   If  items[searchIndex]  is the entry we seek, we are done.  
•   If  searchIndex  equals  itemCount , we are done, because the entry is not in the array.   

 The recursive step is to search the rest of the array beginning with  items[searchIndex + 1] . 
 To accomplish this recursion,  getIndexOf  needs  searchIndex  as a parameter. Since the method 

is private, we need not defi ne yet another private method for it to call. However, we must revise its 
declaration in the header fi le as follows: 

  int  getIndexOf(const  ItemType&target, int  searchIndex) const;

 We then can write the following recursive defi nition for this method: 

   template<class  ItemType>
  int  ArrayBag<ItemType>::getIndexOf(const  ItemType& target, int  searchIndex) const  
{

int  result = -1; 
if  (searchIndex < itemCount) 

    { 
if  (items[searchIndex] == target) 

        { 
           result = searchIndex; 
        } 

else  
 { 

           result = getIndexOf(target, searchIndex + 1); 
        } // end if 
    } // end if 

return  result;
 } // end getIndexOf 

 Because we have changed the header of the method, we need to locate and change the calls to 
getIndexOf  within the other methods of  ArrayBag . Thus, we will change the calls within the methods 
remove  and  contains  from 

  getIndexOf(anEntry); 

 to 

  getIndexOf(anEntry, 0);   
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   3.3.2  The Method getFrequencyOf  

 The method  getFrequencyOf  also searches an array, much as  getIndexOf  does, but unlike 
getIndexOf ,  getFrequencyOf  must examine every entry in the array. That is, the search does not end 
if an array entry matches the entry we seek. 

 Suppose that  searchIndex  is the index of the next array element to examine. A recursive defi ni-
tion for this search has only one base case: If  searchIndex  equals  itemCount , we are done. However, 
we have two recursive steps: 

•   If  items[searchIndex]  is the entry we seek, the frequency of occurrence of this entry is one 
more than its frequency of occurrence in the rest of the array.  

•   If  items[searchIndex]  is not the entry we seek, the frequency of occurrence of the entry is 
the same as its frequency of occurrence in the rest of the array.   

 Just as we had to add another parameter to  getIndexOf , the recursive method here needs 
searchIndex  as a parameter. However,  getFrequencyOf  is a public method, so we cannot change its 
signature. Instead,  getFrequencyOf  must call a private method that accomplishes the recursive 
search. Thus, let’s add the following declaration to the private portion of the header fi le: 

   int  countFrequency(const  ItemType& target, int  searchIndex) const;

 The method of  getFrequencyOf  simply calls this private method, so its defi nition is as follows: 

   template<class  ItemType>
  int  ArrayBag<ItemType>::getFrequencyOf(const  ItemType& anEntry) const  
{

return  countFrequency(anEntry, 0); 
 } // end getFrequencyOf 

 The recursive defi nition of the private method  countFrequency  is 

   template<class  ItemType>
  int  ArrayBag<ItemType>::countFrequency(const  ItemType& target, 

int  searchIndex) const  
{

if  (searchIndex < itemCount) 
    { 

if  (items[searchIndex] == target) 
        { 

return  1 + countFrequency(target, searchIndex + 1); 
        } 

else  
 { 

return  countFrequency(target, searchIndex + 1); 
        } // end if 

 } 
else  

return  0; // Base case 
 } // end countFrequency 

 Stylistically, we prefer to have only one exit from a method. To revise  countFrequency  so that it 
has one return  statement instead of three, we defi ne a local variable,  frequency , to contain the return 
value. The method then has the following defi nition. Note that the base case is implicit. 

   template<class ItemType> 
  int  ArrayBag<ItemType>::countFrequency(const  ItemType& target, 

int  searchIndex) const  
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 { 
int  frequency = 0; 
if  (searchIndex < itemCount) 

    { 
if  (items[searchIndex] == target) 

        { 
            frequency = 1 + countFrequency(target, searchIndex + 1); 
        } 

else  
{

            frequency = countFrequency(target, searchIndex + 1); 
        }   // end if 

} // end if 

return  frequency;
 } // end countFrequency     

1.  By using a class to implement an ADT, you encapsulate the ADT’s data and operations. In this way, you can 
hide implementation details from the program that uses the ADT. In particular, by making the class’s data 
members private, you can change the class’s implementation without affecting the client. 

2.  Given an interface that specifi es an ADT in an implementation-independent way, derive a class from the inter-
face and declare the class within a header fi le. Choose a data structure to contain the ADT’s data. Then imple-
ment the class’s methods within an implementation fi le. 

3.  You should make a class’s data members private so that you can control how a client can access or change the 
data.

4.  An array-based implementation of an ADT stores the ADT’s data in an array. 

5.  Generally, you should not defi ne an entire class and then attempt to test it. Instead, you should identify a group 
of core methods to both implement and test before continuing with the rest of the class defi nition. 

6.  Stubs are incomplete defi nitions of a class’s methods. By using stubs for some methods, you can begin testing 
before the class is completely defi ned. 

7.  A client must use the operations of an ADT to manipulate the ADT’s data. 

  EXERCISES       

1.  Consider a bag of integers. Write a client function that computes the sum of the integers in the bag  aBag .

2.  Write a client function  replace  that replaces a given item in a given bag with another given item. The function 
should return a boolean value to indicate whether the replacement was successful. 

3.  The previous exercise describes the function  replace . This operation exists outside of the ADT bag; that is, it is 
not an ADT bag operation. Instead, its implementation is written in terms of the ADT bag’s operations. 

 a.   What is an advantage and a disadvantage of the way that  replace  is 
implemented?

b.   What is an advantage and a disadvantage of adding the operation  replace  to the ADT bag?   

     SUMMARY       
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  PROGRAMMING PROBLEMS               

4.  Design and implement an ADT that represents a rectangle. Include typical operations, such as setting and 
retrieving the dimensions of the rectangle, and fi nding the area and the perimeter of the rectangle. 

5.  Design and implement an ADT that represents a triangle. The data for the ADT should include the three sides 
of the triangle but could also include the triangle’s three angles. This data should be in the private section of the 
class that implements the ADT. 

 Include at least two initialization operations: one that provides default values for the ADT’s data, and 
another that sets this data to client-supplied values. These operations are the class’s constructors. The ADT also 
should include operations that look at the values of the ADT’s data; change the values of the ADT’s data; com-
pute the triangle’s area; and determine whether the triangle is a right triangle, an equilateral triangle, or an 
isosceles triangle. 

6.  Write a recursive array-based implementation of the method  toVector  for the class  ArrayBag .

7.  Write a client function that merges two bags into a new third bag. Do not destroy the original two bags. 

8.  Specify and defi ne a method for  ArrayBag  that removes a random entry from the bag. 

9.  Add a constructor to the class  ArrayBag  that creates a bag from a given array of entries. 

1.  Design and implement an ADT that represents the time of day. Represent the time as hours and minutes on a 
24-hour clock. The hours and minutes are the private data members of the class that implements the ADT. 
Include at least two initialization operations: one that provides a default value for the time, and another that sets 
the time to a client-supplied value. These operations are the class’s constructors. Also include operations that 
set the time, increase the present time by a number of minutes, and display the time in 12-hour and 24-hour 
notations.

2.  Design and implement an ADT that represents a calendar date. You can represent a date’s month, day, and year 
as integers (for example, 4/1/2014). Include operations that advance the date by one day and display the date by 
using either numbers or words for the months. As an enhancement, include the name of the day. 

3.  Design and implement an ADT that represents a price in U.S. currency as dollars and cents. After you complete 
the implementation, write a client function that computes the change due a customer who pays  x  for an item 
whose price is  y .

4.  Design and implement an ADT that represents a bank account. The data of the ADT should include the cus-
tomer name, the account number, and the account balance. The initialization operation should set the data to 
client-supplied values. Include operations for a deposit and a withdrawal, the addition of interest to the balance, 
and the display of the statistics of the account. 

5.  Add the methods  union ,  intersection , and  difference  to the class  ArrayBag . Exercises 6, 7, and 8 of  
Chapter   1    describe these operations. 

6.  Implement the ADT set that you specifi ed in Programming Problem 5 of  Chapter   1    by using an array. 

7.  Implement the ADT pile that you specifi ed in Programming Problem 6 of  Chapter   1    by using an array. 

8.  Implement the ADT polynomial that Exercise 9 in  Chapter   1    describes by using an array. 
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9.  Implement the ADT appointment book, described in Section 1.4.1 of  Chapter   1   . Write a program that demon-
strates your new class. 

10.  Specify and implement an ADT for fractions. Provide operations that add, subtract, multiply, and divide these 
numbers. The results of all arithmetic operations should be in lowest terms, so include a private method  reduc-
eToLowestTerms. Exercise 23 in  Chapter   2    will help you with the details of this method. To simplify the deter-
mination of a fraction’s sign, you can assume that the denominator of the fraction is positive. 

11.  Specify and implement an ADT for mixed numbers, each of which contains an integer portion and a fractional 
portion in lowest terms. Assume the existence of the ADT fraction, as described in the previous problem. Pro-
vide operations that add, subtract, multiply, and divide mixed numbers. The results of all arithmetic operations 
should have fractional portions that are in lowest terms. Also include an operation that converts a fraction to a 
mixed number. 

12.  Implement the ADT recipe book as described in Section 1.4.2 of  Chapter   1   . In doing so, implement the ADT 
measurement. Add operations as necessary. For example, you should add an operation to the recipe book to 
scale a recipe. 

13.  You can use either a set or a bag to create a spell checker. The set or bag serves as a dictionary and contains a 
collection of correctly spelled words. To see whether a word is spelled correctly, you see whether it is contained 
in the dictionary. Use this scheme to create a spell checker for the words in an external fi le. To simplify your 
task, restrict your dictionary to a manageable size. 

14.  Repeat the previous project to create a spell checker, but instead place the words whose spelling you want to 
check into a bag. The difference between the dictionary (the set or bag containing the correctly spelled words) 
and the bag of words to be checked is a bag of incorrectly spelled words. 
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  Prerequisites 
  Chapter   3    Array-Based Implementations 

This C++ Interlude discusses memory allocation for variables and arrays and 
introduces you to pointers to complete the discussion on polymorphism begun in the 
fi rst C++ Interlude. Pointers are a powerful tool for the programmer, but you must be 
careful to use them correctly. This interlude explains the need for pointers and shows 
when and how to safely use them. Certain aspects of pointers are not covered in this 
interlude, but those features either are unnecessary in this textbook or introduce unsafe 
practices.

 We will introduce memory allocation during execution instead of compilation and 
show how pointers are involved with this process. We will also discuss how to create a 
new and larger array during execution, if an array becomes full. You will see examples 
of this process at the end of this interlude. 

 Throughout our discussion here, and throughout the book, we will stress safe and 
secure programming practices. To begin our discussion, let’s consider how memory is 
allocated for local variables and parameters.   

      C++
Interlude
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      C2.1 Memory Allocation for Variables and 
Early Binding of Methods 

 When you declare an ordinary variable  x  to have the data type  int , the C++ compiler allocates a 
memory cell that can hold an integer. You use the identifi er  x  to refer to this cell. To put the value 5 in 
the cell, you could write 

   int x = 5; 

 To display the value that is in the cell, you could write 

  cout << "The value of x is " << x << endl; 

 As discussed in  Chapter   2   , a function’s locally declared variables such as  x  are placed into 
an activation record with its parameters and some bookkeeping data. These activation records 
are stored in an area of your application’s memory called the  run-time stack . Each time a 
function is called, an activation record is automatically created on the run-time stack. When 
the function ends, the activation record is destroyed, freeing the memory used for the local 
variables and parameters. At that point, the function’s local variables and their values are 
no longer accessible to your program. Your program then returns to where the function was 
invoked and executes the statement following the function call. This behavior is the same 
for methods. 

 When you create an object, the storage for the data members of that object are also placed into an 
activation record for the currently executing function or method. The statements 

  PlainBox<string> myPlainBox;  
MagicBox<string> myMagicBox = MagicBox<string>(); 

 show two different ways of invoking default constructors to create instances of  PlainBox  and 
MagicBox , respectively. When these objects are instantiated, their data fi elds are placed on the run-
time stack just as primitive data types are. Recall from C++ Interlude 1 that the names of those data 
fi elds are  item  and  firstItemStored . 

 The compiler also knows that if you invoke the  setItem  method on these objects by writing 

  myPlainBox.setItem("Fun Item"); 
myMagicBox.setItem("Secret Item"); 

 the  PlainBox  version of the  setItem  method should be called for  myPlainBox , and the  MagicBox  ver-
sion of the setItem  method should be called for  myMagicBox . This choice, which is an example of 
early binding , is made during compilation and cannot be altered during execution. 

 Most of the time, this automatic memory management and early binding are all you need in your 
program. However, two situations can arise when they are not: 

• You want to take advantage of polymorphism.  
• You must access an object outside of the function or method that creates it.       

   C2.2 A Problem to Solve 
 Suppose your friend was so impressed with your work on the three boxes discussed in C++ Interlude 1 
that she asked you to continue helping with the video game. She would like you to write a function 
that takes two arguments: an object of any of the three types of boxes and an item of type  string . The 
function should place the item in the box by invoking the box’s  setItem  method.  

Two situations when 
automatic memory 
management and 
early binding are 
insuffi cient 
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 Since  ToyBox  and  MagicBox  are derived from  PlainBox , as Figure C2-1 illustrates, you may 
think that the following function defi nition would suffi ce: 

   void placeInBox(PlainBox<string>& theBox, string theItem) 
 { 
  theBox.setItem(theItem); 
} // end placeInBox

 The parameter  theBox  can accept as an argument any  PlainBox  object or an object of a 
class derived from  PlainBox . This function could then be used in the following sequence of 
statements:    

  string specialItem = "Riches beyond compare!"; 
string otherItem = "Hammer"; 

PlainBox<string> myPlainBox; 
placeInBox(myPlainBox, specialItem); 

MagicBox<string> myMagicBox; 
placeInBox(myMagicBox, otherItem); 
placeInBox(myMagicBox, specialItem); // specialItem is stored! 

cout << myMagicBox.getItem() << endl; // "Riches beyond compare!"  

 Although this code compiles, it does not perform as you would expect. Since  otherItem  has 
already been stored in the magic box,  specialItem  should not replace that item. Unfortunately, when 
the item stored in the magic box is displayed, the output is  Riches beyond compare.  The reason is 
that, in our function, the statement 

   theBox.setItem(theItem); 

 invokes the  PlainBox  version of the  setItem  method instead of the  MagicBox  version. In this 
case, the compiler determined the version of the method to invoke from the type of the parameter 
theBox  instead of from the type of its corresponding argument. The following set of statements has a 
similar result:   

  string specialItem = "Riches beyond compare!"; 
string otherItem = "Hammer"; 

An example of  early 
binding

FIGURE C2-1         UML class diagram for a family of classes   

BoxInterface

PlainBox

ToyBox MagicBox

Another example of  
early binding 
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PlainBox<string> mySpecialBox = MagicBox<string>(); 
 mySpecialBox.setItem(otherItem); 
mySpecialBox.setItem(specialItem); // specialItem is stored! 

cout << mySpecialBox.getItem() << endl; // "Riches beyond compare!" 

 In both situations, the version of  setItem  that will be called is determined when the program is 
compiled. In this second case, even though we instantiated a  MagicBox  object for  mySpecialBox , the 
variable  mySpecialBox  is of type  PlainBox , so the  PlainBox  version of  setItem  is called. The same 
decision logic applies to our function  placeInBox . 

 This code is correct from the compiler’s perspective. The compiler assumes it is our intent to 
have the parameter  theBox  and the variable  mySpecialBox  behave as  PlainBox  objects. We need a 
way to communicate to the compiler that the code to execute should not be determined until the pro-
gram is running. This is called  late binding , which is an aspect of polymorphism. To solve this prob-
lem and have both our function and simple-code examples execute as we intend, we need two tools: 
pointer variables and virtual methods.  

   C2.3 Pointers and the Program’s Free Store 
 To take advantage of late binding, we do not want our objects to be in an activation record on the run-
time stack. We need another location. When a C++ program begins execution, in addition to the run-
time stack, the operating system sets aside memory for the code—called  code   storage  or  text
storage —and for any global variables and static variables—called  static   storage . Your program is 
also given extra memory, called the  heap , or  free store , which a programmer can use to store data. 
 Figure   C2-2    illustrates these portions of memory.  

 We allocate memory for a variable on the free store by using the  new   operator . After allocating 
memory for the variable, the  new  operator returns the memory address of the variable in the free store 
so the program can use it. This memory address must be placed in a special type of variable called a 
pointer variable , or simply a  pointer . A pointer variable contains the location, or address in mem-
ory, of a memory cell.   

FIGURE C2-2         Sample program memory layout   
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 Unlike variables on the run-time stack, which have their memory allocated and deallocated auto-
matically, variables placed in the free store persist in memory even when the function or method that 
created them ends. This means that when a programmer allocates memory from the free store for a 
variable, the programmer has the responsibility to deallocate that memory when the variable is no 
longer needed. Failure to do so often results in a memory       leak . A memory leak is memory that has 
been allocated for use but is no longer needed and cannot be accessed or deallocated. 

 To indicate that a variable is a pointer, we place the character * after the type of the data the 
pointer references.  1   For example, the statement

  MagicBox<string>* myBoxPtr = new MagicBox<string>(); 

 creates a  MagicBox  object in the free store and places the address of the object in the local variable 
myBoxPtr . We say that  myBoxPtr  points to a  MagicBox  object. To call a method of an object that is in 
the free store, we use the notation  -> :

  string someItem = "Something Free"; 
 myBoxPtr->setItem(someItem); 

  Figure   C2-3    shows the state of memory and the local variables after the previous statements 
execute.  

 Observe that this newly created object has no programmer-defi ned name. The only way to access 
its methods is indirectly via the pointer that  new  creates, that is, by using  myBoxPtr->  as in the previ-
ous example. Usually we will simplify the diagrams so that only the object in the free store and its 
pointer are drawn, as in  Figure   C2-4   .  

If  you allocate 
memory on the free 
store, you eventually 
must deallocate it 

 1   Some programmers place the * next to the name of the variable. The authors of this textbook believe placing the * next to the 
data type more clearly shows that the variable is of a pointer type. 

Indicate a pointer 
type by writing an 
asterisk after the 
data type 

FIGURE C2-3         Run-time stack and free store after  myboxPtr  points to a  MagicBox  object and its 
data member item  is set   
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 Pointer variables are simply another type of variable and follow the same rules as other variable 
types. For example, if you declare a pointer variable that points to a  ToyBox<string>  object, you can 
have it point only to  ToyBox<string>  objects, not  MagicBox<string>  objects or  ToyBox<double>
objects, as the following statements illustrate: 

  ToyBox<string>* toyPtr = new ToyBox <string>();  // OK 
ToyBox<string>* boxPtr = new MagicBox<string>();   // Error! 
ToyBox<string>* somePtr = new ToyBox <double>(); // Error! 

 If you have two pointer variables that can point to the same type of object, you can make them 
point to the same object by using the assignment operator =. For example, the statement 

  somePtr = toyPtr; 

 makes the variable  somePtr  point to the same  ToyBox  object to which  toyPtr  points. In 
such cases, it is helpful to think of the assignment operator as copying the  value  stored within 
the pointer variable on its right into the pointer variable on its left. Since pointers store addresses 
of objects, the value copied is the  location  of an object in the free store. The object itself is 
not copied. The result is that both pointer variables point to the same object, as shown in 
 Figure   C2-5   .  

 If you declare a pointer variable but do not immediately create an object for it to reference, you 
should set the pointer to nullptr . An assignment like the following one is necessary because C++ 
does not initialize the pointer for you: 

  ToyBox<int>* myToyPtr = nullptr ; 

FIGURE C2-4 myBoxPtr  and the object to which it points   
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FIGURE C2-5         Two pointer variables that point to the same object   
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   C2.3.1  Deallocating Memory 

 When the memory to which a pointer variable points is no longer needed, you deallocate it by using 
the delete  operator. You should then set the pointer variable to  nullptr  as a signal that it no longer 
references or points to an object: 

   delete somePtr; 
somePtr = nullptr ; 
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If  you use the  new  
operator to allocate 
memory, you must 
use the delete  
operator to 
deallocate it 

 If we did not set  somePtr  to  nullptr  in this example,  somePtr  would be an example of a  dangling
pointer , because it would still contain the address of an object that was deallocated. Dangling point-
ers can be the source of serious errors. 

 Always remember that if a method of a class uses  new  to create an object, some method of the 
class must use delete  eventually to free the object’s memory. It is a characteristic of safe and secure 
programming that any object allocating memory from the free store also assumes responsibility to 
deallocate that memory when it is no longer needed.   

 Pointers give the programmer a great amount of control over how memory is used and when 
binding occurs, as we will discuss shortly. They also can create severe problems and hard-to-fi nd bugs 
if not properly used. The two most common errors involving pointers are the memory leak and the 
dangling pointer, as presented in this section. Let’s look at how these problems can occur in a program 
so that you can prevent them in your code.  

   C2.3.2  Avoiding Memory Leaks 

 Memory leaks occur when an object has been created in the free store, but the program no longer has 
a way to access it. Because the object cannot be accessed, it cannot be deleted and so takes up mem-
ory, even though it cannot be used. A program can quickly run out of memory and crash if it has sev-
eral memory leaks. Even a single statement that is called multiple times can cause a memory leak. 

 Consider the following statements: 

  MagicBox<string>* myBoxPtr = new MagicBox<string>(); 
MagicBox<string>* yourBoxPtr = new MagicBox<string>(); 
yourBoxPtr = myBoxPtr; // Results in inaccessible object 

  Figure   C2-6    traces the execution of these statements. Eventually,  yourBoxPtr  points to the same 
object as myBoxPtr , and so the object to which  yourBoxPtr  originally pointed is no longer accessible, 
resulting in the memory leak shown in part  c  of the fi gure.  

 To prevent this leak, we should not create the second object. Instead, either initialize  yourBoxPtr
to nullptr  or simply set it to  myBoxPtr : 

  MagicBox<string>* myBoxPtr = new MagicBox<string>(); 
MagicBox<string>* yourBoxPtr = myBoxPtr; 

 A more subtle memory leak occurs when a function or method creates an object in the free store 
and loses the pointer to it by either not returning that pointer to the caller or not storing it in a class 
data member. That is what happens in the function given in Listing C2-1. 

      LISTING C2-1 Poorly written function that allocates memory in the free store 

   void myLeakyFunction( const  double& someItem) 
 { 
    ToyBox<double>* someBoxPtr = new ToyBox< double >(); 

someBoxPtr->setItem(someItem);
} // end myLeakyFunction   

 The parameter  someItem  and the pointer  someBoxPtr  are both stored in an activation record on 
the run-time stack and so are automatically destroyed after the function ends. The object created in 
the free store by  new ToyBox<double>(RED)  is still in the free store. Since the only reference we had 
to it was  someBoxPtr  and that has been destroyed, we no longer have a way to get to that object, and so 
we have a memory leak. 
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 We have several options to fi x this function. The fi rst is to delete the object before the function 
terminates. We can do this by adding the lines 

   delete someBoxPtr;
  someBoxPtr  = nullptr ; 

 at the end of the function. If the  ToyBox  object pointed to by  someBoxPtr  is needed only by this func-
tion, a better implementation choice would have been to not allocate memory from the free store, but 
to use a local variable such as is done in the following statements: 

  ToyBox< double> someBox(); // someBox is not a pointer variable
 someBox.setItem(someItem); 

 If the object created in this function is required outside the function, the function can return a 
pointer to it so that the caller can access the object. To implement this option, we would change the 
function’s return type from  void  to  ToyBox<double>*  and return  someBoxPtr , which is a pointer to a 
ToyBox<double>  object. The resulting function defi nition is 

  ToyBox< double>* pluggedLeakyFunction( const  double& someItem) 
 { 
   ToyBox< double>* someBoxPtr = new ToyBox<double>();
   someBoxPtr->setItem(someItem); 

return someBoxPtr; 
} // end pluggedLeakyFunction 

FIGURE C2-6         (a) Creating the fi rst object; (b) creating the second object; (c) assignment 
causes an inaccessible object   
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To prevent a 
memory leak, do not 
use a function to 
return a pointer to a 
newly created object 

 You could call this function by writing statements such as 

   double boxValue = 4.321; 
 ToyBox< double>* toyPtr = pluggedLeakyFunction(boxValue); 

 Now  toyPtr  points to the object created by the ToyBox constructor in  pluggedLeakyFunction . When a 
function returns a pointer to an object that it created in the free store, the segment of the program using 
that pointer must take responsibility for deleting the object. Otherwise, a memory leak could still occur. 
When documenting such a function, you should add comments to indicate this responsibility. For 
example, you could precede the defi nition of  pluggedLeakyFunction  with these comments: 

  /** Creates an object in the free store and returns a pointer 
 to it. Caller must delete the object when it is no longer 
 needed. */ 

 Of course, this comment does not prevent a memory leak, but it alerts users of your function about the 
potential for a leak. The function could still be misused and called with a statement such as 

  pluggedLeakyFunction(boxValue); // Misused; returned pointer is lost 

 in which case the returned pointer to the object in the free store is lost and a memory leak occurs.   
 The best option for preventing a memory leak is to not use a function to return a pointer to a 

newly created object. Instead, you should defi ne a class that has a method for this task. The class 
takes responsibility for deleting the object in the free store and ensures that there is no memory 
leak. At a minimum, such a class will have three parts: a method that creates the object in the 
free store, a data fi eld that points to the object, and a method—the destructor — that deletes the 
object when the class instance is no longer needed. Although C++ Interlude 1 introduced class 
destructors, we must say more about them now. 

 Every C++ class has a destructor that has the same name as the class, but is preceded by the tilde 
(~) character. For objects that are local variables, the destructor is called when the activation record 
containing the object is removed from the run-time stack. If the object was created using  new  and is 
stored in the free store, the destructor is called when the client uses the operator  delete  to free the 
memory allocated to the object. 

 Often, the compiler-generated destructor is suffi cient for a class, but if the class itself creates an 
object on the free store by using the  new  operator, it is a safe and secure programming practice to 
implement a destructor to ensure that the memory for that object is freed. 

 Listing C2-2 gives the header fi le for a  GoodMemory  class that demonstrates how to avoid a mem-
ory leak. The pointer variable in our previous function  pluggedLeakyFunction  is now a data fi eld in 
GoodMemory . As long as this fi eld points to an existing object in the free store, we will have access to 
the object. 

      LISTING C2-2 Header fi le for the class  GoodMemory  

  /** @file GoodMemory.h */ 
#include <string> 
#include "ToyBox.h" 
  using namespace std; 

  class GoodMemory 
 { 

(continues)
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  private : 
    ToyBox<string>* someBoxPtr; 
  public : 
    GoodMemory(); // Default constructor 
    ~GoodMemory(); // Destructor 

void fixedLeak(const double& someItem); 
 }; // end GoodMemory  

 Because the class  GoodMemory  has a pointer variable for a data fi eld, we should defi ne a 
default constructor to initialize the pointer to  nullptr . The destructor for this class simply needs 
to delete the object to which the pointer points. Listing C2-3 shows the implementation fi le for 
this class.  

LISTING C2-3 Implementation fi le for the class GoodMemory

  /** @file GoodMemory.cpp */ 
#include "GoodMemory.h" 

GoodMemory::GoodMemory() : someBoxPtr( nullptr ) 
 { 
}   // end default constructor 

 GoodMemory::~GoodMemory() 
 { 
   delete someBoxPtr; 
}   // end destructor 

  void GoodMemory::fixedLeak(const double& someItem) 
 { 
   someBoxPtr = new ToyBox< double >(); 
   someBoxPtr->setItem(someItem);
}   // end fixedLeak  

 Unlike the original function  myLeakyFunction , as presented in Listing C2-1, the following client 
function uses the class GoodMemory  to guarantee that no memory leak occurs: 

   void goodFunction() 
 { 
    double boxValue = 4.321;     // Original statement 
  GoodMemory gmObject;        // Create a safe memory object
  gmObject.fixedLeak(boxValue);  // Perform the task 
} // end goodFunction 

 The compiler greatly helps us here. First, the compiler can check to ensure that a  GoodMemory
object has been created before calling the method fixedLeak . This guarantees a safe memory alloca-
tion and deallocation. Then, since the variable  gmObject  is a local variable, the compiler automati-
cally calls the  GoodMemory  destructor when execution of the function  goodFunction  ends. Thus, the 
memory allocated in the free store is freed.  
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   C2.3.3  Avoiding Dangling Pointers 

 As mentioned earlier, a dangling pointer is a pointer variable that no longer references a valid object. 
Four situations can cause dangling pointers, but we will cover only three of them because we consider 
the fourth one to be an unsafe practice.  2

•   As Section C2.3.1 discusses, if you do not set a pointer variable to  nullptr  after using  delete , 
you leave the pointer dangling.  

•   Similarly, if you declare a pointer variable but do not assign it a value, the result is a dangling 
pointer. As with any C++ variable, when C++ creates a pointer variable, its value is unde-
fi ned. That is, C++ does not automatically initialize or clear the memory that a variable 
represents. The compiler and the programmer have no way to check that the value in the 
pointer variable actually points to an object in the free store. That value might simply be 
whatever was in the memory when the pointer was created. For example, suppose that you 
write statements such as     

  MagicBox< int>* myMagicBoxPtr; 
 myMagicBoxPtr->getItem(); 

 Here, the pointer variable  myMagicBoxPtr  is not assigned an object to point to. When the 
method getItem  is called, the program will abort—usually with a segment fault error— 
because the program treats the value in  myMagicBoxPtr  as the address of a  MagicBox<int>
object and tries to fi nd the  getItem  method at that address. Since it is very unlikely that a 
MagicBox<int>  object happens to be there, the program ends abnormally. 

 If you need to create a pointer variable but do not have an object for it to point to, you 
should always set it to  nullptr :

MagicBox<int>* myMagicBoxPtr = nullptr ;

Then your code can compare the pointer variable to  nullptr  to see whether it points to a 
valid object on the free store, as in the following example: 

     if (myMagicBoxPtr != nullptr ) 
  myMagicBoxPtr->getItem(); 

 If the pointer is not  nullptr , you can use the pointer to call a method. 
•   The third situation that can cause a dangling pointer is subtle, and the best way to guard against 

it is careful programming. Consider the following statements that we saw earlier when dis-
cussing memory leaks:   

  MagicBox<string>* myBoxPtr = new MagicBox<string>(); 
MagicBox<string>* yourBoxPtr = myBoxPtr; 

 Executing this code results in the memory confi guration shown in  Figure   C2-7   , where both 
yourBoxPtr  and  myBoxPtr  point to the same object. We say that  yourBoxPtr  is an  alias  of 
myBoxPtr  since they both refer to the same object. There is nothing wrong with this code so 
far, and it does not have any memory leaks.  

 Suppose we then execute the following statements: 

   delete myBoxPtr; 
myBoxPtr = nullptr ; 
 yourBoxPtr->getItem(); 

 2   We do not use  &  as the “address of ” operator in this textbook. As a result, pointer variables can be assigned only to variables 
in the free store, so a function cannot return a pointer to a local variable that no longer exists. 

Situations that can 
cause a dangling 
pointer
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 Here we try to practice safe and secure programming by setting  myBoxPtr  to  nullptr  after delet-
ing the object that it points to. But the call yourBoxPtr->getItem()  results in the program 
aborting. What happened?  Figure   C2-8    shows the state of memory just prior to this call. As you 
can see, the object pointed to by  myBoxPtr  was deleted, as it should have been. The problem 
arises because yourBoxPtr  still references the object’s location in the free store, even though the 
object no longer exists. Since the object no longer exists,  yourBoxPtr  is a dangling pointer and 
the program aborts when we try to call a method on that object. 

Programming Tip:   How to avoid dangling pointers

   •    Set pointer variables to  nullptr  either initially or when you no longer need them. If a 
class has a pointer variable as a data fi eld, the constructor should always initialize that 
data fi eld, to point either to an object or to  nullptr . The class  GoodMemory  in Listing 
C2-3 demonstrates this safeguard.  

  •   Test whether a pointer variable contains  nullptr  before using it to call a method.  
  •    Try to reduce the use of aliases in your program. As you will see, that is not always 

possible or desirable in certain situations.  
  •    Do not delete an object in the free store until you are certain that no other alias needs to 

use it.  
  •   Set all aliases that reference a deleted object to  nullptr  when the object is deleted.      

FIGURE C2-7         Two pointers referencing (pointing to) the same object   
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FIGURE C2-8         Example of a dangling pointer   
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   C2.4 Virtual Methods and Polymorphism 
 Now that we have some of the basics of pointers behind us, we can dive into the implementation of 
polymorphism. To allow the compiler to perform the late binding necessary for polymorphism, you 
must declare the methods in the base class as virtual. In C++ Interlude 1, we began a discussion of 
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An example of  late 
binding

virtual methods—methods that use the keyword  virtual  to indicate that they can be overridden. 
In the example in Section C2.2,  PlainBox  is the base class, which we defi ned in Listing C1-3 of 
C++ Interlude 1. The code that we wrote then did not behave as we desired. To correct that problem, we 
must declare as virtual the methods of  PlainBox  that we want other classes to override, as Listing C2-4 
shows. Notice that only the header fi le of the base class ( PlainBox ) needs to be revised. Declaring 
the methods setItem  and  getItem  as virtual makes it possible for the method code to be bound 
late. 

      LISTING C2-4 Revised header fi le for the class  PlainBox  

  /** @file PlainBox.h */
#ifndef _PLAIN_BOX 
 #define _PLAIN_BOX 

  template < class ItemType> ; // Indicates this is a template

// Declaration for the class PlainBox 
  class PlainBox 
 { 
  private : 

// Data field
  ItemType item; 

  public : 
// Default constructor 

  PlainBox(); 

// Parameterized constructor 
  PlainBox( const ItemType& theItem); 

// Mutator method that can change the value of the data field
   virtual void setItem( const ItemType& theItem); 

// Accessor method to get the value of the data field
   virtual ItemType getItem() const ; 
 }; // end PlainBox 

#include "PlainBox.cpp" // Include the implementation file
 #endif   

 To fully implement late binding, we must create the variables in the free store and use pointers to 
reference them. Thus, we must also change the code from our fi rst example of early binding in 
Section C2.2 to   

  string specialItem = "Riches beyond compare!"; 
string otherItem = "Hammer"; 

PlainBox<string>* myPlainBoxPtr = new PlainBox<string>(); 
placeInBox(myPlainBoxPtr, specialItem); 

MagicBox<string>* myMagicBoxPtr = new MagicBox<string>(); 
placeInBox(myMagicBoxPtr, otherItem); 
placeInBox(myMagicBoxPtr, specialItem); 

cout << myMagicBoxPtr->getItem() << endl; 
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 Next, we must change the function  placeInBox  to accept a pointer to a  PlainBox<string>  object: 

   void placeInBox(PlainBox<string>* theBox, string theItem) 
 { 
  theBox->setItem(theItem); 
 } // end placeInBox 

 The last change is to free the memory used by the variables in the free store by adding the following 
statements to the program: 

   delete myPlainBoxPtr; 
myPlainBoxPtr = nullptr ; 
  delete myMagicBoxPtr; 
myMagicBoxPtr = nullptr ; 

 Our function  placeInBox  now will call the correct version of  setItem  according to the type of box 
pointed to by its fi rst argument. 

 The use of virtual methods has a signifi cant impact on the future use of a class. Imagine that you 
had compiled the class PlainBox  and its implementation before you wrote the derived class 
MagicBox . If you then wrote  MagicBox , assuming access to the compiled class  PlainBox , you could 
override  getItem  because it is virtual in  PlainBox . As a result, you would change the behavior of 
getItem  for instances of  MagicBox , even though  PlainBox  was already compiled. That is, classes that 
defi ne virtual methods are  extensible : You can add capabilities to a derived class without having 
access to the ancestor’s source statements. 

Note: Key points about virtual methods

•   A virtual method is one that a derived class can override.  
•    You must implement a class’s virtual methods. (Pure virtual methods are not included 

in this requirement.)  
•    A derived class does not need to override an existing implementation of an inherited 

virtual method.  
•    Any of a class’s methods may be virtual. However, if you do not want a derived class to 

override a particular method, the method should not be virtual.  
•   Constructors cannot be virtual.  
•    Destructors can and should be virtual. Virtual destructors ensure that future descend-

ants of the object can deallocate themselves correctly.  
•   A virtual method’s return type cannot be overridden.      

An ordinary C++ 
array is statically 
allocated 

   C2.5 Dynamic Allocation of Arrays 
 When you declare an array in C++ by using statements such as   

   const int MAX_SIZE = 50; 
  double myArray[MAX_SIZE]; 

 the compiler reserves a specifi c number— MAX_SIZE , in this case—of memory cells for the array. This 
memory allocation occurs before your program executes, so it is not possible to wait until execution 
to give  MAX_SIZE  a value. We have already discussed the problem this fi xed-size data structure causes 
when your program has more than  MAX_SIZE  items to place into the array. 
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 You just learned how to use the  new  operator to allocate memory dynamically—that is, during 
program execution. Although Section C2.3 showed you how to allocate memory for a single variable 
or object, you actually can allocate memory for many at one time. If you write   

   int arraySize = 50; 
  double* anArray = new double [arraySize]; 

 the pointer variable  anArray  will point to the fi rst item in an array of 50 items. Unlike  MAX_SIZE , 
arraySize  can change during program execution. You can assign a value to  arraySize  at execution 
time and thus determine how large your array is. That is good, but how do you use this array? 

 Regardless of how you allocate an array—statically, as in the fi rst example, or dynamically, as in 
the second—you can use an index and the familiar array notation to access its elements. For example, 
anArray[0]  and  anArray[1]  are the fi rst two items in the array  anArray . 

 When you allocate an array dynamically, you need to return its memory cells to the system when 
you no longer need them. As described earlier, you use the  delete  operator to perform this task. To 
deallocate the array  anArray , you write   

   delete [ ] anArray; 

 Note that you include brackets when you apply  delete  to an array. 
 Now suppose that your program uses all of the array  anArray , despite having chosen its size dur-

ing execution. You can allocate a new and larger array, copy the old array into the new array, and 
fi nally deallocate the old array. Doubling the size of the array each time it becomes full is a reasonable 
approach. The following statements double the size of  anArray :

   double* oldArray = anArray;              // Copy pointer to array 
anArray = new double[2 * arraySize];         // Double array size 

  for ( int index = 0; index < arraySize; index++)  // Copy old array
  anArray[index] = oldArray[index]; 

  delete [ ] oldArray;                  // Deallocate old array 

 Subsequent discussions in this book will refer to both statically allocated and dynamically allo-
cated arrays. Our array-based ADT implementations will use statically allocated arrays for simplic-
ity. The programming problems will ask you to create array-based implementations that use 
dynamically allocated arrays. We will refer to such arrays as  resizable . 

   2.5.1  A Resizable Array-Based Bag 

 We can use a resizable array to implement the ADT bag so that the bag never becomes full—within 
the bounds of the particular computer, of course. If we look at the header fi le for the class  Array-
Bag , as given in Listing 3-1 of  Chapter   3   , and the implementation of the various methods, we see 
that only the  add  method needs to be changed. When the array—and hence the bag—becomes full, 
add  can double the capacity of the array instead of failing to add the item and returning false. The 
revised method follows. Since the bag is never full, this version of the  add  method can always 
return true. 

   template < class ItemType> 
  bool ArrayBag<ItemType>::add( const ItemType& newEntry) 
 { 

bool hasRoomToAdd = (itemCount < maxItems); 
if (!hasRoomToAdd) 

     { 
         ItemType* oldArray = items; 

Use the new  
operator to allocate 
an array dynamically 

  delete returns a 
dynamically 
allocated array to 
the system for reuse 

You can increase 
the size of  a 
dynamically 
allocated array 
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         items = new ItemType[2 * maxItems]; 
for ( int index = 0; index < maxItems; index++) 

              items[index] = oldArray[index]; 
delete [ ] oldArray; 

         maxItems = 2 * maxItems; 
     } // end if
     // We can always add the item 

 items[itemCount] = newEntry; 
 itemCount++; 

return true ; 
} // end ResizableArrayBag add 

 Doubling the array  items  each time the bag is full is not as attractive as it might fi rst seem. Each 
time you expand the size of an array, you must copy its contents. When the array is a small 50-element 
array, you copy the 50-element array to a 100-element array before completing the addition. The next 
49 additions then can be made quickly without copying the array. 

 If you have a 50,000-element array that is full, you must allocate memory for 100,000 entries 
before copying the 50,000 entries in the current array. This takes considerably longer to do and a sig-
nifi cantly greater amount of memory. It is possible that you needed storage for only 50,001 entries 
and will have 49,999 unused array elements wasting memory. Once you realize that your array is too 
large, you could reduce its size by allocating a smaller array and copying the entries to this new array. 
However, there is no way to predict whether or not you should do so. The application might need the 
extra array elements in the future. 

 In  Chapter   4   , we consider another implementation of the ADT bag that does not have this 
memory-allocation problem and that never becomes full.         
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This chapter introduces you to a link-based data structure using C++ pointers, which 
were described in C++ Interlude 2. You will learn how to work with such structures and 
how to use one to implement a class of bags. The material in this chapter is essential to 
much of the presentation in the chapters that follow.   
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      4.1 Preliminaries
 Let’s consider components that can be linked to one another. Each component—usually called a 
node —contains both a data item and a “pointer” to the next item. Because each node must contain 
two pieces of information—the data item and a pointer to the next node—it is natural to conclude that 
each node should be an object. One member of the object is the data item and the other is a pointer. 
Typically, such pointers are C++ pointer variables.   

FIGURE 4-1        A node   

item next
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FIGURE 4-2         Several nodes linked together   
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 1   An alternative notation,  (*nodePtr).getItem() , is possible, but this book will not use it. Although this notation is 
analogous to the use of the dot operator to reference the members of a named structure, the  ->  operator is more suggestive of 
pointers.

  Figure   4-1    illustrates a single node, and  Figure   4-2    shows several nodes linked together. Here, the 
data portion of each node contains a string. We use arrows to represent the pointers, but what type of 
pointer should you use within a node, and to what will it point? You might guess that the pointer 
should point to a string, but actually it must point to a node that contains the string. Because pointers 
can point to any data type except fi les—and since nodes are objects—pointers can, in fact, point to 
nodes. Thus, a node of type  Node , for example, will have as one of its members a pointer to another 
node of type Node . For example, the statement    

  Node<string>* nodePtr; 

 defi nes a pointer variable  nodePtr  that can point to a node of type  Node  that contains a string as its 
data item. Nodes should be dynamically allocated. For example,    

  nodePtr = new Node<string>(); 

 allocates a node to which  nodePtr  points. To access the members of a node, you will need the ->
notation introduced in C++ Interlude 2, because the node does not have a user-defi ned name. Suppose 
our class of nodes has an accessor method,  getItem , that returns the value of the data member  item . 
To reference  item  in the node to which  nodePtr  points, you write  nodePtr->getItem() .1   Likewise, 
if our class of nodes has the method getNext  to access the data member  next , the expression  nodePtr
->getNext()  represents the pointer  next . For example, if  nodePtr  points to the second node in  Figure   4-2   , 

Defi ning a pointer to 
a node 

 Dynamically 
allocating a node 

Referencing a node 
member
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nodePtr->getItem()  returns the string  "cd"  and  nodePtr->getNext()  returns a pointer to the third 
node. We can save this new pointer in  nodePtr  itself by writing     

  nodePtr = nodePtr->getNext(); 

 If we execute the previous statement again,  nodePtr  will point to the fourth node in  Figure   4-2   . 
Executing the statement one more time makes  nodePtr  point to the last node shown in  Figure   4-2   . What 
is the value of the member  next  in this last node? That is, what value does  nodePtr->getNext() return? 
We want this value to be a signal that we have reached the last of the linked nodes. If this value is 
nullptr , we easily can detect when we have reached the end of the linked nodes. 

 We have one more detail to consider: Nothing so far points to the fi rst node. If you cannot get to 
the fi rst node, you cannot get to the second node; and if you cannot get to the second node, you cannot 
get to the third node; and so on. The solution is to have an additional pointer whose sole purpose is to 
point to the fi rst of several linked nodes. Such a pointer is called the  head pointer  or simply the head 
of the data structure.       

  Figure   4-3    illustrates a  linked chain  of nodes with a head pointer. Observe that the head pointer 
headPtr  is different from the other pointers in the diagram in that it is not within one of the nodes. 
The variable  headPtr  simply enables you to access the chain’s beginning. What value should  headPtr
contain if there are no nodes for it to point to? Assigning  headPtr  the value  nullptr  is a logical 
choice in this case.     

The head pointer 
points to the fi rst 
node

 If  headPtr is 
nullptr, it points 
to nothing 

FIGURE 4-3         A head pointer to the fi rst of several linked nodes   
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     Note:   Although all of the pointers shown in  Figure   4-3    point to nodes, the head pointer 
is a simple pointer variable, whereas the  next  members are within nodes. 

     Programming Tip:   It is a common mistake to think that before you can assign 
headPtr  a value, you fi rst must create a new  Node  object. This misconception is rooted in 
the belief that the variable  headPtr  does not exist if it does not point to a node. This is not 
at all true;  headPtr  is a pointer variable waiting to be assigned a value. Thus, for exam-
ple, you can assign  nullptr  to  headPtr  without fi rst using  new . In fact, the sequence 

  headPtr = new Node; // An incorrect use of new
headPtr = nullptr ; 

 destroys the content of the only pointer— headPtr —to the newly created node, as 
 Figure   4-4    illustrates. Thus, you have needlessly created a new node and then made it 
inaccessible. This action creates a  memory leak  in your program and should be avoided! 
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   4.1.1  The Class Node

 Before we continue, let’s examine the C++ code for the class  Node . Listing 4-1 gives the header fi le 
for the class. In addition to the data members item  and  next  that we introduced earlier, the class 
declares three constructors, two accessor methods—one each for  item  and  next —and two mutator 
methods—again one each for item  and  next . Notice that within this class, a pointer to a node has the 
data type Node<ItemType>* . 

FIGURE 4-4         A lost node   
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     LISTING 4-1 The header fi le for the template class Node

  /** @file Node.h */ 

#ifndef _NODE 
#define _NODE 

  template < class ItemType> 
  class Node 
 { 
  private : 
    ItemType          item; // A data item
    Node<ItemType>* next; // Pointer to next node
  public : 
    Node(); 
    Node( const ItemType& anItem); 
    Node( const ItemType& anItem, Node<ItemType>* nextNodePtr); 

void setItem( const ItemType& anItem); 
void setNext(Node<ItemType>* nextNodePtr); 

    ItemType getItem() const ; 
    Node<ItemType>* getNext() const ; 
}; // end Node 
#include "Node.cpp" 
 #endif 

LISTING 4-2 The implementation fi le for the class Node

  /** @file Node.cpp */ 
#include "Node.h" 
#include <cstddef> 

 Listing 4-2 shows the implementation fi le for  Node .  
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   4.2 A Link-Based Implementation of the ADT Bag 
 Now that we have a class of nodes to use when defi ning link-based data structures, we will use it 
to defi ne a link-based implementation of the ADT bag. Doing so will allow us to examine some of 
the basic practices for creating such implementations. Subsequent chapters will expand on these 
ideas. 

 Unlike array-based implementations, a link-based implementation does not impose a fi xed max-
imum size on the data structure—except, of course, as imposed by the storage limits of the system. 
Additionally, data items do not move during an ADT’s insertion and removal operations. 

 You need to represent the items in the ADT bag and its size.  Figure   4-5    indicates one possible 
way to represent this data by using pointers. Here  headPtr  points to a linked chain of the nodes 

  template < class ItemType> 
Node<ItemType>::Node() : next( nullptr ) 
 { 
} // end default constructor 

  template < class ItemType> 
 Node<ItemType>::Node( const ItemType& anItem) : item(anItem), next( nullptr ) 
 { 
} // end constructor 

  template < class ItemType> 
 Node<ItemType>::Node( const ItemType& anItem, Node<ItemType>* nextNodePtr) : 
                          item(anItem), next(nextNodePtr) 
 { 
} // end constructor 

  template < class ItemType> 
  void Node<ItemType>::setItem( const ItemType& anItem) 
 { 
   item = anItem; 
} // end setItem 

  template < class ItemType> 
void Node<ItemType>::setNext(Node<ItemType>* nextNodePtr) 
{
    next = nextNodePtr; 
} // end setNext 

  template < class ItemType> 
ItemType Node<ItemType>::getItem() const  
 { 
     return item; 
} // end getItem 

  template < class ItemType> 
Node<ItemType>* Node<ItemType>::getNext() const  
 { 
     return next; 
} // end getNext 

VideoNote
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containing the items in the bag. The integer  itemCount  is the current number of items in the bag. Both 
headPtr  and  itemCount  will be private data members of our class.  

 From  Chapter   1   , recall the interface  BagInterface  that describes the operations of the ADT bag. 
Also remember that we can use this interface when developing any implementation of this ADT. The 
bag operations in this interface, given in UML notation, are as follows: 

  +getCurrentSize(): integer 
+isEmpty(): boolean 
+add(newEntry: ItemType): boolean 
+remove(anEntry: ItemType): boolean 
+clear(): void 
+getFrequencyOf(anEntry: ItemType): integer 
+contains(anEntry: ItemType): boolean 
+toVector(): vector 

 These operations correspond to the public methods in our class. 

   4.2.1  The Header File 

 The header fi le given in Listing 4-3 declares the class  LinkedBag . The private data members are 
headPtr , which points to the fi rst node in the linked chain that contains the items in the bag, and 
itemCount , which counts these items. The private section of the class also declares a private method, 
whose purpose will become clear shortly. The public section declares a default constructor, a copy 
constructor—whose purpose is discussed near the end of Section 4.2.2—a destructor, and the public 
methods of the class. The public method declarations are identical to those in the class  ArrayBag  as 
given in  Chapter   3   . As you will see, the compiler-generated copy constructor and destructor are not 
suffi cient for link-based implementations. 

 Recall from C++ Interlude 2 that destructors should be virtual. We have tagged  LinkedBag ’s 
destructor with the keyword  virtual  in the header fi le. Failure to do so will result in a warning from 
the compiler.  

FIGURE 4-5         A link-based implementation of the ADT bag   
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LISTING 4-3 The header fi le for the class LinkedBag

  /** ADT bag: Link-based implementation. 
@file LinkedBag.h */ 

#ifndef _LINKED_BAG 
#define _LINKED_BAG 

#include "BagInterface.h" 
#include "Node.h" 

  template < class ItemType> 
  class LinkedBag : public BagInterface<ItemType> 
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   4.2.2  Defi ning the Core Methods 

 Just as we did when we defi ned an array-based implementation of the ADT bag in  Chapter   3   , we 
begin our new implementation by defi ning the same core methods: the constructor,  add ,  toVector , 
getCurrentSize , and  isEmpty . We will write stubs for the remaining methods, including the copy 
constructor and destructor. 

  The constructor.   The following default constructor initializes the head pointer and the current 
number of items in the bag: 

   template < class ItemType> 
LinkedBag<ItemType>::LinkedBag() : headPtr( nullptr), itemCount(0) 
 { 
 } // end default constructor

  The method add.  A bag does not order its entries, so the method  add  can insert a new item at any 
convenient location within the linked chain of nodes that contains the bag’s entries. The most conven-
ient place for us to make this insertion is at the beginning of the chain, because the fi rst node is the 
only one that we can access directly.  Figure   4-6    illustrates how we add a new node to the beginning of 
an existing chain of nodes.  

 You must make  headPtr  point to the new node, and the new node must point to the node that had 
been at the beginning of the chain. Note how the following defi nition accomplishes this:    

   template < class ItemType> 
  bool LinkedBag<ItemType>::add( const ItemType& newEntry) 
 { 

// Add to beginning of chain: new node references rest of chain; 

 { 
  private : 
    Node<ItemType>* headPtr; // Pointer to first node 

int itemCount; // Current count of bag items 

  // Returns either a pointer to the node containing a given entry 
// or the null pointer if the entry is not in the bag. 

    Node<ItemType>* getPointerTo( const ItemType& target) const ; 

  public : 
    LinkedBag(); 
    LinkedBag( const LinkedBag<ItemType>& aBag); // Copy constructor

virtual ~LinkedBag(); // Destructor should be virtual 
int getCurrentSize() const ; 
bool isEmpty() const ; 
bool add( const ItemType& newEntry); 

  bool remove( const ItemType& anEntry); 
void clear(); 
bool contains( const ItemType& anEntry) const ; 
int getFrequencyOf( const ItemType& anEntry) const;
vector<ItemType> toVector() const ; 

}; // end LinkedBag 

#include "LinkedBag.cpp" 
 #endif 
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    // (headPtr is nullptr if chain is empty)
    Node<ItemType>* newNodePtr = new Node<ItemType>(); 
    newNodePtr->setItem(newEntry); 
    newNodePtr->setNext(headPtr); // New node points to chain 
    headPtr = newNodePtr;          // New node is now first node 
    itemCount++; 

return true ; 
} // end add 

FIGURE 4-6         Inserting at the beginning of a linked chain   
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 Observe that if the bag is empty before the insertion  headPtr  is  nullptr , so the  next  pointer of 
the new node is set to  nullptr . This step is correct because the new item is the last item—as well as 
the fi rst item—in the chain.       

Insertion into an 
empty chain is really 
an insertion at the 
beginning of  the 
chain 

Inserting a node at 
the beginning of  a 
linked chain 

     Programming Tip:   Our method  add  uses the operator  new  to create a new node 
object and place it on the heap. Because C++ does not have garbage collection as Java 
does, it is our class’s responsibility to ensure that the object is removed from the heap 
using delete . As discussed in the second C++ Interlude, the class destructor is one 
method where we do this. Since we created this node to store an item we are adding to 
the bag, it follows that another opportunity to delete the node is when we remove the 
item from the bag. 

     Question 1   Consider a linked chain of three nodes, such that each node contains a string. 
The fi rst node contains  "A" , the second node contains  "B" , and the third node contains  "C" . 

a.   Write C++ statements that create the described linked chain. Beginning with a head 
pointer headPtr  that contains  nullptr , create and attach a node for  "C" , then create 
and attach a node for "B" , and fi nally create and attach a node for  "A" .

b.   Repeat part  a , but instead create and attach nodes in the order  "A" ,  "B" ,  "C" .

CHECK POINT

  The method toVector.  Recall that the method  toVector  retrieves the entries that are in a bag and 
returns them to the client within a vector. A loop within  toVector  adds the bag’s entries to this vector. 
In the array-based implementation, this loop simply accesses an array of these entries. Here we must 
retrieve the entries from the nodes in a chain. To do that, we must move from node to node; that is, we 
must traverse  the chain. As we  visit  each node, we copy its data item into the vector.    

A traverse operation 
visits each node in 
the linked chain 
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 Let’s write some high-level pseudocode for this loop, given the linked chain pictured in 
 Figure   4-5   . 

   Let a current pointer point to the first node in the chain
  while  ( the current pointer is not the null pointer )
 { 
          Assign the data portion of the current node to the next element in a vector  
          Set the current pointer to the next pointer of the current node  
 } 

 This solution requires that you keep track of the current position within the chain. Thus, you need a 
pointer variable—let’s call it  curPtr —that points to the current node.  

     Note:   The pointer variable  curPtr  is analogous to the integer variable  curIndex  that 
we used in  Section   3.2.4    of  Chapter   3    to keep track of the current entry in an array. 

 Initially,  curPtr  must point to the fi rst node. Because  headPtr  points to the fi rst node, simply 
copy  headPtr  into  curPtr  by writing 

  Node<ItemType>* curPtr = headPtr; 

 Then you can use the expression  curPtr->getItem()  to access the data portion of the current node. 
After copying the data into the vector, you advance the current pointer to the next node by writing 

  curPtr = curPtr->getNext(); 

  Figure   4-7    illustrates this action. If the previous assignment statement is not clear, consider 

  Node<ItemType>* temp = curPtr->getNext(); 
curPtr = temp; 

 and then convince yourself that the intermediate variable  temp  is not necessary.  

FIGURE 4-7         The effect of the assignment  curPtr = curPtr->getNext()
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 These ideas lead to the following defi nition of  toVector : 

   template < class ItemType> 
   vector<ItemType> LinkedBag<ItemType>::toVector() const  
 { 
    vector<ItemType> bagContents; 
    Node<ItemType>* curPtr = headPtr; 

int counter = 0; 
while ((curPtr != nullptr) && (counter < itemCount)) 
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    { 
        bagContents.push_back(curPtr->getItem()); 
        curPtr = curPtr->getNext(); 
        counter++; 
    }   // end while 

return bagContents;
} // end toVector

 Here  curPtr  points to each node in a nonempty chain during the course of the loop’s execution, and 
so the data portion of each node is accessed and assigned to the end of the vector. After the last node is 
accessed,  curPtr  becomes  nullptr , and the loop terminates. When the bag is empty—that is, when 
headPtr  is  nullptr —the loop is correctly skipped. Note that the variable  counter , while not neces-
sary, provides a defense against going beyond the end of the chain.   

     Programming Tip:   A common error in the  while  statement we used in  toVector  is 
to compare curPtr->getNext()  instead of  curPtr  with  nullptr . When  curPtr  points to 
the last node of a nonempty chain, curPtr->getNext()  is  nullptr , and so the loop would 
terminate before accessing the data in the last node. In addition, when the chain is empty, 
headPtr —and therefore— curPtr  are  nullptr , making the value of  curPtr->getNext()
undefi ned. Such references are incorrect and should be avoided. 

  The methods isEmpty and getCurrentSize.  The last two methods in our core group have the fol-
lowing defi nitions, which are like the ones in the array-based implementation given in the previous 
chapter. 

   template < class ItemType> 
  bool LinkedBag<ItemType>::isEmpty() const  
 { 

return itemCount== 0; 
} // end isEmpty

  template < class ItemType> 
  int LinkedBag<ItemType>::getCurrentSize() const  
 { 

return itemCount; 
} // end getCurrentSize       

     Note:  Testing the core methods

 Just as we did in the previous chapter, you should test each method as you defi ne it. In 
fact, with little change, you can revise the program given in Listing 3-2 and use it to test 
the core methods that we have just defi ned. The bag in that program became full, but it 
will not here. In  Section   4.4   , we will examine how to change that program so that it can 
test multiple bag implementations. 

     Question 2   Why are only a few changes necessary to reuse the code in Listing 3-2? How 
would you implement the changes using the “fi nd and replace” functionality of a text editor 
or IDE? 

CHECK POINT

     Question 3   Why is a  LinkedBag  object not concerned about becoming full? 
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   4.2.3  Implementing More Methods 

 Having successfully defi ned the core methods, we will continue to defi ne the remaining ones in 
our class. 

  The method  getFrequencyOf .   To count the number of times a given object occurs in a bag, we 
count the number of times the object occurs in the linked chain. To do so, we need to traverse the 
chain and compare each of its data items with the given object. Each time we fi nd a match, we incre-
ment a counter. When the traversal ends, we return the value of the counter. 

 The loop we will use is like the one we wrote in the method  toVector . Here is the defi nition of 
getFrequencyOf : 

   template < class ItemType> 
  int LinkedBag<ItemType>::getFrequencyOf( constItemType& anEntry) const  
 { 

int frequency = 0; 
int counter = 0; 

    Node<ItemType>* curPtr = headPtr; 
while ((curPtr != nullptr) && (counter < itemCount)) 

    { 
if (anEntry == curPtr->getItem()) 

        { 
            frequency++; 
        }   // end if 

        counter ++; 
        curPtr = curPtr->getNext(); 
    }   // end while 

return frequency; 
 } // end getFrequencyOf     

  The method  contains .  The discussion in  Chapter   3    about the method  contains  applies here as 
well. Although the method could call the method  getFrequencyOf , which we just defi ned, doing so 
usually will involve more work than is necessary. Whereas  getFrequencyOf  must check every entry 
in the bag, contains  exits as soon as it fi nds an entry in the bag that is the same as the given one. 

 We observed in the previous chapter that the methods  contains  and  remove  perform the same 
search for a specifi c entry. Thus, to avoid duplicate code, we perform this search in a private method 
that both contains  and  remove  can call. We declared this private method in the header fi le, and its 
defi nition follows. 

  // Returns either a pointer to the node containing a given entry
// or the null pointer if the entry is not in the bag. 
  template < class ItemType> 
Node<ItemType>* LinkedBag<ItemType>:: 
                    getPointerTo( const ItemType& target) const  
 { 

bool found = false ; 
    Node<ItemType>* curPtr = headPtr; 

     Question 4   Suppose that the ADT bag had an operation that displayed its contents. Write 
a C++ defi nition for such a method for the class  LinkedBag . 

CHECK POINT

     Question 5   How many assignment operations does the method that you wrote for the 
previous question require? 
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while (!found && (curPtr != nullptr )) 
    { 

if (target == curPtr->getItem()) 
 found = true ; 

else  
           curPtr = curPtr->getNext(); 
    }   // end while 

return curPtr; 
} // end getPointerTo 

The definition of the method contains is straightforward: 

  template < class ItemType> 
  bool LinkedBag<ItemType>::contains( const ItemType& anEntry) const  
 { 

return (getPointerTo(anEntry) != nullptr ); 
} // end contains        

  The method remove.  Recall that the method  remove  deletes one occurrence of a given entry and re-
turns either true or false to indicate whether the removal was successful. Just as adding a new node to 
a linked chain is easiest at its beginning, so is removing the fi rst node. But the entry that we need to 
remove is not always in the chain’s fi rst node. 

 Suppose that we locate the entry to delete in node  n . We can replace that entry with the entry in 
the fi rst node, and then delete the fi rst node. Thus, we can describe the logic for  remove  with the 
following pseudocode: 

  remove(anEntry)

  Find the node that contains  anEntry 
      Replace anEntry with the entry that is in the first node
          Delete the first node  

 By using the private method  getPointerTo  to locate the entry that we want to delete, we can 
defi ne the method  remove  as follows: 

   template < class ItemType> 
  bool LinkedBag<ItemType>::remove( const ItemType& anEntry) 
 { 
    Node<ItemType>* entryNodePtr = getPointerTo(anEntry); 

bool canRemoveItem = !isEmpty() && (entryNodePtr != nullptr ); 
if (canRemoveItem) 

     Question 7   Trace the execution of the method  contains  when the bag is empty. 

     Question 8   Revise the defi nition of the method  getPointerTo  so that the loop is control-
led by a counter and the value of  itemCount . 

     Question 9   What is a disadvantage of the defi nition of the method  getPointerTo , as 
described in the previous question, when compared to its original defi nition? 

     Question 10   Why should the method  getPointerTo  not be made public? 

     Question 6   If the pointer variable  curPtr  becomes  nullptr  in the method  
getPointerTo , what value does the method  contains  return when the bag is not empty? 

CHECK POINT
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    { 
// Copy data from first node to located node 

        entryNodePtr->setItem(headPtr->getItem()); 

// Delete first node 
        Node<ItemType>* nodeToDeletePtr = headPtr; 
        headPtr = headPtr->getNext(); 

// Return node to the system 
        nodeToDeletePtr->setNext( nullptr ); 

delete nodeToDeletePtr; 
        nodeToDeletePtr = nullptr ; 

        itemCount--; 
    }   // end if 

return canRemoveItem; 
} // end remove 

 After the method  remove  deletes a node, the system can use this returned memory and possibly even 
reallocate it to your program as a result of the  new  operator. Suppose that this reallocation actually occurs 
when you ask for a new node for your linked chain. You can be sure that your new node does not still 
point to your linked chain, because you executed the statement  nodeToDeletePtr->setNext(nullptr)
before you deallocated the node. Doing this and setting the variable  nodeToDeletePtr  to  nullptr  are 
examples of defensive programming that can avoid devastating, subtle errors later in the program. We 
take these steps, even though  nodeToDeletePtr  is a local variable that we do not use again, to clarify our 
intent to future programmers who revise our method. 

     Programming Tip:   Remember that any time you allocate memory by using  new , 
you must eventually deallocate it by using  delete . 

     Note:   For a pointer  p ,  delete p  deallocates the node to which  p  points; it does not deal-
locate p . The pointer  p  still exists, but it contains an undefi ned value. You should not ref-
erence p  or any other pointer variable that still points to the deallocated node. To help you 
avoid this kind of error, you can assign  nullptr  to  p  after executing  delete p . However, 
if variables other than  p  point to the deallocated node, the possibility of error still exists. 

  The method clear.  The method  clear  cannot simply set  ItemCount  to zero, thereby ignoring all of 
the entries in the linked chain. Because the nodes in the chain were allocated dynamically,  clear
must deallocate them. Thus, we have the following defi nition for this method: 

   template < class ItemType> 
  void LinkedBag<ItemType>::clear() 

     Question 11   Given the previous defi nition of the method  remove , which entry in a bag 
can be deleted in the least time? Why? 

CHECK POINT

     Question 12   Given the previous defi nition of the method  remove , which entry in a bag 
takes the most time to delete? Why? 
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 { 
while (headPtr != nullptr ) 

    { 
        Node<ItemType>* nodeToDeletePtr = headPtr; 
        headPtr = headPtr->getNext(); 

// Return node to the system 
        nodeToDeletePtr->setNext( nullptr ); 

delete nodeToDeletePtr; 
    }   // end while 

// headPtr is nullptr 

    nodeToDeletePtr = nullptr ; 
    itemCount = 0; 
} // end clear   

  The destructor.   Each class has only one destructor. The destructor destroys an instance of the class, 
that is, an object, when the object’s lifetime ends. Typically, the destructor is invoked implicitly at the 
end of the block in which the object was created.    

 Classes that use only statically allocated memory can depend on the compiler-generated destruc-
tor, as was the case for the class  ArrayBag  in  Chapter   3   . However, when a class uses dynamically 
allocated memory, as in the present link-based implementation, you need to write a destructor that 
deallocates this memory by using  delete . The destructor for  LinkedBag  can simply call the method 
clear , as it uses  delete  to deallocate each node in the linked chain containing the bag’s entries. The 
destructor’s defi nition follows: 

   template < class ItemType> 
 LinkedBag<ItemType>::~LinkedBag() 
 { 
    clear(); 
} // end destructor 

 A destructor’s name is a tilde (~) followed by the class name. A destructor cannot have argu-
ments, has no return type—not even  void —and cannot use  return  to return a value. 

You must write a 
destructor if  your 
class allocates 
memory 
dynamically 

     Question 13   Revise the destructor in the class  LinkedBag  so that it does not call  clear , 
but it instead directly deletes each node of the underlying linked chain. 

CHECK POINT

  The copy constructor.   The second constructor in  LinkedBag  is the copy constructor: 

LinkedBag(const LinkedBag<ItemType>& aBag); 

 The  copy constructor  makes a copy of an object. It is invoked implicitly when you either pass an 
object to a function by value, return an object from a valued function, or defi ne and initialize an 
object, as in    

  LinkedBag bag2(bag1); 

 where  bag1  exists already. 
 When copying an object involves only copying the values of its data members, the copy is called a 

shallow copy . If a shallow copy is suffi cient, you can omit the copy constructor, in which case the com-
piler generates a copy constructor that performs a shallow copy. Such was the case in  Chapter   3    for the 
class ArrayBag , although we did not mention it. That array-based implementation of the ADT bag used 
a compiler-generated copy constructor to copy both the array of bag items and the number of items. 

Situations that 
invoke the copy 
constructor 

A compiler-
generated copy 
constructor 
performs a shallow 
copy 
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  For our new link-based implementation, a compiler-generated copy constructor would copy
only the data members  itemCount  and  headPtr . For example,  Figure   4-8   a pictures a linked chain 
and       the result of this shallow copy. Both the original pointer  headPtr  and its copy point to the same 
linked chain. In other words, the chain’s nodes are not copied. If you need to create a copy of the 
linked chain, you must write your own copy constructor. That is, a  deep copy  is needed, as  
Figure   4-8   b illustrates.  

 Thus, the copy constructor appears as follows. 

   template < class ItemType> 
 LinkedBag<ItemType>::LinkedBag( const LinkedBag<ItemType>& aBag) 
 { 
    itemCount = aBag->itemCount; 
    Node<ItemType>* origChainPtr = aBag->headPtr 

if (origChainPtr == nullptr ) 
        headPtr = nullptr ; // Original bag is empty; so is copy 

else  
    { 
        // Copy first node 
        headPtr = new Node<ItemType>(); 
        headPtr->setItem(origChainPtr ->getItem()); 

// Copy remaining nodes 
        Node<ItemType>* newChainPtr = headPtr; // Last-node pointer 

while (origPtr != nullptr ) 
{

            origChainPtr = origChainPtr ->getNext(); // Advance pointer 

            // Get next item from original chain
            ItemType nextItem = origChainPtr->getItem(); 

            // Create a new node containing the next item 
            Node<ItemType>* newNodePtr =  new Node<ItemType>(nextItem); 

FIGURE 4-8         (a) A linked chain and its shallow copy; (b) a linked chain and its deep copy   
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  // Link new node to end of new chain 
            newChainPtr->setNext(newNodePtr); 

 // Advance pointer to new last node 
            newChainPtr = newChainPtr->getNext(); 
        }   // end while 

        newChainPtr->setNext( nullptr ); // Flag end of new chain 
    }   // end if 
} // end copy constructor 

 As you can see, the copy constructor is an expensive operation. It requires traversing the original 
linked chain and duplicating each node visited.    

   4.3 Using Recursion in Link-Based Implementations 
 It is possible, and sometimes desirable, to process linked chains recursively. This section examines 
how to write the iterative methods given previously as recursive ones. Such recursive methods will 
require the chain’s head pointer as an argument. Therefore, they should not be public, because the head 
pointer is a private data member of the class and the client does not—and should not—have access to 
it. Otherwise, clients could access the linked nodes directly, thereby violating the ADT’s wall. 

   4.3.1  Recursive Defi nitions of Methods in LinkedBag

 As an introduction to this topic, we will revise two methods in the class  LinkedBag  to use recursion. 
These methods simply traverse a chain of linked nodes without making any changes to it. 

  The method toVector.  We begin with the method  toVector  because it has a straightforward recur-
sive implementation. This operation requires us to traverse the linked chain of nodes as we copy data 
from the nodes into a vector. Traversal of a linked chain is an operation that occurs in many situations. 

 We have established that the method performing the recursion must be private and must have the 
head pointer as a parameter. Since the method will copy data into a vector as it traverses the linked 
chain, the vector must also be a parameter. We can declare this method in the private section of the 
class LinkedBag , as follows: 

  // F ills the vector bagContents with the data in the nodes of 
// the linked chain to which curPtr points. 
  void f illVector(vector<ItemType>& bagContents, Node<ItemType>* curPtr) const    

 Given a defi nition of this method, we could implement  toVector  as follows: 

   template < class ItemType> 
   vector<ItemType> LinkedBag<ItemType>::toVector() const  
 { 
    vector<ItemType> bagContents; 
    f illVector(bagContents, headPtr); 

return bagContents;
} // end toVector 

 Thus, after creating a vector,  toVector  f ills it—by calling fillVector—with the data in the chain 
of linked nodes whose head pointer is  headPtr . Finally, toVector returns the vector to the client. 

 To defi ne  fillVector , we need to think recursively. If the chain is empty—that is, if  curPtr  is 
nullptr —we have nothing to do. This is the base case. In the recursive step, we fi rst add the data 
curPtr->getItem()  to the vector and then recursively f ill the vector with the chain that begins at 
curPtr->getNext() . The method then has the following defi nition: 

   template < class ItemType> 
  void f illVector(vector<ItemType>& bagContents, Node<ItemType>* curPtr) const  
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 { 
if (curPtr != nullptr ) 

    { 
        bagContents.push_back(curPtr->getItem()); 
        f illVector(bagContents, curPtr->getNext()); 
    }   // end if 
} // end toVector 

  Even though fillVector has a reference parameter, the method is safe because it is private. A 
similar situation occurs in Chapter 16 and is discussed further in a Note in Section 16.3.1.

The private method  getPointerTo .   The method  getPointerTo  locates a given entry within the 
linked chain. To do so, it traverses the linked chain, but unlike  fillVector ’s traversal, this traversal 
stops if it locates the node that contains the given entry. The iterative version of  getPointerTo  has 
one parameter, which is the given entry. We could defi ne a private method to perform the recursion—
as we did for  toVector —that has two parameters; the given entry and a head pointer. Then  get-
PointerTo  could call this new private method. However, since  getPointerTo  is itself a private meth-
od, we can revise it to have the necessary two parameters. That is the approach we will take here. Of 
course, we also will have to revise the calls to the method that appear in the rest of the class. 

 We begin by replacing the declaration of  getPointerTo  in the header fi le for the class  LinkedBag
with the following statements: 

  // Locates a given entry within this bag. 
// Returns either a pointer to the node containing a given entry or 
// the null pointer if the entry is not in the bag. 
Node<ItemType>* getPointerTo( const ItemType& target, 
                                    Node<ItemType>* curPtr) const ; 

 Before we forget to do so, let’s revise the calls to this method that occur in the methods  remove  and 
contains . The original calls are  getPointerTo(anEntry) , but they now each need to be 
getPointerTo(anEntry, headPtr) . 

 The recursive defi nition of this method has two base cases. One case occurs when the chain is 
empty, causing the method to return  nullptr . The other base case occurs when we locate the desired 
entry at  curPtr->getItem() . In this case, the method returns  curPtr . The recursive step searches 
the chain beginning at  curPtr->getNext() . Thus, the method has the following defi nition: 

   template < class ItemType> 
Node<ItemType>* getPointerTo( const ItemType& target, 
                                    Node<ItemType>* curPtr) const  
 { 
    Node<ItemType>* result = nullptr ; 

if (curPtr != nullptr ) 
    { 

if (target== curPtr->getItem()) 
            result = curPtr; 

else  
            result = getPointerTo(target, curPtr->getNext()); 
    }  // end if 

return result; 
} // end getPointerTo 

 Other methods that can have a recursive defi nition are left for you as exercises. 

     Question 14   Revise the method  clear  so that it calls a recursive method to deallocate 
the nodes in the chain. 

CHECK POINT



150 CHAPTER 4 Link-Based Implementations

   4.4 Testing Multiple ADT Implementations 
 In  Chapter   3   , we developed a short program, shown in Listing 3-2, that tested the core methods of our 
array-based bag implementation. Because we used ADT bag methods when we tested our implemen-
tation, we can use the same code—with a few changes—to test our linked implementation. You need 
only to change each occurrence of  ArrayBag  to  LinkedBag  and recompile the program. 

 But what if later you change the array-based implementation and want to retest it? You would 
need to change each occurrence of  LinkedBag  back to  ArrayBag . Let’s examine a way we can revise 
the test program to let the user decide which bag implementation needs testing. By taking advantage 
of polymorphism, we can do this without needing to duplicate the test code. 

 In  Chapter   1   , we described our ADT bag in the abstract class  BagInterface.  Since both  ArrayBag
and LinkedBag  share public methods defi ned in that class, we made each a subclass of  BagInterface . 
In our test program, if we declare the variable  bagPtr  as a pointer to an object that implements the 
methods in BagInterface , we can use an instance of either  ArrayBag  or  LinkedBag  as the object 
bagPtr  references. We declare  bagPtr  as 

  BagInterface<string>* bagPtr; 

 We then ask the user which implementation to test, and if we assign either ' A ' or  'L'  to the  char
variable  userChoice , we can instantiate an instance of the requested bag type and run the test by writ-
ing the following code: 

   if (userChoice == 'A') 
 { 
    bagPtr = new ArrayBag<string>(); 
    cout << "Testing the Array-Based Bag:" << endl; 
 } 
  else  
 { 
    bagPtr = new LinkedBag<string>(); 
    cout << "Testing the Link-Based Bag:" << endl; 
} // end if 

cout << "The initial bag is empty." << endl; 
 bagTester(bagPtr); 
  delete bagPtr; 
bagPtr = nullptr ; 

 To accommodate the data type of  bagPtr , we need to change the parameter lists of the functions 
in our test program as follows: 

void displayBag(BagInterface<string>* bagPtr) 

 and 

void bagTester(BagInterface<string>* bagPtr) 

 Finally, we must change the notation used to call methods on the instances of  bagPtr , since it is a 
pointer. For example, 

  bag.isEmpty() 

 must be changed to 

 bagPtr->isEmpty() 

 Listing 4-4 is a complete listing of the modifi ed test program for core methods of classes that are 
implementations of the ADT bag.   
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LISTING 4-4  A program that tests the core methods of classes that are derived from the 
abstract class BagInterface

  #include "BagInterface.h" 
#include "ArrayBag.h" 
#include "LinkedBag.h" 
#include <iostream> 
#include <string> 
#include <cctype> 

  using namespace std; 

  void displayBag(BagInterface<string>* bagPtr) 
 { 
    cout << "The bag contains " << bagPtr->getCurrentSize() 
          << " items:" << endl; 
    vector<string> bagItems; 
    bagPtr->toVector(bagItems); 

int numberOfEntries = bagItems.size(); 
for ( int i = 0; i < numberOfEntries; i++) 

    { 
        cout << bagItems[i] << " "; 
    }   // end for 
    cout << endl << endl; 
} // end displayBag 

  void bagTester(BagInterface<string>* bagPtr) 
 { 
    cout << "isEmpty: returns " << bagPtr->isEmpty() 
          << "; should be 1 (true)" << endl; 

    string items[] = {"one", "two", "three", "four", "five", "one"}; 
    cout << "Add 6 items to the bag: " << endl; 

for ( int i = 0; i < 6; i++) 
    { 
         bagPtr->add(items[i]); 
    }   // end for 

    displayBag(bagPtr); 

    cout << "isEmpty: returns " << bagPtr->isEmpty() 
          << "; should be 0 (false)" << endl; 
    cout << "getCurrentSize returns : " << bagPtr->getCurrentSize() 
          << "; should be 6" << endl; 
    cout << "Try to add another entry: add(\"extra\") returns " 
          << bagPtr->add("extra") << endl; 
} // end bagTester 

  int main() 
 { 
    BagInterface<string>* bagPtr = nullptr ; 

char userChoice; 
    cout << "Enter 'A' to test the array-based implementation\n"; 
          << "  or 'L' to test the link-based implementation: "; 
    cin >> userChoice; 

(continues)
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     Question 15   Revise the program in Listing 4-4 so that it tests fi rst the array-based imple-
mentation and then the link-based implementation. Ensure that the program does not have a 
memory leak. 

CHECK POINT

if (toupper(userChoice) == 'A') 

    { 
        bagPtr = new ArrayBag<string>(); 
        cout << "Testing the Array-Based Bag:" << endl; 
    } 

else  
    { 
        bagPtr = new LinkedBag<string>(); 
        cout << "Testing the Link-Based Bag:" << endl; 
    }  // end if 

    cout << "The initial bag is empty." << endl; 
    bagTester(bagPtr); 

delete bagPtr; 
    bagPtr = nullptr ; 
    cout << "All done!" << endl; 

return 0; 
} // end main 

      Sample Output 1 
  Enter 'A' to test the array-based implementation 
or 'L' to test the link-based implementation: A  
Testing the Array-Based Bag: 
The initial bag is empty. 
isEmpty: returns 1; should be 1 (true) 
Add 6 items to the bag: 
The bag contains 6 items: 
one two three four five one 

isEmpty: returns 0; should be 0 (false) 
getCurrentSize returns : 6; should be 6 
Try to add another entry: add("extra") returns 0 
All done!   

      Sample Output 2 
  Enter 'A' to test the array-based implementation 
or 'L' to test the link-based implementation: L  
Testing the Link-Based Bag: 
The initial bag is empty. 
isEmpty: returns 1; should be 1 (true) 
Add 6 items to the bag: 
The bag contains 6 items: 
one five four three two one 

isEmpty: returns 0; should be 0 (false) 
getCurrentSize returns : 6; should be 6 
Try to add another entry: add("extra") returns 1 
All done!    
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   4.5 Comparing Array-Based 
and Link-Based Implementations 
 Typically, the various implementations that a programmer contemplates for a particular ADT have 
advantages and disadvantages. When you must select an implementation, you should weigh these 
advantages and disadvantages before you make your choice. As you will see, the decision among pos-
sible implementations of an ADT is one that you must make often. As an example of how you should 
proceed in general, we compare the two implementations of the ADT bag that you have seen. 

 The array-based implementation that you saw in  Chapter   3    appears to be a reasonable approach. 
Arrays are easy to use, but as was already mentioned, an array has a fi xed size, and it is possible for 
the number of items in the bag to exceed this fi xed size. In practice, when choosing among implemen-
tations of an ADT, you must ask the question of whether the fi xed-size restriction of an array-based 
implementation presents a problem in the context of a particular application. The answer to this ques-
tion depends on two factors. One obvious factor is whether, for a given application, you can predict in 
advance the maximum number of items in the ADT at any one time. If you cannot, it is quite possible 
that an operation—and hence the entire program—will fail because the ADT in the context of a par-
ticular application requires more storage than the array can provide.       

 On the other hand, if for a given application you can predict in advance the maximum number of 
items in the ADT at any one time, you must explore a more subtle factor: Would you waste storage by 
declaring an array to be large enough to accommodate this maximum number of items? Consider a 
case in which the maximum number of items is large, but you suspect that this number rarely will be 
reached. For example, suppose that your bag could contain as many as 10,000 items, but the actual 
number of items in the bag rarely exceeds 50. If you declare 10,000 array locations at compilation 
time, at least 9,950 of them will be wasted most of the time. In both of the previous cases, the array-
based implementation given in  Chapter   3    is not desirable.    

 What if you use a dynamically allocated array? Because you would use the  new  operator to allo-
cate storage dynamically, you will be able to provide as much storage as the bag needs (within the 
bounds of the particular computer, of course). Thus, you do not have to predict the maximum size of 
the bag. However, if you double the size of the array each time you reach the end of the array—which 
is a reasonable approach to enlarging the array—you still might have many unused array locations. In 
the example just given, you could allocate an array of 50 locations initially. If you actually have 
10,000 items in your bag, array doubling will eventually give you an array of 12,800 locations, which 
is 2,800 more than you need. Remember also that you waste time by copying the array and then deal-
locating it each time you need more space.       

 Now suppose that your bag will never contain more than 25 items. You could allocate enough stor-
age in the array for the bag and know that you would waste little storage when the bag contains only a 
few items. With respect to its size, an array-based implementation is perfectly acceptable in this case. 

 A link-based implementation can solve any diffi culties related to the fi xed size of an array-based 
implementation. You use the  new  operator to allocate storage dynamically, so you do not need to pre-
dict the maximum size of the bag. Because you allocate memory one item at a time, the bag will be 
allocated only as much storage as it needs. Thus, you will not waste storage.    

 Array-based and link-based implementations have other differences, and these differences affect 
both the time and memory requirements of the implementations. Any time you store a collection of 
data in an array or a linked chain, the data items become ordered; that is, there is a fi rst item, a second 
item, and so on. This order implies that a typical item has a predecessor and a successor. In an array 
anArray , the location of the next item after the item in  anArray[i]  is  implicit —it is in  anArray[i+1] . 
In a linked chain, however, you  explicitly  determine the location of the next item by using the pointer 
in the current node. This notion of an implicit versus explicit next item is one of the primary differ-
ences between an array and a linked chain. Therefore, an advantage of an array-based implementation 

Arrays are easy to 
use, but they have a 
fi xed size 

Can you predict the 
maximum number 
of  items in the ADT? 

Will an array waste 
storage? 

Increasing the size 
of  a dynamically 
allocated array can 
waste storage and 
time

An array-based 
implementation is a 
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small bag 

Linked chains do not 
have a fi xed size 

The item after an 
array item is implied; 
in a chain of  linked 
nodes, an item 
points explicitly to 
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is that it does not have to store explicit information about where to fi nd the next data item, thus 
requiring less memory than a link-based implementation.       

 Another, more important advantage of an array-based implementation is that it can provide 
direct access  to a specifi ed item. For example, if you use the array  items  to implement the ADT bag, 
you know that accessing either  items[0]  or  items[49]  takes the same amount of time. That is, the 
access time  is constant for an array.    

 On the other hand, if you use a link-based implementation, you have no way of immediately 
accessing the node that contains the i  th  item. To get to the appropriate node, you use the  next
pointers to traverse the linked chain from its beginning until you reach the  i  th  node. That is, you 
access the fi rst node and get the pointer to the second node, access the second node and get the 
pointer to the third node, and so on until you fi nally access the  i  th  node. Clearly, the time it takes 
you to access the fi rst node is less than the time it takes to access the 50 th  node. The access time for 
the i  th  node depends on  i . The type of implementation chosen will affect the effi ciency of the 
ADT’s operations.       

 We will continue to compare various solutions to a problem throughout this book.  Chapter   10    
introduces a more formal way to discuss the effi ciency of algorithms. Until then, our discussions will 
be informal.    

An array-based 
implementation 
requires less 
memory than a 
link-based
implementation 

You can access 
array items directly 
with equal access 
time

You must traverse a 
linked chain to 
access its i  th node 

The time to access 
the i  th node in a 
linked chain 
depends on i  

     SUMMARY       

1. You can link objects—called nodes—to one another to form a chain of linked data. Each node contains a data 
item and a pointer to the next node in the chain. An external pointer variable—called the head pointer—points 
to the fi rst node. The last node in the chain has  nullptr in its pointer portion, so it points to no other node. 

2.   You use the new operator to dynamically allocate a new node, whereas you use the delete operator to deallo-
cate a node. 

3. Inserting a new node at the beginning of a linked chain or deleting the fi rst node of a linked chain are easier to 
perform than insertions and deletions anywhere else in the chain. The insertion requires a change to two point-
ers: the pointer within the new node and the head pointer. The deletion requires a change to the head pointer and 
an application of the delete operator to the removed node. 

4.  Unlike an array, which enables you direct access to any of its elements, a linked chain requires a traversal to 
access a particular node. Therefore, the access time for an array is constant, whereas the access time for a 
linked chain depends on the location of the node within the chain. 

5. When traversing a linked chain by using the pointer variable  curPtr, you must be careful not to reference 
curPtr after it has “passed” the last node in the chain, because it will have the value  nullptr at that point. For 
example, the loop 

while (value > curPtr->getItem()) 
    curPtr = curPtr->getNext(); 

 is incorrect if  value is greater than all the data values in the linked chain, because curPtr  becomes nullptr . 
Instead you should write 

while ((curPtr != nullptr) && (value > curPtr->getItem())) 
    curPtr = curPtr->getNext(); 

 Because C++ uses short-circuit evaluation (see Appendix A) of logical expressions, if curPtr becomes 
nullptr , the expression  curPtr->getItem() will not be evaluated. 
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  EXERCISES       

1. If headPtr is a pointer variable that points to the fi rst node of a linked chain of at least two nodes, write C++ 
statements that delete the second node and return it to the system. 

 2. Revise the public method  add in the class LinkedBag so that the new node is inserted at the end of the linked 
chain.

 3.   Suppose that the class LinkedBag did not have the data member itemCount. Revise the method getCurrentSize
so that it counts the number of nodes in the linked chain 

 a. Iteratively  
 b.   Recursively   

 4. Revise the public method  getFrequencyOf in the class LinkedBag  so that it is recursive. 

 5. Add a constructor to the class  LinkedBag that creates a bag from a given array of entries. 

 6. Specify and defi ne a method for  LinkedBag that removes a random entry from the bag. 

 7. Compare the number of operations required to display the data in each of the  n nodes in a linked chain with the 
number of operations required to display each of the n items in an array. 

 8.   Compare the number of operations required to display the data in the  nth node in a linked chain with the 
number of operations required to display the nth item in an array. 

 9.   Compare the array-based and link-based implementations of the ADT bag operation remove(anEntry). Con-
sider the various locations of  anEntry within the array or chain. 

10.  In a  doubly linked chain , each node can point to the previous node as well as to the next node.  Figure   4-9    
shows a doubly linked chain and its head pointer. Defi ne a class to represent a node in a doubly linked chain. 

11.  List the steps necessary to add a node to the beginning of the doubly linked chain shown in  Figure   4-9   . 

12.  List the steps necessary to remove the fi rst node from the beginning of the doubly linked chain shown in 
 Figure   4-9   . 

6.  A class that allocates memory dynamically needs an explicit copy constructor that copies an instance of the 
class. The copy constructor is invoked implicitly when you pass an object to a function by value, return an 
object from a valued function, or defi ne and initialize an object. If you do not defi ne a copy constructor, the 
compiler will generate one for you. A compiler-generated copy constructor is suffi cient only for classes that 
use statically allocated memory. 

7. A class that allocates memory dynamically needs an explicit destructor. The destructor should use delete to 
deallocate the memory associated with the object. If you do not defi ne a destructor, the compiler will generate 
one for you. A compiler-generated destructor is suffi cient only for classes that use statically allocated memory. 

8. Although you can use the new operator to allocate memory dynamically for either an array or a linked chain, 
you can increase the size of a linked chain one node at a time more effi ciently than you can increase the size of 
an array. When you increase the size of a dynamically allocated array, you must copy the original array entries 
into the new array and then deallocate the original array. 
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FIGURE 4-9 A doubly linked chain
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  PROGRAMMING PROBLEMS   

1.   Add the methods union ,  intersection , and difference  to the class  ArrayBag. Exercises 6, 7, and 8 of 
 Chapter   1    describe these operations. 

2. Implement the ADT set that you specifi ed in Programming Problem 5 of  Chapter   1    by using a linked chain. 

3.  Implement the ADT pile that you specifi ed in Programming Problem 6 of  Chapter   1    by using a linked chain. 

4.  Implement the ADT polynomial that Exercise 9 in  Chapter   1    describes by using a linked chain. 

5.  Consider a sparse implementation of the ADT polynomial that stores only the terms with nonzero coeffi cients. 
For example, you can represent the revised polynomial p in Exercise 9 of  Chapter   1    with the linked chain 
shown in  Figure   4-10   . 

 a. Complete the sparse implementation.  
 b. Defi ne a traverse operation for the ADT polynomial that will allow you to add two sparse polynomials 

without having to consider terms with zero coeffi cients explicitly.    

6.  Defi ne a class DoublyLinkedBag that implements the ADT bag by using a doubly linked chain, as shown in 
 Figure   4-9   . Use the class of nodes that Exercise 10 defi nes. 

7.  Use the classes for a set or a bag, as defi ned in this chapter or described in the previous projects, to create a spell 
checker. Consult the details given in Programming Problems 13 and 14 of  Chapter   3   . 

8.  Specify and implement an ADT character string by using a linked chain of characters. Include typical opera-
tions such as fi nding its length, appending one string to another, fi nding the index of the leftmost occurrence of 
a character in a string, and testing whether one string is a substring of another. 

FIGURE 4-10 A sparse polynomial   
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9.  When you play a board or card game or when you use a shared computing resource, you get a turn and then wait 
until everyone else has had a turn. Although the number of players in a game remains relatively static, the 
number of users of a shared computing service fl uctuates. Let’s assume that this fl uctuation will occur. 

Design an ADT that keeps track of turns within a group of people. You should be able to add or delete peo-
ple and determine whose turn occurs now. 

 Begin with a given group of people; assign these people an initial order. (This order can be random or 
specifi ed by the user.) The fi rst new person joining the group should get a turn after all others have had an equal 
number of turns. Each subsequent new person should get a turn after the person who joined the group most 
recently has had a turn. 

 Also design an ADT to represent a person. (You can be conservative with the amount of data that this ADT 
contains.) The data that your fi rst ADT stores is made up of instances of the ADT person. 

 Implement your ADTs as C++ classes. Write a program that uses—and therefore tests—your ADTs com-
pletely. Your program should process several insertion and deletion operations, and demonstrate that people are 
given turns correctly. 

10. Occasionally, a link-based structure that does not use pointers is useful. One such structure uses an array whose 
items are “linked” by array indexes.  Figure   4-11   a illustrates an array of nodes that represents the linked chain 
whose fi rst node contains the string "B" , second node contains "E", and third node contains "J". Each node has 
two members, item  and next. The next member is an integer index to the array element that contains the next 
node in the linked chain. Note that the next member of the last node contains –1. The integer variable  head
contains the index of the fi rst node in the chain. 

The array elements that currently are not a part of the linked chain make up a free list of available nodes. 
These nodes form another linked chain, with the integer variable free containing the index of the fi rst free 
node. To insert an item into the beginning of the original linked chain, you take a free node from the beginning 
of the free list and insert it into the linked chain ( Figure   4-11   b). When you delete an item from the linked chain, 
you insert the node into the beginning of the free list ( Figure   4-11   c). In this way, you can avoid shifting data 
items.

 Implement the ADT bag by using this array-based linked chain. 
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FIGURE 4-11 (a) An array-based implementation of a linked chain; (b) after inserting "D" at the 
beginning of the chain; (c) after deleting "B"
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  Prerequisites 
  Chapter   2    Recursion: The Mirrors 

Chapter   2    presented the basic concepts of recursion, and now this chapter moves on 
to some extremely useful and somewhat complex applications in computer science. The 
recursive solutions to the problems you will see are far more elegant and concise than 
the best of their nonrecursive counterparts. 

 This chapter introduces two new concepts: formal grammars and backtracking. 
Formal grammars enable you to defi ne, for example, syntactically correct algebraic 
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expressions, which we explore in some detail. Backtracking is a problem-solving technique that 
involves guesses at a solution. The chapter concludes with a discussion of the close relationship 
between recursion and mathematical induction; you will learn how to use mathematical induction to 
study properties of algorithms. 

 More applications of recursion appear in subsequent chapters.   

      5.1 Defi ning Languages 
 English and C++ are two languages with which you are familiar. A  language  is nothing more than a 
set of strings of symbols from a fi nite alphabet. For example, if you view a C++ program as one long 
string of characters, you can defi ne the set of all syntactically correct C++ programs. This set is the 
language

C++Programs  = {string  s  :  s  is a syntactically correct C++ program}  

 Notice that whereas all programs are strings, not all strings are programs. A C++ compiler is a 
program that, among other things, sees whether a given string is a member of the language 
C++Programs ; that is, the compiler determines whether the string is a syntactically correct C++ pro-
gram. Of course, this defi nition of  C++Programs  is not descriptive enough to allow the construction 
of a compiler. The defi nition specifi es a characteristic of the strings in the set  C++Programs : The 
strings are syntactically correct C++ programs. However, this defi nition does not give the rules for 
determining whether a string is in the set; that is, the defi nition does not specify what is meant by a 
syntactically correct C++ program. 

 The word “language” does not necessarily mean a programming language or a communication 
language. For example, the set of algebraic expressions forms a language 

AlgebraicExpressions  = {string  s  :  s  is an algebraic expression}  

 The language  AlgebraicExpressions  is the set of strings that meets certain rules of syntax; however, 
the set’s defi nition does not give these rules. 

 In both examples, the rules for forming a string within the language are missing. A  grammar
states the rules of a language. The grammars that you will see in this chapter are recursive in 
nature. One of the great benefi ts of using such a grammar to defi ne a language is that you can often 
write a straightforward recursive algorithm, based on the grammar, that determines whether 
a given string is in the language. Such an algorithm is called a  recognition algorithm  for the 
language.    

 As it is a complex task to present a grammar for the set  C++Programs , we will look instead at 
grammars for some simpler languages, including several common languages of algebraic expressions. 

   5.1.1  The Basics of Grammars 

 A grammar uses several special symbols:    

• x | y  means  x  or y . 
• x y  (and sometimes  x • y ) means  x  followed by  y . 
•   <  word  > means any instance of  word , where  word  is a symbol that must be defi ned else-

where in the grammar.  

 A grammar for the language 

C++Identifi ers  = {string  s  :  s  is a legal C++ identifi er}  

A grammar states 
the rules for forming 
the strings in a 
language 

Symbols that 
grammars use 
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 is simple, so we begin with it. As you know, a legal C++ identifi er begins with a letter and is followed 
by zero or more letters and digits. In this context, the underscore ( _ ) is a letter. One way to represent 
this defi nition of an identifi er is with a syntax diagram, as shown in  Figure   5-1   .  

 A syntax diagram is convenient for people to use, but a grammar is a better starting point if you 
want to write a function that will recognize an identifi er. A grammar for the language  C++Identifi ers  is    

,identifier. 5  ,letter. 0  ,identifier.,letter. 0,identifier.,digit.

,letter.  5  a 0  b 0c0  z 0  A 0  B 0c0  Z 0_
,digit. 5 0  0  1 0  c0  9

 The defi nition reads as follows: 

  An identifier is a letter, or an identifier followed by a letter, or an identifier followed 
by a digit.  

 The most striking aspect of this defi nition is that  identifi er  appears in its own defi nition: This gram-
mar is recursive, as are many grammars.    

 Given a string  s , you can determine whether it is in the language  C++Identifi ers  by using the 
grammar to construct the following recognition algorithm: If  s  is of length 1, it is in the language if 
the character is a letter. (This statement is the base case, so to speak.) If  s  is of length greater than 1, it 
is in the language if the last character of s  is either a letter or a digit, and  s  minus its last character is an 
identifi er. 

 The pseudocode for a recursive valued function that determines whether a string is in the 
language C++Identifi ers  follows:    

  // Returns true if s  is a legal C++ identifier;  
//  otherwise returns false.  
isId(s: string): boolean 

     if (s is of length 1)                         //  Base case  
         if (s is a letter ) 
             return true  
         else  
             return false  

else if ( the last character of  s  is a letter or a digit ) 
        return isId(s  minus its last character ) //  Point X  

else  
        return false   

  Figure   5-2    contains a trace of this function for the string  "A2B" .

FIGURE 5-1         A syntax diagram for C++ identifi ers   

Letter
Digit

Letter

A grammar for the 
language of  C++ 
identifi ers 

Many grammars are 
recursive 

A recognition 
algorithm for C++ 
identifi ers 
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   5.1.2  Two Simple Languages 

 Now consider two more simple examples of languages, their grammars, and resulting recognition 
algorithms.

  Palindromes.   A palindrome is a string that reads the same from left to right as it does from right to 
left. For example, “radar” and “deed” are both palindromes. You can defi ne the language of palin-
dromes as follows: 

Palindromes  = {string  s  :  s  reads the same left to right as right to left}  

 How can you use a grammar to defi ne the language  Palindromes ? You need to devise a rule that 
allows you to determine whether a given string  s  is a palindrome. In the spirit of recursive defi nitions, 
you should state this rule in terms of determining whether a smaller string is a palindrome. Your fi rst 
instinct might be to choose s  minus its last (or fi rst) character for the smaller string. However, this 
approach does not work, because there is no relationship between the statements 

s  is a palindrome 
 and 

s  minus its last character is a palindrome 

 That is,  s  might be a palindrome, although  s  minus its last character is not, as is the case for “deed.” 
Similarly,  s  minus its last character might be a palindrome, although  s  is not, as is the case for 
“deeds.” 

FIGURE 5-2         Trace of  isId("A2B")
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A recursive 
description of  a 
palindrome

 A little thought reveals that you must consider characters in pairs: There  is  a relationship between 
the statements 

s  is a palindrome 
 and 

s  minus its fi rst and last characters is a palindrome 

 Specifi cally,  s  is a palindrome if and only if 

•   The fi rst and last characters of  s  are the same
and

• s  minus its fi rst and last characters is a palindrome      

 You need a base case that you will reach after stripping away enough pairs of characters. If  s  has 
an even number of characters, you will eventually be left with two characters, and then, after you strip 
away another pair, you will be left with zero characters. A string of length 0 is called the  empty string
and is a palindrome. If s  has an odd number of characters, you will eventually be left with one charac-
ter, after which you cannot strip away another pair. Hence, you must have a second base case: A string 
of length 1 is a palindrome.    

 This discussion leads to the following grammar for the language of palindromes: 

,pal. 5 empty string 0  ,ch. 0a ,pal. a 0b ,pal. b 0c0  Z ,pal. Z

,ch. 5 a 0  b 0c0  z 0  A 0  B 0c0  Z
 Based on this grammar, you can construct a recursive valued function for recognizing palindromes. 
The pseudocode for such a function follows:       

  // Returns true if the string s  of letters is a palindrome; otherwise returns false.  
isPalindrome(s: string): boolean 

      if (s is the empty string or s  is of length 1 ) 
         return true  

else if (s 's first and last characters are the same letter )
return  isPalindrome(s minus its first and last characters )

else  
return false   

Strings of the form A  n  Bn  .   The notation A n B n  represents the string that consists of  n  consecutive  A ’s 
followed by  n  consecutive  B ’s. Another simple language consists of such strings: 

AnBn  = {string  s  :  s  is of the form A n B n  for some  n   � 0}  

 The grammar for this language is actually very similar to the grammar for palindromes. You must 
strip away both the fi rst and last characters and check to confi rm that the fi rst character is an  A  and the 
last character is a B . Thus, the grammar for the language  AnBn  is    

  < legal_word  > = empty string | A < legal_word  > B  

 The pseudocode for a recognition function for this language follows:    

  //  Returns true if  s  is of the form A n B n ; otherwise returns false.  
isAnBn(s: string): boolean 

     if ( the length of s is zero )
         return true  

else if (s begins with the character A and ends with the character B ) 
return  isAnBn(s minus its first and last characters ) 

else  
return false   

Strings of  length 0 
or 1 are the base 
cases

A grammar for the 
language of  
palindromes

A recognition 
algorithm for 
palindromes

A grammar for the 
language of  strings 
An B n  

A recognition 
algorithm for strings 
An B n  
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        5.2 Algebraic Expressions 
 One of the tasks a compiler must perform is to recognize and evaluate algebraic expressions. 
For example, consider the C++ assignment statement 

  y  =  x + z * (w / k + z * (7 * 6)); 

 A C++ compiler must determine whether the right side is a syntactically legal algebraic expression; if 
so, the compiler must then indicate how to compute the expression’s value. 

 There are several common defi nitions for a “syntactically legal” algebraic expression. Some 
defi nitions force an expression to be fully parenthesized—that is, to have parentheses around each 
pair of operands together with their operator. Thus, you would have to write  ((a * b) * c)  rather 
than a * b * c . In general, the stricter a defi nition, the easier it is to recognize a syntactically legal 
expression. On the other hand, conforming to overly strict rules of syntax is an inconvenience for 
programmers. 

 This section presents three different languages for algebraic expressions. The expressions in 
these languages are easy to recognize and evaluate but are generally inconvenient to use. However, 
these languages provide us with good, nontrivial applications of grammars. We will see other lan-
guages of algebraic expressions whose members are diffi cult to recognize and evaluate but are con-
venient to use. To avoid unnecessary complications, assume that you have only the binary operators 
+, –, *, and / (no unary operators or exponentiation). Also, assume that all operands in the expression 
are single-letter identifi ers. 

   5.2.1  Kinds of Algebraic Expressions 

 The algebraic expressions you learned about in school are called  infi x expressions . The term “infi x” 
indicates that every binary operator appears  between  its operands. For example, in the expression 

a 1 b

 the operator + is between its operands  a  and  b . This convention necessitates associativity rules, prec-
edence rules, and the use of parentheses to avoid ambiguity. For example, the expression 

a 1 b * c

 is ambiguous. What is the second operand of the +? Is it  b  or is it ( b   *   c )? Similarly, the fi rst operand of 
the  *  could be either  b  or ( a  +  b ). The rule that  *  has higher precedence than + removes the ambiguity 
by specifying that  b  is the fi rst operand of the * and that ( b  *  c ) is the second operand of the +. If you 
want another interpretation, you must use parentheses: 1a 1 b 2  * c

     Note:   Grammars, like recursive algorithms, must have carefully chosen base cases. 
You must ensure that, when a string is decomposed far enough, it will always reach the 
form of one of the grammar’s base cases. 

     Question 1   Consider the language of these character strings: $, cc$d, cccc$dd, 
cccccc$ddd, and so on. Write a recursive grammar for this language. 

CHECK POINT

VideoNote

Processing
expressions
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In a prefi x 
expression, an 
operator precedes 
its operands 

 Even with precedence rules, an expression like 

a / b * c

 is ambiguous. Typically, / and * have equal precedence, so you could interpret the expression either as 
(a / b ) * c  or as  a /  ( b * c ). The common practice is to  associate from left to right , thus yielding the fi rst 
interpretation. 

 Two alternatives to the traditional infi x convention are  prefi x  and  postfi x expressions . Under 
these conventions, an operator appears either before its operands (prefi x) or after its operands (post-
fi x). Thus, the infi x expression 

a 1 b

 is written in prefi x form as    

1   a  b

 and in postfi x form as    

a  b  1

 To further illustrate the conventions, consider the two interpretations of the infi x expression
a  +  b   *   c  just considered. You write the expression 

a 1 1b * c 2
 in prefi x form as 

1 a * bc

 The + appears before its operands  a  and ( *   b   c ), and the  *  appears before its operands  b  and  c . The 
same expression is written in postfi x form as 

a b c * 1

 The  *  appears after its operands  b  and  c,  and the + appears after its operands  a  and ( b   c   * ). 
 Similarly, you write the expression 1a 1 b 2  * c

 in prefi x form as 

* 1 a b c

 The  *  appears before its operands (+  a b ) and  c , and the + appears before its operands  a  and  b . The 
same expression is written in postfi x form as 

a b 1 c *

 The + appears after its operands  a  and  b , and the  *  appears after its operands ( a b  +) and  c . 
 If the infi x expression is fully parenthesized, converting it to either prefi x or postfi x form 

is straightforward. Because each operator then corresponds to a pair of parentheses, you simply 
move the operator to the position marked by either the open parenthesis “(”—if you want to 
convert to prefi x form—or the close parenthesis “)”—if you want to convert to postfi x form. This 
position either precedes or follows the operands of the operator. All parentheses would then 
be removed. 

 For example, consider the fully parenthesized infi x expression 1 1a 1 b 2  * c 2

In a postfi x 
expression, an 
operator follows its 
operands 
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 To convert this expression to prefi x form, you fi rst move each operator to the position marked by its 
corresponding open parenthesis:    

  1 1a b 2c 2
T T
*1

   .

 Next, you remove the parentheses to get the desired prefi x expression: 

* 1  a b c

 Similarly, to convert the infi x expression to postfi x form, you move each operator to the position 
marked by its corresponding close parenthesis:    1 1ab 2c 2

T T
1 *

 Then you remove the parentheses: 

a b 1 c *

 When an infi x expression is not fully parenthesized, these conversions are more complex. 
 Chapter   6    discusses the general case of converting an infi x expression to postfi x form. 

 The advantage of prefi x and postfi x expressions is that they never need precedence rules, associ-
ation rules, or parentheses. Therefore, the grammars for prefi x and postfi x expressions are quite 
simple. In addition, the algorithms that recognize and evaluate these expressions are relatively 
straightforward.     

   5.2.2  Prefi x Expressions 

 A grammar that defi nes the language of all prefi x expressions is 

,prefix. 5  ,identifier. 0  ,operator. ,prefix. ,prefix.

,operator. 5  1  02 0  * 0 /
,identifier. 5  a 0  b 0c0  z

 From this grammar, you can construct a recursive algorithm that recognizes whether a string is a 
prefi x expression. If the string is of length 1, it is a prefi x expression if and only if the string is a single 
lowercase letter. Strings of length 1 can be the base case. If the length of the string is greater than 1, 
then for it to be a legal prefi x expression, it must be of the form 

,operator. ,prefix. ,prefix.

 Thus, the algorithm must check to see whether 

•   The fi rst character of the string is an operator 

 and

•   The remainder of the string consists of two consecutive prefi x expressions   

 The fi rst task is trivial, but the second is a bit tricky. How can you tell whether you are looking 
at two consecutive prefi x expressions? A key observation is that if you add  any  string of nonblank 
characters to the end of a prefi x expression, you will no longer have a prefi x expression. That is, if  E  is 

Converting to prefi x 
form 

Converting to postfi x 
form 

Prefi x and postfi x 
expressions never 
need precedence 
rules, association 
rules, or 
parentheses
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If   E is a prefi x 
expression,  E Y  
cannot be 

a prefi x expression and  Y  is any nonempty string of nonblank characters, then  E Y  cannot be a prefi x 
expression. This is a subtle point; Exercise 17 at the end of this chapter asks you to prove it.    

 Given this observation, you can begin to determine whether you have two consecutive prefi x 
expressions by identifying a fi rst prefi x expression. If you fi nd one, the previous observation implies 
that only one endpoint is possible for this fi rst expression. 

 If you fi nd that the fi rst prefi x expression ends at position  end1 , you then attempt to fi nd a second 
prefi x expression beginning at position  end1  + 1. If you fi nd the second expression, you must check 
whether you are at the end of the string in question. 

 By using these ideas, you can show, for example, that  +*ab–cd  is a prefi x expression. For   +*ab–cd
to be a prefi x expression, it must be of the form + E

1
E

2
 , where  E

1
  and  E

2
  are prefi x expressions. Now 

you can write 

E1 5 * E3E4, where

E3 5 a

E4 5 b

 Because  E
3
  and  E

4
  are prefi x expressions,  E

1
  is a prefi x expression. Similarly, you can write 

E2 5 2E5E6, where

E5 5 c

E6 5 d

 and see that  E
2
  is a prefi x expression. 

 You can write a function to test whether an expression is a prefi x expression by fi rst constructing 
a recursive valued function  endPre(strExp, first)  to examine the expression that begins at position 
first  of the string  strExp  and to locate the end of the fi rst prefi x expression it fi nds. If successful, the 
function returns the index of the end of the prefi x expression. If no such prefi x expression exists,
endPre  returns –1. The function appears in pseudocode as follows.    

  //  Finds the end of a prefix expression, if one exists.  
//  Precondition: The substring of  strExp  from the index  first  through the end of  
// the string contains no blank characters.  
//  Postcondition: Returns the index of the last character in the prefix expression that  
// begins at index  first  of  strExp,  or �1 if no such prefix expression exists.  
endPre(strExp: string, first: integer): integer 

    last = strExp.length() - 1 
if (first < 0 or first  > last) 

return -1 

    ch = character at position  first of strExp 
if  (ch is an identifier ) 

return first // Index of last character in simple prefix expression  
else if  (ch is an operator ) 

    { 
        // Find the end of the first prefix expression  
        firstEnd = endPre(strExp, first + 1)    // Point X  

        // If the end of the first prefix expression was found, find the end of the second  
        // prefix expression  
         if (firstEnd  > –1) 
             return endPre(strExp, firstEnd + 1) // Point Y  
         else  

return -1 
    } 

else  
return -1 

  endPre determines 
the end of  a prefi x 
expression 
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FIGURE 5-3         Trace of  endPre("+*ab-cd", 0)
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Next character of strExp is a, which is a base case. The current invocation of endPre completes execution and returns its value:

Because firstEnd > –1, a recursive call is made from point Y and the new invocation of endPre begins execution:
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  Figure   5-3    contains a trace of  endPre  when the initial expression is  +*ab–cd .
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Next character of strExp is -, so at point X, a recursive call is made and the new invocation of endPre begins execution:

Next character of strExp is c, which is a base case. The current invocation of endPre completes execution and returns its value:

Because firstEnd > –1, a recursive call is made from point Y and the new invocation of endPre begins execution:
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firstEnd

= 4
= 6
= 5

last
firstEnd
Y: endPre("+*ab-cd", 6)
return ?

= 6
= 5 Y

first
last
return 5

= 5
= 6

first
last

= 6
= 6

Next character of strExp is d, which is a base case. The current invocation of endPre completes execution and returns its value:

first
last
firstEnd
return 6

The current invocation of endPre completes execution and returns its value:

= 0
= 6
= 3

first
last
firstEnd
return 6

The current invocation of endPre completes execution and returns its value to the original call to endPre:

= 0
= 6
= 3

Y
first
last
firstEnd
return 6

= 4
= 6
= 5

first
last
return 6

= 6
= 6

first
last
firstEnd
return 6

= 4
= 6
= 5

6

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

5

6

6

A recognition 
algorithm for prefi x 
expressions 

 Now you can use the function  endPre  to determine whether a string contains a prefi x expression 
as follows:    

  // Sees whether an expression is a prefix expression.  
 // Precondition:  strExp  contains a string with no  blank characters.  
 // Postcondition: Returns true if the expression is in prefix form; otherwise returns false.  

isPrefix(strExp: string): boolean 

    lastChar = endPre(strExp, 0) 
return (lastChar >= 0) and (lastChar == strExp.length() - 1) 

 Having determined that a string is a prefi x expression, how can you evaluate it? Because each 
operator is followed by its two operands, you can look ahead in the expression for them. However, 
such operands can themselves be prefi x expressions, which you must evaluate fi rst. These prefi x 
expressions are subexpressions of the original expression and must therefore be “smaller.” A recur-
sive solution to this problem seems natural. 

 The following function, which appears in pseudocode, evaluates a prefi x expression. This algo-
rithm is simpler than one that evaluates infi x expressions.    



170 CHAPTER 5 Recursion as a Problem-Solving Technique

  // Returns the value of a given prefix expression .
 // Precondition:  strExp  is a string containing a valid prefix expression with no blanks.  
evaluatePrefix(strExp: string): float 

    strLength = the length of strExp 
if (strLength == 1) 

return   value of the identifier // Base case—single identifier  
else  

    { 
        op = strExp[0]               // strExp  begins with an operator  

// Find the end of the first prefix expression—will be  the first operand 
        endFirst = endPre(strExp, 1) 

// Recursively evaluate this first prefix expression  
        operand1 = evaluatePrefix(strExp[1..endFirst]); 

// Recursively evaluate the second prefix expression—will be  the second operand 
        endSecond = strLength - endFirst + 1 
        operand2 = evaluatePrefix(strExp[endFirst + 1, endSecond]) 

// Evaluate the prefix expression  
return operand1 op operand2 

    } 

     Question 2   Write the prefi x expression that represents the following infi x expression: 
(a/b ) *  c –  ( d + e ) *  f

  Question 3   Write the infi x expression that represents the following prefi x expression: 
   – a/b  +  c  *  def

  Question 4   Is the following string a prefi x expression? +–/ abc  *  + def   *  gh

CHECK POINT

     5.2.3  Postfi x Expressions 

 A grammar that defi nes the language of all postfi x expressions is 

,postfix. 5 ,identifier. 0,postfix.,postfix.,operator.

,operator. 5 1 02 0* 0 /
,identifier. 5  a 0  b 0c0  z

 Some calculators require that you enter two numbers before you enter the operation that you want to 
perform. Such calculators, in fact, require you to enter postfi x expressions. 

 Here we shall develop an algorithm for converting a prefi x expression to a postfi x expression. 
 Chapter   6    presents a nonrecursive algorithm for evaluating postfi x expressions. Together, these two 
algorithms give you another technique for evaluating a prefi x expression. To simplify the conversion 
algorithm, assume that, by using the prefi x recognition algorithm, you have a syntactically correct 
prefi x expression. 

 If you think recursively, the conversion from prefi x form to postfi x form is straightforward. If the 
prefi x expression  exp  is a single letter, then 

postfix 1exp 2 5 exp

An algorithm to 
evaluate a prefi x 
expression 
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An algorithm that 
converts a prefi x 
expression to postfi x 
form 

 Otherwise  exp  must be of the form 

,operator.,prefix1.,prefix2.

 The corresponding postfi x expression is then 

,postfix1.,postfix2.,operator.

  where ,prefix1. converts to ,postfix1. and ,prefix2. converts to ,postfix2.. Therefore, 

postfi x ( exp ) =  postfi x ( prefi x1 ) • postfi x ( prefi x2 ) • < operator >

 Thus, at a high level, the conversion algorithm is    

   if  (exp is a single letter ) 
return  exp 

  else  
return postfix(prefix1) • postfix(prefix2) • <operator> 

 The following pseudocode function  convert  refi nes this algorithm. The string  pre  contains the 
prefi x expression.    

  // Converts a prefix expression to postfix form.  
// Precondition: The string  pre  is a valid prefix expression with no blanks.  
//Postcondition: Returns the equivalent postfix expression.  
convert(preExp: string): string 

    preLength = the length of preExp 
    ch = first character in preExp 
    postExp = an empty string  

if (ch is a lowercase letter ) 
// Base case—single identifier  

        postExp = postExp • ch // Append to end of postExp
else // ch  is an operator  

    { 
// pre  has the form  <operator> <prefix1> <prefix2> 

        endFirst = endPre(preExp, 1) // Find the end of  prefix1

// Recursively convert  prefix1  into postfix form  
        postExp = postExp • convert(preExp[1..endFirst]) 

// Recursively convert  prefix2  into postfix form  
        postExp = postExp • convert(preExp[endFirst + 1..preLength - 1)) 

        postExp = postExp • ch // Append the operator to the end of  postExp
    } 

return post    

A recursive 
algorithm that 
converts a prefi x 
expression to postfi x 
form 

     Question 5   Write the postfi x expression that represents the following infi x expression: 
(a * b–c ) /d+ ( e–f  ) 

CHECK POINT

   5.2.4  Fully Parenthesized Expressions 

 Most programmers would object to using prefi x or postfi x notation for their algebraic expressions, so 
most programming languages use infi x notation. However, infi x notation requires precedence rules, 
rules for association, and parentheses to avoid ambiguity within the expressions. 
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Backtracking is a 
strategy for 
guessing at a 
solution and backing 
up when an impasse 
is reached 

 You can make precedence and association rules unnecessary by placing parentheses around each 
pair of operands together with their operator, thereby avoiding any ambiguity. A grammar for the lan-
guage of all fully parenthesized infi x expressions is    

,infix. 5 ,identifier. 0 1,infix.,operator.,infix. 2
,operator. 5 1 02 0* 0 /
,identifier. 5 a 0 b 0c0z

 Although the grammar is simple, the language is rather inconvenient for programmers. 
 Therefore, most programming languages support a defi nition of algebraic expressions that 

includes both precedence rules for the operators and rules of association so that fully parenthesized 
expressions are not required. However, the grammars for defi ning such languages are more involved 
and the algorithms for recognizing and evaluating their expressions are more diffi cult than those you 
have seen in this section. Programming Problem 8 at the end of this chapter describes such a grammar 
without left-to-right association rules and asks you to write a recognition algorithm. Programming 
Problem 8 at the end of  Chapter   6    presents a nonrecursive evaluation algorithm for algebraic expres-
sions that use both precedence and left-to-right association rules.   

   5.3 Backtracking
 This section considers an organized way to make successive guesses at a solution. If a particular 
guess leads to a dead end, you back up to that guess and replace it with a different guess. This strategy 
of retracing steps in reverse order and then trying a new sequence of steps is called  backtracking . 
You can combine recursion and backtracking to solve the following problem.    

   5.3.1  Searching for an Airline Route 

 This example will introduce you to a general type of search problem. In this particular problem, you 
must fi nd a path from some point of origin to some destination point. We shall solve this problem by 
using recursion. In the next chapter, we will solve it again without recursion. 

 The High Planes Airline Company (HPAir) wants a program to process customer requests to fl y 
from some origin city to some destination city. So that we can focus on recursion, we will simplify the 
problem: For each customer request, just indicate whether a sequence of HPAir fl ights from the origin 
city to the destination city exists.    

 Imagine three input text fi les that specify all of the fl ight information for the airline as follows: 

•   The names of cities that HPAir serves  
•   Pairs of city names, each pair representing the origin and destination of one of HPAir’s fl ights  
•   Pairs of city names, each pair representing a request to fl y from some origin to some 

destination

 The program should then produce output such as 

  Request is to fly from Providence to San Francisco. 
HPAir flies from Providence to San Francisco. 

Request is to fly from Philadelphia to Albuquerque. 
Sorry. HPAir does not fly from Philadelphia to Albuquerque. 

Request is to fly from Salt Lake City to Paris. 
Sorry. HPAir does not serve Paris. 

A grammar for the 
language of  fully 
parenthesized 
algebraic 
expressions 

Determine whether 
HPAir fl ies from one 
city to another 

VideoNote

Backtracking
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C
2
 is adjacent to C

1
  

if  there is a directed 
path from C

1
 to C

2
  

  Representing the fl ight data.  The fl ight map in  Figure   5-4    represents the routes that HPAir fl ies. 
An arrow from city  C

1
  to city  C

2
  indicates a fl ight from  C

1
  to  C

2
 . In this case,  C

2
  is adjacent to  C

1
  and 

the path from C
1
  to  C

2
  is called a  directed path . Notice that if  C

2
  is adjacent to  C

1
 , it does not follow 

that C
1
  is adjacent to  C

2
 . For example, in  Figure   5-4   , there is a fl ight from city  R  to city  X , but 

not from city X  to city  R . As you will see in  Chapter   20   , the map in  Figure   5-4    is called a  directed
graph .     

The nature of the search.   When processing a customer’s request to fl y from some origin city to 
some destination city, you must determine from the fl ight map whether there is a route from the origin 
to the destination. For example, by examining the fl ight map in  Figure   5-4   , you can see that a cus-
tomer could fl y from city  P  to city  Z  by fl ying fi rst to city  W , then to city  Y,  and fi nally to city  Z;  that is, 
there is a directed path from P  to  Z :  P → W ,  W → Y ,  Y→ Z. Thus, you must develop an algorithm that 
searches the fl ight map for a directed path from the origin city to the destination city. Such a path 
might involve either a single fl ight or a sequence of fl ights. The solution developed here performs an 
exhaustive search . That is, beginning at the origin city, the solution will try every possible sequence 
of fl ights until either it fi nds a sequence that gets to the destination city or it determines that no such 
sequence exists. 

 First consider how you might perform the search by hand. One approach is to start at the origin 
city C

0
  and select an arbitrary fl ight that departs from the origin city. This fl ight will lead you to a new 

city,  C
1
 . If city  C

1
  happens to be the destination city, you are done; otherwise, you must attempt to get 

from C
1
  to the destination city. To do this, you select a path to travel out of  C

1
 . This fl ight will lead you 

to city C
2
 . If  C

2
  is the destination, you are done; otherwise, you must attempt to get from  C

2
  to the 

destination city, and so on.  

  A recursive strategy.   To fl y from the origin city to the destination city by fi rst fl ying from the origin 
city to a city C  and then by fl ying from  C  to the destination has a distinct recursive fl avor. We can re-
state this strategy as follows:    

   To fly from the origin to the destination:  

Select a city C adjacent to the origin  
Fly from the origin to city  C 
if (C is the destination city ) 

                 Terminate— the destination is reached  
else  

 Fly from city C to the destination   

FIGURE 5-4         Flight map for HPAir   
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A recursive search 
strategy 
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 Consider the possible outcomes of applying the previous strategy:    

1.   You eventually reach the destination city and can conclude that it is possible to fl y from the 
origin to the destination.  

2.   You reach a city  C  from which there are no departing fl ights.  
3.   You go around in circles. For example, from  C

1
  you go to  C

2
 , from  C

2
  you go to  C

3
 , and from  C

3

you go back to  C
1
 . You might continue this tour of the three cities forever; that is, the algorithm 

might not terminate.   

 If you always obtained the fi rst outcome, everyone would be happy. This outcome corresponds to a 
base case of the recursive algorithm. If you ever reach the destination city, no additional problems of the 
form “fl y from city  C  to the destination” are generated, and the algorithm terminates. However, because 
HPAir does not fl y between all pairs of cities, you certainly cannot expect that the algorithm will always 
fi nd a path from the origin city to the destination. For example, if city  P  in  Figure   5-4    is the origin city 
and city Q  is the destination city, the algorithm could not possibly fi nd a path from city  P  to city  Q . 

 Even if there were a sequence of fl ights from the origin city to the destination, it would take a bit 
of luck for the previous strategy to discover it—the algorithm would have to select a “correct” fl ight at 
each step. For example, even though there is a way to get from city  P  to city  Z  in  Figure   5-4   , the algo-
rithm might not fi nd it and instead might reach outcome 2 or 3. That is, suppose that from city  P  the 
algorithm chose to go to city R . From city  R  the algorithm would have to go to city  X , from which 
there are no fl ights out (outcome 2). On the other hand, suppose that the algorithm chose to go to city 
W  from city  P . From city  W , the algorithm might choose to go to city  S . It would then have to go to 
city T  and then back to  W . From  W , it might once again choose to go to city  S  and continue to go 
around in circles (outcome 3). 

 You thus need to make the algorithm more sophisticated, so that it always fi nds a path from the 
origin to the destination, if such a path exists, and otherwise terminates with the conclusion that there 
is no such path. Suppose that the earlier strategy results in outcome 2: You reach a city  C  from which 
there are no departing fl ights. This certainly does not imply that there is no way to get from the origin 
to the destination; it implies only that there is no way to get from city  C  to the destination. In other 
words, it was a mistake to go to city  C . After discovering such a mistake, the algorithm can retrace its 
steps, or backtrack , to the city  C� that was visited just before city  C  was visited. Once back at city  C�,
the algorithm can select a fl ight to some city other than  C . Notice that it is possible that there are no 
other fl ights out of city  C�. If this were the case, it would mean that it was a mistake to visit city  C�,
and thus, you would want to backtrack again—this time to the city that was visited just before city  C�.

 For example, you saw that, in trying to get from city  P  to city  Z  in  Figure   5-4   , the algorithm might 
fi rst choose to go from city  P  to city  R  and then on to city  X.  As there are no departing fl ights from city 
X , the algorithm must backtrack to city  R , the city visited before city  X . Once back at city  R , the algo-
rithm would attempt to go to some city other than city  X  but would discover that this is not possible. 
The algorithm would thus backtrack once more, this time to city  P , which was visited just before city 
R . From city  P , the algorithm would choose to go to city  W , which is a step in the right direction! 

 We can resolve these problems by refi ning our strategy: We mark visited cities and never fl y to a 
city that has been visited already.    

  //  Discovers whether a sequence of flights from  originCity  to  destinationCity  exists.  
searchR(originCity: City, destinationCity: City): boolean 

  Mark originCity as visited  
if (originCity is  destinationCity) 

                Terminate—the destination is reached 
else  

         for  ( each unvisited city C adjacent to  originCity) 
            searchR(C, destinationCity) 

Possible outcomes 
of  the exhaustive 
search strategy 

Use backtracking to 
recover from a 
wrong choice 

A refi nement of  the 
recursive search 
algorithm
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 Now consider what happens when the algorithm reaches a city that has no unvisited city adjacent 
to it. For example, consider the piece of a fl ight map in  Figure   5-5   . When  searchR  reaches city  M —
that is, when the argument  originCity  has the value  M— the  for  loop will not be entered, because no 
unvisited cities are adjacent to  M.  Hence, the  searchR  algorithm returns. This return has the effect of 
backtracking to city L,  from which the fl ight to  M  originated. In terms of the previous pseudocode, the 
return is made to the point from which the call  searchR(M,   destinationCity)  occurred. This point 
is within the for  loop, which iterates through the unvisited cities adjacent to  L;  that is, the argument 
originCity  has the value  L.

 After backtracking from  M  to  L,  the  for  loop will again execute. This time the loop chooses 
city K,  resulting in the recursive call  searchR(K, destinationCity) . From this point, the algo-
rithm will either eventually reach the destination city—and terminate—or backtrack once again 
to city L.  If it backtracks to  L,  the  for  loop will terminate, because there are no more unvisited cit-
ies adjacent to L,  and a return from  searchR  will occur. The effect is to backtrack to the city where 
the fl ight to  L  originated. If the algorithm ever backtracks to the origin city and no remaining 
unvisited cities are adjacent to it, the algorithm will terminate, and you can conclude that no 
sequence of fl ights from the origin to the destination exists. Notice that the algorithm will always 
terminate in one way or another, because it will either reach the destination city or run out of 
unvisited cities to try.    

FIGURE 5-5         A piece of a fl ight map   
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Note: Backtracking

 When searching for a sequence of fl ights between cities, you must take into account the 
possibility that the algorithm will make wrong choices. For example, the algorithm must 
be able to backtrack when it hits a dead end, and you must eliminate the possibility that 
the algorithm will cycle. 

  Operations on the fl ight map.   Now consider the operations that the search algorithm must per-
form on the fl ight map. The algorithm marks cities as it visits them, determines whether a city has 
been visited, and determines which cities are adjacent to a given city. You can treat the fl ight map 
as an ADT that has at least these operations in addition to the search operation itself. Other desir-
able operations include placing data into the fl ight map, inserting a city adjacent to another city, 
displaying the fl ight map, displaying a list of all cities, and displaying all cities that are adjacent to 
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a given city. Thus, the ADT fl ight map could include the following operations, given here in UML 
notation.   

   // Reads flight information into the flight map.  
+readFlightMap(cityFileName: string, flightFileName: string): void 

 // Displays flight information.  
+displayFlightMap(): void 

 // Displays the names of all cities that HPAir serves.  
+displayAllCities(): void 

 // Displays all cities that are adjacent to a given city.  
+displayAdjacentCities(aCity: City): void 

 // Marks a city as visited.  
+markVisited(aCity: City): void 

 // Clears marks on all cities.  
+unvisitAll(): void 

 // Sees whether a city was visited.  
+isVisited(aCity: City): boolean 

 // Inserts a city adjacent to another city in a flight map.  
+insertAdjacent(aCity: City, adjCity: City): void 

 // Returns the next unvisited city, if any, that is adjacent to a given city.  
 // Returns a sentinel value if no unvisited adjacent city was found.  
+getNextCity(fromCity: City): City 

 // Tests whether a sequence of flights exists between two cities.  
+isPath(originCity: City, destinationCity: City): boolean 

 The latter operation  isPath  uses the  searchR  algorithm to make its determination. If the class 
Map  is the implementation of the ADT fl ight map, its method  isPath  has the following C++ defi ni-
tion. Note that NO_CITY  is a  City  object that  Map  defi nes as a constant for  getNextCity  to return in 
case it cannot fi nd an unvisited adjacent city.    

  /** Tests whether a sequence of flights exists between two cities. 
 @pre  originCity and destinationCity both exist in the flight map. 
 @post  Cities visited during the search are marked as visited 
     in the flight map. 
 @param originCity  The origin city. 
 @param destinationCity  The destination city. 
 @return  True if a sequence of flights exists from originCity 
     to destinationCity; otherwise returns false. */ 
  bool  Map::isPath(City originCity, City destinationCity)
 { 

bool result, done; 

// Mark the current city as visited 
    markVisited(originCity); 

    // Base case: the destination is reached 
if  (originCity == destinationCity)

result = true;  
else // Try a flight to each unvisited city 
{

done = false;  
        City nextCity = getNextCity(originCity);

ADT fl ight map 
operations 

C++ implementation 
of   searchR  
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while  (!done && (nextCity != NO_CITY))
        { 
            done = isPath(nextCity, destinationCity); 

if  (!done)
nextCity = getNextCity(originCity);

        } // end while 

        result = done;
} // end if 

return result;
} // end isPath   

Note:   The subproblems that a recursive solution generates eventually must reach a base 
case. Failure to do so could result in an algorithm that does not terminate. Solutions that 
involve backtracking are particularly subject to this kind of error. 

       5.3.2  The Eight Queens Problem 

 A chessboard contains 64 squares that form eight rows and eight columns. The most powerful piece 
in the game of chess is the queen, because it can attack any other piece within its row, within its col-
umn, or along its diagonal. The Eight Queens problem asks you to place eight queens on the chess-
board so that no queen can attack any other queen.    

 One strategy is to guess at a solution. However, according to  Section   2.6.3    of  Chapter   2   , there are 
g (64, 8) = 4,426,165,368 ways to arrange eight queens on a chessboard of 64 squares—so many that 
it would be exhausting to check all of them for a solution to this problem. Nevertheless, a simple 
observation eliminates many arrangements from consideration: No queen can reside in a row or a 
column that contains another queen. Alternatively, each row and column can contain exactly one 
queen. Thus, attacks along rows or columns are eliminated, leaving only 8! = 40,320 arrangements of 
queens to be checked for attacks along diagonals. A solution now appears more feasible. 

     Question 6   Trace the method  isPath  with the map in  Figure   5-6    for the following 
requests. Show the recursive calls and the returns from each. 
•   Fly from  A  to  B .
•   Fly from  A  to  D .
•   Fly from  C  to  G .

CHECK POINT

Place eight queens 
on the chessboard 
so that no queen 
can attack any other 
queen

FIGURE 5-6         Flight map for Checkpoint Question 6   
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 Suppose that you provide some organization for the guessing strategy by placing one queen per 
column, beginning with the fi rst square of column 1.  Figure   5-7   a shows this queen and its range of 
attack. When you consider column 2, you eliminate its fi rst square because row 1 contains a queen, 
you eliminate its second square because of a diagonal attack, and you fi nally place a queen in the third 
square of column 2, as  Figure   5-7   b illustrates. The black dots in the fi gure indicate squares that are 
rejected because a queen in that square is subject to attack by another queen in an earlier column. The 
blue dots indicate the additional squares that the new queen can attack.     

 We continue to place queens in this manner until we get to column 6, as  Figure   5-7   e shows. 
Although the fi ve placed queens cannot attack each other, they can attack any square in column 6, and 
therefore, you cannot place a queen in column 6. You must back up to column 5 and move its queen to 
the next possible square in column 5, which is in the last row, as  Figure   5-7   f indicates. When you con-
sider column 6 once again, there are still no choices for a queen in that column. Because you have 
exhausted the possibilities in column 5, you must back up to column 4. As  Figure   5-7   g shows, the 
next possible square in column 4 is in row 7. You then consider column 5 again and place a queen in 
row 2 ( Figure   5-7   h).    

 How can you use recursion in the process that was just described? Consider an algorithm that 
places a queen in a column, given that you have placed queens correctly in the preceding columns. 

FIGURE 5-7         Placing one queen at a time in each column, and the placed queens’ range of 
attack: (a) the fi rst queen in column 1; (b) the second queen in column 2; (c) the 
third queen in column 3; (d) the fourth queen in column 4; (e) the fi ve queens 
can attack all of column 6; (f) backtracking to column 5 to try another square for 
the queen; (g) backtracking to column 4 to try another square for the queen; 
(h) considering column 5 again   
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First, if there are no more columns to consider, you are fi nished; this is the base case. Otherwise, after 
you successfully place a queen in the current column, you need to consider the next column. That is, 
you need to solve the same problem with one fewer column; this is the recursive step. Thus, you begin 
with eight columns, consider smaller problems that decrease in size by one column at each recursive 
step, and reach the base case when you have a problem with no columns. 

 This solution appears to satisfy the criteria for a recursive solution. However, you do not know 
whether you can successfully place a queen in the current column. If you can, you recursively con-
sider the next column. If you cannot place a queen in the current column, you need to backtrack, as 
has already been described. 

 The Eight Queens problem can be solved in a variety of ways. The solution in this chapter uses 
two classes: a  Board  class to represent the chessboard and a  Queen  class to represent a queen on the 
board. A  Queen  object keeps track of its row and column placement and contains a static pointer to the 
Board . It also has operations to move to the next row and to see whether it is subject to attack. A  Board
object keeps track of the  Queen  objects currently on the board and contains operations—such as 
placeQueens —to perform the Eight Queens problem and display the solution. 

 The following pseudocode describes the algorithm for placing queens in columns, given that the 
previous columns contain queens that cannot attack one another:    

  // Places queens in eight columns.  
placeQueens(queen: Queen): void 

      if ( queen's column is greater than the last column ) 
The problem is solved  

else  
    { 

while ( unconsidered squares exist in queen's column and  
                                  the problem is unsolved ) 
        { 

             Find the next square in queen's column that is  
               not under attack by a queen in an earlier column  

if ( such a square exists ) 
           { 

Place a queen in the square  

// Try next column  
               placeQueens( new Queen(firstRow, queen's column + 1)) 

if ( no queen is possible in the next column ) 
               { 

Delete the new queen  
Remove the last queen placed on the board and  

                       consider the next square in that column  
               } 
           } 
        } 
   } 

 The Eight Queens problem is initiated by the method  doEightQueens , which calls  placeQueens
with a new queen in the upper-left corner of the board: 

  doEightQueens() 
 { 
    placeQueens( new Queen(firstRow, firstColumn)) 
 } 

 After  doEightQueens  has completed, the board may display the solution, if one was found. 

The solution 
combines recursion 
with backtracking 
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  Figure   5-8    indicates the solution that the previous algorithm fi nds. By modifying the arguments 
to placeQueens , you can discover other solutions to the Eight Queens problem. The Programming 
Problems at the end of this chapter ask you to consider other solutions to this algorithm, as well as 
additional modifi cations.   

FIGURE 5-8         A solution to the Eight Queens problem   

1 2 3 4 5 6 7 8

     Question 7   Consider a Four Queens problem, which has the same rules as the Eight 
Queens problem but uses a 4 � 4 board. Find all solutions to this new problem by applying 
backtracking by hand. 

CHECK POINT

  Implementing eight queens using the STL class vector.  The  Board  class in the solution 
described thus far may be represented in a number of ways. The simplest representation would be 
a two-dimensional array; however, such an array wastes space because only eight squares out of 
64 are used. Another approach would be to use a one-dimensional array of only the squares that 
contain a queen. Because the algorithm uses backtracking, a dynamic array is the optimal choice. 
The vector  container in the STL is often used in place of an array type, because it allows 
the number of elements to vary dynamically and provides several built-in methods. Indexing is 
provided with array-type subscripting or with the  at  method, which provides range checking 
as well. 

 As given in Listing 5-1, the class  Board  contains a vector of pointers to  Queen  objects, as well as 
several methods to manipulate the queens on the board. The class  Queen  appears in Listing 5-2. 

      LISTING 5-1 The header fi le for the class  Board

  /** @file Board.h */
#ifndef _BOARD 
#define _BOARD 
#include "Queen.h" 
#include <vector> 
#include <cassert> 
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#include <iostream> 
  using namespace std; 

  static const int BOARD_SIZE = 8; 

  class Board 
 { 
  private : 
    vector<Queen*> queens; // Array of pointers to queens on the board

    /** Sees whether a queen exists in position (inRow, inCol). */
     bool isQueen( int inRow, int inCol) const;  

    /** Attempts to place queens on board, starting with the designated queen. */
     const placeQueens(Queen* queenPtr); 

    /** Removes the last queen from the board, but does not deallocate it. */
     void removeQueen(); 

    /** Places a queen on the board. */
     void setQueen( const Queen* queenPtr); 

  public:  
    /** Supplies the Queen class with a pointer to the board. */ 
    Board(); 

    /** Clears the board and removes pointer from queens. */
    ~Board(); 

    /** Clears board. */ 
     void clear(); 

    /** Displays board. */
     void display() const;  

    /** Initiates the Eight Queens problem. */
     void doEightQueens(); 

    /** @return  The number of queens on the board. */
     int getNumQueens() const;  

    /** @return  A pointer to the queen at the designated index. */
     const Queen* getQueen( int index) const;  

 }; // end Board
 #endif   

      LISTING 5-2 The class Queen

   class Board; // Forward declaration of Board class

/** The Queen class. */
  class Queen 
 { 
  public:  

/** Places a queen in upper-left corner of board. */
    Queen(); 

(continues)
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/** Places a queen in supplied location. */ 
    Queen( int inRow, int inCol); 

/** @return  Column number. */ 
int getCol() const;  

/** @return  Row number. */ 
int getRow() const;  

    /** Moves queen to next row. */ 
void nextRow(); 

/** Sees whether the queen is under attack by another queen. 
@return  True if another queen is in the same row or the same 

         diagonal; otherwise, returns false. */
bool isUnderAttack() const;  

/** Saves a pointer to the board for all queens. */ 
static void setBoard( const Board* bPtr); 

  private:  
int row;  // Row (or prospective row) of queen if it is on the board 

      int col; // Column (or prospective column) of queen if it is on 
// the board 

// All queens share the same board 
static const Board* boardPtr; 

 }; // end Queen 

 An implementation of  placeQueens  follows: 

   bool Board::placeQueens(Queen* queenPtr) 
 { 

// Base case: Try to place a queen in a nonexistent column. 
if (queenPtr->getCol() >= BOARD_SIZE) 

    { 
delete queenPtr; 
return true;  

    }   // end if 

bool isQueenPlaced = false;  
while (!isQueenPlaced && queenPtr->getRow() < BOARD_SIZE) 

    { 
        // If the queen can be attacked, try moving it 
         // to the next row in the current column 
        if (queenPtr->isUnderAttack()) 

queenPtr->nextRow();
        else  
        {
           // Put this queen on the board and try putting a 
           // new queen in the first row of the next column 
           setQueen(queenPtr);
           Queen* newQueenPtr = new Queen(0, queenPtr->getCol() + 1); 
           isQueenPlaced = placeQueens(newQueenPtr); 
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         // If it wasn't possible to put the new queen in the next column, 
         // backtrack by deleting the new queen and moving the last 
         // queen placed down one row 
          if (!isQueenPlaced) 
         {

delete newQueenPtr; 
removeQueen();
queenPtr->nextRow();

         } // end if 
} // end if 

} // end while 
return isQueenPlaced; 

} // end placeQueens      

   5.4 The Relationship Between Recursion 
and Mathematical Induction 

 A very strong relationship exists between recursion and mathematical induction. Recursion solves a 
problem by specifying a solution to one or more base cases and then demonstrating how to derive the 
solution to a problem of an arbitrary size from the solutions to smaller problems of the same type. 
Similarly, mathematical induction proves a property about the natural numbers by proving the prop-
erty about a base case—usually 0 or 1—and then proving that the property must be true for an arbi-
trary natural number  n  if it is true for the natural numbers smaller than  n . 

 Given the similarities between recursion and mathematical induction, it should not be surpris-
ing that induction is often employed to prove properties about recursive algorithms. What types of 
properties? You can, for example, prove that an algorithm actually performs the task that you 
intended. As an illustration, we will prove that the recursive factorial algorithm of  Chapter   2    does 
indeed compute the factorial of its argument. Another use of mathematical induction is to prove 
that a recursive algorithm performs a certain amount of work. For example, we will prove that the 
solution to the Towers of Hanoi problem—also from  Chapter   2   —makes exactly 2 N  – 1 moves when 
it starts with  N  disks.    

   5.4.1  The Correctness of the Recursive Factorial Function 

 The following pseudocode describes a recursive function that computes the factorial of a nonnegative 
integer  n:

  fact(n: integer): integer 

if (n is 0 )
return 1 

else  
return n * fact(n - 1) 

 You can prove that the function  fact  returns the values 

factorial (0) � 0! � 1 
factorial ( n ) � n ! � n � ( n  – 1) � ( n  – 2) � … � 1 if  n   > 0  

 The proof is by induction on  n . 

  Basis.    Show that the property is true for n = 0 . That is, you must show that  fact(0)  returns 1. But 
this result is simply the base case of the function:  fact(0)  returns 1 by its defi nition. 

You can use 
induction to prove 
that a recursive 
algorithm either is 
correct or performs 
a certain amount of  
work 
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 You now must establish that

property is true for an arbitrary k 1 property is true for k 1 1

  Inductive hypothesis.    Assume that the property is true for   n  =  k.  That is, assume that 

factorial ( k ) =  k ! =  k � ( k  – 1) � ( k  – 2) � … � 1   

  Inductive conclusion.    Show that the property is true for n = k + 1.  That is, you must show that 
fact(k + 1)  returns the value 

  ( k  + 1) � k � ( k  – 1) � ( k  – 2) � … � 2 � 1  

 By defi nition of the function  fact ,  fact(k + 1)  returns the value 

  ( k  + 1) � factorial ( k )

 But by the inductive hypothesis,  fact(k)  returns the value 

k � ( k  – 1) � ( k  – 2) � … � 2 � 1  

 Thus,  fact(k + 1)  returns the value 

  ( k  + 1) � k � ( k  – 1) � ( k  – 2) � … � 2 � 1  

 which is what you needed to show to establish that 

property is true for an arbitrary k 1 property is true for k 1 1

 The inductive proof is thus complete.   

   5.4.2  The Cost of Towers of Hanoi 

 In  Chapter   2   , you saw the following solution to the Towers of Hanoi problem: 

  solveTowers(count, source, destination, spare) 

if (count is  1) 
  Move a disk directly from source to  destination

else  
   { 
      solveTowers(count - 1, source, spare, destination) 
      solveTowers(1, source, destination, spare) 
      solveTowers(count - 1, spare, destination, source) 
   } 

 We now pose the following question: If you begin with  N  disks, how many moves does  solveTowers
make to solve the problem? 

 Let  moves ( N ) be the number of moves made starting with  N  disks. When  N  = 1, the answer is 
easy:

moves 11 2 5 1

 When  N   > 1, the value of  moves ( N ) is not so apparent. An inspection of the  solveTowers
algorithm, however, reveals three recursive calls. Therefore, if you knew how many moves  solveTowers
made starting with  N  – 1 disks, you could fi gure out how many moves it made starting with  N  disks; 
that is, 

moves 1N 2 5 moves 1N21 2 1 moves 11 2 1 moves 1N21 2
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 Thus, you have a recurrence relation for the number of moves required for  N  disks: 

moves 11 2 5 1

moves 1N 2 5 2 3 moves 1N21 2 1 1       if  N . 1

 For example, you can determine  moves (3) as follows:    

moves 13 2 5 2 3 moves 12 2 1 1

                         5 2 3 12 3 moves 11 2 1 1 2 1 1

                         5 2 3 12 3 1 1 1 2 1 1

                         5 7

 Although the recurrence relation gives you a way to compute  moves ( N ), a  closed-form 
formula —such as an algebraic expression—would be more satisfactory, because you could substi-
tute any given value for  N  and obtain the number of moves made. However, the recurrence relation is 
useful because there are techniques for obtaining a closed-form formula from it. Because these tech-
niques are not relevant to us right now, we simply pull the formula out of the blue and use 
mathematical induction to prove that it is correct. 

 The solution to the previous recurrence relation is    

moves 1N 2 5 2N 2 1       for all  N $ 1

 Notice that 2 3  – 1 agrees with the value 7 that was just computed for  moves  (3). 
 The proof that  moves ( N ) = 2 N  – 1 is by induction on  N .

Basis.    Show that the property is true for N = 1 . Here 2  1   – 1 = 1, which is consistent with the recur-
rence relation’s specifi cation that  moves  (1) = 1. 

 You now must establish that 

property is true for an arbitrary k 1 property is true for k 1 1

  Inductive hypothesis.    Assume that the property is true for   N = k.  That is, assume 

moves 1k 2 5 2k21

  Inductive conclusion.    Show that the property is true for N = k   +   1.  That is, you must show that 
moves  ( k  + 1) = 2 k +1  – 1. Now 

moves 1k 1 1 2 5 2 3 moves 1k 2 1  1           from the recurrence relation

                                     5 2 3 12k21 2 1 1              by the inductive hypothesis

                                     5 2k11 2 1

 which is what you needed to show to establish that 

property is true for an arbitrary k 1 property is true for k 1 1

 The inductive proof is thus complete. 
 Do not get the false impression that proving properties of programs is an easy matter. These two 

proofs are about as easy as any will be. However, well-structured programs are far more amenable to 
these techniques than are poorly structured programs. 

  Appendix   E    provides more information about mathematical induction. 

A recurrence 
relation for the 
number of  moves 
that  solveTowers  
requires for N disks 

A closed-form 
formula for the 
number of  moves 
that  solveTowers  
requires for  N disks 
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         SUMMARY   

1.  A grammar is a device for defi ning a language, which is a set of strings of symbols. By using a grammar to 
defi ne a language, you often can construct a recognition algorithm that is directly based on the grammar. Gram-
mars are frequently recursive, thus allowing you to describe vast languages concisely. 

2.  To illustrate the use of grammars, we defi ned several different languages of algebraic expressions. These lan-
guages have their relative advantages and disadvantages. Prefi x and postfi x expressions, though diffi cult for 
people to use, have simple grammars and eliminate ambiguity. On the other hand, infi x expressions are easier 
for people to use but require parentheses, precedence rules, and rules of association to eliminate ambiguity. 
Therefore, the grammar for infi x expressions is more involved. 

3.  Backtracking is a solution strategy that involves both recursion and a sequence of guesses that ultimately lead to 
a solution. If a particular guess leads to an impasse, you retrace your steps in reverse order, replace that guess, 
and try to complete the solution again. 

4.  A close relationship between mathematical induction and recursion exists. You can use induction to prove prop-
erties about a recursive algorithm. For example, you can prove that a recursive algorithm is correct, and you can 
derive the amount of work it requires. 

  EXERCISES   

1.  Trace the following recursive functions: 

a.    isPal  with the string abcdeba  
b.    isAnBn  with the string AABB  
c.    endPre  with the expression –*/ abcd    

2. Consider the language that the following grammar defi nes: 

,S. 5 $ 0,W. 0$ ,S.

,W. 5 abb 0a  ,W. bb

 Write all strings that are in this language and that contain seven or fewer characters. 

3.  Write a recursive grammar for the language of strings of one or more letters. The fi rst letter of each string must 
be uppercase, and all other letters in the string must be lowercase. 

4.  Consider a language of character strings that contain only dots and dashes. All strings in this language contain at 
least four characters and begin with either two dots or two dashes. If the fi rst two characters are dots, the last one 
must be a dash; if the fi rst two characters are dashes, the last one must be a dot. Write a recursive grammar for 
this language. 

5.  Consider a language of strings that contains only  X ’s,  Y ’s and  Z ’s. A string in this language must begin with an  X . 
If a Y  is present in a string, it must be the fi nal character of the string. 

a.   Write a recursive grammar for this language.  
b.   Write all the possible two-character strings of this language.   

     Note:   The subtleties of some of the algorithms you encountered in this chapter indicate 
the need for mathematical techniques to prove their correctness. The application of these 
techniques during the design of the various components of a solution can help to elimi-
nate errors in logic before they appear in the program. One such technique is mathemati-
cal induction; another is the use of loop invariants, which  Appendix   F    discusses. 
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6.  Consider a language of words, where each word is a string of dots and dashes. The following grammar describes 
this language: 

,word. 5  ,dot. 0,dash. ,word. 0,word. ,dot.

,dot.   5

,dash. 5 2

a.   Write all three-character strings that are in this language.  
b.   Is the string • • • • – – in this language? Explain.  
  c.   Write a seven-character string that contains more dashes than dots and is in the language. Show how 

you know that your answer is correct.  
  d.   Write pseudocode for a recursive recognition function  isIn(str)  that returns true if the string  str  is in 

this language and returns false otherwise.   

7.  Consider the following grammar: 

,word. 5 R 0,D. 0,D. ,word. ,S.

,D.     5 Q 0P
,S.      5 1

 Write pseudocode for a recursive function that returns true if a string is in this language and returns false 
otherwise.

8.  Consider the following grammar: 

,G. 5 empty string 0,E. 0,V. ,E. 0  ,E. ,G. ,V.

,E. 5 & 0#
,V. 5 W 0A

   a.   Write pseudocode for a recursive function that returns true if a string is in this language and returns 
false otherwise.  

b.   Is the string &W#W in this language?   

9.  Let  L  be the language 

L 5 5S:S is of the form AnB2n, for some n . 06
 Thus, a string is in  L  if and only if it starts with a sequence of  A ’s and is followed by a sequence of twice as many 
B ’s. For example, AABBBB is in  L , but ABBB, ABBABB, and the empty string are not. 

   a.   Give a grammar for the language  L .
  b.   Write a recursive function that determines whether the string  strExp  is in L .

10.  Is +* a – b / c ++ de – fg  a prefi x expression? Explain in terms of the grammar for prefi x expressions. 

11.  Is  ab /c * efg * h /+d –+ a postfi x expression? Explain in terms of the grammar for postfi x expressions. 

12.  Consider the language that the following grammar defi nes: 

,S.  5  ,L. 0  ,D. ,S. ,S.

,L. 5  A 0B
,D. 5  1 02

   a.   Write all three-character strings that are in this language.  
  b.   Write one string in this language that contains more than three characters.   
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13.  Consider a language of the following character strings: The letter  A , the letter  B , the letter  C  followed by a string 
that is in the language, and the letter  D  followed by a string in the language. For example, these strings are in this 
language: A, CA, CCA, DCA, B, CB, CCB, DB, and DCCB. 

   a.   Write a grammar for this language.  
  b.   Is CAB in this language? Explain.  
  c.   Write a recursive recognition algorithm for this language.   

14.  Consider the language that the following grammar defi nes: 

,word. 5 $ 0a,word.a 0b,word.b 0c0y,word.y 0z,word.z

 Equivalently, 

L 5 5s $ reverse 1s 2 :s is a string of letters of length $ 06
 Note that this language is very similar to the language of palindromes, but there is a special middle character 
here.

 The algorithm that this chapter gave for recognizing palindromes can be adapted easily to this language. 
The algorithm, which is recursive and processes the string  str  from both ends toward the middle, is based on the 
following facts: 

•   A string with no characters is not in the language.  
•   A string with exactly one character is in the language if the character is a  $ .
•    A longer string is in the language if the ends are identical letters and the inner substring (from the second 

character to the next-to-last character of  str ) is in the language.   

 Describe a recursive recognition algorithm that processes the string from left to right, reading one 
character at a time without saving the string for future reference. Write a C++ function that implements your 
algorithm.

15.  Consider the following recursive function: 

   int p( int  x) 
 { 
     if  (x =< 3) 
         return x;
     else 
         return p(x-1) * p(x-3); 
} // end p  

 Let  m ( x ) be the number of multiplication operations that the execution of  p(x) performs. 

   a.   Write a recursive defi nition of  m ( x ).
  b.   Prove that your answer to part  a  is correct by using mathematical induction.   

16.  Consider palindromes that consist only of lowercase letters, such as “level” and “deed,” but not “RadaR,” 
“ADA,” or “101.” Let  c ( n ) be the number of palindromes of length  n .

   a.   Write a recursive defi nition of  c ( n ).
b.   Prove that your answer to part  a  is correct by using mathematical induction.   

17.  Prove the following for single-letter operands: If  E  is a prefi x expression and  Y  is a nonempty string of 
nonblank characters, then  E  Y  cannot be a legal prefi x expression. ( Hint:  Use a proof by induction on the length 
of  E .)
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18.   Chapter   2    gave the following defi nition for  g ( n ,  k ), where  n  and  k  are assumed to be nonnegative integers: 

g 1n, k 2 5 μ 1                                                      if k 5 0

1                                                      if k 5 n

0                                                      if k . n

g 1n 2 1, k 2 1 2 1 g 1n 2 1, k 2       if 0 , k , n

 Prove by induction on  n  that the following is a closed form for  g ( n ,  k ):

g 1n, k 2 5 n!1n 2 k 2 !k!

      PROGRAMMING PROBLEMS                 

1.  Complete the classes  Queen  and  Board  for the Eight Queens problem. 

2.  Revise the program that you just wrote for the Eight Queens problem so that it answers the following questions: 

a.   How many backtracks occur? That is, how many times does the program remove a queen from the 
board?

  b.   How many calls to  isUnderAttack  are there?  
  c.   How many recursive calls to  placeQueens  are there?   

  *3.  You can begin the Eight Queens problem by placing a queen in the second square of the fi rst column instead of in 
the fi rst square. You can then call  placeQueens  to begin with the second column. This revision should lead you 
to a new solution. Write a program that fi nds all solutions to the Eight Queens problem. 1

4. Do you know how to fi nd your way through a maze? After you write this program, you will never be lost again! 
 Assume that a maze is a rectangular array of squares, some of which are blocked to represent walls. The 

maze has one entrance and one exit. For example, if  x ’s represent the walls, a maze could appear as follows: 

 xxxxxxxxxxxxxxxxxx  x 
 x            x                  xxxx  x 
 x  xxxxx        xxxxx  xx  x 
 x  xxxxx   xxxxxxx  xx  x 
 x  x                         xx    xx   x 
 x  xxxxxxxxxx   xx         x 
 xxxxxxxxxxxx o xxxxxxx 

 A creature, indicated in the previous diagram by  o , sits just inside the maze at the entrance (bottom row). 
Assume that the creature can move in only four directions: north, south, east, and west. In the diagram, north is 
up, south is down, east is to the right, and west is to the left. The problem is to move the creature through the 
maze from the entrance to the exit (top row), if possible. As the creature moves, it should mark its path. At the 
conclusion of the trip through the maze, you should see both the correct path and incorrect attempts. Write a 
program to solve this problem. 

1 Especially challenging projects in this book are indicated with an asterisk.

(continues on next page)
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 Squares in the maze have one of several states: CLEAR (the square is clear), WALL (the square is blocked 
and represents part of the wall), PATH (the square lies on the path to the exit), and VISITED (the square was 
visited, but going that way led to an impasse). 

 This problem uses two ADTs that must interact. The ADT creature represents the creature’s current position 
and contains operations that move the creature. The creature should be able to move north, south, east, and west 
one square at a time. It should also be able to report its position and mark its trail. 

 The ADT maze represents the maze itself, which is a two-dimensional rectangular arrangement of squares. 
You could number the rows of squares from the top beginning with zero, and number the columns of squares 
from the left beginning with zero. You could then use a row number and a column number to uniquely identify 
any square within the maze. The ADT clearly needs a data structure to represent the maze. It also needs such data 
as the height and width of the maze given in numbers of squares; the length of a side of a square, and the row and 
column coordinates of both the entrance to and the exit from the maze. 

 The ADT maze should also contain, for example, operations that create a specifi c maze given descriptive 
data that we will detail to display a maze, determine whether a particular square is part of the wall, determine 
whether a particular square is part of the path, and so on. 

 The search algorithm and its supporting functions are outside both of the ADTs creature and maze. Thus, 
the maze and the creature will be arguments that you must pass to these functions. If you are at the maze’s 
entrance, you can systematically fi nd your way out of the maze by using the following search algorithm. This 
involves backtracking—that is, retracing your steps when you reach an impasse. 

   Step 1.    First check whether you are at the exit. If you are, you’re done (a very simple maze); if you are not, 
go to step 2.  

  Step 2.    Try to move to the square directly to the north by calling the function  goNorth  (step 3).  
  Step 3.    If  goNorth  was successful, you are done. If it was unsuccessful, try to move to the square directly 

to the west by calling the function  goWest  (step 4).  
  Step 4.    If  goWest  was successful, you are done. If it was unsuccessful, try to move to the square directly to 

the south by calling the function  goSouth  (step 5).  
  Step 5.    If  goSouth  was successful, you are done. If it was unsuccessful, try to move to the square directly 

to the east by calling the function  goEast  (step 6).  
  Step 6.    If  goEast  was successful, you are done. If it was unsuccessful, you are still done, because no path 

exists from the entrance to the exit.   

 The function goNorth will examine all the paths that start at the square to the north of the present square 
as follows. If the square directly to the north is clear, is inside the maze, and has not been visited before, 
move into this square and mark it as part of the path. (Note that you are moving from the south.) Check 
whether you are at the exit. If you are, you’re done. Otherwise, try to fi nd a path to the exit from here by try-
ing all paths leaving this square except the one going south (going south would put you back in the square 
from which you just came) as follows. Call goNorth; if it is not successful, call goWest and, if it is not suc-
cessful, call goEast. If goEast is not successful, mark this square as visited, move back into the square to the 
south, and return. 

 The following pseudocode describes the  goNorth  algorithm: 

goNorth(maze, creature) 

       if (the square to the north is clear, inside the maze, and unvisited ) 
{

           Move to the north  
            Mark the square as part of the path
           if (at exit)
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                 success =  true 
 else 
{

               success = goNorth(maze, creature) 
                if  (!success) 
               {
                     success = goWest(maze, creature) 
              if  (!success) 
             { 
                 success = goEast(maze, creature) 
                  if  (!success) 
                 { 
                      Mark square visited  
                      Backtrack south  
                 } 
             } 
          } 
      } 
  } 
 else 

      success =  false 

 return  success 

 The  goWest  function will examine all the paths that start at the square to the west of the present square as 
follows. If the square directly to the west is clear, is inside the maze, and has not been visited before, move into 
this square and mark it as part of the path. (Note that you are moving from the east.) Check whether you are at the 
exit. If you are, you’re done. Otherwise, try to fi nd a path to the exit from here by trying all paths leaving this 
square except the one going east (this would put you back in the square from which you just came) as follows. 
Call  goNorth ; if it is not successful, call  goWest ; and if it is not successful, call  goSouth . If  goSouth  is not suc-
cessful, mark this square as visited, move back into the square to the east, and return. The functions  goEast  and 
 goSouth  are analogous to  goWest  and  goNorth .

 The input data to represent a maze is simple. For example, the previously given maze is represented by the 
following lines of input, which can be in a text fi le: 

 20      7 ← width and height of the maze in squares
   0   18 ← row and column coordinate of maze exit
   6   12 ← row and column coordinate of maze entrance  
 xxxxxxxxxxxxxxxxxx   x 
 x            x                  xxxx   x 
 x  xxxxx     xxxxx      xx   x 
 x  xxxxx    xxxxxxx  xx   x 
 x  x                           xx  xx  x 
 x  xxxxxxxxxx   xx         x 
 xxxxxxxxxxxx   xxxxxxx 

 After the fi rst three lines of numeric data in the fi le, each of the next lines corresponds to a row in the maze, and 
each character in a line corresponds to a column in the maze. An  x  indicates a blocked square (part of the wall), 
and a blank indicates a clear square. This notation is convenient, because you can see what the maze looks like as 
you design it. 

5.  Write a program that will recognize and evaluate prefi x expressions. First design and implement a class of prefi x 
expressions. This class should contain methods to recognize and evaluate prefi x expressions. This chapter dis-
cusses the algorithms you will need to implement these methods. 

6.  Implement a recognition algorithm for the language in Exercise 5. 
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7.  Implement the algorithm described in this chapter to convert a prefi x expression to postfi x form. 

8. The following is a grammar that allows you to omit parentheses in infi x algebraic expressions when the prece-
dence rules remove ambiguity. For example,  a  +  b  *  c  means  a  + ( b  * c ). However, the grammar requires paren-
theses when ambiguity would otherwise result. That is, the grammar does not permit left-to-right association 
when several operators have the same precedence. For example,  a  /  b  *  c  is illegal. Notice that the defi nitions 
introduce factors and terms. 

,expression. 5  ,term. 0  ,term. 1 ,term. 0,term. 2 ,term.

,term. 5  ,factor. 0  ,factor.*,factor. 0  ,factor./,factor.

,factor. 5  ,letter. 0 1,expression. 2
,letter. 5  a 0  b 0  c 0  z

 The recognition algorithm is based on a recursive chain of subtasks:  fi nd an  expression → fi nd a term →
fi nd a factor . What makes this a recursive chain is that  fi nd an expression  uses  fi nd a term , which in turn uses  fi nd 
a factor .  Find a factor  either detects a base case or uses  fi nd an expression , thus forming the recursive chain.   The 
pseudocode for the recognition algorithm follows: 

   FIND AN EXPRESSION  
  //     The grammar specifies that an expression is either a single term  
//  or a term followed by a + or a –, which then must be followed by a second term.  

Find a term  
        if (the next symbol is  +  or  -)
            Find a term    

   FIND A TERM  
//     The grammar specifies that a term is either a single factor or  
 //    a factor followed by a * or a /, which must then be followed by a second factor.  

  Find a factor  
        if (the next symbol is  *  or  /)

Find a factor    

   FIND A FACTOR  
  // The grammar specifies that a factor is either a single letter (the base case) or  
//       an expression enclosed in parentheses.  
          if (the first symbol is a letter ) 

 Done
          else if (the first symbol is a '(') 
         {

Find an expression starting at the character after '(' 
Check for ')'

     } 
          else

No factor exists  

 Design and implement a class of infi x expressions, as described by the given grammar. Include a method to 
recognize a legal infi x expression.   
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  Chapter   1       Data Abstraction: The Walls 
 C++ Interlude 1 C++ Classes 

So far in this book, we have discussed data abstraction as it relates to the design of a 
solution, introduced C++ classes as a way to hide a solution’s implementation, 
introduced resizable arrays and linked nodes as data structures used in many ADT 
implementations, and developed recursion as a problem-solving technique that is 
useful in the construction of algorithms. The primary concerns of the remainder of 
this book are the aspects of problem solving that involve the management of data—
that is, the identifi cation and implementation of some of the more common data-
management operations. 
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 Our study of data management has three goals. The fi rst is to identify useful sets of operations—
that is, to identify abstract data types. The second goal is to examine applications that use these 
abstract data types. The third goal is to construct implementations for the abstract data types—that is, 
to develop data structures and classes. As you will discover, the nature of the operations of an abstract 
data type, along with the application in which you will use it, greatly infl uences the choice of its 
implementation.

 The ADT bag discussed in  Chapter   1    does not organize its data. However, you can organize data 
either by position or by value. In general, these organizations are appropriate for applications of 
rather different natures. For example, if an application needs to ask a question about the fi rst person in 
a line, you should organize the data by position. On the other hand, if an application needs to ask a 
question about the employee named Smith, you should organize the data by value. Throughout the 
rest of this book, you will see several ADTs that use these two data organizations. 

 This chapter introduces a well-known ADT called a stack. You will see how the operations on a 
stack give it a last-in, fi rst-out behavior. Two of the several applications of a stack that the chapter 
considers are evaluating algebraic expressions and searching for a path between two points. Finally, 
the chapter discusses the important relationship between stacks and recursion. We leave the imple-
mentations of the stack to the next chapter.   

      6.1 The Abstract Data Type Stack 
 The specifi cation of an abstract data type that you can use to solve a particular problem can emerge 
during the design of the problem’s solution. The ADT developed in the following example happens to 
be an important one: the ADT stack. 

   6.1.1  Developing an ADT During the Design of a Solution 

 When you type a line of text on a keyboard, you are likely to make mistakes. If you use the Back-
space key to correct these mistakes, each backspace erases the previous character entered. Con-
secutive backspaces are applied in sequence and so erase several characters. For instance, if you 
type the line 

  abcc←ddde←←←eg←fg

 where ← represents the backspace character, the corrected input would be 

  abcdefg 

 How can a program read the original line and get the correct input? In designing a solution to this 
problem, you eventually must decide how to store the input line. In accordance with the ADT 
approach, you should postpone this decision until you have a better idea of what operations you will 
need to perform on the data. 

 A fi rst attempt at a solution leads to the following pseudocode:    

   // Read the line, correcting mistakes along the way  
  while  ( not end of line ) 
 { 

Read a new character  ch 
if  (ch is not a '←')

Add ch to the ADT  
else  

Remove from the ADT (discard) the item that was added most recently  
 } 

Initial draft of  a 
solution

VideoNote

The ADT stack
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 This solution calls to attention two of the operations that the ADT will have to include:    

•   Add a new item to the ADT.  
•   Remove from the ADT the item that was added most recently.   

 Notice that potential trouble lurks if you type a ← when the ADT is empty—that is, when the 
ADT contains no characters. If this situation should occur, you have three options: (1) have the pro-
gram terminate and write an error message, (2) throw an exception, or (3) have the program ignore 
the ← and continue. Any of these options is reasonable, so let’s suppose that you decide to ignore the 
← and continue. Therefore, the algorithm becomes    

   // Read the line, correcting mistakes along the way  
  while  ( not end of line ) 
 { 

Read a new character  ch 
if  (ch  is not a  '←')

Add  ch  to the ADT  
else if  ( the ADT is not empty ) 

Remove from the ADT the item that was added most recently  
else  

Ignore the  '←'
 } 

 From this pseudocode, you can identify a third operation required by the ADT:    

•   See whether the ADT is empty.   

 This solution places the corrected input line in the ADT. Now suppose that you want to display 
the line. At fi rst, it appears that you can accomplish this task by using the ADT operations already 
identifi ed, as follows:    

   // Display the line  
  while  ( the ADT is not empty ) 
 { 

Remove from the ADT the item that was added most recently  
Display . . . . Uh-oh!  

 } 

 This pseudocode is incorrect for two reasons:    

•   When you remove an item from the ADT, the item is gone, so you cannot display it. What you 
should have done was to  look at  the item that was added to the ADT most recently. An accessor 
operation returns an item—enabling you to look at it—but does not change the ADT’s data. 
Only after getting and displaying the item should you remove it from the ADT.  

•   The last character of the input line is the item most recently added to the ADT. You 
certainly do not want to write it fi rst. The resolution of this particular diffi culty is left to 
you as an exercise.   

 If we address only the fi rst diffi culty, the following pseudocode displays the input line in 
reverse order:    

   // Display the line in reverse order  
  while  ( the ADT is not empty ) 
 { 

Get the item that was added to the ADT most recently and assign it to ch
Display  ch 
Remove from the ADT the item that was added most recently  

 } 

Two ADT operations 
that are required 

The “read and 
correct” algorithm 

Another required 
ADT operation 

A false start at 
writing the line 

Reasons why the 
attempted solution 
is incorrect 

The write-backward 
algorithm
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 Thus, a fourth operation is required by the ADT:    

•   Get the item that was added to the ADT most recently.   

 Although you have yet to think about an implementation of the ADT, you know that you must be 
able to perform four specifi c operations.  1   These operations defi ne the required ADT, which happens 
to be well known: It is usually called a  stack .

   6.1.2  Specifi cations for the ADT Stack 

 We have identifi ed the following operations for the ADT stack: 

•   See whether a stack is empty.  
•   Add a new item to the stack.  
•   Remove from the stack the item that was added most recently.  
•   Get the item that was added to the stack most recently.   

 The term “stack” is intended to conjure up visions of things encountered in daily life, such as a 
stack of plates in the school cafeteria, a stack of books on your desk, or a stack of assignments that 
you need to work on. In common English usage, “stack of ” and “pile of ” are synonymous. To compu-
ter scientists, however, a stack is not just any old pile. A stack has the property that the last item placed 
on the stack will be the fi rst item removed. This property is commonly referred to as  last in, fi rst out
or simply  LIFO .    

 A stack of plates in a cafeteria makes a very good analogy of the abstract data type stack, as 
 Figure   6-1    illustrates. As new plates are added, the old ones drop farther into the well beneath the 
surface. At any particular time, only the plate last placed on the stack is above the surface and visi-
ble. This plate is at the  top of the stack  and is the one that must be removed next. In general, the 
plates are removed in exactly the opposite order from that in which they were added.  

 The LIFO property of stacks seems inherently unfair. Think of the poor person who fi nally 
gets the last plate on the cafeteria’s stack, one that may have been placed there six years ago. Or 
how would you like to be the fi rst person to arrive on the stack for a movie—as opposed to the line 
for a movie. You would be the last person allowed in! These examples demonstrate the reason that 
stacks are not especially prevalent in everyday life. The property that we usually desire in our daily 
lives is  fi rst in, fi rst out , or  FIFO . A  queue , which you will learn about in  Chapter   13   , is the ADT 
with the FIFO property. Most people would much prefer to wait in a movie queue—as a line is 
called in Britain—than in a movie stack. However, while the LIFO property of stacks is not appro-
priate for very many everyday situations, it is precisely what is needed for a large number of prob-
lems that arise in computer science. 

LIFO: The last item 
inserted onto a 
stack is the fi rst item 
out

FIGURE 6-1         A stack of cafeteria plates   

 1   The fi nal algorithm to write the line correctly instead of in reverse order does not require additional ADT operations. 

Another required 
ADT operation 
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 Notice how well the analogy holds between the ADT stack and the stack of cafeteria plates. 
The operations that manipulate data on the ADT stack are the  only  such operations, and they cor-
respond to the only things that you can do to a stack of plates. You can determine whether the stack 
of plates is empty but not how many plates are on the stack; you can inspect the top plate but no 
other plate; you can place a plate on top of the stack but at no other position; and you can remove a 
plate from the top of the stack but from no other position. If you were not permitted to perform any 
of these operations, or if you were permitted to perform any other operations, the ADT would not 
be a stack. 

 Although the stack of cafeteria plates suggests that, as you add or remove plates, the other plates 
move, do not have this expectation of the ADT stack. The stack operations involve only the top item 
and imply only that the other items in the stack remain in sequence. Implementations of the ADT 
stack operations might or might not move the stack’s items. The implementations given in the next 
chapter do not move data items. 

  Refi ning the specifi cation of the ADT stack.   The following summary of the ADT stack provides 
some detail about how we wish to specify its operations. The names given here for stack operations 
are conventional.    

ABSTRACT DATA TYPE: STACK

 DATA

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by when they were added. 

 OPERATIONS

 PSEUDOCODE  DESCRIPTION

  isEmpty()  Task: Sees whether this stack is empty.
Input: None. 
 Output: True if the stack is empty; otherwise false. 

 push(newEntry) Task: Adds  newEntry to the top of this stack.
Input: newEntry . 
 Output: True if the operation is successful; otherwise false. 

 pop()  Task: Removes the top of this stack. That is, it removes the item that was added 
most recently. 

 Input: None. 
 Output: True if the operation is successful; otherwise false. 

 peek()  Task: Returns the top of this stack. That is, it gets the item that was added most recently. 
The operation does not change the stack. 

 Input: None. 
 Output: The top of the stack. 

  Figure   6-2    shows a UML diagram for a class of stacks.   

  Using the ADT stack in a solution.   Recall that  Chapter   1    urged you to focus on the specifi ca-
tion of a module before you considered its implementation. After writing an ADT’s operations in 
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pseudocode, you should try to use them as a check of your design. Such a test can highlight any 
defi ciencies in your specifi cations or design. For example, you can use the previous stack opera-
tions to refi ne the algorithms developed earlier in this chapter.    

   // Reads an input line, recognizing the character '←' as a backspace that erases the   
  // previously typed character.  
  // Returns a stack of the corrected characters read.  
readAndCorrect(): Stack 

    aStack = a new empty stack  
Read newChar 
while (newChar  is not the end-of-line symbol ) 

    { 
if (newChar  is not a '←')

           aStack.push(newChar) 
else if (!aStack.isEmpty()) 

           aStack.pop() 
Read newChar 

    } 
return aStack 

  // Displays the input line in reverse order by writing the contents of the stack  aStack.
displayBackward(aStack: Stack) 

while (!aStack.isEmpty()) 
    { 
        newChar = aStack.peek() 
        aStack.pop() 

Write newChar 
    } 

Advance to new line   

 You should be able to use the stack operations without knowing their implementations or even 
what a stack looks like. Because working with an ADT involves building a wall around the imple-
mentation, your program can use a stack independently of the stack’s implementation. As long as the 
program correctly uses the ADT’s operations—that is, as long as it honors the operation contract—it 
will work regardless of how you implement the ADT. 

 For the program to do this, however, the operation contract must be written precisely. That 
is, before you implement any operations of the ADT, you should specify in detail both their 
requirements before use and their ultimate effect. Realize, however, that during program design, 
the first attempt at specification is often informal and is only later made precise by the writing 

FIGURE 6-2         UML diagram for the class  Stack

Stack

+isEmpty(): boolean
+push(newEntry: ItemType): boolean
+pop(): boolean
+peek(): ItemType

The refi ned 
algorithms
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of preconditions and postconditions. For example, the previous specifications of the ADT stack 
leave the following questions unanswered:    

•   How will  pop  affect an empty stack?  
•   What will  peek  do when the stack is empty?     

     Note:   Operations such as  pop  and  peek  must take reasonable action when the stack 
is empty. 

  An interface.   The interface given in Listing 6-1 formalizes our specifi cation of the ADT stack and 
answers the previous questions about  pop  and  peek  .  

LISTING 6-1 A C++ interface for stacks 

  /** @file StackInterface.h */ 
#ifndef _STACK_INTERFACE 
#define _STACK_INTERFACE 

  template<class ItemType> 
  class StackInterface 
 { 
  public : 
    /** Sees whether this stack is empty. 

  @return  True if the stack is empty, or false if not. */ 
virtual bool isEmpty() const = 0; 

    /** Adds a new entry to the top of this stack. 
    @post  If the operation was successful, newEntry is at the top of the stack. 
    @param newEntry  The object to be added as a new entry. 
    @return  True if the addition is successful or false if not. */ 

virtual bool push( const ItemType& newEntry) = 0; 

    /** Removes the top of this stack. 
     @post  If the operation was successful, the top of the stack 
         has been removed.   
     @return  True if the removal is successful or false if not. */ 

virtual bool pop() = 0; 

    /** Returns the top of this stack. 
     @pre  The stack is not empty. 
     @post  The top of the stack has been returned, and 
         the stack is unchanged. 
     @return  The top of the stack. */ 

virtual ItemType peek() const = 0; 
 }; // end StackInterface 
 #endif 

Questions that the 
informal 
specifi cations of  the 
stack leave 
unanswered 
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     Axioms (optional).   Most people will understand intuitive specifi cations, such as those given previ-
ously for the stack operations. However, some ADTs are much more complex and less intuitive than a 
stack. For such ADTs, you should use a more rigorous approach to defi ning the behavior of their 
operations: You must supply a set of mathematical rules—called  axioms —that precisely specify the 
behavior of each operation of an ADT.    

 An axiom is a true statement for an ADT’s operation. For example, you are familiar with axioms 
for algebraic operations; in particular, you know the following rules for multiplication:    

  (a × b) × c = a × (b × c)
a × b = b × a
a × 1 = a
a × 0 = 0

 These rules, or axioms, are true for any numeric values of  a ,  b , and  c , and describe the behavior of the 
multiplication operator ×. 

 In a similar fashion, you can write a set of axioms that completely describes the behavior of the 
operations for the ADT stack. For example,    

   A newly created stack is empty   

 is an axiom because it is true for all newly created stacks. We can state this axiom succinctly in terms 
of the ADT stack operations as follows, if we represent a newly created stack by the pseudocode 
expression  new Stack() : 

  (new Stack()).isEmpty() = true 

 To formally capture the intuitive notion that the last item inserted into the stack  aStack  is the fi rst 
item to be removed, you could write an axiom such as    

  (aStack.push(newItem)).pop() = aStack 

 That is, if you push  newItem  onto  aStack  and then pop it, you are left with the original stack  aStack . 
 The following axioms formally defi ne the ADT stack.     

     Question 2   What do the initially empty stacks  stack1  and  stack2  “look like” after the 
following sequence of operations? 

  stack1.push(1) 
 stack1.push(2) 
 stack2.push(3) 
 stack2.push(4) 
 stack1.pop() 
stackTop = stack2.peek() 
 stack1.push(stackTop) 
 stack1.push(5) 
 stack2.pop() 
 stack2.push(6) 

     Question 1   If you push the letters  A ,  B ,  C , and  D  in order onto a stack of characters and 
then pop them, in what order will they be deleted from the stack? 

CHECK POINT

An axiom is a 
mathematical rule 

Axioms specify the 
behavior of  an ADT 

Axioms for 
multiplication 

An example of  an 
axiom
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   6.2 Simple Uses of a Stack 
 Once you have satisfactorily specifi ed the behavior of an ADT, you can design applications that 
access and manipulate the ADT’s data solely in terms of its operations and without regard for its 
implementation. Thus, we can use the operations of the ADT stack even though we have not discussed 
their implementations yet. This section presents two rather simple examples for which the LIFO 
property of stacks is appropriate. 

   6.2.1  Checking for Balanced Braces 

 C++ uses curly braces, “{” and “}”, to delimit groups of statements. For example, braces begin and 
end a method’s body. If you treat a C++ program as a string of characters, you can use a stack to verify 
that a program contains balanced braces. For example, the braces in the string 

  abc{defg{ijk}{l{mn}}op}qr 

 are balanced, while the braces in the string 

  abc{def}}{ghij{kl}m 

 are not balanced. You can check whether a string contains balanced braces by traversing it from left to 
right. As you move from left to right, you match each successive close brace “}” with the most 
recently encountered unmatched open brace “{”; that is, the “{” must be to the left of the current “}”. 
The braces are balanced if    

1.   Each time you encounter a “}”, it matches an already encountered “{”.  
2.   When you reach the end of the string, you have matched each “{”.   

 The solution requires that you keep track of each unmatched “{” and discard one each time you 
encounter a “}”. One way to perform this task is to push each “{” encountered onto a stack and pop 
one off each time you encounter a “}”. Thus, a fi rst-draft pseudocode solution is    

   for  ( each character in the string ) 
 { 

if  ( the character is a  '{') 
        aStack.push('{') 

else if  ( the character is a  '}') 
        aStack.pop() 
 } 

 Although this solution correctly keeps track of braces, missing from it are the checks that condi-
tions 1 and 2 are met—that is, that the braces are indeed balanced. To verify condition 1 when a “}” is 
encountered, you must check to see whether the stack is empty before popping from it. If it is empty, 

Note: Axioms for the ADT stack 

  (new Stack()).isEmpty() = true 
(new Stack()).pop() = false 
(new Stack()).peek() = error 
(aStack.push(item)).isEmpty() = false 
(aStack.push(item)).peek() = item 
(aStack.push(item)).pop() = true 

Requirements for 
balanced braces 

Initial draft of  a 
solution
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Using the ADT stack
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you terminate the loop and report that the string is not balanced. To verify condition 2, you check that 
the stack is empty when the end of the string is reached. 

 Thus, the pseudocode solution to check for balanced braces in  aString  becomes    

   // Checks the string  aString  to verify that braces match.  
  // Returns true if aString  contains matching braces, false otherwise.  
checkBraces(aString: string): boolean 

    aStack = a new empty stack  
    balancedSoFar = true  
    i = 0 

while  (balancedSoFar  and i < length of aString) 
    { 
        ch =  character at position  i  in  aString 
        i++ 

// Push an open brace  
if  (ch  is a  '{') 

            aStack.push('{') 

  // Close brace  
else if  (ch  is a  '}') 

        { 
             if (!aStack.isEmpty()) 
               aStack.pop()    // Pop a matching open brace  
             else                   // No matching open brace  
               balancedSoFar =  false  
        } 

// Ignore all characters other than braces  
    } 

if  (balancedSoFar  and  aStack.isEmpty()) 
        aString  has balanced braces  

else  
        aString  does not have balanced braces   

  Figure   6-3    shows the stacks that result when this algorithm is applied to several simple examples.  

A detailed 
pseudocode
solution to check a 
string for balanced 
braces 

FIGURE 6-3         Traces of the algorithm that checks for balanced braces   
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   6.2.2  Recognizing Strings in a Language 

 Consider the problem of recognizing whether a particular string is in the language 

L  = { s$s'  : s is a possibly empty string of characters other than  $ ,  s'  = reverse( s )} 

 For example, the strings A$A, ABC$CBA, and $ are in  L , but AB$AB and ABC$CB are not. (Exer-
cise 14 in  Chapter   5    introduced a similar language.) This language is like the language of palindromes 
that you saw in  Chapter   5   , but strings in this language have a special middle character. 

 A stack is useful in determining whether a given string is in  L.  Suppose you traverse the fi rst half 
of the string and push each character onto a stack. When you reach the  $  you can undo the process: 
For each character in the second half of the string, you pop a character off the stack. However, you 
must match the popped character with the current character in the string to ensure that the second half 
of the string is the reverse of the fi rst half. The stack must be empty when—and only when—you 
reach the end of the string; otherwise, one “half ” of the string is longer than the other, and so the 
string is not in L.

 The following algorithm uses this strategy. To avoid unnecessary complications, assume that 
aString  contains exactly one  $ . 

   // Checks the string  aString  to verify that it is in language L.  
  // Returns true if aString  is in L, false otherwise.  
recognizeString(aString: string): boolean 

     Question 3   For each of the following strings, trace the execution of the balanced-braces 
algorithm and show the contents of the stack at each step. 

a.   x{{yz}}}
b.   {x{y{{z}}}
c.   {{{x}}}

CHECK POINT

     Note:   The  push  operation can fail for implementation-dependent reasons. For exam-
ple, push  fails if the array in an array-based implementation is full. In the spirit of fail-
safe programming, a function that implements this balanced-braces algorithm should 
check push ’s return value. 

 Aside: A solution without stacks 

 It may have occurred to you that a simpler solution to this problem is possible. You need only 
keep a count of the current number of unmatched open braces.  2   You need not actually store the 
open braces in a stack. However, the stack-based solution is conceptually useful as it previews 
more legitimate uses of stacks. For example, Exercise 7 at the end of this chapter asks you to 
extend the algorithm given here to check for balanced parentheses and square brackets in addi-
tion to braces.  

 2   Each time you encounter an open brace, you increment the count; each time you encounter a close brace, you decrement 
the count. If this count ever falls below zero, or if it is greater than zero when the end of the string is reached, the string is 
unbalanced. 
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    aStack = a new empty stack  

// Push the characters that are before the $ (that is, the characters in s) onto the stack  
    i = 0 
    ch = character at position i  in  aString 

while  (ch  is not a  '$') 
    { 
        aStack.push(ch) 
        i++ 
        ch =  character at position  i  in  aString 
    } 

// Skip the $  
    i++ 

// Match the reverse of s  
    inLanguage = true   // Assume string is in language  

while  (inLanguage  and i < length of aString) 
    { 

if (!aStack.isEmpty()) 
        { 
            stackTop = aStack.peek() 
            aStack.pop() 
            ch =  character at position  i  in  aString 

if (stackTop equals ch) 
                i++  // Characters match  

else  
                inLanguage = false  // Characters do not match (top of stack is not  ch )  
        } 

else  
                inLanguage = false   // Stack is empty (first half of string is shorter  

                                                                 // than second half)  
    } 

if (inLanguage and aStack.isEmpty()) 
        aString is in language  

else  
        aString is not in language      

     Note:   In both of the preceding examples, notice how you can focus on the task at 
hand without the distraction of implementation details such as arrays. With less to 
worry about, you are less likely to make an error in your logic when you use the ADT’s 
operations in applications such as checkBraces  and  recognizeString . Likewise, 
when you fi nally implement the ADT’s operations in C++, you will not be distracted by 
these applications. In addition, because checkBraces  and  recognizeString  do not 
depend on any implementation decisions that you make, they are not altered by your 
decisions. These remarks assume that you do not change the specifi cations of the 
ADT’s operations when you implement them. However, developing software is not a 
linear process. You may realize during implementation that you need to refi ne your 
specifi cations. Clearly, changes to the specifi cation of any module affect any already-
designed uses of that module.    

 To summarize, you can specify the behavior of an ADT independently of its im-
plementation. Given such a specifi cation, and without any knowledge of how the 
ADT will be implemented, you can design applications that use the ADT’s operations 
to access its data. 

You can use an 
ADT’s operations 
in an application 
without the 
distraction of  
implementation 
details
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   6.3 Using Stacks with Algebraic Expressions 
 This section contains two more problems that you can solve neatly by using the ADT stack. Keep in 
mind throughout that you are using the ADT stack to solve the problems. You can use the stack opera-
tions, but you may not assume any particular implementation. You choose a specifi c implementation 
only as a last step.    

  Chapter   5    presented recursive grammars that specifi ed the syntax of algebraic expressions. 
Recall that prefi x and postfi x expressions avoid the ambiguity inherent in the evaluation of infi x 
expressions. We will now consider stack-based solutions to the problems of evaluating infi x and post-
fi x expressions. To avoid distracting programming issues, we will allow only the binary operators *, /, 
+, and –, and we will disallow exponentiation and unary operators. 

 The strategy we shall adopt here is fi rst to develop an algorithm for evaluating postfi x expres-
sions and then to develop an algorithm for transforming an infi x expression into an equivalent postfi x 
expression. Taken together, these two algorithms provide a way to evaluate infi x expressions. This 
strategy eliminates the need for an algorithm that directly evaluates infi x expressions, which is a 
somewhat more diffi cult problem that Programming Problem 8 considers.    

   6.3.1  Evaluating Postfi x Expressions 

 As we mentioned in  Chapter   5   , some calculators require you to enter postfi x expressions. For exam-
ple, to compute the value of 

 2 * (3 + 4) 

 by using a postfi x calculator, you would enter the sequence 2, 3, 4, +, and *, which corresponds to the 
postfi x expression 

 2 3 4 + * 

 Recall that an operator in a postfi x expression applies to the two operands that immediately precede it. 
Thus, the calculator must be able to retrieve the operands entered most recently. The ADT stack provides 
this capability. In fact, each time you enter an operand, the calculator pushes it onto a stack. When you 
enter an operator, the calculator applies it to the top two operands on the stack, pops the operands from the 
stack, and pushes the result of the operation onto the stack.  Figure   6-4    shows the action of the calculator 
for the previous sequence of operands and operators. The fi nal result, 14, is on the top of the stack. 

 You can formalize the action of the calculator to obtain an algorithm that evaluates a postfi x 
expression, which is entered as a string of characters. To avoid issues that cloud the algorithm with 
programming details, assume that    

•   The string is a syntactically correct postfi x expression  
•   No unary operators are present  
•   No exponentiation operators are present  
•   Operands are single lowercase letters that represent integer values   

     Question 4   Trace the execution of the language-recognition algorithm described in the pre-
vious section for each of the following strings, and show the contents of the stack at each step. 

a.    a$a  
b.    ab$ab  
c.    ab$a  
d.    ab$ba   

CHECK POINT

Your use of an ADT’s 
operations should 
not depend on its 
implementation 

To evaluate an infi x 
expression, fi rst 
convert it to postfi x 
form and then 
evaluate the postfi x 
expression 

 Simplifying 
assumptions
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 The pseudocode algorithm is then    

   for  ( each character  ch  in the string ) 
 { 

if (ch  is an operand ) 
Push the value of the operand  ch  onto the stack  

else   // ch  is an operator named  op
    { 

 // Evaluate and push the result  
        operand2 = top of stack  

Pop the stack  

        operand1 = top of stack  
Pop the stack  

        result = operand1 op operand2 
Push result onto the stack  

    } 
 } 

 Upon termination of the algorithm, the value of the expression will be on the top of the stack. Pro-
gramming Problem 5 at the end of this chapter asks you to implement this algorithm. 

FIGURE 6-4         The effect of a postfi x calculator on a stack when evaluating the expression 
2 * (3 + 4)   
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     Question 5   Evaluate the postfi x expression  a b – c +.  Assume the following values for 
the identifi ers:  a  = 7, b = 3, and c = –2. Show the status of the stack after each step. 

CHECK POINT

   6.3.2  Converting Infi x Expressions to Equivalent Postfi x Expressions 

 Now that you know how to evaluate a postfi x expression, you will be able to evaluate an infi x expres-
sion if you fi rst can convert it into an equivalent postfi x expression. The infi x expressions here are the 
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familiar ones, such as ( a + b )  * c / d – e.  They allow parentheses, operator precedence, and left-to-
right association. 

 Will you ever want to evaluate an infi x expression? Certainly—you have written such expressions 
in programs. The compiler that translated your programs had to generate machine instructions to eval-
uate the expressions. To do so, the compiler fi rst transformed each infi x expression into postfi x form. 
Knowing how to convert an expression from infi x to postfi x notation not only will lead to an algorithm 
to evaluate infi x expressions, but also will give you some insight into the compilation process. 

 If you manually convert a few infi x expressions to postfi x form, you will discover three impor-
tant facts:    

•   The operands always stay in the same order with respect to one another.  
•   An operator will move only “to the right” with respect to the operands; that is, if in the infi x 

expression the operand  x  precedes the operator  op,  it is also true that in the postfi x expression 
the operand x  precedes the operator  op .

•   All parentheses are removed.   

 As a consequence of these three facts, the primary task of the conversion algorithm is determining 
where to place each operator. 

 The following pseudocode describes a fi rst attempt at converting an infi x expression to an equiv-
alent postfi x expression  postfixExp :    

   Initialize  postfixExp  to the empty string  
  for  ( each character  ch  in the infix expression ) 
 { 

switch  (ch) 
    { 

case ch  is an operand : 
Append  ch  to the end of  postfixExp 
break  

case ch  is an operator : 
Save  ch  until you know where to place it  
break  

case ch  is a  '('  or a  ')': 
Discard  ch 
break  

    } 
 } 

 You may have guessed that you really do not want simply to discard the parentheses, as they play 
an important role in determining the placement of the operators. In any infi x expression, a set of 
matching parentheses defi nes an isolated subexpression that consists of an operator and its two oper-
ands. Therefore, the algorithm must evaluate the subexpression independently of the rest of the expres-
sion. Regardless of what the rest of the expression looks like, the operator within the subexpression 
belongs with the operands in that subexpression. The parentheses tell the rest of the expression that 

   You can have the value of this subexpression after it is evaluated; simply ignore 
everything inside.  

 Parentheses are thus one of the factors that determine the placement of the operators in the postfi x 
expression. The other factors are precedence and left-to-right association. 

 In  Chapter   5   , you saw a simple way to convert a fully parenthesized infi x expression to postfi x 
form. Because each operator corresponded to a pair of parentheses, you simply moved each operator 
to the position marked by its close parenthesis and fi nally removed the parentheses. 

 The actual problem is more diffi cult, however, because the infi x expression is not always fully 
parenthesized. Instead, the problem allows precedence and left-to-right association, and therefore 

First draft of  an 
algorithm to convert 
an infi x expression 
to postfi x form 

Facts about 
converting from infi x 
to postfi x 

 Parentheses, 
operator 
precedence, and 
left-to-right
association 
determine where to 
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the postfi x 
expression 
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requires a more complex algorithm. The following is a high-level description of what you must do 
when you encounter each character as you read the infi x string from left to right.    

 1.    When you encounter an operand, append it to the output string  postfixExp .
    Justifi cation:  The order of the operands in the postfi x expression is the same as the order in 

the infi x expression, and the operands that appear to the left of an operator in the infi x 
expression also appear to its left in the postfi x expression.  

 2.   Push each “(” onto the stack.  
 3.    When you encounter an operator, if the stack is empty, push the operator onto the stack. 

However, if the stack is not empty, pop operators of greater or equal precedence from the 
stack and append them to postfixExp . You stop when you encounter either a “(” or an 
operator of lower precedence or when the stack becomes empty. You then push the current 
operator in the expression onto the stack. Thus, this step orders the operators by precedence 
and in accordance with left-to-right association. Notice that you continue popping from the 
stack until you encounter an operator of strictly lower precedence than the current operator 
in the infi x expression. You do not stop on equality, because the left-to-right association 
rule says that in case of a tie in precedence, the leftmost operator is applied fi rst—and this 
operator is the one that is already on the stack.  

 4.    When you encounter a “)”, pop operators off the stack and append them to the end of  postfix-
Exp  until you encounter the matching “(”.

    Justifi cation : Within a pair of parentheses, precedence and left-to-right association 
determine the order of the operators, and step 3 has already ordered the operators in 
accordance with these rules.  

 5.    When you reach the end of the string, you append the remaining contents of the stack to 
postfixExp .

 For example,  Figure   6-5    traces the action of the algorithm on the infi x expression  a –  ( b + c   *   d )  / e,
assuming that the stack aStack  and the string  postfixExp  are initially empty. At the end of the algo-
rithm, postfixExp  contains the resulting postfi x expression  a b c d   *   + e / – .

 You can use the previous fi ve-step description of the algorithm to develop a fairly concise 
pseudocode solution, which follows. The symbol • in this algorithm means concatenate (join), so 

FIGURE 6-5         A trace of the algorithm that converts the infi x expression  a  – ( b  +  c  *  d ) / e  to 
postfi x form   
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postfixExp • x  means concatenate the string currently in  postfixExp  and the character  x —that is, 
follow the string in  postfixExp  with the character  x .    

   for  ( each character  ch  in the infix expression ) 
 { 

switch  (ch) 
    { 

case operand: // Append operand to end of postfix expression—step 1  
            postfixExp = postfixExp • ch 

break  
case '(': // Save  '('  on stack—step 2  

            aStack.push(ch) 
break  

case operator: // Process stack operators of greater precedence—step 3  
while  (!aStack.isEmpty()  and  aStack.peek()  is not a '(' and  

                    precedence(ch) <= precedence(aStack.peek())) 
           { 

Append aStack.peek() to the end of postfixExp 
                aStack.pop() 
           } 
           aStack.push(ch) // Save the operator  

break  
case ')':  // Pop stack until matching  '(' —step 4  

while  (aStack.peek()  is not a  '(') 
           { 

Append aStack.peek() to the end of postfixExp 
               aStack.pop() 
           } 
           aStack.pop() // Remove the open parenthesis  

break  
    } 
 } 

  // Append to postfixExp  the operators remaining in the stack—step 5  
  while  (!aStack.isEmpty()) 
 { 

Append aStack.peek() to the end of postfixExp 
    aStack.pop() 
 } 

 Because this algorithm assumes that the given infi x expression is syntactically correct, it can 
ignore the return values of the stack operations. Programming Problem 7 at the end of this chapter 
asks you to remove this assumption. 

A pseudocode 
algorithm that 
converts an infi x 
expression to postfi x 
form 

     Note:   Algorithms that evaluate an infi x expression or transform one to postfi x form 
must determine which operands apply to a given operator. Doing so allows for prece-
dence and left-to-right association so that you can omit parentheses. 

     Question 7   Explain the signifi cance of the precedence tests in the infi x-to-postfi x con-
version algorithm. Why is a  test used rather than a > test? 

     Question 6   Convert the infi x expression  a / b * c  to postfi x form. Be sure to account for 
left-to-right association. Show the status of the stack after each step. 

CHECK POINT
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   6.4 Using a Stack to Search a Flight Map 
 The previous chapter described the HPAir problem, whereby we searched an airline’s flight 
map to see whether we could fly from some origin city to some destination city. At that time, 
we found a recursive solution to the problem. We now will solve the problem again using a 
stack instead of recursion. Doing so will bring to light the close relationship between stacks and 
recursion. 

 Let’s recall some of the discussion about this problem from the previous chapter. Given HPAir’s 
fl ight map shown in  Figure   6-6   , you can fl y from city  P  to city  Z  by fl ying fi rst to city  W , then to city  Y,
and fi nally to city  Z . We need to fi nd this path by trying every possible sequence of fl ights until we 
either fi nd a sequence that gets to the destination city or determine that no such sequence exists. You 
will see that the ADT stack is useful in organizing this search.     

 If we were to perform the search by hand, we could start at the origin city  C
0
  and select an arbi-

trary departing fl ight to a new city,  C
1
 . If city  C

1
  happens to be the destination city, we are done; other-

wise, we must try to fl y from  C
1
  to the destination city. By repeating this strategy, we will encounter 

three possible outcomes, just as you saw in the previous chapter.    

 1.   You eventually reach the destination city.  
 2.   You reach a city  C  from which there are no departing fl ights.  
 3.   You go around in circles forever.   

 Even if a sequence of fl ights exists from the origin city to the destination city, we might not fi nd it 
and instead reach outcome 2 or 3. Just as we did in the recursive solution, if we reached a city  C  from 
which there are no departing fl ights—that is outcome 2—we would  backtrack  to the city  C�  that we 
visited just before we visited city  C . Once back at city  C� , we would select a fl ight to some city other 
than C . If there were no other fl ights out of city  C� , we would backtrack again—this time to the city 
that was visited just before city  C� .      To avoid outcome 3, we mark the cities as we visit them, just as we 
did in  Chapter   5   , and never visit a city more than once. 

 For the algorithm to implement this strategy, it must maintain information about the order in 
which it visits the cities. First notice that when the algorithm backtracks from a city  C,  it must retreat 
to the city that it visited most recently before  C . This observation suggests that you maintain the 
sequence of visited cities in a stack. That is, each time you decide to visit a city, you push its name 
onto the stack. For example, if you want to fl y from city  P  to city  Z  in  Figure   6-6   , the algorithm might 
fi rst choose to go from city  P  to city  R  and then on to city  X.  Parts  a ,  b , and  c  of  Figure   6-7    illustrate 
the stack for these fl ights. You select the next city to visit from those adjacent to the city on the top of 

Use a stack to 
organize an 
exhaustive search 

FIGURE 6-6         A fl ight map   
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the stack. When you need to backtrack from the city at the top of the stack (for example, because there 
are no fl ights out of city  X ), you simply pop a city from the stack, as shown in  Figure   6-7   d. After the 
pop, the city on the top of the stack— R —is the city on the current path that you visited most recently 
before X . It is not possible to fl y out of city  R  to some city other than city  X,  so you backtrack once 
more, this time to city P , by popping the stack, as  Figure   6-7   e illustrates.  Figure   6-7 f   shows the stack 
after the subsequent fl ight to city  W .

 The algorithm, as developed so far, is as follows. 

  aStack = a new empty stack  
aStack.push(originCity) // Push origin city onto aStack

  while  ( a sequence of flights from the origin to the destination has not been found ) 
 { 

if  ( you need to backtrack from the city on the top of the stack ) 
        aStack.pop() 

else  
    { 

Select a destination city C for a flight from the city on the top of the stack
        aStack.push(C) 
    } 
 } 

 Notice that, at any point in the algorithm, the contents of the stack correspond to the sequence of 
fl ights currently under consideration. The city on the top of the stack is the city you are visiting cur-
rently, directly “below” it is the city visited previously, and so forth down to the bottom city, which is 
the fi rst city visited in the sequence—that is, the origin city. In other words, within the  while  loop, 

  The stack contains a directed path from the origin city at the bottom of the stack to the city at the 
top of the stack.3

 You can, therefore, always retrace your steps as far back through the sequence as needed. 
 Now consider the question of when to backtrack from the city on the top of the stack. You have 

already seen one case when backtracking is necessary. You must backtrack from the city on the top of 
the stack when there are no fl ights out of that city. Another time when you need to backtrack is related 
to the problem of going around in circles, described previously as the third possible outcome of the 
original strategy. You never want to visit a city that the search has already visited. As a consequence, 
you must backtrack from a city whenever there are no more unvisited cities to fl y to. To see why, con-
sider two cases:    

•   If you have visited city  C  and it is still somewhere in the stack—that is, it is part of the sequence 
of cities that you are exploring currently—you do not want to visit  C  again. Any sequence that 

FIGURE 6-7         The stack of cities as you travel (a) from  P ; (b) to  R ; (c) to  X ; (d) back to  R ; (e) 
back to P ; (f) to  W

P
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P

R
P P

W
P

(a) (b) (c) (d) (e) (f)

 3   A statement such as this one is called a loop invariant. It is a condition that is true before and after each execution of an algo-
rithm’s loop. Invariants are discussed further in  Appendix   F   . 
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goes from C  through  C
1
 ,  C

2
 , . . .,  C

k
 , back to  C , and then to  C’  might just as well skip the inter-

mediate cities and go from C  directly to  C’ .
    For example, suppose that the algorithm starts at  P  in  Figure   6-6    and, in trying to fi nd a 

path to Y , visits  W ,  S , and  T . There is now no reason for the algorithm to consider the fl ight 
from T  to  W  because  W  is already in the stack. Any city you could fl y to by going from  W  to 
S , from  S  to  T , and then back to  W —such as city  Y —you could fl y to directly from  W  without 
fi rst going through  S  and  T.  Because you do not allow the algorithm to visit  W  a second time, 
it will backtrack from S  and  T  to  W  and then go from  W  directly to  Y.   Figure   6-8    shows how 
the stack would appear if revisits were allowed and how it looks after backtracking when 
revisits are not allowed. Notice that backtracking to  W  is very different from visiting  W  for a 
second time.     

•   If you have visited city  C , but it is no longer in the stack—because you backtracked from it and 
popped it from the stack—you do not want to visit  C  again. This situation is subtle; consider 
two cases that depend on why you backtracked from the city.   

    If you backtracked from  C  because there were no fl ights out of it, then you certainly do not 
ever want to try going through  C  again. For example, if, starting at  P  in  Figure   6-6   , the algo-
rithm goes to R  and then to  X , it will backtrack from  X  to  R . At this point, although  X  is no 
longer in the stack, you certainly do not want to visit it again, because you know there are no 
fl ights out of  X . 

    Now suppose that you backtracked from city  C  because all cities adjacent to it had been 
visited. This situation implies that you have already tried all possible fl ights from  C  and have 
failed to fi nd a way to get to the destination city. There is thus no reason to go to  C  again. For 
example, suppose that starting from  P  in  Figure   6-6   , the algorithm executes the following 
sequence: Visit  R , visit  X , backtrack to  R  (because there are no fl ights out of  X ), backtrack to  P
(because there are no more unvisited cities adjacent to  R ), visit  W , visit  Y . At this point, the 
stack contains P-W-Y  with  Y  on top, as  Figure   6-8   b shows. You need to choose a fl ight out of  Y . 
You do not want to fl y from  Y  to  R,  because you have visited  R  already and tried all possible 
fl ights out of  R . 

    In both cases, visiting a city a second time does not gain you anything, and in fact, it may 
cause you to go around in circles. 

Two reasons for not 
visiting a city more 
than once 

FIGURE 6-8         The stack of cities (a) allowing revisits and (b) after backtracking when revisits 
are not allowed   
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 To implement the rule of not visiting a city more than once, you simply mark a city when it has 
been visited. When choosing the next city to visit, you restrict consideration to unmarked cities adja-
cent to the city on the top of the stack. The algorithm thus becomes       

  aStack = a new empty stack  
  Clear marks on all cities  

aStack.push(originCity) // Push origin city onto the stack  
  Mark the origin as visited  

  while  ( a sequence of flights from the origin to the destination has not been found ) 
 { 

// Loop invariant: The stack contains a directed path from the origin city at  
// the bottom of the stack to the city at the top of the stack  
if  ( no flights exist from the city on the top of the stack to unvisited cities ) 

        aStack.pop() // Backtrack  
else  

    { 
Select an unvisited destination city C for a flight from the city on the top of the stack  

        aStack.push(C) 
Mark C as visited  

    } 
 } 

 Finally, you need to refi ne the condition in the  while  statement. That is, you need to refi ne the 
algorithm’s fi nal determination of whether a path exists from the origin to the destination. The loop 
invariant, which states that the stack contains a directed path from the origin city to the city on the top 
of the stack, implies that the algorithm can reach an affi rmative conclusion if the city at the top of the 
stack is the destination city. On the other hand, the algorithm can reach a negative conclusion only 
after it has exhausted all possibilities—that is, after the algorithm has backtracked to the origin and 
there remain no unvisited cities to fl y to from the origin. At that point, the algorithm will pop the ori-
gin city from the stack and the stack will become empty. 

 With this refi nement, the algorithm appears as follows:    

   // Searches for a sequence of flights from  originCity  to  destinationCity
searchS(originCity: City, destinationCity: City): boolean 

    aStack = a new empty stack  
Clear marks on all cities  

    aStack.push(originCity)  // Push origin onto the stack  
Mark the origin as visited  

while (!aStack.isEmpty() and destinationCity is not at the top of the stack ) 
    { 

 // Loop invariant: The stack contains a directed path from the origin city at  
// the bottom of the stack to the city at the top of the stack  
if ( no flights exist from the city on the top of the stack to unvisited cities ) 

            aStack.pop()  // Backtrack  
else  

        { 
Select an unvisited destination city C for a flight from the city on the top of   the stack  

            aStack.push(C) 
Mark C as visited  

        } 
    } 

if (aStack.isEmpty()) 
return false // No path exists  

else  
return true   // Path exists   

Mark the visited 
cities

Next draft of  the 
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the search algorithm 
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 Notice that the algorithm does not specify the order of selection for the unvisited cities. It really 
does not matter what selection criteria the algorithm uses, because the choice will not affect the fi nal 
outcome: Either a sequence of fl ights exists or it does not. The choice, however, will affect the spe-
cifi c fl ights that the algorithm considers. For example, suppose that the algorithm always fl ies to the 
alphabetically earliest unvisited city from the city on the top of the stack. Under this assumption, 
 Figure   6-9    contains a trace of the algorithm’s action, given the map in  Figure   6-6   , with  P  as the origin 
city and Z  as the destination city. The algorithm terminates with success.  

 Recall from  Chapter   5    the following operations that the search algorithm must perform on the 
fl ight map.    

   // Marks a city as visited.  
markVisited(aCity: City): void 

  // Clears marks on all cities.  
unvisitAll(): void 

  // Returns the next unvisited city, if any, that is adjacent to a given city.  
  // Returns a sentinel value if no unvisited adjacent city was found.  
getNextCity(fromCity: City): City 

  // Tests whether a sequence of flights exists between two cities.  
isPath(originCity: City, destinationCity: City): boolean 

 Assuming that the class  Map  implements the ADT fl ight map and the class  Stack  implements the 
stack operations, the defi nition of  Map ’s method  isPath  is as follows and uses the  searchS  algorithm. 
As we mentioned in  Chapter   5   ,  NO_CITY  is a  City  object that  Map  defi nes as a constant for  getNextCity
to return in case it cannot fi nd an unvisited adjacent city.    

  /** Tests whether a sequence of flights exists between two cities. 
     Nonrecursive stack version. 
  @pre  originCity and destinationCity both exist in the flight map. 
  @post  Cities visited during the search are marked as visited 
     in the flight map. 
  @param originCity  The origin city. 
  @param destinationCity  The destination city. 
  @return  True if a sequence of flights exists from originCity 
     to destinationCity; otherwise returns false. */

FIGURE 6-9         A trace of the search algorithm, given the fl ight map in  Figure   6-6      
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  bool  Map::isPath(City originCity, City destinationCity) 
 { 

bool  success;
Stack aStack;

unvisitAll(); // Clear marks on all cities 

    // Push origin city onto aStack and mark it as visited 
aStack.push(originCity);

    markVisited(originCity);

City topCity = aStack.peek();
      while  (!aStack.isEmpty() && (topCity != destinationCity)) 
    { 

// The stack contains a directed path from the origin city 
        // at the bottom of the stack to the city at the top of 
        // the stack 

        // Find an unvisited city adjacent to the city on the 
        // top of the stack 

City nextCity = getNextCity(topCity, nextCity); 

if  (nextCity == NO_CITY)
aStack.pop(); // No city found; backtrack

else // Visit city
{

aStack.push(nextCity);
markVisited(nextCity);

} // end if

if  (!aStack.isEmpty())
topCity = aStack.peek();

} // end while

return !aStack.isEmpty();  
} // end isPath

 Programming Problem 11 at the end of this chapter provides implementation details that will enable 
you to complete the solution to the HPAir problem.    

     Note: The STL class stack

 The Standard Template Library (STL) contains the container  stack , which is a template 
class. However, some methods of this class have slightly different names than the ones 
we have used here. You can use the STL  stack  to implement the algorithms given in this 
chapter until we write our own implementations in the next chapter. Alternatively, you 
can use the class OurStack , as described in Programming Problem 1 at the end of this 
chapter. You can learn more about the STL in C++ Interlude 7. 

     Question 8   Trace the method  isPath  with the map in  Figure   6-10    for the following 
requests. Show the state of the stack after each step. 

a.   Fly from  A  to  B .
b.   Fly from  A  to  D .
c.   Fly from  C  to  G .    

CHECK POINT
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   6.5 The Relationship Between Stacks and Recursion 
 We have solved the HPAir problem twice, once in the previous chapter by using recursion and again 
in the previous section by using the ADT stack. We now want to look at the ways that these two 
approaches organize the search for a sequence of fl ights. You will see that the ADT stack has a hidden 
presence in the concept of recursion and, in fact, that stacks have an active role in most computer 
implementations of recursion. 

 Consider how the two search algorithms implement three key aspects of their common strategy.    

•  Visiting a new city.   The recursive algorithm  searchR  visits a new city  C  by calling  searchR(C,
destinationCity) . The algorithm  searchS  visits city  C  by pushing  C  onto a stack. Notice 
that if you were to use the box trace to trace the execution of  searchR , the call  searchR(C,
destinationCity)  would generate a box in which the city  C  is associated with the parameter 
originCity  of  searchR . 

    For example,  Figure   6-11    shows both the state of the box trace for  searchR  and the stack 
for searchS  at corresponding points of the search for a path from city  P  to city  Z  in  Figure   6-6   .   

•  Backtracking.   Both search algorithms attempt to visit an unvisited city that is adjacent to the 
current city. Notice that this current city is the value associated with the parameter  originCity
in the deepest (rightmost) box of  searchR ’s box trace. Similarly, the current city is on the top 
of searchS ’s stack. In  Figure   6-11   , this current city is  X . If no unvisited cities are adjacent to 
the current city, the algorithms must backtrack to the previous city. The algorithm  searchR
backtracks by returning from the current recursive call. You represent this action in the box 
trace by crossing off the deepest box. The algorithm  searchS  backtracks by explicitly popping 
from its stack. For example, from the state depicted in  Figure   6-11   , both algorithms backtrack 
to city R  and then to city  P , as  Figure   6-12    illustrates.   

FIGURE 6-10         Flight map for Check Point Question 8   
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FIGURE 6-11         Visiting city  P , then  R , then  X : (a) box trace versus (b) stack   

originCity = P
destinationCity = Z

originCity = R
destinationCity = Z

originCity = X
destinationCity = Z

(a)  Box trace of recursive search:

(b)  Stack-based search:
Top

P
R
P

X
R
PTop

Top



  The Relationship Between Stacks and Recursion 217

•  Termination.  The search algorithms terminate either when they reach the destination city or 
when they exhaust all possibilities. All possibilities are exhausted when, after backtracking to 
the origin city, no unvisited adjacent cities remain. This situation occurs for  searchR  when all 
boxes have been crossed off in the box trace and a return occurs to the point of the original call 
to the algorithm. For  searchS , no unvisited cities are adjacent to the origin when the stack 
becomes empty.   

 Thus, the two search algorithms really do perform the identical action. In fact, provided that they 
use the same rule to select an unvisited city—for example, traverse the current city’s list of adjacent 
cities alphabetically—they will always visit the identical cities in the identical order. The similarities 
between the algorithms are far more than coincidence. In fact, it is always possible to capture the 
actions of a recursive function by using a stack. 

 An important context in which the close tie between stacks and recursion is explicitly utilized is 
a compiler’s implementation of a recursive function. It is common for a compiler to use a stack to 
implement a recursive function in a manner that greatly resembles the box trace. When a recursive 
call to a function occurs, the implementation must remember certain information. This information 
consists essentially of the same local environment that you place in the boxes—values of both argu-
ments and local variables and a reference to the point from which the recursive call was made.    

 During execution, the compiled program must manage these boxes of information, or activation 
records, just as you must manage them on paper. As the HPAir example has indicated, the operations 
needed to manage the activation records are those that a stack provides. When a recursive call occurs, 
a new activation record is created and pushed onto a stack. This action corresponds to the creation of 
a new box at the deepest point in the sequence. When a return is made from a recursive call, the stack 
is popped, bringing the activation record that contains the appropriate local environment to the top of 
the stack. This action corresponds to crossing off the deepest box and following the arrow back to the 
preceding box. Although we have greatly simplifi ed the process, most implementations of recursion 
are based on stacks of activation records.    

 You can use a similar strategy to implement a nonrecursive version of a recursive algorithm. You 
might need to recast a recursive algorithm into a nonrecursive form to make it more effi cient, as men-
tioned in  Chapter   2   . The previous discussion should give you a taste of the techniques for removing 
recursion from a program. You will encounter recursion removal as a formal topic in more advanced 
courses, such as compiler construction.      

FIGURE 6-12         Backtracking from city  X  to  R  to  P : (a) box trace versus (b) stack   
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     SUMMARY       

1.  The ADT stack operations have a last-in, fi rst-out (LIFO) behavior. 

2.  Algorithms that operate on algebraic expressions are an important application of stacks. The LIFO nature of 
stacks is exactly what the algorithm that evaluates postfi x expressions needs to organize the operands. Simi-
larly, the algorithm that transforms infi x expressions to postfi x form uses a stack to organize the operators in 
accordance with precedence rules and left-to-right association. 

3.  You can use a stack to determine whether a sequence of fl ights exists between two cities. The stack keeps track 
of the sequence of visited cities and enables the search algorithm to backtrack easily. However, displaying the 
sequence of cities in their normal order from origin to destination is awkward, because the origin city is at the 
bottom of the stack and the destination is at the top. 

4.  A strong relationship between recursion and stacks exists. Most implementations of recursion maintain a stack 
of activation records in a manner that resembles the box trace. 

5.  The formal mathematical study of ADTs uses systems of axioms to specify the behavior of ADT operations. 

  EXERCISES       

1. Write pseudocode statements that create a stack of the strings "Jamie", "Jane", and "Jill" in that order with 
"Jamie" at the top. 

2. Given the stack created in Exercise 1, in what order will three pop operations remove the strings from the 
stack?

3. Suppose that you have a stack  aStack  and an empty auxiliary stack auxStack. Show how you can do each of 
the following tasks by using only the ADT stack operations. 

 a. Display the contents of aStack in reverse order; that is, display the top last.  
 b. Count the number of items in aStack , leaving aStack  unchanged.  
 c.   Delete every occurrence of a specifi ed item from aStack, leaving the order of the remaining items 

unchanged.

4.  The diagram of a railroad switching system in  Figure   6-13    is commonly used to illustrate the notion of a stack. 
Identify three stacks in the fi gure and show how they relate to one another. How can you use this system to con-
struct any possible permutation of railroad cars? 

5. Suppose that the ADT stack included a method remove(n) that removes the topmost n entries from a stack. 
Specify this method by writing comments and a header. Consider the various ways that the method could 
behave when the stack does not contain at least n entries. 

6. Section 6.1.1 described an algorithm that reads a string of characters, correcting mistakes along the way. 

 a.   For the following input line, trace the execution of the algorithm and show the contents of the stack at 
each step: 

  abc←de←←fg←h  
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 b. The nature of the stack-based algorithm makes it simple to display the string in reverse order, but 
somewhat harder to display it in its correct order. Write a pseudocode algorithm that displays the 
string in its correct forward order.  

 c.   Implement the read-and-correct algorithm as a C++ function, but make the stack local to the function 
instead of an argument. Let the function construct a string that contains the corrected input characters 
in forward order, and return it.   

7.  Revise the solution to the balanced-braces problem so that the expression can contain three types of delimiters: 
( ), [ ], and { }. Thus, {ab(c[d])e} is valid, but {ab(c)) is not. 

8.  For each of the following strings, trace the execution of the language-recognition algorithm described in 
Section 6.2.2, and show the contents of the stack at each step. 

a.   xy$xy      b.   y$yx      c.   xy$y
d.   xy$x       e.   xx$xx

9. Write a pseudocode function that uses a stack to determine whether a string is in the language L, where 

a. L = {s : s contains equal numbers of A’s and B’s}  
b.    L = { s : s is of the form An Bn for some n  0}   

10. Write a function that uses a stack to determine whether a string is in the language L , where 

L = {s s� : s is a string of characters, s� = reverse (s) } 

Note: The following strings are not in the language: The empty string, a string with fewer than two characters, 
and a string with an odd number of characters. 

11.  Evaluate the following postfi x expressions by using the algorithm given in this chapter. Show the status of the 
stack after each step of the algorithm. Assume the following values for the identifi ers: a = 7, b = 3, c = 12,
d = –5, e = 1. 

a.    a b c + –  b. a b c   – d * +      c.    a b + c – d e *  +   

12. Convert the following infi x expressions to postfi x form by using the algorithm given in this chapter. Show the 
status of the stack after each step of the algorithm. 

   a. a – b + c      b. a – (b / c * d)
  c. a / (b * c)     d. a / b / c – (d + e) * f
e. (a + b) * c      f. a * (b / c / d) + e
g. a – (b + c )     h. a – (b + c * d) / e

FIGURE 6-13 Railroad switching system for Exercise 4   
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13. Execute the HPAir algorithm with the map in  Figure   6-10    (see Check Point Question 8) for the following 
requests. Show the state of the stack after each step. 

a. Fly from A to F.   b. Fly from  A to G.      c. Fly from F  to  H.
d. Fly from  D to A. e. Fly from  I  to  G.

14. Section   5.1.2    of  Chapter   5    defi nes “palindrome.” Write a pseudocode algorithm that uses a stack to test whether 
a given string is a palindrome. 

  *15.  You can use the axioms for a stack to prove that the stack defi ned by the sequence of operations 

  Create an empty stack  
  Push a 5  
  Push a 7  
  Push a 3  
  Pop (the 3)  
  Push a 9  
  Push a 4  
  Pop (the 4)  

 which you can write as 

  (((((((new Stack()).push(5)).push(7)).push(3)).pop()).push(9)).push(4)).pop() 

 is exactly the same as the stack defi ned by the sequence 

  Create an empty stack  
  Push a 5  
  Push a 7  
  Push a 9  

 which you can write as 

  (((new Stack()).push(5)).push(7)).push(9) 

 Similarly, you can use the axioms to show that 

  (((((((new Stack()).push(1)).push(2)).pop()).push(3)).pop()).pop()).isEmpty() 

 is true. 

 a. The following representation of a stack as a sequence of  push operations without any  pop operations is 
called a canonical form:

  (...(new Stack()).push()).push())... ).push() 

 Prove that any stack is equal to a stack that is in canonical form.  

 b. Prove that the canonical form is unique. That is, a stack is equal to exactly one stack that is in canonical 
form.  

 c. Use the axioms to show formally that 

  ((((((((((new Stack()).push(6)).push(9)).pop()).pop()).push(2)).pop()).push(3)). 
  push(1)).pop()).peek()    

 equals 3. 
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  PROGRAMMING PROBLEMS         

1.   Using the class stack in the Standard Template Library, defi ne and test the class  OurStack that is derived from 
StackInterface, as given in Listing 6-1. The class  stack  has the following methods that you can use to defi ne 
the methods for OurStack.

stack(); // Default constructor 
bool empty() const; // Tests whether the stack is empty
ItemType& top(); // Returns a reference to the top of the stack 
void push(const ItemType& newEntry); // Adds newEntry to the top of the stack
void pop(); // Removes the top of the stack

To access stack, use the following include statement: 

  #include <stack> 

Whenever you need a stack for any of the following problems, use the class OurStack that Programming Prob-
lem 1 asks you to write.

2.  Implement the solution to the expanded balanced-braces problem in Exercise 7. 

3.  Write a function that uses a stack to test whether a given string is a palindrome. Exercise 14 asked you to write 
an algorithm for such a function. 

4.   Section   6.2.2    describes a recognition algorithm for the language 

L = { s$s� : s is a possibly empty string of characters other than $, s� = reverse(s)}

 Implement this algorithm. 

5.  Design a class of postfi x calculators. Use the algorithm given in this chapter to evaluate postfi x expressions as 
entered into the calculator. Use only the operators +, –, *, and /. Assume that the postfi x expressions are syntac-
tically correct. 

6.  Consider simple infi x expressions that consist of single-digit operands; the operators +, –, *, and /; and paren-
theses. Assume that unary operators are illegal and that the expression contains no embedded spaces. Design 
and implement a class of infi x calculators. Use the algorithms given in this chapter to evaluate infi x expressions 
as entered into the calculator. You must fi rst convert the infi x expression to postfi x form and then evaluate the 
resulting postfi x expression. 

7.  The infi x-to-postfi x conversion algorithm described in this chapter assumes that the given infi x expression is 
syntactically correct. Modify Programming Problem 6 without this assumption. 

8. Repeat Programming Problem 6, but use the following algorithm to evaluate an infi x expression  infixExp. The 
algorithm uses two stacks: One stack opStack contains operators, and the other stack valStack contains val-
ues of operands and intermediate results. Note that the algorithm treats parentheses as operators with the low-
est precedence. 

   for ( each character ch in  infixExp) 
 { 

switch (ch) 
    { 

case ch  is an operand, that is, a digit  
            valStack.push(ch) 

break  
case ch  is a  '(' 

            opStack.push(ch) 
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  break  
case ch  is an operator  

if (opStack.isEmpty()) 
                opStack.push(ch) 

else if (precedence(ch) > precedence(opStack.peek())) 
                opStack.push(ch) 

else  
            { 

while (!opStack.isEmpty() and  
                        precedence(ch) <= precedence(opStack.peek()) 
                   Execute 
                opStack.push(ch) 
            } 

break  
case ch  is a  ')' 

while (opStack.peek()  is not a  '(') 
                Execute 
            opStack.pop() 

break  
    } 
 } 
  while (!opStack.isEmpty()) 
    Execute 
result = valStack.peek() 

 Note that  Execute  means: 

 operand2 = valStack.peek() 
 valStack.pop() 
 operand1 = valStack.peek() 
 valStack.pop() 
 op = opStack.peek() 
 opStack.pop() 
 result = operand1 op operand2 
 valStack.push(result) 

 Choose one of the following two approaches for your implementation: 

•   The operator stack  opStack  contains characters, but the operand stack  valStack  contains integers.  
•   The stack  opStack  contains integer codes that represent the operators, so both stacks contain 

integers.   

  9.   The infi x evaluation algorithm given in Programming Problem 8 assumes that the given infi x expression is 
syntactically correct. Repeat Programming Problem 8 without this assumption. 

  10.   Using stacks, write a nonrecursive version of the function  solveTowers , as defi ned in  Chapter   2   . 

11.  Complete the solution to the HPAir problem. The input to the program consists of three text fi les, as 
follows: 

    cityFile     Each line contains the name of a city that HPAir serves. The names are in 
alphabetical order.  

    flightFile     Each line contains a pair of city names that represent the origin and destina-
tion of one of HPAir’s fl ights.  

    requestFile     Each line contains a pair of city names that represent a request to fl y from 
some origin to some destination.   
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 You can make the following assumptions: 

•   Each city name contains at most 15 characters. Pairs of city names are separated by a comma.  
•   HPAir serves at most 20 cities.  
•   The input data is correct.   

 For example, the input fi les could appear as 

      cityFile: Albuquerque 

 Chicago 

 San Diego 

    flightFile: Chicago, San Diego 

 Chicago, Albuquerque 

 Albuquerque, Chicago 

    requestFile: Albuquerque, San Diego 

 Albuquerque, Paris 

 San Diego, Chicago 

 For this input, the program should produce the following output: 

      Request is to fly from Albuquerque to San Diego. 
    HPAir flies from Albuquerque to San Diego. 

    Request is to fly from Albuquerque to Paris. 
    Sorry. HPAir does not serve Paris. 

    Request is to fly from San Diego to Chicago. 
    Sorry. HPAir does not fly from San Diego to Chicago. 

 Begin by implementing the ADT fl ight map as the C++ class  Map . Use the stack version of  isPath . Because 
getNextCity  is the primary operation that the search algorithm performs on the fl ight map, you should choose 
an implementation that will effi ciently determine which cities are adjacent to a given city. If there are  n  cities 
numbered 1, 2, . . ., n , you can use  n  chains of linked nodes to represent the fl ight map. You place a node on list 
i  for city  j  if and only if there is a directed path from city  i  to city  j . Such a data structure is called an adjacency 
list;  Figure   6-14    illustrates an adjacency list for the fl ight map in  Figure   6-6   .  Chapter   20    discusses adjacency 
lists further when it presents ways to represent graphs. At that time, you will learn why an adjacency list is a 
good choice for the present program. 

 To simplify reading the input text fi les, defi ne a class that includes the following methods: 

  // Returns a name from the next line in a text file.  
+getName(): string 

// Returns a pair of two names from the next line in a text file.  
+getNamePair(): Pair 

  12.   In the implementation of the HPAir problem (see the previous programming problem), the search for the next 
unvisited city adjacent to a city  i  always starts at the beginning of the  i  th  chain in the adjacency list. This 
approach is actually a bit ineffi cient, because once the search visits a city, the city can never become unvisited. 
Modify the program so that the search for the next city begins where the last search left off. That is, maintain an 
array of try-next pointers into the adjacency list. 
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13.  Implement an expanded version of the HPAir problem. In addition to the “from” and “to” cities, each line of 
input contains a fl ight number (an integer) and the cost of the fl ight (an integer). Modify the HPAir program so 
that it will produce a complete itinerary for each request, including the fl ight number of each fl ight, the cost of 
each fl ight, and the total cost of the trip. 

 For example, the input fi les could appear as 

      cityFile: Albuquerque 

 Chicago 

  San Diego 

    flightFile: Chicago, San Diego    703  325 

  Chicago, Albuquerque 111  250 

    Albuquerque, Chicago      178  250 

    requestFile: Albuquerque, San Diego 

  Albuquerque, Paris 

  San Diego, Chicago 

FIGURE 6-14         Adjacency list for the fl ight map in  Figure   6-6 for Programming Problem 11      
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 For this input, the program should produce the following output: 

      Request is to fly from Albuquerque to San Diego. 

    Flight #178 from Albuquerque to Chicago  Cost: $250 

    Flight #703 from Chicago to San Diego Cost: $325 

    Total Cost ............. $575 

    Request is to fly from Albuquerque to Paris. 

    Sorry. HPAir does not serve Paris. 

    Request is to fly from San Diego to Chicago. 

    Sorry. HPAir does not fly from San Diego to Chicago. 

 When the nonrecursive  isPath  method fi nds a sequence of fl ights from the origin city to the destination 
city, its stack contains the corresponding path of cities. The stumbling block to reporting this path is that the 
cities appear in the stack in reverse order; that is, the destination city is at the top of the stack and the origin 
city is at the bottom. For example, if you use the program to fi nd a path from city  P  to city  Z  in  Figure   6-6   , the 
fi nal contents of the stack will be  P-W-Y-Z  with  Z  on top. You want to display the origin city  P  fi rst, but it is at 
the bottom of the stack. If you restrict yourself to the stack operations, the only way that you can write the 
path in its correct order is fi rst to reverse the stack by popping it onto a temporary stack and then to write the 
cities as you pop them off the temporary stack. Note that this approach requires that you process each city on 
the path twice. 

 Evidently, a stack is not the appropriate ADT for the problem of writing the path of cities in the correct 
order; the appropriate ADT is a  traversable stack . In addition to the standard stack operations  isEmpty ,  push , 
pop , and  peek , a traversable stack includes the operation  traverse . The  traverse  operation begins at one end 
of the stack and visits each item in the stack until it reaches the other end of the stack. For this project, you want 
traverse  to begin at the bottom of the stack and move toward the top. 

  14.   What modifi cations to the previous programming problem are required to fi nd a least-cost trip for each request? 
How can you incorporate time considerations into the problem? 
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  Prerequisites 
 C++ Interlude 1  C++ Classes 

Exceptions provide a mechanism in C++ and other programming languages for 
interrupting program execution when errors, unusual circumstances, or other events 
occur. An  exception  is an object that signals the rest of the program that something 
unexpected has happened. Our code can react appropriately to the exception based on 
its type and what the exception can tell us via its methods. We  handle  the exception 
when we detect and react to it. 

 Some exceptions indicate mistakes in your code. By correcting those mistakes, 
you avoid the exceptions and no longer have to worry about them. In fact, your fi nal 
code gives no indication that an exception could occur. Furthermore, if your code is 
entirely correct, an exception will not occur. On the other hand, you can intentionally 
cause an exception. In fact, the programmers who wrote the code for the C++ Standard 
Library did so. At the very least, we need to know about exceptions so we can use the 
methods in the Standard Library. 

 What should we do when an exception occurs? Should we ever intentionally cause 
an exception in our own programs, and if so, how would we do so? These are some of 
the questions that this interlude will answer. This knowledge will be particularly impor-
tant when we implement the ADT stack in the next chapter.   

      C++
Interlude
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      C3.1 Background
 It would be great if every time a method was called, its preconditions were met. As you have seen, that 
does not always happen. The client could ask a method to remove an item from a container, but the 
container might be empty. How do we deal with this unusual or exceptional condition? In our imple-
mentations so far, a method returns false to indicate that it is unable to perform its task. This value 
tells the client that some precondition was not met, or that the method has failed for some other rea-
son. It is then the client’s responsibility to check the return value to ensure that the method completed 
its task before continuing. 

 Sometimes it is not possible for a method to return a boolean value when an unusual situation 
prevents it from completing its task. For example, the ADT stack’s method  peek  returns a copy of the 
top item on the stack. Its prototype is 

   virtual ItemType peek() const = 0; 

 What should this method do if the stack is empty? Returning a boolean value would be possible only 
if the stack contained boolean values, that is, if  ItemType  was of type  bool . Regardless of the type of 
data in the stack, the return value will indicate a problem only if it is a special value not contained in 
the stack. We need a consistent mechanism to let the client know that the method could not perform 
its task—one that does not depend on the type of data stored in the stack. Before we get into the 
details of such mechanisms, let’s look at another example. 

   C3.1.1  A Problem to Solve 

 Recall from the previous C++ Interludes the video game that we are working on for our friend. Our 
next task is to create a function that searches for a given string in a number of boxes. The function has 
three parameters: an array of  PlainBox<string>  objects, an integer that represents the number of 
PlainBox  objects in the array, and the string to be located in each box. The function will return a copy  1

of the box that contains the string. Listing C3-1 shows our fi rst attempt at this function.   

 1   Recall that the return statement returns a copy of its argument. 

     LISTING C3-1  First try at the function  findBox

  PlainBox<string> findBox(PlainBox<string> boxes[], int size, string target) 
 { 

int index = 0; 
bool found = false ; 
while (!found && (index < size))

    { 
if (target == boxes[index].getItem()) 

            found =  true ; 
else  

            index++; 
    }  // end while 

return boxes[index]; 
} // end findBox 
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 This version of  findBox  meets the basic requirements: It searches the array of boxes and returns 
the box containing the target string. We encounter a problem if a box containing the target string is not 
in the array. If the target is not found, the function’s  while  loop ends when  index  is equal to  size , 
which is the number of entries in the array. The function would then return  boxes[size] , which is 
undefi ned. Problems will occur when the client tries to use this “box.” 

 We can repair our code by testing  found  to make sure we found the target before returning a box 
from the array. Using a simple  if  statement is insuffi cient, as we still would have the problem of what 
to return when the target is not found. The next section gives one way to fi x our code.   

   C3.2 Assertions
  Chapter   3    and Appendix B defi ne an assertion as a statement of truth about some aspect of a pro-
gram’s logic. You can express an assertion either as a comment or by using the C++ function  assert . 
By using assert , you can make assertions about variables and objects in a program. Such assertions 
are in the form of a boolean expression that should be true at a specifi c point in the program. If the 
assertion is false, the  assert  function halts execution of the program. Assertions can be used to vali-
date method preconditions before trying to execute the body of a function or method. 

 To use  assert  in a program, you fi rst must include its header fi le: 

  #include <cassert> 

 To call the  assert  function, you provide a boolean condition as its argument: 

  assert( someBooleanCondition ); 

 When program execution reaches this statement, the boolean condition—that is, the assertion—is 
tested. If the assertion is true, the program continues to execute normally. If the assertion is false, the 
program halts and an error message is displayed. 

 The  assert  statement is an easy way to verify a method’s preconditions or postconditions. For 
example, when implementing the stack method  peek , we could execute    

  assert (!isEmpty()); 

 before trying to return the top of the stack. 
 Our  findBox  function can test whether the box was found before returning  boxes[index]  by 

calling assert : 

  assert(found); 

 If the target is not found, the assertion is false and the program halts. This prevents the program 
from trying to use a box that does not exist. Listing C3-2 shows the revised  findBox  function using 
assertions. 

Use an assert  
statement to test a 
precondition or 
postcondition

     LISTING C3-2   Revised findBox function with assertions 

  PlainBox<string> findBox(PlainBox<string> boxes[], int size, string target) 
 { 
      int index = 0; 
      bool found = false ; 

(continues)
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 Assertions are good to use when you are testing and debugging your program. They can prevent 
the execution of any function or method if the preconditions have not been met. Halting your program 
as soon as a problematic condition becomes evident is a good debugging technique that narrows the 
focus of your search for errors. 

 As useful as they are, assertions may not be the best solution for a fi nal shipping program. A vio-
lation of a function’s preconditions may be a simple mistake that the client can fi x. Such a situation 
does not warrant terminating program execution. We need another way to let the client know that an 
error or unusual condition has occurred and permit it to fi x or handle the situation. We should use 
exceptions here. 

      while (!found && (index < size))
       { 

if (target == boxes[index].getItem()) 
found = true ; 

else  
            index++; 
    }   // end while 
    assert(found); // Verify that there is a box to return 

return boxes[index]; 
} // end findBox 

     Programming Tip:   A statement of truth about some aspect of a program’s logic is 
known as an assertion. You can express an assertion either as a comment or by using the 
assert  function. By including assertions in your program, you facilitate the debugging 
process.

   C3.3 Throwing Exceptions 
 The examples we’ve looked at in this C++ Interlude have a common problem—how to let the client 
know that an error, unusual circumstance, or event occurred during execution. The two solutions pre-
sented so far—returning a boolean value or using  assert  to halt the program—are vastly different 
techniques.

 Returning a boolean value requires that the client check the return value of the function to see 
whether the function was successful. We have no way to force the client to do so. If the client fails to 
check the return value, execution could continue even though the function did not complete its task. 
Even if the client checks the return value and fi nds that the function was unsuccessful, the client has 
no information about why the function failed. The client knows only that the function failed. 

 A function that uses assertions can alleviate the need for the client to check whether it completed 
successfully. With assertions, the program halts when there is an error, and the client cannot perform 
any further tasks. For an error that either is unimportant to the client’s goals or is simple for the client 
to fi x, assertions are an extreme solution. 

 However, an alternate way of communicating or returning information to a function’s client is to 
throw an exception . A thrown exception bypasses normal execution, and control immediately 
returns to the client. The exception can contain information about the error or unusual condition that 
helps the client resolve the issue and possibly try the function again. 

 You can throw an exception by executing a  throw  statement with the following form: 

throw   ExceptionClass ( stringArgument );

VideoNote

C++ exceptions
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 Here  ExceptionClass  is the type of exception you want to throw, and  stringArgument  is an argument 
to the constructor of  ExceptionClass  that provides a more detailed description of what may have 
caused the exception. When a  throw  statement executes, a new object of type  ExceptionClass  is cre-
ated, the exception is thrown and propagated back to the point where the function was called, and the 
statements in the function that follow the  throw  statement do not execute.    

 C++ has two families of exceptions that a function can throw. You can select one of these or 
derive a class of your own. Although the exception class in a  throw  statement does not need to be 
derived from a standard C++ exception class, it is a good programming practice to do so.  Figure   C3-1    
shows the family of exception classes provided by C++.  

 Exceptions derived from  runtime_error  or one of its derived classes are thrown by errors that 
are detectable only at runtime, such as division by zero or numeric overfl ow. If such an exception is 
thrown, the program will halt, just as it will when an assertion fails. Unlike assertions, however, when 
a runtime_error  exception is thrown, the exception can contain a message that is displayed to the 
user giving details about the error and the reason the program halted. 

 Classes derived from the  logic_error  exception class represent errors in the logic of the pro-
gram, such as an unmet precondition or the failure to satisfy a postcondition, that you could detect 
before the program executes. In our  findBox  example, if we wanted to throw an exception to indicate 
the failure to fi nd the target string, we could write: 

   if  (!found) 
throw logic_error("Target not found in a box!"); 

 When we throw exceptions, we fi rst test for an error or unusual condition using an  if  statement. 
Then, if one occurred, we use the  throw  statement to throw an exception containing a message to our 
client.

 To restrict the exceptions that a function or method can throw, you include a  throw  clause in its 
header. This also lets the client know that the function might throw an exception. A  throw  clause con-
sists of the keyword  throw  followed by a list of exception types separated by commas and enclosed 
within parentheses. For example, here is the prototype of our  findBox  function with a  throw  clause 
added:

  PlainBox<string> findBox(PlainBox<string> boxes[], int size,
                               string target) throw (logic_error); 

  Listing C3-3 shows the complete  findBox  function that throws a  logic_error  exception. Later in 
this interlude, we will derive an exception class to handle this specifi c error. First, however, we will 
look at how a client can deal with a thrown exception.  

Use a throw  
statement to throw 
an exception 

FIGURE C3-1         Hierarchy of C++ exception classes   
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     LISTING C3-3   Revised  findBox function that throws an exception 

  PlainBox<string> findBox(PlainBox<string> boxes[], int size,
                               string target)  throw (logic_error) 
 { 
      int index = 0; 
      bool found = false ; 
      while (!found && (index < size))
   {

if (target == boxes[index].getItem()) 
          found =  true ; 

else  
          index++; 
    }  // end while 

if  (!found) 
throw logic_error("Target not found in a box!"); 

return boxes[index]; 
} // end findBox 

     Programming Tip:   Including a  throw  clause in a function specifi cation ensures that 
the function can throw only those exceptions. An attempt by the function to throw any 
other exception will result in a runtime error. Omitting a  throw  clause allows a function 
to throw any exception. 

     Note: Standard exceptions 

 The header  <stdexcept>  defi nes several standard exceptions that can be thrown by the 
functions defi ned in the C++ Standard Library. This header contains two kinds of excep-
tions: runtime exceptions and logic exceptions. 

 The runtime exceptions are 

overflow_error  An arithmetic overfl ow has occurred 
range_error  A range error has occurred 
underflow_error  An arithmetic underfl ow has occurred 

 The logic exceptions are 

invalid_argument  An invalid argument was used in a function call 
length_error  An attempt was made to create an object that was too large 
out_of_range  The value of an argument to a function is not in range 

     Note: The javadoc tag @throws 

 A  javadoc  comment that precedes a method’s header should contain a separate line for 
each exception the method might throw. Each of these lines begins with the tag  @throws , 
and they should be ordered alphabetically by the names of the exceptions. 
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   C3.4 Handling Exceptions 
 In the previous section, we looked at how you can cause an exception when an error or unusual condi-
tion occurs. In this section, we look at exceptions from the point of view of a client and present how to 
react to or handle  an exception. 

     Note: When to throw an exception 

•    If you can resolve the unusual situation in a reasonable manner, your code should do so 
instead of throwing an exception.  

•    If several resolutions to an abnormal occurrence are possible, and you want the client 
to choose one, you should throw an exception.  

•    If you detect that a programmer has used your method incorrectly, you can throw a 
runtime exception. Recall that this action will halt program execution.   

     Note:   You cannot handle an exception of the standard class  runtime_error  or any of 
its descendant classes. You can handle only exceptions of the class  logic_error  and its 
derived classes. 

     Note:   You should not throw a runtime exception simply so that the client does not have 
to handle it. 

 To handle an exception, you write code that consists of two pieces. The fi rst piece, the try block , 
contains the statements that might cause or throw an exception. The second piece consists of one or 
more catch blocks  that must immediately follow the  try  block. Each  catch  block contains code to 
react to or catch  a particular type of exception. 

 Here is the general syntax for a  try  block followed by one  catch  block: 

   try  
 { 

  < statement(s) that might throw an exception > 
 } 

  catch ( ExceptionClass   identifier )
 { 

  < statement(s) that react to an exception of type ExceptionClass > 
 } 

 The statements within the  try  block execute just as they would if the block was not there. If no excep-
tion occurs and the try  block completes, execution continues with the statement after the  catch
block. However, if a statement within a  try  block causes an exception of the type specifi ed in the 
catch  block, the remainder of the  try  block is abandoned, and execution immediately transfers to the 
statements in the catch  block. The exception now has been caught. The statements in the  catch  block 
execute, and upon their completion, execution continues with the statement immediately after the last 
catch  block.   

     Note:   If an exception has no applicable  catch  block, the function’s execution ends and 
abnormal program termination occurs. 
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 The syntax for a  catch  block resembles that of a function defi nition. It specifi es both the type of 
exception the  catch  block will handle and an identifi er. This identifi er—called a  catch block parame-
ter —provides a name for the caught exception that can be used within the  catch  block. Although a 
catch  block is not a function, throwing an exception is like calling a  catch  block as if it were a function. 
The catch  block parameter represents the actual exception object provided by the  throw  statement. 

 The steps taken in the  catch  block vary from situation to situation and can be as simple as either 
doing nothing or displaying an error message, or as elaborate as tasks that update variables and retry the 
function that threw the exception. Every exception class in the C++ Standard Library defi nes the acces-
sor method what , which returns a descriptive string created when the exception is thrown. The body of 
the catch  block can display this string to provide an indication of the nature of the exception. 

     Note:   If an exception occurs in the middle of a  try  block, the destructors of all objects 
local to that block are called. This ensures that all resources allocated in that block are 
released, even if the block is not completely executed. In general, you should not use the 
new  operator inside of a  try  block. An exception will complicate knowing whether mem-
ory was allocated and, if it was, whether it was deallocated. 

     Programming Tip:   An important implementation detail of a  try  block is that it 
should contain as few statements as possible—ideally, only the statement that could 
throw an exception. Keeping the  try  block small reduces the risk of either important code 
not being executed or allocated memory not being deallocated if an exception is thrown. 

     Note:   A  catch  block whose parameter has the type  ExceptionClass  can catch excep-
tions of the class ExceptionClass  and any of  ExceptionClass ’s descendant classes. Speci-
fying a catch  block with a parameter of type  exception  catches any exception that can 
be thrown. 

 Listing C3-4 shows sample code that calls our  findBox  function and catches any  logic_error
exception thrown. The  catch  block displays a message to the user that something unusual has hap-
pened and creates a PlainBox  object for  foundBox  so that the statement following the  catch  block 
executes correctly.  

LISTING C3-4   Trying the function findBox

  // Create and initialize an array of boxes 
PlainBox<string> myBoxes[5]; // Array of PlainBox objects 
myBoxes[0] = PlainBox<string>("ring"); 
myBoxes[1] = PlainBox<string>("hat"); 
myBoxes[2] = PlainBox<string>("shirt"); 
myBoxes[3] = PlainBox<string>("sock"); 
myBoxes[4] = PlainBox<string>("shoe");  
PlainBox<string> foundBox; 
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   C3.4.1  Multiple catch Blocks 

 A single statement within a  try  block might cause more than one type of exception. Thus, a  try  block 
can have many  catch  blocks associated with it. When more than one  catch  block follows a  try  block, 
the catch  block that executes is the fi rst one—in order of appearance—whose parameter matches the 
thrown exception in type. Thus, the  catch  blocks must be ordered so that the most specifi c exception 
classes are caught before the more general exception classes. For example, the following  catch
blocks are in the wrong order: 

  string str = "Sarah"; 
  try  
 { 
    str.substr(99, 1); 

 < other statements appear here . . . >  
 } 
  catch (exception e) // WRONG ORDER!!
 { 
    cout << "Something else was caught" << endl; 
 } 
  catch (out_of_range e) 
 { 
    cout << "out_of_range exception caught" << endl; 
} // end try-catch 

 The compiler may issue a warning message similar to the following one: 

  'class std::out_of_range' : is caught by base class ('class exception')
on line n   

 This warning means that any  out_of_range  exception thrown in the  try  block will be caught by 
the fi rst  catch  block—with the parameter of type  exception —so the second  catch  block will 
never be reached. To get the code to compile without warnings, you must interchange the two 
catch  blocks. 

// Try to find a box containing glasses 
  try  
 { 
    foundBox = findBox(myBoxes, 5, "glasses"); 
 } 
  catch(logic_error logErr) 
 { 
    cout << logErr.what() << endl;            // Display error message to user 
    foundBox = PlainBox<string>("nothing"); // Fix problem 
} // end try-catch 
// Because we catch the exception and fix the problem, the following
// statement should work even if the target is not found 
cout << foundBox.getItem(); 

  Output

  Target not found in a box! 
 nothing   
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   C3.4.2  Uncaught Exceptions 

 Let’s see what happens when an exception is thrown but not caught. The program in Listing C3-5 
encodes a string by doing a simple substitution. It replaces each letter in a string with the character 
that appears three positions later in the alphabet. When it reaches the end of the alphabet, it wraps 
around to the beginning. For example,  a  is replaced by  d ,  b  is replaced by  e,  and  w  is replaced by  z . At 
this point, it gets replacement letters by wrapping around to the beginning of the alphabet. Thus,  x  is 
replaced by  a ,  y  is replaced by  b , and  z  is replaced by  c . 

  Figure   C3-2    shows the fl ow of control when an exception occurs in this code. When the func-
tion encodeChar  attempts to access the 99 th  character in  str  by the method call  str.replace(99, 
1, 1, newChar) , an  out_of_range  exception is thrown. Because  encodeChar  does not handle the 

     Programming Tip:   Arrange  catch  blocks in order of specifi city, catching the most 
specifi c one fi rst. Since all exception classes have  exception  as an ancestor, try to avoid 
using exception  in a  catch  block. If you must catch exceptions of type  exception , do so 
in the last catch  block. 

     LISTING C3-5   A program with an uncaught exception 

  #include <iostream> 
#include <string> 
  using namespace std; 

// Encodes the character at index i of the string str. 
void encodeChar( int i, string& str) 
 { 

int base = static_cast < int >('a'); 
if (isupper(str[i])) 

base = int ('A'); 

char newChar = ( static_cast < int>(str[i]) - base + 3) % 26 + base; 
    str.replace(i, 1, 1, newChar); // Method replace can throw exception 
} // end encodeChar

// Encodes numChar characters within a string. 
  void encodeString( int numChar, string& str) 
 { 

for ( int j = numChar - 1; j >= 0; j–) 
      encodeChar(j, str); 
} // end encodeString 

  int main() 
 { 
     string str1 = "Sarah"; 
     encodeString(99, str1); 
      return 0; 
} // end main 
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exception, the function terminates, and the exception propagates back to  encodeString  at the 
point where  encodeChar  was called. The function  encodeString  also does not handle the excep-
tion, so it too terminates and the exception propagates back to  main . Because  main  is the main 
function of the program, it does not handle the exception, and the program execution terminates 
abnormally with an error message.  

 This code contains no indication that the function  encodeChar  could throw the exception  out_
of_range . However, the documentation of  encodeChar  should indicate any exceptions it might throw. 
Thus, when documenting a function or method, you should also include any possible exceptions that 
could occur. 

 We can catch the exception  out_of_range  at any point in the sequence of function calls. For 
example, we could rewrite the function  encodeChar  as follows to catch the exception. 

   void encodeChar( int i, string& str) 
 { 

int base = static_cast<int >('a'); 
if (isupper(str[i])) 

        base = int ('A'); 

FIGURE C3-2         Flow of control for an uncaught exception   
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char newChar = ( static_cast < int>(str[i]) - base + 3) % 26 + base; 
try  

   { 
       str.replace(i, 1, 1, newChar); 
   } 

catch (out_of_range e) 
   { 
      cout << "No character at position " << i << endl; 
   }  // end try-catch
} // end encodeChar 

 The call  encodeString(99, str)  within  main  causes 99 calls to  encodeChar , and hence the excep-
tion is thrown 98  �   str.length()  times. The following output from  encodeChar  is the result. 

  No character at position 99 
No character at position 98 
No character at position 97 
. . . 

 When the exception was not handled, the program terminated the fi rst time the exception occurred. 
Handling the exception allows the code to continue execution. 

 Although the  out_of_range  exception is thrown in the function  encodeChar , that is not neces-
sarily the best place to handle the exception. For example, if the client had made the call 
encodeString(10000, str) , the message printed by  encodeChar  would have appeared  9999 �

str.length()  times! In this case, it makes more sense for the  try  and  catch  blocks to appear in the 
function encodeString  and not in  encodeChar , as follows: 

   void encodeString( int numChar, string& str) 
 { 

try  
    { 

for ( int i = numChar - 1; i >= 0; i––) 
           encodeChar(i, str); 
    } 

catch (out_of_range e) 
    { 
        cout << "The string does not contain " << numChar; 
        cout << " characters." << endl; 
        cout << e.what() << endl; 
    }  // end try-catch 
} // end encodeString

 Now when  encodeChar  throws the exception  out_of_range , the exception propagates back to 
the function encodeString , which ends execution of the statements in the  try  block and executes the 
statements in the catch  block. The expression  e.what()  invokes the method  what  for the exception  e , 
and so it represents a string that describes the exception. For this example, the following output would 
be displayed. 

  The string does not contain 10 characters. 
invalid string position 

 The message is printed only once, since the  for  loop is inside the  try  block, which is abandoned 
when the exception occurs. If the  try  block had been placed inside the  for  loop,  encodeChar  would 
be called—and therefore the exception would be thrown and handled—at each iteration of the loop. 
The result would be multiple copies of the message. 
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   C3.5 Programmer-Defi ned Exception Classes 
 You may fi nd that the C++ Standard Library has an exception class already defi ned that suits the 
exception needs of your program. You may also want to defi ne your own exception class. Usually, the 
C++ exception class  exception , or one of its derived classes, is the base class for programmer-
defi ned exception classes. Adhering to this practice provides a standardized interface for working 
with exceptions. If you follow this practice, you will need to use the  std  namespace. 

 An exception class typically consists of a constructor that has a string parameter. For example, 
you can defi ne the class  TargetNotFoundException  as 

  #include <stdexcept> 
#include <string> 
  using namespace std; 
  class TargetNotFoundException: public exception 
 { 
  public : 

TargetNotFoundException(const string& message = "") 
                     : exception("Target not found: " + message.c_str()) 
    { 
    }  // end constructor
 }; // end TargetNotFoundException

 The constructor provides a way for a  throw  statement to identify the condition that caused the 
exception. For example, the statement 

throw   TargetNotFoundException (target + " not found in a box!"); 

 invokes the constructor of  TargetNotFoundException . The message given to the constructor is 
returned by the method  what  that is inherited from the class  exception . Thus, a  catch  block, such as 
the following one, can access the message: 

   catch ( TargetNotFoundException except) 
 { 
    cout << except.what() << endl; 
 } 

 If target has the value "glasses" when this block executes, the output is 

  Target not found: glasses not found in a box! 

     Programming Tip:   When an exception can occur within a loop, you must decide 
whether to place a  try  block within the body of the loop—in which case an exception 
will be caught each time the loop cycles (as in the fi rst example)—or place the entire loop 
within a try  block—in which case the exception would be caught only once (as in the 
second example) Neither choice is better than the other, but if you make the wrong 
choice, the client likely will not get the necessary information. 

     Note:   Sometimes a  catch  block will intentionally terminate program execution. When 
the block does not do so, but rather completes its execution, any statements that appear 
after the last catch  block execute next. 



240 C++ INTERLUDE 3 Exceptions

 While the string message is helpful, sometimes we want to return additional information to the 
client to help resolve the problem. We could add a private data fi eld to our exception class to store 
additional error details. A second parameter in the constructor to receive an initial value for those 
details, as well as a public accessor method so that the client can retrieve them, are also needed. When 
a method throws this exception, it would call the constructor and send it the extra data and the mes-
sage as its two arguments. 

     Programming Tip: Using exceptions 

 To throw an exception in a function: 

•    Determine what errors, preconditions, postconditions, and unusual conditions you 
must check and where they should be checked, so your function can correctly per-
form its task.  

•    Detect the error, precondition, postcondition, or unusual condition. Usually this is 
done with an if  statement.  

•    If an error condition has occurred, throw an exception using the  throw  statement. 
As an argument to the exception class constructor, pass a string description of the 
reason for the error.  

•    Add a  throw  clause to the function header indicating the exceptions thrown by the 
function.

•    Derive a custom exception class to better identify the conditions that caused the 
error. Although doing so is optional, it is desirable.   

 To handle an exception or use a function that could throw an exception 

•    Place the statement that might throw an exception in a  try  block. The fewer state-
ments in the try  block the better. Do not use  new  to create an object in a  try  block.  

•    After the  try  block, place  catch  blocks for each type of exception that can be 
thrown by the statements in the  try  block. Place the  catch  blocks in order from the 
most specifi c exception classes to the more general exception classes.   
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This chapter implements the ADT stack using the techniques we described in 
 Chapters   3    and    4    for the ADT bag. We fi rst will use an array and then a chain of linked 
nodes to store the stack’s entries. You should be happy to discover the simplicity and 
effi ciency of these implementations. We then will modify these implementations to use 
exceptions as a way for a method to signal an unusual occurrence, such as an attempt to 
get an entry from an empty stack.   
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      7.1 An Array-Based Implementation 
  Figure   7-1   a shows a sketch of an array that contains the entries in a stack. Where in the array should 
the top entry be? Since entries are added or removed at the top of the stack, we can avoid shifting the 
current entries if we anchor the bottom of the stack at index 0 and track the location of the stack’s top 
using an index   top  . Then if   items   is the array and   items[top]   is the top entry,   items   and   top   can be 
the private data members of our class of stacks.  Figure   7-1   b illustrates these details. Notice that the 
top of the stack in this fi gure is at index 2. We can either add a new entry at  index[3]  and then incre-
ment top  or remove the top entry in  index[2]  by decrementing  top  to 1.  

 Our class will have a default constructor to initialize the private data members  items  and  top . 
However, since we plan to store a stack’s entries in statically allocated memory, the compiler-
generated destructor and copy constructor will be suffi cient. If, on the other hand, we were to use a 
dynamically allocated array, we would have to defi ne a destructor and a copy constructor. 

 Listing 7-1 shows the header fi le for an array-based implementation of the ADT stack. Com-
ments describing the methods are in Listing 6-1 of  Chapter   6   . 

FIGURE 7-1         Using an array to store a stack’s entries: (a) a preliminary sketch; (b) 
implementation details   
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      LISTING 7-1 The header fi le for an array-based stack 

  /** ADT stack: Array-based implementation.
  @file ArrayStack.h */

#ifndef _ARRAY_STACK 
#define _ARRAY_STACK 

#include "StackInterface.h" 
  const int MAX_STACK = maximum-size-of-stack;

  template < class ItemType> 
  class ArrayStack : public  StackInterface<ItemType> 
 { 
  private:  
    ItemType items[MAX_STACK]; // Array of stack items

int       top;                      // Index to top of stack 
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  public:  
    ArrayStack(); // Default constructor
  bool isEmpty() const ; 
  bool push( const ItemType& newEntry); 
  bool pop(); 
    ItemType peek() const ; 
 }; // end ArrayStack

#include "ArrayStack.cpp" 
 #endif   

 The implementations of the methods that the previous header fi le declares are given in Listing 
7-2. These defi nitions are straightforward, but notice that the method  peek  uses  assert  to enforce its 
precondition that the stack contain at least one entry. Later in this chapter, we will revise  peek  to 
throw an exception if the client calls it when the stack is empty. 

      LISTING 7-2  The implementation fi le for an array-based stack 

  /** @file ArrayStack.cpp */ 

#include <cassert>            // For assert 
#include "ArrayStack.h" // Header file 

  template < class ItemType> 
ArrayStack<ItemType>::ArrayStack() : top(-1) 
 { 
} // end default constructor 

// Copy constructor and destructor are supplied by the compiler 

  template < class ItemType> 
  bool ArrayStack<ItemType>::isEmpty() const  
 { 

return top < 0; 
} // end isEmpty 

  template < class ItemType> 
  bool ArrayStack<ItemType>::push( const ItemType& newEntry)
 { 

bool result = false ; 
if (top < MAX_STACK - 1) // Does stack have room for newEntry? 
{

        top++; 
        items[top] = newEntry; 
        result =  true ; 
    }  // end if

return result; 
} // end push

  template < class ItemType> 
  bool ArrayStack<ItemType>::pop() 

(continues)
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 { 
bool result = false ; 

     if (!isEmpty()) 
    { 
        top--; 
        result =  true ; 
    }  // end if

return result; 
} // end pop

  template < class ItemType> 
ItemType ArrayStack<ItemType>::peek() const
 { 
      assert (!isEmpty()); // Enforce precondition

     // Stack is not empty; return top 
return items[top]; 

} // end peek
// end of implementation file   

 A program that uses a stack could begin as follows: 

  #include <iostream> 
#include <string> 
#include "ArrayStack.h" 

  using namespace std; 

  int main() 
 { 
   StackInterface<string>* stackPtr = new ArrayStack<string>(); 
   string anItem = ""; 
   cout << "Enter a string: "; 
   cin >> anItem;               // Read an item
   stackPtr->push(anItem); // Push item onto stack
   . . . 

 By implementing the stack as a class, and by declaring  items  and  top  as private, you ensure that 
the client cannot violate the ADT’s walls. If you did not hide your implementation within a class, or if 
you made the array  items  public, the client could access the entries in  items  directly instead of by 
using the ADT stack operations. Thus, the client could access any entries in the stack, not just its top 
entry. You might fi nd this capability attractive, but in fact it violates the specifi cations of the ADT 
stack. If you truly need to access all the items of your ADT randomly, do not use a stack!    

 Finally, note that  push  receives  newEntry  as a constant reference argument. Therefore,  push  uses 
newEntry  as an alias to its actual argument, and no copy is made.    

Private data 
members are 
hidden from the 
client 

     Question 2   Describe the changes to the previous stack implementation that are necessary 
to replace the fi xed-size array with a resizable array. 

     Question 1   In  Chapter   6   , the algorithms that appear in  Section   6.2    involve strings. Under what 
conditions would you choose an array-based implementation for the stack in these algorithms? 

CHECK POINT
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   7.2 A Link-Based implementation 
 Many applications require a link-based implementation of a stack so that the stack can grow and 
shrink dynamically.  Figure   7-2    illustrates such an implementation, where  topPtr  is a pointer to the 
head of the linked nodes.  

 As we did for the array-based implementation, we begin with a header fi le based upon
StackInterface , as you can see in Listing 7-3. The pointer  topPtr  points to an instance of the 
class Node  that we used in the implementation of the class  LinkedBag  in  Chapter   4   . 

 Because memory is allocated dynamically for the nodes, you must write both a copy constructor 
and a virtual destructor for the link-based stack implementation. As you saw in  Chapter   4   , if a shallow 
copy of the stack is suffi cient, you can omit the copy constructor, in which case the compiler gener-
ates a copy constructor that performs a shallow copy. Such was the case for the array-based 
implementation.

 If we did not write our own copy constructor for the  LinkedStack  class, the compiler-generated 
copy constructor would copy only the pointer  topPtr . Thus, both  topPtr  and its copy would point to 
the same linked nodes; the stack itself would not be copied. You must write a copy constructor that 
explicitly makes a copy of all the nodes in a linked stack. 

FIGURE 7-2         A link-based implementation of a stack   
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      LISTING 7-3 The header fi le for the class  LinkedStack

  /** ADT stack: Link-based implementation.
 @file LinkedStack.h */ 

#ifndef _LINKED_STACK 
#define _LINKED_STACK 

#include "StackInterface.h" 
#include "Node.h" 

  template < class ItemType> 
  class LinkedStack : public StackInterface<ItemType> 
 { 
  private:  

Node<ItemType>* topPtr;    // Pointer to first node in the chain; 
// this node contains the stack’s top

  public:  
//  Constructors and destructor: 
    LinkedStack();               // Default constructor 
    LinkedStack( const LinkedStack<ItemType>& aStack); // Copy constructor 

virtual ~LinkedStack();   // Destructor 

//  Stack operations: 
      bool isEmpty() const;  
     bool push( const ItemType& newItem); 
     bool pop(); 
    ItemType peek()  const ; 
}; // end LinkedStack 

#include "LinkedStack.cpp" 
 #endif   

 Listing 7-4 gives the implementation fi le for  LinkedStack . Note the similarity between the copy 
constructors of  LinkedStack  and  LinkedBag  as given in  Chapter   4   . 

      LISTING 7-4 The implementation fi le for the class LinkedStack

  /** @file LinkedStack.cpp */ 
#include <cassert>               // For assert
#include "LinkedStack.h" // Header file

  template < class ItemType> 
LinkedStack<ItemType>::LinkedStack() : topPtr( nullptr ) 
 { 
} // end default constructor

  template < class ItemType> 
 LinkedStack<ItemType>:: 
 LinkedStack( const LinkedStack<ItemType>& aStack) 
 { 

You need an explicit 
copy constructor 
and a virtual 
destructor 
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// Point to nodes in original chain
   Node<ItemType>* origChainPtr = aStack->topPtr;

if (origChainPtr == nullptr ) 
       topPtr =  nullptr;               // Original bag is empty

else  
   { 
       // Copy first node
       topPtr =  new Node<ItemType>(); 
       topPtr->setItem(origChainPtr->getItem()); 

       // Point to first node in new chain 
       Node<ItemType>* newChainPtr = topPtr;      

       // Copy remaining nodes 
        while (origChainPtr != nullptr ) 
       { 

// Advance original-chain pointer 
          origChainPtr = origChainPtr->getNext();     

// Get next item from original chain 
          ItemType nextItem = origChainPtr->getItem(); 

// Create a new node containing the next item
          Node<ItemType>* newNodePtr =  new Node<ItemType>(nextItem);

// Link new node to end of new chain 
          newChainPtr->setNext(newNodePtr);  

// Advance pointer to new last node
          newChainPtr = newChainPtr->getNext();    
       }   // end while 

       newChainPtr->setNext( nullptr); // Flag end of chain 
   }   // end if 
} // end copy constructor 

  template < class ItemType> 
 LinkedStack<ItemType>::~LinkedStack() 
 { 

// Pop until stack is empty 
while (!isEmpty()) 

      pop(); 
} // end destructor 

  template < class ItemType> 
  bool LinkedStack<ItemType>::isEmpty() const  
 { 
     return topPtr == nullptr ; 
} // end isEmpty 

  template < class ItemType> 
  bool LinkedStack<ItemType>::push( const ItemType& newItem) 
 { 
   Node<ItemType>* newNodePtr =  new Node<ItemType>(newItem, topPtr);  
   topPtr = newNodePtr; 
   newNodePtr =  nullptr ; 

(continues)
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return true ; 
} // end push 

  template < class ItemType> 
  bool LinkedStack<ItemType>::pop() 
 { 

bool result = false ; 
if (!isEmpty()) 

   { 
        // Stack is not empty; delete top 
        Node<ItemType>* nodeToDeletePtr = topPtr; 
        topPtr = topPtr->getNext(); 

// Return deleted node to system 
        nodeToDeletePtr->setNext( nullptr ); 
  delete nodeToDeletePtr; 
        nodeToDeletePtr =  nullptr ; 

        result =  true ; 
   }  // end if 

return result; 
} // end pop 

  template < class ItemType> 
ItemType LinkedStack<ItemType>::peek() const  
 { 
   assert(!isEmpty()); // Enforce precondition 

// Stack is not empty; return top 
return topPtr->getItem(); 

} // end getTop 
// end of implementation file     

     Question 3   In  Chapter   6   , the algorithms that appear in  Section   6.2    involve strings. Under 
what conditions would you choose a link-based implementation? 

CHECK POINT

     Note: Comparing implementations 

 You have seen two implementations of the ADT stack, one that uses an array and 
another that uses linked nodes to contain the items in a stack. The discussion in
 Section   4.5    of  Chapter   4    applies here as well. The array-based implementation is a 
reasonable choice if the number of items in the stack does not exceed the fi xed size of 
the array. For example, when we read and correct an input line, if the system allows a 
line length of only 80 characters, you reasonably could use a statically allocated array 
to represent the stack. For stacks that might be large, but often are not, the array-based 
implementation will waste storage. In that case, the link-based implementation is a 
better choice. 
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     7.3 Implementations That Use Exceptions 
 Our specifi cations of the ADT stack appear to handle all eventualities. If you try to add an item 
to a full stack, the method push  returns false. If you try to remove an entry from an empty 
stack, the method pop  returns false. What happens when you try to look at the top of an empty 
stack? The method  peek  expects that you will not do this, as stated in its precondition. Our imple-
mentations, however, deal with the misuse of this method by beginning its defi nition with the 
statement 

  assert(!isEmpty()); 

 If the stack is empty,  assert  will issue an error message and halt execution. 
 Instead of using  assert ,  peek  could throw an exception if its precondition is violated—that is, if 

it is called when the stack is empty. Let’s defi ne the class  PrecondViolatedExcep  that  peek  can use. 
Listings 7-5 and 7-6 show this class. 

      LISTING 7-5   The header fi le for the class PrecondViolatedExcep   

  /** @file PrecondViolatedExcep.h */ 
#ifndef _PRECOND_VIOLATED_EXCEP 
#define _PRECOND_VIOLATED_EXCEP 

#include <stdexcept> 
#include <string> 

  using namespace std; 

  class PrecondViolatedExcep: public logic_error 
 { 
  public : 

PrecondViolatedExcep(const string& message = ""); 
}; // end PrecondViolatedExcep

 #endif   

Validate any 
data a client 
gives you 

     Programming Tip: Initializers versus set methods for constructors   

  Chapter   3    suggested that you use initializers instead of assignment statements in construc-
tors to initialize the values of a class’s data members. That is still good advice, and initial-
izers clearly show the initialization. However, if you write set methods to alter the values 
of the data members, you have the opportunity to ensure that the values assigned are valid. 
Doing so is especially important when those values are supplied by the client. In such 
cases, constructors can call the set methods to initialize the data members. Thus, we have 
the following advice when you initialize the values of data members in constructors: 

•   Use an initializer if the value of the data member has no restrictions.  
•   Use a set method if the value of the data member needs validation.   

 Note that even if you do not want a public set method for a particular data member, you 
can either defi ne a private one for the constructor to call or have the constructor perform 
its own validation. 
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      LISTING 7-6   The implementation fi le for the class PrecondViolatedExcep

  /** @file PrecondViolatedExcep.cpp */ 
#include " PrecondViolatedExcep.h"

  PrecondViolatedExcep ::PrecondViolatedExcep(const string& message): 
       logic_error("Precondition Violated Exception: " + message) 
  { 
} // end constructor   

 We now revise the declarations of  peek  in both of the header fi les  ArrayStack.h  and 
LinkedStack.h  by adding a  throw  clause as follows: 

  ItemType peek() const throw (PrecondViolatedExcep); 

 In the implementation fi les, we add the same  throw  clause to the header of  peek  and then replace the 
assert  statement in both defi nitions of  peek  with the following  if  statement: 

   if (isEmpty()) 
throw PrecondViolatedExcep("peek() called with empty stack");

 Thus, the defi nition of  peek  in  LinkedStack , for example, is 

   template < class ItemType>  
ItemType LinkedStack<ItemType>::peek() const throw (PrecondViolatedExcep) 
 { 
     // Enforce precondition 

if (isEmpty()) 
throw PrecondViolatedExcep("peek() called with empty stack");

// Stack is not empty; return top
return topPtr->getItem(); 

} // end getTop

 The previous revisions to  peek  are the same for both the array-based and link-based implementa-
tions of the stack.      

     Note:   In the link-based implementation of the stack, both the method  push  and the 
copy constructor allocate new nodes. This allocation could fail if the system has no spare 
memory available. In such a case, the standard exception  bad_alloc  is thrown. However, 
in our simple examples, such an occurrence is unlikely to occur unless your computing 
system has a severely restricted memory size. For simplicity, we will not worry about this 
situation.

     Question 4   Defi ne the exception class  MemoryAllocationException  and then revise the 
defi nition of the method  push  in the class  LinkedStack  so that it throws this exception if it 
cannot allocate a new node. 

CHECK POINT
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     SUMMARY       

  1.  You can implement a stack by using an array. If the bottom of the stack is in the fi rst element of the array, no 
stack entries are moved when you add or remove entries. 

  2.   You can implement a stack by using a chain of linked nodes that has a head pointer. The fi rst node of the chain 
should contain the top of the stack to provide the easiest and fastest addition and removal operations. 

  3.  You should call  assert  or throw an exception to enforce the precondition for the method  peek . 

  EXERCISES   

  1.  Discuss the advantages and disadvantages of an array-based implementation of the ADT stack as compared to a 
link-based implementation. 

  2.  Consider the ADT bag, as described in  Chapters   1   ,    3   , and    4.    

a.   Would you be able to implement the ADT stack by using a bag to contain its entries? Why, or why not?  
  b.   Would you be able to implement the ADT bag by using a stack to contain its entries? Why, or why not?   

  3.   An operation that displays the contents of a stack can be useful during program debugging. Add a  display
method to the ADT stack such that 

a.   The method uses only ADT stack operations; that is, it is independent of the stack’s implementation.  
b.   The method assumes and uses the link-based implementation of the ADT stack.  
c.   The method assumes and uses the array-based implementation of the ADT stack.   

  4.   Repeat the previous exercise, but defi ne the method  toVector  instead of the method  display . 

  5.   To the ADT stack given in this chapter, add a void method  remove(n)  that removes and discards the topmost  n
entries from a stack. Write a link-based implementation for this method. 

  6.   Repeat the previous exercise, but write an array-based implementation instead. 

  7.   The destructor given for the link-based implementation of the ADT stack calls  pop . Although easy to write, this 
destructor can be ineffi cient due to repeated method calls. Write another implementation for the destructor that 
deallocates the linked nodes directly without calling  pop . 

  8.   Implement a memory-safe copy constructor for the linked stack. If a memory allocation fails, this constructor 
should release all memory that was allocated prior to the failure and then throw an exception. 

  9.   Imagine an array-based implementation of the ADT stack that stores the stack’s entries beginning at the end of 
an array. Describe how you can defi ne the stack operations so that the  push  and  pop  operations do not require 
you to move existing entries in the array. 

  10.   Imagine a link-based implementation of the ADT stack that stores the stack’s top entry at the end of a chain of 
linked nodes. Describe how you can defi ne the stack operations so that a traversal of the chain is not necessary. 

  11.   Although we do not usually throw our own exception when a method or constructor in  LinkedStack  fails to 
allocate a new node, you could do so. Defi ne the exception  MemoryAllocationException , and revise the copy 
constructor of  LinkedStack  so that it throws a  MemoryAllocationException  when the  new  operator fails to 
allocate memory. Throwing exceptions from constructors requires great care, since you must be sure to properly 
deallocate any memory allocated by the constructor before throwing the exception. 

 Test your revised version of  LinkedStack.



252 CHAPTER 7 Implementations of the ADT Stack

      PROGRAMMING PROBLEMS         

  1.   Write an implementation of the ADT stack that uses a resizable array to represent the stack items. Anytime the 
stack becomes full, double the size of the array. Maintain the stack’s bottom entry at the beginning of the array. 

  2.   Repeat Programming Problem 1, but maintain the stack’s bottom entry at the end of the array. 

  3.   Repeat Programming Problem 1, but maintain the stack’s top entry at the beginning of the array. 

  4.   Repeat Programming Problem 1, but maintain the stack’s top entry at the end of the array. 

  5.   Repeat any of the previous four programming problems, but after the fi rst doubling of the array, halve the size of 
the array if fewer than half of the array’s locations are occupied by current stack entries. 

  6.   Suppose that instead of doubling the size of an array-based stack when it becomes full, you increase the size of 
the array by some positive integer  k . Implement and demonstrate such a stack that allows the client to specify  k 
when the stack is created. 

  7.   Repeat the previous programming problem, but each time the stack becomes full, increase the size of the array 
by the next value in this sequence: 3 k , 5 k , 7 k , ... for a client-specifi ed positive integer  k .

  8.   Write the implementation of the ADT stack that Exercise 10 describes. 

  9.   The ADT stack lets you peek at its top entry without removing it. For some applications of a stack, you need to 
also peek at the entry beneath the top entry without removing it. Let’s name such an operation  peek2 . If  peek2
fails because the stack contains fewer than two entries, it should throw an exception. Write a link-based imple-
mentation of the ADT stack that includes both  peek  and  peek2 . 

  10.   Repeat any of the programming problems in  Chapter   6   , except the fi rst one, using an implementation of the 
ADT stack that this chapter describes. 
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An everyday list provides a way for us to organize our thoughts, plans, or tasks. Each 
list has a fi rst entry, a last entry, and often entries in between. The entries have a position 
within the list, and therefore they are ordered. In computer science, an ADT list provides 
a way to organize data. Like an everyday list, the entries in an ADT list have a position 
and are ordered. This order is not determined by the list itself, but rather by its client. 

 This chapter specifi es the ADT list and gives some examples of how to use it.   
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      8.1 Specifying the ADT List 
 Consider a list that you might encounter, such as a list of chores, a list of important dates, a list of 
addresses, or the grocery list pictured in  Figure   8-1   . As you write a grocery list, where do you put new 
items? Assuming that you write a neat one-column list, you probably add new items to the end of the 
list. You could just as well add items to the beginning of the list or add them so that your list is sorted 
alphabetically. Regardless, the items on a list appear in a sequence. The list has one fi rst item and one 
last item. Except for the fi rst and last items, each item has a unique  predecessor  and a unique  succes-
sor . The fi rst item—the  head  or  front  of the list—does not have a predecessor, and the last item—the 
tail  or end of the list—does not have a successor. 

 Although the six items on the list in  Figure   8-1    have a sequential order, they are not necessarily 
sorted by name. Perhaps the items appear in the order in which they occur on the grocer’s shelves, but 
more likely they appear in the order in which they occurred to you as you wrote the list. 

 Lists contain items of the same type: You can have a list of grocery items or a list of phone num-
bers. What can you do to the items on a list? You might count the items on the list, add an item to the 
list, remove an item from the list, or look at (retrieve) an item. The items on a list, together with opera-
tions that you can perform on the items, form an ADT: the ADT  list .

FIGURE 8-1         A grocery list   

milk
eggs
butter
apples
bread
chicken

     Note:   The ADT list is simply a container of items whose order you indicate and whose 
position you reference by number. 

 You must specify the behavior of the list’s operations without thinking about how you could imple-
ment them. For example, you need to decide where to add a new item and which item to retrieve or 
remove. The various possible decisions lead to several kinds of lists. You might decide to add, remove, 
and retrieve items only at the end of the list, only at the front, or at both the front and the end. The 
specifi cations of these lists, which manipulate items at one or both ends, are left as an exercise, as they 
are not really adequate for an actual grocery list. Instead we will discuss a more general list, one that 
allows you to access items anywhere on the list. That is, you might look at the item at position  i , remove 
the item at position i,  or insert an item at position  i  on the list. Such operations are part of the ADT list. 
Other operations that see whether a list is empty or return the length of the list are also useful. 

You reference list 
items by their 
position
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  Figure   8-2    shows the UML diagram for this ADT and provides more detail for its operations.  

     Note: ADT list operations

•   Test whether a list is empty.  
•   Get the number of entries on a list.  
•   Insert an entry at a given position on the list.  
•   Remove the entry at a given position from the list.  
•   Remove all entries from the list.  
•   Look at (get) the entry at a given position on the list.  
•   Replace (set) the entry at a given position on the list.   

FIGURE 8-2         UML diagram for the ADT list   

List

+isEmpty(): boolean

+insert(newPosition: integer, newEntry: ItemType): boolean
+remove(position: integer): boolean

+getEntry(position: integer): ItemType

+getLength(): integer

+clear(): void

+setEntry(position: integer, newEntry: ItemType): void

 To get a more precise idea of how the operations work, let’s apply them to the following grocery 
items:

  milk, eggs, butter, apples, bread, chicken  

 Milk will be the fi rst item on the list, and chicken will be the last item. To begin, consider how you can 
construct this list by using the ADT list operations. One way is fi rst to create an empty list   aList   and 
then use a series of insertion operations to append the items to the list one at a time, as follows: 

  aList = a new empty list  
aList.insert(1, milk) 
aList.insert(2, eggs) 
aList.insert(3, butter) 
aList.insert(4, apples) 
aList.insert(5, bread) 
aList.insert(6, chicken) 

 We assume for this simple example that the list can contain all of the items we add to it. 
 In the previous example, we in effect have inserted each new item at the end of the list. Neverthe-

less, the list’s insertion operation can place new items into any position of the list, not just at its front 
or end. The effect of an insertion between existing items, however, is not apparent from the previous 
example. For instance, if you start with the previous grocery list and you perform the operation 

  aList.insert(4, nuts) 
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 the list  aList  should become 

  milk, eggs, butter, nuts, apples, bread, chicken  

 All items that had position numbers greater than or equal to 4 before the insertion now have their 
position numbers increased by 1 after the insertion. In general, if a new item is inserted into position 
i , the position of each item that was at or after position  i  is increased by 1. 

 Similarly, the removal operation specifi es that if an item is deleted from position  i , the position of 
each item that was at a position greater than  i  is decreased by 1. Thus, for example, if  aList  is the list 

  milk, eggs, butter, nuts, apples, bread, chicken  

 and you perform the operation 

  aList.remove(5) 

 the list becomes 

  milk, eggs, butter, nuts, bread, chicken  

 All items that had position numbers greater than 5 before the removal now have their position num-
bers decreased by 1 after the deletion. 

 These examples illustrate that we can specify the effects of an ADT’s operations without having 
to indicate how to store the data. The following summary of the ADT list provides more details for 
its operation contract. As usual, the specifi cations of these operations are the sole terms of the oper-
ation contract for the ADT list. The behavior of the operations is the only thing on which a program 
should depend.   

 ABSTRACT DATA TYPE: LIST

 DATA

•  A fi nite number of objects, not necessarily distinct, having the same data type and ordered by their positions, as 
determined by the client. 

 OPERATIONS

 PSEUDOCODE  DESCRIPTION

 isEmpty()  Task: Sees whether this list is empty. 
 Input: None. 
 Output: True if the list is empty; otherwise false. 

 getLength() 

   

 Task: Gets the current number of entries in this list. 
 Input: None. 
 Output: The integer number of entries currently in the list. 

insert(newPosition, newEntry)  Task: Inserts an entry into this list at a given position. An insertion before 
existing entries causes the renumbering of entries that follow the new one. 

 Input:   newPosition  is an integer indicating the position of the insertion, and 
newEntry  is the new entry. 

 Output:  True if 1 newPosition getLength()  + 1 and the insertion is 
successful; otherwise false. 
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 Note that the return values of the insertion and removal operations provide the ADT with a sim-
ple mechanism to communicate operation failure to its client. For example, if you try to remove the 
tenth item from a fi ve-item list,  remove  will return false. Likewise,  insert  will return false if, for 
example, the list is full or  position  is out of range. In this way, the client can deal with error situa-
tions in an implementation-independent way.     

 remove(position)  Task: Removes the entry at a given position from this list. A removal before the 
last entry causes the renumbering of entries that follow the deleted one. 

 Input:  position  is the position of the entry to remove. 
 Output:  True if 1 newPosition getLength()  and the removal is successful; 

otherwise false. 

 clear()  Task: Removes all entries from this list. 
 Input: None. 
 Output: None. The list is empty. 

 getEntry(position)  Task: Gets the entry at the given position in this list. 
 Input:  position  is the position of the entry to get; 1 <=  position  <= 

getLength() . 
 Output: The desired entry. 

setEntry(position, newEntry)  Task: Replaces the entry at the given position in this list. 
 Input:   position  is the position of the entry to replace; 1 <=  position  <= 

getLength() .  newEntry  is the replacement entry. 
 Output: None. The indicated entry is replaced. 

     Note:    The list operations fall into the three broad categories presented earlier in this 
book:

•   The operation  insert  adds data to a data collection.  
•   The operation  remove  removes data from a data collection.  
•    The operations  isEmpty, getLength , and  getEntry  ask questions about the data in a 

data collection.   

 The operation  setEntry  replaces existing data in a data collection, so you can think of it 
as removing and then adding data. 

     Question 1   The specifi cations of the ADT list do not mention the case in which two or 
more items have the same value. Are these specifi cations suffi cient to cover this case, or 
must they be revised? 

CHECK POINT

     Question 2   Write specifi cations for a list whose operations  insert ,  remove ,  getEntry , 
and setEntry  always act at the end of the list. 

       Axioms (optional).   The previous specifi cations for the operations of the ADT list have been stated 
rather informally. For example, they rely on your knowing the meaning of “an item is at position  i ” in 
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a list. However, you can write a set of axioms that completely describes the behavior of the list 
operations. For example, 

  A newly created list is empty  

 is an axiom because it is true for all newly created lists. You can state this axiom succinctly in terms of 
the ADT list operations as follows:   1

  (new List()).isEmpty() = true 

 The statement 

  If you insert an item x into the i th  position of a list, retrieving the i th  item will result in x  

 is true for all lists, and so it is an axiom. You can state this axiom in terms of the ADT list 
operations as follows:    

(aList.insert(i, x)).getEntry(i) = x 

 That is,  getEntry  returns the item  x  that  insert  has put at position  i  of  aList . 
 The following axioms formally defi ne the ADT list:  

 1  The = notation within these axioms denotes algebraic equality. 

Note: Axioms for the ADT list 
1. (new List()).isEmpty() = true

  2. (new List()).getLength() = 0 
3. aList.getLength() = (aList.insert(i, x)).getLength() - 1 

  4. aList.getLength() = (aList.remove(i)).getLength() + 1
  5. (aList.insert(i, item)).isEmpty() = false 
  6. (new List()).remove(i) = false 
  7. (aList.insert(i, x)).remove(i) = aList 
  8.   (new List()).getEntry(i) = error 
  9.   (aList.insert(i, x)).getEntry(i) = x 
10. aList.getEntry(i) = (aList.insert(i, x)).getEntry(i + 1) 
  11. aList.getEntry(i + 1) = (aList.remove(i)).getEntry(i) 
  12.   (new List()).setEntry(i, x) = error 
13. (aList.setEntry(i, x)).getEntry(i) = x   

 A set of axioms does not make the preconditions and postconditions for an ADT’s operations 
unnecessary. For example, the previous axioms do not describe  insert ’s behavior when you try to 
insert an item into position 50 of a list of two items. One way to handle this situation is to include the 
restriction

  1 <= position <= getLength() + 1  

 in  insert ’s precondition. Another way—which we used in our previous specifi cations of the ADT 
list—does not restrict position , but rather has the method return false if  position  is outside the pre-
vious range. Thus, you need both a set of axioms and a set of preconditions and postconditions to 
defi ne the behavior of an ADT’s operations completely. 
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 You can use axioms to determine the outcome of a sequence of ADT operations. For example, if 
aList  is a list of strings and  s  and  t  are strings, how does the sequence of operations 

  aList.insert(1, t) 
aList.insert(1, s) 

 affect  aList ? We will show that  s  is the fi rst item in this list and that  t  is the second item by using 
getEntry  to look at these items. 

 You can write the previous sequence of operations in another way as 

  (aList.insert(1, t)).insert(1, s) 

 or 

  tempList = aList.insert(1, t) 
tempList.insert(1, s) 

 Now get the fi rst and second items in the list  tempList.insert(1, s) , as follows: 

  (tempList.insert(1, s)).getEntry(1) = s    by axiom 9   

 and 

  (tempList.insert(1, s)).getEntry(2) 
             = tempList.getEntry(1)      by axiom 10  
             = (aList.insert(1, t)).getEntry(1)   by definition of  tempList 
             = t           by axiom 9   

 Thus,  s  is the fi rst item in the list and  t  is the second item.    

   8.2 Using the List Operations 
 We now consider some simple examples of how you can use the operations of the ADT list. Recall 
that exploring such uses is a way to confi rm your understanding of an ADT’s specifi cations and gives 
you an opportunity to change your mind about your design choices prior to implementing the ADT. 
You can write client functions in terms of the operations that defi ne the ADT list, even though you do 
not know how the list’s data is stored. 

      Displaying the items on a list.   Suppose that you want to display the items on a list. Since this task is 
not an ADT list operation, we write pseudocode for a client function  displayList  that uses the ADT 
operations as follows:     

  //  Displays the items on the list aList.
 displayList(aList) 

for (position = 1 through aList.getLength()) 
    { 
       dataItem = aList.getEntry(position) 
         Display dataItem
    } 

 Notice that as long as the ADT list is implemented correctly, the  displayList  function will perform 
its task. In this case, getEntry  successfully retrieves each list item, because  position ’s value is 
always valid. 

An implementation-
independent
application of  the 
ADT list 

VideoNote

Using the ADT list
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      Replacing an item.   Now suppose that we did not include the operation  setEntry  in our specifi ca-
tion of the ADT list. To replace the entry at a given position in the list with a new one, we would need 
to write a client function. The following pseudocode defi nes such a function  replace :

  // Replaces the  i th entry in the list  aList  with  newEntry.
 //  Returns true if the replacement was successful; otherwise return false.  
replace(aList, i, newEntry) 

    success = aList.remove(i) 
if (success) 

        success = aList.insert(i, newItem) 

return success 

 If  remove  is successful, it sets  success  to true. By testing  success, replace  will attempt the 
insertion only if the deletion actually occurred. Then  insert  sets  success , which  replace  returns to 
the function that called it. If remove  is unsuccessful for any reason, including an incorrect value of  i , 
it sets success  to false. The  replace  function then ignores the insertion and returns  success .

Note:   Notice that the two previous algorithms depend only on the specifi cations of the 
list operations and not on their implementations. The algorithms do not depend on  how
you implement the list. They will work regardless of whether you use an array or some 
other data structure to store the list’s data. This feature is a defi nite advantage of abstract 
data types. In addition, by thinking in terms of the available ADT operations, you will not 
be distracted by implementation details. 

      Creating a list of names in alphabetical order.   Let’s create a list of our friends’ names as we think 
of them. Moreover, let’s place the names on the list in alphabetical order. It is up to us to place each 
name into its correct position in the list. The ADT list does not choose the order of its entries.  

 The following pseudocode statements place the names Amy, Ellen, Bob, Drew, Aaron, and Carol 
in an alphabetical list. The comment at the end of each statement shows the list after the statement 
executes. 

  alphaList = a new empty list  
alphaList.insert(1, "Amy") //  Amy  
alphaList.insert(2, "Ellen")    //  Amy Ellen  
alphaList.insert(2, "Bob")      //  Amy Bob Ellen  
alphaList.insert(3, "Drew")    //  Amy Bob Drew Ellen  
alphaList.insert(1, "Aaron")    //   Aaron Amy Bob Drew Ellen  
alphaList.insert(4, "Carol")    //   Aaron Amy Bob Carol Drew Ellen   

 After initially placing Amy at the beginning of the list and Ellen at the end of the list (at position 2), 
we insert 

•   Bob between Amy and Ellen at position 2  
•   Drew between Bob and Ellen at position 3  
•   Aaron before Amy at position 1  
•   Carol between Bob and Drew at position 4   

 Later in  Chapter   11   , you will learn that this way of inserting each name into a collection of alphabet-
ized names is called an insertion sort. 

 If we now remove the entry at position 4—Carol—by writing 

  alphaList.remove(4) 
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 Drew and Ellen will be at positions 4 and 5, respectively. Thus,  alphaList.getEntry(4)  would 
return Drew. 

 Finally, suppose that we want to replace a name in this list. We cannot replace a name with just any 
name and expect that the list will remain in alphabetical order. Replacing Bob with Ben by writing 

  alphaList.setEntry(3, "Ben"); 

 would maintain alphabetical order, but replacing Bob with Nancy would not. The list’s alphabetical 
order resulted from our original decisions about where to place names on the list. The order did not 
come about automatically as a result of list operations. That is, the client, not the list, maintains the 
order. We could, however, design an ADT that maintains its data in alphabetical order. You will see an 
example of such an ADT in  Chapter   12   .     

Question 4   What grocery list results from the following sequence of ADT list opera-
tions?

  aList = a new empty list  
aList.insert(1, "butter") 
aList.insert(1, "eggs") 
aList.insert(1, "milk") 

     Question 5   Suppose that  myList  is a list that contains the fi ve objects  a b c d e . 

a.   What does  myList  contain after executing  myList.insert(5, w) ?
b.   Starting with the original fi ve entries, what does  myList  contain after executing

myList.insert(6, w) ?
c.   Which of the operations in parts  a  and  b  of this question require entries in the array to 

shift?

     Question 3   Write a pseudocode function  swap(aList,   i,   j)  that interchanges the items 
currently in positions  i  and  j  of a list. Defi ne the function in terms of the ADT list operations, 
so that it is independent of any particular implementation of the list. Assume that the list, in 
fact, has items at positions  i  and  j . What impact does this assumption have on your solution? 
(See Exercise 2 at the end of this chapter.) 

CHECK POINT

   8.3 An Interface Template for the ADT List 
 We now will formalize our specifi cation of the ADT list by writing a C++ interface, which is given in 
Listing 8-1. 

      LISTING 8-1 A C++ interface for lists 

  /** Interface for the ADT list 
 @file ListInterface.h */ 

#ifndef _LIST_INTERFACE 
#define _LIST_INTERFACE 

  template < class ItemType> 
  class ListInterface

(continues)
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 { 
  public : 
    /** Sees whether this list is empty. 

 @return  True if the list is empty; otherwise returns false. */ 
virtual bool isEmpty() const = 0; 

/** Gets the current number of entries in this list. 
@return  The integer number of entries currently in the list. */ 

virtual int getLength() const = 0; 

/** Inserts an entry into this list at a given position. 
@pre  None.
@post  If 1 <= position <= getLength() + 1 and the insertion is 

         successful, newEntry is at the given position in the list,  
         other entries are renumbered accordingly, and the returned  
         value is true. 
      @param newPosition  The list position at which to insert newEntry. 

@param newEntry  The entry to insert into the list. 
@return  True if insertion is successful, or false if not. */ 

    virtual bool insert( int newPosition, const ItemType& newEntry) = 0; 

/** Removes the entry at a given position from this list. 
@pre  None. 
@post  If 1 <= position <= getLength() and the removal is successful, 

        the entry at the given position in the list is removed, other
        items are renumbered accordingly, and the returned value is true. 

@param position  The list position of the entry to remove. 
@return  True if removal is successful, or false if not. */

virtual bool remove( int position) = 0; 

   /** Removes all entries from this list.
@post  List contains no entries and the count of items is 0. */

virtual void clear() = 0; 

   /** Gets the entry at the given position in this list. 
@pre  1 <= position <= getLength(). 
@post  The desired entry has been returned. 
@param position  The list position of the desired entry.
@return  The entry at the given position. */

virtual ItemType getEntry( int position) const = 0; 

   /** Replaces the entry at the given position in this list. 
@pre  1 <= position <= getLength(). 
@post  The entry at the given position is newEntry. 
@param position  The list position of the entry to replace.
@param newEntry  The replacement entry. */ 

virtual void setEntry( int position, const ItemType& newEntry) = 0; 
 }; // end ListInterface 
 #endif     
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     SUMMARY       

  1.  The ADT list maintains its data by position. Each entry in a list is identifi ed by its position, which is given by an 
integer, beginning with 1. Thus, the data in a list has an order, but that order is determined by the list’s client, not 
the list itself. 

  2.   You can insert a new entry into a list at a position that ranges from 1 to 1 greater than the current length of 
the list. Thus, you can insert a new entry before the fi rst entry, after the last entry, or between two current 
entries. 

  3.   Inserting a new entry into a list renumbers any existing entries that follow the new one in the list. 

  4.   You can remove an entry that is currently at a position that ranges from 1 to the current length of the list. Thus, 
you can remove the fi rst entry, the last entry, or any interior entry. 

  5.   Removing an entry from a list renumbers any existing entries that follow the deleted one in the list. 

  EXERCISES   

  1.   Consider an ADT list of integers. Write a pseudocode function that computes the sum of the integers in the list 
aList . The defi nition of your function should be independent of the list’s implementation. 

  2.   Implement the function  swap , as described in Checkpoint Question 3, but remove the assumption that the  ith  and 
jth  items on the list exist. Return a value that indicates whether the swap was successful. 

  3.   Use the function  swap  that you wrote in Exercise 2 to write a function that reverses the order of the items in a list 
aList . 

  4.    Section   8.2    describes the functions  displayList  and  replace . Their defi nitions are written in terms of the ADT 
list operations. 

a.   What is an advantage and a disadvantage of the way that  displayList  and  replace  are implemented?  
b.   What is an advantage and a disadvantage of defi ning  displayList  and  replace  as operations of the 

ADT list?   

  5.   Suppose that the ADT list has a method  getPosition  that returns the position of a given entry within the list. 
Write specifi cations for such a method. 

  6.   Write a pseudocode function  getPosition  at the client level that returns the position of a given entry within a 
given list. 

  7.   Suppose that the ADT list has a method  contains  that tests whether the list contains a given entry. Write speci-
fi cations for such a method. 

  8.   Write a pseudocode function  contains  at the client level that tests whether a given list contains a given entry. 

  9.  The ADT list method  remove  removes from the list the entry at a given position. Suppose that the ADT list has 
another method remove  that removes a given entry from the list. Write specifi cations for such a method. What 
does your method do if the list contains duplicate entries? 

  10.   Write a pseudocode function  remove  at the client level that removes a given entry from a given list. 
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  11.   Use the axioms for the ADT list, as given in “Axioms” in  Section   8.1    of this chapter, to prove that the sequence 
of operations 

   Insert A into position 2  

  Insert B into position 2  

  Insert C into position 2   

 has the same effect on a nonempty list of characters as the sequence 

Insert C into position 2

Insert B into position 3

Insert A into position 4

  12.   Repeat Exercise 20 in  Chapter   2   , using the ADT list to implement the function  f (n).

      PROGRAMMING PROBLEMS         

  1.  Write pseudocode implementations of the ADT polynomial operations, as defi ned in Exercise 9 of  Chapter   1   , in 
terms of the ADT list operations. 

  2.   Santa Claus allegedly keeps lists of those who are naughty and those who are nice. On the naughty list are the 
names of those who will get coal in their stockings. On the nice list are those who will receive gifts. Each object 
in this list contains a name (a string) and a list of that person’s gifts (an instance of an ADT list). Design an ADT 
for the objects in the nice list. Specify each ADT operation by stating its purpose, describing its parameters, and 
writing preconditions, postconditions, and a pseudocode version of its header. Then write a template interface 
for the ADT that includes  javadoc -style comments. 
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      9.1 An Array-Based Implementation of the ADT List 
 When you design an abstract data type, you concentrate on what its operations do, but you ignore how 
you will implement them. Now that we have clearly specifi ed operations for the ADT list, we can 
implement it as a C++ class. Recall that the list operations in their UML form are 

  +isEmpty(): boolean 
+getLength(): integer 
+insert(newPosition: integer, newEntry: ItemType): boolean 
+remove(position: integer): boolean 
+clear(): void 
+getEntry(position: integer): ItemType 
+setEntry(position: integer, newEntry: ItemType): void 

 You need to represent the items on a list and its length. Your fi rst thought is probably to store the list’s 
items in an array  items . In fact, you might believe that “list” is simply a fancy name for an array. This 
belief is not quite true, however. An array-based implementation is a natural choice because both an 
array and a list identify their items by number. However, the ADT list has operations such as 
getLength  that an array does not. Later in this chapter, you will see an implementation of the ADT 
list that does not use an array. 

 With an array-based implementation, you can store a list’s  k  th  entry in  items[k - 1] . How much 
of the array will the list occupy? Possibly all of it, but probably not. That is, you need to keep track of 
the array elements that you have assigned to the list and those that are available for use in the future. 
The maximum length of the array—its physical size or capacity—is a known, fi xed value, such as 
maxItems . You can keep track of the current number of entries on the list—that is, the list’s length or 
logical size—in a variable  itemCount . An obvious benefi t of this approach is that implementing the 
operation getLength  will be easy. Thus, we could use the following statements to defi ne the data 
members for an array-based implementation of the ADT list:    

   static const int DEFAULT_CAPACITY = 100;
ItemType items[DEFAULT_CAPACITY]; // Array of list items
  int itemCount;                              // Current count of list items
  int maxItems;                               // Maximum capacity of the list 

  Figure   9-1    illustrates these data members. To hide them from the clients of the class, we will 
make these data members private. 

    9.1.1  The Header File 

 Now that we have chosen the data members for our class  ArrayList , we can write its header fi le, as 
given in Listing 9-1. We derive  ArrayList  from the template interface  ListInterface  that we devel-
oped in the previous chapter. We provide a default constructor, and since we plan to use a statically 

FIGURE 9-1         An array-based implementation of the ADT list   
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allocated array, the compiler-generated destructor and copy constructor will be suffi cient. The only 
other detail that ListInterface  does not specify is the behavior of the methods  getEntry  and  setEn-
try  should their caller violate their precondition. That is, what should we do if these methods are 
given an out-of-bounds list position? We can throw an exception in this case, and to this end, we use 
the class PrecondViolatedExcep  as defi ned in Listings 7-5 and 7-6 of  Chapter   7   .   

     Note:   By defi ning the data member  maxItems  for  ArrayList , we enable the class imple-
menter to allocate the array  items  dynamically instead of statically. Thus, the programmer 
could easily defi ne a constructor that allows the client to choose the size of the array. 

LISTING 9-1     The header fi le for the class ArrayList

/** ADT list: Array-based implementation. 
 @file ArrayList.h */ 

#ifndef _ARRAY_LIST 
#define _ARRAY_LIST 

#include "ListInterface.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class ArrayList : public ListInterface<ItemType> 
 { 
  private : 

static const int DEFAULT_CAPACITY = 100; 
   ItemType items[DEFAULT_CAPACITY]; // Array of list items 

int itemCount;                         // Current count of list items  
int maxItems;                          // Maximum capacity of the list 

  public : 
   ArrayList(); 
   // Copy constructor and destructor are supplied by compiler 

bool isEmpty() const ; 
int getLength() const ; 
bool insert( int newPosition, const ItemType& newEntry); 
bool remove( int position); 
void clear(); 

   /** @throw PrecondViolatedExcep if position < 1 or
 position > getLength(). */ 

   ItemType getEntry( int position) const throw (PrecondViolatedExcep); 

   /** @throw PrecondViolatedExcep if position < 1 or
position > getLength(). */ 

void setEntry( int position, const ItemType& newEntry) 
throw (PrecondViolatedExcep); 

 }; // end ArrayList 

#include "ArrayList.cpp" 
#endif
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   9.1.2  The Implementation File 

 As usual, we will begin our implementation with the method or methods that add new entries to our con-
tainer and any methods that help us to verify the correctness of those additions. For  ArrayList , we want 
to defi ne the method  insert . The methods  isEmpty  and  getLength  will be easy to defi ne and will be use-
ful while testing  insert . We also will want to call the method  getEntry  to check the contents of the list. 
And, of course, we need to defi ne the constructor. Let’s begin with these methods as our core group. 

The constructor and the methods isEmpty and getLength.  The default constructor initializes the 
data members itemCount  to zero and  maxItems  to  DEFAULT_CAPACITY : 

   template < class ItemType> 
ArrayList<ItemType>::ArrayList() : itemCount(0), 

  maxItems(DEFAULT_CAPACITY) 
 { 
} // end default constructor 

 The method  isEmpty  tests whether  itemCount  is zero, and  getLength  simply returns the value of 
itemCount :

   template < class ItemType> 
  bool ArrayList<ItemType>::isEmpty() const  
 { 

return itemCount == 0; 
} // end isEmpty 

  template < class ItemType> 
  int ArrayList<ItemType>::getLength() const  
 { 

return itemCount; 
} // end getLength 

   The method insert.  To insert a new entry at a given position in the array  items , you must create 
room for the new entry by shifting the entries at and beyond this position toward the end of array. 
 Figure   9-2    depicts this insertion. Part  a  shows the list prior to adding a new entry at position 3. Start-
ing at the end of the list, we copy the entry in  items[i – 1]  to  items[i]  for values of  i  ranging from 
k  down to 3, as  Figure   9-2b    illustrates. Finally, we insert the new entry into  items[newPosition - 1] , 
or items[2]  in this example.  Figure   9-2c    shows the list after this step.  

 The defi nition of the method  insert  follows: 

   template < class ItemType> 
  bool ArrayList<ItemType>::insert( int newPosition,

const ItemType& newEntry) 
 { 

bool ableToInsert = (newPosition >= 1)   &&    
                           (newPosition <= itemCount + 1)   &&   
                           (itemCount < maxItems); 

if (ableToInsert) 
   { 

// Make room for new entry by shifting all entries at 
      // positions >= newPosition toward the end of the array 
      // (no shift if newPosition == itemCount + 1) 

for ( int pos = itemCount; pos >= newPosition; pos–-) 
         items[pos] = items[pos - 1]; 

      // Insert new entry 
      items[newPosition - 1] = newEntry; 
      itemCount++; // Increase count of entries 
   }  // end if 

return ableToInsert; 
} // end insert

Shift array entries to 
insert an item 

VideoNote

Overview of  
ArrayList



 An Array-Based Implementation of the ADT List 269

 We can begin testing these methods once we write stubs for the remaining methods. To thor-
oughly test  insert , however, we need the method  getEntry , which we defi ne next.     

FIGURE 9-2         Shifting items for insertion: (a) the list before the insertion; (b) copy items to produce room at 
position 3; (c) the result   
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     Question 2   Describe an implementation of the method  insert  for  ArrayList  that places 
the entry in position 1 in the last element of the array, the entry in position 2 in the next-
to-last element, and so on. 

     Question 3   How does the original version of  insert  given previously compare with the 
one described in Question 2 with respect to the number of operations required? 

     Question 1   Given a nonempty list that is an instance of  ArrayList , at what position does 
an insertion of a new entry require the fewest operations? Explain. 

CHECK POINT

  The method getEntry.  This method simply needs to return the value in  items[position] , but we 
decided to enforce the method’s precondition by throwing an exception if  position  is out of bounds. 
For the purpose of testing the method  insert , you could write a temporary version of  getEntry  that 
does not throw an exception but just returns the desired list entry. You would then complete its defi ni-
tion as follows: 

   template < class ItemType> 
ItemType ArrayList<ItemType>::getEntry( int position) const

throw (PrecondViolatedExcep) 
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 { 
// Enforce precondition 
bool ableToGet = (position >= 1)   &&    (position <= itemCount); 
if (ableToGet) 

        return items[position - 1]; 
else  

   { 
      string message = "getEntry() called with an empty list or ";  
      message = message + "invalid position."; 

throw(PrecondViolatedExcep(message));
   }  // end if 
} // end getEntry   

  A client.   At this point, and after writing stubs for the remaining methods, you should test the core 
group of methods. The following  main  function demonstrates how you can test the methods  insert
and getEntry , but it assumes that you change the value of  DEFAULT_CAPACITY  to 5 in the class defi ni-
tion given in Listing 9-1:   

   int main() 
 { 
   ListInterface<string>* listPtr = new ArrayList<string>(); 
   string data[] = {"one", "two", "three", "four", "five", "six"}; 
   cout << "isEmpty: returns " << listPtr->isEmpty()
         << "; should be 1 (true)" << endl; 

for ( int i = 0; i < 6; i++) 
   { 
        if (listPtr->insert(i + 1, data[i])) 
          cout << "Inserted " << listPtr->getEntry(i + 1)
                << " at position " << (i + 1) << endl; 
       else  
          cout << "Cannot insert " << data[i] << " at position " << (i + 1)
                << endl; 
   }  // end for 

return 0; 
} // end main 

  Note that you cannot write references such as  listPtr->itemCount  or  listPtr->items[4] , because 
itemCount  and  items  are within the private portion of the class.  

  The method setEntry.  The defi nition of the method  setEntry  is similar to the one for  getEntry , 
so we implement it next: 

   template < class ItemType> 
  void ArrayList<ItemType>::setEntry( int position, const ItemType& newEntry)

throw (PrecondViolatedExcep) 
 { 
    // Enforce precondition 
  bool ableToSet = (position >= 1)   &&    (position <= itemCount); 
  if (ableToSet) 
       items[position - 1] = newEntry; 
  else  
  {
      string message = "setEntry() called with an empty list or ";  
      message = message + "invalid position."; 
       throw(PrecondViolatedExcep(message));
  } // end if 
} // end setEntry   

A client of  the class 
cannot access the 
class’s private 
members directly 
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  The method remove.  Now consider how to remove an entry from the list. You could blank it out, but 
this strategy can lead to gaps in the array, as  Figure   9-3   a illustrates. An array that is full of gaps has 
three signifi cant problems: 

•    itemCount  – 1 is no longer the index of the last entry in the array. You need another variable, 
lastPosition , to contain this index.  

•   Because the items are spread out, the method  getEntry  might have to look at every cell of the 
array even when only a few entries are present.  

•   When  items[maxItems - 1]  is occupied, the list could appear full, even when fewer than 
maxItems  entries are present.   

 Thus, what you really need to do is shift the entries in the array so that a deletion does not leave a gap, 
as shown in  Figure   9-3b   . This data movement is like the one done by the method  insert , but it occurs 
in the opposite direction.  

 The defi nition of  remove  follows: 

   template < class ItemType> 
  bool ArrayList<ItemType>::remove( int position) 
 { 

bool ableToRemove = (position >= 1)   &&    (position <= itemCount); 
if (ableToRemove) 

   { 
// Remove entry by shifting all entries after the one at 

      // position toward the beginning of the array 
      // (no shift if position == itemCount) 

for  ( int fromIndex = position, toIndex = fromIndex - 1;
  fromIndex < itemCount; fromIndex++, toIndex++) 

         items[toIndex] = items[fromIndex];

      itemCount–-; // Decrease count of entries 
   }  // end if 

return ableToRemove; 
 }  // end remove 

FIGURE 9-3         (a) Deletion can cause a gap; (b) shift items to prevent a gap at position 3;  (c) the result   
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  The method clear.   To clear all of the entries from a list, our fi nal method simply sets  itemCount  to 
zero:

   template < class ItemType> 
  void ArrayList<ItemType>::clear() 
 { 
   itemCount = 0; 
} // end clear 

 The entire implementation fi le for the class  ArrayList  is available online from the book’s 
website.     

     Question 4   Although the method  remove  cannot remove an entry from an empty list, it 
does not explicitly check for one. How does this method avoid an attempted deletion from an 
empty list? 

CHECK POINT

   9.2 A Link-Based Implementation of the ADT List 
 We now consider how we can use C++ pointers instead of an array to implement the ADT list. Unlike 
the array-based implementation, a link-based implementation does not shift items during insertion 
and deletion operations. It also does not impose a fi xed maximum length on the list—except, of 
course, as imposed by the storage limits of the system. 

 Once again, we need to represent the items in the list and its length.  Figure   9-4    indicates one pos-
sible way to represent this data by using pointers. Here  headPtr  points to the linked nodes containing 
the items in the list, where the fi rst node contains the entry at position 1 in the list, and so on. The inte-
ger itemCount  is the current number of entries in the list. Both  headPtr  and  itemCount  will be pri-
vate data members of our class.  

   9.2.1  The Header File 

 Let’s name our class of lists  LinkedList  and write its header fi le as shown in Listing 9-2. This fi le has 
similarities to the header fi le for  ArrayList , as given in Listing 9-1, but let’s point out the differences. 
Here we include the header fi les for the classes  Node  and  PrecondViolatedExcep , as defi ned in List-
ing 4-1 of  Chapter   4    and Listing 7-5 of  Chapter   7   , respectively. 

 The private section declares the two data members— headPtr  and  itemCount —as well as a pri-
vate method  getNodeAt  that we will use to locate any node within the chain of linked nodes, given its 
position in the chain. Unlike an array, which provides direct access to a specifi ed element, the chain of 
linked nodes requires the get, insertion, and removal operations to traverse it until the specifi ed node 
is reached. While you could write the necessary loop in the method  getEntry , you would soon dis-
cover that the methods  insert  and  remove  will need the same loop. At that time, you should realize 

FIGURE 9-4         A link-based implementation of the ADT list   
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LISTING 9-2   The header fi le for the class LinkedList

  /** ADT list: Link-based implementation. 
 @file LinkedList.h */ 

#ifndef _LINKED_LIST 
#define _LINKED_LIST 

#include "ListInterface.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class LinkedList : public ListInterface<ItemType> 
 { 
  private : 
   Node<ItemType>* headPtr; // Pointer to first node in the chain 
                                   // (contains the first entry in the list) 

int itemCount;               // Current count of list items

// Locates a specified node in a linked list. 
// @pre  position is the number of the desired node; 
//        position >= 1 and position <= itemCount. 
// @post  The node is found and a pointer to it is returned. 
// @param position  The number of the node to locate. 
// @return  A pointer to the node at the given position. 

   Node<ItemType>* getNodeAt( int position) const ; 

  public : 
   LinkedList(); 
   LinkedList( const LinkedList<ItemType>& aList); 

virtual ~LinkedList(); 

bool isEmpty() const ; 
int getLength() const ; 
bool insert( int newPosition, const ItemType& newEntry); 
bool remove( int position); 
void clear(); 

/** @throw  PrecondViolatedExcep if position < 1 or
                                                position > getLength(). */ 
   ItemType getEntry( int position) const throw(PrecondViolatedExcep); 

/** @throw PrecondViolatedExcep if position < 1 or
                                               position > getLength(). */ 

void setEntry( int position, const ItemType& newEntry)
throw (PrecondViolatedExcep); 

 }; // end LinkedList 

#include "LinkedList.cpp" 
 #endif 
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that defi ning a private method to perform the traversal would be convenient. Although we declare 
getNodeAt  now, adding the declarations of private methods to the header fi le after you begin the 
implementation fi le is not unusual. 

 The method  getNodeAt  is not an ADT operation, because it returns a pointer to a node; since 
nodes are an implementation detail, you would not want any client to call it. Such clients should be 
able to use the ADT without knowledge of the nodes that the implementation uses. It is perfectly rea-
sonable for the implementation of an ADT to defi ne variables and methods that the rest of the pro-
gram should not access. You could think of the method  getNodeAt  as marked “for internal use only.” 
Therefore, getNodeAt  is a private method that only the implementations of the ADT’s operations call.    

 Because we are declaring a link-based implementation, we must provide a copy constructor and 
a destructor for our class. The declarations of the public methods are the same as for the class 
ArrayList .     

   9.2.2  The Implementation File 

 Our core methods include the same ones that we defi ned for  ArrayList —namely, the constructor and 
the methods insert ,  getEntry ,  isEmpty , and  getLength . The latter two methods have the same bod-
ies as their ArrayList  versions, since they involve only the data fi eld  itemCount . However, as will 
become evident when we code the methods  getEntry  and  insert , the private method  getNodeAt  will 
be necessary. 

  The constructor.   Because the compiler-generated default constructor would not necessarily ini-
tialize headPtr  and  itemCount  to appropriate values, you must provide your own default constructor. 
Initializers are suffi cient to set the values of  headPtr  and  itemCount , since we, not the client, choose 
these values. The constructor’s defi nition follows: 

   template < class ItemType> 
LinkedList<ItemType>::LinkedList() : headPtr( nullptr), itemCount(0) 
 { 
} // end default constructor 

 This is the only constructor we will need.  

  The method getEntry.  Like  getEntry  in  ArrayList , we will have this method enforce its precon-
dition by throwing an exception if  position  is out of bounds. Note the similarity of its defi nition to 
the array-based version given earlier in this chapter: 

   template < class ItemType> 
ItemType LinkedList<ItemType>::getEntry( int position) const

throw (PrecondViolatedExcep) 
 { 

// Enforce precondition 
bool ableToGet = (position >= 1)   &&    (position <= itemCount); 
if (ableToGet) 

   { 
       Node<ItemType>* nodePtr = getNodeAt(position); 
        return nodePtr->getItem(); 
   } 

else  
   { 
       string message = "getEntry() called with an empty list or ";  
       message = message + "invalid position."; 
        throw(PrecondViolatedExcep(message));
   }  // end if 
} // end getEntry   

A copy constructor 
and a destructor are 
necessary for a 
link-based
implementation 

  getNodeAt is a 
private method 

VideoNote

Overview of  
LinkedList
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The method getNodeAt.   The private method  getNodeAt  locates the node at a given position by 
traversing the chain. It then returns a pointer to the located node. The traversal begins at the fi rst node 
of the chain and moves from node to node, counting as it goes, until it reaches the desired one: 

   template < class ItemType> 
Node<ItemType>* LinkedList<ItemType>::getNodeAt( int position) const
 { 

// Debugging check of precondition 
     assert ( (position >= 1)   &&    (position <= itemCount) );

// Count from the beginning of the chain 
   Node<ItemType>* curPtr = headPtr; 

for ( int skip = 1; skip < position; skip++) 
       curPtr = curPtr->getNext(); 

return curPtr ; 
} // end getNodeAt 

 Since  getNodeAt  is a private method and is called only by other methods within the class, those 
methods are responsible for honoring its precondition. Thus, we need not throw an exception if the 
precondition is violated. Rather, we simply use an assertion during debugging.  

  The method insert.  As you know, you can insert a new entry into a list right before its fi rst entry, 
right after its last entry, or between two adjacent entries. For the link-based implementations of the 
ADT bag in  Chapter   4    and the ADT stack in  Chapter   7   , we always inserted a new node into the chain 
of linked nodes at the chain’s beginning. The ADT list requires us to manipulate the chain in addi-
tional ways. Let’s explore those ways. 

 Since we know how to insert a new node at the beginning of a chain of nodes, let’s consider 
inserting a node between two existing, adjacent nodes to which the pointer variables  prevPtr  and 
curPtr  point, as  Figure   9-5   a illustrates. If the pointer variable  newNodePtr  points to the new node, 
you make the new node point to the node that  curPtr  currently points to ( Figure   9-5b   ). You also must 
alter the value of the pointer in the node that will precede the new node so that it points to the new 
node, as shown in  Figure   9-5c   . As the diagram suggests, you can accomplish the insertion by using 
the pair of assignment statements    

  newNodePtr->setNext(curPtr); 
 prevPtr->setNext(newNodePtr);   

 Now, how did the variables  curPtr  and  prevPtr  get appropriate values? Given  newPosition , the 
desired position of the new entry in the list, you traverse the chain until you fi nd the proper position 
for the new item. The private method  getNodeAt  will perform this traversal for you. Thus, 

  prevPtr = getNodeAt(newPosition - 1); 
curPtr = prevPtr->getNext(); 

 You then use the  new  operator to create a new node, to which  newNodePtr  points. You initialize its data 
portion and then insert the node into the chain, as was just described. 

  Figure   9-6    shows the insertion of a new node at the end of a chain. This insertion is potentially a 
special case because the intention of the pair of assignment statements    

  newNodePtr->setNext(curPtr); 
 prevPtr->setNext(newNodePtr); 

 is to insert the new node  between  the nodes to which  curPtr  and  prevPtr  point. If you are to insert 
the new node at the end of the chain, to what node should  curPtr  point? In this situation, it makes 
sense to view the value of  curPtr  as  nullptr  because, as you traverse the list,  curPtr  becomes 
nullptr  as it moves past the end of the chain. Observe that if  curPtr  has the value  nullptr  and 

Inserting a node 
between nodes 

If   curPtr is 
nullptr, inserting 
at the end of  a chain 
is not a special case 
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Three steps to insert 
a new node into a 
chain 

     Question 6   In the previous method  insert , the second  if  statement tests the value of 
newPosition . Should the boolean expression it tests be  isEmpty() || (newPosition == 
1) ? Explain. 

     Question 7   How does the  insert  method enforce the precondition of  getNodeAt ? 

     Question 5   Given a nonempty list that is an instance of  LinkedList , at what position 
does an insertion of a new entry require the fewest operations? Explain. 

CHECK POINT

prevPtr  points to the last node in the chain, the previous pair of assignment statements will indeed 
insert the new node at the end of the chain. Thus, insertion at the end of a chain is not a special case.  

 To summarize, the insertion process requires three high-level steps:    

 1.   Create a new node and store the new data in it.  
 2.   Determine the point of insertion.  
 3.   Connect the new node to the linked chain by changing pointers.   

 These steps and the previous discussion are implemented in the following defi nition of  insert : 

   template < class ItemType> 
  bool LinkedList<ItemType>::insert( int newPosition,
                                           const ItemType& newEntry) 
 { 

bool ableToInsert = (newPosition >= 1)   &&   
                           (newPosition <= itemCount + 1); 

if (ableToInsert) 
   { 

// Create a new node containing the new entry
      Node<ItemType>* newNodePtr =  new Node<ItemType>(newEntry);

// Attach new node to chain 
if (newPosition == 1) 

      { 
          // Insert new node at beginning of chain 
         newNodePtr->setNext(headPtr);  
         headPtr = newNodePtr; 
      } 

else  
      { 
          // Find node that will be before new node 
          Node<ItemType>* prevPtr = getNodeAt(newPosition - 1); 

          // Insert new node after node to which prevPtr points 
          newNodePtr->setNext(prevPtr->getNext());  
          prevPtr->setNext(newNodePtr); 
      }  // end if 

      itemCount++;  // Increase count of entries 
   }  // end if 

return ableToInsert; 
 } // end insert 

 If you have not already begun to test the methods in the core group, you should do so now.     

  The method remove.  To remove any entry from a list, you must be able to delete any node from a 
chain of linked nodes. You already know how to delete the fi rst node in a chain, because the 
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FIGURE 9-6         Inserting a new node at the end of a chain of linked nodes   
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FIGURE 9-7         Deleting a node from a chain   
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link-based implementations of the ADT bag in  Chapter   4    and the ADT stack in  Chapter   7    do this. 
Let’s consider the deletion of an interior node. 

 As  Figure   9-7    indicates, you can remove the node  N  to which  curPtr  points by altering the value 
of the pointer in the node that precedes N . You need to set this pointer so that it points to the node that 
follows  N , thus bypassing  N  on the chain. (The dashed line indicates the old pointer value.) Notice 
that this pointer change does not directly affect node  N.  Node  N  remains in existence, and it points to 
the same node that it pointed to before the removal. However, the node has effectively been removed 
from the chain. For example, a traversal of the chain would never reach node  N .

 To accomplish this pointer change, notice fi rst that if you had only the pointer  curPtr  pointing to 
N , you would have no direct way to access the node that precedes  N . After all, you cannot follow the 
links in the chain backward. Thus, you must have the pointer variable  prevPtr  in  Figure   9-7   . It points 
to the node that precedes N  and makes it possible for you to alter that node’s  next  pointer, thereby 
removing node  N  from the chain. The following assignment statement is all that you need to remove 
the node to which  curPtr  points:    

  prevPtr->setNext(curPtr->getNext()); 

 Does the previous technique work for any node  N , regardless of where in the linked chain it 
appears? No, it does not work if the node to be deleted is the  fi rst  node in the chain, but it does work 
for the last node in the chain. Thus, deletion of the fi rst node in a chain is a special case. Since we 
already know how to delete the fi rst node, let’s consider deleting the last node. 

  Figure   9-8    shows the deletion of the node to which  curPtr  points, which happens to be the last node. 
That pointer alone is insuffi cient, as you must have the variable  prevPtr  point to the next-to-last node. 
You set the pointer within the next-to-last node to  nullptr . The same statement that we just used to 
remove an interior node will make this pointer change, since the value of  curPtr->getNext()  is  nullptr : 

  prevPtr->setNext(curPtr->getNext()); 

Removing an 
interior node 

FIGURE 9-8         Removing the last node   
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 To remove a chain’s fi rst node, recall that you must change the value of  headPtr  to point to the 
second node. Thus, the second node becomes the chain’s new fi rst node. You make this change to 
headPtr  by using the assignment statement    

  headPtr = headPtr->getNext(); 

 As was the case for the deletion of an interior node, the pointers bypass the old fi rst node, although it 
still exists. Notice also that if the node to be deleted is the  only  node in the chain—and thus it is both 
the fi rst node and the last node—the previous assignment statement assigns the value  nullptr  to the 
variable  headPtr . Recall that the value  nullptr  in  headPtr  indicates an empty chain, and so this 
assignment statement handles the removal of the only node in a chain correctly. 

 The removed node still exists, however. Assuming that  curPtr  points to it, changing the value of 
curPtr  will place the removed node in a state of limbo. It will still require storage space, and the pro-
gram will no longer be able to access it. You would have a memory leak. Therefore, before you change 
the value of  curPtr , you should use the statements    

  curPtr->setNext( nullptr ); 
  delete curPtr; 
curPtr = nullptr ; 

 to delete the node and return its memory to the system.  
 To summarize, the deletion process has three high-level steps:    

 1.   Locate the node that you want to delete.  
 2.   Disconnect this node from the linked chain by changing pointers.  
 3.   Return the node to the system.   

 You will see these steps and the previous discussion implemented in the following defi nition of 
remove : 

   template < class ItemType> 
  bool LinkedList<ItemType>::remove( int position) 
 { 

bool ableToRemove = (position >= 1)   &&    (position <= itemCount); 
if (ableToRemove) 

   { 
      Node<ItemType>* curPtr =  nullptr ; 

if (position == 1) 
      { 
           // Remove the first node in the chain 
           curPtr = headPtr; // Save pointer to node 
           headPtr = headPtr->getNext(); 
      } 

else  
      { 
           // Find node that is before the one to delete 
           Node<ItemType>* prevPtr = getNodeAt(position - 1); 

           // Point to node to delete 
           curPtr = prevPtr->getNext(); 

// Disconnect indicated node from chain by connecting the 
           // prior node with the one after 
           prevPtr->setNext(curPtr->getNext()); 
      }   // end if 

// Return node to system 
      curPtr->setNext( nullptr ); 

Removing the fi rst 
node is a special 
case

Return removed 
nodes to the system 
by using  delete  

Three steps to 
delete a node from a 
chain 
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delete curPtr; 
      curPtr =  nullptr ; 

      itemCount–-;  // Decrease count of entries 
   }   // end if 

return ableToRemove; 
} // end remove   

  The method clear.  To remove all entries from a list, you can call the method  remove . Because the 
easiest entry to remove is the fi rst one, the method  clear  can invoke  remove(1)  repeatedly until the 
list is empty. This action works because, after you remove the fi rst entry in the list, the remaining 
entries are renumbered. Therefore, to remove all entries, you can repeatedly remove the fi rst entry. 
Thus, clear  has the following defi nition: 

   template < class ItemType> 
  void LinkedList<ItemType>::clear() 
 { 

while (!isEmpty()) 
       remove(1); 
} // end clear    

     Question 8   The link-based implementation of the method  clear  contains the following 
loop:

   while (!isEmpty()) 
   remove(1); 

a.   Can you correctly replace the loop with 

    for ( int position = getLength(); position >= 1; position–-) 
 remove(1);   

b.   Does your answer to part  a  differ if you replace  remove(1)  with 
remove(position) ?

c.   Do your answers to parts  a  and  b  differ if you replace the  for  statement with 

    for ( int position = 1; position <= getLength(); position++)    

CHECK POINT

  The destructor.   Because the method  clear  invokes  remove  repeatedly until the list is empty, and 
remove  deallocates the nodes it removes, the destructor can simply call  clear : 

   template < class ItemType> 
 LinkedList<ItemType>::~LinkedList() 
 { 
    clear(); 
} // end destructor    

Question 9   Revise the destructor in the class  LinkedList  so that it directly deletes each 
node of the underlying linked chain without calling either  clear  or  remove . 

CHECK POINT

  The remaining methods.   This link-based implementation of the ADT list cannot use a compiler-
generated copy constructor, as it would copy only the data members  headPtr  and  itemCount . Instead, it 
must also copy the nodes and their contents. The link-based implementations of the ADT bag in  Chapter   4    
and the ADT stack in  Chapter   7    have copy constructors that are quite similar to the one we require for the 
list. Thus, we leave its defi nition to you as an exercise, along with the method  setEntry . 
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   9.2.3  Using Recursion in LinkedList Methods 

 Using recursion in the implementation of some of the methods in the class  LinkedList  can be an 
attractive alternative to an iterative approach.  Section   4.3    of  Chapter   4    developed the recursive meth-
ods fillVector  and  getPointerTo . Both methods considered a chain’s fi rst node and then recur-
sively considered the rest of the chain. In general, we can state that you can process a linked chain by 
processing its fi rst node and then the rest of the chain recursively. Thus, to add a new node to a chain 
of linked nodes at a given position, you use the following logic: 

   if ( the insertion position is 1 ) 
Add the new node to the beginning of the chain  

  else  
Ignore the first node and add the new node to the rest of the chain   

 Adding to the beginning of a chain—or subchain—is the base case of this recursion. Happily, the 
beginning of a chain is the easiest place to make an addition. 

 If  position  is the desired position of the new node,  newNodePtr  points to the new node, and 
subChainPtr  initially points to the chain and later points to the rest of the chain, we can add some 
detail to the previous logic, as follows: 

   if (position == 1)
 { 

newNodePtr->setNext(subChainPtr)
subChainPtr = newNodePtr
Increment itemCount 

 } 
  else  

Using recursion, add the new node at position position – 1 of the subchain pointed
to by   subChainPtr ->getNext()

 The private method  getPointerTo  in  Section   4.3    returned a pointer to a given entry in a chain. 
Since that operation traversed the chain but did not alter it, its recursive formulation was straightfor-
ward. However, the list’s method  insert  does alter the chain. Getting the recursive method to make 
these changes is the challenge.  

  The method insert.  Let’s look at the recursive implementation of the insertion operation before 
we describe why it works. You learned in  Section   4.3    that you write a private method to perform the 
recursion and you write a public method—typically the one that implements the ADT’s operation—to 
invoke this private method. Thus, we have the following method defi nitions: 

  // The public method insert: 
  template < class ItemType> 
  bool LinkedList<ItemType>::insert( int newPosition,   const ItemType& newEntry) 
 { 

bool ableToInsert = (newPosition >= 1)   &&   
                             (newPosition <= itemCount + 1); 

if (ableToInsert) 
   { 
       // Create a new node containing the new entry
       Node<ItemType>* newNodePtr =  new Node<ItemType>(newEntry); 
       headPtr = insertNode(newPosition, newNodePtr, headPtr); 
   }  // end if 

return ableToInsert; 
} // end insert 
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// The private method insertNode: 

// Adds a given node to the subchain pointed to by subChainPtr
// at a given position. Returns a pointer to the augmented subchain. 
  template < class ItemType> 
Node<ItemType>* LinkedList<ItemType>::insertNode( int position,
                    Node<ItemType>* newNodePtr, Node<ItemType>* subChainPtr) 
 { 

if (position == 1) 
   { 
       // Insert new node at beginning of subchain 
       newNodePtr->setNext(subChainPtr);
       subChainPtr = newNodePtr; 
       itemCount++; // Increase count of entries 
   } 

else  
   { 
       Node<ItemType>* afterPtr =
            insertNode(position - 1, newNodePtr, subChainPtr->getNext()); 
       subChainPtr->setNext(afterPtr);
   }  // end if 

return subChainPtr; 
} // end insertNode 

 The private recursive method  insertNode  adds the new node to the subchain to which  subChainPtr
points at the given position. We will trace and explain its logic next.  

  Tracing an addition to the list’s beginning.   Consider the list that the chain in  Figure   9-9   a repre-
sents. Let’s add a new entry at the beginning of the chain by using an invocation such as 

  myList->insert(1, newEntry); 

 The public method  insert  will create a new node containing  newEntry  ( Figure   9-9b   ) and then call 
the private method  insertNode  with the invocation 

  insertNode(1, newNodePtr, headPtr); 

 The pointer in the argument  headPtr  is copied to the parameter  subChainPtr , and so it also points to 
the fi rst node in the chain, as  Figure   9-9c    illustrates. 

 The new node is linked to the beginning of the original chain, as  Figure   9-9d    shows. 
Notice that subChainPtr  now points to the new node at the beginning of the chain. However, 
headPtr  is unchanged, even though it is the argument that corresponds to the parameter 
subChainPtr . The private method now returns the value of  subChainPtr , and the public 
method insert  assigns that value to  headPtr . The chain with the completed addition appears 
as in  Figure   9-9e   .   

  Tracing an addition to the list’s interior.   What happens when the addition is not at the beginning 
of the original chain? Let’s trace what happens when we add a new third node to the chain given in 
 Figure   9-9a   . The public method  insert  creates a new node and calls the private method  insertNode
with the invocation 

  insertNode(3, newNodePtr, headPtr); 

 As in the previous example, the pointer in the argument  headPtr  is copied to the parameter 
subChainPtr , and so it also points to the fi rst node in the chain, as  Figure   9-10   a illustrates. Since the 
insertion is not at position 1, another recursive call occurs: 

  insertNode(2, newNodePtr, subChainPtr->getNext()); 
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 The third argument is a pointer to the chain’s second node. This pointer is copied to the parameter 
subChainPtr , as  Figure   9-10b    depicts. We still have not reached the insertion point, so the recursive 
process is repeated again: 

  insertNode(1, newNodePtr, subChainPtr->getNext()); 

 Now  subChainPtr  points to the chain’s third node, as shown in  Figure   9-10c   , and we are at the desired 
position for the insertion into the chain. No other recursive call occurs, as this is the base case. 

 The given new node is inserted at the beginning of the subchain to which  subChainPtr  points, as 
 Figure   9-10d    illustrates, and then the private method  insertNode  returns a reference to the new node. 
The statement 

  Node<ItemType>* afterPtr = insertNode(1, newNodePtr, subChainPtr->getNext()); 

FIGURE 9-9         Recursively adding a node at the beginning of a chain   
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FIGURE 9-10         Recursively adding a node between existing nodes in a chain   

(a) As insertNode(3, newNodePtr, headPtr) begins execution
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 in the public method  insert  that invoked  insertNode  now resumes execution. The pointer to the new 
node returned by  insertNode  is assigned to  afterPtr , as  Figure   9-10e    illustrates. At this time, 
subChainPtr  references the second node, as it did in part  b  of the fi gure. The next statement to exe-
cute in insertNode  is 

  subChainPtr->setNext(afterPtr); 

 This statement changes the  next  pointer in the second node to reference the new node, as shown in 
 Figure   9-10f   . The private method  insertNode  now returns a reference to the second node. If we con-
tinue the trace, we will see that the method makes the fi rst node point to the second node and  headPtr
point to the fi rst node, even though these pointers are already in place. 

     Note:   A recursive addition to a chain of nodes locates and remembers the nodes prior 
to the insertion point. After the portion of the chain that follows the insertion point is 
linked to the new node, the recursion links the remembered nodes back into the chain. 

     Question 10   Using recursion, revise the destructor in the class  LinkedList  so that it 
deletes each node of the underlying linked chain. 

CHECK POINT

      9.3 Comparing Implementations 
 The reasons for choosing an array-based implementation or a link-based implementation are the 
same as discussed in earlier chapters. Although the array-based implementation given in this chapter 
seems reasonable—after all, an array behaves like a list, and arrays are easy to use—it uses statically 
allocated memory. As such, it prevents the  insert  operation from adding an entry to the list if the 
array is full. If this restriction is not acceptable, you must either resize the array or use a link-based 
implementation.

 The array-based and link-based implementations have other differences as well, which affect 
their time and memory requirements. As we discussed in  Section   4.5    of  Chapter   4   , the time to access 
an array element is constant, whereas you have no way of immediately accessing the  ith  node in a 
linked chain. Thus, the array-based  getEntry  method, for example, is almost instantaneous regard-
less of which list item you access. A link-based  getEntry , however, requires  i  steps to access the  ith

item in the list.    
 You already know that the array-based implementation of the ADT list requires you to shift the 

data when you insert entries into or remove entries from the list. For example, if you remove the fi rst 
entry of a 20-entry list, you must shift 19 entries. In general, removing the  ith  entry from a list of  n
entries requires n   -   i  shifts. Thus,  remove  requires  n   -   1  shifts to remove the fi rst entry, but zero shifts 
to remove the last one. The method  insert  has similar requirements.    

 In contrast, you do not need to shift the data when you insert entries into or remove entries from a 
chain of linked nodes. Thus, if the ADT list has a link-based implementation, the methods  insert  and 
remove  require essentially the same effort—regardless of the length of the list or the position of the 
operation within the list—once you know the point of insertion or removal. Finding this point, how-
ever, requires a list traversal, the time for which will vary depending on where in the list the operation 
occurs. Recall that the private method  getNodeAt  performs this traversal. If you examine the defi nition 
of getNodeAt , you will see that  getNodeAt(i)  requires  i  assignment operations. Thus,  getNodeAt ’s 
effort increases with  i .           

The time to access 
the i  th node in a 
chain of  linked  
nodes depends on i  

You can access 
array items directly 
with equal access 
time

Insertions and 
removals with a 
link-based
implementation do 
not require you to 
shift data but require 
a traversal 
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 SUMMARY   

  1.   Using an array results in a straightforward implementation of the ADT list, but it is somewhat more involved 
than the implementations of either the ADT bag or the ADT stack. 

 2.  An array provides direct access to any of its elements, so a method such as  getEntry  can quickly retrieve any 
entry in a list. 

 3.  Adding an entry to or removing an entry from an array-based list typically requires that other entries shift by 
one position within the array. This data movement degrades the time effi ciency of these operations, particularly 
when the list is long and the position of the addition or removal is near the beginning of the list. 

 4.  Inserting entries into or removing entries from a chain of linked nodes does not require data to shift. Thus, the 
methods insert  and  remove  of a link-based implementation of the ADT list require essentially the same 
effort—regardless of the length of the list or the position of the operation within the list—once the point of 
insertion or removal is known. Finding this point, however, requires a list traversal, the time for which will vary 
depending on where in the list the operation occurs. 

 5.  For a link-based implementation of the ADT list, adding to the beginning of the list and removing a list’s fi rst 
entry are treated as special cases. 

 6.  Adding or removing an entry at the end of a link-based list requires a traversal of the underlying chain. 

 7.  Adding or removing an entry anywhere within a link-based list requires a change of at most two pointers within 
the underlying chain. 

 8.  The array-based  getEntry  method is almost instantaneous regardless of which list item you access. A link-
based getEntry , however, requires  i  steps to access the  ith  item in the list. 

 EXERCISES   

  1.   Add a constructor to each of the classes  ArrayList  and  LinkedList  that creates a list containing the entries in 
a given array. 

 2.  Defi ne the method  setEntry  for the class  LinkedList . 

 3.  Defi ne the copy constructor for the class  LinkedList . 

 4.  Repeat the previous exercise, but use recursion in your defi nition. 

 5.  Implement the method  getPosition , as described in Exercise 5 of  Chapter   8   , for each of the classes 
ArrayList  and  LinkedList . 

 6.  Repeat the previous exercise, but use recursion in your defi nitions. 

 7.  Implement the method  contains , as described in Exercise 7 of  Chapter   8   , for each of the classes  ArrayList
and LinkedList . 

 8.  Repeat the previous exercise, but use recursion in your defi nitions. 

 9.  Implement the method  remove , as described in Exercise 9 of  Chapter   8   , for each of the classes  ArrayList  and 
LinkedList . 
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 10.  Repeat the previous exercise, but use recursion in your defi nition. 

 11.  Write a recursive defi nition of the private method  getNodeAt  for the class  LinkedList . 

 12.  A  double-ended list  has operations that operate at its beginning and end, in addition to the operations of the list, 
as given in  Section   8.1    of  Chapter   8   . For example, you can add, remove, and get the fi rst and last entries in a 
double-ended list. Write a C++ interface for a double-ended list. 

 PROGRAMMING PROBLEMS   

  1.   Write a program that thoroughly tests the classes  ArrayList  and  LinkedList . During its execution, your pro-
gram should give the user a choice of which class to test. After the results are displayed, the user should have 
the opportunity to choose the other class or quit. 

 2.  Write an array-based implementation of the ADT list that expands the size of the array of list entries as needed 
so that the list can always accommodate a new entry. 

 3.  Repeat the previous programming problem, but also reduce the size of the array as needed to accommodate 
several removals. When the size of the array is greater than 20 and the number of entries in the list is less than 
half the size of the array, reduce the size of the array so that it is three quarters of its current size. 

 4.  Revise the array-based implementation of the ADT list to use recursion wherever you can. 

 5.  Revise the link-based implementation of the ADT list to use recursion wherever you can. 

 6.  Adding nodes to or removing nodes from a chain of linked nodes requires a special case when the operation is 
at the beginning of the chain. To eliminate the special case, you can add a  dummy node  at the beginning of the 
chain. The dummy node is always present but does not contain a list entry. The chain, then, is never empty, and 
so the head pointer never contains  nullptr , even when the list is empty. Modify the class  LinkedList , as pre-
sented in this chapter, by adding a dummy node to the chain. 

 7.  Implement the ADT polynomial that Exercise 9 in  Chapter   1    describes by using a list. Then write a program 
that adequately demonstrates your new class. 

 8.  Implement a class of bags, as specifi ed in  Chapter   1   , by using a list to contain the bag’s entries. Then write a 
program that adequately demonstrates your new class. 

 9.  Implement a class of stacks, as specifi ed in  Chapter   6   , by using a list to contain the stack’s entries. Then write a 
program that adequately demonstrates your new class. 

 10.  Implement the ADT for the objects on Santa Claus’s nice list, as described in Programming Problem 2 of  
Chapter   8   . Then write a program for Santa that maintains his two lists of those who are naughty and those who 
are nice. 

 11.  The popular social network Facebook was founded by Mark Zuckerberg and his classmates at Harvard Univer-
sity in 2004. At the time, he was a sophomore studying computer science. 

 Design and implement an application that maintains the data for a simple social network. Each person in 
the network should have a profi le that contains the person’s name, optional image, current status, and a list of 
friends. Your application should allow a user to join the network, leave the network, create a profi le, modify the 
profi le, search for other profi les, and add friends. 
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 12.  A  tail pointer  is a pointer variable to the last node in a chain of linked nodes. Write a link-based implementa-
tion for a class of double-ended lists, as specifi ed in Exercise 12, that uses both a head pointer and a tail pointer. 

 13.  The solution to the HPAir problem described in Programming Problem 11 of  Chapter   6    uses an adjacency list 
to represent the fl ight map. Repeat the solution to this problem, but defi ne the adjacency list as a list of lists 
instead of an array of linked chains. Use lists that have a link-based implementation. 
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This chapter will show you how to analyze the effi ciency of algorithms. The basic 
mathematical techniques for analyzing algorithms are central to more advanced topics 
in computer science and give you a way to formalize the notion that one algorithm is 
signifi cantly more effi cient than another. As examples, you will see analyses of some 
algorithms that you have studied before, including those that search data. The next 
chapter presents sorting algorithms, and they provide additional examples of analyzing 
effi ciency.   
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      10.1  What Is a Good Solution? 
 In this textbook a computer program is the fi nal form your solutions take, so we should consider what 
constitutes a good computer program. Presumably, you write a program to perform some task. While 
performing that task, the program incurs a real and tangible  cost . This cost includes such factors as 
the computing time and memory that the program requires, the diffi culties encountered by those who 
use the program, and the consequences of a program that does not behave correctly. 

 However, the costs just mentioned do not give the whole picture. They pertain only to the life of the 
solution after it has been developed. In assessing whether a solution is good, you also must consider the 
effort required to develop the solution as well as any changes—bug fi xes or extensions—to the program 
that are made after the program has been deployed. Each of these incurs costs, too. The total cost of a solu-
tion must take into account the value of the time of the people who analyzed, designed, coded, debugged, 
and tested it. A solution’s cost must also include the cost of maintaining, modifying, and expanding it. 

 Thus, when calculating the overall cost of a solution, you must include a diverse set of factors. If 
you adopt such a multidimensional view of cost, it is reasonable to evaluate a solution against the fol-
lowing criterion: 

   A solution is good if the total cost it incurs over all phases of its life is minimal.   

 Suppose two algorithms perform the same task, such as searching. What does it mean to compare the 
algorithms and conclude that one is better? The faster one is not necessarily better. Several components 
contribute to the cost of a computer program, including the cost of human time—the time of the people 
who develop, maintain, and use the program—and the cost of program execution—that is, its effi -
ciency—measured by the amount of computer time and memory that the program requires to execute. 

 Today’s programs are larger and more complex than ever before. Typically, many people are 
involved in their development. Good structure and documentation are thus of the utmost importance. 
In addition, the costs associated with malfunctions are high. People should not have to entrust their 
livelihoods—or their lives—to a program that only its authors can understand and maintain. Thus, 
society needs both well-structured programs and techniques for formally verifying their correctness. 

 At the same time, do not get the impression that a solution’s execution time is no longer important. To 
the contrary, many situations occur for which effi ciency is the prime determinant of whether a solution is 
even usable. However, a solution’s effi ciency is only one of many aspects that you must consider. If two 
solutions have approximately the same effi ciency, other factors should dominate the comparison. How-
ever, when the effi ciencies of solutions differ signifi cantly, this difference can be the overriding concern. 

 You should be most concerned about effi ciency when you develop the underlying algorithm. The 
choice of a solution’s components—the objects and the design of the interactions between those 
objects—rather than the code you write, has the most signifi cant impact on effi ciency. This book 
advocates a problem-solving philosophy that views the cost of a solution as multidimensional. This 
philosophy is reasonable in today’s world, and it likely will be reasonable in the years to come.   

Effi ciency is only 
one aspect of  a 
solution’s cost 

     Note:   The relative importance of the various components of a solution’s cost has 
changed since the early days of computing. In the beginning, the cost of computer time 
relative to human time was extremely high. In this type of environment, one cost clearly 
overshadowed all others: computer resources. If two programs performed the same task, 
the one that required less time and memory was better. 

 Computing costs have dropped dramatically since the early days of computers. Thus, 
the value of the designers’ and programmers’ time is a much more signifi cant factor than 
computing time in the cost of a solution. These developments have made obsolete the no-
tion that the fastest-executing solution is always the best. 
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   10.2  Measuring the Effi ciency of Algorithms 
 Well-designed algorithms reduce the human costs of implementing the algorithm with a program, of 
maintaining the program, and of modifying the program. Developing good problem-solving skills 
and programming style has been and continues to be important. However, the effi ciency of algo-
rithms is also important. Effi ciency is a criterion that you should consider when selecting an algo-
rithm and its implementation. 

 The comparison of algorithms is a topic central to computer science. Measuring an algorithm’s 
effi ciency is quite important because your choice of algorithm for a given application often has a 
great impact. Responsive word processors, grocery checkout systems, automatic teller machines, 
video games, and life support systems all depend on effi cient algorithms.    

 The  analysis of algorithms  is the area of computer science that provides tools for contrasting 
the effi ciency of different algorithms. Notice the use of the term “algorithms” rather than “pro-
grams;” it is important to emphasize that the analysis concerns itself primarily with  signifi cant  dif-
ferences in effi ciency—differences that you can usually obtain only through superior algorithms and 
rarely through clever tricks in coding. Reductions in computing costs due to clever coding tricks are 
often more than offset by reduced program readability, which increases human costs. An analysis 
should focus on gross differences in the effi ciency of algorithms that are likely to dominate the over-
all cost of a solution. To do otherwise could lead you to select an algorithm that runs a small fraction 
of a second faster than another algorithm yet requires many more hours of your time to implement 
and maintain.    

 The effi cient use of both time and memory is important. Computer scientists use similar tech-
niques to analyze an algorithm’s time and space effi ciency. As none of the algorithms covered in this 
text has signifi cant space requirements, our focus is primarily on time effi ciency. 

 How do you compare the time effi ciency of two algorithms that solve the same problem? One 
possible approach is to implement the two algorithms and run the programs. This approach has at 
least three fundamental problems: 

•  How are the algorithms coded?   If algorithm  A1  runs faster than algorithm  A2 , it could be 
the result of better programming. Thus, if you compare the running times of the programs, 
you are really comparing implementations of the algorithms rather than the algorithms 
themselves. You should not compare implementations, because they are sensitive to fac-
tors such as programming style that tend to cloud the issue of which algorithm is inher-
ently more effi cient.  

•  What computer should you use?   The particular operations that the algorithms require 
can cause A1  to run faster than  A2  on one computer, while the opposite is true on another 
computer. You should compare the effi ciency of the algorithms independently of a particu-
lar computer.  

•  What data should the programs use?   Perhaps the most important diffi culty on this list is the 
selection of the data for the programs to use. There is always the danger that you could select 
instances of the problem for which one of the algorithms runs uncharacteristically fast. For 
example, when comparing a sequential search and a binary search of a sorted array, you might 
search for an item that happens to be the smallest item in the array. In such a case, the sequen-
tial search fi nds the item more quickly than the binary search because the item is fi rst in the 
array and is thus the fi rst item that the sequential search examines. Any analysis of effi ciency 
must be independent of specifi c data.      

 To overcome these diffi culties, computer scientists employ mathematical techniques that analyze 
algorithms independently of specifi c implementations, computers, or data. You begin this analysis by 
counting the number of signifi cant operations in a particular solution, as the next section describes. 
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     Note:   In general, you should avoid analyzing an algorithm solely by studying the run-
ning times of a specifi c implementation. Running times are infl uenced by such factors as 
programming style, the particular computer, and the data on which the program is run. 

 1   Although omitting multiplication operators is common in algebra, we indicate them explicitly here to facilitate 
counting them. 

   10.2.1  The Execution Time of Algorithms 

 Previous chapters have informally compared different solutions to a given problem by looking at the 
number of operations that each solution required. For example,  Chapter   4    compared array-based and 
link-based implementations of the ADT bag. An array-based bag can access its  ith  item directly in one 
step, because the item is stored in  items[i-1]  . A link-based bag, however, must traverse a chain of 
linked nodes from its beginning until the  ith  node is reached and would therefore require  i  steps.    

 An algorithm’s execution time is related to the number of operations it requires. This is usually 
expressed in terms of the number,  n,  of items the algorithm must process. Counting an algorithm’s 
operations—if possible—is a way to assess its effi ciency. Let’s consider a few other examples. 

  Traversal of linked nodes.   As an example of traversing a chain of linked nodes, consider display-
ing the data in such a chain. If  headPtr   points to the fi rst node in the chain, the following C++ state-
ments display its data: 

     Node<ItemType>* curPtr = headPtr; ← 1 assignment  
while (curPtr != nullptr)                 ← n 1 1 comparisons  

   { 
      cout << curPtr->getItem() < endl;     ← n writes  
      curPtr = curPtr->getNext();            ← n assignments  
   }  // end while 

 If we have  n  nodes, these statements require  n 1 1 assignments, n 1 1 comparisons, and n  write 
operations. If each assignment, comparison, and write operation requires, respectively,  a ,  c , and  w
time units, the statements require ( n1 1) 3 ( a1 c ) 1 n3 w  time units.  1   Thus, the time required to 
write n  nodes is proportional to  n . This conclusion makes sense intuitively: It takes longer to display, 
or traverse, a linked chain of 100 nodes than it does a linked chain of 10 nodes.       

Displaying the data 
in a linked chain of   n  
nodes requires time 
proportional to  n

Counting an 
algorithm’s 
operations is a way 
to assess its 
effi ciency 

     Note:   You must traverse a linked chain to access its  ith  node. The access time is, there-
fore, directly proportional to  i . On the other hand, you can access array items directly, 
with equal access time for each item. 

  The Towers of Hanoi.    Chapter   2    proved recursively that the solution to the Towers of Hanoi prob-
lem with n  disks requires 2 n2 1 moves. If each move requires the same time  m , the solution requires 
(2n2 1) 3m  time units. As you will soon see, this time requirement increases rapidly as the number 
of disks increases.  

  Nested loops.   Consider an algorithm that contains nested loops of the following form: 

   for ( i = 1 through n ) 
for ( j = 1 through i ) 

           for ( k = 1 through 5 ) 
                Task T   
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 If task  T  requires  t  time units, the innermost loop on  k  requires 5 3 t  time units. The loop on  j  requires 
53 t3 i  time units, and the outermost loop on  i  requires 

a
n

i51

15 3 t 3 i 2 5 5 3 t 3 11 1 2 1c1 n 2 5 5 3 t 3 n 3 1n 1 1 2 /2
 time units.     

     Question 1   How many comparisons of array items do the following loops contain? 

  for (j = 1; j <= n-1; j++) 
 { 
   i = j + 1; 

 do 
   { 

if (theArray[i] < theArray[j]) 
           swap(theArray[i], theArray[j]); 
       i++; 
   }  while (i <= n); 
} // end for 

CHECK POINT

     Question 2   Repeat Question 1, replacing the statement  i = j + 1   with  i = j . 

   10.2.2  Algorithm Growth Rates 

 As you can see, the previous examples derive an algorithm’s time requirement as a function of the 
problem size. The way to measure a problem’s size depends on the application—typical examples are 
the number of nodes in a linked chain, the number of disks in the Towers of Hanoi problem, the size of 
an array, or the number of items in a stack. Thus, we reached conclusions such as    

Algorithm A requires n2   / 5 time units to solve a problem of size n
Algorithm B requires 5 3 n time units to solve a problem of size n

 The time units in the previous two statements must be the same before you can compare the effi ciency 
of the two algorithms. If we had written 

Algorithm A requires n2   / 5 seconds to solve a problem of size n

 our earlier discussion indicates the diffi culties with such a statement: On what computer does the 
algorithm require n2 / 5 seconds? What implementation of the algorithm requires  n2  / 5 seconds? What 
data caused the algorithm to require n2  / 5 seconds? 

 What specifi cally do you want to know about the time requirement of an algorithm? The most 
important thing to learn is how quickly the algorithm’s time requirement grows as a function of the 
problem size. Statements such as 

Algorithm A requires time proportional to n2

Algorithm B requires time proportional to n

 each express an algorithm’s proportional time requirement, or growth rate, and enable you to com-
pare algorithm A  with another algorithm  B . Although you cannot determine the exact time require-
ment for either algorithm A  or algorithm  B  from these statements, you can determine that for large 
problems,  B  requires signifi cantly less time than  A . That is,  B ’s time requirement—as a function of the 
problem size  n —increases at a slower rate than  A ’s time requirement, because  n  increases at a slower 
rate than n2 . Even if  B  actually requires 5 3 n  seconds and  A  actually requires  n2  / 5 seconds,  B  even-
tually requires signifi cantly less time than  A , as  n  increases.  Figure   10-1    illustrates this fact. Thus, a 
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problems
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conclusion such as “ A  requires time proportional to  n2 ” is exactly the kind of statement that character-
izes the inherent effi ciency of an algorithm independently of such factors as particular computers and 
implementations.

  Figure   10-1    also shows that  A ’s time requirement does not exceed  B ’s until  n  exceeds 25. Algo-
rithm effi ciency is typically a concern for large problems only. The time requirements for small prob-
lems are generally not large enough to matter. Thus, our analyses assume large values of  n .

FIGURE 10-1         Time requirements as a function of the problem size  n
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     Note:   When comparing the effi ciency of various solutions, look only at signifi cant dif-
ferences. This rule is consistent with a multidimensional view of the cost of a computer 
program. 

   10.2.3  Analysis and Big O Notation 

 If 

Algorithm A requires time proportional to f(n)

 Algorithm  A  is said to be  order  f  ( n ) , which is denoted as  O(  f  ( n )) . The function  f  ( n ) is called the 
algorithm’s  growth-rate function . Because the notation uses the capital letter O to denote  order , it is 
called the Big O notation . If a problem of size  n  requires time that is directly proportional to  n , the 
problem is O( n )—that is, order  n . If the time requirement is directly proportional to  n2 , the problem is 
O(n2 ), and so on. 

 The following defi nition formalizes these ideas:  

     Note: Defi nition of the order of an algorithm 

 Algorithm  A  is order  f  ( n )—denoted O(  f  ( n ))—if constants  k  and  n0  exist such that  A
requires no more than k3 f  ( n ) time units to solve a problem of size  n$ n0 . 

 The requirement  n $ n0  in the defi nition of O(  f  ( n )) formalizes the notion of suffi ciently large 
problems. In general, many values of  k  and  n  can satisfy the defi nition. 

VideoNote

Understanding Big 
O notation
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 The following examples illustrate the defi nition: 

•   Suppose that an algorithm requires  n2 2 3 3 n1 10 seconds to solve a problem of size  n . If 
constants k  and  n0  exist such that 

k 3 n2 . n2 2 3 3 n 1 10 for all n $ n0

  the algorithm is O( n2 ). In fact, if  k  is 3 and  n0  is 2, 

3 3 n2 . n2 2 3 3 n 1 10 for all n $ 2

  as  Figure   10-2    illustrates. Thus, the algorithm requires no more than  k 3 n2  time units for 
n$ n0  and so is O( n2 ).

•   Previously in Section 10.2.1, we found that displaying a linked chain’s fi rst  n  items requires 

 ( n1 1) ( a1 c ) 1 n3w

  time units. Because 2 3 n$ n1 1 for n$ 1, 12 3 n 2 3 1a 1 c 2 1 n 3 w $ 1n 1 1 2 3 1a 1 c 2 1 n 3 w for n $ 1

  After factoring  n  on the left side of the inequality, we have 12 3 a1 2 3 c 1 w 2 3 n $ 1n 1 1 2 3 1a1 c 2 1 n 3 w for n $ 1

  Thus, this task is O( n ). Here,  k  is 2 3 a1 2 3 c1w  and  n0  is 1.  
•   Similarly, the solution to the Towers of Hanoi problem requires (2 n2 1) 3m  time units. Because 

m3 2 n. (2 n2 1) 3m  for  n$ 1 

the solution is O(2 n ).

 The requirement  n $ n0  in the defi nition of O( f  ( n )) means that the time estimate is correct for 
suffi ciently large problems. In other words, the time estimate is too small for at most a fi nite number 
of problem sizes. For example, the function log  n  takes on the value 0 when  n  is 1. Thus, the fact that 
k3 log 1 is 0 for all constants  k  implies an unrealistic time requirement; presumably, all algorithms 
require more than 0 time units, even to solve a problem of size 1. Thus, you can discount problems of 
size n5 1 if f  ( n ) is log  n . 

FIGURE 10-2         The graphs of 3 3 n2  and  n22 3 3 n1 10   
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 To dramatize further the signifi cance of an algorithm’s proportional growth rate, consider the 
table and graph in  Figure   10-3   . The table in part  a  gives, for various values of  n , the approximate val-
ues of some common growth-rate functions, which are listed in order of growth:    

O 11 2 , O 1 log2n 2 , O 1n 2 , O 1n 3 log2n 2 , O 1n2 2 , O 1n3 2 , O 12n 2
 The table demonstrates the relative speed at which the values of the functions grow.  Figure   10-3b    
represents the growth-rate functions graphically.   2

 These growth-rate functions have the following intuitive interpretations:    

   1  A growth-rate function of 1 implies a problem whose time requirement is constant and, 
therefore, independent of the problem’s size  n .

  log 2n    The time requirement for a logarithmic algorithm increases slowly as the problem size 
increases. If you square the problem size, you only double its time requirement. Later 
you will see that the recursive binary search algorithm that you studied in  Chapter   2    has 
this behavior. Recall that a binary search halves an array and then searches one of the 
halves. Typical logarithmic algorithms solve a problem by solving a smaller constant 
fraction of the problem. 

 The base of the log does not affect a logarithmic growth rate, so you can omit it in 
a growth-rate function. Exercise 8 at the end of this chapter asks you to show why this 
is true.  

n   The time requirement for an O( n ), or  linear , algorithm increases directly with the 
size of the problem. If you square the problem size, you also square its time 
requirement.  

n3 log 2n   The time requirement for an O( n3 log 2n ) algorithm increases more rapidly than a lin-
ear algorithm. Such algorithms usually divide a problem into smaller problems that are 
each solved separately. The next chapter examines an example of this algorithm type—
the merge sort.  

n2    The time requirement for an O( n2 ), or  quadratic , algorithm increases rapidly with the 
size of the problem. Algorithms that use two nested loops are often quadratic. Such 
algorithms are practical only for small problems. The next chapter covers several quad-
ratic sorting algorithms.  

n3    The time requirement for an O( n3 ), or  cubic , algorithm increases more rapidly with 
the size of the problem than the time requirement for a quadratic algorithm. Algo-
rithms that use three nested loops are often cubic, and are practical only for small 
problems.  

  2 n    As the size of a problem increases, the time requirement for an  exponential  algorithm 
usually increases too rapidly to be practical.   

 If algorithm  A  requires time that is proportional to function  f  and algorithm  B  requires time that is 
proportional to a slower-growing function  g , it is apparent that  B  is always signifi cantly more effi cient 
than A  for large enough problems. For large problems, the proportional growth rate dominates all 
other factors in determining an algorithm’s effi ciency. 

Properties of growth-rate functions. Several mathematical properties of Big O notation help to 
simplify the analysis of an algorithm. As we discuss these properties, you should keep in mind that 
O(  f  ( n )) means “is of order  f  ( n )” or “has order  f  ( n ).” O is not a function.     

 2   The graph of  f(n)5 1 is omitted because the scale of the fi gure makes it diffi cult to draw. It would, however, be a straight line 
parallel to the x  axis through  y5 1. 

 Intuitive 
interpretations of  
growth-rate 
functions

Order of  growth of  
some common 
functions
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1. You can ignore low-order terms in an algorithm’s growth-rate function.   For example, if an 
algorithm is O( n31 4 3 n21 3 3 n ), it is also O( n3 ). By examining the table in  Figure   10-3a   , 
you can see that the  n3  term is signifi cantly larger than either 4 3 n2  or 3 3 n , particularly for 
large values of n. For large  n , the growth rate of  n31 4 3 n21 3 3 n  is the same as the growth 
rate of n3 . It is the growth rate of  f  ( n ), not the value of  f  ( n ), that is important here. Thus, even if 
an algorithm is O( n31 4 3 n21 3 3 n ), we say that it is simply O( n3 ). In general, you can usu-
ally conclude that an algorithm is O(  f  ( n )), where  f  is a function similar to the ones listed in 
 Figure   10-3   . 

FIGURE 10-3         A comparison of growth-rate functions: (a) in tabular form; (b) in graphical 
form   
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2. You can ignore a multiplicative constant in the high-order term of an algorithm’s 
growth-rate function.   For example, if an algorithm is O(5 3 n3 ), it is also O( n3 ). This 
observation follows from the defi nition of O( f  ( n )), if you let  k5 5.  

3. O( f (n ))1O(g(n))5O( f (n)1  g(n)).   You can combine growth-rate functions. For 
example, if an algorithm is O( n2 ) 1 O( n ), it is also O( n21 n ), which you write simply as 
O(n2 ) by applying property 1. Analogous rules hold for multiplication.   

 These properties imply that you need only an estimate of the time requirement to obtain an 
algorithm’s growth rate; you do not need an exact statement of an algorithm’s time requirement, 
which is fortunate because deriving the exact time requirement is often diffi cult and sometimes 
impossible. 

  Worst-case and average-case analyses.   A particular algorithm might require different times to 
solve different problems of the same size. For example, the time that an algorithm requires to search  n
items might depend on the nature of the items. Usually you consider the maximum amount of time 
that an algorithm can require to solve a problem of size  n —that is, the worst case. A worst-case analy-
sis concludes that algorithm A  is O(  f  ( n )) if, in the worst case,  A  requires no more than  k3 f  ( n ) time 
units to solve a problem of size  n  for all but a fi nite number of values of  n . Although a worst-case 
analysis can produce a pessimistic time estimate, such an estimate does not mean that your algorithm 
is always slow. Instead, you have shown that the algorithm is never slower than your estimate. Realize, 
however, that an algorithm’s worst case might happen rarely, if at all, in practice.    

 An  average-case analysis  attempts to determine the average amount of time that an algorithm 
requires to solve problems of size  n . In an average-case analysis,  A  is O(  f  ( n )) if the average amount 
of time that A  requires to solve a problem of size  n  is no more than  k 3 f  ( n ) time units for all but a 
fi nite number of values of  n . Average-case analysis is, in general, far more diffi cult to perform than 
worst-case analysis. One diffi culty is determining the relative probabilities of encountering various 
problems of a given size; another is determining the distributions of various data values. Worst-case 
analysis is easier to calculate and is thus more common.     

An algorithm can 
require different 
times to solve 
different problems 
of  the same size 

     Note:   While manipulating the Big O notation, remember that O(  f  ( n )) represents an 
inequality. It is not a function but simply a notation that means “is of order  f  ( n )” or “has 
order f  ( n ).” 

     Question 3   What order is an algorithm that has as a growth-rate function 

a.   8 3 n32 9 3 n
b.   7 3 log 2n1 20  
c.   7 3 log 2n1 n

CHECK POINT

   10.2.4  Keeping Your Perspective 

 Before continuing with additional analyses of specifi c algorithms, a few words about perspective are 
appropriate. You know that you can access the  nth  item in an array directly. This access is independent 
of n : accessing the 100 th  item takes the same time as it does to access the fi rst item in the array. For an 
ADT list of n  items, the array-based implementation of the retrieval operation  getEntry  is O(1). 
However, the link-based implementation of  getEntry  requires  n  steps to traverse a chain until it 
reaches the nth  item, and so is O( n ).       

An array-based 
getEntry is O(1) 

A link-based 
getEntry is O( n ) 
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 Throughout the course of an analysis, you should always keep in mind that you are interested 
only in  signifi cant  differences in effi ciency. Is the difference in effi ciency for the two implementa-
tions of getEntry  signifi cant? As the size of the list grows, the link-based implementation might 
require more time to retrieve the desired entry, because its node can be farther away from the begin-
ning of the chain. In contrast, regardless of how large the list is, the array-based implementation 
always requires the same constant amount of time to retrieve any particular item. Thus, no matter 
what time difference is signifi cant to you, it is reached if the list is large enough. In this example, 
observe that the difference in effi ciency for the two implementations is worth considering only when 
the problem is large enough. If the list never has more than 25 items, for example, the difference in the 
implementations is not signifi cant at all.       

 Now consider an application—such as a word processor’s spelling checker—that frequently 
retrieves items from a list but rarely inserts or removes an item. Because  getEntry  for an array-based 
list is faster than a link-based list’s  getEntry , you should choose an array-based implementation of the 
list for the application. On the other hand, if an application requires frequent insertions and removals 
but rarely retrieves an item, you should choose a link-based implementation of the list. The most 
appropriate implementation of an ADT for a given application strongly depends on how frequently the 
application performs these operations. More examples of this point are presented in the next chapter. 

 The response time of some ADT operations, however, can be crucial, even if you seldom use 
them. For example, an air traffi c control system could include an emergency operation to resolve the 
impending collision of two airplanes. Clearly, this operation must occur quickly, even if it is rarely 
used. Thus, before you choose an implementation for an ADT, you should know what operations a 
particular application requires, approximately how often the application performs each operation, 
and the response times that the application requires of each operation. 

 In the next section we compare a searching algorithm that is O( n ) with one that is O(log 2n ). 
While it is true that an O(log 2n ) searching algorithm requires signifi cantly less time on large arrays 
than an O( n ) algorithm requires, on small arrays—say  n, 25—the time requirements might not be 
signifi cantly different at all. In fact, it is entirely possible that, because of factors such as the size of 
the constant k  in the defi nition of Big O, the O( n ) algorithm runs faster on small problems. It is only 
on large problems that the slower growth rate of an algorithm necessarily gives it a signifi cant advan-
tage. Figure 10-1 illustrated this phenomenon. 

 Thus, in general, if the maximum size of a given problem is small, the time requirements of any 
two solutions for that problem likely will not differ signifi cantly. If you know that your problem size 
will always be small, do not overanalyze; simply choose the algorithm that is easiest to understand, 
verify, and code. 

 Frequently, when evaluating an algorithm’s effi ciency, you have to weigh carefully the trade-offs 
between a solution’s execution time requirements and its memory requirements. You are rarely able to 
make a statement as strong as “This approach is the best one for performing the task.” A solution that 
requires a relatively small amount of computer time often also requires a relatively large amount of 
memory. It may not even be possible to say that one solution requires less time than another. Solution 
A  may perform some components of the task faster than solution  B,  while solution  B  performs other 
components of the task faster than solution  A.  Often you must analyze the solutions in light of a par-
ticular application.    

 In summary, it is important to examine an algorithm for both style and effi ciency. The analysis 
should focus only on gross differences in effi ciency and not reward coding tricks that save millisec-
onds. Any fi ner differences in effi ciency are likely to interact with coding issues, which you should 
not allow to interfere with the development of your programming style. If you fi nd an algorithm that 
is signifi cantly more effi cient than others, you should select it, unless you know that the maximum 
problem size is quite small. If you are solving only small problems, it is possible that a less effi cient 
algorithm would be more appropriate. That is, other factors, such as the simplicity of the algorithm, 

When choosing an 
implementation of  
an ADT, consider 
how frequently 
particular ADT 
operations occur in 
a given application 

Some seldom-used 
but critical operations 
must be effi cient 

If  the problem size 
is always small, you 
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an algorithm’s 
effi ciency 

Weigh the trade-offs 
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algorithm’s time 
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could become more signifi cant than minor differences in effi ciency. In fact, analyzing the time effi -
ciency of an algorithm implicitly assumes that an algorithm is used to solve large problems. This 
assumption allows you to focus on growth rates, because regardless of other factors, an algorithm 
with a slow growth rate requires less time than an algorithm with a fast growth rate, provided that the 
problems to be solved are suffi ciently large.       

     Note:   If a problem is small, do not overanalyze it. In such a situation, the primary con-
cern should be simplicity. For example, if you are searching an array that contains only a 
small number of items—say, fewer than 25—a simple O( n ) algorithm such as a sequen-
tial search is appropriate.   

Analysis of  an 
algorithm’s time 
effi ciency focuses 
on large problems 

   10.2.5  The Effi ciency of Searching Algorithms 

 As another example of analyzing the time effi ciency of an algorithm, consider the effi ciency of two 
search algorithms: the sequential search and the binary search of an array. 

  Sequential search.   In a sequential search of an array of  n  items, you look at each item in turn, 
beginning with the fi rst one, until either you fi nd the desired item or you reach the end of the data col-
lection. In the best case, the desired item is the fi rst one that you examine, so only one comparison is 
necessary. Thus, in the best case, a sequential search is O(1). In the worst case, the desired item is the 
last one you examine, so  n  comparisons are necessary. Thus, in the worst case, the algorithm is O( n ). 
In the average case, you fi nd the desired item in the middle of the collection, making  n  / 2 compari-
sons. Thus, the algorithm is O( n ) in the average case.    

 What is the algorithm’s order when you do not fi nd the desired item? Does the algorithm’s order 
depend on whether the initial data is sorted? These questions are left for you in Checkpoint Question 
4 at the end of this section.  

  Binary search.   Is a binary search of an array more effi cient than a sequential search? The binary 
search algorithm, which  Chapter   2    presented, searches a sorted array for a particular item by repeatedly 
dividing the array in half. The algorithm determines which half the item must be in—if it is indeed 
present—and discards the other half. Thus, the binary search algorithm searches successively smaller 
arrays: The size of a given array is approximately one-half the size of the array previously searched. 

 At each division, the algorithm makes a comparison. How many comparisons does the algorithm 
make when it searches an array of  n  items? The exact answer depends, of course, on where the sought-
for item resides in the array. However, you can compute the maximum number of comparisons that a 
binary search requires—that is, the worst case. The number of comparisons is equal to the number of 
times that the algorithm divides the array in half. Suppose that  n5 2 k  for some  k . The search requires 
the following steps: 

1.   Inspect the middle item of an array of size  n .
2.   Inspect the middle item of an array of size  n  / 2.  
3.   Inspect the middle item of an array of size  n  / 2 2 , and so on.   

 To inspect the middle item of an array, you must fi rst divide the array in half. If you halve an array of 
n  items, then divide one of those halves in half, and continue dividing halves until only one item 
remains, you have performed  k  divisions. This is true because  n  / 2 k5 1. (Remember, we assumed that 
n5 2 k .) In the worst case, the algorithm performs  k  divisions and, therefore,  k  comparisons. Because 
n5 2 k ,  

k 5 log2n

Sequential search. 
Worst case: O( n ); 
average case: O( n ); 
best case: O(1) 
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 Thus, the algorithm is O(log 2n ) in the worst case when  n5 2 k . 
 What if  n  is not a power of 2? You can easily fi nd the smallest  k  such that 

2k21 , n , 2k

 (For example, if  n  is 30, then  k5 5, because 2 45 16 , 30 , 32 5 2 5 .) The algorithm still requires at 
most k  divisions to obtain a subarray with one item. Now it follows that 

k 2 1 , log2 n , k
k , 1 1 log2 n , k 1 1
k 5 1 1 log2 n rounded down

 Thus, the algorithm is still O(log 2n ) in the worst case when  n ? 2 k . In general, the algorithm is 
O(log 2n ) in the worst case for any  n .    

 Is a binary search faster than a sequential search? Much faster! For example log 2 1,000,000 < 19, 
so a binary search of 1 million sorted items requires at most 20 comparisons, but a sequential search 
of the same items can require 1 million comparisons! For large arrays, the binary search has an enor-
mous advantage over a sequential search. 

Realize, however, that maintaining the array in sorted order requires an overhead cost, which 
can be substantial.  The next chapter examines the cost of sorting an array.               

Binary search is 
O(log 2  n) in the worst 
case

     Note:   If you are searching a very large array, an O( n ) algorithm is probably too ineffi -
cient to use. 

     Question 4   Consider a sequential search of  n  data items. 

a.   If the data items are sorted into ascending order, how can you determine that your 
desired item is not in the data collection without always making  n  comparisons?  

b.   What is the order of the sequential search algorithm when the desired item is not in 
the data collection? Do this for both sorted and unsorted data, and consider the 
best, average, and worst cases.  

c.   Show that if the sequential search algorithm fi nds the desired item in the data col-
lection, the algorithm’s order does not depend upon whether or not the data items 
are sorted.   

CHECK POINT

 SUMMARY   

 1.  Using Big O notation, you measure an algorithm’s time requirement as a function of the problem size by using 
a growth-rate function. This approach enables you to analyze the effi ciency of an algorithm without regard for 
such factors as computer speed and programming skill that are beyond your control. 

 2.  When you compare the inherent effi ciency of algorithms, you examine their growth-rate functions when the 
problems are large. Only signifi cant differences in growth-rate functions are meaningful. 

 3.  Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given 
size, while average-case analysis considers the expected amount of work that it requires. 

 4.  Analyzing an algorithm’s time requirement will help you to choose an implementation for an abstract data 
type. If your application frequently uses particular ADT operations, your implementation should be effi cient 
for at least those operations. 
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 EXERCISES   

 1.  Using Big O notation, indicate the time requirement of each of the following tasks in the worst case. Describe 
any assumptions that you make. 

a.   After arriving at a party, you shake hands with each person there.  
 b.   Each person in a room shakes hands with everyone else in the room.  
 c.   You climb a fl ight of stairs.  
 d.   You slide down the banister.  
 e.   After entering an elevator, you press a button to choose a fl oor.  
 f.   You ride the elevator from the ground fl oor up to the  n th fl oor.  
 g.   You read a book twice.   

 2.  Describe a way to climb from the bottom of a fl ight of stairs to the top in time that is no better than O( n2 ). 

 3.  Using Big O notation, indicate the time requirement of each of the following tasks in the worst case. 

 a.   Computing the sum of the fi rst  n  even integers by using a  for  loop  
 b.   Displaying all  n  integers in an array  
 c.   Displaying all  n  integers in a sorted linked chain  
 d.   Displaying all  n  names in an array of linked chains  
 e.   Displaying one array element  
 f.   Displaying the last integer in a linked chain  
 g.   Searching an array of  n  items for a particular value by using a sequential search  
 h.   Searching an array of  n  items for a particular value by using a binary search  
 i.   Adding an item to a stack of  n  items  
 j.   Adding an item to a bag of  n  items   

 4.  Suppose that your implementation of a particular algorithm appears in C++ as 

   for ( int pass = 1; pass <= n; pass++) 
 { 

for ( int index = 0; index < n; index++) 
   { 

for ( int count = 1; count < 10; count++) 
      { 
          . . . 
      }  // end for 
   }  // end for 
} // end for 

 The previous code shows only the repetition in the algorithm, not the computations that occur within the loops. 
These computations, however, are independent of  n . What is the Big O of the algorithm? Justify your answer. 

 5.  Consider the following C++ function  f , which calls the function  swap . Assume that  swap  exists and simply 
swaps the contents of its two arguments. Do not be concerned with  f ’s purpose. 

   void f( int theArray[], int n) 
 { 

for ( int j = 0; j < n; ++j) 
   { 

int i = 0; 
       while (i <= j) 
      { 

if (theArray[i] < theArray[j]) 
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 PROGRAMMING PROBLEMS   

For the following programming problems, you need to time a section of code in C++. For example, the 
following statements time the execution of the function  doSomething :

  #include <ctime>
clock_t start = clock(); 
 doSomething(); 
clock_t finish = clock(); 
  double overallTime = static_cast < double>(finish - start) / CLOCKS_PER_SEC;3  

 1.  Consider the following two loops: 

  // Loop A 
  for (i = 1; i <= n; i++) 

for (j = 1; j <= 10000; j++) 
      sum = sum + j; 

// Loop B 
  for (i = 1; i <= n; i++) 

for (j = 1; j <= n; j++) 
      sum = sum + j; 

 What is the Big O of each loop? Design and implement an experiment to fi nd a value of  n  for which Loop B is 
faster than Loop A. 

 2.  Repeat the previous project, but use the following for Loop B: 

  // Loop B 
  for (i = 1; i <= n; i++) 
     for (j = 1; j <= n; j++) 
        for (k = 1; k <=  j; k++)
         sum = sum + k; 

              swap(theArray[i], theArray[j]); 
         i++; 
      }  // end while 
   }  // end for 
} // end f 

 How many comparisons does  f  perform? 

 6.  For large arrays, and in the worst case, is a sequential search faster than a binary search? Explain. 

 7.  Show that any polynomial  f  ( x ) 5 cn x n1 cn21x
n211 . . .1 c1x1 c0  is O( xn ). 

 8.  Show that for all constants  a, b. 1,   f  ( n ) is O(log a n ) if and only if  f  ( n ) is O(log b n ). Thus, you can omit the base 
when you write O(log  n ).  Hint:  Use the identity log a n5 log b n / log b a  for all constants  a, b. 1. 

 9.  Show that 7 n21 5 n  is not O( n ). 

 10.  Consider an array of length  n  containing positive and negative integers in random order. Write C++ code that 
rearranges the integers so that the negative integers appear before the positive integers. Your solution should use 

 a.   O( n2 ) operations  
 b.   O( n ) operations   

3 CLOCKS_PER_SECOND is a C++ predefi ned constant.
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 3.  Write a C++ program that implements the following three algorithms and times them for various values of  n . 
The program should display a table of the run times of each algorithm for various values of  n . 

  // Algorithm A  // Algorithm B  // Algorithm C  
sum = 0   sum = 0  sum = n * (n + 1) / 2 
  for i = 1 to n    for i = 1 to n
   sum = sum + i   { 

   for j = 1 to i 
       sum = sum + 1 
 } 

For each of the following problems, you will need an implementation of the ADT bag whose method  remove 
removes a random entry instead of a specifi c one.

 4.  Suppose that you have several numbered billiard balls on a pool table. At each step you remove a billiard ball from 
the table. If the ball removed is numbered  n , you replace it with  n  balls whose number is  n  / 2, where the division 
is truncated to an integer. For example, if you remove the 5 ball, you replace it with fi ve 2 balls. Using Big O nota-
tion, predict the time requirement for this algorithm when initially the pool table contains only the  n  ball. 

 Write a program that simulates this process. Use a bag of positive integers to represent the balls on the 
pool table. Time the actual execution of the program for various values of  n  and plot its performance as a func-
tion of n . Compare your results with your predicted time requirements. 

 5.  Repeat the previous project, but instead replace the  n  ball with  n  balls randomly numbered less than  n . 

 6.  In mythology, the Hydra was a monster with many heads. Every time the hero chopped off a head, two smaller 
heads would grow in its place. Fortunately for the hero, if the head was small enough, he could chop it off with-
out two more growing in its place. To kill the Hydra, all our hero needed to do was to chop off all the heads. 

 Write a program that simulates the Hydra. Instead of heads, we will use strings. A bag of strings, then, 
represents the Hydra. Every time you remove a string from the bag, delete the fi rst letter of the string and put 
two copies of the remaining string back into the bag. For example, if you remove HYDRA, you add two copies 
of   YDRA to the bag. If you remove a one-letter word, you add nothing to the bag. To begin, read one word from 
the keyboard and place it into an empty bag. The Hydra dies when the bag becomes empty. 

 Using Big O notation, predict the time requirement for this algorithm in terms of the number  n  of charac-
ters in the initial string. Then time the actual execution of the program for various values of  n  and plot its per-
formance as a function of  n.
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      11.1  Basic Sorting Algorithms 
Sorting  is a process that organizes a collection of data into either ascending  1   or descending order. The 
need for sorting arises in many situations. You may simply want to sort a collection of data before 
including it in a report. Often, however, you must perform a sort as an initialization step for certain 
algorithms. For example, searching for data is one of the most common tasks performed by comput-
ers. When the collection of data to be searched is large, an effi cient technique for searching—such as 
the binary search algorithm—is desirable. However, the binary search algorithm requires that the 
data be sorted. Thus, sorting the data is a step that must precede a binary search on a collection of data 
that is not already sorted. Good sorting algorithms, therefore, are quite valuable.  

 You can organize sorting algorithms into two categories. An  internal sort  requires that the col-
lection of data fi t entirely in the computer’s main memory. The algorithms in this chapter are internal 
sorting algorithms. You use an  external sort  when the collection of data will not fi t in the computer’s 
main memory all at once but must reside in secondary storage, such as on a disk.  Chapter   21    exam-
ines external sorts.    

 The data items to be sorted might be integers, character strings, or even objects. It is easy to 
imagine the results of sorting a collection of integers or character strings, but consider a collection of 
objects. If each object contains only one data member, sorting the objects is really no different from 
sorting a collection of integers. However, when each object contains several data members, you must 
know which data member determines the order of the entire object within the collection of data. This 
data member is called the sort key . For example, if the objects represent people, you might want to 
sort on their names, their ages, or their zip codes. Regardless of your choice of sort key, the sorting 
algorithm orders entire objects based on only one data member, the sort key. 

 For simplicity, the examples in this chapter sort quantities such as numbers or strings. All algo-
rithms in this chapter sort the data into ascending order. Modifying these algorithms to sort data into 
descending order is simple. Finally, each example assumes that the data resides in an array. 

   11.1.1  The Selection Sort 

 Imagine some data that you can examine all at once. To sort it, you could select the largest item and 
put it in its place, select the next largest and put it in its place, and so on. For a card player, this process 
is analogous to looking at an entire hand of cards and ordering it by selecting cards one at a time in 
their proper order. The  selection sort  formalizes these intuitive notions. To sort an array into ascend-
ing order, you fi rst search it for the largest item. Because you want the largest item to be in the last 
position of the array, you swap the last item with the largest item, even if these items happen to be 
identical. Now, ignoring the last—and largest—item of the array, you search the rest of the array for 
its largest item and swap it with its last item, which is the next-to-last item in the original array. You 
continue until you have selected and swapped  n  – 1 of the  n  items in the array. The remaining item, 
which is now in the fi rst position of the array, is in its proper order, so it is not considered further.    

  Figure   11-1    provides an example of a selection sort. Beginning with fi ve integers, you select the 
largest—37—and swap it with the last integer—13. (As the items in this fi gure are ordered, they are 
shaded in blue. This convention will be used throughout this chapter.) Next you select the largest 
integer—29—from among the fi rst four integers in the array and swap it with the next-to-last integer in the 
array—13. Notice that the next selection—14—is already in its proper position, but the algorithm ignores 
this fact and performs a swap of 14 with itself. It is more effi cient in general to occasionally perform an 
unnecessary swap than it is to continually ask whether the swap is necessary. Finally, you select the 13 and 
swap it with the item in the second position of the array—10. The array is now sorted into ascending order. 

 1   To allow for duplicate data items, ascending is used here to mean nondecreasing and descending to mean nonincreasing. 

The sorts in this 
chapter are internal 
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 Listing 11-1 gives a C++ function, and the two functions it calls, that performs a selection sort on 
an array   theArray   of  n  items, assuming that   ItemType   is the data type of the array’s entries.  

FIGURE 11-1         A selection sort of an array of f ive integers   

Gray elements are selected;
blue elements comprise the sorted portion of the array.

Initial array:

After 1st swap:

After 2nd swap:

After 3rd swap:

After 4th swap:

29

29

13

13

10

10

10

10

10

13

14

14

14

14

14

37

13

29

29

29

13

37

37

37

37

     Question 1   Trace the selection sort as it sorts the following array into ascending order: 
20 80 40 25 60 30 

      Question 2   Repeat the previous question, but instead sort the array into descending 
order.  

CHECK POINT

     LISTING 11-1  An implementation of the selection sort 

  /** Finds the largest item in an array. 
 @pre  The size of the array is >= 1. 
 @post  The arguments are unchanged. 
 @param theArray  The given array. 
 @param size  The number of elements in theArray. 
 @return  The index of the largest entry in the array. */ 
  int findIndexofLargest( const ItemType theArray[], int size); 

/** Sorts the items in an array into ascending order. 
 @pre  None. 
 @post  The array is sorted into ascending order; the size of the array 

is unchanged. 
 @param theArray  The array to sort. 
 @param n  The size of theArray. */ 
  void selectionSort(ItemType theArray[], int n) 
 { 

// last = index of the last item in the subarray of items yet
    //          to be sorted; 
    // largest = index of the largest item found 

(continues)
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  Analysis.   As you can see from the previous algorithm, sorting in general compares, exchanges, or 
moves items. As a fi rst step in analyzing such algorithms, you should count these operations. Gener-
ally, such operations are more expensive than ones that control loops or manipulate array indexes, 
particularly when the data to be sorted is more complex than integers or characters. Thus, our 
approach ignores these incidental operations. You should convince yourself that by ignoring such 
operations we do not affect our fi nal result. (See Exercise 1.) 

 Clearly, the  for  loop in the function  selectionSort  executes  n  – 1 times. Thus,  selectionSort
calls each of the functions findIndexofLargest  and  swap   n  – 1 times. Each call to  findIndexofLarg-
est  causes its loop to execute  last  times (that is,  size  – 1 times when  size  is  last  + 1). Thus, the 
n  – 1 calls to  findIndexofLargest , for values of  last  that range from  n  – 1 down to 1, cause the loop 
in findIndexofLargest  to execute a total of 

(n 2 1) 1 (n 2 2) 1 c 1 1 5 n 3 (n 2 1) /2

 times. Because each execution of  findIndexofLargest ’s loop performs one comparison, the calls to 
findIndexofLargest  require 

n � ( n � 1) / 2 

 comparisons. 
 The  n  – 1 calls to  swap  result in  n  – 1 exchanges. Each exchange requires three assignments, or 

data moves. Thus, the calls to  swap  require 

3 3 (n 2 1)

 moves. 

for ( int last = n - 1; last >= 1; last––) 
   { 
       // At this point, theArray[last+1..n-1] is sorted, and its
       // entries are greater than those in theArray[0..last]. 
       // Select the largest entry in theArray[0..last] 
        int largest = findIndexofLargest(theArray, last+1); 

       // Swap the largest entry, theArray[largest], with 
       // theArray[last] 
       std::swap(theArray[largest], theArray[last]); 
   }  // end for 
 }  // end selectionSort 

  int findIndexofLargest( const ItemType theArray[], int size) 
 { 

int indexSoFar = 0; // Index of largest entry found so far 
for ( int currentIndex = 1; currentIndex < size; currentIndex++) 

   { 
       // At this point, theArray[indexSoFar] >= all entries in 
       // theArray[0..currentIndex - 1] 
        if (theArray[currentIndex] > theArray[indexSoFar]) 
           indexSoFar = currentIndex; 
   }  // end for 

return indexSoFar; // Index of largest entry 
} // end findIndexofLargest 
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 Together, a selection sort of  n  items requires 

n 3 (n 2 1) /2 1 3 3 (n 2 1) 5 n2 /2 1 5 3 n / 2 2 3

 major operations. By applying the properties of the growth-rate functions given in  Chapter   10   , you 
can ignore low-order terms to get O( n2  / 2) and then ignore the multiplier 1/2 to get O( n2 ). Thus, the 
selection sort is O( n2 ). 

 Although a selection sort does not depend on the initial arrangement of the data, which is an 
advantage of this algorithm, it is appropriate only for small  n  because O( n2 ) grows rapidly. While the 
algorithm requires O( n2 ) comparisons, it requires only O( n ) data moves. A selection sort could be a 
good choice over other approaches when data moves are costly but comparisons are not. Such might 
be the case if each data item is lengthy but the sort key is short.   

     Note:   If you are sorting a very large array, an O( n2 ) algorithm is probably too ineffi -
cient to use. 

Selection sort is 
O(n  2 ) 

       11.1.2  The Bubble Sort 

 The next sorting algorithm is one that you may have seen already. The  bubble sort  compares adjacent 
items and exchanges them if they are out of order. This sort usually requires several passes over the 
data. During the fi rst pass, you compare the fi rst two items in the array. If they are out of order, you 
exchange them. You then compare the items in the next pair—that is, in positions 2 and 3 of the array. 
If they are out of order, you exchange them. You proceed in the same manner, comparing and exchang-
ing items two at a time, until you reach the end of the array. 

  Figure   11-2a    illustrates the fi rst pass of a bubble sort of an array of fi ve integers. You compare the 
items in the fi rst pair—29 and 10—and exchange them because they are out of order. Next you con-
sider the second pair—29 and 14—and exchange these items because they are out of order. The items 
in the third pair—29 and 37—are in order, and so you do not exchange them. Finally, you exchange 
the items in the last pair—37 and 13.       

 Although the array is not sorted after the fi rst pass, the largest item has “bubbled” to its proper 
position at the end of the array. During the second pass of the bubble sort, you return to the begin-
ning of the array and consider pairs of items in exactly the same manner as the fi rst pass. You do 

When you order 
successive pairs of  
items, the largest 
item bubbles to the 
top (end) of  the 
array 

FIGURE 11-2         The fi rst two passes of a bubble sort of an array of fi ve integers   

Initial array: 29
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not, however, include the last—and largest—item of the array. That is, the second pass considers 
the fi rst  n  – 1 items of the array. After the second pass, the second-largest item in the array will 
be in its proper place in the next-to-last position of the array, as  Figure   11-2b    illustrates. Now, 
ignoring the last two items, which are in order, you continue with subsequent passes until the array 
is sorted.  

 Although a bubble sort requires at most  n  – 1 passes to sort the array, fewer passes might be pos-
sible to sort a particular array. Thus, you could terminate the process if no exchanges occur during any 
pass. The following C++ function  bubbleSort  uses a boolean variable to signal when an exchange 
occurs during a particular pass. The function uses the previous  swap  function. 

      LISTING 11-2   An implementation of the bubble sort

  /** Sorts the items in an array into ascending order. 
 @pre  None. 
 @post  theArray is sorted into ascending order; n is unchanged. 
 @param theArray  The given array. 
 @param n  The size of theArray. */ 
  void bubbleSort(ItemType theArray[], int n) 
 { 

bool sorted = false;      // False when swaps occur 
int pass = 1;
while (!sorted && (pass < n)) 

    { 
// At this point, theArray[n+1-pass..n-1] is sorted
// and all of its entries are > the entries in theArray[0..n-pass] 

        sorted = true; // Assume sorted 
for ( int index = 0; index < n - pass; index++) 

        { 
            // At this point, all entries in theArray[0..index-1]
            // are <= theArray[index] 
             int nextIndex = index + 1; 
             if (theArray[index] > theArray[nextIndex]) 
            { 
                // Exchange entries 
                std::swap(theArray[index], theArray[nextIndex]); 
                sorted =  false; // Signal exchange 
            }  // end if 
        }   // end for 
        // Assertion: theArray[0..n-pass-1] < theArray[n-pass] 

        pass++; 
    }   // end while 
} // end bubbleSort   

The bubble sort 
usually requires 
several passes 
through the array 

     Question 3   Trace the bubble sort as it sorts the following array into ascending order: 
25  30  20  80  40  60. 

      Question 4   Repeat the previous question, but instead sort the array into descending 
order.  

CHECK POINT
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  Analysis.   As was noted earlier, the bubble sort requires at most  n  – 1 passes through the array. Pass 1 
requires n  – 1 comparisons and at most  n  – 1 exchanges; pass 2 requires  n  – 2 comparisons and at most 
n  – 2 exchanges. In general, pass  i  requires  n – i  comparisons and at most  n – i  exchanges. Therefore, in 
the worst case, a bubble sort will require a total of 

(n 2 1) 1 (n 2 2) 1 c 1 1 5 n 3 (n 2 1) /2

 comparisons and the same number of exchanges. Recall that each exchange requires three data 
moves. Thus, altogether there are 

2 3 n 3 (n 2 1) 5 2 3 n2 2 2 3 n

 major operations in the worst case. Therefore, the bubble sort algorithm is O( n2 ) in the worst case.    
 The best case occurs when the original data is already sorted:  bubbleSort  uses one pass, during 

which  n  – 1 comparisons and no exchanges occur. Thus, the bubble sort is O( n ) in the best case.   

   11.1.3  The Insertion Sort 

 Imagine once again arranging a hand of cards, but now you pick up one card at a time and insert it into 
its proper position; in this case, you are performing an  insertion sort .  Chapter   8    introduced the inser-
tion sort algorithm in the context of a list of alphabetical names. In that example, we repeatedly called 
the method insert  to add a string into its proper sorted order in a list. 

 You can use the insertion sort strategy to sort items that reside in an array. This version of the 
insertion sort partitions the array into two regions: sorted and unsorted, as  Figure   11-3    depicts. 
Initially, the entire array is the unsorted region, just as the cards dealt to you sit in an unsorted pile on 
the table. At each step, the insertion sort takes the fi rst item of the unsorted region and places it into its 
correct position in the sorted region. This step is analogous to taking a card from the table and insert-
ing it into its proper position in your hand. The fi rst step, however, is trivial: Moving  theArray[0]
from the unsorted region to the sorted region really does not require moving data. Therefore, you 
can omit this fi rst step by considering the initial sorted region to be  theArray[0]  and the initial 
unsorted region to be  theArray[1..n-1] . The fact that the items in the sorted region are sorted 
among themselves is an assertion  2   of the algorithm. Because at each step the size of the sorted region 
grows by 1 and the size of the unsorted region shrinks by 1, the entire array will be sorted when the 
algorithm terminates.     

  Figure   11-4    illustrates an insertion sort of an array of fi ve integers. Initially, the sorted region is 
theArray[0] , which is 29, and the unsorted region is the rest of the array. You take the fi rst item in the 
unsorted region—the 10—and insert it into its proper position in the sorted region. This insertion 

Bubble sort: 
Worst case: O( n  2 ) 
Best case: O( n ) 

Take each item from 
the unsorted region 
and insert it into its 
correct order in the 
sorted region 

FIGURE 11-3         An insertion sort partitions the array into two regions   

Sorted Unsorted

0 n – 1i
After i iterations

 2   As Appendix F discusses, this particular assertion is an invariant. 
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requires you to shift array entries to make room for the inserted item. You then take the fi rst item in the 
new unsorted region—the 14—and insert it into its proper position in the sorted region, and so on.    

FIGURE 11-4         An insertion sort of an array of fi ve integers   

Initial array:

Sorted array:
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37
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10

10

10

10

10

10

Copy 10

Shift 29

Insert 10; copy 14

Shift 29

Insert 14; copy 37, insert 37 on top of itself

Copy 13

Shift 37, 29, 14

Insert 13

     Question 5   Trace the insertion sort as it sorts the array in Check point Question 3 into 
ascending order. 

      Question 6   Repeat the previous question, but instead sort the array into descending 
order.  

CHECK POINT

     LISTING 11-3 An implementation of the insertion sort

  /** Sorts the items in an array into ascending order. 
 @pre  None. 
 @post  theArray is sorted into ascending order; n is unchanged.
 @param theArray  The given array. 
 @param n  The size of theArray. */ 
  void insertionSort(ItemType theArray[], int n) 
 { 

// unsorted = first index of the unsorted region, 
// loc = index of insertion in the sorted region, 
// nextItem = next item in the unsorted region. 
// Initially, sorted region is theArray[0], 
//                unsorted region is theArray[1..n-1]. 
// In general, sorted region is theArray[0..unsorted-1], 
//                unsorted region theArray[unsorted..n-1] 

 Listing 11-3 contains a C++ function that performs an insertion sort on an array of  n  items. 
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  Analysis.   The outer  while  loop in the function  insertionSort  executes  n  – 1 times. This loop con-
tains an inner for  loop that executes at most  unsorted  times for values of  unsorted  that range from 1 
to n  – 1. Thus, in the worst case, the algorithm’s comparison occurs 

1 1 2 1 c 1 (n 2 1) 5 n 3 (n 2 1) /2

 times. In addition, the inner loop moves data items at most the same number of times. 
 The outer loop moves data items twice per iteration, or 2 � ( n � 1) times. Together, there are 

n 3 (n 2 1) 1 2 3 (n 2 1) 5 n2 1 n 2 2

 major operations in the worst case. 
 Therefore, the insertion sort algorithm is O( n2 ) in the worst case. For small arrays—say, fewer 

than 25 items—the simplicity of the insertion sort makes it an appropriate choice. For large arrays, 
however, an insertion sort can be prohibitively ineffi cient—unless the array is already sorted. In that 
case, the inner for  loop exits immediately, making the sort O( n ) in its best case.          

   11.2  Faster Sorting Algorithms 
 The previous sorting algorithms are all you really need if you have to sort small arrays or if you need 
to sort a large array once. For extremely large arrays—particularly ones that must be updated 
and sorted again—you need faster algorithms. We now examine a few of these more sophisticated 
techniques. 

   11.2.1  The Merge Sort 

 Two important divide-and-conquer sorting algorithms,  merge sort  and  quick sort , have elegant 
recursive formulations and are highly effi cient. The presentations here are in the context of sorting 

for ( int unsorted = 1; unsorted < n; unsorted++) 
    { 
         // At this point, theArray[0..unsorted-1] is sorted. 
         // Find the right position (loc) in theArray[0..unsorted] 
         // for theArray[unsorted], which is the first entry in the 
         // unsorted region; shift, if necessary, to make room 
         ItemType nextItem = theArray[unsorted]; 
          int loc = unsorted; 
          while ((loc > 0) && (theArray[loc - 1] > nextItem)) 
         { 
            // Shift theArray[loc - 1] to the right 
            theArray[loc] = theArray[loc - 1];
         }  // end for 
         // At this point, theArray[loc] is where nextItem belongs 
         theArray[loc] = nextItem;  // Insert nextItem into sorted region
         loc--; 
    }    // end while 
} // end insertionSort 

The insertion sort is 
O(n  2) in the worst 
case

The insertion sort is 
O(n) in the best case 

Divide and conquer 

VideoNote

Faster sorting 
algorithms
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arrays, but—as you will see in  Chapter   21   —the merge sort generalizes to external fi les. It will be 
convenient to express the algorithms in terms of the array  theArray[first..last] .    

 The merge sort is a recursive sorting algorithm that always gives the same performance, regard-
less of the initial order of the array items. Suppose that you divide the array into halves, sort each half, 
and then merge the sorted halves into one sorted array, as  Figure   11-5    illustrates. In the fi gure, the 
halves <1, 4, 8> and <2, 3> are merged to form the array <1, 2, 3, 4, 8>. This merge step compares an 
item in one half of the array with an item in the other half and moves the smaller item to a temporary 
array. This process continues until there are no more items to consider in one half. At that time, you 
simply move the remaining items to the temporary array. Finally, you copy the temporary array back 
into the original array.        

 Although the merge step of the merge sort produces a sorted array, how do you sort the array 
halves prior to the merge step? The merge sort sorts the array halves by using a merge sort—that is, by 
calling itself recursively. Thus, the pseudocode for the merge sort is 

  // Sorts theArray[first..last] by  
// 1. Sorting the first half of the array  
// 2. Sorting the second half of the array  
// 3. Merging the two sorted halves  
mergeSort(theArray: ItemArray, first: integer, last: integer)

if  (first < last) 
   { 
      mid = (first + last) / 2           // Get midpoint  

// Sort theArray[first..mid]
      mergeSort(theArray, first, mid)

// Sort theArray[mid+1..last] 
      mergeSort(theArray, mid + 1, last)

The merge sort 
requires a second 
array as large as the 
original array 

FIGURE 11-5         A merge sort with an auxiliary temporary array   
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d. Right half is finished, so move rest of left
    half to tempArray
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// Merge sorted halves theArray[first..mid] and theArray[mid+1..last] 
      merge(theArray, first, mid, last)

}
   // If first >= last, there is nothing to do   

 Clearly, most of the effort in the merge sort algorithm is in the merge step, but does this algorithm 
actually sort? The recursive calls continue dividing the array into pieces until each piece contains 
only one item; obviously an array of one item is sorted. The algorithm then merges these small pieces 
into larger sorted pieces until one sorted array results.  Figure   11-6    illustrates both the recursive calls 
and the merge steps in a merge sort of an array of six integers.  

 The C++ functions in Listing 11-4 implement the merge sort algorithm. To sort an array 
theArray  of  n  items, you would invoke the function  mergeSort  by writing 

mergeSort(theArray,   0,   n - 1) ;

FIGURE 11-6         A merge sort of an array of six integers   

38 16 27 39 12 27

38 16 27 39 12 27

38 16 39 12

16 38

16 27 38

12 39

12 27 39

12 16 27 27 38 39

Recursive calls to mergesort

Merge steps

38 16 27 39 12 27

      LISTING 11-4 An implementation of the merge sort 

   const int MAX_SIZE = maximum-number-of-items-in-array;

/** Merges two sorted array segments theArray[first..mid] and 
theArray[mid+1..last] into one sorted array. 

 @pre  first <= mid <= last. The subarrays theArray[first..mid] and  
     theArray[mid+1..last] are each sorted in increasing order. 
 @post  theArray[first..last] is sorted. 
 @param theArray  The given array. 
 @param first  The index of the beginning of the first segment in  
     theArray. 
 @param mid  The index of the end of the first segment in theArray; 
     mid + 1 marks the beginning of the second segment. 
 @param last  The index of the last element in the second segment in  
     theArray. 

(continues)
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 @note  This function merges the two subarrays into a temporary  
     array and copies the result into the original array theArray. */ 
  void merge(ItemType theArray[], int first, int mid, int last) 
 { 
   ItemType tempArray[MAX_SIZE];  // Temporary array 

// Initialize the local indices to indicate the subarrays 
int first1 = first; // Beginning of first subarray 
int last1  = mid; // End of first subarray 
int first2 = mid + 1; // Beginning of second subarray 
int last2  = last;                // End of second subarray 

// While both subarrays are not empty, copy the 
// smaller item into the temporary array 
int index = first1; // Next available location in tempArray 
while ((first1 <= last1) && (first2 <= last2)) 

   { 
// At this point, tempArray[first..index-1] is in order 
if (theArray[first1] <= theArray[first2]) 

       { 
           tempArray[index] = theArray[first1]; 
           first1++; 
       } 

else  
       { 
           tempArray[index] = theArray[first2]; 
           first2++; 
       }  // end if 
       index++; 
   }   // end while 

// Finish off the first subarray, if necessary 
while (first1 <= last1) 

   { 
// At this point, tempArray[first..index-1] is in order 

      tempArray[index] = theArray[first1]; 
      first1++; 
      index++; 
   }  // end while 

// Finish off the second subarray, if necessary 
while (first2 <= last2) 

   { 
// At this point, tempArray[first..index-1] is in order 

       tempArray[index] = theArray[first2]; 
       first2++; 
       index++; 
   }  // end for 

// Copy the result back into the original array 
for (index = first; index <= last; index++) 

       theArray[index] = tempArray[index]; 
} // end merge 
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/** Sorts the items in an array into ascending order. 
 @pre  theArray[first..last] is an array. 
 @post  theArray[first..last] is sorted in ascending order. 
 @param theArray  The given array. 
 @param first  The index of the first element to consider in theArray. 
 @param last  The index of the last element to consider in theArray.*/ 
  void mergeSort(ItemType theArray[], int first, int last) 
 { 

if (first < last) 
   { 

// Sort each half 
int mid = first + (last - first) / 2; // Index of midpoint 

// Sort left half theArray[first..mid] 
       mergeSort(theArray, first, mid); 

// Sort right half theArray[mid+1..last] 
       mergeSort(theArray, mid + 1, last); 

// Merge the two halves 
       merge(theArray, first, mid, last); 
   }  // end if 
} // end mergeSort   

     Question 7   By drawing a diagram like the one shown in  Figure   11-6   , trace the merge sort 
as it sorts the following array into ascending order: 25  30  20  80  40  60.  

      Question 8   Show that the merge sort algorithm satisfi es the four criteria of recursion that 
 Chapter   2    describes.   

CHECK POINT

   Analysis.   Because the merge step of the algorithm requires the most effort, let’s begin the analysis 
there. Each merge step merges  theArray[first..mid]  and  theArray[mid+1..last] .  Figure   11-7    
provides an example of a merge step that requires the maximum number of comparisons. If the total 
number of items in the two array segments to be merged is  n , then merging the segments requires at 
most n –  1 comparisons. (For example, in  Figure   11-7    six items are in the segments and fi ve comparisons

FIGURE 11-7         A worst-case instance of the merge step in a merge sort   

1 2 8 4 5theArray:
Merge the halves:

a. 1 < 4, so move 1 from theArray[first..mid] to tempArray
b. 2 < 4, so move 2 from theArray[first..mid] to tempArray
c. 8 > 4, so move 4 from theArray[mid+1..last] to tempArray
d. 8 > 5, so move 5 from theArray[mid+1..last] to tempArray
e. 8 > 6, so move 6 from theArray[mid+1..last] to tempArray
f. theArray[mid+1..last] is finished, so move 8 to tempArray

6

1 2 4 5 6 8tempArray:

first mid last

a b c d e f
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are required.) In addition, there are n  moves from the original array to the temporary array, and  n
moves from the temporary array back to the original array. Thus, each merge step requires 3 ×  n  – 1 
major operations.  

 Each call to  mergeSort  recursively calls itself twice. As  Figure   11-8    illustrates, if the original 
call to mergeSort  is at level 0, two calls to  mergeSort  occur at level 1 of the recursion. Each of these 
calls then calls mergeSort  twice, so four calls to  mergeSort  occur at level 2 of the recursion, and so 
on. How many levels of recursion are there? We can count them, as follows. 

 Each call to  mergeSort  halves the array. Halving the array the fi rst time produces two pieces. The 
next recursive calls to  mergeSort  halve each of these two pieces to produce four pieces of the original 
array; the next recursive calls halve each of these four pieces to produce eight pieces, and so on. The recur-
sive calls continue until the array pieces each contain one item—that is, until there are  n  pieces, where  n  is 
the number of items in the original array. If  n  is a power of 2 ( n  = 2 k ), the recursion goes  k  = log 2n  levels 
deep. For example, in  Figure   11-8   , there are three levels of recursive calls to  mergeSort  because the origi-
nal array contains eight items and 8 = 2 3 . If  n  is not a power of 2, there are 1 + log 2n  (rounded down) levels 
of recursive calls to  mergeSort . 

 The original call to  mergeSort  (at level 0) calls  merge  once. Then  merge  merges all  n  items and 
requires 3 × n  – 1 operations, as was shown earlier. At level 1 of the recursion, two calls to  mergeSort , 
and hence to merge , occur. Each of these two calls to  merge  merges  n  / 2 items and requires 3 × ( n  / 2) – 1 
operations. Together these two calls to  merge  require 2 × (3 × ( n  / 2) – 1) or 3 ×  n  – 2 operations. At level 
m  of the recursion, 2 m  calls to  merge  occur; each of these calls merges  n  / 2 m  items and so requires 3 × 
(n  / 2 m ) – 1 operations. Together the 2 m  calls to  merge  require 3 ×  n  – 2 m  operations. Thus, each level of 
the recursion requires O( n ) operations. Because there are either log 2n  or 1 + log 2n  levels, the merge sort 
is O( n  × log  n ) in both the worst and average cases. You should look at  Figure   10-3    in the previous chap-
ter to convince yourself that O( n  × log  n ) is signifi cantly faster than O( n2 ). 

 Although the merge sort is an extremely effi cient algorithm with respect to time, it does have one 
drawback: The merge step requires an auxiliary array. This extra storage and the necessary copying of 
entries are disadvantages.   

   11.2.2  The Quick Sort 

 Consider the fi rst two steps of the pseudocode function  kSmall  that solves the problem of fi nding 
the kth  smallest item of the array  theArray[first..last]  and was discussed in Section 2.4.4 of  
Chapter   2   :   

The merge sort is 
O(n × log  n ) 

FIGURE 11-8         Levels of recursive calls to  mergeSort , given an array of eight items   
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    Choose a pivot value p from anArray[first..last] 
  Partition the values of anArray[first..last] about p   

 Recall that this partition, which is pictured again in  Figure   11-9   , has the property that all items in  S1  = 
theArray[first..pivotIndex - 1]  are less than or equal to the pivot  p , and all items in  S2  = 
theArray[pivotIndex + 1..last]  are greater than or equal to  p.  Though this property does not 
imply that the array is sorted, it does imply an extremely useful fact: The items within  S1  remain 
within S1  when the array is properly sorted, although their positions relative to one another may 
change. Similarly, the items within  S2  will remain within  S2  when the array is sorted, although their 
relative positions may change. Finally, the pivot item remains in its position in the fi nal, sorted array.        

 The partition induces relationships among the array items that are the ingredients of a recursive 
solution. Arranging the array items around the pivot  p  generates two smaller sorting problems—sort 
the left section of the array ( S1 ), and sort the right section of the array ( S2 ). The relationships between 
the pivot and the array items imply that once you solve the left and right sorting problems, you will 
have solved the original sorting problem. That is, partitioning the array before making the recursive 
calls places the pivot in its correct position and ensures that when the smaller array segments are 
sorted their items will be in the proper relation to the rest of the array. Also, the quick sort algorithm 
will eventually terminate: The left and right sorting problems are indeed smaller problems and are 
each closer than the original sorting problem to the base case—which is an array containing one 
item—because the pivot is not part of either  S1  or S2 . 

 A fi rst draft of pseudocode for the quick sort algorithm follows: 

  // Sorts theArray[first..last].
quickSort(theArray: ItemArray, first: integer, last: integer): void

if  (first < last)
{

Choose a pivot item p from  theArray[first..last]
Partition the items  of theArray[first..last] about p  

      //  The partition is theArray[first..pivotIndex..last] 

quickSort(theArray, first, pivotIndex - 1) // Sort S 1  

quickSort(theArray, pivotIndex + 1, last)  //  Sort S 2
}

   // If first >= last, there is nothing to do   

  Partitioning the array.   Now consider the partition function that both  kSmall  and  quickSort  must 
call. Partitioning an array section about a pivot item is actually the most diffi cult part of these two 
problems. 

The quick sort 
partitions an array 
into items that are 
less than or equal to 
the pivot and those 
that are greater than 
or equal to the pivot 

Partitioning places 
the pivot in its 
correct position 
within the array 

FIGURE 11-9         A partition about a pivot   

S2S1

p

pivotIndex lastfirst

The pivot p is in its final position

p p



320 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 The partition function will receive an array segment  theArray[first..last]  as an argument. 
The function must arrange the items of the array segment into two regions:  S1  contains the items less 
than or equal to the pivot and  S2  contains the items greater than or equal to the pivot. Thus, as you saw 
in  Figure   11-9   ,  S1  is the segment  theArray[first..pivotIndex   -   1] , and  S2  is the segment 
theArray[pivotIndex + 1..last] . 

 What pivot should you use? Various strategies exist for making this choice, as you will see later, 
so let’s assume for now that we have chosen a pivot and go on to develop the partition. Regardless of 
which pivot you choose, let’s swap it with the last entry  theArray[last]  to   get it out of the way while 
we partition the array.  Figure   11-10a    shows an array after this step. Starting at the beginning of the 
array and moving toward the end (left to right in the fi gure), look for the fi rst entry that is greater than or 
equal to the pivot. In  Figure   11-10b   , that entry is 5 and occurs at the index  indexFromLeft . In a similar 
fashion, starting at the next-to-last entry and moving toward the beginning of the array (right to left in 
the fi gure), look for the fi rst entry that is less than or equal to the pivot. In  Figure   11-10b   , that entry is 2 
and occurs at the index  indexFromRight . Now, if  indexFromLeft  is less than  indexFromRight , swap 
the two entries at those indices.  Figure   11-10c    shows the result of this step. The 2, which is less than 

FIGURE 11-10         A partitioning of an array during a quick sort   
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the pivot, has moved toward the beginning of the array, while the 5, which is greater than the pivot, 
has moved in the opposite direction.    

 Continue the searches from the left and from the right.  Figure   11-10d    shows that the search 
from the left stops at 4 and the search from the right stops at 1. Since indexFromLeft  is less than 
indexFromRight , swap 4 and 1. The array now appears as in  Figure   11-10e   . Entries equal to the pivot 
are allowed in either piece of the partition. 

 Continue the searches again.  Figure   11-10f    shows that the search from the left stops at 6, while 
the search from the right goes beyond the 6 to stop at 1. Since  indexFromLeft  is not less than 
indexFromRight , no swap is necessary and the searches end. The only remaining step is to place the 
pivot between the subarrays  S1  and  S2  by swapping  a[indexFromLeft]  and  a[last] , as  Figure   11-10g 
shows. The completed partition appears in  Figure   11-10   h. 

 Note that the previous searches must not go beyond the ends of the array. Soon you will see a 
convenient way to implement this requirement.   

  Entries equal to the pivot.  Notice that both of the subarrays  S1  and  S2  can contain entries equal to 
the pivot. This might seem a bit strange to you. Why not always place any entries that equal the pivot 
into the same subarray? Such a strategy would tend to make one subarray larger than the other. 
However, to enhance the quick sort’s performance, we want the subarrays to be as nearly equal in size 
as possible. 

 Notice that both the search from the left and the search from the right stop when they encounter 
an entry that equals the pivot. This means that rather than leaving such entries in place, they are 
swapped. It also means that such an entry has a chance of landing in each of the subarrays.  

Selecting a pivot.   Ideally, the pivot should be the median value in the array, so that the subarrays  S1
and S2  each have the same—or nearly the same—number of entries. One way to fi nd the median value 
is to sort the array and then get the value in the middle. But sorting the array is the original problem, 
so this circular logic is doomed. So instead of getting the best pivot by fi nding the median of all values 
in the array, we will at least try to avoid a bad pivot. 

 We will take as our pivot the median of three entries in the array: the fi rst entry, the middle entry, 
and the last entry. One way to accomplish this task is to sort only those three entries and use the mid-
dle entry of the three as the pivot.  Figure   11-11    shows an array both before and after its fi rst, middle, 
and last entries are sorted. The pivot is the 5. This pivot selection strategy is called  median-of-three 
pivot selection.

 This pivot selection scheme assumes that the array has at least three entries. If you have only 
three entries, the pivot selection sorts them, so there is no need for the partition method or for a quick 
sort. Thus, we now assume that the array contains at least four entries.  

 The following pseudocode describes how to sort the fi rst, middle, and last entries in an array of at 
least four entries. For example, it will transform the array in  Figure   11-11a    to the one in  Figure   11-11b   . 

FIGURE 11-11         Median-of-three pivot selection: (a) The original array; (b) the array with its 
fi rst, middle, and last entries sorted   

(a) 5 8 6 4 9 3 7 1 2

(b) 2 8 6 4 5 3 7 1 9

Pivot
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  //  Arranges the first, middle, and last entries in an array into ascending order.  
sortFirstMiddleLast(theArray: ItemArray, first: integer, mid: integer,
                         last: integer): void

if  (theArray[first] > theArray[mid])
Interchange  theArray[first] and  theArray[mid]

if  (theArray[mid] > theArray[last])
Interchange  theArray[mid] and  theArray[last]

if  (theArray[first] > theArray[mid])
Interchange  theArray[first] and  theArray[mid]   

  Adjusting the partition algorithm.   Median-of-three pivot selection suggests some minor adjust-
ments to our partitioning scheme. Previously, we swapped the pivot with the last entry in the array 
prior to partitioning. But here the fi rst, middle, and last entries in the array are sorted, so we know that 
the last entry is at least as large as the pivot. Thus, the last entry belongs in the subarray  S2 . We can 
simply leave the last entry in place. To get the pivot out of the way, we can swap it with the next-to-last 
entry,  a[last - 1] , as  Figure   11-12    shows. Therefore, the partition algorithm can begin its search 
from the right at index  last - 2 . 

 Also notice that the fi rst entry is at least as small as the pivot, and so it belongs in the subarray  S1 . 
Thus, we can leave the fi rst entry in place and have the partition algorithm begin its search from the left 
at index  first + 1 .  Figure   11-12b    shows the status of the array at this point, just prior to partitioning. 

 This scheme provides a side benefi t that simplifi es the loops for the two searches. The search from 
the left looks for an entry that is greater than or equal to the pivot. That search will terminate because, 
at worst, it will stop at the pivot. The search from the right looks for an entry that is less than or equal to 
the pivot. That search will terminate because, at worst, it will stop at the fi rst entry. Thus, the loops 
need not do anything special to prevent the searches from going beyond the ends of the array. 

 After the search loops end, we need to position the pivot between the subarrays  S1  and  S2 . We do 
this by swapping the entries  a[indexFromLeft]  and  a[last - 1] . 

FIGURE 11-12         (a) The array with its fi rst, middle, and last entries sorted; (b) the array after 
positioning the pivot and just before partitioning   

(a) 2 8 6 4 5 3 7 1 9

Pivot

(b) 2 8 6 4 1 3 7 5 9

indexFromLeft

Pivot

indexFromRight

     Note:   The quick sort rearranges the entries in an array during the partitioning process. 
Each partition places one entry—the pivot—in its correct sorted position. The entries in 
each of the two subarrays that are before and after the pivot will remain in their respective 
subarrays. 
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  The following pseudocode describes the partitioning algorithm for an array of at least four entries:    

  // Partitions theArray[first..last]. 
partition(theArray: ItemArray, first: integer, last: integer): integer 

   // Choose pivot and reposition it  
mid = first + (last - first) / 2 

   sortFirstMiddleLast(theArray, first, mid, last)
Interchange  theArray[mid] and  theArray[last – 1]
pivotIndex = last - 1

   pivot = theArray[pivotIndex]

   //  Determine the regions S 1  and S 2
indexFromLeft = first + 1 

   indexFromRight = last - 2

done = false  
while  (not  done)
{

      //  Locate first entry on left that is ≥  pivot 
while  (theArray[indexFromLeft] < pivot)

indexFromLeft = indexFromLeft  + 1

      //  Locate first entry on right that is ≤ pivot
while  (theArray[indexFromRight] > pivot)

indexFromRight = indexFromRight - 1

if  (indexFromLeft < indexFromRight)
{

Move  theArray[firstUnknown] into S1   
Interchange  theArray[indexFromLeft] and  theArray[indexFromRight]
indexFromLeft = indexFromLeft  + 1
indexFromRight = indexFromRight - 1

}
else  

done = true  
}

   // Place pivot in proper position between   S 1  and S 2 , and mark its new location  
Interchange  theArray[pivotIndex] and  theArray[indexFromLeft]
pivotIndex = indexFromLeft

return  pivotIndex   

The partition 
algorithm

     Question 9   Trace the quick sort’s partitioning algorithm as it partitions the following 
array:   38  16  40  39  12  27 

CHECK POINT

  A function for the quick sort.   Before completing the C++ code for the quick sort, we need to 
think about small arrays. You have seen that the array should contain at least four entries before 
you call the partition method. But simply agreeing to use the quick sort only on large arrays is not 
enough. The pseudocode just given for the quick sort shows that partitioning even a large array 
will eventually lead to a recursive call that involves an array as small as two entries. The code for 
the quick sort needs to screen out these small arrays and use another way to sort them. An insertion 
sort is a good choice for small arrays. In fact, using it instead of the quick sort on arrays of as many 
as ten entries is reasonable. The function in Listing 11-5 implements the quick sort with these 
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observations in mind. It assumes a constant  MIN_SIZE  that specifi es the size of the smallest array 
on which we will use a quick sort. 

Quick sort: Worst 
case: O( n  2); average 
case: O( n log  n ) 

     LISTING 11-5  A function that performs a quick sort

  /** Sorts an array into ascending order. Uses the quick sort with 
     median-of-three pivot selection for arrays of at least MIN_SIZE
     entries, and uses the insertion sort for other arrays.
 @pre  theArray[first..last] is an array. 
 @post  theArray[first..last] is sorted. 
 @param theArray  The given array. 
 @param first  The first element to consider in theArray. 
 @param last  The last element to consider in theArray. */ 
  void quickSort(ItemType theArray[], int first, int last) 
 { 

if (last - first + 1 < MIN_SIZE) 
    { 
        insertionSort(theArray, first, last); 
    } 

else  
    { 

// Create the partition: S1 | Pivot | S2 
int pivotIndex = partition(theArray, first, last); 

// Sort subarrays S1 and S2 
        quickSort(theArray, first, pivotIndex - 1); 
        quickSort(theArray, pivotIndex + 1, last); 
    }   // end if 
} // end quickSort 

  Analysis.   The major effort in the  quickSort  function occurs during the partitioning step. Parti-
tioning will require no more than n  comparisons, and so, like merging, it will be an O( n ) task. The 
ideal situation occurs when the pivot moves to the center of the array, so the two subarrays that 
the partition forms are the same size. If every recursive call to  quickSort  forms a partition with 
equal-sized subarrays, the quick sort will be like a merge sort in that the recursive calls halve the 
array. Thus, fewer recursive calls to  quickSort  occur. As in the previous analysis of the merge sort, 
you can conclude that there are either log 2   n  or 1 + log 2   n  levels of recursive calls to  quickSort . 
Each call to quickSort  involves  m  comparisons and at most  m  exchanges, where  m  is the number of 
items in the subarray to be sorted. Clearly  m ≤ n  – 1. Thus, a quick sort would be O( n  log  n ), and this 
would be its best case. 

 This ideal situation might not always occur, however. It is possible that each partition has one 
empty subarray. Although one recursive call will have nothing to do, the other call must sort  n  – 1 
entries instead of n  / 2. This occurrence is the worst case because the nonempty subarray decreases in 
size by only 1 at each recursive call to  quickSort , and so the maximum number of recursive calls to 
quickSort  will occur. The result is  n  levels of recursive calls instead of log  n . Thus, in the worst case, 
quick sort is O( n2 ).

 A formal analysis of the average-case behavior of a quick sort would show that it is O( n  log  n ). 
While the merge sort is always O( n  log  n ), the quick sort can be faster in practice and does not require 
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the additional memory that merge sort needs for merging. Moreover, on large arrays, you can expect 
a quick sort to run signifi cantly faster than an insertion sort. However, in its worst case, a quick sort 
will require roughly the same amount of time as an insertion sort. 

 The fact that the quick sort’s average-case behavior is far better than its worst-case behavior dis-
tinguishes it from the other sorting algorithms considered in this chapter. If the original arrangement 
of data in the array is “random,” the quick sort performs at least as well as any known sorting algo-
rithm that involves comparisons. 

 The effi ciency of a merge sort is somewhere between the possibilities for a quick sort: Some-
times the quick sort is faster, and sometimes the merge sort is faster. While the worst-case behavior of 
a merge sort is of the same order of magnitude as a quick sort’s average-case behavior, in most situa-
tions a quick sort will run somewhat faster than a merge sort. However, in its worst case, the quick 
sort will be signifi cantly slower than the merge sort.    

     Note:   The choice of pivots affects the quick sort’s effi ciency. Some pivot-selection 
schemes can lead to worst-case behavior if the array is already sorted or nearly sorted. 
In practice, nearly sorted arrays can occur more frequently than you might imagine. 
Fortunately, median-of-three pivot selection avoids worst-case behavior for sorted 
arrays. 

     Note:   The quick sort is often used to sort large arrays, as it is usually extremely fast in 
practice, despite its unimpressive theoretical worst-case behavior. Although a worst-case 
situation is not typical, even if the worst case occurs, the quick sort’s performance is 
acceptable for moderately large arrays. 

     Note:   The quick sort is appropriate when you are confi dent that the data in the array to 
be sorted is arranged randomly. Although the quick sort’s worst-case behavior is O( n2 ), 
the worst case rarely occurs in practice. 

  ASIDE: Quick sort versus merge sort and  kSmall

 The  quickSort  and  mergeSort  algorithms are similar in spirit, but whereas  quickSort  does its 
work before its recursive calls,  mergeSort  does its work after its recursive calls. That is, while 
quickSort  has the form 

  quickSort(theArray, first, last)

if  (first < last)
{

Prepare array for recursive calls  
quickSort(S1  region of theArray)

(continues)
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     Question 10   Suppose that you sort a large array of integers by using a merge sort. Next 
you use a binary search to determine whether a given integer occurs in the array. Finally, you 
display all of the integers in the sorted array. 

a.   Which algorithm is faster, in general: the merge sort or the binary search? Explain 
in terms of Big O notation.  

b.   Which algorithm is faster, in general: the binary search or displaying the integers? 
Explain in terms of Big O notation.   

CHECK POINT

quickSort(S2  region of theArray)
}

  mergeSort has the general form 

mergeSort(theArray, first, last)

  if  (first < last)
{

mergeSort(Left half of theArray)
mergeSort(Right half of theArray)
Tidy up array after the recursive calls  

}

 The preparation in  quickSort  is to partition the array into regions  S1  and  S2 . The algorithm 
then sorts  S1  and  S2  independently, because every item in  S1  belongs to the left of every item in  S2 . 
In mergeSort , on the other hand, no work is done before the recursive calls: The algorithm sorts 
each half of the array with respect to itself. However, the algorithm must still deal with the interac-
tion between the items in the two halves. That is, the algorithm must merge the two halves of the 
array after the recursive calls. 

 Now recall the pseudocode function  kSmall , described in  Chapter   2   , that returns the  kth

smallest value in an array: 

  kSmall(k, theArray, first, last): ItemType

Choose a pivot value p from anArray[first..last]
Partition the values of anArray[first..last] about p

if  (k < pivotIndex - first + 1)
return  kSmall(k, anArray, first, pivotIndex - 1)

else if  (k == pivotIndex - first + 1)
return  p

else
return  kSmall(k - (pivotIndex - first + 1), anArray,

pivotIndex + 1, last)  

 The recursive calls to  kSmall  act only on the section of the array that contains the desired 
item, and it is not called at all if the desired item is the pivot. On the other hand,  quickSort
is called recursively on both unsorted sections of the array.  Figure   11-13    illustrates this 
difference.        
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FIGURE 11-13 kSmall  versus  quickSort
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Group strings by 
their rightmost letter 

   11.2.3  The Radix Sort 

 The  radix sort  is included here because it is quite different from the other sorts we’ve described, as it 
does not compare the array’s entries. 

 Imagine again that you are sorting a hand of cards. This time you pick up the cards one at a time and 
arrange them by rank into 13 possible groups in this order: 2, 3, . . . , 10, J, Q, K, A. Combine these groups 
and place the cards face down on the table so that the 2s are on top and the aces are on the bottom. Now 
pick up the cards one at a time and arrange them by suit into four possible groups in this order: clubs, 
diamonds, hearts, and spades. When taken together, the groups result in a sorted hand of cards. 

 A radix sort uses this idea of forming groups and then combining them to sort a collection of 
data. The sort treats each data item as a character string. As a fi rst simple example of a radix sort, con-
sider this collection of three-letter strings: 

    ABC, XYZ, BWZ, AAC, RLT, JBX, RDT, KLT, AEO, TLJ    

 The sort begins by organizing the data according to the rightmost (least signifi cant) letters. Although 
none of the strings ends in A  or  B , two strings end in  C . Place those two strings into a group. Continu-
ing through the alphabet, you form the following groups: 

    (ABC, AAC) (TLJ) (AEO) (RLT, RDT, KLT) (JBX) (XYZ, BWZ)         

 The strings in each group end with the same letter, and the groups are ordered by that letter. In addi-
tion, the strings within each group retain their relative order from the original list of strings. 

 Now combine the groups into one as follows. Take the items in the fi rst group in their present 
order, follow them with the items in the second group in their present order, and so on. The following 
group results: 

 ABC, AAC, TLJ, AEO, RLT, RDT, KLT, JBX, XYZ, BWZ    

 Next, form new groups as you did before, but this time use the middle letter of each string instead of 
the last letter: 

Combine the groups 
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 (AAC) (A B C, J B X) (R D T) (A E O) (T L J, R L T, K L T) (B W Z) (X Y Z)

 Now the strings in each group have the same middle letter, and the groups are ordered by that letter. As 
before, the strings within each group retain their relative order from the previous group of all strings. 

 Combine these groups into one group, again preserving the relative order of the items within 
each group: 

 AAC, ABC, JBX, RDT, AEO, TLJ, RLT, KLT, BWZ, XYZ    

 Now form new groups according to the fi rst letter of each string: 

 ( A AC,  A BC,  A EO) ( B WZ) ( J BX) ( K LT) ( R DT,  R LT) ( T LJ) ( X YZ)

 Finally, combine the groups, again maintaining the relative order within each group: 

 AAC, ABC, AEO, BWZ, JBX, KLT, RDT, RLT, TLJ, XYZ    

 The strings are now in sorted order. 
 In the previous example, all character strings had the same length. If the character strings have 

varying lengths, you can treat them as if they were the same length by padding them on the right with 
blanks as necessary. 

 To sort numeric data, the radix sort treats a number as a character string. You can treat numbers as 
if they were padded on the left with zeros, making them all appear to be the same length. You then 
form groups according to the right-most digits, combine the groups, form groups according to the 
next-to-last digits, combine them, and so on, just as you did in the previous example.  Figure   11-14    
shows a radix sort of eight integers.  

Combine the groups 

Group the strings by 
their fi rst letter 

Sorted strings 

FIGURE 11-14         A radix sort of eight integers   
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 The following pseudocode describes the algorithm for a radix sort of  n  decimal integers of  d  dig-
its each: 

  //  Sorts n d-digit integers in the array theArray.
radixSort(theArray: ItemArray, n: integer, d: integer): void 

for  (j = d down to  1)
{

Initialize 10 groups to empty
Initialize a counter for each group to 0  
for  (i = 0 through n - 1) 

Group the strings by 
their middle letter 
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     Question 11   Trace the radix sort as it sorts the following array into ascending order: 
3812 1600 4012 3934 1234 2724 3333 5432 

CHECK POINT

FIGURE 11-15         Approximate growth rates of time required for eight sorting algorithms   

Selection sort
Bubble sort
Insertion sort
Merge sort
Quick sort
Radix sort
Tree sort
Heap sort

n2

n2

n2

n × log n
n2

n
n2

n × log n

n2

n2

n2

n × log n
n × log n
n
n × log n
n × log n

Worst case Average case

Even though the 
radix sort is O( n), it 
is not appropriate as 
a general-purpose 
sorting algorithm 

     Note:   The Standard Template Library (STL) provides several sort functions in the 
library header <algorithm>. Consult C++ Interlude 7 for more information about the 
STL and these functions. 

{
k = jth digit of  theArray[i]
Place theArray[i] at the end of group k
Increase kth counter by 1  

}
Replace the items in theArray with all the items in group 0,  
  followed by all the items in group 1, and so on.  

}

  Analysis.   From the pseudocode for the radix sort, you can see that this algorithm requires  n  moves 
each time it forms groups and  n  moves to combine them again into one group. The algorithm per-
forms these 2 ×  n  moves  d  times. Therefore, the radix sort requires 2 ×  n  ×  d  moves to sort  n  strings of 
d  characters each. However, notice that no comparisons are necessary. Thus, radix sort is O( n ). 

 Despite its effi ciency, the radix sort has some diffi culties that make it inappropriate as a general-
purpose sorting algorithm. For example, to perform a radix sort of strings of uppercase letters, you 
need to accommodate 27 groups—one group for blanks and one for each letter. If the original data 
collection contains n  strings, each group must be able to hold  n  strings. For large  n , this requirement 
demands substantial memory if you use arrays for both the original data and the resulting groups. 
However, you can save memory by using a chain of linked nodes for each of the 27 groups. Thus, a 
radix sort is more appropriate for a chain than for an array.       

   11.3  A Comparison of Sorting Algorithms 
  Figure   11-15    summarizes the time required in the worst case and average case for the sorting algo-
rithms that appear in this chapter. For reference purposes, two other algorithms—the tree sort and heap 
sort—are included here, even though you will not study them until  Chapters   15    and    17   , respectively. 
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 SUMMARY   

 1.  The selection sort, bubble sort, and insertion sort are all O( n2 ) algorithms. Although in a particular case one 
might be faster than another, for large problems they all are slow. For small arrays, however, the insertion sort is 
a good choice. 

 2.  The quick sort and merge sort are two very effi cient recursive sorting algorithms. In the average case, the quick 
sort is among the fastest known sorting algorithms. However, the quick sort’s worst-case behavior is signifi -
cantly slower than the merge sort’s. Fortunately, the quick sort’s worst case rarely occurs in practice. The merge 
sort is not quite as fast as the quick sort in the average case, but its performance is consistently good in all cases. 
The merge sort has the disadvantage of requiring extra storage equal to the size of the array to be sorted. 

 3.  The radix sort is unusual in that it does not sort the array entries by comparing them. Thus, it is not always 
applicable, making it inappropriate as a general-purpose sorting algorithm. However, when the radix sort is 
applicable, it is an O( n ) algorithm. 

 EXERCISES   

 1.  This chapter’s analysis of the selection sort ignored operations that control loops or manipulate array indices. 
Revise this analysis by counting  all  operations, and show that the algorithm is still O( n2 ). 

 2.  Trace the insertion sort as it sorts the following array into ascending order: 

 20 80 40 25 60 40 

 3.  Trace the selection sort as it sorts the following array into ascending order: 

 7 12 24 4 19 32 

 4.  Trace the bubble sort as it sorts the following array into descending order: 

 12 23 5 10 34 

 5.  Apply the selection sort, bubble sort, and insertion sort to 

 a.   An array sorted into descending order:  8 6 4 2  
 b.   An array sorted into ascending order:  2 4 6 8   

 6.  How many comparisons would be needed to sort an array containing 25 entries using the bubble sort in 

 a.   The worst case?  
 b.   The best case?   

 7.  Find an array that makes the bubble sort exhibit its worst behavior. 

 8.  Revise the function  selectionSort  so that it sorts an array of instances of a class according to one  int  data 
member, which is the sort key. Assume that the class contains a member method  getSortKey  that returns the 
integer sort key. 

 9.  Write recursive versions of  selectionSort ,  bubbleSort , and  insertionSort . 

 10.  Trace the merge sort algorithm as it sorts the following array into ascending order. List the calls to  mergeSort
and to merge  in the order in which they occur. 

 20 80 40 25 60 30 



 Programming Problems 331

 11.  When sorting an array by using a merge sort, 

 a.   Do the recursive calls to  mergeSort  depend on the values in the array, the number of items in the array, 
or both? Explain.  

 b.   In what step of  mergeSort  are the items in the array actually swapped (that is, sorted)? Explain.   

 12.  Trace the quick sort algorithm as it sorts the following array into ascending order. List the calls to  quicksort
and to partition  in the order in which they occur. 

 20  80  40  25  60  10  15 

 13.  Suppose that you remove the call to  merge  from the merge sort algorithm to obtain 

  // Mystery algorithm for  theArray[0..n-1].
mystery(theArray: ItemArray, n: integer): void

if  (n > 1)
{

mystery(lefthalf(theArray))
      mystery(righthalf(theArray)) 
   }   

 What does this new algorithm do?  

 14.  How many recursive calls are necessary when  quickSort  sorts an array of size  n  if you use median-of-three 
pivot selection? 

 15.  Describe an iterative version of  mergeSort . 

 16.  One criterion used to evaluate sorting algorithms is stability. A sorting algorithm is  stable  if it does not 
exchange items that have the same sort key. Thus, items with the same sort key (possibly differing in other 
ways) will maintain their positions relative to one another. For example, you might want to take an array of 
students sorted by name and re-sort it by year of graduation. Using a stable sorting algorithm to sort the array 
by year will ensure that within each year the students will remain sorted by name. Some applications mandate 
a stable sorting algorithm. Others do not. Which of the sorting algorithms described in this chapter are stable? 

 17.  When we discussed the radix sort, we sorted a hand of cards by fi rst ordering the cards by rank and then by suit. 
To implement a radix sort for this example, you could use two characters to represent a card, if you used the 
letter T  to represent a 10. For example, S2 is the 2 of spades and HT is the 10 of hearts. 

 a.   Trace the radix sort for this example.  
 b.   Suppose that you did not use  T  to represent a 10—that is, suppose that H10 is the 10 of hearts—and 

that you padded the two-character strings on the right with a blank to form three-character strings. 
How would a radix sort order the entire deck of cards in this case?   

 PROGRAMMING PROBLEMS   

 1.  Add a counter to the functions  insertionSort  and  mergeSort  that counts the number of comparisons that are 
made. Run the two functions with arrays of various sizes. At what size does the difference in the number of com-
parisons become signifi cant? How does this size compare with the size that the orders of these algorithms predict? 

 2.  Revise the function  quickSort  so that it always chooses the fi rst item in the array as the pivot. Add a counter to 
the function partition  that counts the number of comparisons that are made. Compare the behavior of the 
revised function with the original one, using arrays of various sizes. At what size array does the difference in 
the number of comparisons become signifi cant? For which pivot selection strategy does the difference in the 
number of comparisons become signifi cant? 
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 3.  Various partitioning strategies are possible for quick sort. What other strategies can you think of ? How do they 
compare to the two studied in the previous programming problem? 

 4.  Consider the ADT list, as described in  Chapters   8    and    9   . Add a method  sort  to the list. 

 5.  Repeat Programming problem 4, but assume a link-based implementation of the ADT list. Use a merge sort in 
the defi nition of the method  sort . Implement any other sorting algorithms that are appropriate for this imple-
mentation of a list. 

 6.  Repeat Programming Problem 4, but assume a link-based implementation of a list of strings. Use a radix sort in 
the defi nition of the method  sort . 

 7.  You can sort a large array of integers that are in the range 1 to 100 by using an array  count  of 100 items to count 
the number of occurrences of each integer in the array. Fill in the details of this sorting algorithm, which is 
called a bucket sort , and write a C++ function that implements it. What is the order of the bucket sort? Why is 
the bucket sort not useful as a general sorting algorithm? 

 8.  The  Shell sort  (named for its inventor, Donald Shell) is an improved insertion sort. Rather than always exchang-
ing adjacent items—as in an insertion sort—the Shell sort can exchange items that are far apart in the array. The 
Shell sort arranges the array so that every  hth  item forms a sorted subarray in a decreasing sequence of values. For 
example, if  h  is 5, every fi fth item forms a sorted subarray. Ultimately, if  h  is 1, the entire array will be sorted. 

 One possible sequence of  h ’s begins at  n  / 2 and halves  n  until it becomes 1. By using this sequence, and by 
replacing 1 with h  and 0 with  h  – 1 in  insertionSort , we get the following function for the Shell sort: 

   void shellSort(ItemType theArray[], int n) 
 { 

for ( int h = n / 2; h > 0; h = h / 2) 
   { 

for ( int unsorted = h; unsorted < n; unsorted++) 
      { 
         DataItem nextItem = theArray[unsorted]; 

int loc = unsorted; 
while ( (loc >= h) && (theArray[loc - h] > nextItem) ) 

         { 
            theArray[loc] = theArray[loc - h]; 
            loc = loc – h; 
         }  // end while 
         theArray[loc] = nextItem; 
      }  // end for 
   }  // end for 
} // end shellSort 

 Add a counter to the functions  insertionSort  and  shellSort  that counts the number of comparisons that are 
made. Run the two functions with arrays of various sizes. At what size does the difference in the number of 
comparisons become signifi cant? 

 9.  Write a program to display the running time of the sorts described in this chapter. Test the sorts on arrays of vari-
ous sizes. Arrays of the same size should contain identical entries. Use the function  clock  from  <ctime>  to time 
each sort. See the beginning of the programming problems in  Chapter   10    for an example of how to time code. 
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C++ classes provide a way to enforce the walls of data abstraction by encapsulating 
an abstract data type’s data and operations. An object-oriented approach, however, goes 
well beyond encapsulation. Inheritance, polymorphism, and containment allow you to 
defi ne new classes from existing classes. This interlude describes techniques that make 
collections of reusable software components possible. Realize that much more can and 
should be said about these techniques. Consider this interlude to be a refi nement and 
expansion of the introduction to this material begun in C++ Interlude 1.   

      C4.1 Inheritance Revisited 
 When you think of inheritance, you might imagine a bequest of one million dollars 
from some long-lost wealthy relative. In the object-oriented world, however, inherit-
ance describes the ability of a class to derive properties from a previously defi ned class. 
These properties are like the genetic characteristics you received from your parents: 
Some traits are the same, some are similar but different, and some are new. 

    C++
Interlude 
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 Inheritance, in fact, is a relationship among classes. One class can derive the behavior and struc-
ture of another class. For example,  Figure   C4-1    illustrates some relationships among various time-
pieces. Digital clocks, for example, include the clock in the dashboard of your car, the clock on the 
sign of the downtown bank, and the clock on your microwave oven. All digital clocks have the same 
underlying structure and perform operations such as    

  Set the time  
  Advance the time  
  Display the time  

  A digital alarm clock is a digital clock that also has alarm methods, such as   

   Set the alarm  
  Enable the alarm  
  Sound the alarm  
  Silence the alarm  

 That is, a digital alarm clock has the structure and operations of a digital clock and, in addition, has an 
alarm and operations to manipulate the alarm. 

 You can think of the group of digital clocks and the group of digital alarm clocks as classes. The 
class of digital alarm clocks is a derived class, or subclass, of the class of digital clocks. The class of 
digital clocks is a base class, or superclass, of the class of digital alarm clocks. Inheritance enables 
you to reuse software components when you defi ne a new class. For example, you can reuse your 
design and implementation of an analog clock when you design a cuckoo clock.   

  In C++, a derived class inherits all of the members of its base class, except the constructors and 
destructor. That is, a derived class has the data members and methods of the base class in addition to 
the members it defi nes. A derived class can also revise any inherited method. For example, according 
to  Figure   C4-1   , a cuckoo clock is a descendant of an analog clock, like the one on a classroom wall. 

FIGURE C4-1         Inheritance: Relationships among timepieces   
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The cuckoo clock inherits the structure and behavior of the analog clock, but revises the way it reports 
the time each hour by adding a cuckoo.   

  Sometimes a derived class has more than one base class. For example, as  Figure   C4-2    illustrates, 
you can derive a class of clock radios from the class of digital clocks and the class of radios. This type 
of relationship is known as  multiple inheritance . Multiple inheritance must be used with care, since 
it is possible for the base classes to have similarly named methods.   For example, suppose that both 
digital clocks and radios implemented a method turnOn . When the client calls the  turnOn  method in 
the digital clock radio, you have no way to know which  turnOn  method is called. In this textbook, if 
multiple inheritance is used, the derived class inherits code from only one base class; any other bases 
classes should be abstract base classes. 

  In C++ Interlude 1, we used plain boxes, toy boxes, and magic boxes as objects. While designing 
the class of toy boxes,  ToyBox , we decided that a toy box is simply a plain box with a color. This reali-
zation is signifi cant in that  PlainBox —the class of plain boxes—already existed. Thus, we could let 
PlainBox  be a base class of  ToyBox , and we implemented  ToyBox  without reinventing the basic box. 
Toward that end, Listing C4-1 recalls the defi nition of the class  PlainBox  from Listing C1-3.     

FIGURE C4-2         Multiple inheritance   
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LISTING C4-1    The class PlainBox , originally given in Listing C1-3 

  template < class ItemType> ;
  class PlainBox 
 { 
  private : 
   ItemType item; 

  public : 
   PlainBox(); 
   PlainBox( const ItemType& theItem); 

void setItem( const ItemType& theItem); 
   ItemType getItem()  const ; 
 }; // end PlainBox 

A derived class can 
add new members 
to those it inherits 

A derived class can 
redefi ne an inherited 
method of  its base 
class 

 Our derived class  ToyBox  inherited all the members of the class  PlainBox —except the construc-
tors and destructor—and made some changes. We added both a data member that held the box’s color 
and methods to access and set the color.       

 You can add as many new members to a derived class as you like. Although you cannot revise an 
ancestor’s private data members and should not reuse their names, you can  redefi ne  other inherited 
methods. A method in a derived class redefi nes a nonvirtual method in the base class if the two meth-
ods have the same name and parameter declarations. 

 When the derived class  MagicBox  was implemented in C++ Interlude 1, we redefi ned the method 
getItem  so that it always returns the fi rst item stored in the box.  Figure   C4-3    illustrates the relation-
ship between  PlainBox  and  MagicBox .
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     LISTING C4-2 The class MagicBox , originally given in Listing C1-7  

  template < class ItemType> ;
  class MagicBox : public PlainBox<ItemType> 
 { 
  private : 

bool firstItemStored; 

  public : 
   MagicBox(); 
   MagicBox( const ItemType& theItem); 

void setItem( const ItemType& theItem); 
 }; // end MagicBox 

 Listing C4-2 shows the declaration of the class  MagicBox , which was originally given in Listing 
C1-7 of C++ Interlude 1. 

An instance of  a 
derived class has all 
the behaviors of  its 
base class 

A derived class 
inherits private 
members from the 
base class, but 
cannot access them 
directly

A derived class’s 
methods can call the 
base class’s public 
methods

FIGURE C4-3         The derived class  MagicBox  inherits members of the base class  PlainBox  and 
redefi nes and adds members   
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 Adding a colon and  public    PlainBox  after  class MagicBox  indicates that  PlainBox  is a base class 
of MagicBox  or, equivalently, that  MagicBox  is a derived class of  PlainBox . 

 An instance of the class  MagicBox  has two data members— item , which is inherited, and 
firstItemStored , which is new. Because an instance of a derived class can invoke any public method in 
the base class, an instance of MagicBox  has all of the methods that  PlainBox  defi nes; new constructors; 
a new, compiler-generated destructor; and a redefi ned method  setItem . Although an instance of a 
derived class contains copies of inherited data members, the code for inherited methods is not copied. 

 A derived class cannot access the private members of the base class directly by name, even 
though they are inherited. Inheritance does not imply access. After all, you can inherit a locked vault 
but be unable to open it. In the current example, the data member  item  of  Plain       Bo x  is private, so you 
can reference it only within the defi nition of the class  PlainBox  and not within the defi nition of 
ToyBox  or  MagicBox . However, the class  ToyBox  or  MagicBox  can use  PlainBox ’s public methods 
setItem  and  getItem  to set or obtain the value of  item  indirectly.    

 Within the implementation of  MagicBox , you can use the public methods that  MagicBox  inherits 
from PlainBox . For example, the redefi ned method  setItem  calls the inherited version of the method 
setItem , which you indicate by writing  PlainBox<ItemType>::setItem . This notation is necessary 
to differentiate between the two versions of the method. Thus, you can access a base member, even 
though it has been redefi ned, by using the scope resolution operator  :: . The implementation of 
MagicBox ’s  setItem  method is then 

   template < class ItemType> 
  void MagicBox<ItemType>::setItem( const ItemType& theItem) 
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 { 
if (!firstItemStored) 

   { 
       PlainBox<ItemType>::setItem(theItem); 
       firstItemStored =  true; // Box now has magic
   }  // end if 
} // end setItem 

 Clients of a derived class also can invoke the public members of the base class. For example, if 
you write    

  MagicBox<string> myMagicBox("Volleyball"); 
string magicBoxItem = myMagicBox.getItem();

myMagicBox ’s item, " Volleyball ", is returned by the method  getItem  that  MagicBox  inherits from 
PlainBox . If a new method has the same name as an ancestor method— setItem , for example—
instances of the new class will use the new method, while instances of the ancestor class will use the 
original method. Therefore, if  myPlainBox  is a  PlainBox object , the call  myPlainBox.setItem(...)
will invoke  PlainBox ’s  setItem , whereas  myMagicBox.setItem(...)  will invoke  MagicBox ’s 
setItem , as  Figure   C4-4    illustrates. Because the compiler can determine which form of  setItem  to 
use at compilation time—as opposed to at execution time—this situation is called early binding, as 
introduced in C++ Interlude 2. Another term for early binding is  static binding .

Clients of  a derived 
class can invoke the 
base class’s public 
methods

FIGURE C4-4         Early, or static, binding: The compiler determines which version of a method to 
invoke   
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     Note: Inheritance and the execution order of constructors and destructors 

 A derived class’s constructor executes after the base class’s constructor. For example, if 
you defi ne an instance of  MagicBox , its constructor executes after  PlainBox ’s construc-
tor. The destructor of a derived class executes before the destructor of the base class. For 
example,  MagicBox ’s destructor executes before  PlainBox ’s destructor. This is true for 
constructors and destructors that you write as well as those generated by the compiler. 

Early binding can 
cause problems 

 Early binding can lead to problems. For example, the statements    

  PlainBox<string>* cardBoxPtr = new PlainBox<string>("Queen of Hearts"); 
cardBoxPtr->setItem("Jack of Spades"); 

 invoke  PlainBox ’s version of  setItem . Unfortunately, if  cardBoxPtr  points to an instance of  Magic-
Box —for example, if you wrote 

  PlainBox<string>* cardBoxPtr = new MagicBox<string>("Queen of Hearts"); 
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 the statement 

  cardBoxPtr->setItem("Jack of Spades"); 

 still invokes  PlainBox ’s version of  setItem , instead of  MagicBox ’s version. In this case, the compiler 
determined the version of the method to invoke from the type of the pointer  cardBoxPtr  instead of 
from the type of object to which  cardBoxPtr  points. 

 Simply redefi ning  setItem  in  MagicBox —as we did earlier—is insuffi cient. As was briefl y dis-
cussed in Section C1.5 of C++ Interlude 1 and Section C2.4 of C++ Interlude 2, you also need to tell the 
compiler that derived classes of  PlainBox  might revise  setItem  so that the compiler can make accom-
modations for such an occurrence. You do this by making  setItem  a virtual method in  PlainBox . Recall 
that to make a particular method virtual, you simply write the keyword  virtual  before the method’s 
declaration within the defi nition of the base class. For example, the class  PlainBox  appears as 

   class PlainBox 
 { 
  public : 

// Everything as before, except setItem
   · · ·  

virtual ItemType setItem() const ; 
   · · ·  
 }; // end PlainBox 

 The implementation of  setItem  is the same as given earlier. 
 Now, when  cardBoxPtr  points to an instance of  MagicBox , the statement 

  cardBoxPtr->setItem("Jack of Spades"); 

 invokes  MagicBox ’s version of  setItem . Thus, the appropriate version of a method is decided at exe-
cution time, instead of at compilation time, based on the type of object to which  cardBoxPtr  points. 
Recall from C++ Interlude 2 that this situation is called late binding. Another term for late binding is 
dynamic binding . A method such as  setItem  is called  polymorphic . That is, the outcome of a par-
ticular operation depends upon the objects on which the operation acts. We also say that  MagicBox ’s 
version of  setItem   overrides   PlainBox ’s version.       

 A virtual method in a derived class can override a virtual method in the base class if they have the 
same declarations. Overriding a method is similar to redefi ning a method. However, you can override 
only virtual methods. Note that you can omit  virtual  in the derived class. Any method in a derived 
class that has the same declaration as an ancestor’s virtual method—such as  setItem —is also virtual 
without explicit identifi cation, although tagging it with  virtual  is desirable stylistically.    

 Every class has a  virtual method table   (VMT) , which remains invisible to the programmer. For 
each method in the class, the VMT contains a pointer to the actual instructions that implement the 
method. For a method that is not virtual, the compiler can establish this pointer, since it knows the 
method’s defi nition. For a virtual method, the compiler can not complete the VMT. Instead, a call to a 
constructor during program execution sets the pointer, as  Figure   C4-5    illustrates. That is, the con-
structor establishes within the VMT pointers to the versions of the virtual methods that are appropri-
ate for the object. Thus, the VMT is the mechanism that enables late binding.     

   C4.1.1  Public, Private, and Protected Sections of a Class 

 In addition to its public and private sections, a class can have a  protected section . By creating a pro-
tected section, a class designer can hide members from a class’s clients but make them available to a 
derived class. That is, a derived class can reference the protected members of its base class directly, 
but clients of the base class or derived class cannot. 
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 For example,  PlainBox  has a private member  item , which the derived class  MagicBox  cannot 
reference directly. If instead you declared  item  as protected,  MagicBox  would be able to access  item
directly by name. Clients of  MagicBox  or  PlainBox , however, would not have direct access to  item .          
We could then revise our implementation of  MagicBox ’s  setItem  method as follows: 

   template < class ItemType> 
  void MagicBox<ItemType>::setItem( const ItemType& theItem) 
 { 

if (!firstItemStored) 
   { 
       item = theItem;            // item has protected access 
       firstItemStored =  true; // Box now has magic
   }  // end if 
} // end setItem 

 The following summary distinguishes among the public, private, and protected sections of a 
class, and Figure C4-6 illustrates their access.   

FIGURE C4-5         Virtual method tables when  cardBoxPtr  points to (a) an instance of  PlainBox ; 
(b) an instance of MagicBox

(a) PlainBox<string>* cardBoxPtr = new PlainBox<string>("Queen of Hearts");

cardBoxPtr

A PlainBox object

VMT for PlainBoxVMT pointer

item setItem Code for setItem in PlainBox

VMT for MagicBox

setItem Code for setItem in MagicBox

VMT pointer

item

firstItemStored

A MagicBox object

cardBoxPtr

(b) PlainBox<string>* cardBoxPtr = new MagicBox<string>("Queen of Hearts");

getItem Code for getItem in PlainBox

Code for setItem in PlainBoxgetItem

FIGURE C4-6         Access to public, private, and protected sections of a class by a client and a 
derived class   
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   C4.1.2  Public, Private, and Protected Inheritance 

 Several kinds of inheritance are possible. Regardless of the kind of inheritance, a derived class can 
access all of the base class’s public and protected members, but not its private members. You can con-
trol how a class’s inherited members are passed to subsequent derived classes by specifying one of 
three kinds of inheritance. You begin the defi nition of the derived class as 

class DerivedClass : kindOfInheritance BaseClass

 where  kindOfInheritance  is one of  public ,  private , or  protected . The inheritance that you saw earlier 
in this interlude is public inheritance. The following summary describes the three kinds of inheritance. 

     Note: Stylistic guideline 

 As a general stylistic guideline to maintain information hiding and to keep derived 
classes from coupling directly to base class data members, you should make all data 
members of a class private and, if required, provide indirect access to them by defi ning 
accessor or mutator methods that are either public or protected. Although a class’s public 
members are available to anyone, its protected members are available exclusively to 
either its own methods or the methods of a derived class.    

In general, a class’s 
data members 
should be private 

     Note: Kinds of inheritance 

•  Public inheritance:   Public and protected members of the base class remain, respec-
tively, public and protected members of the derived class.  

•  Protected inheritance:   Public and protected members of the base class are protected 
members of the derived class.  

•  Private inheritance:   Public and protected members of the base class are private mem-
bers of the derived class.   

 In all cases, private members of a base class remain private to the base class and cannot 
be accessed by a derived class. 

 Of the three types of inheritance, public inheritance is the most important and the one that we 
will use most often in subsequent chapters. You use public inheritance to extend the defi nition of a 
class. You use private inheritance to implement one class in terms of another class. Protected inherit-
ance is not often used, so we will not cover it. 

 The following section describes when it is appropriate to use public and private inheritance.  

   C4.1.3   Is-a  and  As-a  Relationships 

 As you just saw, inheritance provides for ancestor/descendant relationships among classes. Other 
relationships are also possible. When designing new classes from existing ones, it is important to 

     Note: Access categories of a class 

•   Public members can be used by anyone.  
•   Private members can be used only by methods of the class.  
•   Protected members can be used only by methods of the class or any derived class.   



 Inheritance Revisited 341

identify their relationship so that you can determine whether to use inheritance and, if so, the kind of 
inheritance that best refl ects the relationship. Three basic kinds of relationships are possible. In this 
section we discuss  is-a  and  as-a  relationships, which involve inheritance. We discuss an important 
third relationship, has-a , in Section C4.2. 

   Is-a  relationships.   Earlier in this interlude, we used public inheritance to derive the class  MagicBox
from PlainBox . You should use public inheritance only when an  is-a   relationship  exists between two 
classes of objects. In this example, a magic box  is a  plain box, as  Figure   C4-7    illustrates. That is, whatever 
is true of the base class  PlainBox  is also true of the derived class  MagicBox . Wherever you can use an 
object of type PlainBox , you can also use an object of type  MagicBox . This feature is called  object type 
compatibility . In general, a derived class is type-compatible with all of its ancestor classes. Thus, you 
can use an instance of a derived class instead of an instance of its base class, but not the other way around.     

 In particular, the object type of an argument in a call to a method can be a descendant of the object 
type of the corresponding parameter. For example, suppose your program uses the classes  PlainBox
and MagicBox  and contains the following ordinary function, which is not a member of any class: 

   void displayBoxItem(PlainBox<string> thing) 
 { 
   cout << "The item stored in the box is "
         << thing.getItem() << ".\n"; 
} // end displayBoxItem 

 If you defi ne  myPlainBox  and  myMagicBox  as    

  PlainBox<string> myPlainBox("Basketball");
MagicBox<string> myMagicBox("Volleyball"); 

 the following calls to  displayBoxItem  are legal: 

  displayBoxItem(myPlainBox); // myPlainBox's item is displayed 
displayBoxItem(myMagicBox); // myMagicBox's item is displayed 

 The fi rst call is unremarkable because both the argument  myPlainBox  and the parameter  thing  have 
the same data type. The second call is more interesting: The data type of the argument  myMagicBox  is 
a descendant of the data type of the parameter thing . Because a magic box is a plain box, it can 
behave like a plain box. That is,  myMagicBox  can perform plain box behaviors, so you can use  myMag-
icBox  anywhere you can use  myPlainBox . Note that object type compatibility applies to both value 
and reference arguments.     

   As-a  relationships.   Consider the relationship between the class  Stack , which implements the ADT 
stack, and the class List , which implements the ADT list. Because a  Stack  object should not be able 
to have  List  behaviors, public inheritance is inappropriate in this case. A stack is not a list. When 
public inheritance is inappropriate, if your class needs access to the protected members of another 

Public inheritance 
implements an is-a  
relationship 

FIGURE C4-7         A magic box  is a  plain box   
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class or if you need to redefi ne methods in that class, you can form an  as-a   relationship  between your 
classes; that is, you can use private inheritance.    

 To derive  Stack   from  List  using private inheritance, you begin the defi nition of the class  Stack
with the header 

class Stack : private List

List ’s public members—and protected members, if  List  has any—would be private members of 
Stack . Thus, within the implementation of  Stack , you would be able to use a list to store the stack’s 
entries and manipulate them by using  List ’s methods. We say that  Stack  implements the ADT stack 
as a  list. Both the descendants and clients of  Stack  are unable to access any members of  List . Thus, 
the underlying list is hidden from the clients of the stack. 

 If public inheritance is inappropriate and your class does not need access to the protected mem-
bers of another class, or if you do not need to redefi ne methods in that class, a  has-a  relationship is 
preferable and simpler to use. We consider that next.    

   C4.2 Containment: Has-a Relationships 
 A ball-point pen  has a  ball as its point, as  Figure   C4-8    illustrates. Although you would want to use 
Ball  in your defi nition of a class  Pen , you should not use public inheritance, because a pen is not a 
ball. In fact, you do not use inheritance at all to implement a  has-a   relationship . Instead, you can 
defi ne a data member  point —whose type is  Ball —within the class  Pen  as 

   class Pen 
 { 
  private:  
    Ball point; 

...
 }; // end Pen 

 Recall that a data member can be an instance of any class other than the one currently being defi ned—
Pen , in this example. An instance of  Pen  has, or  contains , an instance of  Ball . Thus, another name for 
the has-a  relationship is  containment .     

 As you continue to examine the ball’s relationship to the pen, you may realize that if the pen is 
destroyed, the ball should also be destroyed, since it no longer has a purpose. When an instance of 
an object cannot exist independently of the containing class, this type of containment is called 

  Has-a, or 
containment, means 
a class has an 
object as a data 
member

FIGURE C4-8         A pen  has a  or  contains  a ball   
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composition . We have seen this in our link-based implementations of an ADT. For example, when 
an instance of LinkedBag ,  LinkedStack , or  LinkedList  is destroyed, the nodes used to store the 
container’s objects are no longer needed and are destroyed also. In the array-based implementa-
tions of our ADTs, the array containing the items is destroyed. 

 Another form of containment is  aggregation . In an aggregate relationship the contained item 
can exist independently of the containing class. Our  PlainBox  class has an instance of  ItemType
named item . If our plain box is destroyed, the program can continue to use  item . Another example of 
aggregation can be found in the implementations of our ADT bag, ADT stack, and ADT list: The 
items stored in a bag, stack, or list continue to exist even after we are fi nished using the container and 
it has been destroyed.     

     Programming Tip:   Favor containment over inheritance. Use public inheritance 
when an  is-a  relationship exists, that is, when an instance of a derived class can substitute 
for an instance of the base class. Use private inheritance when you want to reuse a part of 
another class’s implementation. 

     Note: Containment and the execution order of constructors and destructors 

 The constructors for a class’s member objects execute in the order listed in the class defi -
nition before the class’s constructor. For example,  Ball ’s constructor executes before 
Pen ’s constructor. The destructors of a class’s member objects execute after the class’s 
destructor. For example,  Ball ’s destructor executes after  Pen ’s. 

Note: Execution order of constructors and destructors 

 Considering both inheritance and containment, a class’s constructors execute in the 
following order: 

   1.   Its base class constructor executes.  
  2.   Constructors of its member objects execute in the declaration order.  
  3.   The body of its constructor executes.   

 A class’s destructors execute in the opposite order: 

   1.   The body of its destructor executes.  
  2.   Destructors of its member objects execute in the declaration order.  
  3.   Its base class destructor executes.   

   C4.3 Abstract Base Classes Revisited 
 Imagine a CD player (CDP) and a DVD player (DVDP). Both devices share several characteristics. 
Each involves a compact disc. You can insert, remove, play, and stop such discs. You can also skip for-
ward or skip backward from the current position on the disc. Some of these operations are essentially 
the same for both devices, while others—in particular, the play operation—are different but similar. 

 If you were specifying both devices, you might begin by describing the common operations.    

  // Inserts a disc into the player.  
 +insert() 

Disc transport 
operations 



344 C++ INTERLUDE 4 Class Relationships and Reuse

 //  Removes a disc from the player.  
 +remove() 

 //  Plays the disc.  
 +play() 

 //  Stops playing the disc.  
 +stop() 

 //  Skips ahead to another section of the disc.  
 +skipForward() 

 //  Skips back to an earlier section of the disc.  
 +skipBackward() 

 These operations could constitute a generic disc player (GDP). 
 If GDP, CDP, and DVDP were classes, GDP could be the base class of CDP and DVDP, as 

 Figure   C4-9    illustrates. While GDP could implement operations such as  insert  and  remove  that 
would be suitable for both a CDP and a DVDP, it could only indicate that these devices have a  play
operation. So CDP, for example, inherits the operations provided by GDP but overrides the  play
operation to suit CDs, as  Figure   C4-10    illustrates. If necessary, CDP could override any of GDP’s 
operations or defi ne additional ones. We can make similar comments about DVDP. Thus, 

•   A CDP is a GDP that plays sound.  
•   A DVDP is a GDP that plays sound and video.     

 Because GDP cannot implement its  play  operation, we would not want instances of it. So GDP is 
simply a class without instances that forms the basis of other classes. If a class never has instances, its 
methods need not be implemented. Such methods, however, must be virtual so that derived classes 
can supply their own implementations. A virtual method with an undefi ned body is called a  pure vir-
tual method  and is written as    

virtual   prototype  = 0; 

 within a class defi nition. The implementation of a pure virtual method is deferred to a derived class. 

FIGURE C4-9         CDP and DVDP have an abstract base class   
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FIGURE C4-10         CDP and DVDP are derived from GDP   

insert
remove
stop
skipForward
skipBackward
play play

Inherits

GDP CDP or DVDP

Overrides

  Chapter   1    defi ned an abstract base class as a class that contains at least one virtual method that 
has no implementation. We can now restate that defi nition as a class that contains at least one pure 
virtual method. An abstract base class has no instances and is used only as the basis of other classes. 
Thus, the GDP class is an abstract base class, because it does not implement all of its methods. Any 
derived class that fails to implement all of the pure virtual methods is also an abstract base class and 
cannot have instances.    

 An abstract base class can provide a constructor, which cannot be pure because constructors can-
not be virtual. A destructor in an abstract base class should not be pure, because derived classes will 
call it, and thus, it should be implemented even if it simply has an empty body. Generally, virtual 
destructors are recommended.    

 As you have seen, an abstract base class is a great place to specify an ADT. By defi ning the methods 
that make up the ADT’s public interface as pure virtual methods, we force any derived class to imple-
ment these methods, ensuring a common interface across implementations. For example, Listing C4-3 
contains the abstract base class for boxes from C++ Interlude 1 with the addition of a virtual destructor. 

A class that contains 
at least one pure 
virtual method is an 
abstract base class 

An abstract base 
class has 
descendants
but no instances 

     LISTING C4-3 An abstract class that is an interface for the ADT box 

  template < class ItemType> 
  class BoxInterface
{
  public : 
     virtual ~BoxInterface() { } // Empty implementation 

virtual void setItem( const ItemType& theItem) = 0; 
virtual ItemType getItem() const = 0; 

 }; // end BoxInterface 

 We can indicate that our class  PlainBox  is derived from  BoxInterface  by changing its class header to 

class PlainBox : public BoxInterface<ItemType> 

 We can also defi ne a new class,  JewelryBox , that provides an alternate implementation of the meth-
ods in BoxInterface . Its class header would be 

   class JewelryBox : public BoxInterface<ItemType> 

  Figure   C4-11    shows the family of box classes.  
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 If we defi ne several pointer variables of type  BoxInterface , we can have them point to instances 
of any of the derived classes:  

  BoxInterface<string>* someBoxPtr = new PlainBox<string>("Ace"); 
BoxInterface<string>* anotherBoxPtr = new JewelryBox<string>("Emerald"); 
BoxInterface<string>* funBoxPtr = new MagicBox<string>("Stone"); 

 For each of the objects created, we can call the  setItem  or  getItem  method, and the implementation 
specifi c to the instantiated class will execute, even though the pointers are of type  BoxInterface : 

  cout << someBoxPtr->getItem() << endl; // Uses PlainBox getItem 
cout << anotherBoxPtr->getItem() << endl; // Uses JewelryBox getItem 
cout << funBoxPtr->getItem() << endl; // Uses MagicBox getItem, which

//   is PlainBox getItem 

 The key points about abstract base classes are summarized next.         

FIGURE C4-11         UML class diagram of the family of box classes   
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     Note: Abstract base classes 

 An abstract base class: 

•   By defi nition is a class that contains at least one pure virtual method.  
•   Is used only as the basis for derived classes and thus defi nes a minimum interface 

for its descendants.  
•   Has no instances.  
•   Should, in general, omit implementations except for the destructor and methods 

that provide access to private data members. That is, virtual methods in an abstract 
base class usually should be pure.  

•   Must implement any virtual method that is not pure, thereby providing a default 
implementation if a derived class chooses not to supply its own.   
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 C++ Interlude 4 Class Relationships and Reuse  

One of the most frequently performed computing tasks is the maintenance of a 
collection of data in some specifi ed order. Many examples immediately come to mind, 
such as students placed in order by their names, baseball players listed in order by their 
batting averages, and corporations listed in order by their assets. The items in these 
examples are in  sorted order . In contrast, the items on a grocery list might occur in the 
order in which they appear on the grocer’s shelves, but they are probably not sorted by 
name. These items are ordered simply by their positions within the list. 
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 The ADT  sorted list  maintains its entries in sorted order. The problem of maintaining sorted data 
involves more than simply sorting the data. Often you need to insert some new data item into its 
proper, sorted place. Similarly, you often need to remove some data item. For example, suppose your 
university maintains an alphabetical list of the students who are currently enrolled. The registrar must 
add names to and remove names from this list because students constantly enroll in and leave school. 
These operations should preserve the sorted order of the data.    

 This chapter specifi es the ADT sorted list and then implements it in several ways. A major goal 
of this chapter is to show you how we can develop a class of sorted lists from an existing class of lists.  

      12.1 Specifying the ADT Sorted List 
 The ADT list leaves it up to the client to arrange the entries in a given collection. The client can main-
tain the entries in any order that meets its needs. Recall that to use the  insert  operation of the ADT 
list, you must specify both the new entry and its desired position within the list. The ADT sorted list 
differs from the ADT list in that a sorted list inserts and removes items by their values and not by their 
positions. For example, the sorted list insertion operation determines the proper position for the new 
entry according to its value. Since a sorted list is responsible for organizing its entries, it has no opera-
tion that inserts a new entry by position. If you were allowed to specify a new entry’s position, you 
might destroy the order of the sorted list’s entries.  

The ADT sorted list 
maintains items in 
sorted order 

      Note:    The ADT sorted list is a container of items that determines and maintains the 
order of its entries by their values. For simplicity, we will allow the sorted list to contain 
duplicate items. Insisting that the sorted list contain only unique items is somewhat more 
complicated, and we will leave this variation as an exercise. 

 What other operations do we want for this ADT? We’ve already mentioned that you can add an 
entry to the sorted list. Since the sorted list determines the position of a new entry, you could ask the 
ADT for this position. That is, you could ask for the position of an existing entry or for the position in 
which a proposed entry would occur if you added it to the list. You could also ask the ADT for the 
entry at a particular position. And clearly you should be able to remove an entry. We could remove a 
particular entry given its value, but we could also remove an entry given its position in the sorted list. 
We will include both of these removal operations. 

 Let’s itemize the sorted list’s operations—including common ones like getting the current 
number of entries—and specify them more carefully. Note that none of the operations on a sorted list 
that involve the position of an entry destroys the list’s sorted order.  

      Note: ADT sorted list operations 

•   Test whether a sorted list is empty.  
•   Get the number of entries in a sorted list.  
•   Insert an entry into a sorted list.  
•   Remove a given entry from a sorted list.  
•   Remove the entry at a given position from a sorted list.  
•   Remove all entries from the sorted list.  
•   Look at (get) the entry at a given position in the list.  
•   Get the position in a sorted list of a given entry.   
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  Figure   12-1    shows the UML diagram for this ADT, and the following summary of its operations 
provides even more details for its operation contract:       

 ABSTRACT DATA TYPE: SORTED LIST

  DATA

 • A fi nite number of objects, not necessarily distinct, having the same data type and ordered by their values. 

  OPERATIONS

  PSEUDOCODE    DESCRIPTION

 insertSorted(newEntry)  Task: Inserts an entry into this sorted list in its proper order so that the list remains 
sorted. 

 Input:  newEntry  is the new entry. 
 Output: None. 

 removeSorted(anEntry)  Task: Removes the fi rst or only occurrence of  anEntry  from this sorted list. 
 Input:  anEntry  is the entry to remove. 
 Output:  Returns true if  anEntry  was located and removed, or false if not. In the latter 

case, the list remains unchanged. 

 getPosition(anEntry)  Task: Gets the position of the fi rst or only occurrence of  anEntry  in this sorted list. 
 Input:  anEntry  is the entry to be located. 
 Output:  Returns the position of  anEntry  if it occurs in the sorted list. Otherwise, returns 

the position where  anEntry  would occur in the list, but as a negative integer. 

 The following operations behave as they do for the ADT list and are described in  Chapter   8   : 
isEmpty()

 getLength() 

 remove(position) 

 clear() 

 getEntry(position) 

FIGURE 12-1         UML diagram for the ADT sorted list   
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+isEmpty(): boolean
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+insertSorted(newEntry: ItemType): void
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+remove(position: integer): boolean
+clear(): void
+getEntry(position: integer): ItemType
+getPosition(newEntry: ItemType): integer
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 The fi rst two methods are straightforward, but let’s look more closely at  getPosition . Given an 
entry in the sorted list, the method  getPosition  returns the entry’s position number within the list, as 
you would expect. We number the entries beginning with 1, just as we do for the ADT list. But what if 
the given entry is not in the sorted list? In this case,  getPosition  returns the position number where 
the entry belongs in the list. The returned number is negative, however, to signal that the entry is not in 
the list. For example, if  missingObject  is not in the sorted list but would belong at position 3, 
getPosition(missingObject)  will return –3. 

 The sorted list also has some, but not all, of the operations of an ADT list. We have already men-
tioned that adding an entry at a given position is not possible, because otherwise the client could 
destroy the order of the sorted list. For the same reason, the list’s  setEntry  method is not available to 
a sorted list. The other operations of the ADT list, however, are useful for a sorted list as well, includ-
ing the ones that retrieve or remove the entry at a given position. The methods  getEntry  and  remove
each have a position number as a parameter, but they will not alter the relative order of the entries in 
the sorted list.   

      Question 1    The specifi cations of the ADT sorted list do not mention the case in which 
two or more items have the same value. Are these specifi cations suffi cient to cover this case, 
or must they be revised? 

CHECK POINT

  Question 2    Write specifi cations for the operation  insertSorted  when the sorted list 
must not contain duplicate entries. 

   12.1.1  An Interface Template for the ADT Sorted List 

 The C++ interface given in Listing 12-1 formalizes our initial specifi cations of the ADT sorted list.   

LISTING 12-1 A C++ interface for sorted lists 

  /** Interface for the ADT sorted list 
 @file SortedListInterface.h */ 

#ifndef _SORTED_LIST_INTERFACE 
#define SORTED_LIST_INTERFACE 

  template < class ItemType> 
  class SortedListInterface
 { 
  public : 

/** Inserts an entry into this sorted list in its proper order
so that the list remains sorted. 

     @pre  None.  
     @post  newEntry is in the list, and the list is sorted. 
     @param newEntry  The entry to insert into the sorted list. */    
      virtual void insertSorted( const ItemType& newEntry) = 0; 

    /** Removes the first or only occurrence of the given entry from this  
        sorted list. 
     @pre  None. 
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   12.1.2  Using the Sorted List Operations 

Example.  To demonstrate the operations of the ADT sorted list that the previous section specifi es, 
we fi rst create a sorted list of strings. We begin by declaring and allocating a sorted list, where 
we assume that  SortedList  is an implementation of the operations specifi ed by the interface 
SortedListInterface : 

SortedListInterface<string>* nameListPtr = new SortedList<string>();

 Next, we add names in an arbitrary order, realizing that the ADT will organize them alphabetically: 

  nameListPtr->insertSorted("Jamie"); 
 nameListPtr->insertSorted("Brenda"); 

     @post  If the removal is successful, the first occurrence of the 
         given entry is no longer in the sorted list, and the returned  
         value is true. Otherwise, the sorted list is unchanged and the  
         returned value is false. 
     @param anEntry  The entry to remove. 
     @return  True if removal is successful, or false if not. */    
      virtual bool removeSorted( const ItemType& anEntry) = 0; 

    /** Gets the position of the first or only occurrence of the given
        entry in this sorted list. In case the entry is not in the list,  
        determines where it should be if it were added to the list. 
    @pre  None. 
    @post  The position where the given entry is or belongs is returned. 
        The sorted list is unchanged. 
    @param anEntry  The entry to locate. 
    @return  Either the position of the given entry, if it occurs in the  
        sorted list, or the position where the entry would occur, but as a  
        negative integer. */ 

virtual int getPosition( const ItemType& anEntry) = 0;

// The following methods are the same as those given in ListInterface 
// in Listing 8-1 of Chapter  8    and are completely specified there. 

   /** Sees whether this list is empty. */ 
     virtual bool isEmpty() const = 0; 

   /** Gets the current number of entries in this list. */ 
virtual int getLength() const = 0; 

   /** Removes the entry at a given position from this list. */ 
virtual bool remove( int position) = 0; 

   /** Removes all entries from this list. */
virtual void clear() = 0; 

   /** Gets the entry at the given position in this list. */ 
virtual ItemType getEntry( int position) const = 0; 

 }; // end SortedListInterface
 #endif 
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 nameListPtr->insertSorted("Sarah"); 
 nameListPtr->insertSorted("Tom"); 
 nameListPtr->insertSorted("Carlos"); 

 The sorted list now contains the following entries: 

   Brenda
  Carlos
  Jamie
  Sarah
  Tom   

 Assuming the list just given, here are some examples of the operations on the sorted list: 

nameListPtr->getPosition("Jamie")  returns 3, the position of Jamie in the list 
nameListPtr->getPosition("Jill")  returns –4, because Jill belongs at position 4 in the list 
nameListPtr->getEntry(2)  returns Carlos, because he is at position 2 in the list  

 Now remove Tom and the fi rst name in the list by writing 

  nameList.remove("Tom"); 
 nameList.remove(1); 

 The list now contains 

   Carlos
  Jamie
  Sarah

 Removing the last entry, Tom, did not change the positions of the other entries in the list, but remov-
ing the fi rst entry did. Carlos is now at position 1, instead of 2.      

      Note:    The ADT sorted list can add, remove, or locate an entry, given the entry as an 
argument. The sorted list has several operations that are the same as ADT list operations, 
namely  getEntry  (by position),  removeSorted  (by position),  clear ,  getLength , and 
isEmpty . However, a sorted list will not let you add or replace an entry by position. 

      Question 3    Suppose that  wordListPtr  points to an unsorted list of words. Using the 
operations of the ADT list and the ADT sorted list, create a sorted list of these words. 

CHECK POINT

  Question 4    Assuming that the sorted list you created in the previous question is not 
empty, write C++ statements that 

a.   Display the last entry in the sorted list.  
b.   Add the sorted list’s fi rst entry to the sorted list again.   

   12.2 A Link-Based Implementation 
 As with all ADTs, you have a choice of several ways in which to implement the sorted list. You could 
store a sorted list’s entries in, for example, an array, a chain of linked nodes, an instance of a vector, or 
an instance of an ADT list. We fi rst will consider a chain of linked nodes and then an instance of an 
ADT list. Finally, we will use inheritance to develop a completely different implementation. 
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   12.2.1  The Header File 

 An implementation that uses a chain of linked nodes to store the entries in a sorted list has 
several details in common with the link-based implementation of the ADT list that you studied in 
 Chapter   9   . In particular, it has the same data fi elds, similar constructors, several methods that 
are the same, and the same defi nition of the class  Node . Let’s begin with the header fi le, which is 
given in Listing 12-2. The class  LinkedSortedList  declares three new public methods for 
the sorted list— insertSorted ,  removeSorted , and  getPosition —each of which takes a list 
entry as its argument. As you will see, to implement these methods, you will need the private 
method getNodeBefore . It accepts an entry as its argument and returns a pointer to the node 
just prior to the one that contains—or should contain—the entry. Since the defi nitions of the 
remaining methods are the same as those in LinkedList , as given in  Chapter   9   , and two of them 
involve the position of an entry, you will also need the private method  getNodeAt  as defi ned in 
 Chapter   9   . As you will see, we will use the private method copyChain to provide a recursive 
implementation for the copy constructor.   

 LISTING 12-2 The header fi le for the class LinkedSortedList .

  /** ADT sorted list: Link-based implementation. 
 @file LinkedSortedList.h */ 

#ifndef _LINKED_SORTED_LIST 
#define _LINKED_SORTED_LIST 

#include "SortedListInterface.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class LinkedSortedList : public SortedListInterface<ItemType> 
 { 
  private : 
   Node<ItemType>* headPtr; // Pointer to first node in the chain 

int itemCount;  // Current count of list items

   // Locates the node that is before the node that should or does  
   // contain the given entry. 
   // @param anEntry  The entry to find. 
   // @return  Either a pointer to the node before the node that contains  
   //    or should contain the given entry, or nullptr if no prior node exists.

Node<ItemType>* getNodeBefore( const ItemType& anEntry) const ; 

   // Locates the node at a given position within the chain.  
Node<ItemType>* getNodeAt( int position) const ; 

   // Returns a pointer to a copy of the chain to which origChainPtr   points. 
Node<ItemType>* copyChain( const Node<ItemType>* origChainPtr); 

  public : 
LinkedSortedList();
LinkedSortedList(const LinkedSortedList<ItemType>& aList); 
virtual ~LinkedSortedList(); 

(continues)

VideoNote

The ADT sorted list
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   12.2.2  The Implementation File 

 The default constructor and destructor for our class  LinkedSortedList  have practically the same 
defi nitions as they do in the class  LinkedList . We will, therefore, leave them to you to implement. 
You could also model the copy constructor after the one in  LinkedList , but we will use recursion in 
our defi nition here. We begin by having the copy constructor call the private method  copyChain , 
which will have a recursive defi nition: 

   template < class ItemType> 
 LinkedSortedList<ItemType>:: 
 LinkedSortedList( const LinkedSortedList<ItemType>& aList) 
 { 
    headPtr = copyChain(aList.headPtr); 
} // end copy constructor 

 The private method  copyChain  begins by testing its pointer argument. If it contains  nullptr , 
the pointer to the copy of the chain is set to  nullptr  and  itemCount  is set to zero. Otherwise, the 
method creates a new node containing the data from the fi rst node of the given chain. The method 
then recursively inserts the new node into the copy of the chain. After each insertion, the method 
increments itemCount  and returns a pointer to the new chain. The defi nition of  copyChain  is 

   template < class ItemType> 
Node<ItemType>* LinkedSortedList<ItemType>:: 
                    copyChain( const Node<ItemType>* origChainPtr) 
 { 
    Node<ItemType>* copiedChainPtr; 

if (origChainPtr == nullptr)
    { 
        copiedChainPtr =  nullptr ; 
        itemCount = 0; 
    } 

else
    { 

// Build new chain from given one 
        Node<ItemType>* copiedChainPtr =  
                            new Node<ItemType>(origChainPtr->getItem()); 
        copiedChainPtr->setNext(copyChain(origChainPtr->getNext())); 
        itemCount++; 
    }  // end if 

return copiedChainPtr; 
} // end copyChain 

void insertSorted( const ItemType& newEntry); 
bool removeSorted( const ItemType& anEntry); 
int getPosition( const ItemType& newEntry) const ; 

   // The following methods are the same as given in ListInterface: 
bool isEmpty() const ; 
int getLength() const ; 
bool remove( int position); 
void clear(); 
ItemType getEntry( int position) const throw (PrecondViolatedExcep); 

 }; // end LinkedSortedList 
#include "LinkedSortedList.cpp" 
#endif
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The method insertSorted.  Adding an entry to a sorted list requires that you fi nd where in the list 
the new entry belongs. Since the entries are sorted, you compare the new entry with the entries in the 
sorted list until you reach an entry that is not smaller than the new entry.  Figure   12-2    depicts a chain of 
linked nodes, each containing a string that is sorted alphabetically. The fi gure shows where the addi-
tional strings "Ally" ,  "Cathy" ,  "Luke" ,  "Sue" , and  "Tom"  would be inserted into the chain and the 
comparisons that would have to occur to arrive at those locations.  

 You can see from the fi gure that, in a string comparison, Ally is less than Bob, and so it would be 
inserted at the beginning of the chain. To see where to insert Luke, you would fi nd that Luke is 
greater than both Bob and Jill but less than Mike. Thus, Luke belongs before Mike in the chain. Sue, 
on the other hand, is already in one of the nodes. You would discover that Sue is greater than Bob, Jill, 
and Mike but not greater than Sue. So you would insert the new entry Sue just before the existing 
entry Sue. Finally, Tom is greater than all the current names in the list, so you would add it to the end 
of the chain.  

FIGURE 12-2         Places to insert strings into a sorted chain of linked nodes   

headPtr

Bob Jill Mike Sue

Ally < Bob Cathy < Jill Luke < Mike Sue = = Sue Tom > Sue

      Note:    Given a sorted list with entries in ascending order, you insert a new entry just 
before the fi rst entry that is not smaller than the new entry. 

 Recall from earlier chapters that you add a new node to the beginning of a chain differently 
than at other points in the chain. Adding to the beginning is easy, since  headPtr  references 
the fi rst node in the chain. To add anywhere else, you need a pointer to the node that will 
ultimately occur before the new node. Thus, while you traverse the chain of linked nodes to dis-
cover where the new entry belongs, you must retain a reference to the node prior to the one under 
consideration. 

 The following high-level algorithm describes our strategy: 

  // Adds a new entry to the sorted list.  
add(newEntry)

Allocate a new node containing  newEntry
Search the chain until either you find a node containing  newEntry or you pass

the point where it should be
Let  prevPtr point to the node before the insertion point
if  (the chain is empty or the new node belongs at the beginning of the chain)

Add the new node to the beginning of the chain
else  

Insert the new node after the node referenced by  prevPtr

Increment the length of the sorted list
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 Assuming the private method  getNodeBefore  that we specifi ed in the header fi le, we can use the 
previous algorithm to defi ne the  insertSorted  method, as follows: 

   template < class ItemType> 
  void LinkedSortedList<ItemType>::insertSorted( const ItemType& newEntry) 
 { 
   Node<ItemType>* newNodePtr = new Node<ItemType>(newEntry); 
   Node<ItemType>* prevPtr = getNodeBefore(newEntry); 

if (isEmpty() || (prevPtr == nullptr )) // Add at beginning 
   { 
       newNodePtr->setNext(headPtr); 
       headPtr = newNodePtr; 
   } 

else // Add after node before 
   { 
       Node<ItemType>* aftPtr = prevPtr->getNext(); 
       newNodePtr->setNext(aftPtr); 
       prevPtr->setNext(newNodePtr); 

   }  // end if 

   itemCount++; 
} // end insertSorted 

The private method getNodeBefore. We still need to implement the private method  getNodeBefore
to locate the node that is before the node that should or does contain the given entry. We will need two 
pointers as we traverse the list. Clearly, we need a pointer to the current node so we can compare its entry to 
the desired entry. But we also must retain a pointer to the previous node, because it is this pointer that the 
method returns. In the following implementation, these pointers are  curPtr  and  prevPtr . 

   template < class ItemType> 
Node<ItemType>* LinkedSortedList<ItemType>:: 

 getNodeBefore( const ItemType& anEntry) const
 { 
    Node<ItemType>* curPtr = headPtr; 
    Node<ItemType>* prevPtr =  nullptr;

while ( (curPtr != nullptr) && (anEntry > curPtr->getItem()) ) 
    { 
       prevPtr = curPtr; 
       curPtr = curPtr->getNext(); 
    }   // end while 

return prevPtr; 
} // end getNodeBefore 

 The programming problems at the end of this chapter ask you to complete this implementation of 
the sorted list.       

      Note:    Since the ADTs sorted list and list share many of the same operations, portions 
of their implementations are identical. 

  Question 6    What does  getNodeBefore  return if the sorted list is empty? How can you 
use this fact to simplify the implementation of the method  insertSorted  given previously? 

      Question 5    In the while  statement of the method  getNodeBefore , how important is the 
order of the two boolean expressions that the operator  &&   joins? Explain. 

CHECK POINT
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   12.2.3  The Effi ciency of the Link-Based Implementation 

 The performance of  insertSorted  depends on the effi ciency of the method  getNodeBefore . The lat-
ter method locates the insertion point by traversing the chain of nodes. This traversal is O( n ), making 
the addition to a sorted list an O( n ) operation. With the exception of  isEmpty  and  getLength , which 
are O(1) operations, the sorted-list methods are O( n ). We leave these observations for you to show as 
Exercise 11.   

   12.3 Implementations That Use the ADT List 
 As we noted earlier in this chapter, the link-based implementation of the ADT sorted list repeats much 
of the corresponding implementation of the ADT list. Can we avoid this duplication of effort and reuse 
portions of the list’s implementation? The answer to this question is yes, as you will soon see. 

 You can certainly use the ADT list to create and maintain an alphabetical list of strings. It is natu-
ral, then, to consider using the ADT list when implementing the ADT sorted list. Basically, you can 
do this using one of three techniques: 

•   Containment  
•   Public inheritance  
•   Private inheritance   

 In most cases, one or more of these three approaches will not be applicable to a particular problem; usually, 
one of the approaches will be best. However, we will use the sorted list to demonstrate all three techniques. 

   12.3.1  Containment 

 A sorted list can maintain its entries within a list, as  Figure   12-3    illustrates. You use a list as a data 
fi eld within the class that implements the sorted list. As noted in C++ Interlude 4, this approach uses a 

  Question 7    Suppose that you use the previous method  insertSorted  to add an entry to a 
sorted list. If the entry is already in the list, where in the list will the method insert it? Before 
the fi rst occurrence of the entry, after the fi rst occurrence of the entry, after the last occur-
rence of the entry, or somewhere else? 

  Question 8    What would be the answer to the previous question if you changed > to >= in 
the while  statement of the method  getNodeBefore ? 

FIGURE 12-3         An instance of a sorted list that contains a list of its entries   

An instance of a list

An instance of a sorted list

Bob
Jill
Mike
Sue
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type of containment called composition and illustrates the has-a  relationship between the class of 
sorted lists and the class of lists. If we name our new class  SortedListHasA  and use an instance of 
LinkedList , as given in Listing 9-2 of  Chapter   9   ,  Figure   12-4    illustrates the relationship between 
these two classes using UML notation.   

The header fi le.    Listing 12-3 declares the class  SortedListHasA  so that it  has a  private data 
member that is an instance of LinkedList  containing the items in the sorted list. Our class will derive 
from the interface  SortedListInterface , as given earlier in Listing 12-1.   

FIGURE 12-4 SortedListHasA  is composed of an instance of the class  LinkedList

SortedListHasA

LinkedList

 LISTING 12-3 The header fi le for the class SortedListHasA

  /** ADT sorted list using the ADT list. 
 @file SortedListHasA.h */ 
#ifndef _SORTED_LIST_HAS_A 
#define _SORTED_LIST_HAS_A 

#include "SortedListInterface.h" 
#include "ListInterface.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class SortedListHasA : public SortedListInterface<ItemType> 
 { 
  private : 

ListInterface<ItemType>* listPtr; 

  public : 
SortedListHasA();
SortedListHasA(const SortedListHasA<ItemType>& sList); 
virtual ~SortedListHasA(); 

void insertSorted( const ItemType& newEntry); 
bool removeSorted( const ItemType& anEntry); 
int getPosition( const ItemType& newEntry) const;

   // The following methods have the same specifications 
   // as given in ListInterface in  Chapter  8   : 
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The constructors and destructor.  The constructor creates an instance of  LinkedList  and assigns 
a reference to it to the pointer variable  listPtr : 

   template < class ItemType> 
 SortedListHasA<ItemType>::SortedListHasA() 
 { 
   listPtr = new LinkedList<ItemType>(); 
} // end default constructor 

 The copy constructor creates a new list and then copies the entries in the given sorted list to the new 
list:

   template < class ItemType> 
 SortedListHasA<ItemType>:: 
 SortedListHasA( const SortedListHasA<ItemType>& sList) 
 { 
   listPtr = new LinkedList<ItemType>(); 

for ( int position = 1; position <= sList.getLength(); position++) 
      listPtr->insert(position, sList.getEntry(position)); 
} // end copy constructor 

 Note that we call  LinkedList ’s method  insert . While this particular defi nition is not very effi cient, a 
recursive O( n ) implementation is possible. Exercise 7 at the end of this chapter asks you to investigate 
this possibility. 

 The destructor simply calls the method  clear , which will deallocate the list: 

   template < class ItemType> 
 SortedListHasA<ItemType>::~SortedListHasA() 
 { 
   clear(); 
} // end destructor 

The method insertSorted. The implementations of the remaining methods of the ADT sorted 
list are brief, as the list does most of the work. To add a new entry to the sorted list, we fi rst use the 
method getPosition , which is an operation of the sorted list. We assume that it is already imple-
mented, even though we have not written it yet. Recall that  getPosition  fi nds the position of an exist-
ing entry within a sorted list, or the position at which we should insert a new entry that does not occur 
in the sorted list. The method sets the sign of the integer it returns to indicate whether the entry exists 
in the list already. Since we allow duplicate entries in our sorted list, we can ignore this sign. Notice 
that the following implementation uses the standard method  fabs  to discard this sign. It also uses the 
insert  method of the ADT list. 

   template < class ItemType> 
  void SortedListHasA<ItemType>::insertSorted( const ItemType& newEntry) 

bool isEmpty() const ; 
int getLength() const ; 
bool remove(int position); 
void clear(); 
ItemType getEntry( int position) const throw(PrecondViolatedExcep);

 }; // end SortedListHasA 
#include "SortedListHasA.cpp" 
 #endif 
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 { 
int newPosition = fabs(getPosition(newEntry)); 

   listPtr->insert(newPosition, newEntry); 
} // end insertSorted 

The method removeSorted. The method removeSorted  can call  getPosition  to determine where 
in the sorted list the given entry exists or belongs. This time, however, we do need to know whether 
the entry exists in the list. If it does not exist, we cannot remove it, so  removeSorted  will return false 
when this is the case. Otherwise, the returned position will be positive, and  removeSorted  can call the 
list’s method  remove  to delete the entry. We leave the implementation of  removeSorted  to you in 
Checkpoint Question 11. 

  The method getPosition.  Implementing  getPosition  is somewhat harder than implementing 
the previous two methods. To decide where in a sorted list an entry is or belongs, we need to compare 
it to the entries already in the list, beginning with the fi rst one. If the given entry is in the list, we obvi-
ously compare entries until we fi nd a match. However, if it is not in the list, we want to stop the search 
at the point where it belongs in the sorted list. We take advantage of the sorted order of the objects by 
using logic similar to that described in  Section   12.2.2    

 Checkpoint Question 12 asks you to defi ne getPosition . You can do so by using the methods 
getLength  and  getEntry .     

  Question 12    Defi ne the method  getPosition  for the class  SortedListHasA . 

      Question 9    Repeat Checkpoint Question 7 using the method  insertSorted  of the class 
SortedListHasA . 

CHECK POINT

  Question 10    Can a client of  SortedListHasA  invoke the method  insert  of the ADT list? 
Explain.

  Question 11    Defi ne the method  removeSorted  for the class  SortedListHasA . 

  The remaining methods.  Each of the methods isEmpty ,  getLength ,  remove ,  clear , and 
getEntry  of the ADT sorted list has the same specifi cations as in the ADT list. Each can simply 
invoke the corresponding list method. For example, the method  remove  has the following implemen-
tation in SortedListHasA : 

   template < class ItemType> 
  bool SortedListHasA<ItemType>::remove( int position) 
 { 

return listPtr->remove(position); 
} // end remove 

  Effi ciency issues.  Except perhaps for some subtle logic in  getPosition , you can write the previ-
ous implementation quickly and with few, if any, errors. Saving human time is an attractive feature of 
using an existing class to build another. But does the implementation use computer time effi ciently? 
In this particular implementation, several methods invoke  getPosition , so their effi ciency depends 
on getPosition ’s effi ciency. 

 The method  getPosition  calls the list method  getLength , which is an O(1) operation. There-
fore, we need not be concerned with it. On the other hand, a loop examines the entries in the list one at 
a time by invoking  getEntry  until the desired entry is located. Thus, the effi ciency of  getPosition
depends in part on the effi ciency of  getEntry . However, the effi ciency of  getEntry  depends upon 
which implementation of the ADT list you use. For the link-based implementation,  getEntry  is O( n ). 
Since getPosition  invokes  getEntry  within a loop,  getPosition  is O( n2 ) in the worst case. Note 
that each time getEntry  retrieves the next entry in the list, it starts its search at the beginning of the 
chain. This is the cause of  getPosition ’s ineffi ciency.   
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  Question 14    Give an advantage and a disadvantage of using containment in the imple-
mentation of the class SortedListHasA . 

      Question 13    Suppose that instead of using  LinkedList  in the implementation of
SortedListHasA , you used  ArrayList . What Big O would describe the performance of the 
method getPosition ? 

CHECK POINT

  Figures   12-5    and    12-6    summarize the effi ciencies of the operations for array-based and 
link-based implementations of the ADTs list and sorted list. Confi rmation of these results is left as an 
exercise. As you can see, the implementation of the sorted list using containment is easy to write but 
is not very effi cient if the underlying list uses a chain of linked nodes.     

FIGURE 12-5         The worst-case effi ciencies of ADT list operations for array-based and link-
based implementations   

ADT List Operation Link-based

insert(newPosition, newEntry) O(n)
remove(position) O(n)
getEntry(position) O(n)
setEntry(position, newEntry) O(n)
clear() O(n)
getLength(), isEmpty()

Array-based

O(n)
O(n)
O(1)
O(1)
O(1)
O(1) O(1)

FIGURE 12-6         The worst-case effi ciencies of the ADT sorted list operations when 
implemented using an instance of the ADT list   

ADT Sorted List Operation 

Array-based Link-based
 List Implementation

O(n)
O(n)
O(n)
O(1)
O(n)
O(1)
O(1)

O(n2)
O(n2)
O(n2)
O(n)
O(n)
O(n)
O(1)

insertSorted(newEntry)
removeSorted(anEntry)
getPosition(anEntry)
getEntry(position)
remove(givenPosition)
clear()
getLength(), isEmpty()

Note:   Using containment to implement the ADT sorted list  

 When you use an instance of the ADT list to contain the entries in the ADT sorted list, 
you must use the list’s operations to access the sorted list’s entries, instead of accessing 
them directly. Such an implementation of the sorted list is easy to write but is ineffi cient 
when the underlying list uses a chain of linked nodes to store its entries. 
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   12.3.2  Public Inheritance 

 A list is a container of items that you reference by position number. If you maintained those items in 
sorted order, would you have a sorted list? Ignoring name differences, most operations for the ADT 
list are almost  the same as the corresponding operations for the ADT sorted list. The insertion and 
removal operations differ, however, and the ADT sorted list has an additional operation,  getPosition . 

 You can insert an item into a sorted list by fi rst using  getPosition  to determine the position in 
the sorted list where the new item belongs. You then use the list’s  insert  operation to insert the item 
into that position in the list. You use a similar approach to remove an item from a sorted list.    

 Thus it appears that a sorted list  is a  list, so let’s see whether we can use public inheritance. 
 Figure   12-7    shows the class  SortedListIsA  as a descendant of the class  LinkedList . This diagram 
represents an implementation in C++ using public inheritance.  SortedListIsA  inherits  LinkedList ’s 
members, adds the method getPosition , and revises the insertion and removal operations.  

 The class  SortedListIsA  now has useful operations of the ADT list, such as  getEntry ,  remove , 
clear ,  isEmpty , and  getLength —which it inherits from the class  List —in addition to the methods 
insertSorted ,  removeSorted , and  getPosition . However, it also inherits  insert  and  setEntry
from LinkedList . By using either of these two position-oriented methods, a client could destroy the 
order of a sorted list. To prevent this from occurring,  SortedListIsA  must override them. 

An is-a relationship 
implies public 
inheritance

FIGURE 12-7 SortedListIsA  as a descendant of  LinkedList

LinkedList

SortedListIsA

 LISTING 12-4 A header fi le for the class  SortedListIsA

  /** ADT sorted list using ADT list. 
 @file SortedListIsA.h */ 
#ifndef _SORTED_LIST_IS_A 
#define _SORTED_LIST_IS_A 

#include "LinkedList.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class SortedListIsA : public LinkedList<ItemType> 

The header fi le.  Listing 12-4 shows a header fi le for the class  SortedListIsA . Note again that we 
are using public inheritance. You might wonder why we are not using  SortedListInterface . Doing 
so would require us to use multiple inheritance, which, while possible, is beyond our present scope. 
Since LinkedList  is derived from  ListInterface , you can think of  SortedListIsA  as a grandchild 
of ListInterface .
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Method defi nitions.  Let’s examine the implementations of the sorted list methods. The default con-
structor and destructor are straightforward; the copy constructor invokes  LinkedList ’s copy con-
structor by using an initializer: 

   template < class ItemType> 
 SortedListIsA<ItemType>::SortedListIsA() 
 { 
} // end default constructor 

  template < class ItemType> 
 SortedListIsA<ItemType>:: 
 SortedListIsA( const SortedListIsA<ItemType>& sList): 
                                                        LinkedList<ItemType>(sList) 

 { 
} // end copy constructor 

  template < class ItemType> 

 SortedListIsA<ItemType>::~SortedListIsA() 
 { 
} // end destructor 

 The method  insertSorted  fi rst calls  getPosition  to get the intended position of the new entry, 
ignores the sign of this position, and uses the result and LinkedList ’s  insert  method to complete its 
task. Note that since we will override  insert  in  SortedListIsA , we must be careful not to call that 
implementation, but to call the base class implementation instead.   

   template < class ItemType> 
  void SortedListIsA<ItemType>::insertSorted( const ItemType& newEntry) 
 { 

int newPosition = fabs(getPosition(newEntry)); 

 { 
  public : 

SortedListIsA();
SortedListIsA(const SortedListIsA<ItemType>& sList); 
virtual ~SortedListIsA(); 

void insertSorted( const ItemType& newEntry); 
bool removeSorted( const ItemType& anEntry); 
int getPosition( const ItemType& anEntry) const;

   // The inherited methods remove, clear, getEntry, isEmpty, and 
   // getLength have the same specifications as given in ListInterface. 

   // The following methods must be overridden to disable their 
   // effect on a sorted list: 

bool insert( int newPosition, const ItemType& newEntry); 
void setEntry( int position, const ItemType& newEntry) 

           throw (PrecondViolatedExcep); 
 }; // end SortedListIsA 
#include "SortedListIsA.cpp" 
 #endif 
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// We need to call the LinkedList version of insert, since the 
   // SortedListIsA version does nothing but return false 

LinkedList<ItemType>::insert(newPosition, newEntry); 
} // end insertSorted 

 The method  removeSorted  uses an approach similar to that of  insertSorted , but it does not 
ignore the sign of the position returned by  getPosition . Insertion happens regardless of whether the 
new entry is a duplicate of another one already in the sorted list. However, you cannot remove an 
entry that is not in the list! 

   template < class ItemType> 
  bool SortedListIsA<ItemType>::removeSorted( const ItemType& anEntry) 
 { 

bool ableToRemove = false ; 
if (!LinkedList<ItemType>::isEmpty()) 

   { 
int position = getPosition(anEntry); 

      ableToRemove = position > 0; 
if (ableToRemove) 

           ableToRemove = LinkedList<ItemType>::remove(position); 
   } // end if 

return ableToRemove; 
} // end removeSorted 

 The method  getPosition  uses the list’s method  getEntry  to access each entry in the list sequen-
tially until it either fi nds a match or reaches the point where the entry being sought would belong if it 
were in the list. 

   template < class ItemType> 
  int SortedListIsA<ItemType>::getPosition( const ItemType& anEntry) const  
 { 

int position = 1; 
int length = LinkedList<ItemType>::getLength();

while ( (position <= length) && 
 (anEntry > LinkedList<ItemType>::getEntry(position)) ) 

   { 
       position++; 
   }  // end while 

if ( (position > length) || 
(anEntry != LinkedList<ItemType>::getEntry(position)) ) 

   { 
       position = -position; 
   }  // end if 

return position; 
 }  // end getPosition 

Call LinkedList’s 
version of   insert  

     Programming Tip:   Notice that we have preceded the calls to methods inherited 
from LinkedList  with the  LinkedList<Item>::  namespace reference. When we called 
insert  from  insertSorted , we had to ensure that we called  LinkedList ’s version of 
insert  and not the overriding version in  SortedListIsA . After all, the latter method does 
nothing but return false. Notice, however, that we do not override the methods  remove , 
clear ,  getEntry ,  isEmpty , and  getLength . Because these methods do not appear 
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      Overridden methods.   Recall that we have inherited two methods— insert  and  setEntry —from 
LinkedList  that we do not want as public methods of the ADT sorted list. Although we called  insert
in our defi nition of  insertSorted , we do not want clients to be able to destroy the sorted order of our 
entries by inserting an item at any specifi c position within a sorted list. To this end, we override 
insert  so that it always returns false:     

   template < class ItemType> 
  bool SortedListIsA<ItemType>:: 
      insert( int newPosition, const ItemType& newEntry) 
 { 

return false ; 
} // end insert  

 This approach ensures that a client of  SortedListIsA  can never use  insert  to add items by position 
to an object of SortedListIsA . We override  setEntry  in a similar manner.       

explicitly in the header fi le for  SortedListIsA , if you were to call them without the 
qualifi er  LinkedList<Item>:: , the C++ compiler would assume that they were client 
functions instead of class methods. You would get a syntax error. 

 An alternate way of calling these methods is to precede their calls by  this->  instead 
of LinkedList<Item>:: . For example, you could write 

if (!this->isEmpty())

 instead of 

if (!LinkedList<ItemType>::isEmpty())

Overriding  insert  
prevents insertions 
into a sorted list by 
position

A sorted list is  not a 
list; do not use 
public inheritance 

      Note:    Recall that public inheritance enables you to use a derived-class object any-
where that you can use a base-class object. But you cannot use a sorted list in the same 
way that you can use a list and expect to maintain the values stored in the sorted list in 
sorted order. Moreover, the value-oriented nature of a sorted list does not support all of 
a list’s operations. Therefore, a sorted list is not really a list, and hence public inherit-
ance is not appropriate. 

     Programming Tip:   You should use public inheritance only when two classes have 
an is-a  relationship. 

      Question 15    What would have happened if you preceded the call to  insert  in the method 
insertSorted  by  this->  instead of  LinkedList<ItemType>:: ? Explain. 

CHECK POINT

  Effi ciency issues.  If you compare the implementation of  SortedListIsA  with the one for 
SortedListHasA , you will notice slight differences in the syntax, but the basic logic of the methods is 
the same. Both classes use methods of the ADT list to defi ne their operations. The performance of 
corresponding methods is virtually the same.  
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   12.3.3  Private Inheritance 

 If you do not have an  is-a  relationship between your new class and an existing class, you should not 
use public inheritance. Instead, if you want to inherit members from the existing class, you can use 
private inheritance. Private inheritance enables you to use the methods of a base class without giving 
a client access to them. 

 The header fi le in Listing 12-5 declares the class  SortedListAsA . Note that it is derived from the 
class LinkedList  using private inheritance. Except for this addition and the name of the class, this 
header fi le is identical to the one in Listing 12-3 for  SortedListHasA .

 LISTING 12-5 The header fi le for the class  SortedListAsA

/** ADT sorted list using ADT list. 
 @file SortedListAsA.h */ 
#ifndef _SORTED_LIST_AS_A 
#define _SORTED_LIST_AS_A 

#include "SortedListInterface.h" 
#include "ListInterface.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class SortedListAsA : public SortedListInterface<ItemType>, 
                            private LinkedList<ItemType> 
 { 
  public : 

SortedListAsA();
SortedListAsA(const SortedListAsA<ItemType>& sList); 
virtual ~SortedListAsA(); 

   <  The rest of the public section is the same as in  SortedListHasA  in Listing 12-3.  >
. . . 

 }; // end SortedListAsA 
#include "SortedListAsA.cpp" 
 #endif 

 Because clients of  SortedListAsA  do not have access to the methods of the base class 
LinkedList , you need to provide a complete set of sorted list operations. This was not necessary for 
public inheritance. However, this lack of access also means that we do not have to override inherited 
methods such as setEntry  that we do not want clients to have. 

 The implementation of  SortedListAsA  can use the public  1   members of  LinkedList . In fact, the 
methods insertSorted ,  removeSorted , and  getPosition  have the same implementations as they 
did with public inheritance. The remaining methods simply call the corresponding methods in 
LinkedList . For example, the method  getEntry  has the following defi nition:  

   template < class ItemType> 
ItemType SortedListAsA<ItemType>::getEntry( int position) const  

throw (PrecondViolatedExcep) 

 1   If LinkedList had protected methods, SortedListAsA could call those, too. 
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 { 
return LinkedList<ItemType>::getEntry(position); 

} // end getEntry  

 With both private inheritance ( as-a ) and containment ( has-a ),  LinkedList  is hidden from the 
clients of the sorted list. That is, you can use either private inheritance or containment to hide the 
underlying list in the implementation of the sorted list. Realize, however, that unlike public inherit-
ance, private inheritance does not allow you to use an instance of  SortedListAsA  wherever you can 
use an instance of LinkedList ; that is,  SortedListAsA  and  LinkedList  are not object-type compati-
ble. The UML diagram in  Figure   12-8    shows the inheritance relationship between the two classes. 
The notation <<implementation>> is a stereotype  and is used to indicate that the  SortedListAsA
class is implemented in terms of the  LinkedList  class. You can use a stereotype to identify a unique 
characteristic of an element in any UML diagram.             

FIGURE 12-8         The  SortedListAsA  class implemented in terms of the  LinkedList  class   

LinkedList

SortedListAsA

«implementation»

 SUMMARY   

 1.  The ADT sorted list maintains its entries in sorted order. It, not the client, determines where to place an entry. 

 2.  The ADT sorted list can add, remove, or locate an entry, given the entry as an argument. 

 3.  The ADT sorted list has several operations that are the same as the corresponding operations of the ADT list. 
However, a sorted list will not let you add or replace an entry by position. 

 4.  A chain of linked nodes provides a reasonably effi cient implementation of the sorted list. 

 5.  A class of sorted lists that has a list as a data fi eld is said to use containment. Although such a class is easy to 
write, its effi ciency can suffer if the implementation of the ADT list is ineffi cient. 

 6.  Although it seems like a sorted list is a list, deriving a class of sorted lists from a class of lists using public 
inheritance is not appropriate. Doing so requires you to override some methods of the ADT list that a client of 
the sorted list class should not be able to use. Additionally, public inheritance would make the two classes 
object-type compatible, but you cannot use a sorted list anywhere that a list is used. 

 7.  Private inheritance provides a reasonable alternative to containment as an approach to using the ADT list in the 
implementation of the ADT sorted list. Usually, however, containment is preferable. 
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 EXERCISES   

 1.  Consider the classes  Sphere  and  Ball , as outlined here: 

   class Sphere 
 { 
  public:
   . . . 

double getArea() const; // Surface area 
void displayStatistics() const;

   . . . 
 }; // end Sphere 
  
  class Ball : public Sphere 
 { 
  public:
   . . .

double getArea() const; // Cross-sectional area 
void displayStatistics() const;

   . . . 
 }; // end Ball 

 Suppose that the implementation of each version of  displayStatistics  invokes the method  getArea . 

 a.   If  mySphere  is an instance of  Sphere  and  myBall  is an instance of  Ball , which version of  getArea
does each of the following calls to  displayStatistics  invoke? Explain your answer. 

  mySphere.displayStatistics(); 
 myBall.displayStatistics();   

 b.   If the statements 

  Sphere* spherePtr; 
Ball*   ballPtr; 

  declare  spherePtr  and  ballPtr , which version of  getArea  does each of the following calls to
displayStatistics  invoke? Explain your answer. 

 spherePtr->displayStatistics(); 
spherePtr = ballPtr; 
 spherePtr->displayStatistics(); 
 ballPtr->displayStatistics();    

 2.  Defi ne and implement a class  Pen  that has an instance of  Ball  as one of its members. Provide several members 
for the class Pen , such as the data member  color  and methods  isEmpty  and  write . 

 3.  Consider the following classes: 

• LandVehicle  represents a vehicle that travels on land. Its public methods include  wheelCount  and 
speed .  

• MotorizedLandVehicle  represents a land vehicle that has a motor. Its public methods include
engineCapacity  and  fuelType .  

 a.   Which of the methods mentioned previously can the implementation of  speed  invoke?  
 b.   Which of the methods mentioned previously can the implementation of  engineCapacity

invoke?   
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 4.  Assume the classes described in Exercise 3 and consider a  main  method that contains the following statements: 

  LandVehicle landVeh; 
MotorizedLandVehicle motorVeh; 

 a.   Which of these objects can invoke the method  wheelCount ?

 b.   Which of these objects can invoke the method  fuelType ?

 5.  Consider the following classes: 

   class Expr 
 { 
  private:  

char Array[MAX_STRING+1]; 
  public:  
   . . . 

int getLength() const;
virtual void display() const;

   . . . 
 }; // end Expr 

  class AlgExpr : public Expr 
 { 
  public:  
   . . . 

bool isExpression() const;
bool isBlank( int first, int last) const;

 }; // end AlgExpr 
  
  class InfixExpr : public AlgExpr 
 { 
  public:  
   . . . 

bool isExpression() const;
int valueOf() const;
void display() const;

   . . . 
  protected:  

int endFactor( int first, int last) const;
int endTerm( int first, int last) const;
int endExpression( int first, int last) const;

  private:  
   Stack< int>  values; 
   Stack< char> operators; 
 }; // end InfixExpr 

 The class  AlgExpr  represents algebraic expressions, including prefi x, postfi x, and infi x expressions. Its method 
isExpression  simply examines the expression for valid characters but does not consider the order of the 
characters.   

 The class  InfixExpr  represents infi x expressions. Its  isExpression  calls  isBlank , and its  display  calls 
valueOf .  

 a.   Should  isBlank  be public, protected, or private? Explain.  
 b.   If  inExp  is an instance of  InfixExpr  in the main method, can  inExp  invoke  endExpression ? Explain.  
 c.   What small change(s) would you make to the classes to ensure that the correct version of 

isExpression  is called?   
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 6.  Assume the classes described in Exercise 5 and consider a  main  method that contains the statements 

  Expr exp; 
AlgExpr aExp; 
InfixExpr inExp; 

 a.   Which of these objects can correctly invoke the method  getLength ?
 b.   Which of these objects can correctly invoke the method  isExpression ?
 c.   Which of these objects can correctly invoke the method  valueOf ?
 d.   Give an example of object-type compatibility by writing a method declaration and a call to it that 

could appear in this main  method.   

 7.  Recall from  Section   12.3.1    the copy constructor for the class  SortedListHasA . Its defi nition uses a loop. 
Replace that defi nition with a recursive one, and show that it is O( n ). 

 8.  Consider an ADT  front list , which restricts insertions, removals, and retrievals to the fi rst item in the list. Defi ne 
and implement a class for the ADT stack that is a descendant of  FrontList . 

 9.  Defi ne an abstract base class  Person  that describes a typical person. Next, defi ne a derived class  Student  that 
describes a typical student. Finally, derive from  Student  a class  GradStudent  for a typical graduate student. 

 10.  Design and implement the following classes: 

 a.   An abstract base class  Employee  that represents a generic employee. Include methods to retrieve 
information about an employee.  

 b.   A subclass of  Employee  called  HourlyEmployee  that describes an employee who gets paid by the hour. 
Include a public method called  getPay  that returns the pay of the employee for that month and any 
other relevant methods.  

 c.   A subclass of  Employee  called  NonHourlyEmployee  that describes an employee who gets paid a fi xed 
salary every month. Include a public method called  getPay  that returns the pay of the employee for 
that month. Include any other relevant methods.   

 11.  Confi rm the results in  Figures   12-5    and    12-6   . 

 12.  Imagine an unknown implementation of an ADT sorted list of integers. This ADT organizes its items into 
ascending order. Suppose that you have just read  n  integers into a one-dimensional array of integers called 
data . Write some C++ statements that use the ADT sorted list operations to sort the array into ascending order. 

 13.  Write pseudocode that merges two sorted lists into a new third sorted list by using only ADT sorted list operations. 

 14.  Defi ne a set of axioms for the ADT sorted list and use them to prove that the sorted list of characters, which is 
defi ned by the sequence of operations 

  sList = an empty sorted list  
 sList.insertSorted('S') 
 sList.insertSorted('T') 
 sList.insertSorted('R') 
 sList.removeSorted('T') 

 is exactly the same as the sorted list defi ned by the sequence 

  sList = an empty sorted list  
 sList.insertSorted('T') 
 sList.insertSorted('R') 
 sList.removeSorted('T') 
 sList.insertSorted('S') 
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 PROGRAMMING PROBLEMS   

 1.  Complete the implementation of the class  LinkedSortedList . 

 2.  Defi ne a class for an array-based implementation of the ADT sorted list. Consider a recursive implementation 
for getPosition . Should i nsertSorted  and  removeSorted  call  getPosition ? 

 3.  Complete the implementation of the class  SortedListHasA . 

 4.  Complete the implementation of the class  SortedListAsA . 

 5.  Consider the class  FrontList  that Exercise 8 describes. Implement  FrontList  in each of the following ways: 

 a.   Store the list’s entries in an instance of  LinkedList .
 b.   Derive  FrontList  from  LinkedList  using public inheritance.  
 c.   Derive  FrontList  from  LinkedList  using private inheritance.   

 6.  The class  LinkedList , as described in  Sections   9.2.1    and    9.2.2    of  Chapter   9   , does not contain a method 
getPosition  that returns the position number of a given entry. Defi ne a descendant of  LinkedList  that has a 
method getPosition  as well as methods that insert and remove items by their values instead of their 
positions. This new insertion method should always insert the new entry at the beginning of the list. Although 
the items in this list are not sorted, the new ADT is analogous to the ADT sorted list, which contains the method 
getPosition . 

 7.  Consider an ADT  circular list , which is like the ADT list but treats its fi rst entry as if it were immediately after 
its last entry. For example, if a circular list contains six items, retrieval or removal of the eighth item actually 
involves the list’s second item. Let insertion into a circular list, however, behave exactly like insertion into a 
list. Defi ne and implement the ADT circular list as a derived class of  LinkedList . 

 8.  Programming Problem 13 in  Chapter   6    describes the ADT traversable stack. In addition to the standard stack 
operations—isEmpty ,  push ,  pop , and  peek —a traversable stack includes the operation  traverse . This opera-
tion begins at the bottom of the stack and displays each item in the stack until it reaches the top of the stack. 

 Defi ne and implement the ADT traversable stack as a derived class of  ArrayStack , as given in  Section   7.1    
of  Chapter   7   . 

 9.  Defi ne a template interface for the ADT sorted list that is derived from  ListInterface . Then defi ne the class 
SortedListHasA  that is derived from your new interface. 

 10.  Because algebraic expressions are character strings, you can derive a class of algebraic expressions from a class 
of strings. Defi ne such a class. Include an  isExpression  operation that uses the recognition algorithm given in 
Programming Problem 8 of  Chapter   5    and a  valueOf  operation that uses the evaluation algorithm given in Pro-
gramming Problem 8 of  Chapter   6   . 
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  Prerequisites 
  Chapter   6     Stacks 
  Chapter   8     Lists (incidental) 
  Chapter   12    Sorted Lists and Their Implementations (incidental) 

Whereas a stack’s behavior is characterized as last in, fi rst out, a queue’s behavior is 
characterized as fi rst in, fi rst out. This chapter defi nes the queue’s operations and 
discusses several uses of them. As you will see, queues are common in everyday life. 
Their fi rst-in, fi rst-out behavior makes them appropriate ADTs for situations that 
involve waiting. Queues are also important in simulation, a technique for analyzing the 
behavior of complex systems. This chapter uses a queue to model the behavior of people 
in a line. 

 Sometimes the importance of an object depends on criteria other than when it is 
placed into a container. In such cases, you can assign each object a priority and organize 
them according to their priorities instead of chronologically. The priority queue will do 
this for you. 
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 This chapter explores the two ADTs queue and priority queue. We will consider their implemen-
tations in the next chapter.   

      13.1 The ADT Queue 
 A  queue  is like a line of people. The fi rst person to join a line is the fi rst person served, that is, the fi rst 
to leave the line. New items enter a queue at its  back , or  rear , and items leave a queue from its  front . 
Operations on a queue occur only at its two ends. This characteristic gives a queue its fi rst-in, fi rst-out 
(FIFO) behavior. In contrast, you can think of a stack as having only one end, because all operations 
are performed at the top of the stack. This characteristic gives a stack its last-in, fi rst-out behavior. 

 As an abstract data type, the queue has the following operations:     

FIFO: The fi rst item 
inserted into a 
queue is the fi rst 
item out 

Queues occur in 
everyday life 

Queues have 
applications in 
computer science 

     Note: ADT queue operations

•   Test whether a queue is empty.  
•   Add a new entry to the back of the queue.  
•    Remove the entry at the front of the queue (the entry that was added earliest).  
•   Get the entry that was added earliest to the queue.   

 Queues are appropriate for many real-world situations. You wait in a queue—that is, a line—to 
buy a movie ticket, to check out at the bookstore, or to use an automatic teller machine. The person at 
the front of the queue is served, while new people join the queue at its back. Even when you call an 
airline to check your fl ight’s status, your call actually enters a queue while you wait for the next avail-
able agent.    

 Queues also have applications in computer science. When you print an essay, the computer sends 
lines faster than the printer can print them. The lines are held in a queue for the printer, which removes 
them in FIFO order. If you share the printer with other computers, your request to print enters a queue 
to wait its turn. 

 Since all of these applications involve waiting, people study them to see how to reduce the wait. 
Such studies are called simulations , and they typically use queues. Later, this chapter examines a 
simulation of a line of customers at a bank. 

 The following operation contract specifi es the ADT queue in more detail, and  Figure   13-1    
shows a UML diagram for the class  Queue . Note that the conventional names of the operations that 
add or remove an entry are, respectively,  enqueue  (pronounced “N-Q”) and  dequeue  (pronounced 
“D-Q”).     

FIGURE 13-1         UML diagram for the class   Queue 

Queue

+isEmpty(): boolean
+enqueue(newEntry: ItemType): boolean
+dequeue(): boolean
+peekFront(): ItemType

VideoNote

The ADT queue
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  Figure   13-2    illustrates the effect of these operations on a queue of integers. Notice that  enqueue
adds an item at the back of the queue and that peekFront  looks at the item at the front of the queue, 
whereas  dequeue  removes the item at the front of the queue.    

 ABSTRACT DATA TYPE: QUEUE

DATA     

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by when they were added. 

OPERATIONS     

  PSEUDOCODE    DESCRIPTION

  isEmpty() Task: Sees whether this queue is empty. 
 Input: None. 
 Output: True if the queue is empty; otherwise false. 

  enqueue(newEntry) Task: Adds   newEntry  at the back of this queue. 
 Input:   newEntry .
 Output: True if the operation is successful; otherwise false. 

  dequeue()  Task: Removes the front of this queue. That is, removes the item that was added 
earliest.

 Input: None. 
 Output: True if the operation is successful; otherwise false. 

  peekFront()  Task: Returns the front of this queue. That is, gets the item that was added earliest. The 
operation does not change the queue. 

 Input: None. 
 Output: The front of the queue. 

      Question 1    If you add the letters  A ,  B ,  C , and  D  in sequence to a queue of characters and 
then remove them, in what order will they leave the queue? 

CHECK POINT

FIGURE 13-2         Some queue operations   

Operation

aQueue = an empty queue
aQueue.enqueue(5)
aQueue.enqueue(2)
aQueue.enqueue(7)
aQueue.peekFront()
aQueue.dequeue()
aQueue.dequeue()

Queue after operation

5
5  2
5  2  7
5  2  7 (Returns 5)
2  7 
7

Front
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       An interface.   Listing 13-1 contains a C++ template that completes our specifi cation of the ADT 
queue.

  LISTING 13-1  A C++ interface for queues 

  /** @file QueueInterface.h */ 
#ifndef _QUEUE_INTERFACE 
#define _QUEUE_INTERFACE 

  template < class ItemType> 
  class QueueInterface 
 { 
  public : 
   /** Sees whether this queue is empty. 

@return  True if the queue is empty, or false if not. */ 
virtual bool isEmpty() const = 0; 

   /** Adds a new entry to the back of this queue. 
@post  If the operation was successful, newEntry is at the

        back of the queue. 
@param newEntry  The object to be added as a new entry. 
@return  True if the addition is successful or false if not. */ 

virtual bool enqueue( const ItemType& newEntry) = 0; 

   /** Removes the front of this queue. 
@post  If the operation was successful, the front of the queue

        has been removed. 
@return  True if the removal is successful or false if not. */ 

virtual bool dequeue() = 0; 

   /** Returns the front of this queue. 
@pre  The queue is not empty. 
@post  The front of the queue has been returned, and the 

        queue is unchanged. 
@return  The front of the queue. */ 

virtual ItemType peekFront() const = 0; 
 }; // end QueueInterface 
 #endif     

 Question 2   What do the initially empty queues  queue1  and  queue2  “look like” after the 
following sequence of operations? 

  queue1.enqueue(1)
 queue1.enqueue(2) 
 queue2.enqueue(3) 
 queue2.enqueue(4) 
 queue1.dequeue() 
queueFront = queue2.peekFront() 
 queue1.enqueue(queueFront) 
 queue1.enqueue(5) 
 queue2.dequeue() 
 queue2.enqueue(6) 

 Compare these results with Checkpoint Question 2 in  Chapter   6   . 
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   13.2 Simple Applications of the ADT Queue 
 This section presents two simple applications of the ADT queue. The applications use the ADT queue 
operations independently of their implementations. 

   13.2.1  Reading a String of Characters 

 When you enter characters at a keyboard, the system must retain them in the order in which you typed 
them. It could use a queue for this purpose, as the following pseudocode indicates:    

  // Read a string of characters from a single line of input into a queue  
aQueue = a new empty queue  
  while ( not end of line ) 
 { 

Read a new character into ch 
   aQueue.enqueue(ch) 
 } 

 Once the characters are in a queue, the system can process them as necessary. For example, if you 
had typed the integer 247—without any mistakes, but possibly preceded or followed by blanks—the 
queue would contain digits and possibly blanks. The system could convert the digits 2, 4, and 7 into 
the decimal value 247 by computing 10 × (10 × 2 + 4) + 7. 

 The following pseudocode function performs this conversion in general:   

  // Converts digits in a queue aQueue into a decimal integer  
getInteger(aQueue: Queue): integer 

// Get first digit, ignoring any leading blanks  
do  

   { 
      aQueue.dequeue(ch) 
   }   while (ch is blank ) 

// Assertion: ch contains first digit  

   // Compute the integer n from digits in queue  
   n = 0 
   done = false  

do  
   { 
      n = 10 * n + ( integer that  ch represents ) 
      done = aQueue.isEmpty() 

if (!done) 
         aQueue.dequeue(ch)

   }   while (!done and ch is a digit ) 
return n   

   13.2.2  Recognizing Palindromes  

 Recall from  Section   5.1.2    in  Chapter   5    that a palindrome is a string of characters that reads the 
same from left to right as it does from right to left. In  Chapter   6   , you learned that you could use a 
stack to reverse the order of occurrences. You should realize by now that you can use a queue to 
preserve the order of occurrences. Thus, you can use both a queue and a stack to see whether a 
string is a palindrome. 

 As you traverse a string from left to right, you can add each character to both a queue and 
a stack.  Figure   13-3    illustrates the result of this action for the string  "abcbd" , which is not a 

A queue can retain 
characters in the 
order in which you 
type them 

You can use a 
queue in 
conjunction with a 
stack to recognize 
palindromes

VideoNote

Using the ADT 
queue
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palindrome. You can see that the fi rst character in the string is at the front of the queue and the last 
character in the string is at the top of the stack. Thus, characters removed from the queue will occur 
in the order in which they appear in the string, and characters removed from the stack will occur in 
the opposite order. 

 Knowing this, you can compare the characters at the front of the queue and the top of the stack. If 
the characters are the same, you can remove them. You repeat this process until the stack and the 
queue become empty, in which case the original string is a palindrome, or the two characters are not 
the same, in which case the string is not a palindrome.  

 The following is a pseudocode version of a nonrecursive recognition algorithm for the language 
of palindromes: 

  //  Tests whether a given string is a palindrome . 
isPalindrome(someString: string): boolean 

   //  Create an empty queue and an empty stack  
   aQueue = a new empty queue  
   aStack = a new empty stack  

   //  Add each character of the string to both the queue and the stack  
   length =  length of someString 

for (i = 1 through length) 
   { 
       nextChar =  ith  character of someString 
       aQueue.enqueue(nextChar) 
       aStack.push(nextChar) 
   } 

   //  Compare the queue characters with the stack characters  
   charactersAreEqual = true  

while (aQueue is not empty and charactersAreEqual) 
   { 
       queueFront = aQueue.peekFront() 
       stackTop = aStack.peek() 
        if (queueFront equals stackTop) 
       { 
          aQueue.dequeue() 
          aStack.pop() 
       } 
        else  
          charactersAreEqual =  false  
   } 

return charactersAreEqual 

FIGURE 13-3         The results of inserting the characters  a, b, c, b, d  into both a queue 
and a stack   

a  b  c  b  d d
b
c
b
a

Queue: Stack:
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       13.3 The ADT Priority Queue 
 Imagine a person who visits a hospital’s emergency room (ER). When any patient enters the hospital, 
the staff creates a record about that person in a database for later retrieval by nurses, doctors, and the 
billing department. In addition, the staff must keep track of the ER patients and decide when each 
person will receive care.    

 What ADT should the ER staff use for their patients? The ADT sorted list would facilitate the 
treatment of ER patients in alphabetical order by name or in numerical order by ID number. A queue 
would enable treatment of patients in the order of arrival. In either case, Ms. Zither, who was just 
rushed to the ER with acute appendicitis, would have to wait for Mr. Able to have a splinter removed. 
Clearly, the ER staff should assign some measure of urgency, or priority, to the patients waiting for 
treatment. The next available doctor should treat the patient with the highest priority. The ADT that 
the ER staff needs should produce this patient on request. 

 Another example of the use of priorities is your list of daily or weekly tasks. Suppose that your 
“to do” list for this week contains the following items:    

   Send a birthday card to Aunt Mabel.  
  Start the research paper for world history.  
  Finish reading  Chapter   13    of  Walls and Mirrors.
  Make plans for Saturday night.   

 When you consult your list, you most likely will attend to the task that, for you, has the highest 
priority. 

 A  priority value  indicates, for example, a patient’s priority for treatment or a task’s priority for 
completion. What quantity should you use for this priority value? Many reasonable possibilities exist, 
including a simple ranking from 1 to 10. Let’s arbitrarily decide that the largest priority value indi-
cates the highest priority. The priority value becomes a part of the item that you insert into an ADT. 
You then ask the ADT for the item that has the highest priority. 

 Such an ADT is known as a  priority queue . More formally, a priority queue is an ADT that 
provides the following operations:   

 Question 4   Improve the palindrome-recognition algorithm described in this section 
by adding the fi rst  length  / 2 characters to the queue and then pushing the remaining charac-
ters onto the stack. 

      Question 3    Trace the palindrome-recognition algorithm described in this section for each 
of the following strings of characters: 
 a.   abcda
 b.   radar

CHECK POINT

You can organize 
data by priorities 

You usually prioritize 
your list of  tasks 

      Note: ADT priority queue operations

•   Test whether a priority queue is empty.  
•   Add a new entry to the priority queue in its sorted position based on priority value.  
•   Remove from the priority queue the entry with the highest priority value.  
•   Get the entry in the priority queue with the highest priority value.   
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   The following operation contract specifi es the ADT priority queue in more detail, and 
 Figure   13-4    shows a UML diagram for the class  PriorityQueue . 

A priority queue 
orders by priority 
values

 ABSTRACT DATA TYPE: PRIORITY QUEUE

DATA     

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by priority. 

OPERATIONS     

PSEUDOCODE    DESCRIPTION

  isEmpty() Task: Sees whether this priority queue is empty. 
 Input: None. 
 Output: True if the priority queue is empty; otherwise false. 

  add(newEntry)  Task: Adds  newEntry  to this priority queue. 
 Input:  newEntry .
 Output: True if the operation is successful; otherwise false. 

  remove()  Task: Removes the entry with the highest priority from this priority queue. 
 Input: None. 
 Output: True if the operation is successful; otherwise false. 

  peek()  Task: Returns the entry in this priority queue with the highest priority. The operation 
does not change the priority queue. 

 Input: None. 
 Output: The entry with the highest priority. 

FIGURE 13-4         UML diagram for the class  PriorityQueue

PriorityQueue

+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(): boolean
+peek(): ItemType

       13.3.1  Tracking Your Assignments 

 Professors and bosses like to assign tasks for us to do by certain dates. Using a priority queue, we can 
organize these assignments in the order in which we should complete them. Suppose that we order the 
assignments by their due dates. A task with the earliest due date will have the highest priority. We can 
defi ne a class  Assignment  of tasks that includes a data fi eld  date  representing a task’s due date. 
 Figure   13-5    shows a diagram of such a class.  
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 The following pseudocode shows how you could use a priority queue to organize your assign-
ments and other responsibilities so that you know which one to complete fi rst: 

  assignmentLog = a new priority queue using due date as the priority value  
project = a new instance of Assignment 
essay = a new instance of Assignment 
task = a new instance of  Assignment 
errand = a new instance of Assignment 
 assignmentLog.add(project) 
 assignmentLog.add(essay) 
 assignmentLog.add(task) 
 assignmentLog.add(errand) 
cout << "I should do the following first: " 
cout << assignmentLog.peek()    

   13.4 Application: Simulation 
Simulation —a major application area for computers—is a technique for modeling the behavior of 
both natural and human-made systems. Generally, the goal of a simulation is to generate statistics 
that summarize the performance of an existing system or to predict the performance of a proposed 
system. In this section we will consider a simple example that illustrates one important type of 
simulation.    

       A problem to solve.   Ms. Simpson, president of the First City Bank of Springfi eld, has heard her cus-
tomers complain about how long they have to wait for service at the branch located in a downtown 
grocery store. Because she fears losing those customers to another bank, she is considering whether 
to hire a second teller for that branch. 

 Before Ms. Simpson hires another teller, she would like an approximation of the average time 
a customer has to wait for service from that branch’s only teller. Ms. Simpson heard you were great 
at solving problems and has come to you for help. How can you obtain this information for 
Ms. Simpson?  

  Considerations.   You could stand with a stopwatch in the bank’s lobby all day, but that task is not 
particularly exciting. Besides, you should use an approach that also allows Ms. Simpson to predict 
how much improvement she could expect if the bank hired a given number of additional tellers. She 
certainly does not want to hire the tellers on a trial basis and then monitor the bank’s performance 
before making her fi nal decision. 

Simulation models 
the behavior of  
systems

FIGURE 13-5         UML diagram for the class  Assignment

Assignment

course—the course code
task—a description of the assignment
date—the due date

+getCourseCode(): string
+getTask(): string
+getDueDate(): string
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 You conclude that the best way to obtain the information needed is to use a computer model to 
simulate the behavior of the bank. The fi rst step in simulating a system such as a bank is to construct 
a mathematical model that captures the relevant information about the system. For example, how 
many tellers does the bank employ? How often do customers arrive? How long do the customers’ 
transactions take? 

 If the model accurately describes the real-world system, a simulation can derive accurate predic-
tions about the system’s overall performance. For example, a simulation could predict the average time 
a customer has to wait before receiving service. A simulation can also evaluate proposed changes to the 
real-world system, such as predicting the effect of hiring more tellers at the bank. A large decrease in 
the time predicted for the average wait of a customer might justify the cost of hiring additional tellers. 

 After discussing the problem with Ms. Simpson, you decide that you want the simulation to 
determine 

•   The average time a customer waits to begin service from the current single teller  
•   The decrease in customer wait time with each new teller added    

  Simulation time and events.   Central to a simulation is the concept of simulated time. Envision a 
stopwatch that measures time elapsed during a simulation. For example, suppose that the model of 
the bank specifi es only one teller. At time 0, which is the start of the banking day, the simulated sys-
tem would be in its initial state with no customers. As the simulation runs, the stopwatch ticks away 
units of time—perhaps minutes—and certain events occur. At time 20, the bank’s fi rst customer ar-
rives. Because there is no line, the customer goes directly to the teller and begins her transaction, 
which will take about 6 minutes to complete. At time 22, a second customer arrives. Because the fi rst 
customer has not yet completed her transaction, the second customer must wait in line. At time 26, the 
fi rst customer completes her transaction and the second customer can begin his.  Figure   13-6    illus-
trates these four times in the simulation.    

 To gather the information you need, you run this simulation for a specifi ed period of simulated 
time. During the course of the run, you need to keep track of certain statistics, such as the average 
time a customer has to wait for service. Notice that in the small example of  Figure   13-6   , the fi rst cus-
tomer had to wait 0 minutes to begin a transaction and the second customer had to wait 4 minutes to 
begin a transaction—an average wait of 2 minutes. 

 One point not addressed in the previous discussion is how to determine when certain events 
occur. For example, why did we say that the fi rst customer arrived at time 20 and the second at 
time 22? After studying real-world systems like our bank, mathematicians learned to model events 
such as the arrival of people by using techniques from probability theory. This statistical informa-
tion is incorporated into the mathematical model of the system and is used to generate events in a 
way that refl ects the real world. The simulation uses these events and is thus called an  event-
driven simulation . Note that the goal is to refl ect the long-term average behavior of the system 
rather than to predict occurrences of specifi c events. This goal is suffi cient for the needs of our 
simulation.  

 Although the techniques for generating events to refl ect the real world are interesting and impor-
tant, they require a good deal of mathematical sophistication. Therefore, we simply assume that we 
already have a list of events available for our use. In particular, for the bank problem, we assume that 
a fi le contains the time of each customer’s arrival—an  arrival event —and the duration of that cus-
tomer’s transaction once the customer reaches the teller. For example, the data   

    Arrival time   Transaction length   
   20 6  
   22 4  
   23 2  
   30 3    

Simulated time 

Sample arrival and 
transaction times 
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FIGURE 13-6         A bank line at time (a) 0; (b) 20; (c) 22; (d) 26   

(a)

(b)

(c)

(d)

time = 26

time = 22

time = 20

time = 0

Bank Line

Bank Line

Bank Line

Bank Line

Teller

TellerCustomer1

Customer2 TellerCustomer1

Customer1

TellerCustomer2

 indicates that the first customer arrives 20 minutes into the simulation and her transaction—
once begun—requires 6 minutes; the second customer arrives 22 minutes into the simulation, 
and his transaction requires 4 minutes; and so on. Assume that the input file is ordered by arrival 
time. 

 The use of a data fi le with predetermined event information is common in simulations. It allows 
us to try many different scenarios or bank teller confi gurations with the same set of events to ensure a 
fair comparison. 

 Notice that the fi le does not contain  departure events ; the data does not specify when a customer 
will complete the transaction and leave. In fact, the departure time of a customer cannot be deter-
mined until the simulation is run, so the simulation must determine when departures occur. By using 
the arrival time and the transaction length, the simulation can easily determine the time at which a 
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customer departs. To compute the departure time, we add the length of the transaction to the time 
when the customer begins the transaction. 

 For example, if we run the simulation by hand with the previous data, we would compute the 
departure times as follows:    

Time   Event
  20 Customer 1 enters bank and begins transaction  

Determine customer 1 departure event is at time 26
  22 Customer 2 enters bank and stands at end of line  
  23 Customer 3 enters bank and stands at end of line  
  26 Customer 1 departs; customer 2 begins transaction  

Determine customer 2 departure event is at time 30
  30 Customer 2 departs; customer 3 begins transaction  

Determine customer 3 departure event is at time 32
  30 Customer 4 enters bank and stands at end of line  
  32 Customer 3 departs; customer 4 begins transaction  

Determine customer 4 departure event is at time 35
  35 Customer 4 departs   

 A customer’s wait time is the elapsed time between arrival in the bank and the start of the transac-
tion, that is, the amount of time the customer spends in line. The average of this wait time over all the 
customers is the statistic that you want to obtain. 

 To summarize, this simulation is concerned with two kinds of events: 

The results of  a 
simulation 

Note: Kinds of events in an event-driven simulation

•    Arrival events indicate the arrival at the bank of a new customer. The input fi le speci-
fi es the times at which the arrival events occur. As such, they are  externally generated 
events . When a customer arrives at the bank, one of two things happens. If the teller is 
idle when the customer arrives, the customer goes to the teller and begins the transac-
tion immediately. If the teller is busy, the new customer must stand at the end of the 
line and wait for service.  

•    Departure events indicate the departure from the bank of a customer who has com-
pleted a transaction. The simulation determines the times at which the departure 
events occur. Thus, they are  internally generated events . When a customer completes 
the transaction, he or she departs and the next person in line—if there is one—begins 
a transaction.   

A fi rst attempt at a 
simulation algorithm 

    Event loop.   The main tasks of an algorithm that performs a simulation are to repeatedly determine 
the times at which events occur and to process the events when they do occur. In simulation and 
gaming applications, this process is referred to as the  event loop . The algorithm is stated at a high 
level as follows:      

  // Initialize  
currentTime = 0 
  Initialize the line to “no customers”  

  while (currentTime <= time of the final event ) 
 { 
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if ( an arrival event occurs at time currentTime) 
Process the arrival event  

if ( a departure event occurs at time currentTime) 
Process the departure event  

// When an arrival event and departure event occur at the same time, 
// arbitrarily process the arrival event first  

   currentTime++ 
 }   

 But do you really want to increment  currentTime  by 1? You would for a  time-driven simulation , 
where you would determine arrival and departure times at random and compare those times to 
currentTime . Video games use this approach, since events can occur or need to be processed in 
almost every unit of time, which is typically a frame. In such a case, you would increment 
currentTime  by 1 to simulate the ticking of a clock. 

 Recall, however, that this simulation is event driven, so you have a fi le of predetermined arrival 
times and transaction times. Because you are interested only in those times at which arrival 
and departure events occur, and because no action is required between events, you can advance  
currentTime  from the time of one event directly to the time of the next. 

 Thus, you can revise the pseudocode solution as follows:       

   Initialize the line to “no customers”  
  while ( events remain to be processed ) 
 { 
   currentTime =  time of next event  

if ( event is an arrival event ) 
Process the arrival event  

else  
Process the departure event  

// When an arrival event and a departure event occur at the same time, 
//  arbitrarily process the arrival event first  

}

 You must determine the time of the next arrival or departure so that you can implement the state-
ment

  currentTime =  time of next event    

 To make this determination, you must maintain an  event list . An event list contains all arrival 
and departure events that will occur but have not occurred yet. The times of the events in the 
event list are in ascending order, and thus the next event to be processed is always at the beginning 
of the list. The algorithm simply gets the event from the beginning of the list, advances to the 
time specifi ed, and processes the event. The diffi culty, then, lies in successfully managing the 
event list.  

  Managing and processing customers and events.   As customers arrive, they go to the back of the 
line. The current customer, who was at the front of the line, is being served, and it is this customer that 
you remove from the system next. It is thus natural to use a queue,  bankQueue , to represent the line of 
customers in the bank. For this problem, the only information that you must store in the queue about 
each customer is the time of arrival and the length of the transaction. 

 Arrival events and departure events are ordered by time, and we always want to remove and 
process the next event that should occur—the highest-priority event. The ADT priority queue is 
used in this way. Our events can be stored in the priority queue  eventListPQueue . We can initialize 
eventListPQueue  with the arrival events in the simulation data fi le and later add the departure 
events as they are generated. 

A time-driven 
simulation simulates 
the ticking of  a clock 

An event-driven 
simulation considers 
only the times of  
certain events, in 
this case, arrivals 
and departures 

First revision of  the 
simulation algorithm 

An event list 
contains all future 
arrival events and 
departure events 
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 But how can you determine the times for the departure events? Observe that the next departure 
event always corresponds to the customer that the teller is currently serving. As soon as a customer 
begins service, the time of his or her departure is simply 

      time of departure = time service begins + length of transaction  

 Recall that the length of the customer’s transaction is in the event list, along with the arrival time. 
Thus, as soon as a customer begins service, you place a departure event corresponding to this cus-
tomer in the event list.  Figure   13-7    illustrates a typical instance of an arrival event and a departure 
event used in this simulation.  

Two tasks are 
required to process 
each event 

The algorithm for 
arrival events 

A new customer 
always enters the 
queue and is 
served while at the 
queue’s front 

The algorithm for 
departure events 

FIGURE 13-7         A typical instance of (a) an arrival event; (b) a departure event   
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 Now consider how you can process an event when it is time for the event to occur. You must 
perform two general types of actions:   

•   Update the bank line: Add or remove customers.  
•   Update the event list: Add or remove events.   

 To summarize, you process an arrival event as follows:      

  // TO PROCESS AN ARRIVAL EVENT  

//  Update the event list  
  Remove the arrival event for customer C from the event list  

// Update the bank line  
  if ( bank line is empty and teller is available ) 
 { 

Departure time of customer C is current time + transaction length  
 Add a departure event for customer C to the event list  
 Mark the teller as unavailable  

 } 
  else  

Add customer C to the bank line   

 When customer  C  arrives at the bank, if the line is empty and the teller is not serving another cus-
tomer, customer  C  can go directly to the teller. The wait time is 0 and you insert a departure event into 
the event list. If other customers are in line, or if the teller is assisting another customer, customer  C
must go to the end of the line. 

 You process a departure event as follows:    

  // TO PROCESS A DEPARTURE EVENT  

 //  Update the event list  
  Remove the departure event from the event list  

// Update the bank line  
  if ( bank line is not empty ) 
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 { 
Remove customer C from the front of the bank line   
 Customer C begins transaction  
 Departure time of customer C is current time + transaction length  
 Add a departure event for customer C to the event list  

 } 
  else  

Mark the teller as available.   

 When a customer fi nishes a transaction and leaves the bank, if the bank line is not empty, the next customer 
C  leaves the line and goes to the teller. You insert a departure event for customer  C  into the event list. 

 You can now combine and refi ne the pieces of the solution into an algorithm that performs the 
simulation by using the ADTs queue and priority queue:    

  // Performs the simulation.  
simulate(): void 

Create an empty queue bankQueue to represent the bank line  
Create an empty priority queue eventListPQueue for the event list  

   tellerAvailable =  true  

// Create and add arrival events to event list  
while ( data file is not empty ) 

   { 
Get next arrival time a and transaction time t from file  

       newArrivalEvent =  a new arrival event containing a and t 
       eventListPQueue.add(newArrivalEvent) 
   } 

//  Event loop  
while (eventListPQueue is not empty ) 

   { 
       newEvent = eventListPQueue.peek() 

//  Get current time  
       currentTime =  time of newEvent 

if (newEvent is an arrival event ) 
           processArrival(newEvent, eventListPQueue, bankQueue) 

else  
           processDeparture(newEvent, eventListPQueue, bankQueue) 
   } 

// Processes an arrival event.  
processArrival(arrivalEvent: Event, eventListPQueue: PriorityQueue,
                   bankQueue: Queue) 

// Remove this event from the event list  
   eventListPQueue.remove() 

   customer =  customer referenced in arrivalEvent 
if (bankQueue.isEmpty() && tellerAvailable) 

   { 
       departureTime = currentTime +  transaction time in arrivalEvent
       newDepartureEvent =  a new departure event with departureTime 
       eventListPQueue.add(newDepartureEvent) 
       tellerAvailable =  false  
   } 

else
       bankQueue.enqueue(customer) 

The fi nal 
pseudocode for the 
event-driven 
simulation 
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// Processes a departure event .
+processDeparture(departureEvent: Event, eventListPQueue: PriorityQueue, 
                       bankQueue: Queue) 

   // Remove this event from the event list  
   eventListPQueue.remove() 

if (!bankQueue.isEmpty()) 
   { 

// Customer at front of line begins transaction  
       customer = bankQueue.peek() 
       bankQueue.dequeue() 
       departureTime = currentTime +  transaction time in customer
       newDepartureEvent =  a new departure event with departureTime 
       eventListPQueue.add(newDepartureEvent) 
   } 

else  
       tellerAvailable  = true   

  Figure   13-8    begins a trace of this algorithm for the data given earlier and shows the changes to 
the queue and priority queue. Checkpoint Question 6 asks you to complete the trace. There are several 
more implementation details that must be decided, such as how to represent customers and events. 
Programming Problem 6 at the end of this chapter asks you to complete the implementation of this 
simulation.

FIGURE 13-8         A trace of the bank simulation algorithm for the data 
 20 6 
 22 4 
 23 2 
 30 3   

Time

bankQueue eventListPQueueFront BackFront Back

A  22  4

A  20  6

A  22  4

A  23  2

D  26  -

D  35  -

A  30  3

A  22  4

A  23  2

D  26  -

A  23  2

D  26  -

A  30 3

A  30  3

A  30  3

A  30  3

D 30  -

D  32  -

A  22  4

A  23  2

A  30  3

A  23  2

0

20

22

23

26

30

32

      Question 5    In the bank simulation problem, why is it impractical to read the entire input 
fi le and create a list of all the arrival and departure events before the simulation begins? 

CHECK POINT
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         13.5 Position-Oriented and Value-Oriented ADTs 
  Of the abstract data types that we have seen so far, the stack, the list, and the queue have operations 
defi ned in terms of the positions of their data items. We call them  position-oriented ADTs . Stacks 
and queues greatly restrict the positions that their operations can affect; only their end positions can 
be accessed. The list removes this restriction. 

 The ADT sorted list is an example of a  value-oriented ADT . When a new item is added to a 
sorted list, the sorted list determines the item’s placement according to its value. Unlike a list, a sorted 
list cannot be told where to place its items. The same is true of a priority queue, since it orders its 
entries according to their priorities, which are values that are a part of each entry. 

 Although stacks and queues order their entries, and you do not specify where a stack or a queue 
should place its items, the entries’ positions are not determined according to their values. Thus, we do 
not classify stacks and queues as value oriented.   

 Question 6   Complete the hand trace of the bank-line simulation that  Figure   13-8    began. 
Show the state of the queue and the event list at each step.   

Operations for the 
ADTs list, stack, and 
queue involve the 
position of  items 

A comparison of  
stack and queue 
operations 

      Note:    The ADTs stack, queue, list, sorted list, and priority queue all order their entries. 
The stack, queue, and list are position oriented; the sorted list and priority queue are 
value oriented. The ADT bag does not order its entries; it is neither position oriented nor 
value oriented.   

 Stacks are really quite similar to queues. This similarity becomes apparent if you pair off their 
operations, as follows: 

•   Stack  isEmpty  and queue  isEmpty  see whether any items exist in the ADT.  
•    push  and  enqueue  insert a new item into one end (the top and back, respectively) of the 

ADT.  
•    pop  and  dequeue : The  pop  operation removes the most recent item, which is at the top of the 

stack, and dequeue  removes the fi rst item, which is at the front of the queue.  
•   Stack  peek  and queue  peekFront : The  peek  operation retrieves the most recent item, which is 

at the top of the stack, and peekFront  retrieves the fi rst item at the front of the queue.   

 The ADT list allows you to insert into, remove from, and inspect an item at any position of the 
list. Thus, it has the most fl exible operations of the three position-oriented ADTs. You can view the list 
operations as general versions of the stack and queue operations as follows:    

•    getLength : If you ignore the restriction that the stack and queue versions of  isEmpty  can tell 
only when an item is present, you obtain an operation that can count the number of items that 
are present.  

•    insert : If you ignore the restriction that  push  and  enqueue  can insert new items into only one 
position, you obtain an operation that can insert a new item into any position of the list.  

•    remove : If you ignore the restriction that  pop  and  dequeue  can remove items from only one 
position, you obtain an operation that can remove an item from any position of the list.  

•    getEntry : If you ignore the restriction that  peek  and  peekFront  can retrieve items from 
only one position, you obtain an operation that can retrieve the item from any position of the 
list.

ADT list operations 
generalize stack 
and queue 
operations 
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        SUMMARY       

      Question 7    For each of the following situations, which of these ADTs (1 through 6) 
would be most appropriate? (1) a queue; (2) a stack; (3) a list; (4) a sorted list; (5) a priority 
queue; (6) none of these 

a.   The customers at a6deli counter who take numbers to mark their turn  
b.   An alphabetic list of names  
c.   Integers that need to be sorted  
d.   The boxes in a box trace of a recursive function  
e.   A grocery list ordered by the occurrence of the items in the store  
f.   The items on a cash register tape  
g.   A word processor that allows you to correct typing errors by using the Backspace key  
h.   A program that uses backtracking  
i.   A list of ideas in chronological order  
j.   Airplanes that stack above a busy airport, waiting to land  
k.   People who are put on hold when they call for customer service  
l.   An employer who fi res the most recently hired person   

CHECK POINT

1.  The defi nition of the queue operations gives the ADT queue fi rst-in, fi rst-out (FIFO) behavior. 

2.  Models of real-world systems often use queues. The event-driven simulation in this chapter used a queue to 
model a line of customers in a bank. 

3.  Central to a simulation is the notion of simulated time. In a time-driven simulation, simulated time is advanced 
by a single time unit, whereas in an event-driven simulation, simulated time is advanced to the time of the next 
event. To implement an event-driven simulation, you maintain an event list that contains events that have not yet 
occurred. The event list is ordered by the time of the events, so that the next event to occur is always at the head 
of the list. 

4.  A priority queue has operations to retrieve or remove the item with the highest priority. 

5.  ADTs are classifi ed as either position oriented or value oriented. A position-oriented ADT organizes its items 
according to their positions, whereas a value-oriented ADT organizes items by their values. 

  EXERCISES   

1. Consider the palindrome-recognition algorithm described in  Section   13.2.2   . Is it necessary for the 
algorithm to look at the entire queue and stack? That is, can you reduce the number of times that the loop 
must execute? 

2. Consider the language 

   L  = { s$s'  :  s  is a possibly empty string of characters other than  $ ,  s'  = reverse( s )}

as defi ned in  Chapter   6   . Write a recognition algorithm for this language that uses both a queue and a stack. Thus, 
as you traverse the input string, you insert each character of  s  into a queue and each character of  s'  into a stack. 
Assume that each input string contains exactly one  $ . 
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3.  What is the output of the following pseudocode, where  num1 ,  num2 , and  num3  are integer variables? 

  num1 = 5 
num2 = 1 
num3 = 4 
 aQueue.enqueue(num2) 
 aQueue.enqueue(num3) 
 aQueue.dequeue() 
aQueue.enqueue(num1 - num2) 
num1 = aQueue.peek()
 aQueue.dequeue() 
num2 = aQueue.peek()
 aQueue.dequeue() 
cout << num2 << " " << num1 << " " << num3 << endl

  4.   Revise the infi x-to-postfi x conversion algorithm of  Chapter   6    so that it uses a queue to represent the postfi x 
expression. 

  5.   Write a client function that returns the back of a queue while leaving the queue unchanged. This function can 
call any of the methods of the ADT queue. It can also declare new  Queue  objects. The return type is  
ItemType , and it accepts a  Queue  object as a parameter. 

  6.   Consider a queue implementation that uses the ADT list to represent the items in the queue. Discuss the 
effi ciency of the queue’s insertion and removal operations when the ADT list’s implementation is 

 a.   Array based  
 b.   Link based   

  7.   An operation that displays the contents of a queue can be useful during program debugging. Add a  display
operation to the ADT queue such that  display  uses only ADT queue operations, so it is independent of the 
queue’s implementation. 

  8.   Write a C++ template interface  PriorityQueueInterface  for the ADT priority queue. 

  9.   Consider a slight variation of the ADT queue. In this variation, new items can be added to and removed from 
either end. This ADT is commonly called a  double-ended queue , or  deque . Specify each method of the deque 
by stating the method’s purpose; by describing its parameters; and by writing preconditions, postconditions, and 
a pseudocode version of its header. Then write a C++ template interface for these methods that includes  
javadoc -style comments. 

  10.   Use a deque, as described in the previous exercise, to solve the read-and-correct problem given in 
 Section   6.1.1    of  Chapter   6   . In that problem, you enter text at a keyboard and correct typing mistakes by 
using the Backspace key. Each backspace erases the most recently entered character. Your pseudocode 
solution should provide a corrected string of characters in the order in which they were entered at the 
keyboard. 

11.  With the following data, hand-trace the execution of the bank-line simulation that this chapter describes. Each 
line of data contains an arrival time and a transaction time. Show the state of the queue and the event list at each 
step.

   5 9  
  7 5  
  14 5  
  30 5  
  32 5  
  34 5   

 Note that at time 14, there is a tie between the execution of an arrival event and a departure event. 
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  12.   In the solution to the bank simulation problem, can the event list be a queue? Can the event list be a list or sorted 
list?

  13.   Consider the stack-based search of the fl ight map in the HPAir problem of  Chapter   6   . You can replace the 
stack that searchS  uses with a queue. That is, you can replace every call to  push  with a call to  enqueue , every 
call to pop  with a call to  dequeue , and every call to  peek  with a call to  peekFront . Trace the resulting algo-
rithm when you fl y from  P  to  Z  in the fl ight map in  Figure   6-6   . Indicate the contents of the queue after every 
operation on it. 

  14.   As  Chapter   6    pointed out, you can defi ne ADT operations in a mathematically formal way by using axioms. 
Consider the following axioms for the ADT queue, where  aQueue  is an arbitrary queue and  item  is an arbitrary 
queue item: 

  (new Queue()).isEmpty() = true 
(new Queue()).dequeue() = false 
(new Queue()).peekFront() = error 
((new Queue()).enqueue(item)).dequeue() = new Queue() 
((new Queue()).enqueue(item)).peekFront() = item 
(aQueue.enqueue(item)).isEmpty() = false 
(aQueue.enqueue(item)).dequeue() = true 

 If  aQueue  is not empty,  

 (aQueue.enqueue(item)).dequeue() = (aQueue.dequeue()).enqueue(item) 

 and 

   (aQueue.enqueue(item)).peekFront() = aQueue.peekFront() 

a.   Note the recursive nature of the defi nition of  peekFront . What is the base case? What is the recursive 
step? What is the signifi cance of the  isEmpty  test? Why is the queue operation  peekFront  recursive in 
nature while the stack operation  peek  for the ADT stack is not?  

b.   The representation of a stack as a sequence of  push  operations without any  pop  operations is called a 
canonical form. (See Exercise 15 in  Chapter   6   .) Is there a canonical form for the ADT queue? That is, 
can you represent a queue as a sequence of  enqueue  operations without any  dequeue  operations? Prove 
your answer.   

      PROGRAMMING PROBLEMS            

  1.   Using the class  queue  in the Standard Template Library, defi ne and test the class  OurQueue  that is derived from 
QueueInterface , as given in Listing 13-1. The class  queue  has the following methods that you can use to defi ne 
the methods for OurQueue : 

queue(); // Default constructor 
bool empty() const ; // Tests whether the queue is empty 
void push(const ItemType& newEntry); // Adds newEntry to the back of the queue
void pop(); // Removes the front of the queue 
ItemType& front(); // Returns a reference to the front of the queue

 To access  queue , use the following  include  statement: 

  #include <queue>; 



 Programming Problems 393

 Input fi le     Output from processing fi le on left 

1    5    Simulation Begins
2    5    Processing an arrival event at time:    1
4    5    Processing an arrival event at time:    2
20    5    Processing an arrival event at time:    4
22    5    Processing a departure event at time:   6
24    5    Processing a departure event at time:  11
26    5    Processing a departure event at time:  16
28 5    Processing an arrival event at time:   20
30    5    Processing an arrival event at time:   22
88    3    Processing an arrival event at time:   24

        Processing a departure event at time:  25
        Processing an arrival event at time:   26
        Processing an arrival event at time:   28
        Processing an arrival event at time:   30

  2.   Using the class  priority_queue  in the Standard Template Library, defi ne and test the class  OurPriorityQueue
that is derived from  PriorityQueueInterface , as developed in Exercise 8. The class  priority_queue  has the 
following methods that you can use to defi ne the methods for  OurPriorityQueue : 

priority_queue(); // Default constructor 
  bool  empty()  const ; // Tests whether the priority queue is empty 
  void  push( const  ItemType& newEntry); // Adds newEntry to the priority queue
  void  pop(); // Removes the entry having the highest priority
ItemType& top(); // Returns a reference to the entry having the
 // highest priority  

 To access  priority_queue , use the following  include  statement: 

  #include < priority_queue>;

Whenever you need a queue or a priority queue for any of the following problems, use the classes  OurQueue  and 
OurPriorityQueue  that Programming Problems 1 and 2 ask you to write . 

  3.   Implement the palindrome-recognition algorithm described in  Section   13.2.2   . 

  4.   Implement the recognition algorithm that you wrote to solve Exercise 2 using the classes  OurQueue , as described 
in Programming Problem 1, and  OurStack  , as described in Programming Problem 1 of  Chapter   6   . 

  5.   Implement the radix sort of an array by using a queue for each group. The radix sort is discussed in  Section 
  11.2.3    of  Chapter   11   . 

  6.   Implement the event-driven simulation of a bank that this chapter described. A queue of arrival events will rep-
resent the line of customers in the bank. Maintain the arrival events and departure events in a priority queue, 
sorted by the time of the event. Use a link-based implementation for the event list. 

 The input is a text fi le of arrival and transaction times. Each line of the fi le contains the arrival time and 
required transaction time for a customer. The arrival times are ordered by increasing time. 

 Your program must count customers and keep track of their cumulative waiting time. These statistics are 
suffi cient to compute the average waiting time after the last event has been processed. Display a trace of the 
events executed and a summary of the computed statistics (the total number of arrivals and average time spent 
waiting in line). For example, the input fi le shown in the left columns of the following table should produce the 
output shown in the right column.   
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  7.   Modify and expand the event-driven simulation program that you wrote in Programming Problem 6. 

 a.   Add an operation that displays the event list, and use it to check your hand trace in Exercise 11.  
 b.   Add some statistics to the simulation. For example, compute the maximum wait in line, the average 

length of the line, and the maximum length of the line.  
 c.   Modify the simulation so that it accounts for three tellers, each with a distinct line. You should keep in 

mind that there should be 

•   Three queues, one for each teller  
•   A rule that chooses a line when processing an arrival event (for example, enter the shortest line)  
•   Three distinct departure events, one for each line  
•   Rules for breaking ties in the event list   

 Run both this simulation and the original simulation on several sets of input data. How do the statistics 
compare?

 d.   The bank is considering the following change: Instead of having three distinct lines (one for each 
teller), there will be a single line for the three tellers. The person at the front of the line will go to the 
fi rst available teller. Modify the simulation of part  c  to account for this variation. Run both simulations 
on several sets of input data. How do the various statistics compare (averages and maximums)? What 
can you conclude about having a single line as opposed to having distinct lines?   

  8.  The people who run the Motor Vehicle Department (MVD) have a problem. They are concerned that people do 
not spend enough time waiting in lines to appreciate the privilege of owning and driving an automobile. The 
current arrangement is as follows: 

•   When people walk in the door, they must wait in a line to sign in.  
•    Once they have signed in, they are told either to stand in line for registration renewal or to wait until they 

are called for license renewal.  
•   Once they have completed their desired transaction, they must go and wait in line for the cashier.  
•    When they fi nally get to the front of the cashier’s line, if they expect to pay by check, they are told that all 

checks must get approved. To do this, it is necessary to go to the check-approver’s table and then reenter 
the cashier’s line at the end.   

        Processing a departure event at time:  30
        Processing a departure event at time:  35
        Processing a departure event at time:  40
        Processing a departure event at time:  45
        Processing a departure event at time:  50
        Processing an arrival event at time:   88
        Processing a departure event at time:  91
        Simulation Ends
         
        Final Statistics:

        Total number of people processed: 10
        Average amount of time spent waiting: 5.6
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 Write an event-driven simulation to help the MVD gather statistics. Each line of input will contain 

•   A desired transaction code ( L  for license renewal,  R  for registration renewal)  
•   A method-of-payment code ( $  for cash,  C  for check)  
•   An arrival time (integer)  
•   A name   

 Write out the specifi cs of each event (when, who, what, and so on). Then display these fi nal statistics: 

•    The total number of license renewals and the average time spent in MVD (arrival until completion of 
payment) to renew a license  

•   The total number of registration renewals and the average time spent in MVD (arrival until completion of 
payment) to renew a registration   

 Incorporate the following details into your program: 

•   Defi ne the following events: arrive, sign in, renew license, renew registration, and cope with the cashier 
(make a payment or fi nd out about check approval).  

•   In the case of a tie, let the order of events be determined by the list of events just given—that is, arrivals 
have the highest priority.  

•   Assume that the various transactions take the following amounts of time: 

   Sign in 10 seconds  
  Renew license 90 seconds  
  Register automobile 60 seconds  
  See cashier (payment) 30 seconds  
  See cashier (check not approved) 10 seconds    

•    As ridiculous as it may seem, the people waiting for license renewal are called in alphabetical order. 
Note, however, that people are not pushed back once their transactions have started.  

•    For the sake of this simulation, you can assume that checks are approved instantly. Therefore, the rule for 
arriving at the front of the cashier’s line with a check that has not been approved is to go to the back of the 
cashier’s line with a check that has been approved.   
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  Chapter   13    Queues and Priority Queues 

The previous chapter discussed the ADT queue at length and introduced the ADT 
priority queue. This chapter will present several implementations of the queue and 
compare their advantages and disadvantages. 

 We will consider an implementation of the priority queue, but we can write a much 
more effi cient implementation later, after we explore the ADT heap in  Chapter   17   .   

      14.1 Implementations of the ADT Queue 
 Like stacks, queues can have an array-based or a link-based implementation. However, 
we also can use an implementation of the ADT list to defi ne a class of queues. Such a 
class is easy to write, as most of the work is done by the class of lists. If you needed a 
class of queues right away, you could use this approach. The result would not be as time 
effi cient as possible, however. 
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 We will begin by using an instance of the class  LinkedList , as given in Listing 9-2 of  Chapter   9   , 
to store the queue’s entries. We will then write a link-based implementation, as it is a bit more straight-
forward than the array-based one, which we will investigate last. 

   14.1.1  An Implementation That Uses the ADT List 

 You can use the ADT list to contain the items in a queue. This approach is especially useful if you 
need to defi ne a class of queues quickly and already have a class of lists.  Figure   14-1    illustrates such a 
queue. If the item in position 1 of a list represents the front of the queue, you can implement the 
method dequeue  as the list operation  remove(1)  and the method  peekFront  as the list operation 
getEntry(1) . Similarly, if you let the item at the end of the list represent the back of the queue, you 
can implement the operation enqueue(newEntry)  as the list operation  insert(getLength()   +   1,
newEntry) .

 The header fi le containing such a class defi nition for the ADT queue appears in Listing 14-1, and 
the implementation fi le is in Listing 14-2. 

      LISTING 14-1    The header fi le for the class ListQueue

/** ADT queue: ADT list implementation. 
 @file ListQueue.h */ 

#ifndef _LIST_QUEUE 
#define _LIST_QUEUE 

#include "QueueInterface.h" 
#include "LinkedList.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class ListQueue : public QueueInterface<ItemType> 
 { 
  private : 
   LinkedList<ItemType>* listPtr; // Pointer to list of queue items 

  public : 
   ListQueue(); 
   ListQueue( const ListQueue& aQueue); 
   ~ListQueue(); 

FIGURE 14-1         An implementation of the ADT queue that stores its entries in a list   
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bool isEmpty() const ; 
bool enqueue( const ItemType& newEntry); 
bool dequeue(); 

/** @throw PrecondViolatedExcep if queue is empty. */ 
   ItemType peekFront()  const throw (PrecondViolatedExcep); 
 }; // end ListQueue 
#include "ListQueue.cpp" 
 #endif   

      LISTING 14-2    The implementation fi le for the class ListQueue

/** ADT queue: ADT list implementation. 
 @file ListQueue.cpp */ 
#include "ListQueue.h" // Header file 

  template < class ItemType> 
 ListQueue<ItemType>::ListQueue() 
 { 
   listPtr =  new LinkedList<ItemType>(); 
} // end default constructor 

  template < class ItemType> 
 ListQueue<ItemType>::ListQueue( const ListQueue& aQueue) : 
                          listPtr(aQueue.listPtr) 
 { 
} // end copy constructor 

  template < class ItemType> 
 ListQueue<ItemType>::~ListQueue() 
 { 
} // end destructor 

  template < class ItemType> 
  bool ListQueue<ItemType>::isEmpty() const  
 { 

return listPtr->isEmpty(); 
} // end isEmpty 

  template < class ItemType> 
  bool ListQueue<ItemType>::enqueue( const ItemType& newEntry) 
 { 

return listPtr->insert(listPtr->getLength() + 1, newEntry); 
} // end enqueue 

  template < class ItemType> 
  bool ListQueue<ItemType>::dequeue() 
 { 

return listPtr->remove(1); 
} // end dequeue 

  template < class ItemType> 
ItemType ListQueue<ItemType>::peekFront() const  

throw (PrecondViolatedExcep) 

(continues)
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 { 
if (isEmpty()) 

        throw PrecondViolatedExcep("peekFront() called with empty queue."); 

// Queue is not empty; return front 
return listPtr->getEntry(1); 

} // end peekFront 
// end of implementation file   

 Of particular note in the implementation fi le are the defi nitions of the constructor, copy construc-
tor, and destructor. The constructor creates a new instance of a list. Omitting this step is an easy over-
sight to make, leading to incorrect execution instead of a syntax error. The copy constructor uses an 
initializer,  listPtr(aQueue.listPtr) , to invoke the list’s copy constructor. Finally, even though the 
destructor has an empty body, the list’s destructor will be invoked. 

 Exercise 8 at the end of this chapter asks you to consider the effi ciency of this implementation.  

   14.1.2  A Link-Based Implementation 

 A link-based implementation of a queue uses a chain of linked nodes, much like the other link-based 
implementations that you have seen. However, the queue presents a challenge, since we must be able 
to not only remove entries from its front but also add them to its back. Removing a node from the 
beginning of a linked chain is easy, but to add a new node to the chain’s end, we need a pointer to the 
chain’s last node. One way to accomplish this is to begin at the fi rst node and traverse the chain until 
we reach the last one. A much more effi cient approach uses a  tail pointer  to reference the end of the 
chain—just as the head pointer references the beginning of the chain.  Figure   14-2    illustrates a chain 
of linked nodes that has both head and tail pointers. Like the head pointer  frontPtr ,  backPtr  is exter-
nal to the chain.  

A linear linked chain 
or a circular linked 
chain can represent 
a queue 

  Figure   14-3    shows that you can actually get by with one external pointer—to the back—if you 
make the last node point to the fi rst one. This data structure is a  circular chain  of linked nodes. 
Notice that the nodes in a circular chain have  next  pointers that never contain  nullptr . We will refer 
to a chain like the one in  Figure   14-2    as a  linear chain , regardless of how many external pointers it 
has. Such a chain does have a node whose  next  pointer is  nullptr .

 Programming Problem 1 at the end of the chapter asks you to consider the details of the circular 
chain implementation. Here we will develop an implementation of the ADT queue using a chain that 
has both head and tail pointers, as illustrated in  Figure   14-2   .   

FIGURE 14-2         A chain of linked nodes with head and tail pointers   
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 Listing 14-3 shows the header fi le for our class defi nition. 

      LISTING 14-3    The header fi le for the class LinkedQueue

/** ADT queue: Link-based implementation. 
 @file LinkedQueue.h */ 

#ifndef _LINKED_QUEUE 
#define _LINKED_QUEUE 

#include "QueueInterface.h" 
#include "Node.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class LinkedQueue : public QueueInterface<ItemType> 
 { 
  private : 

// The queue is implemented as a chain of linked nodes that has 
// two external pointers, a head pointer for the front of the queue 
// and a tail pointer for the back of the queue. 

   Node<ItemType>* backPtr; 
   Node<ItemType>* frontPtr; 

  public : 
   LinkedQueue(); 
   LinkedQueue( const LinkedQueue& aQueue); 
   ~LinkedQueue(); 

bool isEmpty() const ; 
bool enqueue( const ItemType& newEntry); 
bool dequeue(); 

     Note:   If you use a linear chain with only a head pointer to implement a queue, the 
enqueue  operation will be ineffi cient. Each addition to the queue requires a traversal to 
the end of the chain. As the queue increases in length, the traversal time—and hence 
enqueue ’s time requirement—will increase. 

FIGURE 14-3         A circular chain of linked nodes with one external pointer   
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/** @throw PrecondViolatedExcep if the queue is empty */ 
   ItemType peekFront()  const throw (PrecondViolatedExcep); 
 }; // end LinkedQueue 
#include "LinkedQueue.cpp" 
 #endif   

  The method enqueue.  Inserting a new node, to which  newNodePtr  points, at the back of the chain 
that represents the queue requires three pointer changes: the next pointer in the new node, the next 
pointer in the current back node, and the external pointer  backPtr .  Figure   14-4    illustrates these 
changes during the addition of an item to a nonempty queue and indicates the order in which they can 
occur. The statements to perform this addition are 

  newNodePtr->setNext( nullptr ); 
 backPtr->setNext(newNodePtr); 
backPtr = newNodePtr;   

 The addition of an item to an empty queue is a special case, as  Figure   14-5    illustrates. If 
newNodePtr  points to the new node, the following statements add the node to the empty chain: 

  frontPtr = newNodePtr; 
backPtr = newNodePtr 

 These statements easily follow from the realization that the chain has only one node, which is both the 
fi rst and last node in the chain.  

FIGURE 14-4         Adding an item to a nonempty queue   
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 Thus, we have the following defi nition for the method  enqueue : 

   template < class ItemType> 
  bool LinkedQueue<ItemType>::enqueue( const ItemType& newEntry) 
 { 
   Node<ItemType>* newNodePtr =  new Node<ItemType>(newEntry);  

// Insert the new node 
if (isEmpty()) 

       frontPtr = newNodePtr;              // The queue was empty 
else  

       backPtr->setNext(newNodePtr);     // The queue was not empty 

   backPtr = newNodePtr;                   // New node is at back 
return true ; 

} // end enqueue   

  The method dequeue.   Removing the front of the queue involves deleting the fi rst node of the chain. 
This is an easier operation than removing the last node, which, fortunately, we do not have to do.  
Figure   14-6    illustrates the removal of the front item from a queue that contains more than one item. 
Notice that you need to change only the external pointer  frontPtr . Removal from a queue of one 
item is a special case that sets the external pointers  backPtr  and  frontPtr  to  nullptr .

 The following defi nition of the method  dequeue  shows how to implement these two cases: 

   template < class ItemType> 
  bool LinkedQueue<ItemType>::dequeue() 
 { 

bool result = false ; 
if (!isEmpty()) 

   { 
        // Queue is not empty; remove front 
        Node<ItemType>* nodeToDeletePtr = frontPtr; 
         if (frontPtr == backPtr) 
        {   // Special case: one node in queue 
            frontPtr =  nullptr ; 
            backPtr =  nullptr ; 
        } 
         else  
           frontPtr = frontPtr->getNext(); 

        // Return deleted node to system 
        nodeToDeletePtr->setNext( nullptr ); 
         delete nodeToDeletePtr; 

          nodeToDeletePtr =  nullptr ; 

        result =  true ; 
   }  // end if 

return result;  
} // end dequeue   

FIGURE 14-5         Adding an item to an empty queue: (a) before  enqueue ; (b) after  enqueue
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Retrieval.   The method  peekFront  simply returns the value  frontPtr->getItem()  after checking 
that the queue is not empty. We leave the rest of this implementation to you as an exercise. (See Exer-
cises 1 through 3 at the end of this chapter.)      

      Question 1    Why is a tail pointer desirable when you use a chain of linked nodes to 
implement a queue? 

CHECK POINT

      Question 2    If you use a circular chain that has only a tail pointer, as  Figure   14-3    
illustrates, how do you access the data in the fi rst node? 

      Question 3    If the ADT queue had a method  clear  that removed all entries from a queue, 
what would its defi nition be in the previous link-based implementation? 

FIGURE 14-6         Removing an item from a queue of more than one item   
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   14.1.3  An Array-Based Implementation 

 For applications in which a fi xed-sized queue does not present a problem, you can use an array to rep-
resent a queue. A naive array-based implementation of a queue might include the following defi ni-
tions, as  Figure   14-7   a illustrates:    

   const int MAX_QUEUE = maximum size of queue ; 
. . . 
ItemType items[MAX_QUEUE]; // Array of queue items
  int       front;               // Index to front of queue 

  int       back;                 // Index to back of queue   

A naive array-based 
implementation of  a 
queue

 Here  front  and  back  are the indices of the front and back entries, respectively, in the queue. Ini-
tially,  front  is 0 and  back  is –1. To add a new item to the queue, you increment  back  and place the 
item in items[back] . To remove an item, you simply increment  front . The queue is empty whenever 
back  is less than  front . The queue is full when  back  equals  MAX_QUEUE  – 1.   

 The problem with this strategy is  rightward drift —that is, after a sequence of additions and 
removals, the items in the queue will drift toward the end of the array, making it appear full. In 
other words,  back  could equal  MAX_QUEUE  – 1 even when the queue contains only a few items. 
 Figure   14-7   b illustrates this situation.    

 One possible solution to this problem is to shift array entries to the left, either after each removal 
from the queue or whenever  back  equals  MAX_QUEUE  – 1. This solution guarantees that the queue can 
always contain up to  MAX_QUEUE  items. Shifting is not really satisfactory, however, as it would domi-
nate the cost of the implementation. 

Rightward drift can 
cause a queue-full 
condition even 
though the queue 
contains few entries 

Shifting entries to 
compensate for 
rightward drift is 
expensive 

      Question 4    Suppose that we change the naive array-based implementation of a queue 
pictured in  Figure   14-7    so that the back of the queue is in  items[0] . Although repeated 
removals from the front would no longer cause rightward drift, what other problem would 
this implementation cause? 

CHECK POINT

FIGURE 14-7         (a) A naive array-based implementation of a queue; (b) rightward drift can 
cause the queue to appear full   
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  A much more elegant solution is possible by viewing the array as circular, as  Figure   14-8    illus-
trates. To remove an item, you increment the queue index  front , and to insert an item, you increment 
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back .  Figure   14-9    illustrates the effect of a sequence of three queue operations on  front ,  back , and 
the array. Notice that  front  and  back  “advance” clockwise around the array.      

 When either  front  or  back  advances past  MAX_QUEUE  – 1, it should wrap around to 0. This wrap-
around eliminates the problem of rightward drift, which occurred in the previous naive implementa-
tion, because here the circular array has no end. You obtain the wraparound effect of a circular queue 
by using modulo arithmetic (that is, the C++  %  operator) when incrementing  front  and  back . For 
example, you can add  newEntry  to the queue by using the statements    

  back = (back + 1) % MAX_QUEUE; 
items[back] = newEntry; 

 Notice that if back equaled  MAX_QUEUE  – 1 before the addition of  newItem , the fi rst statement, 
back   =   (back   +   1)   %   MAX_QUEUE , would have the effect of wrapping  back  around to index 0. Similarly, 
you can remove the entry at the front of the queue by using the statement    

  front = (front + 1) % MAX_QUEUE; 

 To initialize the queue, you set  front  to 0 and  back  to  MAX_QUEUE  – 1. 

FIGURE 14-9         The effect of three consecutive operations on the queue in  Figure   14-8      
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 The only diffi culty with this scheme is detecting when the queue is empty or full. It seems rea-
sonable to select as the queue-empty condition 

        front  is one slot ahead of  back

 as this appears to indicate that  front  “passes”  back  when the queue becomes empty, as Figure   14-10   a 
depicts. However, it is also possible that this condition signals a full queue: Because the queue is cir-
cular,  back  might in fact “catch up” with  front  as the queue becomes full.  Figure   14-10   b illustrates this 
situation.

 Obviously, you need a way to distinguish between the two situations. One way is to keep a count 
of the number of items in the queue. Before adding an item to the queue, you check whether the count 
is equal to MAX_QUEUE;  if it is, the queue is full. Before removing an item from the queue, you check 
whether the count is equal to zero; if it is, the queue is empty.    

  The header fi le.   Listing 14-4 contains the header fi le for an array-based implementation of the ADT 
queue that uses a circular array as just described. Because the data is stored in statically allocated 
memory, the compiler-generated destructor and copy constructor are suffi cient.  1

  front and back  
cannot be used to 
distinguish between 
queue-full and 
queue-empty
conditions

By counting queue 
items, you can 
detect queue-full 
and queue-empty 
conditions

 1   If you use a dynamically allocated array, you must provide a destructor and copy constructor. 

FIGURE 14-10         (a)  front  passes  back  when the queue becomes empty; (b)  back  catches up to 
front  when the queue becomes full   
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      LISTING 14-4    The header fi le for the class ArrayQueue

/** ADT queue: Circular array-based implementation. 
 @file ArrayQueue.h */ 
#ifndef _ARRAY_QUEUE 
#define _ARRAY_QUEUE 
#include "QueueInterface.h" 
#include "PrecondViolatedExcep.h" 

  const int MAX_QUEUE = 50; 

  template < class ItemType> 
  class ArrayQueue : public QueueInterface<ItemType> 
 { 
  private : 
   ItemType items[MAX_QUEUE];  // Array of queue items 

int       front;                // Index to front of queue 
int       back;                 // Index to back of queue 
int       count;                // Number of items currently in the queue 

  public : 
   ArrayQueue(); 

// Copy constructor and destructor supplied by compiler 
bool isEmpty() const ; 
bool enqueue( const ItemType& newEntry); 
bool dequeue(); 

/** @throw PrecondViolatedExcep if queue is empty. */ 
   ItemType peekFront()  const throw (PrecondViolatedExcep); 
 }; // end ArrayQueue 
#include "ArrayQueue.cpp" 
 #endif    

  The implementation fi le.   Listing 14-5 contains the defi nitions of  ArrayQueue ’s methods as they 
appear in the implementation fi le. 

      LISTING 14-5    The implementation fi le for the class ArrayQueue

/** ADT queue: Circular array-based implementation. 
 @file ArrayQueue.cpp */ 
#include "ArrayQueue.h" // Header file 

  template < class ItemType> 
ArrayQueue<ItemType>::ArrayQueue() : front(0), back(MAX_QUEUE - 1), count(0)
 { 
} // end default constructor 

  template < class ItemType> 
  bool ArrayQueue<ItemType>::isEmpty() const  
 { 

return count == 0; 
} // end isEmpty 
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  template < class ItemType> 
  bool ArrayQueue<ItemType>::enqueue( const ItemType& newEntry) 
 { 

bool result = false ; 
if (count < MAX_QUEUE) 

   { 
// Queue has room for another item 

      back = (back + 1) % MAX_QUEUE; 
      items[back] = newEntry; 
      count++; 
      result =  true ; 
   }  // end if 

return result; 
} // end enqueue 

  template < class ItemType> 
  bool ArrayQueue<ItemType>::dequeue() 
 { 

bool result = false ; 
if (!isEmpty()) 

   { 
      front = (front + 1) % MAX_QUEUE; 
      count–-; 
      result =  true ; 
   }  // end if 

return result; 
} // end dequeue 

  template < class ItemType> 
ItemType ArrayQueue<ItemType>::peekFront() const  

throw (PrecondViolatedExcep) 
 { 

// Enforce precondition 
if (isEmpty()) 

throw PrecondViolatedExcep("peekFront() called with empty queue"); 

// Queue is not empty; return front 
return items[front]; 

} // end peekFront   

      Question 5    If the ADT queue had a method  clear  that removed all entries from a queue, 
what would its defi nition be in the previous array-based implementation? 

CHECK POINT

    Variations.   Several commonly used variations of the previous circular-array approach do not require 
a count of the number of entries in the queue. One approach uses a boolean variable  isFull  to distin-
guish between the full and empty conditions. The expense of maintaining this variable is about the 
same as that of maintaining a counter, however. A faster implementation declares  MAX_QUEUE  + 1 
locations for the array  items , but uses only  MAX_QUEUE  of them for queue items. You sacrifi ce one 

An isFull fl ag can 
replace the counter 
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array location and let  front  be the index of the location before the front of the queue. As  Figure   14-11    
illustrates, the queue is full if   

front equals (back   +   1)   %   (MAX_QUEUE   +   1)

 but the queue is empty if 

front equals back

 This approach does not have the overhead of maintaining a counter or boolean variable, and so is 
more effi cient of time. Programming Problems 3 and 4 discuss these two alternate implementations 
further.       

   14.1.4  Comparing Implementations 

 We have suggested implementations of the ADT queue that store the queue’s entries in either an 
instance of the ADT list, a chain of linked nodes that has both a head pointer and a tail pointer, a circu-
lar chain that has only one external pointer, an array, or a circular array. You have seen the details of 
three of these implementations. All of our implementations of the ADT queue are ultimately either 
array based or link based. 

 The reasons for making the choice between array-based and link-based implementations are the 
same as those discussed in earlier chapters. The discussion here is similar to the one in  Section   4.5    of 
 Chapter   4   . We repeat the highlights here in the context of queues. 

 An implementation based on a statically allocated array prevents the  enqueue  operation from 
adding an item to the queue if the array is full. Such a queue is appropriate for many data structures, 
such as buffers, within an operating system. If this restriction is not acceptable, you must use either a 
dynamically allocated array or a link-based implementation.    

 Suppose that you decide to use a link-based implementation. Should you choose the implementa-
tion that uses a linked chain or the one that uses a link-based implementation of the ADT list? Because a 
linked chain actually represents the items in the ADT list, using the ADT list to represent a queue is not 
as effi cient as using a linked chain directly. However, the ADT list approach is much simpler to write. 

 If you decide to use a linked chain instead of the ADT list to represent the queue, should you use a 
linear chain or a circular chain? We leave this question for you to answer in Programming Problem 1. 

Using an extra array 
location is more time 
effi cient 

Reuse of  an already 
implemented class 
saves you time 

Fixed size versus 
dynamic size 

FIGURE 14-11         A more time-effi cient circular implementation: (a) a full queue; (b) an empty 
queue
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   14.2 An Implementation of the ADT Priority Queue 
 While we could place the entries of a priority queue into either an array or a chain of linked nodes, 
doing so would be like implementing the ADT sorted list, which we did in  Chapter   12   . Rather than 
repeating those implementations, we can use a sorted list to contain the entries of a priority queue. 
The header fi le in Listing 14-6 defi nes a class of priority queues that has as a private data member an 
instance of the class LinkedSortedList , as given in Listing 12-2 of  Chapter   12   . 

      LISTING 14-6    A header fi le for the class SL_PriorityQueue . 

/** ADT priority queue: ADT sorted list implementation. 
 @file SL_PriorityQueue.h */ 
#ifndef _PRIORITY_QUEUE 
#define _PRIORITY_QUEUE 

#include "PriorityQueueInterface.h" 
#include "LinkedSortedList.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class SL_PriorityQueue : public PriorityQueueInterface<ItemType> 
 { 
  private : 
   LinkedSortedList<ItemType>* slistPtr;    // Pointer to sorted list of
                                                     // items in the priority queue

  public : 
   SL_PriorityQueue(); 
   SL_PriorityQueue( const SL_PriorityQueue& pq); 
   ~SL_PriorityQueue(); 

bool isEmpty() const ; 
bool add( const ItemType& newEntry); 
bool remove(); 

/** @throw PrecondViolatedExcep if priority queue is empty. */ 
   ItemType peek()  const throw (PrecondViolatedExcep); 
 }; // end SL_PriorityQueue 
#include "SL_PriorityQueue.cpp" 
 #endif   

 Before we can implement the class  SL_PriorityQueue , we need to consider how the sorted list 
behaves.  LinkedSortedList  maintains the entries in a sorted list in sorted order. It does so by com-
paring the entries with each other. For a priority queue, we want these comparisons to be based on the 
priorities of the entries. Let’s assume that each entry is an object that has its priority as a data member. 
You will learn in C++ Interlude 5 how to make a comparison operator, such as >, base its comparison 
on specifi c aspects of its two operands. For now, let’s assume that the comparisons are made accord-
ing to priority. Note that the highest-priority value can be either the largest value or the smallest value, 
according to the application at hand. 

 To give you an idea of how to implement this class, let’s look at the defi nitions of the add  and 
remove  operations: 

   template < class ItemType> 
  bool SL_PriorityQueue<ItemType>::add( const ItemType& newEntry) 
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 { 
   slistPtr->insertSorted(newEntry); 

return true ; 
} // end add 

  template < class ItemType> 
  bool SL_PriorityQueue<ItemType>::remove() 
 { 

// The highest-priority item is at the end of the sorted list 
return slistPtr->remove(slistPtr->getLength()); 

} // end remove 

 We will leave the remainder of this implementation to you as an exercise. Note, however, that we will 
discuss a more time-effi cient implementation in  Chapter   17   , when we introduce the ADT heap. 

      Question 6    Defi ne the method  peek  for the sorted list implementation of the ADT 
priority queue. 

CHECK POINT

     SUMMARY       

  1.   The  enqueue  and  dequeue  operations for a queue require effi cient access to both ends of the queue. Therefore, a 
link-based implementation of a queue uses a linear linked chain that has both a head pointer and a tail pointer. 
Alternatively, you can use a circular linked chain. 

  2.   An array-based implementation of a queue is prone to rightward drift. This phenomenon can make a queue look 
full when it really is not. Shifting the items in the array is one way to compensate for rightward drift. A more 
effi cient solution uses a circular array. 

  3.   If you use a circular array to implement a queue, you must be able to distinguish between the queue-full and 
queue-empty conditions. You can make this distinction by counting the number of items in the queue, using a 
boolean variable  isFull , or leaving one array location empty. 

  4.   You can use an array, a chain of linked nodes, or a sorted list to contain the entries in a priority queue. A more 
time-effi cient implementation is possible by using the ADT heap, which we will consider later in this book. 

  1.   Implement the copy constructor for the class  LinkedQueue  that is declared in Listing 14-3.  Hint:  Look at the 
copy constructor for the ADT stack in Listing 7-4 of  Chapter   7   . 

  2.   Repeat the previous exercise, but implement a memory-safe copy constructor instead. If a memory allocation 
fails, this constructor should release all memory that was allocated prior to the failure and then throw an 
exception. 

  3.   The destructor for the class  LinkedQueue  that is declared in Listing 14-3 could repeatedly call  dequeue . 
Although easy to write, this destructor can be ineffi cient due to repeated method calls. Write another implemen-
tation for the destructor that deallocates the linked chain directly without calling  dequeue . 

  4.   An operation that displays the contents of a queue can be useful during program debugging. Add a  display
operation to the ADT queue such that  display  assumes and uses the link-based implementation of the ADT 
queue.

  EXERCISES   
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5. Consider a method called getNumberOfElements that returns the number of elements in a queue without chang-
ing the queue. The return type is int, and it does not accept any parameters.

a. Add getNumberOfElements to the array-based ADT queue given in this chapter.
b. Add getNumberOfElements to the link-based ADT queue given in this chapter.

  6.   Show that the implementation of a queue that uses an extra array element as described in  Section   14.1.3    is more 
effi cient than the counter variation, even though it appears to perform two extra additions in the test: 

        front  equals  (back   +   1)   %   (MAX_QUEUE   +   1)

  7.   Consider the class  ListQueue  that implements the ADT queue by using the ADT list to represent the items in 
the queue. Discuss the effi ciency of the queue’s  enqueue  and  dequeue  operations when the ADT list’s 
implementation is 

 a.   Array based  
 b.   Link based   

  8.   The class  ListQueue , as given in Listing 14-1, maintains the queue’s front at the end of a list of the queue’s 
entries and has the back of the queue at the beginning of that list. Note that the list is an object of the class 
LinkedList . What is the impact on the effi ciency of the operations  enqueue  and  dequeue  if we were to maintain 
the queue’s front at the beginning of the list and the queue’s back at the list’s end? 

  9.   Complete the implementation of the class  SL_PriorityQueue , as described in  Section   14.2   . 

  10.   Implement the class  SL_PriorityQueue , assuming that low values indicate a higher priority. Such a priority 
queue is useful within operating systems and other similar applications. When the underlying sorted list has a 
link-based implementation, using the lowest value for the highest priority makes the priority queue operations 
more effi cient. Describe why this benefi t is true. 

  PROGRAMMING PROBLEMS   

  1.   Write a link-based implementation of a queue that uses a circular linked chain to represent the items in the 
queue. You will need a single tail pointer. When you are done, compare your implementation to the one given in 
this chapter that uses a linear linked chain with two external pointers. Which implementation is easier to write? 
Which is easier to understand? Which is more effi cient? 

  2.   Write an array-based implementation of a queue that uses a resizable, circular array to represent the items in the 
queue.

  3.   Revise the array-based implementation of a queue given in this chapter. Instead of counting the number of items 
in the queue, use a boolean variable  isFull  to distinguish between the full and empty conditions. 

  4.   This chapter described another array-based implementation of a queue that uses no special data member—such 
as count  or  isFull  (see the previous programming problem)—to distinguish between the full and empty condi-
tions. In this implementation, you declare  MAX_QUEUE  + 1 locations for the array  items , but use only  MAX_QUEUE
of them for queue items. You sacrifi ce one array location by making  front  the index of the location before the 
front of the queue. The queue is full if  front  equals  (back   +   1)   %   (MAX_QUEUE   +   1) , but the queue is empty if 
front  equals  back . Implement this array-based approach. 

  5.   Exercise 9 in the previous chapter defi ned the double-ended queue, or deque. Implement the ADT deque by 
using a circular array to contain the items in the deque. 

  6.   Repeat the previous programming problem, but maintain the deque’s entries in a linked chain. 

  7.   Implement the ADT deque, as described in Exercise 9 of the previous chapter, as a derived class of  ArrayQueue , 
as given in Listings 14-4 and 14-5. 
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C++ provides many operators, such as +, –, =, = =, >, <, and <<, that are defi ned for 
primitive data types. For instance, when working with integers, the symbol + represents 
the addition operation, = is used for the assignment operation, and = = is used for 
equality comparisons. When we defi ne new C++ data types using classes, these symbols 
do not have a defi nition that addresses how to add or compare two objects of the class. 
This C++ Interlude describes the tools that C++ provides you for extending the current 
operator defi nitions so that they can be applied to classes you have created.   

      C5.1 Overloaded Operators 
 The standard arithmetic operators in C++ actually have multiple meanings. Although 
the addition operators in the expressions  2   +   3  and  2.0   +   3.0  appear to be the same, 
they in fact are not. Because integers such as 2 and 3 have internal representations 
that differ from fl oating-point numbers such as 2.0 and 3.0, the algorithm to add two 
integers must differ from the algorithm to add two fl oating-point numbers. C++ could 
use two different symbols to designate integer addition and fl oating-point addition, 
but instead it uses only one symbol, +. The actual meaning of the + operator—that is, 
the type of addition it designates—is implied by the data type of its operands. An 
operator with more than one meaning is overloaded  and is an example of a simple 
form of polymorphism. 

      C++
Interlude

VideoNote

C++ operator 
overloading
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 You saw earlier that you defi ne new data types within C++ by using classes. Clients of such data 
types should be able to use them as naturally as the standard data types of the language. In particular, 
a client should be able to combine instances of a class with C++ operators in meaningful ways. To 
enable a particular operator to operate correctly on instances of a class, you typically must defi ne a 
new meaning for the operator; that is, you must overload it.    

 Suppose that  myList  and  yourList  are two instances of  LinkedList , as given in Listing 9-2 of 
 Chapter   9   , and you write 

   if (myList = = yourList) 
  cout << "The lists are equal.\n"; 

 You must provide  LinkedList  with a defi nition of  == , since the compiler will not provide a default 
interpretation. To this end, let us state that the list  myList  is equal to the list  yourList  if    

•    myList  and  yourList  have the same size, and  
•   Every item on  myList  is the same as the corresponding item on  yourList

 To overload an operator, you defi ne an  operator method  whose name has the form 

operatorsymbol

 where  symbol  is the operator that you want to overload. For the  ==  operator, you name the method 
operator==  and declare one argument: the object that will appear on the right-hand side of the opera-
tor. The current object represents the object on the left-hand side of the operator. For  LinkedList , you 
would add the declaration 

bool operator = =(const LinkedList<ItemType>& rightHandSide) const;

 to the class defi nition in the header fi le. 
 To understand this notation, realize that we may also have declared a client function  isEqualTo

that compares a parameter of type LinkedList  with the current object to determine equality. The dec-
laration for such a function would look like this: 

bool isEqualTo(const LinkedList<ItemType>& rightHandSide) const;

 To use  isEqualTo  to compare the lists  myList  and  yourList , you would write 

   if (myList.isEqualTo(yourList)) 
    cout << "The lists are equal.\n"; 

 You can treat  operator==  exactly as you do  isEqualTo ; that is, you can write 

   if (myList.operator==(yourList))
    cout << "The lists are equal.\n"; 

 because  operator==  is simply a method name. However, you can also use the more natural shorthand 
notation myList = = yourList , and the compiler will understand that you mean the  operator==  method. 

 The  LinkedList  implementation of this method is 

   template < class ItemType> 
  bool LinkedList<ItemType>:: operator = =(const  

                LinkedList<ItemType>& rightHandSide) const  

 { 
bool isEqual = true ; // Assume equal 

// First check whether the number of items is the same 
if (itemCount != rightHandSide.getLength()) 

       isEqual =  false ; 

Two lists are equal if  
they have identical 
lengths and items 

An overloaded 
operator has more 
than one meaning 



 Overloaded Operators 417

else  
{ // Then compare items 

       Node<ItemType>* leftSidePtr = headPtr; 
       Node<ItemType>* rightSidePtr = rightHandSide.headPtr; 

while ((leftSidePtr != nullptr) && (rightSidePtr != nullptr) &&  isEqual) 
       { 
            ItemType leftItem = leftSidePtr->getItem(); 
            ItemType rightItem = rightSidePtr->getItem(); 
            isEqual = (leftItem = = rightItem);    

            leftSidePtr = leftSidePtr->getNext(); 
            rightSidePtr = rightSidePtr->getNext(); 
       } // end while 
   }  // end if 

return isEqual; 
} // end operator= =

 Note that this method depends on the  ==  operator for items in the list. If these items are themselves 
instances of a class, that class must overload  == . You can overload the relational operators ( < ,  <= ,  > , 
>= ) in a similar manner. 

 Now suppose that you want all implementations of  ListInterface , as given in Listing 8-1 of 
 Chapter   8   , to provide an implementation of the operator = =. You would need to add the declaration 

   virtual bool operator==(const ListInterface<ItemType>& rightHandSide) const = 0 ;  

 to the interface  ListInterface . Each implementation of  ListInterface  would then provide a defi -
nition of = =, allowing you to compare any two  ListInterface  objects. The challenge of making this 
comparison is that only  ListInterface  methods can be used for the list on the right-hand side, 
thereby affecting the effi ciency of the equality check when comparing lists having two different 
implementations. For example, if we had an array-based list that we wished to compare to a link-
based list, we could not take advantage of the node structure of the underlying linked chain when we 
accessed the entries. Instead, we would need to use  getEntry  to access entries, but each call to 
getEntry  would iterate through the list from its beginning until it reaches the desired entry. 

 The implementation of other relational operators is completed in a similar way. 

   C5.1.1  Overloading  =  for Assignment 

 Overloading the assignment operator ( = ) is similar to overloading the equality operator, but it presents 
additional concerns. Once again, suppose that  myList  and  yourList  are two instances of  LinkedList . 
If you place several items in the list  yourList  and then write 

myList = yourList; 

 you would expect  myList  to be an exact copy of  yourList . Without an overloaded assignment opera-
tor, however, you would get a shallow copy of  yourList  instead of a deep copy, as  Figure   4-8    in
 Chapter   4    illustrates. Although a shallow copy might be suffi cient for a statically allocated data struc-
ture, a deep copy is necessary for a dynamically allocated one such as the chain of linked nodes in the 
link-based implementation LinkedList . A shallow copy of a  LinkedList  object— yourList — 
would copy only the data members  itemCount  (the length of the list  yourList ) and  headPtr  (the 
pointer to yourList ’s fi rst item). The items in the list would not be copied.    

 To provide an assignment operator for the class  LinkedList , you would add the declaration 

  LinkedList<ItemType>& operator =( const LinkedList<ItemType>& rightHandSide); 

Without an 
overloaded 
assignment
operator, you get a 
shallow copy 

The operator  ==  
must be defi ned 
for  ItemType
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The assignment 
operator must fi rst 
deallocate  myList , 
the object on the 
left-hand side 

 to the class defi nition in  LinkedList ’s header fi le. The argument  rightHandSide  represents the object 
to be copied—that is, the object that will appear on the right-hand side of the assignment operator. 
The method is not void, but instead returns a value to accommodate assignments such as

myList = yourList = theirList

As you will see, the method returns a reference to the invoking object. 
 In implementing this method, you must deal with a few subtleties. Suppose that  myList  and 

yourList  each contain several items. If you write 

  myList = yourList; 

 what happens to the items that were in  myList ? You might not care, as long as  myList  ultimately con-
tains a copy of the items in  yourList . You should care, however, if you have a link-based list. Before 
you can copy the items in  yourList  to myList, you need to deallocate the nodes in  myList . Failure to 
do so results in a memory leak—that is, memory that was allocated to  myList  is not returned to the 
system and is inaccessible. Thus, the assignment of  yourList  to  myList  must take these steps:    

   Deallocate memory assigned to  myList
  for  (each item in yourList)
{

 Allocate a new node for  myList
Set the node’s data portion to a copy of the item in  yourList

}  

 The tasks here are like those that you implemented when you wrote the destructor and copy con-
structor for  LinkedList . To deallocate memory currently used by  LinkedList  nodes, you can call 
clear . When copying the underlying linked chain of nodes, you can avoid redundancy with the copy 
constructor by defi ning a private or protected method,  copyListNodes , that both the copy constructor 
and the assignment operator can call. 

 Now suppose you write 

  myList = myList; 

 Notice what our previous pseudocode tells you to do here: Deallocate  myList  and then make a copy 
of myList . After you have deallocated  myList , there is nothing left to copy! Your implementation 
should test for this special case by asking whether the invoking object on the left side of the  =  operator 
is the same as the object on the right. If it is, your assignment operator should do nothing—it should 
be fail-safe.    

 You can make this test by comparing the addresses of the two list objects rather than by compar-
ing the items on the lists. In C++, this  is a pointer to the invoking object. Thus, you write 

if (this != &rightHandSide) 

 to compare the addresses of the objects on the left and right side of the  = . Notice the placement of the 
& symbol; when used in this manner, it means “the address of.” We would then read the above state-
ment as “if the address of this  object is not equal to the address of  rightHandSide , then ...”. In this 
textbook, this is the only time when it is necessary to use the & symbol as the “address of ” operator. 

 The link-based implementation of the overloaded assignment operator for  LinkedList  follows: 

   template < class ItemType> 
LinkedList<ItemType>& LinkedList<ItemType>:: operator =( const  

                   LinkedList<ItemType>& rightHandSide) 
 { 

// Check for assignment to self 
if ( this != &rightHandSide) 

Make the 
assignment
operator fail-safe by 
checking for a 
special case 
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   { 
this->clear(); // Deallocate left-hand side 

       copyListNodes(rightHandSide);         // Copy list nodes 
       itemCount = rightHandSide.itemCount; // Copy size of list 
   }  // end if 

return * this ; 
} // end operator= 

 The assignment operator  =  requires that we return an object of the same type as  rightHandSide , so we 
must return a  LinkedList  object. The returned object is placed into the left-hand side of the assignment 
statement. Since our implementation of the operator =  places a copy of  rightHandSide  into the current, or 
invoking, object on the left-hand side, we should return the current object, which is represented by  *this .

Note:    In C++,  this  is a pointer to the invoking object. Therefore,  *this  is the invoking 
object.

 If you declare and initialize an object in the same statement, the compiler will invoke the copy 
constructor and not the  =  operator. For example, the declaration of  myList  in 

  LinkedList<string> myList = yourList; 

 constructs the object  myList . This statement is equivalent to: 

  LinkedList<string> myList(yourList);   

   C5.1.2  Overloading + for Concatenation 

 As we discussed in the previous section, the + operator is used for both integer and fl oating-point 
addition. In C++, the + operator is also used as a concatenation operator to append strings. This abil-
ity illustrates one of the concerns some programmers have about overloading operators—a symbol 
can represent several different operations. These operations not need be closely related to each other, 
so reading code that uses overloaded operators can be diffi cult. 

 Suppose you were asked to maintain code someone else wrote and found the following statement 
in a method: 

  theThing = myThing + yourThing; 

 Can you quickly determine whether the + performs scalar addition—adding two integers or fl oating-
point numbers—or concatenates two strings? Without knowing the data type of the variables 
myThing  and  yourThing , you cannot determine what operation + performs. In a well-written pro-
gram, most variables are declared close to their use, thus helping to clarify the statement, but this is 
not always the case. 

 When you choose to overload an operator, you should not change the meaning of the symbol. 
Your defi nition should extend the symbol’s current operation only for use with a new data type—your 
class. When working with lists, the concatenation defi nition of the + symbol applies better than scalar 
addition, so let’s see what is involved in appending one list onto another. Let’s assume that  theThing , 
myThing , and  yourThing  in the previous statement are list objects. 

  Link-based lists.   If we choose to overload the + operator for the list-based implementation of the 
ADT list, we would add the following declaration to the class defi nition: 

  LinkedList<ItemType>& 
operator +( const LinkedList<ItemType>& rightHandSide) const ; 
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 The implementation of this concatenation operator has the following logic: 

  concatList = a new, empty instance of  LinkedList
concatList.itemCount = itemCount + rightHandSide.itemCount 
leftChain = a copy of the chain of nodes in this list  
rightChain = a copy of the chain of nodes in the list rightHandSide
  Set the last node of  leftChain to point to the first node of  rightChain
concatList.headPtr = leftChain.headPtr 
  return  concatList  

 Now, the statement 

  theThing = myThing + yourThing; 

 assigns the returned list  concatList  to  theThing  using the assignment operator defi ned in the previ-
ous section. 

 After implementing the + operator, we should also implement the += operator, since it provides a 
shorthand for self-assignment using the + operator. This can be a more effi cient method, as we do not 
need to make a copy of our list before appending the copy of  rightHandSide .

  Array-based lists.   An implementation of the + operator for array-based lists has different challeng-
es. For example, which of the following should the capacity of the resulting list be? 

•   The sum of the capacities of the two lists that are operands  
•   The capacity of the fi rst (left-hand) list  
•   The number of actual items in the combined lists  
•   Twice the number of actual items in the combined lists to allow for growth   

 After the new  ArrayList  object has been created, we can copy the entries from the fi rst list into the 
fi rst array elements and then place the entries in the second list into the elements that follow.     

Note: Some guidelines for overloading operators

•   Overloading an operator is the same as writing a method whose name is 

      operator  symbol

where  symbol  is the operator that you want to overload.  
•    Overloaded operators are typically placed in the public section of the class 

declaration.
•    When you decide to overload an operator, be sure that the new operation closely 

matches how the operator is already used. If that is not possible, consider creating a 
method whose name is not operatorsymbol to perform the operation.  

•    Commonly overloaded operators are the assignment (=), equality (= = and !=), and 
relational (<, <=, >, >=) operators.  

•   You can overload any C++ operator except 
      . .* :: ?: sizeof
•    You cannot defi ne new operators by overloading symbols that are not already C++ 

operators.
•    You cannot change the standard precedence of a C++ operator.  
•    You cannot change the number of arguments for an overloaded operator, since they 

represent the operator’s operands.  
•   At least one operand of an overloaded operator must be an instance of a class.   
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   C5.2 Friend Access and Overloading << 
 In C++, a class can provide additional access to its private and protected parts by declaring other 
functions and classes as friends . Declaring a nonmember function as a friend to a class allows that 
function to access all of the private and protected members of the class. Let’s look at an example in 
which we need to declare a function as a friend of our class.    

 The output stream operator << is used to output a stream of data to either the display or a fi le. We 
commonly stream integers, fl oating-point numbers, and strings to the display or a fi le, using <<. Occa-
sionally, you may even have streamed a pointer to the display to help with troubleshooting or just to 
see what happened. C++ has defi ned the stream operator’s action for each of those data types. 

 Trying to stream a list to the display using statements such as 

  LinkedList<string> myList; 
cout << myList; 

 results in a syntax error because there is no << operation defi ned for the LinkedList  class. Notice 
that the syntax of the previous  cout  statement differs from the syntax of previous binary operators we 
have overloaded. The expression  cout << myList  is shorthand for 

  cout.operator<<(myList) 

 Thus, when we defi ne << for our  LinkedList  class, we are actually overloading the  operator<<
method in the ostream  class of which  cout  is an instance. Therefore, we need to defi ne an operation 
for << in a different manner than the way we overloaded previous operators. 

 Before discussing how to overload the output stream operator, let’s consider what our list should 
look like if it is displayed or written to a fi le. If our list contained the four items Ace, Jack, Queen, and 
King, we could display them on a single line 

  Ace Jack Queen King 

 or on multiple lines with a position label: 

  1 Ace 
2 Jack 
3 Queen 
4 King 

 For our example, let’s choose the second form of output. We could use public methods to display 
the list in this form, but we would need to call getEntry—which iterates through the list from the 
beginning—to display each item. It is more effi cient to access the data directly. Thus, in defi ning 
<< for our LinkedList  class, we should grant the  operator<<  method in the  ostream  class access 
to the private and protected data of LinkedList.

 We grant this access by making the  operator<<  method a friend of LinkedList by placing the 
following two statements in its declaration in the header fi le: 

   template < class friendItemType> 
  friend ostream& operator<<(ostream& outputStream, 

const LinkedList< friendItemType >& outputList); 

 The keyword  friend  indicates that this method has access to private and protected data members and 
methods of our class as well as to those that are public. Notice that the method returns an  ostream
object and that the fi rst parameter is also an  ostream  object. This is because we are overloading an 
operator method from the ostream  class. Also, since the operator is not part of the  LinkedList  class, 
we cannot use the same template type  ItemType  in the declaration; we must declare another template 
type—friendItemType  in our example. 
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A friend method 

 We again must use the different template type when we implement the method:    

   template < class friendItemType> 
ostream& operator<<(ostream& outStream, 

const LinkedList<friendItemType>& outputList) 
 { 

int position = 1; 
   Node<friendItemType>* curPtr = outputList.headPtr; 

while (curPtr != nullptr ) 
   { 
       outStream << position << "\t" << curPtr->getItem() << endl; 
       curPtr = curPtr->getNext(); 
       position++; 
   } // end while

return outStream; 
} // end operator<< 

 Because the  operator<<  method is already part of the  ostream  class, we don’t need to include it in 
our namespace by writing  LinkedList < ItemType >:: before the method name. 

 Note that the method accesses the private data member  headPtr  of the class  LinkedList . 
Although this access violates the principle of information hiding, it is done in a controlled fashion: 
The class LinkedList  explicitly grants this access by declaring the method as a friend. 

 We can extend the concept of friend methods to create friend classes. Granting a class access as a 
friend of another class allows all of the methods contained in the friend class to have access to the 
private and protected parts of the granting class. This feature is particularly useful when one class is 
used in the implementation of another class. For example, we have seen link-based implementations 
of ADTs that have a node declared as a separate class. For example, the  LinkedList  class uses the 
class Node . An alternative is to implement the node as a class whose data members and methods are 
private and to declare the  LinkedList  class as a friend class. For example, you could defi ne a node for 
the ADT list as follows:    

   template < class ItemType> 
  class ListNode // A node on the list
 { 
  private : 
   ItemType item;          // A data item on the list 
   Node<ItemType> *next; // Pointer to next node 

   Node(); 
   Node( const ItemType& nodeItem, Node<ItemType>* nextNode); 

// Friend class - can access private parts    
friend  class LinkedList<ItemType>; 

 }; // end ListNode 

 The class  LinkedList  has the same access privileges to the node’s data members  item  and 
next  as  ListNode  does. Friends of a base class do not have access to the private and protected 
parts added by a derived class—only to the private and protected members that appear in the base 
class.        

Friend classes 

The class 
LinkedList is a 
friend of   ListNode  

A friend of  a base 
class is not a friend 
of  a derived class 
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Note: Some key points about friends

•   Friend methods can access the private and protected parts of the class.  
•   Friend methods are not members of the class.  
•    When a class is declared as a friend of a class  C , all of its methods have access to the 

private and protected parts of the class  C .
•    Friendship is not inherited. The private and protected members declared in a derived 

class are not accessible by friends of the base class.   
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Trees are 
hierarchical 

The previous chapters discussed ADTs whose operations fi t into at least one of these general 
categories: 

•   Operations that insert data into a data collection  
•   Operations that remove data from a data collection  
•   Operations that ask questions about the data in a data collection   

 The ADTs list, stack, and queue are all position oriented, and their operations have the form 

•   Insert a data item into the  ith   position  of a data collection.  
•   Remove a data item from the  ith   position  of a data collection.  
•   Ask a question about the data item in the  ith   position  of a data collection.   

 As you have seen, the ADT list allows the value of  i  to range from 1 to the number of items in the 
list, while the ADTs stack and queue are more restrictive. For example, the operations of the ADT 
stack are limited to inserting into, removing from, and asking a question about one end—the top—of 
the stack. Thus, although they differ with respect to the fl exibility of their operations, lists, stacks, and 
queues manage an association between data items and positions. 

 As  Section   13.5    of  Chapter   13    discussed, the ADT sorted list is value oriented. Its operations are 
of the form 

•   Insert a data item containing the value  x .
•   Remove a data item containing the value  x.
•   Ask a question about a data item containing the value  x .

 Although these operations, like position-oriented operations, fi t into the three general categories of 
operations listed earlier—they insert data, remove data, and ask questions about data—they are based 
on the values of data items instead of their positions. 

 Lists, stacks, and queues are linear in their organization of data, in that items are one after 
another. In this chapter, we organize data in a nonlinear, hierarchical form, whereby an item can have 
more than one immediate successor. We present two major ADTs: the binary tree and the binary 
search tree. As you will see, the binary tree is a position-oriented ADT, but it is not linear. Thus, you 
will not reference items in a binary tree by using a position number. Our discussion of the ADT 
binary tree provides an important background for the more useful binary search tree, which is a 
value-oriented ADT. Although a binary search tree is also not linear, it has operations similar to those 
of a  sorted list, which is linear.   

      15.1 Terminology 
 You use  trees  to represent relationships. Previous chapters informally used tree diagrams to represent 
the relationships between the calls of a recursive algorithm. For example, the diagram of the  rabbit
algorithm’s recursive calls in  Figure   2-19    of  Chapter   2    is actually a tree. Each call to  rabbit  is repre-
sented by a box, or node, or  vertex , in the tree. The lines between the nodes (boxes) are called  edges . 
For this tree, the edges indicate recursive calls. For example, the edges from  rabbit (7) to  rabbit (6) and 
rabbit (5) indicate that subproblem  rabbit (7) makes calls to  rabbit (6) and  rabbit (5). 

 All trees are  hierarchical  in nature. Intuitively, “hierarchical” means that a “parent-child” rela-
tionship exists between the nodes in the tree. If an edge is between node  n  and node  m , and node  n  is 
above node  m  in the tree, then  n  is the  parent  of  m , and  m  is a  child  of  n . In the tree in  Figure   15-1   a, 
nodes B  and  C  are children of node  A . Children of the same parent—for example,  B  and  C —are called 
siblings . The three children  D, E,  and  F  of node  B , for example, are siblings. The leftmost child  D  is 
called the oldest child , or  fi rst child , of  B .

VideoNote

Tree concepts
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  Each node in a tree has at most one parent, and exactly one node—called the  root  of the tree—
has no parent. Node A  is the root of the tree in Figure 15-1a. A node that has no children is called a 
leaf  of the tree. The leaves of the tree are  C ,  D ,  E , and  F . 

 The parent-child relationship between the nodes is generalized to the relationships  ancestor  and 
descendant . In  Figure   15-1   a,  A  is an ancestor of  D,  and thus  D  is a descendant of  A.  Not all nodes are 
related by the ancestor or descendant relationship:  B  and  C,  for instance, are not so related. However, 
the root of any tree is an ancestor of every node in that tree. A  subtree  in a tree is any node in the tree 
together with all of its descendants. A  subtree of a node   n  is a subtree rooted at a child of  n . For exam-
ple,  Figure   15-1   b shows a subtree of the tree in  Figure   15-1   a. This subtree has  B  as its root and is a 
subtree of the node A .    

  Because trees are hierarchical in nature, you can use them to represent information that itself is 
hierarchical in nature—for example, organization charts and family trees, as  Figure   15-2    depicts. It may 
be disconcerting to discover, however, that the nodes in the family tree in  Figure   15-2   b that represent 
Bart’s parents (Homer and Marge) are the children of the node that represents Bart. That is, the nodes 
that represent Bart’s ancestors in a family tree are the descendants of Bart’s node in one of our trees! 

A subtree is any 
node and its 
descendants

FIGURE 15-1         (a) A tree; (b) a subtree of the tree in part  a
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FIGURE 15-2         (a) An organization chart; (b) a family tree   
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Formal defi nition of  
a binary tree 

   15.1.1  Kinds of Trees 

 Formally, a  general tree  is a set  T  of one or more nodes such that  T  is partitioned into disjoint subsets: 

•   A single node  r , the root  
•   Sets that are general trees, called subtrees of  r

 Thus, the trees in  Figures   15-1    and    15-2   a are general trees. 
 An  n -ary tree  is a set  T  of nodes that is either empty or partitioned into disjoint subsets: 

•   A single node  r , the root  
•    n  possibly empty sets that are  n -ary subtrees of  r

 Each node can have no more than  n  children. The tree in  Figure   15-1    is an  n -ary tree with  n  = 3. An 
n -ary tree is not a special kind of general tree, because an  n -ary tree can be empty, whereas a general 
tree cannot. 

 If an  n -ary tree has the restriction that every node has at most two children, it is a  binary tree . 
The primary focus of this chapter will be on binary trees. Formally, a binary tree is a set  T  of nodes 
that is either empty or partitioned into disjoint subsets:    

•   A single node  r , the root  
•   Two possibly empty sets that are binary trees, called  left  and  right   subtrees  of  r

 The trees in  Figures   2-19    and    15-2   b are binary trees. Notice that each node in a binary tree has no 
more than two children. 

 The following intuitive restatement of the defi nition of a binary tree is useful: 

T  is a binary tree if either    

•    T  has no nodes, or  
•    T  is of the form               

Intuitive defi nition of  
a binary tree 

r

TL TR

  where  r  is a node and  TL  and  TR  are both binary trees. 

 Notice that the formal defi nition agrees with this intuitive one: If  r  is the root of  T , then the binary 
tree TL  is the left subtree of node  r  and  TR  is the right subtree of node  r . If  TL  is not empty, its root is the 
left child  of  r , and if  TR  is not empty, its root is the  right child  of  r . Notice that if both subtrees of a 
node are empty, that node is a  leaf . 

Example: Algebraic expressions.    As an example of how you can use a binary tree to represent data in 
a hierarchical form, consider  Figure   15-3   . The binary trees in this fi gure represent algebraic expressions 
that involve the binary operators +, –, ×, and /. To represent an expression such as  a – b , you place the 
operator in the root node and the operands a  and  b  into left and right children, respectively, of the root. 
(See  Figure   15-3   a.)  Figure   15-3   b represents the expression  a  –  b  /  c ; a subtree represents the subexpres-
sion b  /  c . A similar situation exists in  Figure   15-3   c, which represents ( a – b ) ×  c . The leaves of these 
trees contain the expression’s operands, while other tree nodes contain the operators. Parentheses do not 
appear in these trees. The binary tree provides a hierarchy for the operations—that is, the tree specifi es 
an unambiguous order for evaluating an expression. Operators lower in the tree are evaluated fi rst. 

      Note:    Although various kinds of trees are possible, they are either general trees or 
n -ary trees. 
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 The nodes of a tree typically contain values. A  binary search tree  is a binary tree that is, in a 
sense, sorted according to the values in its nodes. For each node  n , a binary search tree satisfi es the 
following three properties:    

•    n ’s value is greater than all values in its left subtree  TL .
•    n ’s value is less than all values in its right subtree  TR .
•   Both  TL  and  TR  are binary search trees.   

  Figure   15-4    is an example of a binary search tree. As its name suggests, a binary search tree organ-
izes data in a way that facilitates searching it for a particular data item.  Chapter   16    will discuss binary 
search trees in detail, and  Chapter   19    will present several other trees that improve searching data. 

FIGURE 15-3         Binary trees that represent algebraic expressions   
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FIGURE 15-4         A binary search tree of names   

Jane

TomBob

EllenAlan Nancy Wendy

      Question 1    What kind of tree is the tree in  Figure   15-1a   ? 

CHECK POINT Question 2    Repeat the previous question, but use the tree in  Figure   15-3   c instead. 

      Question 3    Given the tree in  Figure   15-3   c, what node or nodes are 

a.   Ancestors of  b ?
b.   Descendants of �?
c.   Leaves?   
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Level of  a node 

   15.1.2  The Height of Trees 

 Trees come in many shapes. For example, although the binary trees in  Figure   15-5    all contain the 
same nodes, their structures are quite different. Although each of these trees has seven nodes, some 
are “taller” than others. The  height of a tree  is the number of nodes on the longest path from the 
root to a leaf. For example, the trees in  Figure   15-5    have respective heights of 3, 5, 7, and 7. Many 
people’s intuitive notion of height would lead them to say that these trees have heights of 2, 4, 6, and 
6. Indeed, many authors defi ne height to agree with this intuition. However, the defi nition of height 
used in this book leads to a cleaner statement of many algorithms and properties of trees.  

 There are other equivalent ways to defi ne the height of a tree  T . One way uses the following defi -
nition of the level of a node  n :

•   If  n  is the root of  T , it is at level 1.  
•   If  n  is not the root of  T , its level is 1 greater than the level of its parent.   

 For example, in  Figure   15-5   a, node  A  is at level 1, node  B  is at level 2, and node  D  is at level 3. 
 The height of a tree  T  in terms of the levels of its nodes is defi ned as follows:    

•   If  T  is empty, its height is 0.  
•   If  T  is not empty, its height is equal to the maximum level of its nodes.   

 By applying this defi nition to the trees in  Figure   15-5   , you will fi nd that their heights are, respectively, 
3, 5, and 7, as was stated earlier. 

FIGURE 15-5         Binary trees with the same nodes but different heights   
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      Question 4    Given the tree in  Figure   15-4   , what node or nodes are 

a.   The tree’s root?  
b.   Parents?  
c.   Children of the parents in part  b  of this question?  
d.   Siblings?   

r

TL TR

 For binary trees, it is often convenient to use an equivalent recursive defi nition of height:    

•   If  T  is empty, its height is 0.  
•   If  T  is a nonempty binary tree, then because  T  is of the form   
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  the height of  T  is 1 greater than the height of its root’s taller subtree; that is, 
    height  ( T  ) = 1 +  max { height  ( TL  ),  height  ( TR  )}     

      Question 5    What are the levels of all nodes in the trees in parts  b ,  c , and  d  of  Figure   15-5   ? 

Question 6    What is the height of the tree in  Figure   15-4   ? CHECK POINT

   15.1.3  Full, Complete, and Balanced Binary Trees 

 In a  full binary tree  of height  h , all nodes that are at a level less than  h  have two children each. 
 Figure   15-6    depicts a full binary tree of height 3. Each node in a full binary tree has left and right 
subtrees of the same height. Among binary trees of height  h , a full binary tree has as many leaves 
as possible, and they all are at level  h . Intuitively, a full binary tree has no missing nodes.  

FIGURE 15-6         A full binary tree of height 3   

 When proving properties about full binary trees—such as how many nodes they have—the 
following recursive defi nition of a full binary tree is convenient:    

•   If  T  is empty,  T  is a full binary tree of height 0.  
•   If  T  is not empty and has height  h  > 0,  T  is a full binary tree if its root’s subtrees are both full 

binary trees of height  h  – 1.   

 This defi nition closely refl ects the recursive nature of a binary tree.    
 A  complete binary tree  of height  h  is a binary tree that is full down to level  h  – 1, with level  h  fi lled 

in from left to right, as  Figure   15-7    illustrates. More formally, a binary tree  T  of height  h  is complete if 

FIGURE 15-7         A complete binary tree   
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complete

1.   All nodes at level  h  – 2 and above have two children each, and  
2.    When a node at level  h  – 1 has children, all nodes to its left at the same level have two 

children each, and  
3.   When a node at level  h  – 1 has one child, it is a left child   

  Parts   2    and    3    of this defi nition formalize the requirement that level  h  be fi lled in from left to right. 
Note that a full binary tree is complete.     

 Finally, a binary tree is  height balanced , or simply  balanced , if the height of any node’s right sub-
tree differs from the height of the node’s left subtree by no more than 1. The binary trees in  Figures   15-7    
and    15-5   a are balanced, but the other trees in  Figure   15-5    are not balanced. A complete binary tree is 
balanced. 

Complete binary 
trees are balanced 

Note: Summary of tree terminology

General tree  A set of one or more nodes, partitioned into a root node 
and subsets that are general subtrees of the root. 

 Parent of node  n   The node directly above node  n  in the tree. 

 Child of node  n   A node directly below node  n  in the tree. 

 Root  The only node in the tree with no parent. 

 Leaf  A node with no children. 

 Height  The number of nodes on the longest path from the root 
to a leaf. 

 Siblings  Nodes with a common parent. 

 Ancestor of node  n   A node on the path from the root to  n . 

 Descendant of node  n   A node on a path from  n  to a leaf. 

 Subtree of node  n   A tree that consists of a child (if any) of  n  and the 
child’s descendants. 

 Left (right) child of node  n   A node directly below and to the left (right) of node  n
in a binary tree. 

 Left (right) subtree of node  n   In a binary tree, the left (right) child (if any) of node  n
plus its descendants. 

n -ary tree  A set of nodes that is either empty or partitioned 
into a root node and at most n  subsets that are  n -ary 
subtrees of the root. Each node has at most n  chil-
dren. 

 Binary tree  A set of nodes that is either empty or partitioned into a 
root node and one or two subsets that are binary sub-
trees of the root. Each node has at most two children, 
the left child and the right child. 

 Binary search tree  A binary tree in which the value in any node  n  is 
greater than the value in every node in  n ’s left sub-
tree but less than the value in every node in  n ’s right 
subtree. 

A complete binary 
tree
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  n is the maximum 
height of  a binary 
tree with n nodes 

   15.1.4  The Maximum and Minimum Heights of a Binary Tree 

 You can maximize the height of a binary tree with  n  nodes simply by giving each internal node (non-
leaf  ) exactly one child, as shown earlier in parts  c  and  d  of  Figure   15-5   . This process will result in a 
tree of height n . The  n -node tree with height  n  in  Figure   15-5   d strikingly resembles a chain of linked 
nodes.

 Full binary tree  A binary tree of height  h  with no missing nodes. All 
leaves are at level  h , and all other nodes each have 
two children. 

 Complete binary tree  A binary tree of height  h  that is full to level  h  – 1 and 
has level  h  fi lled in from left to right. 

 Balanced binary tree           A binary tree in which the left and right subtrees of 
any node have heights that differ by at most 1. 

Note:    The maximum height of an  n -node binary tree is  n . 

 A minimum-height binary tree with  n  nodes is a bit more diffi cult to obtain. As a fi rst step, con-
sider the number of nodes that a binary tree with a given height  h  can have. For example, if  h  = 3, the 
possible binary trees include those in  Figure   15-8   . Thus, binary trees of height 3 can have between 
three and seven nodes. In addition,  Figure   15-8    shows that 3 is the minimum height for a binary tree 
with four, fi ve, six, or seven nodes. Similarly, binary trees with more than seven nodes require a 
height greater than 3.  

 Intuitively, to minimize the height of a binary tree given  n  nodes, you must fill each level 
of the tree as completely as possible. A complete tree meets this requirement, although it does 
not matter whether the nodes on the last level are filled from left to right. In fact, except for the 
tree in part  a , the trees in  Figure   15-8    are complete trees. If a complete binary tree of a given 
height h  is to have the maximum possible number of nodes, it should be full, as in part  e  of the 
figure.    

FIGURE 15-8         Binary trees of height 3   

(a) (b) (c) (d) (e)

Except for the last 
level, each level of  a 
minimum-height
binary tree must 
contain as many 
nodes as possible 
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 We now can determine the minimum height of an  n -node binary tree.  

      Note:  Facts about full binary trees

•   A full binary tree of height  h � 0 has 2 h – 1 nodes.  
•   You cannot add nodes to a full binary tree without increasing its height.  
•   The maximum number of nodes that a binary tree of height  h  can have is 2 h  – 1.   

FIGURE 15-9         Counting the nodes in a full binary tree of height  h
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Note:    The minimum height of a binary tree with  n  nodes is < log 2 ( n  + 1) = .1

 1   The  ceiling of x , which < x =  denotes, is x rounded up. For example, <6 =  = 6, <6.1 =  = 7, and <6.8 =  = 7. 

 To prove the previous fact, we let  h  be the smallest integer such that  n � 2 h  – 1 and establish the fol-
lowing assertions: 

1. A binary tree whose height is � h – 1 has < n nodes . 
 We know that a binary tree of height  h  – 1 has at most 2 h  –1  – 1 nodes. If it is possible that 
n � 2 h –1  – 1, then  h  is not the smallest integer such that  n � 2 h  – 1. Therefore,  n  must be 
greater than 2 h– 1  – 1 or, equivalently, 2 h –1  – 1 <  n . Because a binary tree of height  h  – 1 
has at most 2 h –1  – 1 nodes, it must have fewer than  n  nodes.  

2. An n-node complete binary tree whose height is h exists . 
 Consider a full binary tree of height  h  – 1. It must have 2 h –1  – 1 nodes. As you just saw, 
n  > 2 h –1  – 1 because  h  was selected so that  n � 2 h  –1. You can thus add nodes to the full tree 

  Figure   15-9    counts the nodes of a full tree by level and demonstrates the following facts, whose 
proof is left as an exercise:   
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Complete trees and 
full trees have 
minimum height 

from left to right until you have  n  nodes, as  Figure   15-10    illustrates. Because  n � 2 h  – 1 and 
a binary tree of height  h  cannot have more than 2 h  – 1 nodes, you will reach  n  nodes by the 
time level  h  is fi lled up.   

3. The minimum height of a binary tree with n nodes is the smallest integer h such that 
n � 2h  – 1 . 
 If  h  is the smallest integer such that  n � 2 h  – 1, and if a binary tree has height � h  – 1, then by 
fact 1 it has fewer than  n  nodes. Because by fact 2 there is a binary tree of height  h  that has 
exactly  n  nodes,  h  must be as small as possible.   

 The previous discussion implies that 

   2h � 1 � 1� n � 2h–1
2h�1 � n � 1 � 2h

h � 1 � log2(n � 1) � h

 Now  h  is either log 2 ( n  + 1) or satisfi es the inequality  h  – 1 < log 2 ( n  + 1) <  h . In the latter case, log 2 ( n  + 1) 
cannot be an integer, so we round it up to get  h . In either case, we have that  h  is < log 2 ( n  + 1) = . Thus, we 
have established that < log 2 ( n  + 1) =  is the minimum height of a binary tree with  n  nodes.      

FIGURE 15-10         Filling in the last level of a tree   

Note:    Complete trees and full trees with  n  nodes have heights of < log 2 ( n  + 1) = , which, 
as you just saw, is the theoretical minimum.   

Question 7    Consider the binary trees in  Figure   15-8   . 

a.   Which are complete?  
b.   Which are full?  
c.   Which are balanced?  
d.   Which have minimum height?  
e.   Which have maximum height?   

CHECK POINT

   15.2 The ADT Binary Tree 
 As an abstract data type, the binary tree has operations that add and remove nodes, set or retrieve the 
data in the root of the tree, and test whether the tree is empty. By using these basic operations, you can 
build a binary tree. 

 Traversal operations that visit every node in a binary tree are typical. Visiting a node means 
“doing something with or to” the node.  Chapter   4    introduced the concept of traversal for a linear 
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The general form of  
a recursive traversal 
algorithm

chain of linked nodes: Beginning with the chain’s fi rst node, you visit each node sequentially until 
you reach the end of the chain. Traversal of a binary tree, however, can visit the tree’s nodes in one of 
several different orders. We examine the details of the traversal operations next. 

   15.2.1  Traversals of a Binary Tree 

 A traversal algorithm for a binary tree visits each node in the tree. While visiting a node, you do 
something with or to the node, such as display or modify the contents of the node. For the pur-
pose of this discussion, assume that visiting a node simply means displaying the data portion of 
the node. 

 With the recursive defi nition of a binary tree in mind, you can construct a recursive traversal 
algorithm as follows. According to the defi nition, the binary tree  T  is either empty or is of the 
form             

r

TL TR

 If  T  is empty, the traversal algorithm takes no action—an empty tree is the base case. If  T  is not empty, 
the traversal algorithm must perform three tasks: It must display the data in the root  r , and it must 
traverse the two subtrees  TL  and  TR , each of which is a binary tree smaller than  T . We can summarize 
this logic using the following pseudocode:    

   if  (T  is not empty )
{

Display the data in  T’s root  
Traverse  T’s left subtree  
Traverse  T’s right subtree  

 } 

 Although we arbitrarily visited the tree’s root before traversing its subtrees, the algorithm actually has 
three choices of when to visit  r : It can visit  r

•   Before it traverses both of  r ’s subtrees—as we just did  
•   After it has traversed  r ’s left subtree  TL  but before it traverses  r ’s right subtree  TR
•   After it has traversed both of  r ’s subtrees   

 These choices result in  preorder ,  inorder , and  postorder traversals , respectively.  Figure   15-11    
shows the results of these traversals for a given binary tree.  

 Each of these traversals visits every node in a binary tree exactly once. Thus,  n  visits occur for a 
tree of n  nodes. Each visit performs the same operations on each node, independently of  n , so it must 
be O(1). Thus, each traversal is O( n ).

  Preorder traversal.   The recursive preorder traversal algorithm is as follows:    

  // Traverses the given binary tree in preorder .
// Assumes that “visit a node” means to process the node’s data item .
preorder(binTree: BinaryTree): void 

if  (binTree is not empty ) 
{

        Visit the root of  binTree
       preorder(Left subtree of  binTree’s root )
       preorder(Right subtree of binTree’s root )

}  

Three choices for 
when to visit the root 

Preorder traversal 

Traversal is O( n ) 
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 The preorder traversal of the tree in  Figure   15-11   a visits the nodes in this order: 60, 20, 10, 40, 
30, 50, 70. If you apply preorder traversal to a binary tree that represents an algebraic expression, 
such as any tree in  Figure   15-3   , and display the nodes as you visit them, you will obtain the prefi x 
form of the expression.  2

  Inorder traversal.   The recursive inorder traversal algorithm is as follows:    

  // Traverses the given binary tree in inorder.
// Assumes that “visit a node” means to process the node’s data item .
inorder(binTree: BinaryTree): void 

if  (binTree  is not empty)
{

       inorder(Left subtree of binTree’s root )
        Visit the root of  binTree
       inorder(Right subtree of  binTree’s root)

}  

 The result of the inorder traversal of the tree in  Figure   15-11   b is 10, 20, 30, 40, 50, 60, 70. If you apply 
inorder traversal to a binary search tree, you will visit the nodes in order according to their data val-
ues. Such is the case for the tree in  Figure   15-11   b.  

  Postorder traversal.   Finally, the recursive postorder traversal algorithm is as follows:    

  // Traverses the given binary tree in postorder .
// Assumes that “visit a node” means to process the node’s data item .
postorder(binTree: BinaryTree): void 

if  (binTree is not empty )
{

       postorder(Left subtree of  binTree’s root)
       postorder(Right subtree of binTree’s root )
        Visit the root of  binTree

}  

FIGURE 15-11         Three traversals of a binary tree   
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 2   The prefi x expressions are (a) – ab ; (b) – a / bc ; (c) ×– abc . 

Inorder traversal 

Postorder traversal 
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 The result of the postorder traversal of the tree in  Figure   15-11   c is 10, 30, 50, 40, 20, 70, 60. If you apply 
postorder traversal to a binary tree that represents an algebraic expression, such as any tree in  Figure   15-3   , 
and display the nodes as you visit them, you will obtain the postfi x form of the expression.  3

 3   The postfi x expressions are (a)  ab –; (b)  abc /–; (c)  ab – c ×. 

Note:    Although traversal means to visit each item in the ADT, traversal can be more 
diffi cult than you might imagine if you do more than simply display each item when you 
visit it. For example, you might copy the item into another data structure or even alter it. 
The details of traversal are thus quite application dependent, which makes traversal a dif-
fi cult operation to defi ne within the framework of an ADT. 

  Visiting a node.   You could have a different traversal operation for each desired task during a visit to a 
node, such as preorderTraverseAndDisplay, preorderTraverseAndCopy,  and so on. Or the traver-
sal methods for the ADT binary tree could call a function, which the client defi nes and passes as an 
argument, when it visits a node. We will take this latter approach, as it is more general. 

 For example, if the ADT binary tree has the operation  preorderTraverse , you can invoke it for 
the binary tree  binTree  as follows: 

  bintree.preorderTraverse(display); 

 where  display  is a client function that displays the data passed to it as an argument. Suppose the 
binary tree  binTree  stores  string  objects. You would defi ne the function  display  to display data of 
type string :    

   void display(string someItem) 
 { 
   cout << someItem << endl; 
} // end display 

 Now the call  bintree.preorderTraverse(display)  will call  display  each time it visits a node in 
the tree. 

 Despite the fact that the ADT operation  preorderTraverse  calls a client-supplied function, the 
wall between the program and the implementation of the ADT has not been violated. Because  display
is on the client’s side of the wall, the function can access the data only by using the ADT operations. 

 The next chapter will discuss the implementation details of the traversal operations.    

Question 8    What are the preorder, inorder, and postorder traversals of the binary trees in 
parts  a ,  b , and  c  of  Figure   15-5   ? 

CHECK POINT

   15.2.2  Binary Tree Operations 

 The ADT binary tree has the following operations:  

Note: ADT binary tree operations
•   Test whether a binary tree is empty.  
•   Get the height of a binary tree.  
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•   Get the number of nodes in a binary tree.  
•   Get the data in a binary tree’s root.  
•   Set the data in a binary tree’s root.  
•   Add a new node containing a given data item to a binary tree.  
•   Remove the node containing a given data item from a binary tree.  
•   Remove all nodes from a binary tree.  
•   Retrieve a specifi c entry in a binary tree.  
•   Test whether a binary tree contains a specifi c entry.  
•   Traverse the nodes in a binary tree in preorder, inorder, or postorder.   

 The following contract specifi es these operations in more detail, and a UML diagram for a class 
of binary trees appears in  Figure   15-12   .     

 ABSTRACT DATA TYPE: BINARY TREE

  DATA    

• A fi nite number of objects in hierarchical order. 

  OPERATIONS

PSEUDOCODE    DESCRIPTION

  isEmpty()  Task: Tests whether this binary tree is empty. 
 Input: None. 
 Output: True if the binary tree is empty; otherwise false. 

  getHeight()  Task: Gets the height of this binary tree. 
 Input: None. 
 Output: The height of the binary tree. 

  getNumberOfNodes()  Task: Gets the number of nodes in this binary tree. 
 Input: None. 
 Output: The number of nodes in the binary tree. 

  getRootData()  Task: Gets the data that is in the root of this binary tree. 
 Input: None. Assumes the tree is not empty. 
 Output: The root’s data. 

  setRootData(newData) Task: Replaces the data item in the root of this binary tree with newData, if the tree is 
not empty. However, if the tree is empty, inserts a new root node whose data item 
is newData into the tree. 

Input: newData is the data item. 
Output: None. 

  add(newData) Task: Adds a new node containing a given data item to this binary tree. 
 Input: newData is the data item. 
 Output: True if the addition is successful, or false if not. 

  remove(data)  Task: Removes the node containing the given data item from this binary tree. 
 Input: data is the data item. 
 Output: True if the removal is successful, or false if not. 
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  clear()  Task: Removes all nodes from this binary tree. 
 Input: None. 
 Output: None. (The binary tree is empty.) 

  getEntry(anEntry)  Task: Gets a specifi c entry in this binary tree. 
 Input: anEntry is the desired data item. 
Output:  The entry in the binary tree that matches anEntry . Throws an exception if the 

entry is not found. 

  contains(data)   Task: Tests whether the given data item occurs in this binary tree. 
 Input: data is the data item. 
 Output: True if the binary tree contains the given data item, or false if not. 

  preorderTraverse(visit)  Task: Traverses this binary tree in preorder and calls the function visit once for each 
node.

 Input:   visit is a client-defi ned function that performs an operation on or with the data 
in each visited node. 

Output: None. 

  inorderTraverse(visit)  Task: Traverses this binary tree in inorder and calls the function visit once for each 
node.

 Input:   visit is a client-defi ned function that performs an operation on or with the data 
in each visited node. 

Output: None. 

  postorderTraverse(visit)  Task: Traverses this binary tree in postorder and calls the function visit once for each 
node.

 Input:   visit is a client-defi ned function that performs an operation on or with the data 
in each visited node. 

 Output: None. 

FIGURE 15-12         UML diagram for the class  BinaryTree

BinaryTree

+isEmpty(): boolean
+getHeight(): integer
+getNumberOfNodes(): integer
+getRootData(): ItemType
+setRootData(newData: ItemType): void
+add(newData: ItemType): boolean
+remove(data: ItemType): boolean
+clear(): void
+getEntry(anEntry: ItemType): ItemType
+contains(data: ItemType): boolean
+preorderTraverse(visit(item: ItemType): void): void
+inorderTraverse(visit(item: ItemType): void): void
+postorderTraverse(visit(item: ItemType): void): void
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Using ADT binary 
tree operations to 
build a binary tree 

       Example.    You can use the  add  operation to build the binary tree in  Figure   15-5   a, where the node 
labels represent character data:    

  tree = a new empty binary tree 
tree.add('A')
 tree.add('B') 
 tree.add('C') 
 tree.add('D') 
 tree.add('E') 
 tree.add('F') 
 tree.add('G') 

 Given the specifi cation of the  add  method, you have no reason to expect that the previous state-
ments, in fact, produce the binary tree in the fi gure. Assuming that the operations are successful, you 
will know only that the binary tree has seven nodes containing the given data. Our specifi cation of  add
is intentionally vague and gives the programmer who implements the class  BinaryTree  fl exibility. It 
also makes  BinaryTree  more useful as a base class, as you will see in the next chapter.   

   15.2.3  An Interface Template for the ADT Binary Tree 

 We formalize our specifi cations for the ADT binary tree by writing the interface template given in 
Listing 15-1. 

      LISTING 15-1    An interface template for the ADT binary tree 

/** Interface for the ADT binary tree. 
 @file BinaryTreeInterface.h */ 

#ifndef _BINARY_TREE_INTERFACE 
#define _BINARY_TREE_INTERFACE 

  template < class ItemType> 
  class BinaryTreeInterface 
 { 

  public : 
    /** Tests whether this binary tree is empty. 
     @return  True if the binary tree is empty, or false if not. */ 

virtual bool isEmpty() const = 0; 

    /** Gets the height of this binary tree. 
     @return  The height of the binary tree. */ 

virtual int getHeight() const = 0; 

    /** Gets the number of nodes in this binary tree. 
     @return  The number of nodes in the binary tree. */ 

virtual int getNumberOfNodes() const = 0; 

    /** Gets the data that is in the root of this binary tree. 
     @pre  The binary tree is not empty. 
     @post  The root’s data has been returned, and the binary tree is unchanged. 
     @return  The data in the root of the binary tree. */ 

virtual ItemType getRootData() const = 0; 

    /** Replaces the data item in the root of this binary tree 
         with the given data, if the tree is not empty. However, if 

(continues)
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       the tree is empty, inserts a new root node containing the 
         given data into the tree. 
     @pre  None. 
     @post  The data in the root of the binary tree is as given. 
     @param newData  The data for the root. */ 

virtual void setRootData( const ItemType& newData) = 0; 

    /** Adds a new node containing the given data to this binary tree. 
     @param newData  The data for the new node. */ 
     @post  The binary tree contains a new node. 
     @return  True if the addition is successful, or false not. */ 

virtual bool add( const ItemType& newData) = 0; 

    /** Removes the node containing the given data item from this binary tree. 
     @param data  The data value to remove from the binary tree. */ 
     @return  True if the removal is successful, or false not. */ 

virtual bool remove( const ItemType& data) = 0; 

    /** Removes all nodes from this binary tree. */ 
  virtual void clear() = 0; 

    /** Gets a specific entry in this binary tree. 
     @post  The desired entry has been returned, and the binary tree 
         is unchanged. If no such entry was found, an exception is thrown. 
     @param anEntry  The entry to locate. 
     @return  The entry in the binary tree that matches the given entry. 
     @throw  NotFoundException if the given entry is not in the tree. */ 

virtual ItemType getEntry( const ItemType& anEntry) const  
                          throw(NotFoundException) = 0; 

    /** Tests whether a given entry occurs in this binary tree. 
     @post  The binary search tree is unchanged. 
     @param  anEntry The entry to find. 
     @return  True if the entry occurs in the tree, or false if not. */ 

virtual bool contains( const ItemType& anEntry) const = 0; 

    /** Traverses this binary tree in preorder (inorder, postorder) and 
       calls the function visit once for each node. 

     @param visit  A client-defined function that performs an operation on 
         or with the data in each visited node. */ 

virtual void preorderTraverse( void visit(ItemType&)) const = 0; 
virtual void inorderTraverse( void visit(ItemType&)) const = 0; 
virtual void postorderTraverse( void visit(ItemType&)) const = 0; 

 }; // end BinaryTreeInterface 
 #endif     

   15.3 The ADT Binary Search Tree 
 Searching for a particular item is one operation for which the ADT binary tree is ill suited. The binary 
search tree is a binary tree that corrects this defi ciency by organizing its data by value. Recall that 
each node n  in a binary search tree satisfi es the following three properties:    

• n ’s value is greater than all values in its left subtree  TL .
• n ’s value is less than all values in its right subtree  TR .
•   Both  TL  and  TR  are binary search trees.   

VideoNote

The ADT binary 
search tree



Several different 
binary search trees 
are possible for the 
same data 

 The ADT Binary Search Tree 443

 This organization of data enables you to search a binary search tree for a particular data item, given its 
value instead of its position. 

Example.    Let’s consider a binary search tree whose nodes contain people’s names. Suppose that 
these objects are Alan, Bob, Elisa, Jane, Nancy, Tom, and Wendy.  Figure   15-13    illustrates one binary 
search tree that we can form with these names.   

FIGURE 15-13         A binary search tree of names   
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FIGURE 15-14         Binary search trees with the same data as in  Figure   15-13      

Jane

Tom

Bob

ElisaAlan

Nancy

Wendy

Jane

Bob Nancy

ElisaAlan Tom

Wendy

Alan

Bob

Elisa

Jane

Nancy

Tom

Wendy

(a) (c)(b)

   15.3.1  Binary Search Tree Operations 

 As an ADT, the binary search tree has operations that are like the operations for the ADTs you studied 
in previous chapters, in that they involve inserting, removing, and retrieving data. Unlike the 
position-oriented ADTs stack, list, and queue, but like the ADT sorted list, the insertion, removal, and 
retrieval operations are by value, not by position. On the other hand, the other operations—including 

 Many different binary search trees can contain the same data, however. For example, in addition 
to the tree in  Figure   15-13   , each tree in  Figure   15-14    is a valid binary search tree for the names Alan, 
Bob, Elisa, Jane, Nancy, Tom, and Wendy. Although these trees have different shapes, each one satis-
fi es the requirements of a binary search tree.     
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the traversal operations—that you just saw for a binary tree apply to a binary search tree without 
change, because a binary search tree is a binary tree. 

 The operations that defi ne the ADT binary search tree are as follows:  

      Note: ADT binary search tree operations
•   Test whether a binary search tree is empty.  
•   Get the height of a binary search tree.  
•   Get the number of nodes in a binary search tree.  
•   Get the data in a binary search tree’s root.  
•   Insert a new item into a binary search tree.  
•   Remove the given item from a binary search tree.  
•   Remove all entries from a binary search tree.  
•   Retrieve the given item from a binary search tree.  
•   Test whether a binary search tree contains a specifi c entry.  
•   Traverse the items in a binary search tree in preorder, inorder, or postorder.   

 For simplicity, we will insist that a binary search tree contain unique data. The following contract 
specifi es the insertion and removal operations in more detail. The UML diagram for a class of binary 
search trees will be almost the same as the one for a class of binary trees, so we do not write one here.    

 ABSTRACT DATA TYPE: BINARY SEARCH TREE

DATA

• A fi nite number of objects in hierarchical order. 

  OPERATIONS    

PSEUDOCODE    DESCRIPTION

  add(newEntry) Task: Inserts newEntry into this binary search tree such that the properties of a binary 
search tree are maintained. 

Input: newEntry is the data item to be inserted. Assumes the entries in the tree are 
distinct and differ from newEntry . 

Output: True if the insertion is successful, or false if not. 

  remove(anEntry) Task: Removes the given entry from this binary search tree such that the properties of a 
binary search tree are maintained. 

 Input: anEntry is the entry to remove. 
 Output: True if the removal is successful, or false if not. 

 The methods  isEmpty ,  getHeight ,  getNumberOfNodes ,  getRootData ,  clear ,  getEntry ,  contains ,  preorderTraverse , 
inorderTraverse , and  postorderTraverse  have the same specifi cations as for a binary tree. 

       Example.    If  nameTree  is any one of the binary search trees in  Figures   15-13    and    15-14   , and if their 
nodes contain strings, the statement 

string name = nameTree.getEntry(nancy);

 where  nancy  is a string variable containing  "Nancy" , locates the node containing  "Nancy"  and assigns 
its data to name . It doesn’t matter which one of the four trees  getEntry  searches; the result will be the 
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same. The time it takes for  getEntry  to fi nd  nancy , however, does depend on the shape of the tree, as 
you will see. 

 If the string variable  hal  contains  "Hal"  and you insert it into  nameTree  by invoking 

  nameTree.add(hal) 

 you will be able to retrieve  hal  later and still be able to retrieve  nancy . If you remove  jane  by using 

  nameTree.remove(jane) 

 you will still be able to retrieve the objects  nancy  and  hal . Finally, if  displayName  is a client function 
that displays its string argument, 

  nameTree.inorderTraverse(displayName) 

 will display in alphabetical order the names of the people that  nameTree  represents. Again, it does not 
matter which one of the four trees you traverse.      

      Question 9    Show that each tree in  Figures   15-13    and    15-14    is a binary search tree. 

CHECK POINT Question 10    Show that the inorder traversals of each binary search tree in  Figures   15-13    
and    15-14    are the same. 

Question 11    What are the preorder and postorder traversals of each binary search tree in 
 Figures   15-13    and    15-14   ? Are the preorder traversals the same? Are the postorder traversals 
the same? 

   15.3.2  Searching a Binary Search Tree 

 Consider again the binary search tree in  Figure   15-13   . Each node in the tree contains a person’s name. 
Suppose that you want to locate Elisa in the binary search tree. The root node of the tree contains Jane, 
so if Elisa is present in the tree, it must be in Jane’s left subtree, because the string  "Elisa"  is before 
the string "Jane"  alphabetically. Because a binary search tree is recursive by nature, it is natural to 
formulate recursive algorithms for operations on the tree. Thus, you know that Jane’s left subtree is 
also a binary search tree, so you use exactly the same strategy to search this subtree for Elisa. The root 
of this binary search tree contains Bob, and, because the string  "Elisa"  is greater than the string 
"Bob" , Elisa must be in Bob’s right subtree. That right subtree is also a binary search tree, and it hap-
pens that Elisa is in the root node of this tree. Thus, the search has located Elisa.    

 The following pseudocode summarizes this search strategy: 

  // Searches the binary search tree for a given target value .
search(bstTree: BinarySearchTree, target: ItemType) 

if  (bstTree is empty)
        The desired item is not found  

else if  (target == data item in the root of  bstTree)
        The desired item is found 

else if  (target < data item in the root of bstTree)
       search(Left subtree of bstTree, target)

else  
       search(Right subtree of  bstTree, target)  

 As you will see, this  search  algorithm is the basis of the other operations on a binary search tree. 
 The shape of the tree in no way affects the validity of the  search  algorithm. The algorithm requires 

only that a tree be a binary search tree. However, the  search  algorithm works more effi ciently on some 

A search algorithm 
for a binary search 
tree
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Use search to 
determine the 
insertion point 

trees than on others. For example, with the tree in  Figure   15-14   b,  search  inspects every node before 
locating Wendy. In fact, this binary search tree really has the same structure as a link-based representa-
tion of a sorted list and offers no advantage in effi ciency. In contrast, with the full tree in  Figure   15-13   , 
the search  algorithm inspects only the nodes that contain the names Jane, Tom, and Wendy. These 
names are exactly the names that a binary search of the sorted array in  Figure   15-15    would inspect. 

FIGURE 15-15         An array of names in sorted order   
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The shape of a binary search tree affects the effi ciency of its operations. The more balanced a 
binary search tree is, the farther it is from a linear structure and the closer the behavior of the  search
algorithm will be to a binary search of an array (and the farther it will be from the behavior of a linear 
search). Later in this chapter, you will learn more about how the shape of a binary search tree affects 
search ’s effi ciency and how the insertion and removal operations affect this shape.   

      Question 12    Using the tree in  Figure   15-14   c, trace the algorithm that searches a binary 
search tree for 

a.   Elisa
b.   Kyle   

 In each case, list the nodes in the order in which the search visits them. 

CHECK POINT

   15.3.3  Creating a Binary Search Tree 

 Suppose that you want to insert a record for Frank into the binary search tree of  Figure   15-13   . As a 
fi rst step, imagine that you instead want to  search  for the string  "Frank" . The search algorithm fi rst 
searches the tree rooted at Jane, then the tree rooted at Bob, and then the tree rooted at Elisa. It then 
searches the tree rooted at the right child of Elisa. Because this tree is empty, as  Figure   15-16    illus-
trates, the search algorithm has reached a base case and will terminate with the report that Frank is not 
present. What does it mean that  search  looked for Frank in the right subtree of Elisa? For one thing, it 
means that if Frank were the right child of Elisa,  search  would have found Frank there.  

 This observation indicates that a good place to insert Frank is as the right child of Elisa. Because 
Elisa has no right child, the insertion is simple, requiring only the addition of a new leaf node. More 
important, Frank belongs in this location— search  will look for Frank here. Specifi cally, inserting 
Frank as the right child of Elisa will preserve the tree’s binary search tree property. Because  search , 
when searching for Frank, would follow a path that leads to the right child of Elisa, you are assured 
that Frank is in the proper relation to the names above it in the tree.     

      Note:    Using  search  to determine where in the tree to insert a new name always leads to 
an easy insertion. No matter what new item you insert into the tree,  search  will always 
terminate at an empty subtree. Thus,  search  always tells you to insert the item as a new 
leaf.
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Example.    Let’s create the binary search tree shown in  Figure   15-13   . The following pseudocode 
statements begin with an empty binary search tree and add entries one at time until we get the desired 
tree:

   nameTree  = a new, empty binary search tree  
  nameTree .insert("Jane")
  nameTree .insert("Bob")
  nameTree .insert("Alan")
  nameTree .insert("Elisa")
  nameTree .insert("Tom")
  nameTree .insert("Nancy")
  nameTree .insert("Wendy")

 Once we insert Jane into the empty tree, Jane becomes the tree’s root. Inserting Bob into the tree 
leaves the root untouched, and so the only binary search tree that is possible places Bob as the left 
child of the root. Why? Because  "Bob"  is less than  "Jane" . When we insert the next name, Alan, it 
becomes the left child of Bob. Note that each insertion creates a new leaf of the tree at that point in 
time. However, it might not remain a leaf in the fi nal tree.     

FIGURE 15-16         Empty subtree where the  search  algorithm terminates when looking for Frank   
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Question 13    Beginning with an empty binary search tree, what binary search tree is 
formed when you insert the following letters in the order given? J, N, B, A, W, E, T 

CHECK POINT

Question 14    Arrange nodes that contain the letters A, C, E, F, L, V, and Z into two binary 
search trees: one that has maximum height and one that has minimum height. 

   15.3.4  Traversals of a Binary Search Tree 

 The traversals of a binary search tree are the same as the traversals of a binary tree. The inorder traver-
sal of a binary search tree, however, is of special note. Recall its algorithm from earlier in this chapter: 

  // Traverses the given binary tree in inorder .
//  Assumes that “visit a node” means to process the node’s data item .
inorder(binTree: BinaryTree): void 
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Use inorder 
traversal to visit 
nodes of  a binary 
search tree in 
search-key order 

if  (binTree is not empty)
{

     inorder( Left subtree of  binTree’s root)
Visit the root of  binTree
inorder(Right subtree of  binTree’s root)

}   

Note:    The inorder traversal of a binary search tree visits the tree’s nodes in sorted 
search-key order. 

 The proof of the previous fact is by induction on  h , the height of the tree. Let  T  represent the tree.    
Basis: h  = 0. When  T  is empty, the algorithm does not visit any nodes. This is the proper sorted order 
for the zero names that are in the tree! 
Inductive hypothesis:  Assume that the theorem is true for all  k , 0 <  k  <  h . That is, assume for all  k  (0 < 
k  <  h ) that the inorder traversal visits the nodes in sorted search-key order. 
Inductive conclusion:  You must show that the theorem is true for  k = h  > 0.  T  has the form             

r

TL TR

 Because  T  is a binary search tree, all the entries in the left subtree  TL  are less than the entry in the root 
r , and all the entries in the right subtree  TR  are greater than the entries in  r . The  inorder  algorithm will 
visit all the nodes in TL , then visit  r , and then visit all the nodes in  TR . Thus, the only concern is that 
inorder  visit the nodes within each of the subtrees  TL  and  TR  in the correct sorted order. But because 
T  is a binary search tree of height  h , each subtree is a binary search tree of height less than  h . There-
fore, by the inductive hypothesis,  inorder  visits the nodes in each subtree  TL  and  TR  in the correct 
sorted search-key order. The proof is now complete.  

   15.3.5  The Effi ciency of Binary Search Tree Operations 

 You have seen binary search trees in many shapes. For example, even though the binary search trees 
in  Figures   15-13    and    15-14    have seven nodes each, they have different shapes and heights. You saw 
that to locate Wendy in  Figure   15-14   b, you would have to inspect all seven nodes, but you can locate 
Wendy in  Figure   15-13    by inspecting only three nodes (Jane, Tom, and Wendy). Consider now the 
relationship between the height of a binary search tree and the effi ciency of the retrieval, insertion, 
and removal operations. 

 Each of these operations compares a specifi ed value  v  to the entries in the nodes along a  path  
through the tree. This path always starts at the root of the tree and, at each node  n , follows the left or 
right branch, depending on the comparison of v  to the value in  n . The path terminates at the node that 
contains v  or, if  v  is not present, at an empty subtree. Thus, each retrieval, insertion, or removal opera-
tion requires a number of comparisons equal to the number of nodes along this path. This means that 
the maximum number of comparisons that each operation can require is the number of nodes on the 
longest path through the tree. In other words, the maximum number of comparisons that these opera-
tions can require is equal to the height of the binary search tree.     

The maximum 
number of  
comparisons for a 
retrieval, insertion, 
or removal is the 
height of  the tree 

Note:  The height of a binary tree
 Recall that the height of an  n -node binary tree ranges from < log 2 ( n  + 1) =  to n . 
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 If the height of the binary search tree is log 2 ( n  + 1) , the effi ciency of its operations is O(log  n ). 
However, what will the height of a binary search tree actually be? The factor that determines the 
height of a binary search tree is the order in which you perform insertion and removal operations on 
the tree. Recall that, starting with an empty tree, if you insert names in the order Alan, Bob, Elisa, 
Jane, Nancy, Tom, Wendy, you would obtain a binary search tree of maximum height, as shown in 
 Figure   15-14   b. On the other hand, if you insert names in the order Jane, Bob, Tom, Alan, Elisa, Nancy, 
Wendy, you would obtain a binary search tree of minimum height, as shown in  Figure   15-13   .    

 Which of these situations should you expect to encounter in the course of a real application? It 
can be proven mathematically that if the insertion and removal operations occur in a random order, 
the height of the binary search tree will be quite close to log 2n . Thus, in this sense, the previous analy-
sis is not unduly optimistic. However, in a real-world application, is it realistic to expect the insertion 
and removal operations to occur in random order? In many applications, the answer is yes. There are, 
however, applications in which this assumption would be dubious. For example, the person preparing 
the previous sequence of names for the insertion operations might well decide to “help you out” by 
arranging the names to be inserted into sorted order. This arrangement, as has been mentioned, would 
lead to a tree of maximum height. Thus, while in many applications you can expect the behavior of a 
binary search tree to be excellent, you should be wary of the possibility of poor performance due to 
some characteristic of a given application.    

 Is there anything you can do if you suspect that the operations might not occur in a random 
order? Similarly, is there anything you can do if you have an enormous number of items and need to 
ensure that the height of the tree is close to log 2n ?  Chapter   19    presents variations of the basic binary 
search tree that are guaranteed always to remain balanced and therefore be of minimum height. 

  Figure   15-17    summarizes the order of the retrieval, insertion, removal, and traversal operations 
for the ADT binary search tree.     

Insertion in random 
order produces a 
near-minimum-
height binary search 
tree

FIGURE 15-17         The Big O for the retrieval, insertion, removal, and traversal operations of the 
ADT binary search tree   
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     SUMMARY   

  1.   Binary trees provide a hierarchical organization of data, which is important in many applications. 

  2.   Traversing a tree is a useful operation. Intuitively, traversing a tree means to visit every node in the tree. Because 
the meaning of “visit” is application dependent, you can pass a client-defi ned visit  function to the traversal 
operation.

  3.   The binary search tree allows you to use a binary search-like algorithm to search for an item with a specifi ed 
value. 

  4.   Binary search trees come in many shapes. The height of a binary search tree with  n  nodes can range from a minimum 
of < log 2 ( n  + 1) =  to a maximum of n . The shape of a binary search tree determines the effi ciency of its operations. The 
closer a binary search tree is to a balanced tree (and the farther it is from a linear structure), the closer the behavior of 
the search  algorithm will be to a binary search (and the farther it will be from the behavior of a linear search). 

  5.   An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-key order. 
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  EXERCISES   

  1.   Consider the tree in  Figure   15-18   . What node or nodes are 

 a.   The tree’s root?  
 b.   Parents?  
 c.   Children of the parents in part  b ?
 d.   Siblings?  
 e.   Ancestors of 50?  
 f.   Descendants of 20?  
 g.   Leaves?   

  2.   What is the height of the tree in  Figure   15-18   ?  

  3.   Write preconditions and postconditions for the ADT binary search tree operations. 

FIGURE 15-18         A tree for Exercises 1, 2, 6, 7, 11, and 23   
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  4.   What are the preorder, inorder, and postorder traversals of the binary tree in  Figure   15-19   ?  

  5.   Consider a method  isLeaf  that returns true if a binary tree is a one-node tree—that is, if it consists of only a 
leaf—and returns  false  otherwise. 

 a.   Specify the method  isLeaf .
 b.   If  isLeaf  were not a method of a class of binary trees, would a client of the class be able to implement 

isLeaf ? Explain.   

  6.   Starting with an empty binary search tree, in what order should you insert items to get the binary search tree in 
 Figure   15-18   ? 

  7.   Using the binary search tree in  Figure   15-18   , trace the  search  algorithm when it searches for 

 a.   30
 b.   15

 In each case, list the nodes in the order in which the search visits them. 

  8.   Is the tree in  Figure   15-19    a binary search tree? Explain. 
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  9.   Beginning with an empty binary search tree, what binary search tree is formed when you insert the following 
values in the order given? 

 a.   W, T, N, J, E, B, A  
 b.   W, T, N, A, B, E, J  
c.   A, B, W, J, N, T, E  
d.   B, T, E, A, N, W, J   

  10.   Consider the binary search tree in  Figure   15-20   . The numbers simply label the nodes so that you can reference 
them; they do not indicate the contents of the nodes. 

 a.   Without performing an inorder traversal, which node must contain the value that comes immediately 
after the value in the root? Explain.  

 b.   In what order will an inorder traversal visit the nodes of this tree? Indicate this order by listing the labels 
of the nodes in the order that they are visited.    

  11.   Consider the binary search tree in  Figure   15-18   . What tree results after you insert the nodes 80, 65, 75, 45, 35, 
and 25, in that order? 

FIGURE 15-19         A tree for Exercises 4 and 8   
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FIGURE 15-20         A binary search tree for Exercise 10   
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  12.   If duplicates are allowed in a binary search tree, it is important to have a convention that determines the relation-
ship between the duplicates. Items that duplicate the root of a tree should either all be in the left subtree or all be 
in the right subtree, and, of course, this property must hold for every subtree. Why is this convention critical to 
the effective use of the binary search tree? 

  13.   Consider a nonempty binary tree with two types of nodes:  min nodes  and  max nodes . Each node has an integer 
value initially associated with it. This tree is a  minimax tree  and has a value, which we defi ne as follows: 

•   If the root is a min node, the value of the tree is equal to the  minimum  of 
•   The integer stored in the root  
•   The value of the left subtree, but only if it is nonempty  
•   The value of the right subtree, but only if it is nonempty    

•    If the root is a max node, the value of the tree is equal to the  maximum  of the above three values. 

a.   Compute the value of the minimax tree in  Figure   15-21   . Each node is labeled with its initial value.  
b.   Design a general solution for representing and evaluating these trees.      

  *14.   A binary search tree with a given set of data items can have several different structures that conform to the defi -
nition of a binary search tree. If you are given a list of data items, does at least one binary search tree whose 
preorder traversal matches the order of the items on your list always exist? Is there ever more than one binary 
search tree that has the given preorder traversal? 

  *15.   How many differently shaped  n -node binary trees are possible? How many differently shaped  n -node binary 
search trees are possible? (Write recursive defi nitions.) 

  16.   Write pseudocode for a binary search tree method that visits all nodes whose data lies within a given range of 
values (such as all values between 100 and 1,000). 

  17.   By using mathematical induction, prove that a full binary tree of height  h � 0 has 2 h  – 1 nodes. 

  18.   By using mathematical induction, prove that the maximum number of nodes in a binary tree of height  h  is 2 h  – 1. 

FIGURE 15-21         A minimax tree for Exercise 13   
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  19.   What is the maximum number of nodes that a binary tree can have at level  n ? Prove your answer by using 
mathematical induction. Use this fact to do the following: 

 a.   Rewrite the formal defi nition of a complete tree of height  h .
 b.   Derive a closed form for the formula 

a
h

i51
2i21

 What is the signifi cance of this sum?   

  20.   Prove by mathematical induction that a binary tree with  n  nodes has exactly  n  + 1 empty subtrees. 

  21.   A binary tree is  strictly binary  if every nonleaf node has exactly two children. Prove by mathematical induction 
on the number of leaves that a strictly binary tree with  n  leaves has exactly 2 n  – 1 nodes. 

  22.   Consider two algorithms for traversing a binary tree. Both are nonrecursive algorithms that use an extra con-
tainer C  for bookkeeping. Both algorithms have the following basic form: 

   Put the root of the tree in C  
  while  ( C is not empty)
{

Remove a node from C and name it N  
Visit N  
if  (N has a left child)

         Put the child in C  
if  (N has a right child)

         Put the child in C  
}  

 The difference between the two algorithms is the approach for choosing a node  N  to remove from the container 
C : 

•   Algorithm 1: Remove the newest (most recently added) node from  C .
•   Algorithm 2: Remove the oldest (earliest added) node from  C .

 a.   In what order would each algorithm visit the nodes of the tree in  Figure   15-13   ?  
 b.   For each algorithm, describe an appropriate ADT for the bookkeeping container  C . What data should 

the ADT have? Be conservative with the amount of memory needed for the ADT. Also, note that the 
traversal of a tree should not alter the tree in any way.   

  23.   Suppose that you traverse the binary search tree in  Figure   15-18    and write the data item in each node visited to a 
fi le. You plan to read this fi le later and create a new binary search tree by using the ADT binary search tree 
operation add . In creating the fi le, in what order should you traverse the tree so that the new tree will have exactly 
the same shape and nodes as the original tree? 

  PROGRAMMING PROBLEMS   

  1.   Develop a program that can be used to test an implementation of  BinaryTreeInterface . 

  2.   Repeat the previous problem, but assume that the implementation represents a binary search tree. 

  3.   Develop an interface template for a general tree. What methods are reasonable for a general tree? 

  4.   Repeat the previous problem, but consider an  n -ary tree instead. 
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456 CHAPTER 16 Tree Implementations

T he previous chapter discussed various kinds of trees, but it focused on the ADTs binary tree and 
binary search tree. This chapter will show you how to implement these two ADTs by using the 
constructs of C++. In each case, the data structures will be private data members of a class of trees.  

      16.1 The Nodes in a Binary Tree 
 The fi rst step in implementing a tree is to choose a data structure to represent its nodes. Since each 
node must contain both data and “pointers” to the node’s children—which are other nodes in the 
tree—it is natural to make each node an object. Thus, we will use a C++ class to defi ne the nodes in 
the tree. If we place these nodes in an array, the “pointers” in the nodes are array indices. However, if 
the nodes are a part of a linked chain, we use C++ pointers to link them together. 

   16.1.1  An Array-Based Representation 

 Let’s name our class of nodes  TreeNode . An array-based implementation of a tree uses an array of 
nodes, so a class of such trees could have the following data members: 

  TreeNode<ItemType> tree[MAX_NODES]; // Array of tree nodes 
  int root; // Index of root 
  int free; // Index of free list 

 The variable  root  is an index to the tree’s root node within the array  tree . If the tree is empty,  root
is –1. 

 As the tree changes due to insertions and removals, its nodes may not be in contiguous elements 
of the array. Therefore, this implementation requires you to establish a collection of available nodes, 
which is called a  free list . To insert a new node into the tree, you fi rst obtain an available node from 
the free list. If you remove a node from the tree, you place it into the free list so that you can reuse the 
node at a later time. The data member  free  is the index to the fi rst node in the free list. We will talk 
about the free list in a moment.    

 Although these data members are appropriate for any tree, we want to restrict our conversation 
to binary trees and consider a class of its nodes. The class  TreeNode , as given in Listing 16-1, 
is such a class. 

A free list keeps 
track of  available 
nodes

LISTING 16-1   The class TreeNode for an array-based implementation 
of the ADT binary tree 

   template < class ItemType> 
  class TreeNode 
 { 
  private:  
   ItemType  item;         // Data portion 

int        leftChild;   // Index to left child 
int        rightChild; // Index to right child 

  public:  
   TreeNode(); 
   TreeNode( const ItemType& nodeItem, int left, int right); 

// Declarations of the methods setItem, getItem, setLeft, getLeft, 
// setRight, and getRight are here. 

   . . . 

 }; // end TreeNode 

VideoNote

Representing 
tree nodes
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 Each node in the array-based binary tree has a data item and two array indices, one to each 
child. Both leftChild  and  rightChild  within a node are indices to the children of that node. If a 
node has no left child,  leftChild  is –1; if a node has no right child,  rightChild  is –1. Since  root  is 
the index of the root  r  of a binary tree,  tree[root].getLeft()  is  leftChild , the index of the root 
of the left subtree of r ;  tree[root].getRight()  is  rightChild , the index of the root of the right 
subtree of r . 

  The free list.   Even though the data member  free  is the index of the fi rst node in the free list, the next 
available node is not necessarily at index  free   +   1 . When a node is removed from a tree and returned 
to the free list, it could be anywhere in the array. Thus, we “link” the available nodes together by arbi-
trarily making the  rightChild  member of each node be the index of the next node in the free list. 
Thus, both the free list and the tree itself are array-based, but the nodes are linked by array indices 
instead of C++ pointers. While the free list is a linear data structure, the tree is not. 

  Figure   16-1    contains a binary tree and its data members for this array-based implementation. 
Note how the nodes in the tree are linked. For example, Bob in  tree[1]  has Elisa as its right child. 
Elisa is in tree[4] , and  tree[1].rightChild  is 4.  Since Elisa is in a leaf of the tree, its links in 
tree[4].leftChild  and  tree[4].rightChild  are each –1. Likewise, Alan and Nancy are in leaf 
nodes.  The nodes in the free list are linked, but since this tree has not undergone removals, the free list 
happens to be in contiguous array elements.  

 An array-based implementation of a binary tree is much more attractive when the tree is com-
plete. In such cases, indices that link parents and their children are not stored, so the data structure is 

FIGURE 16-1         (a) A binary tree of names; (b) its implementation using the array  tree
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simpler than if the tree is not complete. In  Chapter   17   , you will see that an array-based representation 
of a complete binary tree is useful in the implementation of the ADT priority queue. We will not use 
any other array-based implementation of a tree. 

     Note:   If you use an array-based implementation of a complete binary tree, you must be 
sure that the tree remains complete as a result of insertions or removals. 

     16.1.2  A Link-Based Representation 

 You can use C++ pointers to link the nodes in the tree. Doing so is the most common way of imple-
menting a tree. Listing 16-2 shows the class  BinaryNode  for a link-based implementation of the ADT 
binary tree. 

     Question 1   Represent the binary tree in  Figure   15-18    of  Chapter   15    with an array. 
CHECK POINT

LISTING 16-2   The header fi le containing the class BinaryNode for a link-based 
implementation of the ADT binary tree 

  /** A class of nodes for a link-based binary tree. 
 @file BinaryNode.h */ 

#ifndef _BINARY_NODE 
#define _BINARY_NODE 

  template < class ItemType> 
  class BinaryNode 
 { 
  private : 

ItemType                 item;            // Data portion 
BinaryNode<ItemType>* leftChildPtr;  // Pointer to left child 
BinaryNode<ItemType>* rightChildPtr; // Pointer to right child 

  public : 
 BinaryNode(); 
 BinaryNode( const ItemType& anItem); 
 BinaryNode( const ItemType& anItem, 
        BinaryNode<ItemType>* leftPtr, 
        BinaryNode<ItemType>* rightPtr); 

  void setItem( const ItemType& anItem); 
ItemType getItem() const ; 

  bool isLeaf() const ; 

BinaryNode<ItemType>* getLeftChildPtr() const ; 
BinaryNode<ItemType>* getRightChildPtr() const ; 

  void setLeftChildPtr(BinaryNode<ItemType>* leftPtr); 
  void setRightChildPtr(BinaryNode<ItemType>* rightPtr); 

 }; // end BinaryNode 

#include "BinaryNode.cpp" 
 #endif 
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 Given the class  BinaryNode  in Listing 16-2, a class of link-based binary trees will declare one 
data member—a pointer rootPtr —to point to the tree’s root node. If the tree is empty,  rootPtr  con-
tains nullptr . For a binary tree that is not empty,  rootPtr->getLeftChildPtr()  points to the root’s 
left subtree, and rootPtr->getRightChildPtr()  points to the root’s right subtree. If either of these 
subtrees is empty, the pointer to it would be  nullptr .  Figure   16-2    illustrates the root of a binary tree 
and its two children.    

   16.2 A Link-Based Implementation of the ADT Binary Tree 
 We will derive our class of link-based binary trees from  BinaryTreeInterface , which specifi es the 
public methods for the ADT binary tree and appears in Listing 15-1 of  Chapter   15   . The nodes in the 
tree will be instances of the class BinaryNode  as given previously in Listing 16-2. 

   16.2.1  The Header File 

 The header fi le in Listing 16-3 declares the class  BinaryNodeTree  in anticipation of its link-based 
implementation. Note the protected methods that the public methods will call to perform their opera-
tions recursively. These methods require pointers as arguments. As such, they should not be public 
and available to clients of the class. After all, clients should not have access to node pointers. Although 
these methods could be private, they are protected so that a derived class can use them.    

 The public section declares more constructors than we have in the past, allowing a client to 
defi ne binary trees in a variety of circumstances. For example, you can construct a binary tree 

•   That is empty  
•   From data for its root, which is its only node  
•   From data for its root and from its two subtrees   

 For example, the following statements invoke these three constructors:    

  BinaryNodeTree<string> tree1; 
BinaryNodeTree<string>* tree2Ptr = new BinaryNodeTree<string>("A"); 
BinaryNodeTree<string>* tree3Ptr = new BinaryNodeTree<string>("B"); 
BinaryNodeTree<string>* tree4Ptr = 
               new BinaryNodeTree<string>("C", tree2Ptr, tree3Ptr); 

FIGURE 16-2         A link-based implementation of a binary tree   
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 Here  tree1  is an empty binary tree;  tree2Ptr  and  tree3Ptr  each point to binary trees that have only 
a root node. These two roots contain the strings  "A"  and  "B" , respectively; and  tree4Ptr  points to a 
binary tree whose root contains  "C"  and has subtrees pointed to by  tree2Ptr  and  tree3Ptr . 

     Programming Tip:   In the previous example, if you were to use  BinaryTreeInterface
instead of BinaryNodeTree in the data type of either tree2Ptr or tree3Ptr, you would 
have to cast the variable to  BinaryNodeTree  before you could call the third constructor. 
For example, suppose you defi ned  treePtr2  as follows: 

  BinaryTreeInterface<string>* tree2Ptr = new BinaryNodeTree<string>("A"); 

 You would then defi ne  treePtr4  as follows: 

  BinaryNodeTree<string>* tree4Ptr = new BinaryNodeTree<string>("C", 
                   static_cast<BinaryNodeTree<string>*>(tree2Ptr), tree3Ptr); 

BinaryNodeTree  also declares an overloaded assignment operator. You could also, of course, 
overload other operators. 

LISTING 16-3 A header fi le for the link-based implementation of the class BinaryNodeTree

  /** ADT binary tree: Link-based implementation. 
 @file BinaryNodeTree.h */ 

#ifndef _BINARY_NODE_TREE 
#define _BINARY_NODE_TREE 

#include "BinaryTreeInterface.h" 
#include "BinaryNode.h" 
#include "PrecondViolatedExcep.h" 
#include "NotFoundException.h" 

  template < class ItemType> 
  void BinaryNodeTree : public BinaryTreeInterface<ItemType> 
 { 
  private : 
  BinaryNode<ItemType>* rootPtr; 

  protected : 
 //------------------------------------------------------------ 
//       Protected Utility Methods Section: 
//       Recursive helper methods for the public methods. 
 //------------------------------------------------------------ 

int getHeightHelper(BinaryNode<ItemType>* subTreePtr) const ; 
int getNumberOfNodesHelper(BinaryNode<ItemType>* subTreePtr) const ; 

// Recursively deletes all nodes from the tree. 
void destroyTree(BinaryNode<ItemType>* subTreePtr); 

// Recursively adds a new node to the tree in a left/right fashion to 
// keep the tree balanced. 
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(continues)

  BinaryNode<ItemType>* balancedAdd(BinaryNode<ItemType>* subTreePtr, 
                                             BinaryNode<ItemType>* newNodePtr); 

// Removes the target value from the tree by calling moveValuesUpTree 
// to overwrite value with value from child. 

  BinaryNode<ItemType>* removeValue(BinaryNode<ItemType>* subTreePtr, 
const ItemType target, bool& success); 

// Copies values up the tree to overwrite value in current node until 
// a leaf is reached; the leaf is then removed, since its value is 
// stored in the parent. 

  BinaryNode<ItemType>* moveValuesUpTree(BinaryNode<ItemType>* subTreePtr); 

// Recursively searches for target value in the tree by using a 
// preorder traversal. 

  BinaryNode<ItemType>* findNode(BinaryNode<ItemType>* treePtr, 
const ItemType& target, 
bool& success) const ; 

// Copies the tree rooted at treePtr and returns a pointer to 
// the copy. 

  BinaryNode<ItemType>* 
                copyTree( const BinaryNode<ItemType>* treePtr) const ; 

// Recursive traversal helper methods: 
void preorder( void visit(ItemType&), 

                   BinaryNode<ItemType>* treePtr) const ; 
void inorder( void visit(ItemType&), 

                  BinaryNode<ItemType>* treePtr) const ; 
void postorder( void visit(ItemType&), 

                    BinaryNode<ItemType>* treePtr) const ; 

  public : 
 //------------------------------------------------------------ 
//        Constructor and Destructor Section. 
 //------------------------------------------------------------ 
  BinaryNodeTree(); 
  BinaryNodeTree( const ItemType& rootItem); 
  BinaryNodeTree( const ItemType& rootItem, 
                const BinaryNodeTree<ItemType>* leftTreePtr, 
                const BinaryNodeTree<ItemType>* rightTreePtr); 
  BinaryNodeTree( const BinaryNodeTree<ItemType>& tree); 

virtual ~BinaryNodeTree(); 

 //------------------------------------------------------------ 
//        Public BinaryTreeInterface Methods Section. 
 //------------------------------------------------------------ 

bool isEmpty() const ; 
int getHeight() const ; 
int getNumberOfNodes() const ; 

  ItemType getRootData()  const throw (PrecondViolatedExcep); 
void setRootData( const ItemType& newData); 
bool add( const ItemType& newData); // Adds a node 
bool remove( const ItemType& data); // Removes a node 
void clear(); 
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An overloaded 
assignment
operator 

   16.2.2  The Implementation 

 Although we will not provide a complete implementation fi le here, we will examine its most signifi cant 
portions. 

  The constructors.   The public constructors have the following defi nitions in the implementation 
fi le: 

   template < class ItemType> 
BinaryNodeTree<ItemType>::BinaryNodeTree() : rootPtr( nullptr ) 
 { 
 } // end default constructor 

  template < class ItemType> 
 BinaryNodeTree<ItemType>::BinaryNodeTree( const ItemType& rootItem) 
 { 
   rootPtr =  new BinaryNode<ItemType>(rootItem, nullptr, nullptr ); 
 }  // end constructor 

  template < class ItemType> 
 BinaryNodeTree<ItemType>::BinaryNodeTree( const ItemType& rootItem, 
                        const BinaryNodeTree<ItemType>* leftTreePtr, 
                        const BinaryNodeTree<ItemType>* rightTreePtr) 
 { 
   rootPtr =  new BinaryNode<ItemType>(rootItem, 
                                  copyTree(leftTreePtr->rootPtr), 
                                  copyTree(rightTreePtr->rootPtr)); 
}  // end constructor 

 The default constructor uses an initializer to set the value of  rootPtr  to  nullptr . The second 
constructor sets  rootPtr  to point to a new node containing the given data item. The third constructor 
also makes  rootPtr  point to a new node, but the node contains the given data item and pointers to 
copies of the given subtrees. We talk about the method  copyTree  next during our discussion of the 
copy constructor.  

  ItemType getEntry( const ItemType& anEntry) const  
                                              throw (NotFoundException); 

bool contains( const ItemType& anEntry) const ; 

 //------------------------------------------------------------ 
//        Public Traversals Section. 
 //------------------------------------------------------------ 

void preorderTraverse( void visit(ItemType&)) const ; 
void inorderTraverse( void visit(ItemType&)) const ; 
void postorderTraverse( void visit(ItemType&)) const ; 

 //------------------------------------------------------------ 
//        Overloaded Operator Section. 
 //------------------------------------------------------------ 
  BinaryNodeTree& operator=(const BinaryNodeTree& rightHandSide);    
 }; // end BinaryNodeTree 

#include "BinaryNodeTree.cpp" 
 #endif   
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The copy constructor and destructor.   The copy constructor and the destructor implicitly use 
traversal. Since traversal is a recursive operation, the copy constructor and destructor each call a 
recursive method. As we have mentioned before, public ADT methods usually are not themselves 
recursive, but rather call a recursive method that is either private or protected. We do this to hide the 
underlying data structure from the client. 

 The protected method  copyTree , which the copy constructor calls, uses a recursive preorder 
traversal to copy each node in the tree. By copying each node as soon as the traversal visits it,  copyTree
can make an exact copy of the original tree. To make the copy distinct from the original tree, the new 
nodes must be linked together by using new pointers. That is, you cannot simply copy the pointers in 
the nodes of the original tree. The result is a deep copy of the tree. 

 Thus,  copyTree  has the following defi nition:    

   template < class ItemType> 
BinaryNode<ItemType>* BinaryNodeTree<ItemType>:: 
                    copyTree(const BinaryNode<ItemType>* treePtr) const  
 { 
   BinaryNode<ItemType>* newTreePtr =  nullptr ; 

// Copy tree nodes during a preorder traversal 
if (treePtr != nullptr ) 

   { 
       // Copy node 
       newTreePtr =  new BinaryNode<ItemType>(treePtr->getItem(), 
                                         nullptr, nullptr ); 
       newTreePtr->setLeftChildPtr(copyTree(treePtr->getLeftChildPtr())); 
       newTreePtr->setRightChildPtr(copyTree(treePtr->getRightChildPtr())); 
   }  // end if 

// Else tree is empty (newTreePtr is nullptr) 

return newTreePtr; 
} // end copyTree 

 The copy constructor then looks like this: 

   template < class ItemType> 
 BinaryNodeTree<ItemType>:: 
                  BinaryNodeTree(const BinaryNodeTree<ItemType>& treePtr) 
 { 
   rootPtr = copyTree(treePtr.rootPtr); 
} // end copy constructor 

 Similarly, the protected method  destroyTree , which the destructor calls, uses a recursive postorder 
traversal to delete each node in the tree. A postorder traversal is appropriate here because you can delete 
a node only after you have fi rst traversed and deleted both of its subtrees. Thus,  destroyTree  has the
following defi nition: 

   template < class ItemType> 
  void BinaryNodeTree<ItemType>:: 
     destroyTree(BinaryNode<ItemType>* subTreePtr) 
 { 

if (subTreePtr != nullptr ) 
   { 
       destroyTree(subTreePtr->getLeftChildPtr()); 
       destroyTree(subTreePtr->getRightChildPtr()); 
  delete subTreePtr; 
   }  // end if 
} // end destroyTree 

 The destructor then only needs to make the call  destroyTree(rootPtr) .

To copy a tree, 
traverse it in 
preorder and insert 
each item visited 
into a new node 
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The method getHeight.   The public method  getHeight  calls the protected, recursive method 
getHeightHelper .  The height of a subtree rooted at a particular node is 1—for the node itself—plus 
the height of the node’s tallest subtree. Thus, we defi ne the protected method  getHeightHelper  as 
follows: 

   template < class ItemType> 
  int BinaryNodeTree<ItemType>:: 
    getHeightHelper(BinaryNode<ItemType>* subTreePtr) const  
 { 

if (subTreePtr == nullptr ) 
        return 0; 

else  
        return 1 + max(getHeightHelper(subTreePtr->getLeftChildPtr()), 
                   getHeightHelper(subTreePtr->getRightChildPtr()));
} // end getHeightHelper 

 The public method  getHeight  contains just the statement 

   return getHeightHelper(rootPtr); 

 The method  getNumberOfNodes  has a similar defi nition. 

     Question 2   What are the defi nitions of the public method  getNumberOfNodes  and the 
protected helper method getNumberOfNodesHelper ? 

CHECK POINT

     Question 3   What is the defi nition of the public method  setRootData ? 

     Question 4   What is the defi nition of the public method  getRootData ? Recall that this 
method has a precondition. 

      The method add.   The specifi cation of the public method  add  says to add a new node containing 
given data to a binary tree. It does not indicate where that new node should be in the tree. Thus, we 
have fl exibility in how we defi ne the method. Moreover, derived classes of  BinaryNodeTree  can both 
override  add  to change its behavior and adhere to its specifi cation. 

 Let’s add the new node so that the resulting tree is balanced. Once again, we can use recur-
sion to achieve our goal. The public method  add  can create a new node containing the data passed 
to it as an argument. Then the method can pass this node to a protected, recursive method that 
adds it in an appropriate place in the tree. The protected method must then return a pointer to 
the tree’s root. If we name the protected method  balancedAdd , the public  add  method has the 
following defi nition: 

   template < class ItemType> 
  bool BinaryNodeTree<ItemType>::add( const ItemType& newData) 
 { 
   BinaryNode<ItemType>* newNodePtr =  new BinaryNode<ItemType>(newData); 
   rootPtr = balancedAdd(rootPtr, newNodePtr); 

return true ; 
} // end add 

 Now we need to defi ne the protected method  balancedAdd . Notice that the  add  method passes 
two arguments to  balancedAdd : a pointer to the root of the tree—or subtree—to which we will add a 
node and a pointer to the new node. To add a node to the tree, we add the node to the root’s shorter 
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subtree. This is the recursive step, since the subtree is a binary tree. The base case occurs when a 
subtree is empty. 

 Here is the defi nition of  balancedAdd : 

   template < class ItemType> 
BinaryNode<ItemType>* BinaryNodeTree<ItemType>:: 
                           balancedAdd(BinaryNode<ItemType>* subTreePtr, 
                                     BinaryNode<ItemType>* newNodePtr) 
 { 

if (subTreePtr == nullptr ) 
        return newNodePtr; 

else  
   { 
       BinaryNode<ItemType>* leftPtr = subTreePtr->getLeftChildPtr(); 
       BinaryNode<ItemType>* rightPtr = subTreePtr->getRightChildPtr(); 

if (getHeightHelper(leftPtr) > getHeightHelper(rightPtr)) 
      { 
          rightPtr = balancedAdd(rightPtr, newNodePtr); 
          subTreePtr->setRightChildPtr(rightPtr); 
      } 

else  
      { 
           leftPtr = balancedAdd(leftPtr, newNodePtr); 
           subTreePtr->setLeftChildPtr(leftPtr); 
      }   // end if 

return subTreePtr; 
   }  // end if 
} // end balancedAdd 

 For example, the following statements in  balancedAdd  add a new node to a right subtree: 

  rightPtr = balancedAdd(rightPtr, newNodePtr); 
 subTreePtr->setRightChildPtr(rightPtr); 

 The recursive call to  balancedAdd  adds the new node and returns a pointer to the revised subtree. 
However, we need to link this subtree to the rest of the tree. The call to  setRightChildPtr  accom-
plishes this. The addition of a new node to a left subtree is performed in a similar manner. Note that 
such insertions are analogous to the recursive addition of a new node to a linear chain of linked 
nodes, as discussed in  Section   9.2.3    of  Chapter   9   . Reviewing that section will give you insight into 
the process here. 

  Figure   16-3    shows the effect of a sequence of  add  operations on an initially empty binary tree.    

  The traversals.   Since the traversals are recursive, the public traversal methods each call a pro-
tected method that performs the actual recursion. For example, the public method  inorder-
Traverse  calls the protected method  inorder . Like  inorderTraverse ,  inorder  has the function 
visit  as a parameter. This function specifi es the tree item as a reference parameter, which enables 
the client not only to examine the item but also to modify it. The second parameter of  inorder  is 

 Implement 
traversals so that 
visit remains on 
the client’s side of  
the wall 

     Question 5   Where would a new node be placed next in the binary tree shown in 
 Figure   16-3   ? 

CHECK POINT
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FIGURE 16-3         Adding nodes to an initially empty binary tree   

Protected methods 
that enable 
recursive traversals 

the pointer treePtr , which, due to the recursive calls, eventually points to every node in the tree. 
The defi nition of  inorder  follows:    

   template < class ItemType> 
  void BinaryNodeTree<ItemType>:: 
      inorder( void visit(ItemType&), BinaryNode<ItemType>* treePtr) const     
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 { 
if (treePtr != nullptr ) 

   { 
       inorder(visit, treePtr->getLeftChildPtr()); 
       ItemType theItem = treePtr->getItem(); 
       visit(theItem); 
       inorder(visit, treePtr->getRightChildPtr()); 
   }   // end if 
} // end inorder 

 Now the defi nition of the public method  inorderTraverse  contains only the call 

  inorder(visit, rootPtr); 

 The other traversals have similar defi nitions. 

     Programming Tip:   Why did we write 

  ItemType theItem = treePtr->getItem(); 
 visit(theItem); 

 instead of 

  visit(treePtr->getItem()); 

 in the defi nition of  inorder ? Because  visit  has a reference parameter, we need an 
lvalue  to reference. The variable  theItem  serves this purpose. 

Nonrecursive traversal (optional).   Before leaving the topic of traversals, let’s develop a nonrecur-
sive traversal algorithm to illustrate further the relationship between stacks and recursion that was 
discussed in  Chapter   6   . In particular, we will develop a nonrecursive inorder traversal for the link-
based implementation of a binary tree. 

 The conceptually diffi cult part of a nonrecursive traversal is determining where to go next after a 
particular node has been visited. To gain some insight into this problem, consider how the recursive 
inorder  method works: 

   if (treePtr != nullptr ) 
 {    
   inorder(visit, treePtr->getLeftChildPtr());  // Point 1 
   ItemType theItem = treePtr->getItem(); 
   visit(theItem); 
   inorder(visit, treePtr->getRightChildPtr()); // Point 2 
} // end if 

 The method has its recursive calls marked as points 1 and 2. 
 During the course of the method’s execution, the value of the pointer  treePtr  actually marks the 

current position in the tree. Each time  inorder  makes a recursive call, the traversal moves to another 
node. In terms of the stack that is implicit to recursive methods, a call to  inorder  pushes the new 

     Question 6   Defi ne the protected method  postorder . 
CHECK POINT

Recursive calls from 
points 1 and 2 
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value of  treePtr —that is, a pointer to the new current node—onto the stack. At any given time, the 
stack contains pointers to the nodes along the path from the tree’s root to the current node  n , with the 
pointer to n  at the top of the stack and the pointer to the root at the bottom. Note that  n  is possibly 
“empty”—that is, it may be indicated by a  nullptr  value for  treePtr  at the top of the stack. Such an 
occurrence corresponds to the base case of the recursion.    

  Figure   16-4    partially traces the execution of  inorder  and shows the contents of the implicit 
stack. The fi rst four steps of the trace show the stack as  treePtr  points fi rst to 60, then to 20, then to 
10, and then becomes nullptr . The recursive calls for these four steps are from point 1 in  inorder .

 Now consider what happens when  inorder  returns from a recursive call. The traversal retraces 
its steps by backing up the tree from a node  n  to its parent  p , from which the recursive call to  n  was 
made. Thus, the pointer to  n  is popped from the stack and the pointer to  p  comes to the top of the 
stack, as occurs in step 5 of the trace in  Figure   16-4   . In this case,  n  happens to be empty, so  nullptr  is 
popped from the stack. 

 What happens next depends on which subtree of  p  has just been traversed. If you have just 
finished traversing  p ’s left subtree—that is, if  n  is the left child of  p  and thus the return is made 
to point 1 in inorder —control is returned to the statement that visits node  p . Such is the case 
for steps 6 and 10 of the trace in  Figure   16-4   .  Figure   16-5   a illustrates steps 9 and 10 in more 
detail. 

 After node  p  has been visited, a recursive call is made from point 2 and the right subtree of  p  is 
traversed. However, if, as  Figure   16-5   b illustrates, you have just traversed  p ’s right subtree—that is, if 
n  is the right child of  p  and thus the return is made to point 2—control is returned to the end of the 
method. As a consequence another return is made, the pointer to  p  is popped off the stack, and you go 
back up the tree to p ’s parent, from which the recursive call to  p  was made. In this latter case, node  p  is 
not visited—it was visited before the recursive call to  n  was made from point 2.  

 Recursive 
inorder’s implicit 
stack gives insight 
into a nonrecursive 
traversal 

FIGURE 16-4         Contents of the implicit stack as  treePtr  progresses through a given tree during 
a recursive inorder traversal   
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 Thus, two facts emerge from the recursive version of  inorder  when a return is made from a 
recursive call:    

•   The implicit recursive stack of pointers is used to fi nd the node  p  that the traversal must go 
back to.  

•   Once the traversal backs up to node  p , it either visits  p  (for example, displays its data) or backs 
farther up the tree. It visits  p  if  p ’s left subtree has just been traversed; it backs up if its right 
subtree has just been traversed. The appropriate action is taken simply as a consequence of the 
point—1 or 2—to which control is returned.   

 You could directly mimic this action by using an iterative method and an explicit stack, as long as 
some bookkeeping device kept track of which subtree of a node had just been traversed. However, 
you can use the following observation both to eliminate the need for the bookkeeping device and to 
speed up the traversal somewhat. Consider the tree in  Figure   16-6   . After you have fi nished traversing 
the subtree rooted at node R , there is no need to return to nodes  C  and  B,  because the right subtrees of 
these nodes have already been traversed. You can instead return directly to node  A , which is the near-
est ancestor of R  whose right subtree has not yet been traversed. 

 This strategy of not returning to a node after its right subtree has been traversed is simple to 
implement: You place a pointer to a node in the stack only before the node’s left subtree is traversed, 
but not before its right subtree is traversed. Thus, in  Figure   16-6   , when you are at node  R , the stack 
contains A  and  R , with  R  on top. Nodes  B  and  C  are not in the stack, because you have visited them 
already and are currently traversing their right subtrees. On the other hand,  A  is in the stack because 
you are currently traversing its left subtree. When you return from node  R , nodes  B  and  C  are thus 
bypassed because you have fi nished with their right subtrees and do not need to return to these nodes. 
Thus, you pop  R ’s pointer from the stack and go directly to node  A,  whose left subtree has just been 
traversed. You then visit  A , pop its pointer from the stack, and traverse  A ’s right subtree.  

FIGURE 16-5         Traversing (a) the left subtree (steps 9 and 10 in  Figure   16-4   ) and (b) the right 
subtree of 20   
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 This nonrecursive traversal strategy is captured by the following pseudocode, assuming a link-
based implementation. Exercise 9 at the end of this chapter asks you to trace this algorithm for the 
tree in  Figure   16-4   .    

  //  Nonrecursively traverses a binary tree in inorder.  
traverse(visit(item: ItemType): void): void 

//  Initialize  
nodeStack = A new, empty stack  
curPtr = rootPtr() //  Start at root  
done = false  

while  (!done)
{

if  (curPtr != nullptr)
{

//  Place pointer to node on stack before traversing the node’s left subtree  
nodeStack.push(curPtr)

 //  Traverse the left subtree  
curPtr = curPtr->getLeftChildPtr() 

}
else //  Backtrack from the empty subtree and visit the node at the top of  

//  the stack; however, if the stack is empty, you are done  
{

if  (!nodeStack.isEmpty())
{

nodeStack.peek(curPtr)

FIGURE 16-6         Avoiding returns to nodes  B  and  C
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visit(curPtr->getItem())
nodeStack.pop()

// Traverse the right subtree of the node just visited  
curPtr = curPtr ->getRightChildPtr() 

}
else  

done = true  
     } 

  } 

 Eliminating recursion can be more complicated than the example given here. However, the 
general case is beyond the scope of this book.    

   16.3 A Link-Based Implementation of the ADT 
Binary Search Tree 

 Since a binary search tree is a binary tree, its implementation can use the same node objects as for a 
binary-tree implementation. As we plan a link-based implementation, we will use the class  BinaryNode , 
as given earlier in Listing 16-2. 

 The recursive  search  algorithm that we presented in  Section   15.3.2    of  Chapter   15    is the basis of 
the insertion, removal, and retrieval operations on a binary search tree. The algorithms that follow for 
the binary search tree operations assume the link-based implementation of a binary tree that was dis-
cussed earlier in this chapter. Also keep in mind the assumption that the data items in the binary 
search tree are unique. 

   16.3.1  Algorithms for the ADT Binary Search Tree Operations 

  Adding a new entry.   As  Section   15.3.3    of  Chapter   15    demonstrated, you insert a new entry into a 
binary search tree in the same place that the  search  algorithm would look for it. For example, if you 
want to insert Kody into the binary search tree shown in  Figure   16-7   a, you would fi rst search the tree 

Use search to 
determine the 
insertion point 

FIGURE 16-7         (a) A binary search tree; (b) empty subtree where the  search  algorithm terminates 
when looking for Kody; (c) the tree after Kody is inserted as a new leaf 
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for Kody. The  search  algorithm would terminate at Nancy’s empty left subtree, as  Figure   16-7   b illus-
trates. You would then insert Kody as Nancy’s left child, as  Figure   16-7   c shows.   

   Because Nancy has no left child, the insertion is simple, requiring only that Nancy’s left-child 
pointer point to Kody. Because searching for an entry that is not in the binary search tree always ends 
at an empty subtree, you always insert a new item as a new leaf. Because adding a leaf requires only a 
change of the appropriate pointer in the parent, the work required for an insertion is virtually the same 
as that for the corresponding search. 

 We begin by defi ning the public method  add  as follows: 

   template < class ItemType> 
  bool BinarySearchTree<ItemType>::add( const ItemType& newData) 
 { 
    BinaryNode<ItemType>* newNodePtr = new BinaryNode<ItemType>(newData); 
    rootPtr = insertInorder(rootPtr, newNodePtr ); 

     return true ; 
} // end add 

 The method creates a new node and passes pointers to the tree and the new node to a recursive method 
that actually performs the insertion. The following high-level pseudocode describes this insertion 
process:

  //  Inserts a new node into a binary search tree.  
insertInorder(subTreePtr: BinaryNodePointer, 
            newNodePtr: BinaryNodePointer): BinaryNodePointer 

Search the tree pointed to by  subTreePtr for the item in the node pointed 
to by  newNodePtr

if  (the   search terminates at  parentNode’s left subtree )
        Set  leftChildPtr of  parentNode to  newNodePtr

else  
       Set  rightChildPtr of  parentNode to  newNodePtr

 The appropriate pointer— leftChildPtr  or  rightChildPtr —of node  parentNode  must be set 
to point to the new node. The recursive nature of the  search  algorithm provides an elegant means of 
setting the pointer, provided that you return this possibly changed pointer. The situation is quite simi-
lar to the recursive insertion method for the ADT list that you saw in  Chapter   9   . If the tree was empty 
before the insertion, the external pointer to the root of the tree would be  nullptr  and the method 
would not make a recursive call. Thus, you would return a pointer to the new node. Our pseudocode is 
refi ned as follows:    

//  Inserts a new item into the binary search tree to which  subTreePtr  points.  
insertInorder(subTreePtr: BinaryNodePointer, 
            newNodePtr: BinaryNodePointer): BinaryNodePointer 

if  (subTreePtr is nullptr)
return  newNodePtr

else if  (subTreePtr->getItem() > newNodePtr->getItem()) 
{

tempPtr = insertInorder(subTreePtr->getLeftChildPtr(), newNodePtr) 
       subTreePtr->setLeftChildPtr(tempPtr) 

}
else  
{

First draft of  the 
insertion algorithm 

Refi nement of  the 
insertion algorithm 
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       tempPtr = insertInorder(subTreePtr->getRightChildPtr(), newNodePtr) 
       subTreePtr->setRightChildPtr(tempPtr) 

}
return  subTreePtr

 When  subTreePtr  is  nullptr ,  insertInorder  returns a pointer to the new node. For an initially 
empty tree, add  assigns the returned pointer to  rootPtr , as  Figure   16-8   a illustrates. For a tree that is 
not empty, add assigns the returned pointer to   the pointer leftChildPtr  or  rightChildPtr —whose 
current value is nullptr—in the parent of the empty subtree.   Thus, the appropriate pointer within 
the parent is set to point to the new node. Parts  b  and  c  of  Figure   16-8    illustrate the general case of 
insertion. 

  You can use the public method  add  to create a binary search tree .  For example, beginning 
with an empty tree, if you insert the names Jane, Bob, Alan, Elisa, Tom, Nancy, and Wendy in 
order, you will get the binary search tree in  Figure   15-13    of  Chapter   15   . It is interesting to note 
that the names Jane, Bob, Alan, Elisa, Tom, Nancy, and Wendy constitute the preorder traversal of 
the tree in  Figure   15-13   . Thus, if you take the output of a preorder traversal of a binary search tree 
and use it with insertInorder  to create a binary search tree, you will obtain a duplicate tree. This 
result should not surprise you, as the copy constructor for the ADT binary tree used a preorder 
traversal to copy the tree. 

 By inserting the previous names in a different order, you will get a different binary search tree. 
For example, by inserting the previous names in alphabetical order, you will get the binary search tree 
in  Figure   15-14   b of  Chapter   15   . 

FIGURE 16-8         (a) Insertion into an empty tree; (b) search for Frank terminates at a leaf; 
(c) insertion at a leaf 
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     Question 7   Starting with an empty binary search tree, in what order should you insert 
items to get the binary search tree in  Figure   15-18    of  Chapter   15   ? 

CHECK POINT
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  Removing an entry.   Removing an entry from a binary search tree is a bit more involved than adding 
one. First, you use the  search  algorithm to locate the specifi ed item and then, if it is found, you must 
remove it from the tree. A fi rst draft of the algorithm follows:   

//  Removes the given target from a binary search tree.  
//  Returns true if the removal is successful or false otherwise.  
removeValue(target: ItemType): boolean 

 Locate the target by using the search algorithm  
if  (target is found)
{
   Remove target  from the tree  

       return true  
}
else  

return false   

 The essential task here is to remove the target from the tree. Assuming that  removeValue  locates 
the target in a particular node  N , there are three cases to consider:    

•    N  is a leaf  
•    N  has only one child  
•    N  has two children   

 Case 1. The fi rst case is the easiest. To remove the leaf containing the target, you need only set the 
pointer in its parent to nullptr . 

 Case 2. The second case is a bit more involved. If  N  has only one child, you have two possibilities:       

•    N  has only a left child  
•    N  has only a right child   

 The two possibilities are symmetrical, so it is suffi cient to illustrate the solution for a left child. In 
 Figure   16-9   a,  L  is the left child of  N  and  P  is the parent of  N .  N  can be either the left or right child of  P . 
If you deleted  N  from the tree,  L  would be without a parent and  P  would be without one of its children. 
Suppose you let  L  take the place of  N  as one of  P ’s children, as in  Figure   16-9   b. Does this adoption 
preserve the binary search tree property?   

   If  N  is the left child of  P , for example, all data items in the subtree rooted at  N  are less than the 
item in P . Thus, all data items in the subtree rooted at  L  are less than the item in  P . Therefore, after  N
is removed and  L  is adopted by  P , all items in  P ’s left subtree are still less than the item in  P . This strat-
egy thus preserves the binary search tree property. A parallel argument holds if  N  is a right child of  P , 
and therefore the binary search tree property is preserved in either case. 

 Case 3. The most diffi cult of the three cases occurs when the item to be removed is in a node  N  that has 
two children, as in  Figure   16-10   . As you just saw, when  N  has only one child, the child replaces  N . 
However, when  N  has two children, these children cannot both replace  N :  N ’s parent has room for only 
one of N ’s children as a replacement for  N . A different strategy is necessary.   

   In fact, you will not delete  N  at all. You can fi nd another node that is easier to delete and delete it 
instead of N . This strategy may sound like cheating, but remember that the client expects only a cer-
tain entry to be removed from the ADT. It has no right, because of the wall between the program and 
the ADT implementation, to expect a particular  node  in the tree to be deleted. 

 Consider, then, an alternate strategy. To remove from a binary search tree an item that resides in a 
node N  that has two children, take the following steps:    

 1.   Locate another node  M  that is easier to remove from the tree than the node  N .
 2.   Copy the item that is in  M  to  N , thus effectively removing from the tree the item originally in  N .
 3.   Remove the node  M  from the tree.   

First draft of  the 
removal algorithm 
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 What kind of node  M  is easier to remove than the node  N ? Because you know how to delete a 
node that has either no children or one child,  M  could be such a node. You have to be careful, though. 
Can you choose any node and copy its data into  N ? No, because you must preserve the tree’s status as 
a binary search tree. For example, if in the tree of  Figure   16-11   a, you copied the data from  M  to  N , the 
result in  Figure   16-11   b would no longer be a binary search tree. 

  What data item, when copied into the node  N,  will preserve the tree’s status as a binary search 
tree? All of the entries in the left subtree of  N  are less than the entry in  N,  and all of the entries in the 
right subtree of N  are greater than the entry in  N . You must retain this property when you replace the 

FIGURE 16-9         (a)  N  with only a left child— N  can be either the left child or right child of  P ; 
(b) after removing node  N
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entry  x  in node  N  with the entry  y . There are two suitable possibilities for the value  y : It can come 
immediately after or immediately before  x  in the sorted order of entries. If  y  comes immediately after 
x,  clearly all entries in the left subtree of  N  are smaller than  y , because they are all smaller than  x , as 
 Figure   16-12    illustrates. Further, all entries in the right subtree of  N  are greater than or equal to  y , 
because they are greater than  x  and, by assumption, there are no entries in the tree between  x  and  y.  A 
similar argument illustrates that if  y  comes immediately before  x  in the sorted order, it is greater than 
or equal to all entries in the left subtree of N  and smaller than all entries in the right subtree of  N . 

  You can thus copy into  N  either the item that is immediately after  N ’s entry or the item that is 
immediately before it. Suppose that, arbitrarily, you decide to use the node whose entry  y  comes 
immediately after  N ’s entry  x.  This entry is called  x ’s  inorder   successor .1   How can you locate this 
node? Because N  has two children, the inorder successor of its data item is in the leftmost node of  N ’s 
right subtree. That is, to fi nd the node that contains  y , you follow  N ’s right-child pointer to its right 
child C,  which must be present because  N  has two children. You then descend the tree rooted at  C  by 
taking left branches at each node until you encounter a node  S  with no left child. You copy the item in 

FIGURE 16-11         (a) Not any node will do; (b) no longer a binary search tree   

Jane

Tom

ElisaAlan Nancy Wendy

Bob

N

M

Alan

Tom

Elisa Nancy Wendy

Bob

N

(a) (b)

FIGURE 16-12         Search key  x  can be replaced by  y

x (< y)

N

N's
left subtree

N's
right subtree

Data items are < y Data items are ≥ y

The inorder 
successor of   N ’s
entry is in the 
leftmost node in N’s 
right subtree 
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this node S  into node  N  and then, because  S  has no left child, you can remove  S  from the tree as one of 
the two easy cases, as  Figure   16-13    illustrates.      

 A more detailed high-level description of the removal algorithm follows:    

//  Removes the given target from a binary search tree.  
 //  Returns true if the removal is successful, or false otherwise.  
removeValue(subTreePtr: BinaryNodePointer, target: ItemType): boolean 

Locate the target by using the search algorithm; it occurs in node N  
if  (target is found in node N )
{

removeNode(N) //  Defined next  
return true  

}
else  

return false  

 //  Removes the item in a given node   of a binary search tree.  
removeNode(N: BinaryNode) 

if  (N is a leaf)
        Remove  N from the tree  

else if  (N has only one child  C)
{

if  (N was a left child of its parent  P)
            Make  C the left child of  P

else  
            Make  C the right child of  P

}
else //  Node has two children  
{

Find  S, the node that contains  N’s inorder successor 
Copy the item from node  S into node  N
Remove  S from the tree by using the previous technique for a leaf or a node  

with one child  
}

 In the following refi nement,  search ’s algorithm is adapted and inserted directly into  removeValue.
Also, the methodremoveNode  uses the method  findSuccesorNode  to fi nd the node,  S , that contains the inor-
der successor of node N.  The method  findSuccesorNode  returns the item in  S  and then deletes node  S  from 
the tree. The returned item then replaces the item in node  N , thus removing it from the binary search tree. 

Second draft of  the 
removal algorithm 

FIGURE 16-13         Copying the item whose search key is the inorder successor of  N ’s search key   
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  //  Removes the given target from the binary search tree to which  subTreePtr  points.  
 //  Returns a pointer to the node at this tree location after the value is removed.  
 //  Sets success to true if the removal is successful, or false otherwise.  
removeValue(subTreePtr: BinaryNodePointer, target: ItemType, 
           success: boolean&): BinaryNodePointer 

if  (subTreePtr == nullptr ) 
{

       success = false  
return nullptr  

}
else if  (subTreePtr->getItem() == target) 

   { 
       //  Item is in the root of some subtree  

subTreePtr = removeNode(subTreePtr) //  Remove the item  
success = true  
return  subTreePtr

   } 
else if  (subTreePtr->getItem() > target) 

   { 
//  Search the left subtree  
tempPtr = removeValue(subTreePtr->getLeftChildPtr(), target, success) 

       subTreePtr->setLeftChildPtr(tempPtr) 
return subTreePtr

   } 
else  
{

       //  Search the right subtree  
tempPtr = removeValue(subTreePtr->getRightChildPtr(), target, success) 

       subTreePtr->setRightChildPtr(tempPtr) 
return subTreePtr

   } 

 //  Removes the item in the node, N, to which  nodePtr  points.  
 //  Returns a pointer to the node at this tree location after node N is deleted.  
removeNode(nodePtr: BinaryNodePointer): BinaryNodePointer 

if  (N is a leaf ) 
{

       //  Remove leaf from the tree  
delete  nodePtr
nodePtr = nullptr  
return  nodePtr

}
else if  (N has only one child  C)
{

// C replaces N as the child of N’s parent
if  (C is a left child )

           nodeToConnectPtr = nodePtr->getLeftChildPtr() 
else  

           nodeToConnectPtr = nodePtr->getRightChildPtr() 
            delete  nodePtr
           nodePtr = nullptr  
            return  nodeToConnectPtr

}
else // N has two children  
{

  //  Find the inorder successor of the entry in N: it is in the left subtree rooted  
//  at N’s right child
tempPtr = removeLeftmostNode(nodePtr->getRightChildPtr(), newNodeValue) 
nodePtr->setRightChildPtr(tempPtr)

Final draft of  the 
removal algorithm 
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nodePtr->setItem(newNodeValue) //  Put replacement value in node  N
return  nodePtr

}

//Removes the leftmost node in the left subtree of the node pointed to by nodePtr.
// Sets inorderSuccessor to the value in this node.
// Returns a pointer to the revised subtree.
removeLeftmostNode(nodePtr: BinaryNodePointer, 
                 inorderSuccesssor: ItemType&): BinaryNodePointer 

if  (nodePtr->getLeftChildPtr() == nullptr)
{

// This is the node you want; it has no left child, but it might have a right subtree  
inorderSuccesssor = nodePtr->getItem() 
return  removeNode(nodePtr)

}
else  

return  removeLeftmostNode(nodePtr->getLeftChildPtr(), inorderSuccesssor) 

 Now the public method  remove  calls  removeValue  and assigns the pointer it receives back from 
this call to rootPtr , as the following pseudocode indicates: 

  //  Removes the given data from this binary search tree.  
remove(target: ItemType): boolean 

   success = false  
    rootPtr = removeValue(rootPtr, target, success) 

return  success

 Let’s see how the recursive calls work. Suppose that we have the tree in  Figure   16-14   a, and we 
want to remove Dave. We call  remove , which calls  removeValue . Assuming that  removeValue  recur-
sively locates Dave in Node  N , it calls  removeNode  to remove  N . Any change that  removeNode  makes 
to its parameter nodePtr , is returned by  removeNode  ( Figure   16-14   b) and then by  removeValue . 
Because Dave isn’t in the tree’s root, the return from  removeValue  is due to a recursive call. The 
method now assigns the pointer returned by  removeNode —and the recursive call to  removeValue —to 
the left child pointer of Node N ’s parent. The result is shown in  Figure   16-14   c. 

 Observe that in the case of the  removeNode  method, the argument that corresponds to its parame-
ter nodePtr  is either one of the pointers of the parent of  N , as  Figure   16-14    depicts, or the external 
pointer to the root, in the case where  N  is the root of the original tree. In either case,  nodePtr  points to 
N . Thus, any change you make to  nodePtr  by calling the method  removeNode  with the argument 
nodePtr  must be returned so you can change either a pointer in the parent of node  N  or the root pointer. 

     Note:   The methods  removeValue ,  removeNode ,  removeLeftmostNode  are behind the 
wall of abstraction, since they are protected. Therefore they can use pointers as parame-
ters, and if necessary, a reference parameter ( success or inorderSuccessor ). Each 
method receives as an argument a pointer to the root of the subtree on which it is to per-
form its process. When that process is complete, the method refl ects—like a mirror—
back to the parent the pointer to the node that is now the root of that subtree. 

 Note that what we have done is safe programming: 

•    Only one reference parameter is used in a method, and the argument passed to it 
is local to the calling method.  

•    The calling method has a choice of whether or not to replace the pointer it has 
passed as an argument with the one returned—which it should do here.  

•    Each of the three methods performs a single, clearly defi ned task.   
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FIGURE 16-14         Recursive deletion of node  N
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 The recursive method  removeLeftmostNode,  which is called by  removeNode  if  N  has two children, 
also uses this strategy to remove the inorder successor of the node containing the item to be removed. 

  Exercise 12 at the end of this chapter describes an easier removal algorithm. However, that algo-
rithm tends to increase the height of the tree, and, as you will see later, an increase in height can 
decrease the effi ciency of searching the tree. 
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  Retrieving an entry.   By refi ning the  search  algorithm, you can implement the operation  getEntry . 
Recall from  Section   15.3.2    of  Chapter   15    that the  search  algorithm is 

  //  Searches a binary search tree for a given target value.  
search(binTree: BinarySearchTree, target: ItemType) 

if  (binTree is empty)
The desired item is not found 

else if  (target == data item in the root of  binTree)
The desired item is found  

else if  (target < data item in the root of  binTree)
search(Left subtree of   binTree, target)

else  
search(Right subtree of   binTree, target) 

 We can refi ne this algorithm as follows:    

  // Locates the node in the binary search tree to which  subTreePtr  points that contains  
 //  the value  target. Returns either a pointer to the located node or  nullptr  if such a  
 //  node is not found.  
findNode(subTreePtr: BinaryNodePointer, target: ItemType): BinaryNodePointer 

if  (subTreePtr == nullptr)
       return nullptr                      //  Not found  

else if  (subTreePtr->getItem() == target) 
       return  subTreePtr;                 //  Found  

else if  (subTreePtr->getItem() > target) 
      //  Search left subtree  

return  findNode(subTreePtr->getLeftChildPtr(), target) 
else  

      //  Search right subtree  
       return  findNode(subTreePtr->getRightChildPtr(), target) 

 The operation  getEntry  must return the item with the desired value if it exists; otherwise it must 
throw an exception  NotFoundException.  The method, therefore, calls  findNode  and checks its return 
value. If the desired target is found,  getEntry  returns it. If  findNode  returns  nullptr ,  getEntry
throws an exception. 

     Question 8   Given the binary search tree in  Figure   15-18    of  Chapter   15   , trace the removal 
algorithms when removing each of the following values from the tree. Begin with the origi-
nal tree each time. 

a.   70
b.   20
c.   60

CHECK POINT

  findNode is a 
refi nement of  
search  

     Note: Traversals 

 The traversals of a binary search tree are the same as the traversals of a binary tree. Recall 
from  Chapter   15    that an inorder traversal of a binary search tree will visit the tree’s nodes 
in sorted order according to their entries. 

   16.3.2  The Class BinarySearchTree

 A C++ link-based defi nition of the class  BinarySearchTree  is given in Listing 16-4. Notice the 
protected methods that implement the recursive algorithms. These methods are not public, because 
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clients do not have access to node pointers. The methods could be private instead, but making them 
protected enables a derived class to use them directly. 

 The ADT binary tree and the ADT binary search tree have many methods in common, as  Section 
  15.3.1    of  Chapter   15    noted. This observation should not surprise you, as a binary search tree is a 
binary tree. For this reason, we have derived  BinarySearchTree  from  BinaryNodeTree . 

LISTING 16-4 A header fi le for the link-based implementation 
of the class BinarySearchTree

  /** Link-based implementation of the ADT binary search tree. 
 @file BinarySearchTree.h */ 

#ifndef _BINARY_SEARCH_TREE 
#define _BINARY_SEARCH_TREE 

#include "BinaryTreeInterface.h" 
#include "BinaryNode.h" 
#include "BinaryNodeTree.h" 
#include "NotFoundException.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class BinarySearchTree : public BinaryNodeTree<ItemType> 
 { 
  private : 
    BinaryNode<ItemType>* rootPtr; 

  protected : 
//------------------------------------------------------------
//     Protected Utility Methods Section: 
//     Recursive helper methods for the public methods. 
//------------------------------------------------------------
// Recursively finds where the given node should be placed and 
// inserts it in a leaf at that point. 

    BinaryNode<ItemType>* insertInorder(BinaryNode<ItemType>* subTreePtr, 
                                                 BinaryNode<ItemType>* newNode); 

// Removes the given target value from the tree while maintaining a 
// binary search tree. 

    BinaryNode<ItemType>* removeValue(BinaryNode<ItemType>* subTreePtr, 
const ItemType target, 
bool& success); 

// Removes a given node from a tree while maintaining a 
// binary search tree. 

    BinaryNode<ItemType>* removeNode(BinaryNode<ItemType>* nodePtr); 

// Removes the leftmost node in the left subtree of the node 
// pointed to by nodePtr.
// Sets inorderSuccessor to the value in this node.
// Returns a pointer to the revised subtree.

    BinaryNode<ItemType>* removeLeftmostNode( 
                 BinaryNode<ItemType>* subTreePtr, ItemType& inorderSuccessor); 
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// Returns a pointer to the node containing the given value, 
// or nullptr if not found. 

    BinaryNode<ItemType>* findNode(BinaryNode<ItemType>* treePtr, 
const ItemType& target) const ; 

  public : 
//------------------------------------------------------------
//     Constructor and Destructor Section. 
//------------------------------------------------------------

    BinarySearchTree(); 
    BinarySearchTree( const ItemType& rootItem); 
    BinarySearchTree( const BinarySearchTree<ItemType>& tree); 

virtual ~BinarySearchTree(); 

//------------------------------------------------------------
//     Public Methods Section. 
//------------------------------------------------------------
bool isEmpty() const ; 
int getHeight() const ; 
int getNumberOfNodes() const ; 

    ItemType getRootData()  const throw (PrecondViolatedExcep); 
void setRootData( const ItemType& newData) const  

throw (PrecondViolatedExcep); 
bool add( const ItemType& newEntry); 
bool remove( const ItemType& anEntry); 
void clear(); 

    ItemType getEntry( const ItemType& anEntry) const  
                                                          throw (NotFoundException); 

bool contains( const ItemType& anEntry) const ; 

//------------------------------------------------------------
//     Public Traversals Section. 
//------------------------------------------------------------
void preorderTraverse(void visit(ItemType&)) const ; 
void inorderTraverse(void visit(ItemType&)) const ; 
void postorderTraverse(void visit(ItemType&)) const ; 

//------------------------------------------------------------
//     Overloaded Operator Section. 
//------------------------------------------------------------

    BinarySearchTree<ItemType>& 
                   operator=(const BinarySearchTree<ItemType>& rightHandSide); 
 }; // end BinarySearchTree 
#include "BinarySearchTree.cpp" 
 #endif    

   16.4 Saving a Binary Search Tree in a File 
 Imagine a program that maintains the names, addresses, and telephone numbers of your friends and 
relatives. While the program is running, you can enter a name and get the person’s address and phone 
number. If you terminate program execution, the program must save its database of people in a form 
that it can recover at a later time. 
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 If the program uses a binary search tree to represent the database, it must save the tree’s data in a 
fi le so that it can later restore the tree. Two different algorithms for saving and restoring a binary 
search tree will be considered here. The fi rst algorithm restores a binary search tree to its original 
shape. The second restores a binary search tree to a shape that is balanced. 

       Saving a binary search tree and then restoring it to its original shape.   The fi rst algorithm restores 
a binary search tree to exactly the same shape it had before it was saved. For example, consider the 
tree in  Figure   16-15   . If you save the tree in preorder, you get the sequence 60, 20, 10, 40, 30, 50, 70. If 
you then use the  add  method to insert these values into a binary search tree that is initially empty, you 
will get the original tree.      

  Saving a binary search tree and then restoring it to a balanced shape.   After you save a binary 
search tree in a fi le, do you necessarily want the restored tree to have its original shape? Recall that 
you can use a given set of data items to create several binary search trees with different shapes. 
Although the shape of a binary search tree has no effect whatsoever on the correctness of the ADT 
operations, it will affect the effi ciency of those operations. Effi cient operations are ensured if the 
binary search tree is balanced.   

  The algorithm that restores a binary search tree to a balanced shape is surprisingly simple. In 
fact, you can even guarantee a restored tree of minimum height—a condition stronger than balanced. 
To gain some insight into the solution, consider a full tree, because it is balanced. If you save a full 
tree in a fi le by using an inorder traversal, the fi le will be in sorted order, as  Figure   16-16    illustrates.  

 A full tree with exactly  n  = 2 h  – 1 nodes for some height  h  has the exact middle of the data items 
in its root. The left and right subtrees of the root are full trees of 2 h –1  – 1 nodes each (that is, half of 
n  – 1, as  n  is odd or, equivalently,  n  / 2). Thus, you can use the following recursive algorithm to create 
a full binary search tree with  n  nodes, provided you either know or can determine  n  beforehand.    

  // Builds a full binary search tree from n sorted values in a file.  
 //  Returns a pointer to the tree’s root.  
readFullTree(n: integer): BinaryNodePointer 

if  (n > 0) 
 { 

       //  Get the root  
       treePtr = pointer to new node with  nullptr as its child pointers  
       rootItem = next item from file  
       treePtr->setItem(rootItem)

Use a preorder 
traversal to save a 
binary search tree in 
a fi le; restore it to its 
original shape by 
using add  

A balanced binary 
search tree 
increases the 
effi ciency of  the 
ADT operations 

FIGURE 16-15         An initially empty binary search tree after the insertion of 60, 20, 10, 40, 30, 50, 
and 70   
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       //  Construct the left subtree  
       leftPtr = readFullTree(treePtr->getLeftChildPtr(), n / 2) 
       treePtr->setLeftChildPtr(leftPtr)

       //  Construct the right subtree  
       rightPtr = readFullTree(treePtr->getRightChildPtr(), n / 2) 
       treePtr->setRightChildPtr(rightPtr ) 

        return  treePtr
 } 
else  

        return nullptr   

 Surprisingly, you can construct the tree directly by reading the sorted data sequentially from the 
fi le. 

 This algorithm for building a full binary search tree is simple, but what can you do if the tree 
to be restored is not full—that is, if it does not have  n  = 2 h  – 1 nodes for some  h ? The fi rst thing 
that comes to mind is that the restored tree should be complete—full up to the last level, with the 
last level fi lled in from left to right. Actually, because you care only about minimizing the height 
of the restored tree, it does not matter where the nodes on the last level go, as  Figure   16-17    
shows. 

  The method  readFullTree  is essentially correct even if the tree is not full. However, you do 
have to be a bit careful when computing the sizes of the left and right subtrees of the tree’s root. If  n
is odd, both subtrees are of size  n  / 2, as before, and the root is automatically accounted for. If  n  is 
even, however, you have to deal with the root and the fact that one of the root’s subtrees will have 

FIGURE 16-16         A full tree saved in a fi le by using inorder traversal   
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FIGURE 16-17         A tree of minimum height that is not complete   
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one more node than the other. In this case, you can arbitrarily choose to put the extra node in the left 
subtree. The following algorithm makes these compensations:    

  //  Builds a minimum-height binary search tree from n sorted values in a file.  
 //  Returns a pointer to the tree’s root.  
readTree(n: integer): BinaryNodePointer 

if  (n > 0) 
{

       // Get the root  
       treePtr = pointer to new node with  nullptr as its child pointers 
       rootItem = next item from file  
       treePtr->setItem(rootItem)

       // Construct the left subtree  
       leftPtr = readFullTree(treePtr->getLeftChildPtr(), n / 2) 
       treePtr->setLeftChildPtr(leftPtr)

       //  Construct the right subtree  
       rightPtr = readFullTree(treePtr->getRightChildPtr(), (n - 1) / 2) 
       treePtr->setRightChildPtr(rightPtr ) 

        return  treePtr
}
else  

        return nullptr   

 You should trace this algorithm and convince yourself that it is correct for both even and odd values 
of n . 

 To summarize, you can easily restore a tree as a balanced binary search tree if the data is 
sorted—that is, if it has been produced from the inorder traversal—and you know the number  n  of 
nodes in the tree. You need  n  so that you can determine the middle item and, in turn, the number of 
nodes in the left and right subtrees of the tree’s root. Knowing these numbers is a simple matter of 
counting nodes as you traverse the tree and then saving the number in a fi le that the restore opera-
tion can read. 

 Note that  readTree  would be an appropriate protected method of  BinarySearchTree , if you also 
had a public method to call it. 

Building a minimum-
height binary search 
tree

     Note:   You can use the  readTree  algorithm to restore an out-of-balance binary search 
tree. Exercise 18 asks you to try it using an array instead of a fi le. 

     Question 9  Consider the pseudocode operation  readTree . 

a.    What binary search tree results when you execute  readTree  with a fi le of the 
six integers 2, 4, 6, 8, 10, 12?  

b.   Is the resulting tree’s height a minimum? Is the tree complete? Is it full?   

CHECK POINT

   16.5 Tree Sort 
 You can use the ADT binary search tree to sort an array effi ciently. To simplify the discussion, we will 
sort an array of integers into ascending order, as we did with the sorting algorithms in  Chapter   11   . 
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 The basic idea of the algorithm is simple:    

  //  Sorts the integers in an array into ascending order.  
treeSort(anArray: array, n: integer) 

Insert  anArray’s entries into a binary search tree  bst
Traverse  bst in inorder. As you visit  bst’s nodes, copy their data items     into successive

        locations of  anArray
 An inorder traversal of the binary search tree  bst  visits the integers in  bst ’s nodes in ascending 
order. 

 A tree sort can be quite effi cient. As  Figure   15-17    in  Chapter   15    indicates, each insertion into a 
binary search tree requires O(log  n ) operations in the average case and O( n ) operations in the worst 
case. Thus, tree sort’s  n  insertions require O( n  × log  n ) operations in the average case and O( n2 ) opera-
tions in the worst case. The traversal of the tree involves one copy operation for each of the  n  entries 
and so is O( n ). Because O( n ) is less than O( n  × log  n ) and O( n2 ), tree sort in the average case is O( n  × 
log  n ) and O( n2 ) in the worst case.    

Tree sort uses a 
binary search tree 

Tree sort is O( n × 

log  n) in the average 

case and O( n  2) in 
the worst case 

   16.6 General Trees 
 This chapter ends with a brief discussion of general trees and their relationship to binary trees. Con-
sider the general tree in  Figure   16-18   . The three children  B, C,  and  D  of node  A , for example, are sib-
lings. The leftmost child  B  is the oldest child, or fi rst child, of  A , as mentioned in  Section   15.1    of 
 Chapter   15   . One way to implement this tree uses the  BinaryNode  objects that we used for a link-based 
binary tree. That is, each node has two pointers: The left pointer points to the node’s oldest child and 
the right pointer points to the node’s next sibling. Thus, you can use the data structure in  Figure   16-19a    
to implement the tree in  Figure   16-18   . Notice that the structure in  Figure   16-19   a also represents the 
binary tree pictured in  Figure   16-19   b.   

 Recall from  Chapter   15    that an  n -ary tree is a generalization of a binary tree whose nodes each 
can have no more than  n  children. The tree in  Figure   16-18    could be an  n -ary tree with  n  = 3 instead of 
a general tree. You can, of course, use the implementation just described for an  n -ary tree. However, 
because you know the maximum number of children for each node, you can let each node point 
directly to its children.  Figure   16-20    illustrates such a representation for the tree in  Figure   16-18   . This 
tree is shorter than the tree in  Figure   16-19   b. 

     Question 10  Trace the tree sort algorithm as it sorts the following array into ascending 
order: 20 80 40 25 60 30. 

CHECK POINT

FIGURE 16-18         A general tree   
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  Exercise 17 discusses general trees further.   

FIGURE 16-19         (a) A link-based implementation of the general tree in  Figure   16-18   ; (b) the 
binary tree that part  a  represents   
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1.  The implementation of a binary tree is usually link based. However, if the binary tree is complete, an effi cient 
array-based implementation is possible. 

2.  A node in a binary tree is an object that references a data entry and two child nodes. 

3.  Because a binary tree has a recursive nature, recursion is useful in the implementation of its operations. As is 
typical, the recursive methods are not public, since they require parameters that are a part of the underlying data 
structure. Those methods can be either private or protected, but as protected methods, they are available to 
classes derived from the class of binary trees. 

     SUMMARY       

FIGURE 16-20         An implementation of the  n -ary tree in  Figure   16-18      
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4.  The ADT binary search tree has several methods that are the same as those in the ADT binary tree. However, its 
insertion, removal, and retrieval operations have different defi nitions than those for the ADT binary tree. 

5.  Operations on a binary search tree can be quite effi cient. In the worst case, however—when the tree approaches 
a linear shape—the performance of its operations degrades and is comparable to that of a linear linked chain.
If you must avoid such a situation for a given application, you should use the balancing methods presented 
in  Chapter   19   . 

6.  The tree sort algorithm effi ciently sorts an array by using the binary search tree’s insertion and traversal 
operations.

7.  If you save a binary search tree’s data in a fi le while performing an inorder traversal of its nodes, you can restore 
the tree as a binary search tree of minimum height. If you save a binary search tree’s data in a fi le while 
performing a preorder traversal of its nodes, you can restore the tree to its original form 

8.  You can use a binary tree to represent a general tree or an  n -ary tree. However, an  n -ary tree can have nodes that 
point to all of its children. 

  EXERCISES       

1.   Consider the binary search tree in  Figure   15-20    of  Chapter   15   . The numbers simply label the nodes so that you 
can reference them; they do not indicate the contents of the nodes. 

 a.   Which node must contain the inorder successor of the value in the root? Explain.  
 b.   Which node must contain the inorder predecessor of the value in the root? Explain.   

  2.   Arrange nodes that contain the letters  A ,  C ,  E ,  F ,  L ,  V , and  Z  into two binary search trees: one that has maxi-
mum height and one that has minimum height. 

  3.   Consider the binary search tree in  Figure   15-18    of  Chapter   15   . 

 a.   What tree results after you insert the entries 80, 65, 75, 45, 35, and 25, in that order?  
 b.   After inserting the nodes mentioned in part  a , what tree results when you remove the entries 50 and 20? 

  4.   Consider the binary search tree in  Figure   15-19    of  Chapter   15   . What does the tree look like after you remove  M , 
D ,  G , and  T , in that order? 

  5.   If you remove an item from a binary search tree and then insert it back into the tree, will you ever change the 
shape of the tree? 

  6.   Suppose that the ADT binary tree has the operation 

  replace(item: ItemType, replacementItem: ItemType): boolean 

 It locates, if possible, the node in a binary tree that contains  item  and replaces  item  with  replacementItem . 

 a.   Add the operation  replace  to the link-based implementation of the ADT binary tree given in this 
chapter. The operation should replace an item without altering the tree structure.  

 b.   Add the operation  replace  to the link-based implementation of the ADT binary search tree. Be sure 
that the tree remains a binary search tree.  

 c.   Implement a method  replace  within a client of  BinarySearchTree .
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  7.   Consider an array-based implementation of a binary search tree  bst .  Figure   16-1    presents such a representa-
tion for a particular binary search tree. 

 a.   Depict the array in an array-based implementation for the binary search tree in  Figure   15-14   a of 
 Chapter   15   . Assume that tree items are strings.  

 b.   Show the effect of each of the following sequential operations on the array in part  a  of this exercise. 

  bst.add("Doug"); 
 bst.add("Nancy"); 
 bst.add("Bob"); 
 bst.add("Sarah");   

 c.   Repeat parts  a  and  b  of this exercise for the tree in  Figure   15-14   b.  
 d.   Write an inorder traversal algorithm for this array-based implementation.   

  8.   Duplicates in an ADT could mean either identical items or, more subtly, objects that match because their class 
overloads the equality operator so that it compares only certain fi elds, while differences exist in other fi elds. If 
duplicates are allowed in a binary search tree, it is important to have a convention that determines the relation-
ship between the duplicates. Items that duplicate the root of a tree should either all be in the left subtree or all be 
in the right subtree, and, of course, this property must hold for every subtree. 

 a.   Why is this convention critical to the effective use of the binary search tree?  
 b.   This chapter stated that you can remove an item from a binary search tree by replacing it with the item 

that either immediately follows or immediately precedes the item to be deleted. If duplicates are 
allowed, however, the choice between inorder successor and inorder predecessor is no longer arbitrary. 
How does the convention of putting duplicates in either the left or right subtree affect this choice?   

  9.   Complete the trace of the nonrecursive inorder traversal algorithm that  Figure   16-4    began. Show the contents 
of the implicit stack as the traversal progresses. 

  10.   Implement in C++ the nonrecursive inorder traversal algorithm for a binary tree that was presented in this 
chapter. 

  11.   Exercise 13 in  Chapter   15    introduced the minimax tree. It has min nodes and max nodes. Part  b  of the exercise 
asked you to design a solution for representing and evaluating these trees. Implement your design in C++. 

  12.   Design another algorithm to remove items from a binary search tree. This algorithm differs from the one 
described in this chapter when a node  N  has two children. First let  N ’s right child take the place of the deleted 
node N  in the same manner in which you delete a node with one child. Next reconnect  N ’s left child (along with 
its subtree, if any) to the left side of the node containing the inorder successor of the value in  N . 

13.  Write iterative methods to perform insertion and removal operations on a binary search tree. 

14.  A  level-order traversal  of a tree processes (visits) nodes one level at a time, from left to right, beginning with 
the root. Design an algorithm that performs a level-order traversal of a binary tree. 

15.  If you know in advance that you often access a given item in a binary search tree several times in succession 
before accessing a different item, you will end up searching for the same item repeatedly. One way to avoid this 
problem is to add an extra bookkeeping component to your implementation. That is, you can maintain a last-
accessed pointer that will always reference the last item that any binary search tree operation accessed. When-
ever you perform such an operation, you can check the search key of the item most recently accessed before 
performing the operation. 

 Revise the implementation of the ADT binary search tree to add this new feature by adding the data mem-
ber lastAccessed  to the class. 
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16.  Exercise 10 in  Chapter   4    introduced the doubly linked chain. The analogy for a binary search tree is to maintain 
parent pointers in each binary node in addition to the pointers to the node’s children. That is, every node except 
the root will have a pointer to its parent in the tree. This type of binary tree is called a  doubly linked binary tree . 
Write insertion and removal operations for this tree. 

17.  A node in a general tree can have an arbitrary number of children. 

 a.   Describe a C++ implementation of a general tree in which every node contains an array of child 
pointers. Write a recursive preorder traversal method for this implementation. What are the advantages 
and disadvantages of this implementation?  

 b.   Consider the implementation of a general tree that is illustrated in  Figure   16-19   . Each node has two 
pointers: The left pointer points to the node’s oldest child and the right pointer points to the node’s next 
sibling. Write a recursive preorder traversal method for this implementation.  

 c.   Every node in a binary tree  T  has at most two children. Compare the oldest-child/next-sibling repre-
sentation of T , as part  b  describes, to the left-child/right-child representation of a binary tree, as this 
chapter describes. Does one representation simplify the implementation of the ADT operations? Are 
the two representations ever the same?   

18.  Given an unbalanced binary search tree, use an inorder traversal to copy its data to an array. Then create a bal-
anced binary search tree using the  readTree  algorithm given in  Section   16.4   , but use your array instead of a 
fi le. 

*19.  Add an overloaded  ==  operator to the class  BinaryNodeTree . 

  PROGRAMMING PROBLEMS         

1.  Complete the implementation of the class  BinaryNodeTree  that was begun in  Section   16.2.2    of this chapter. 

2.  Implement the class  BinarySearchTree , as given in Listing 16-4. 

3.  Write an array-based implementation of the ADT binary tree that uses dynamic memory allocation. Use a data 
structure like the one in  Figure   16-1   . 

4.  Repeat the previous problem, but defi ne a binary search tree instead. 

5.  Write a program that maintains a database containing data, such as name and birthday, about your friends and 
relatives. You should be able to enter, remove, modify, or search this data. Initially, you can assume that the 
names are unique. The program should be able to save the data in a fi le for use later. 

 Design a class to represent the database and another class to represent the people. Use a binary search tree 
of people as a data member of the database class. 

 You can enhance this problem by adding an operation that lists everyone who satisfi es a given criterion. 
For example, you could list people born in a given month. You should also be able to list everyone in the 
database. 

*6.  Implement the ADT queue operations as well as a sorted traversal operation for a queue that points into a 
doubly linked binary search tree, as shown in  Figure   16-21   . Doubly linked binary trees are explained in 
Exercise 16. You will need the insertion and removal operations for a binary search tree that contains parent 
pointers.  
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FIGURE 16-21         A queue that points into a doubly linked binary search tree   
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An iterator is an object that traverses a collection of data. During the traversal, you 
can look at the data entries and process them. You can compare iterators to see if they 
point to the same entry in a collection, and C++ provides special functions that let you 
perform other actions with collections, such as searching and counting, when using 
iterators. Iterators are commonly implemented by overloading operators that 
correspond to the functions an iterator performs. A container can instantiate an iterator 
and give it to a client to use to traverse the contained data collection.   

      C6.1 Iterators
 How would you count the number of lines on this page? You could use your fi nger to 
point to each line as you counted it. Your fi nger would keep your place on the page. If 
you paused at a particular line, your fi nger would be on the current line, and there would 
be a previous line and a next line. If you think of this page as a list of lines, you would be 
traversing the list as you counted the lines.    

 An  iterator  is a program component that enables you to traverse a collection of 
data, such as the data in a list, beginning with the fi rst entry. During one complete 
traversal, or iteration, each data item is considered once. You control the progress of the 
iteration by repeatedly asking the iterator to give you a reference to the next entry in the 

      C++
Interlude

An iterator is an 
object that traverses 
a collection of  like 
objects

VideoNote

C++ iterators
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collection. You also can modify the collection as you traverse it by adding, removing, or simply 
changing entries. 

 You are familiar with iteration because you have written loops. For example, if  nameList  is a list 
of strings, you can write the following  for  loop to display the entire list: 

   int listSize = nameList.getLength(); 
  for ( int position = 1; position <= listSize; position++) 
           cout << nameList.getEntry(position) << endl; 

 Here the loop traverses, or iterates, through the entries in the list. Instead of simply displaying each 
entry, we could do other things to or with it. 

 Notice that the previous loop is at the client level, since it uses the ADT operation  getEntry  to 
access the list. For an array-based implementation of the list,  getEntry  can retrieve the desired array 
entry directly and quickly. But if a chain of linked nodes represents the list’s entries,  getEntry  must 
move from node to node until it locates the desired one. For example, to retrieve the  nth  entry in the 
list, getEntry  would begin at the fi rst node in the chain and then move to the second node, the third 
node, and so on until it reached the nth  node. At the next repetition of the loop,  getEntry  would 
retrieve the  n  + 1 st  entry in the list by beginning again at the fi rst node in the chain and stepping from 
node to node until it reached the n  + 1 st  node. This wastes time.  

      Note: Iterators

 An iterator is a program component that steps through, or traverses, a collection of data. 
The iterator keeps track of its progress during the traversal, or iteration. It can tell you 
whether a next entry exists and, if so, return a reference to it. During one cycle of the 
iteration, each data item is considered once. 

 Iteration is such a common operation that we could include it as part of the ADT list. Doing so 
would enable a more effi cient implementation than you could achieve at the client level. Notice that 
the operation toVector  of the ADT bag in  Chapters   3    and    4    performs a traversal and is an example of 
a traversal controlled by the ADT. A client can invoke  toVector  but cannot control its traversal once 
it begins. 

 But  toVector  only returns the list’s entries. What if we want to do something else with them as 
we traverse them? We do not want to add another operation to the ADT each time we think of another 
way to use an iteration. We need a way for a client to step through a collection of data and retrieve or 
modify the entries. The traversal should keep track of its progress; that is, it should know where it is in 
the collection and whether it has accessed each entry. An iterator provides such a traversal. 

 C++ provides a rich library of tools to build iterators, but in this interlude we focus on the capa-
bilities necessary to implement simple iterators that traverse a collection of items, retrieve an item in 
a collection, and compare two iterators to determine whether they access the same entry in the collec-
tion. Such iterators are known as  input iterators . 

   C6.1.1  Common Iterator Operations 

 Though not required, iterators in C++ typically provide basic functionality by using overloaded oper-
ators. An iterator operation that accesses the item it currently references is usually implemented by 
overloading the C++ dereferencing operator  * . For example, you can defi ne the  *  operator for an iter-
ator i  so that  *i  is the item that  i  references. 

 Iterators also have operations that move the iterator forward through the collection. Often, these 
operations take the form of the overloaded operator ++. Bidirectional iterators also overload the  ––
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operator to allow you to move backward through the collection. Lastly, the operators  ==  and  !=  are 
usually overloaded to compare iterators for equality.  

Note: Common iterator operations

 Operation  Description 
 *  Return the item that the iterator currently references 

 ++  Move the iterator to the next item in the collection 

––  Move the iterator to the previous item in the collection (used only 
for bidirectional or random iterators) 

==  Compare two iterators for equality 

!=  Compare two iterators for inequality 

 By enabling you to overload these operators for your iterator class, C++ gives you the advanced 
iterator operations covered in the next section without further programming. An additional step you 
must take to enable this functionality, however, is to derive your iterator class from the C++ template 
class iterator . This template does not have any methods. Instead, it is used to identify the category 
of iterator you are creating by using an  iterator category tag  as the template type. 

 For example, to declare an input iterator for the class  LinkedList , we would use the lines: 

   template < class ItemType> 
  class LinkedIterator : public iterator<input_iterator_tag, int > 

 where  input_iterator_tag  indicates that this iterator implements input-iterator functionality. The sec-
ond template type specifi ed,  int , identifi es the type of value used to measure the distance between two 
iterators. These values are normally integers. The  distance  between two iterators is the number of ele-
ments or positions between the current positions of the two iterators. For example, if an iterator points to 
the fi rst item in a list and another iterator points to the fi fth item in the same list, their distance is 4. 

      Note: C++ iterator categories

 All of the following iterators provide operations that copy or assign ( = ) and increment ( ++ ).    

 Category  Tag  Operation 
 Input iterator input_iterator_tag  Equality/inequality  (==, != ), access col-

lection entry ( * ) 

 Output iterator   output_iterator_tag   Change a collection entry ( * ) 

 Forward iterator   forward_iterator_tag   Same as the input and output iterators and 
has a default constructor 

 Bidirectional 
iterator

bidirectional_iter-

ator_tag
Same as the forward iterator, but also can 
traverse the collection backward ( –– )

Random-access
iterator

random_iterator_tag  Same as the bidirectional iterator and adds 
support for arithmetic ( + ,  - ,  += ,  -= ) and 
relational ( < ,  <= ,  > ,  >= ) operations between 
iterators. Supports the  []  operator to directly 
access collection entries. 
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   C6.1.2  Using Iterator Operations 

 Before discussing the details of a class of iterators and its implementation, we should examine how 
clients of LinkedList  would use these iterators. Standard containers in C++ implement two special 
methods, begin  and  end , that return an iterator to the fi rst entry and last entry respectively. These itera-
tors should have an order of magnitude in performance of O(1) as they move from entry to entry. Let’s 
see how a client could use these methods if we implemented them in our  LinkedList  class. 

 Up to this point, if we want to display all the entries in a list  myList , we need to perform this 
O(n2 ) action: 

   int currentPosition = 1; 
  while (currentPosition <= myList.getLength()) 
 { 
    cout << myList.getEntry(currentPosition); // O(n) operation 
    currentPosition++; 
} // end while 

 Now assume that LinkedIterator is a class of iterators for LinkedList, and  LinkedList  defi nes 
the methods begin  and  end  and declares them as follows: 

  LinkedIterator<ItemType> begin() const ; 
LinkedIterator<ItemType> end() const ; 

 We can rewrite the above snippet of code using  LinkedIterator  objects: 

  LinkedIterator<ItemType> currentIterator = myList.begin(); 
  while (currentIterator != myList.end()) 
 { 
    cout << *currentIterator // O(1) operation 
    ++currentIterator; 
} // end while 

 The fi rst line creates a  LinkedIterator  object,  currentIterator , that points to the fi rst entry in the 
list. The  while -loop test checks to see whether  currentIterator  points to the entry that is at the end 
of the list. Then, for each entry in the list, we dereference the iterator using the * operator to access 
and display the entry at the iterator’s current position. The iterator is then incremented to reference the 
next entry in the list for the following iteration. 

 Notice that the ++ operator precedes the name of the iterator. We use this prefi x operator to dif-
ferentiate it from an arithmetic increment of an integer, which uses the postfi x ++ operator. Iterators 
may implement the postfi x ++ operator, but we have chosen not to do this to avoid possible confusion 
in reading the code.  

      Note: Using the  ++  and  ––  operators

 In C++, the operators  ++  and  ––  can be used in either prefi x or postfi x form to represent 
incrementing or decrementing the corresponding variable. To differentiate between in-
crementing or decrementing arithmetic variables from iterator positions, we use  ++  and 
––  as postfi x operators for the former operations and as prefi x operators for the latter. 

 The implementation of the methods  begin  and  end  in the  LinkedList  class are straightforward: 

   template < class ItemType> 
LinkedIterator<ItemType> LinkedList<ItemType>::begin() 
 { 

return LinkedIterator<ItemType>( this, headPtr); 
} // end begin 
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  template < class ItemType> 
LinkedIterator<ItemType> LinkedList<ItemType>::end() 
 { 

return LinkedIterator<ItemType>( this, nullptr ); 
} // end end 

 In the  begin  method, we send the iterator references to the list object and the fi rst node in the chain 
that contains the list items. Giving the iterator direct access to  LinkedList ’s data member violates the 
wall of abstraction and must be done with care. Well-designed iterators only traverse the collection and 
access the items stored in the collection; they should not change the structure of a collection. 

   C6.1.3  Implementing an Iterator 

 Listing C6-1 is the header fi le for the class,  LinkedIterator , of input iterators designed to work with 
our LinkedList  class. It is a distinct class separate from  LinkedList . The constructor has two param-
eters, the list traversed by the iterator and an initial node for the iterator to reference. The second 
parameter is used by the  LinkedList  class methods  begin  and  end  to initialize the iterator’s position. 

       LISTING C6-1 The header fi le for the class  LinkedIterator

  #ifndef _LINKED_ITERATOR 
#define _LINKED_ITERATOR 

#include <iterator> 
#include "Node.h" 

  template < class ItemType> 
  class LinkedList; 

  template < class ItemType> 
  class LinkedIterator : public iterator<input_iterator_tag, int > 
 { 
  private : 

// ADT associated with iterator 
const LinkedList<ItemType>* containerPtr; 

// Current location in collection 
   Node<ItemType>* currentItemPtr;     

  public : 
   LinkedIterator( const LinkedList<ItemType>* someList, 
                      Node<ItemType>* nodePtr); 

/** Dereferencing operator overload. 
@return  The item at the position referenced by iterator. */ 
const ItemType operator*();

/** Prefix increment operator overload. 
@return  The iterator referencing the next position in 

         the list. */ 
   LinkedIterator<ItemType>  operator ++(); 

/** Equality operator overload. 
@param LinkedList  The iterator for comparison. 
@return  True if this iterator references the same list and 

        the same position as rightHandSide, false otherwise. * / 
(continues)
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bool operator ==( const LinkedIterator<ItemType>& rightHandSide) const ; 

/** Inequality operator overload. 
@param LinkedList  The iterator for comparison. 
@return  True if this iterator does not reference the same 

         list and the same position as rightHandSide, 
         false otherwise. */ 

bool operator !=( const LinkedIterator<ItemType>&  rightHandSide) const ; 

 }; // end LinkedIterator 

#include "LinkedIterator.cpp" 
 #endif   

 In addition to the base class specifi cation and class constructor, there are two other lines in this 
header fi le that differ from previous header fi les. Before the LinkedIterator  class is declared, the 
following two lines provide a forward declaration of the class  LinkedList:

   template < class ItemType> 
  class LinkedList; 

 These lines are necessary because  LinkedList  must instantiate an object of the class 
LinkedIterator<ItemType>  in the  begin  and  end  methods, but the  LinkedIterator  class must have 
a complete declaration of LinkedList<ItemType>  to instantiate itself. To resolve these circular refer-
ences, we include this forward declaration. When the compiler begins to compile the  LinkedIterator
class, it will read these statements and know that  LinkedList<ItemType>  is also a class. The compiler 
can then use placeholders for the details of LinkedList.

 The implementation of  LinkedIterator  is shown in Listing C6-2. 

       LISTING C6-2 The implementation fi le for the class  LinkedIterator

  #include "LinkedIterator.h" 

  template < class ItemType> 
 LinkedIterator<ItemType>:: 
 LinkedIterator( const LinkedList<ItemType>* someList, 
                   Node<ItemType>* nodePtr): 
                   containerPtr(someList), currentItemPtr(nodePtr) 
 { 

} // end constructor 

  template < class ItemType> 
  const ItemType LinkedIterator<ItemType>:: operator *() 
 { 

return currentItemPtr->getItem(); 
} // end operator* 

  template < class ItemType> 
LinkedIterator<ItemType> LinkedIterator<ItemType>:: operator ++() 
 { 
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   currentItemPtr = currentItemPtr->getNext(); 
return * this ; 

} // end prefix operator++ 

  template < class ItemType> 
  bool LinkedIterator<ItemType>:: operator ==( const  
                         LinkedIterator<ItemType>& rightHandSide) const  
 { 

return ((containerPtr == rightHandSide.containerPtr) && 
             (currentItemPtr == rightHandSide.currentItemPtr)); 
} // end operator== 

  template < class ItemType> 
  bool LinkedIterator<ItemType>::operator!=( const  
                         LinkedIterator<ItemType>& rightHandSide) const  
 { 

return ((containerPtr != rightHandSide.containerPtr) || 
             (currentItemPtr != rightHandSide.currentItemPtr)); 
} // end operator!=   

 The implementations of the iterator methods use the methods of the  Node  class. For example, the 
dereferencing * operator returns the result of calling  getItem  on the current node, and the ++ operator uses 
getNext  to advance the iterator to the next position. Notice that the ++ operator returns the current object to 
the caller. This is part of the C++ standard for the ++ operator, but clients seldom use the return value. 

 An alternative is to use only iterators that have access to public methods of your data structure, 
but then you lose the effi ciencies gained by directly accessing the structure. The best approach is to 
design an iterator for your class at the same time that you design your ADT, so that you can coordinate 
the features and ensure that the iterator does not change the class’s structure.   

   C6.2 Advanced Iterator Functionality 
 Deriving our iterator from the C++ template class  iterator  enables the iterator to be used in a 
number of standard functions provided by C++ that simplify the processing of many common algo-
rithms, such as displaying the items in a collection, searching a collection, and counting the number 
of occurrences of an item in the collection. 

The function for_each .   Earlier in this interlude, we presented a  while  loop that used iterators to ac-
cess and display each item in a list of strings. C++ provides a function  for_each  that can accomplish 
this in a simpler manner. The syntax of the  for_each  function is: 

  for_each( start_iterator ,  end_iterator ,  function_to_perform );

 where  start_iterator  and  end_iterator  are iterators to the fi rst and last position that should be proc-
essed in the collection, and function_to_ perform  is a function with a single parameter of the same 
type as the entries stored in the collection. This is similar to the  visit  function discussed with respect 
to ADT binary tree traversals in  Chapter   15   . This function is applied to each of the items in the collec-
tion from start_iterator  to  end_iterator . 

 To use the  for_each  function, we must create a function to be applied to each of the items in the 
collection. In this case, the items are strings, and we want to display each one: 

   void displayOneItem(string itemToDisplay) 
 { 
    cout << itemToDisplay << endl; 
} // end displayOneItem 
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 We can then call the  for_each  function to display all items in the collection as follows: 

  for_each(myList.begin(), myList.end(), displayOneItem); 

 With this one statement, C++ takes care of all the details. The compiler will insert code that begins at 
the fi rst position of  myList  and sends each item to the function  displayOneItem  to be displayed until 
all items have been processed.   

      Note:  The syntax used to call most of the special functions that use iterators to process 
collections follows the form 

   function_name ( start_iterator ,  end_iterator ,  special_ parameters );

 where  special_ parameters  represents one or more parameters that the function needs to 
perform its task. 

The function find .   To search a collection for a specifi ed target entry, you use the function  find . This 
function returns an iterator to the target if it exists in the collection. If the target is not in the collec-
tion, find  returns an iterator to the last position: 

  // Find the entry "Ace" in the collection myList 
LinkedIterator<string> myCard =  find(myList.begin(), myList.end(), "Ace");   

  The function count.  Another useful function is  count . This function returns an integer that repre-
sents the number of times a specifi ed value occurs in the collection between the starting iterator and 
ending iterator: 

  // Count the number of occurrences of "Ace" in collection myList 
  int aceCount = count(myList.begin(), myList.end(), "Ace");   

  The function advance.  To move an iterator forward a specifi c number of positions, you can use the 
advance  function. It has a slightly different form: 

  advance( someIterator ,  distanceToAdvance );

 For example, if we needed an iterator to the fi fth element of  myList , we would use the following statements: 

  // Iterator to first position in myList
LinkedIterator<string> myIterator = myList.begin(); 

// Advance from first position to fifth (4 positions ahead) 
advance(myIterator, 4);   

  The function distance.  To determine how many entries remain to be processed, we can determine 
the distance from our current position to the end of the collection, using the  distance  function: 

int   numberRemaining = distance(myIterator, myList.end());   

  The function equal.  If you want to determine whether the elements in two lists are the same, either 
for the entire fi rst list or for a subrange within the lists, you can use the  equal  function. Suppose 
myList  and  yourList  are two instances of  LinkedList<string> . To determine if all entries in 
myList  are equal to the fi rst entries in  yourList , you would write: 

bool same = equal(myList.begin(), myList.end(), yourList.begin()); 
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 This function is concerned only with a range of positions. The number of entries to compare,  n , is 
determined by the distance between the fi rst two iterator parameters. The third iterator parameter 
specifi es a starting location in the second collection for the comparison. The number of entries in the 
second collection can be greater than the number in the fi rst collection, but only  n  entries are 
compared.

      Note: Some useful C++ functions that use iterators

•    Process entries in a collection from  start_iterator  position to  end_iterator  position 
using the function function_to_perform:

for_each( start_iterator ,  end_iterator ,  function_to_perform );

•    Return an iterator to the position of the fi rst occurrence of  target  between  start_
iterator  and  end_iterator : 

  iteratorType someIterator = find( start_iterator ,  end_iterator,   target );

•    Return the number of occurrences of  target  between  start_iterator  and  end_iterator : 

int numberOccur = count( start_iterator ,  end_iterator ,  target );

•    Compare entries in collection 1 from  start1_iterator  through  end1_iterator  to 
those in collection 2 beginning at  start2_iterator : 

bool result = equal( start1_iterator ,  end1_iterator,   start2_iterator );

•    Move  someIterator  from its current position forward  distanceToAdvance  positions: 

advance( someIterator ,  distanceToAdvance );

•    Determine the distance or number of positions from  someIterator  to  anotherIterator : 

int theDistance = distance( someIterator ,  anotherIterator );
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Chapter   15    introduced the ADTs binary tree and binary search tree. This chapter will 
present the ADT heap, which is a special kind of complete binary tree that provides an 
effi cient implementation of the ADT priority queue. You can also use a heap to sort an 
array as effi ciently as you can by using either a quick sort or a merge sort.  

      17.1 The ADT Heap 
 A  heap  is a complete binary tree that either is empty or whose root 

•   Contains a value greater than or equal to the value in each of its children, and  
•   Has heaps as its subtrees   

A heap is a special 
complete binary tree 
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 A heap is similar to a binary search tree, although it differs from a binary search tree in two signifi cant ways: 

•   While you can view a binary search tree as sorted, a heap is ordered in a much weaker sense.  
•   While binary search trees come in many different shapes, heaps are always complete binary trees.      

 In our defi nition of a heap, the root contains the item with the largest value. Such a heap is also 
known as a  maxheap .  A minheap , on the other hand, places the item with the smallest value in its 
root. An example of a maxheap and a minheap are given in  Figure   17-1   . Exercises 1 and 8 and Pro-
gramming Problem 3 consider the minheap further.  

 The ADT heap has the following operations:  

FIGURE 17-1         (a) A maxheap and (b) a minheap   
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     Note: ADT heap operations 

•   Test whether a heap is empty  
•   Get the number of nodes in a heap  
•   Get the height of a heap  
•   Get the item in the heap’s root  
•   Insert a new item into the heap  
•   Remove the item in the heap’s root
• Remove all nodes from the heap   

 Depending on whether the heap is a maxheap or a minheap, the removal and retrieval 
operations respectively involve either the largest or the smallest item in the heap 

FIGURE 17-2         UML diagram for the class  Heap
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 ABSTRACT DATA TYPE: HEAP

 DATA

• A fi nite number of objects in hierarchical order. 

 OPERATIONS

 PSEUDOCODE  DESCRIPTION

 isEmpty()  Task: Sees whether this heap is empty. 
 Input: None. 
 Output: True if the heap is empty; otherwise false.  

 getNumberOfNodes()  Task: Gets the number of nodes in this heap. 
 Input: None. 
 Output: The number of nodes in the heap. 

 getHeight()  Task: Gets the height of this heap. 
 Input: None.  
 Output: The height of the heap. 

 peekTop()  Task: Gets the data that is in the root (top) of this heap. 
 Input: None. Assumes the heap is not empty. 
 Output:  The item in the root of the heap. If the heap is a maxheap, this item is the largest 

value in the heap. For a minheap, the item is the smallest value. 

 add(newData)  Task: Inserts  newData  into this heap. 
 Input:  newData  is the data item to be inserted.  
 Output: True if the insertion is successful, or false if not. 

 remove()  Task: Removes the item in the root of this heap. 
 Input: None. 
 Output: True if the removal is successful, or false if not. 

 clear()  Task: Removes all nodes from this heap. 
 Input: None. 
 Output: The heap is empty. 

 An interface that fi nalizes the operation contract for the ADT heap appears in Listing 17-1. 

  LISTING 17-1   An interface for the ADT heap 

  /** Interface for the ADT heap. 
 @file HeapInterface.h */ 

#ifndef _HEAP_INTERFACE 
#define _HEAP_INTERFACE 

  template < class ItemType> 
  class HeapInterface 
 { 
  public : 

(continues)

 The following contract specifi es these operations in more detail, and a UML diagram for a class 
of heaps appears in  Figure   17-2   .     
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   /** Sees whether this heap is empty. 
    @return  True if the heap is empty, or false if not. */ 

virtual bool isEmpty() const = 0; 

   /** Gets the number of nodes in this heap. 
     @return  The number of nodes in the heap. */ 

virtual int getNumberOfNodes() const = 0; 

   /** Gets the height of this heap. 
     @return  The height of the heap. */ 

virtual int getHeight() const = 0;       

   /** Gets the data that is in the root (top) of this heap. 
        For a maxheap, the data is the largest value in the heap; 
       for a minheap, the data is the smallest value in the heap. 
     @pre  The heap is not empty. 
     @post  The root’s data has been returned, and the heap is unchanged. 
     @return  The data in the root of the heap. */ 

virtual ItemType peekTop() const = 0; 

   /** Adds a new node containing the given data to this heap.  
     @param newData  The data for the new node. 
     @post  The heap contains a new node. 
     @return  True if the addition is successful, or false if not. */ 

virtual bool add( const ItemType& newData) = 0; 

   /** Removes the root node from this heap.  
@return  True if the removal is successful, or false if not. */ 

virtual bool remove() = 0; 

   /** Removes all nodes from this heap. */ 
virtual void clear() = 0; 

 }; // end HeapInterface 
 #endif     

     Note:   Do not confuse the ADT heap with the collection of memory cells known as a 
heap. This memory is available for allocation to your program when you use the  new
operator. The heap that contains this available memory is not an instance of the ADT 
heap. 

Question 1     Is the full binary tree in  Figure   16-16    of  Chapter   16    a heap? Why? 
CHECK POINT

   17.2 An Array-Based Implementation of a Heap 
 Because a heap is a binary tree, you can use the array-based implementation of a binary tree 
discussed in  Section   16.1.1    of  Chapter   16   , if you know the maximum size of the heap. However, 
because a heap is a complete binary tree, you can use a simpler array-based implementation that saves 

VideoNote

Overview of  
ArrayHeap
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memory. As you saw in  Chapter   15   , a complete tree of height  h  is full to level  h  – 1 and has level  h
fi lled from left to right. 

  Figure   17-3   a shows a complete binary tree with its nodes numbered according to a level-by-level 
scheme. The root is numbered 0, and the children of the root—which are at the next level of the tree—
are numbered, left to right, 1 and 2. The nodes at the next level are numbered, left to right, 3, 4, and 5. 
You place these nodes into the array  items  in numeric order. That is,  items[i]  contains the node 
numbered i , as  Figure   17-3   b illustrates. Now, given any node  items[i] , you can easily locate both of 
its children and its parent:

•   Its left child, if it exists, is  items[2 * i + 1]
•   Its right child, if it exists, is  items[2  *  i + 2]
•   Its parent, if it exists, is  items[(i - 1) / 2]

 Remember that only the root in  items[0]  does not have a parent.  
 This array-based representation requires a complete binary tree. If nodes were missing from the 

middle of the tree, the numbering scheme would be thrown off, and the parent-child relationship 
among nodes would be ambiguous. This requirement implies that any changes to the tree must main-
tain its completeness.    

 As you will see, an array-based representation of a heap is useful in the implementation of the 
ADT priority queue.      

FIGURE 17-3         (a) Level-by-level numbering of a complete binary tree; (b) its array-based 
implementation
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     Question 2   What array represents the maxheap shown in  Figure   17-1   a? 

     Question 4   What criterion can you use to tell whether the node in  items[i]  is a leaf? 

     Question 3   What array represents the minheap shown in  Figure   17-1   b? CHECK POINT
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   17.2.1  Algorithms for the Array-Based Heap Operations 

 Let’s assume that our class of heaps has the following private data members: 

•    items : an array of heap items  
•    itemCount : an integer equal to the number of items in the heap  
•    maxItems : an integer equal to the maximum capacity of the heap      

 The array  items  corresponds to the array-based representation of a complete binary tree, such as the 
array shown in  Figure   17-3   b. We will assume that we are working with a maxheap of integers. 

  Retrieving an item from a heap.   First consider the heap’s  peekTop  operation. Where is the largest 
item in the heap? Because the item in every tree node is greater than or equal to the item in either of its 
children, the largest item must be in the root of the tree—that is, at the top of the heap. Thus, the  peek-
Top  operation needs to take only the following step:    

  //  Return the item in the root  
  return  items[0]   

  Removing an item from a heap.   While the  peekTop  operation returns the largest item in the heap—
which we know is in its root—the heap operation remove  must remove it. Removing the root of 
the heap leaves two disjoint heaps, as  Figure   17-4   a indicates. Therefore, you do not want to actu-
ally remove the root. Instead, you remove the last node of the tree and place its item in the root, as 
 Figure   17-4   b shows. The result of this step is  not  necessarily a heap. It is, however, a complete binary 
tree whose left and right subtrees are both heaps. The only problem is that the item in the root usually 
is out of place. Such a structure is called a  semiheap .    

 You thus need a way to transform a semiheap into a heap. One strategy allows the item in the root 
to trickle down  the tree until it reaches a node in which it will not be out of place; that is, the item will 
come to rest in the fi rst node where it would be greater than or equal to the item in each of its children. 
To accomplish this, you fi rst compare the item in the root of the semiheap to the items in its children. 
If the root’s item is smaller than the larger of the items in its children, you swap the item in the root 
with that larger item. For convenience, we will refer to the child containing the larger item as the 
larger child . The result of this step is shown in  Figure   17-4   c. Although the value 5 trickles down in 
this example to its correct position after only one swap, in general more swaps may be necessary.   

 We need to remember that an array represents the original heap before we remove its root. The 
remove  operation will simply move items within this array.  Figure   17-5    shows the array for the heaps 
and semiheap illustrated in  Figure   17-4   . The transformation from the heap in  Figure   17-5   a to the 
semiheap in  Figure   17-5   b is accomplished by the following steps: 

  //  Copy the item from the last node and place it into the root  
items[0] = items[ itemCount - 1] 

//  Remove the last node  
  itemCount ––  

     Question 6   Does the array in the previous question represent a heap? 

     Question 5   What complete binary tree does the following array represent?    
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 The transformation from the semiheap in  Figure   17-5   b to the heap in  Figure   17-5   c is accom-
plished by the following recursive algorithm. Note that the algorithm will not work if it does not begin 
with a semiheap.    

//  Converts a semiheap rooted at index  root  into a heap.  
heapRebuild(root: integer, items: ArrayType, itemCount: integer) 

//  Recursively trickle the item at index  root  down to its proper position by  
   //  swapping it with its larger child, if the child is larger than the item.  
   //  If the item is at a leaf, nothing needs to be done.  

if  (the root is not a leaf )
{

//  The root must have a left child; assume it is the larger child  
largerChildIndex = 2 * rootIndex + 1 //  Left child index     

if  ( the root has a right child)
{

          rightChildIndex = largerChildIndex + 1  //  Right child index  
           if  (items[rightChildIndex] > items[largerChildIndex ]) 

largerChildIndex = rightChildIndex //  Larger child index  
}
//  If the item in the root is smaller than the item in the larger child, swap items  

if  (items[rootIndex] < items[largerChildIndex]) 
{

Swap  items[rootIndex] and  items[largerChildIndex]

FIGURE 17-4         (a) Disjoint heaps after removing the heap’s root; (b) a semiheap; (c) the 
restored heap   
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//  Transform the semiheap rooted at  largerChildIndex  into a heap  
heapRebuild(largerChildIndex, items, itemCount) 

}
   } 

//  Else root is a leaf, so you are done   

  Figure   17-6    illustrates  heapRebuild ’s recursive calls. 

FIGURE 17-5         The array representation of (a) the heap in  Figure   17-4   a; (b) the semiheap in 
 Figure   17-4   b; (c) the restored heap in  Figure   17-4   c   
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 Now the heap’s  remove  operation uses  heapRebuild  as follows: 

  // Copy the item from the last node into the root  
items[0] = items[itemCount - 1] 

 // Remove the last node  
 itemCount–– 

 // Transform the semiheap back into a heap  
heapRebuild(0, items, itemCount)     

 Consider briefl y the effi ciency of  remove . Because the tree is stored in an array, the removal of a 
node requires you to swap array entries rather than simply to change a few pointers. These swaps may 
concern you, but they do not necessarily indicate that the algorithm is ineffi cient. At most, how many 
array entries will you have to swap? After  remove  copies the item in the last node of the tree into the 
root, heapRebuild  trickles this item down the tree until its appropriate place is found. This item trav-
els down a single path from the root to, at worst, a leaf. Therefore, the number of array items that 
heapRebuild  must swap is no greater than the height of the tree. The height of a complete binary tree 
with n  nodes is always < log 2 ( n  + 1) = , as you know from  Chapter   15   . Because each swap requires three 
data moves,  remove  requires   

   3 � < log2(n �1) = �1

 data moves. Thus,  remove  is O(log  n ), which is in fact quite effi cient.  

Adding an item to a heap.   The strategy for the  add  algorithm is the opposite of that for  remove . 
A new item is inserted at the bottom of the tree, and it trickles up to its proper place, as  Figure   17-7    
illustrates. It is easy to trickle up a node, because the parent of the node in items[i]  is always stored 
in items[(i - 1) / 2] —unless, of course, the node is the root. 

  remove’s effi ciency 

  remove is O(log  n ) 

FIGURE 17-7         Insertion into a heap   
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  The pseudocode for  add  follows:    

  //  Insert  newData  into the bottom of the tree  
items[itemCount] = newData 

 //  Trickle new item up to the appropriate spot in the tree  
newDataIndex = itemCount 
inPlace = false  
  while  ( (newDataIndex >= 0) and  !inPlace)
{
 parentIndex = (newDataIndex - 1) / 2 
if  (items[newDataIndex] < items[parentIndex]) 

Insertion strategy 
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inPlace = true  
else  
{

Swap  items[newDataIndex ] and  items[parentIndex]
newDataIndex = parentIndex 

 } 
 } 
 itemCount++ 

 The effi ciency of  insert  is like that of  remove . At worst,  insert  has to swap array entries on a 
path from a leaf to the root. The number of swaps, therefore, cannot exceed the height of the tree. 
Because the height of the tree, which is complete, is always < log 2 ( n  + 1) = , insert  is also O(log  n ).         

  insert is O(log  n ) 

     Question 7   Is the full binary tree in  Figure   16-16    of  Chapter   16    a semiheap? 

CHECK POINT      Question 8   Consider the maxheap in  Figure   17-1   a. Draw the heap after you insert 12 and 
then remove 12. 

     Question 9   What does the initially empty heap  myHeap  contain after the following 
sequence of pseudocode operations? 

 myHeap.add(2) 

 myHeap.add(3) 

 myHeap.add(4) 

 myHeap.add(1) 

 myHeap.add(9) 

 myHeap.remove() 

 myHeap.add(7) 

 myHeap.add(6) 

 myHeap.remove() 

 myHeap.add(5) 

   17.2.2  The Implementation 

 The header fi le for the class  ArrayMaxHeap , which is an array-based implementation of the ADT 
heap, is in Listing 17-2. This heap is a maxheap. 

  LISTING 17-2  The header fi le for the class  ArrayMaxHeap

  /** Array-based implementation of the ADT heap. 
 @file ArrayMaxHeap.h */
#ifndef _ARRAY_MAX_HEAP 
#define _ARRAY_MAX_HEAP 

#include "HeapInterface.h" 
#include "PrecondViolatedExcep.h" 

  template < class ItemType> 
  class ArrayMaxHeap : public HeapInterface<ItemType> 
 { 
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  private : 
static const int ROOT_INDEX = 0;          // Helps with readability 
static const int DEFAULT_CAPACITY = 21; // Small capacity to test for a full heap 

   ItemType* items;                            // Array of heap items 
int itemCount;                              // Current count of heap items
int maxItems;                               // Maximum capacity of the heap

// --------------------------------------------------------------------- 
// Most of the private utility methods use an array index as a parameter 
// and in calculations. This should be safe, even though the array is an
// implementation detail, since the methods are private.
// --------------------------------------------------------------------- 

// Returns the array index of the left child (if it exists). 
int getLeftChildIndex( const int nodeIndex) const;

// Returns the array index of the right child (if it exists). 
int getRightChildIndex( int nodeIndex) const;

// Returns the array index of the parent node. 
int getParentIndex( int nodeIndex) const;

// Tests whether this node is a leaf. 
bool isLeaf( int nodeIndex) const;

// Converts a semiheap to a heap. 
void heapRebuild( int subTreeRootIndex);

// Creates a heap from an unordered array. 
void heapCreate(); 

  public : 
   ArrayMaxHeap(); 
   ArrayMaxHeap( const ItemType someArray[], const int arraySize);

virtual ~ArrayMaxHeap();

// HeapInterface Public Methods:
bool isEmpty() const ; 
int getNumberOfNodes() const ; 
int getHeight() const ; 

   ItemType peekTop()  const throw (PrecondViolatedExcep); 
bool add( const ItemType& newData); 
bool remove(); 
void clear(); 

 }; // end ArrayMaxHeap 
#include "ArrayMaxHeap.cpp" 
 #endif 

  Some method defi nitions.   Let’s examine the defi nitions of some of the methods in  ArrayMaxHeap , 
beginning with the private ones. To make our code more readable, we established the private methods 
getLeftChildIndex ,  getRightChildIndex , and  getParentIndex . The implementations of these 
methods follow from our observations at the beginning of  Section   17.2   . For example, the left child of 
node items[i]  is  items[2   *   i   +   1] , so the method  getLeftChildIndex  has the following defi nition: 

   template < class ItemType> 
  int ArrayMaxHeap<ItemType>::getLeftChildIndex( const int nodeIndex) const  
 { 
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return (2 * nodeIndex) + 1; 
} // end getLeftChildIndex 

 The recursive private method  heapRebuild  closely follows the pseudocode given earlier in this 
chapter, so let’s assume that we have coded it and look at a method that uses it. The second constructor 
creates a heap from an array of entries. To do so, this constructor can call the private method  heapCreate , 
which in turn will need to call  heapRebuild . Consider the details. 

 Notice that  heapCreate  has no parameters, but it does have access to our class’s private data. In 
particular,  heapCreate  can use the array  items  and the counter  itemCount . These two data mem-
bers will serve as both the input to and the output from  heapCreate . So if the constructor places 
values into  itemCount  and the array  items , it can call  heapCreate  to rearrange the values in the 
array into a heap. 

 Thus, we can defi ne the constructor as follows: 

   template < class ItemType> 
 ArrayMaxHeap<ItemType>:: 
 ArrayMaxHeap( const ItemType someArray[], const int arraySize):
                itemCount(arraySize), maxItems(2 * arraySize) 
 { 

// Allocate the array 
   items =  new ItemType[2 * arraySize]; 

// Copy given values into the array 
for ( int i = 0; i < itemCount; i++) 

       items[i] = someArray[i]; 

// Reorganize the array into a heap 
   heapCreate(); 
} // end constructor 

 We use initializers to set the initial values of  itemCount  and  maxItems . After allocating the array 
items , we copy the values from the given array  someArray  into  items . Finally, we call  heapCreate . 

 Now  heapCreate  must form a heap from the values in the array  items . One way to accomplish 
this transformation is to use the heap’s  add  method to insert the items into the heap one by one. How-
ever, a more effi cient technique of building a heap out of the items in an array is possible. 

 For example, assume that the initial contents of an array are as shown in  Figure   17-8   a. First you 
imagine the array as a complete binary tree by assigning the array’s items to the tree’s nodes, beginning 
with the root and proceeding left to right down the tree.  Figure   17-8   b shows the resulting tree. Next, 
you transform this tree into a heap by calling  heapRebuild  repeatedly. Each call to  heapRebuild

FIGURE 17-8         (a) The initial contents of an array; (b) the array’s corresponding complete 
binary tree   
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transforms a semiheap—a tree whose subtrees are both heaps but whose root may be out of place—
into a heap. But are there any semiheaps in the tree for  heapRebuild  to work on? Although the tree in 
 Figure   17-8   b is not a semiheap, if you look at its leaves you will fi nd semiheaps—that is, each leaf is 
a semiheap. In fact, each leaf is a heap, but for the sake of simplicity, ignore this fact.  

 You fi rst call  heapRebuild  on the leaves from right to left. You then move up the tree, knowing that 
by the time you reach a node  N , its subtrees are heaps, and thus  heapRebuild  will transform the semi-
heap rooted at N  into a heap. The following pseudocode steps transform the array  items  of  itemCount
items into a heap:    

   for  (index = itemCount - 1  down to  0)
{

//  Assertion: The tree rooted at  index  is a semiheap  
heapRebuild(index)
//  Assertion: The tree rooted at  index  is a heap  

 } 

 Actually, you can replace  itemCount   –   1  with  itemCount   /   2  in the previous  for  statement. Thus, 
our pseudocode becomes 

   for  (index = itemCount / 2 down to  0)
 { 

//  Assertion: The tree rooted at  index  is a semiheap  
heapRebuild(index)
//  Assertion: The tree rooted at  index  is a heap  

 } 

 Exercise 11 at the end of this chapter asks you to explain why this improvement is possible. 
 Figure   17-9    traces this algorithm for the array in  Figure   17-8   a. Since the array contains six items, 
index  in the  for  statement begins at 5 / 2, or 2.  

Building a heap from 
an array of  items 

FIGURE 17-9         Transforming an array into a heap   
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 We now translate this pseudocode into C++ to get the method  heapCreate : 

   template < class ItemType> 
  void ArrayMaxHeap<ItemType>::heapCreate()
 { 

for ( int index = itemCount / 2; index >= 0; index––) 
       heapRebuild(index);
} // end heapCreate 

 Programming Problem 1 asks you to complete the implementation fi le for the class  ArrayMaxHeap . 
 Finally, we will defi ne the method  peekTop , since it must throw an exception if the heap is empty. 

Although you might be tempted to simply return  items[0] , since it always contains the top of the 
heap, if you do,  peekTop  will return a value even when the heap might be empty. Thus, you need to 
have  peekTop  test for an empty heap, as in the following defi nition: 

   template < class ItemType> 
ItemType ArrayMaxHeap<ItemType>::peekTop() const throw (PrecondViolatedExcep) 
 { 

if (isEmpty()) 
throw PrecondViolatedExcep("Attempted peek into an empty heap."); 

return items[0]; 
} // end peekTop     

     Question 10   Execute the following pseudocode statements on the array shown in Check-
point Question 5. 

   for  (index = n - 1 down to  0)
 heapRebuild(index) 

CHECK POINT

   17.3 A Heap Implementation of the ADT Priority Queue 
  Section   13.3    of  Chapter   13    introduced the ADT priority queue, and  Section   14.2    of  Chapter   14    offered 
an implementation based on a sorted list. At that time, we mentioned that using a heap to defi ne a 
priority queue results in a more time-effi cient implementation.    

 Once you have implemented the ADT heap, the implementation of the ADT priority queue is 
straightforward, because priority queue operations are exactly analogous to heap operations. The pri-
ority value in a priority queue item corresponds to an item in a heap. Thus, the implementation of the 
priority queue can reuse ArrayMaxHeap . To do so, we could use an instance of  ArrayMaxHeap  as a 
data member of the class of priority queues, or we could use inheritance. Although a heap provides an 
excellent implementation of a priority queue, a priority queue is not a heap. Since an  is-a  relationship 
does not exist between  ArrayMaxHeap  and the class of priority queues, public inheritance is not 
appropriate. But we can use private inheritance, and that is what we will do. Let’s assume that we have 
an interface for the ADT priority queue, as Exercise 8 in  Chapter   13    asked you to write, so that we can 
derive our new class from it as well. 

 Listing 17-3 contains a header fi le for a class of priority queues. 

  LISTING 17-3  A header fi le for the class  Heap_PriorityQueue

  /** ADT priority queue: Heap-based implementation. 
 @file Heap_PriorityQueue.h */ 
#ifndef _HEAP_PRIORITY_QUEUE 
#define _HEAP_PRIORITY_QUEUE 

 Priority-queue 
operations and heap 
operations are 
analogous 

Header fi le 
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#include "ArrayMaxHeap.h" 
#include "PriorityQueueInterface.h" 

  template < class ItemType> 
  class Heap_PriorityQueue : public PriorityQueueInterface<ItemType>,

private ArrayMaxHeap<ItemType> 
 { 
  public : 
   Heap_PriorityQueue();    

bool isEmpty() const;
bool add( const ItemType& newEntry);
bool remove();

/** @pre  The priority queue is not empty. */ 
   ItemType peek()  const throw (PrecondViolatedExcep); 
 }; // end Heap_PriorityQueue 

#include "Heap_PriorityQueue.cpp" 
 #endif 

 Each of the method defi nitions in Listing 17-4 calls the corresponding method in  ArrayMaxHeap . 
Notice how the method  peek  handles the exception thrown by the heap’s  peekTop  method, so that the 
message given mentions the priority queue and not the underlying heap. 

  LISTING 17-4  An implementation of the class Heap_PriorityQueue

  /** Heap-based implementation of the ADT priority queue. 
 @file Heap_PriorityQueue.cpp */  

#include "Heap_PriorityQueue.h" 

  template < class ItemType> 
 Heap_PriorityQueue<ItemType>::Heap_PriorityQueue() 
 { 
   ArrayMaxHeap<ItemType>(); 
} // end constructor 

  template < class ItemType> 
  bool Heap_PriorityQueue<ItemType>::isEmpty() const  
 { 

return ArrayMaxHeap<ItemType>::isEmpty(); 
} // end isEmpty 

  template < class ItemType> 
  bool Heap_PriorityQueue<ItemType>::add( const ItemType& newEntry) 
 { 

return ArrayMaxHeap<ItemType>::add(newEntry); 
} // end add 

  template < class ItemType> 
  bool Heap_PriorityQueue<ItemType>::remove() 
 { 

return ArrayMaxHeap<ItemType>::remove(); 
} // end remove 

(continues)



518 CHAPTER 17 Heaps

  template < class ItemType> 
ItemType Heap_PriorityQueue<ItemType>::peek() const throw (PrecondViolatedExcep) 
 { 

try  
   {      

return ArrayMaxHeap<ItemType>::peekTop(); 
   } 

catch (PrecondViolatedExcep e) 
   { 

throw PrecondViolatedExcep("Attempted peek into an empty priority queue."); 
   }  // end try/catch 
} // end peek 

       A heap versus a binary search tree as a priority queue.   How does a heap compare to a binary 
search tree as an implementation of a priority queue? If you know the maximum number of items in 
the priority queue, the heap is the better implementation.    

 Because a heap is complete, it is always balanced, which is its major advantage. If the binary 
search tree is balanced, both implementations will have the same average performance for  n  items: 
They both will be O(log  n ). The height of a binary search tree, however, can increase during the inser-
tion and removal of entries, greatly exceeding log 2n  and degrading the implementation’s effi ciency to 
O(n ) in the worst case. The heap implementation avoids this decrease in performance. In  Chapter   19   , 
you will see how to keep a search tree balanced, but the operations that do this are far more complex 
than the heap operations.     

  Finite, distinct priority values.   If you have a fi nite number of distinct priority values, such as the 
integers 1 through 20, many items will likely have the same priority value. You could place items 
whose priority values are the same in the order in which you encounter them.    

 A heap of queues accommodates this situation, one queue for each distinct priority value. To 
insert an item into the priority queue, you add a queue for the item’s priority value to the heap, if it is 
not already there. Then you insert the item into the corresponding queue. To remove an item from a 
priority queue, you remove the item at the front of the queue that corresponds to the highest priority 
value in the heap. If this removal leaves the queue empty, you remove the queue from the heap. Pro-
gramming Problem 7 at the end of this chapter treats distinct priority values further.     

The heap 
implementation 
requires knowledge 
of  the priority 
queue’s maximum 
size 

A heap is always 
balanced

A heap of  queues 

     Question 11   Consider a heap-based implementation of the ADT priority queue. What 
does the underlying heap contain after the following sequence of pseudocode operations, 
assuming that pQueue  is an initially empty priority queue? 

  pQueue.add(5)
 pQueue.add(9) 
 pQueue.add(6) 
 pQueue.add(7) 
 pQueue.add(3) 
 pQueue.add(4) 
 pQueue.remove() 
 pQueue.add(9) 
 pQueue.add(2) 
 pQueue.remove() 

CHECK POINT
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   17.4 Heap Sort 
 As its name implies, the  heap sort  algorithm uses a heap to sort an array of items that are in no par-
ticular order. Suppose that we have a heap and an empty array whose size is the number of items in the 
heap. A call to  peekTop  gets the largest item in the heap, and we can place that item at the end of the 
array. A call to  remove  then removes that item from the heap. By repeatedly calling  peekTop  and 
remove , we can move the items from the heap in descending order and place them into sequentially 
decreasing positions in the array. The result is an array sorted into ascending order. 

 While this approach would work, it uses more memory and time than is necessary. Let’s start 
over with an array of unsorted values. Our fi rst step would be to transform the array into a heap. 
Recall the private method  heapCreate  from our implementation of the ADT heap in  Section   17.2.2   . 
This method transformed the array  items , which is a data member of the class of heaps, into a heap. 
The body of heapCreate  is simply the following loop:    

  for ( int index = itemCount / 2; index >= 0; index––) 
       heapRebuild(index); 

 As members of the class  ArrayMaxHeap , both  heapCreate  and  heapRebuild  have access to the class’s 
data members, including the array  items  and its number of entries,  itemCount . To use  heapRebuild
in a heap sort, we must revise it so that it has the array and its size as parameters. Let’s declare 
heapRebuild  as a function outside of  ArrayMaxHeap , as follows:    

void heapRebuild(int index, ItemType& anArray[], int n)

 After transforming the array into a heap, heap sort partitions the array into two regions—the 
Heap region and the Sorted region—as  Figure   17-10    illustrates. The Heap region is in  anArray[0..
last] , and the Sorted region is in  anArray[last + 1..n - 1] . Initially, the Heap region is all of 
anArray  and the Sorted region is empty.  

Building a heap from 
an array of  items 

This version of  
heapRebuild  
is not in 
ArrayMaxHeap  

FIGURE 17-10         Heap sort partitions an array into two regions   

0 1 n – 1last last+1

Heap Sorted (largest entries in array)

Array indices

 Each step of the algorithm moves an item  I  from the Heap region to the Sorted region. During 
this process, the following statements are true—they are the algorithm’s invariant:    

•   The Sorted region contains the largest values in  anArray , and they are in sorted order—that is, 
anArray[n – 1]  is the largest item,  anArray[n – 2]  is the second largest, and so on.  

•   The items in the Heap region form a heap.   

 So that the invariant holds,  I  must be the item that has the largest value in the Heap region, and there-
fore I  must be in the root of the heap. To accomplish the move, you exchange the item in the root of the 
heap with the last item in the heap—that is, you exchange  anArray[0]  with  anArray[last] —and 
then decrement the value of  last . As a result, the item just swapped from the root into  anArray[last]

Invariant for 
heap sort 
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becomes the smallest item in the Sorted region (and is in the fi rst position of the Sorted region). After 
the move, you must transform the Heap region back into a heap because the new root may be out of 
place. You can accomplish this transformation by using  heapRebuild  to trickle down the item now in 
the root so that the Heap region is once again a heap. 

 The following algorithm summarizes these steps: 

  // Sorts anArray[0..n-1].
heapSort(anArray: ArrayType, n: integer) 

// Build initial heap  
for  (index = n / 2 down to  0)
{
  //  Assertion: The tree rooted at  index  is a semiheap  
heapRebuild(index, anArray, n) 

  //  Assertion: The tree rooted at  index  is a heap  
}
//  Assertion: anArray[0] is the largest item in heap  anArray[0..n-1]

//  Move the largest item in the Heap region—the root  anArray[0] —to the beginning   
//  of the Sorted region by swapping items and then adjusting the size of the regions  
Swap  anArray[0] and  anArray[n - 1] 
heapSize = n - 1 // Decrease the size of the Heap region, expand the Sorted region  

while  (heapSize > 1) 
{
  // Make the Heap region a heap again  
heapRebuild(0, anArray, heapSize) 

  // Move the largest item in the Heap region—the root  anArray[0] —to the beginning   
  // of the Sorted region by swapping items and then adjusting the size of the regions  

Swap  anArray[0] and  anArray[heapSize - 1] 
heapSize–– // Decrease the size of the Heap region, expand the Sorted region  

}

 If we begin with the array shown in  Figure   17-9   , the fi rst steps of heap sort are the same as those 
shown in the fi gure, and they transform the array into a heap.  Figure   17-11    traces the heap sort from 
that point on. The C++ implementation of heap sort is left as an exercise.  

 The analysis of the effi ciency of heap sort is similar to that of merge sort, as given in  Chapter   11   . 
Both algorithms are O( n  × log  n ) in both the worst and average cases. Heap sort has an advantage over 
merge sort in that it does not require a second array. Quick sort is also O( n  × log  n ) in the average case 
but is O( n2 ) in the worst case. Even though quick sort has poor worst-case effi ciency, it is generally 
the preferred sorting algorithm.       

Heap sort is 
O(n × log  n ) 

     Question 12   Trace the heap sort as it sorts the following array into ascending order: 25 30 
20 80 40 60 CHECK POINT
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FIGURE 17-11         A trace of heap sort, beginning with the heap in  Figure   17-9      
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     SUMMARY       

  1.   Since a heap is a complete binary tree, it has an effi cient array-based implementation. 

  2.   The root of a maxheap contains the heap’s largest value. The root of a minheap contains the heap’s smallest 
value. 

  3.   To remove the value in the root of a heap, you fi rst replace the value with the value in the last node of the heap. 
This step likely results in a semiheap. After deleting the last node, you convert the semiheap to a heap by a 
trickle-down step. 

  4.   To add an item to a heap, you insert a new leaf into the heap so that it remains a complete binary tree. You then 
use a trickle-up step to reposition the new value. 

  5.   A heap that uses an array-based representation of a complete binary tree is a good implementation of a priority 
queue when you know the maximum number of items that will be stored at any one time. 

  6.   Heap sort converts an array into a heap to locate the array’s largest item. This step enables the heap sort to sort an 
array in an effi cient manner. 

  7.   Heap sort, like merge sort, has good worst-case and average-case behaviors, but neither algorithm is as good in 
the average case as quick sort. Heap sort has an advantage over merge sort in that it does not require a second 
array. 

  EXERCISES       

  1.   Given the minheap  myHeap  in  Figure   17-12   a, show what it would look like after each of the following pseudo-
code operations: 

a. myHeap.add(8)
b. myHeap.add(5)
c. myHeap.remove()

  2.   Given the maxheap  myHeap  in  Figure   17-12   b, show what it would look like after each of the following pseudo-
code operations: 

 a. myHeap.add(16)
 b. myHeap.add(14)
 c. myHeap.remove()

FIGURE 17-12         (a) Minheap for Exercise 1; (b) maxheap for Exercise 2   
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1.   Complete the implementation fi le for the class  ArrayMaxHeap  that is described in  Section   17.2.2   . 

  2.   Use a binary search tree in the implementation of  HeapInterface . Where in the tree will the largest entry occur? 
How effi cient is this implementation? 

  3.   Implement a class of minheaps using an array. Name your class  ArrayMinHeap . 

  4.   Consider the problem of combining two heaps together into a single heap. 

 a.   Write an effi cient algorithm for combining two heaps, one with size  n  and the other with size 1. What is 
the Big O performance of your algorithm?  

 b.   Write an effi cient algorithm for combining two heaps of equal size  n . What is the Big O performance of 
your algorithm?  

 c.   Write an effi cient algorithm for combining two arbitrary-sized heaps into one heap. What is the Big O 
performance of your algorithm?  

 d.   Implement the algorithm that you wrote in part  c .

  5.    Section   2.4.4    of  Chapter   2    discussed the problem of fi nding the  kth  smallest value in an array of  n  values. Design 
an algorithm that uses a minheap to solve this problem. Using the class  ArrayMinHeap  defi ned in Programming 
Problem 3, implement your algorithm as a function at the client level. 

  3.   Repeat Checkpoint Question 10, but instead use the array 9, 12, 4, 8, 3, 11, 6, 15. 

  4.   Prove that the root of a maxheap contains the largest value in the tree. 

  5.   Does the order in which you insert items into a heap affect the heap that results? Explain. 

  6.   Revise the pseudocode for the ADT heap methods  add  and  heapRebuild  so that they do not swap items. 

  7.   Suppose that you have two items with the same priority value. How does the order in which you insert these 
items into a priority queue affect the order in which they will be removed? What can you do if you need entries 
whose priority values are equal to be served on a fi rst-come, fi rst-served basis? 

  8.   Suppose that you wanted the  remove  operation of a priority queue to remove the entry whose priority value is 
smallest instead of largest. You would then use a minheap. Convert the maxheap implementation to a minheap 
implementation.

  9.   Suppose that you wanted to maintain the index of the item with the smallest value in a maxheap. That is, in addi-
tion to a getTop  operation, you might want to support a  getMin  operation. How diffi cult would it be to maintain 
this index within the  add  and  remove  operations? 

  10.   Suppose that after you have placed several items into a priority queue, you need to adjust one of their priority 
values. For example, a particular task in a priority queue of tasks could become either more or less urgent. How 
can you adjust a heap if a single value changes? 

  11.   Show that within the pseudocode for the method  heapCreate  you can replace the statement 

   for  (index = n - 1 down to  0)  

 with 

   for  (index = n / 2 down to  0)  

  12.   Trace the action of  heapSort  on the array given in Checkpoint Question 5. 

  13.   Implement  heapSort  in C++. 

  14.   Revise  heapSort  so that it sorts an array into descending order. 

  PROGRAMMING PROBLEMS         
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  6.   Implement the to-do list described at the beginning of  Section   13.3    in  Chapter   13   . Use the class  Heap_Priori-
tyQueue  as given in Listings 17-3 and 17-4. 

  7.   Suppose that you wanted to implement a priority queue whose priority values are integers 1 through 20. 

 a.   Implement the priority queue as a heap of queues, as described in this chapter.  
 b.   Another solution uses an array of 20 queues, one for each priority value. Use this approach to imple-

ment the priority queue.   

  8.   Write an interactive program that will monitor the fl ow of patients in a large hospital. The program should 
account for patients who check in and out of the hospital and should allow access to information about a given 
patient. In addition, the program should manage the scheduling of three operating rooms. Doctors make a 
request that includes a patient’s name and a priority value between 1 and 10 that refl ects the urgency of the 
operation. Patients are chosen for the operating room by priority value, and patients with the same priority are 
served on a fi rst-come, fi rst-served basis. 

 The user should use either one-letter or one-word commands to control the program. As you design your 
solution, try to identify the essential operations (excuse the pun) that you must perform on the data, and only 
then choose an appropriate data structure for implementation. This approach will allow you to maintain the wall 
between the main part of the program and the implementations. 

  9.   Implement a class of priority queues using a binary search tree to contain its items. Discuss the appropriateness 
and effi ciency of this implementation. 
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This chapter considers the ADT dictionary, which is appropriate for problems that must manage 
data by value. Several dictionary implementations—which use arrays, linked chains, binary search 
trees, and a new technique known as hashing—will be presented, along with their advantages and 
disadvantages. 

 To make an intelligent choice among the various possible dictionary implementations, you must 
analyze the effi ciency with which each of the implementations supports the dictionary operations. 
For example, we analyze the time-effi ciency of array-based and link-based dictionary implementa-
tions and conclude that, in many applications, the implementations do not support the dictionary 
operations as effi ciently as possible. This conclusion motivates the use of more sophisticated 
dictionary implementations.  

      18.1 The ADT Dictionary 
 When we began our discussion of sorting a collection of data in Chapter 11, we introduced the notion 
of a sort key. For example, you might want to sort a collection of data about people based on their 
names, their ages, or their zip codes. The criterion you choose is known as the sort key. Similarly, you 
might want to search the same collection of data for a name, an address, or a phone number. The crite-
rion you choose for this search is known as a  search key . 

 Applications that require value-oriented operations are extremely prevalent, as you might imag-
ine. For example, the tasks 

•   Find the phone number of John Smith  
•   Delete all the information about the employee with ID number 12908   

 involve values instead of positions. We fi rst encountered a value-oriented ADT, the sorted list, in 
 Chapter   12   .  Chapter   15    presented the binary search tree, which is also a value-oriented ADT. This 
section describes yet another value-oriented ADT, the dictionary. 

 Consider the data given in  Figure   18-1    for some major cities in the world. Each city has certain 
information listed, and the design of the data collection enables you to look up this information. For 

FIGURE 18-1         A collection of data about certain cities   

City

Buenos Aires

Cairo

Cape Town

London

Madrid

Mexico City

Mumbai

New York City

Paris

Sydney

Tokyo

Toronto

Country

Argentina

Egypt

South Africa

England

Spain

Mexico

India

U.S.A.

France

Australia

Japan

Canada

Population
13,170,000

14,450,000

3,092,000

12,875,000

4,072,000

20,450,000

19,200,000

19,750,000

9,638,000

3,665,000

32,450,000

4,657,000

VideoNote

The ADT dictionary
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The ADT dictionary 
uses a search key to 
identify its items 

example, if you wanted to know the population of London, you could scan the column of city 
names, starting at the top, until you came to London. Because the cities are listed in alphabetical 
order, you could also mimic a binary search. You could begin the search near the middle of the 
column determine in which half London lies, and recursively apply the binary search to the appro-
priate half. As you know, a binary search is far more effi cient than scanning the entire column of 
city names from the beginning.  

 If, however, you wanted to fi nd out which cities in the data collection are in Spain, you would 
have no choice but to scan the entire data collection. The alphabetical order of the city names does 
not help you for this problem at all. The data arrangement facilitates the search for a given city, but 
other types of questions require a complete scan of the data. 

 The ADT  dictionary , or  map , or  table , also allows you to look up information easily and has a 
special operation for this purpose. Typically, the items in the ADT dictionary are objects that contain 
several pieces of data. You can facilitate the retrieval of an item by basing the search on a specifi ed 
search key. In the dictionary of cities, for example, you could designate  City  as the search key if you 
often needed to retrieve the information about a city. You can devise implementations of a dictionary 
that allow the rapid retrieval of the item(s) whose search key matches some specifi ed value. However, 
if you need to retrieve item(s) based on a value that is not a search key, you will have to inspect the 
entire dictionary. Therefore, the choice of a search key sends the ADT implementer the following 
message:

Arrange the data to facilitate the search for an item, given the value of its search key.

 The basic operations that defi ne the ADT dictionary are as follows:  

Note: ADT dictionary operations 

•   Test whether a dictionary is empty.  
•   Get the number of items in a dictionary.  
•   Insert a new item into a dictionary.  
•   Remove the item with a given search key from a dictionary.  
•   Remove all items from a dictionary.  
•   Get the item with a given search key from a dictionary.  
•   Test whether a dictionary contains an item with a given search key.  
•   Traverse the items in a dictionary in sorted search-key order.   

 For simplicity, we will assume that all items in the dictionary have distinct search keys. This 
assumption can affect our design in one of in several ways: 

•   Distinct search keys can be a precondition of the insertion operation  
•   The insertion operation can deny an attempt to insert a new entry whose search key already 

exists in the dictionary  
•   The insertion operation can replace an existing entry whose search key matches the search key 

of a new entry with the new entry   

 We will choose the fi rst option. 
 The following operation contract specifi es in more detail an ADT dictionary of items with dis-

tinct search keys.  Figure   18-2    shows a UML diagram for a class of dictionaries.              
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Various sets of  
dictionary 
operations are 
possible

 ABSTRACT DATA TYPE: DICTIONARY

DATA

• A fi nite number of objects, each associated with a search key. 

OPERATIONS

PSEUDOCODE DESCRIPTION

 isEmpty()  Task: Sees whether this dictionary is empty. 
 Input: None. 
 Output: True if the dictionary is empty; otherwise false. 

 getNumberOfItems()  Task: Gets the number of items in this dictionary. 
 Input: None. 
 Output: The number of items in the dictionary. 

add(searchKey, newItem)  Task: Inserts an item into this dictionary according to the item’s search key. 
 Input:  newItem  is the data item to be inserted;  searchKey  is the item’s associated 

search key and differs from all search keys presently in the dictionary. 
 Output: True if the insertion is successful, or false if not. 

 remove(searchKey)  Task: Removes the item with the given search key from this dictionary. 
 Input:  searchKey  is the search key of the item to be removed. 
 Output: True if the removal is successful, or false if not. 

 clear()  Task: Removes all entries from this dictionary. 
 Input: None. 
 Output: None. 

 getItem(searchKey)  Task: Gets an item with a given search key from this dictionary. 
 Input:  searchKey  is the search key of the item to be retrieved. 
 Output: The item associated with the given search key. 

 contains(searchKey)  Task: Sees whether this dictionary contains an item with a given search key. 
 Input:  searchKey  is the search key of the desired item. 
 Output: True if the dictionary contains the designated item, or false if not. 

traverse(visit)  Task: Traverses this dictionary and calls a given client function once for each item. 
 Input: The client function visit, which exists outside of the ADT implementation. 
 Output:  visit ’s action occurs once for each item in the dictionary and possibly 

alters the item. 

Our dictionary 
assumes distinct 
search keys 

 You should realize that these operations are only one possible set of dictionary operations. The 
client may require either a subset of these operations or other operations not listed here to fi t the appli-
cation at hand. It may also be convenient to modify the defi nitions of some of the operations. For 
example, these operations assume that no two dictionary items have the same search keys. However, 
in many applications it is quite reasonable to expect duplicate search keys. If this is the case, you must 
redefi ne several of the operations to eliminate the ambiguity that would arise from duplicate search 
keys. For example, which item should  getItem  return if several items have the specifi ed search key? 
You should tailor your defi nition of the ADT dictionary to the problem at hand. 
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 Although just the operations  add, remove  ,  and  getItem  in the previous set of operations are suf-
fi cient for some applications, you cannot do several signifi cant things without additional operations. 
For instance, you cannot display all the dictionary items, because you cannot retrieve a data item 
unless you know the value of its search key. Thus, you cannot display the entire dictionary unless you 
can traverse the dictionary. 

 The  traverse  operation visits each item in the dictionary once. In defi ning this operation, you 
must specify the order in which the traversal should visit the items. One common specifi cation is to 
visit the items in sorted order by search key, but perhaps you do not care about the order in which the 
items are visited. As you will see, the way you defi ne  traverse —if you request it at all—can affect 
the way you implement the dictionary.  

FIGURE 18-2         UML diagram for a class of dictionaries   

Dictionary

+isEmpty(): boolean
+getNumberOfItems(): integer
+add(itemKey: KeyType, newItem: ItemType): boolean
+remove(itemKey: KeyType): boolean
+clear(): void
+geItem(itemKey: KeyType): ItemType
+contains(itemKey: KeyType): boolean
+traverse(visit(item: ItemType): void): void

Other dictionaries 
could allow 
duplicate search 
keys 

  traverse visits all 
dictionary items 

Note: Search keys

 The concept of a search key for the dictionary items is essential to the implementation of the 
dictionary. It is important that the value of the search key remain the same as long as the item 
is stored in the dictionary. Changing the search key of an existing entry in the dictionary 
could make that entry or other dictionary entries impossible to fi nd. Thus, the client should 
not be able to modify the value of an entry’s search key once that entry is in the dictionary. 

 Like the traversal operations for the ADT binary tree,  traverse  has a  visit  function as its argu-
ment. Because visit  can do any number of things—including access the dictionary via the ADT 
operations—traverse  is a versatile operation. We illustrate this versatility with three brief examples, 
in which the dictionary contains the data for the cities listed in  Figure   18-1   . 

Examples:   Each of the following tasks will use the city’s name as the search key. The class  City
contains all the information for a city, including its name, country, and population. The class has 
accessor and mutator methods for each these pieces of data.    

•  Display, in alphabetical order, the name of each city and its population.  This task requires 
you to write the city names in alphabetical order. Since the city names are the search keys, 
traverse  must visit items alphabetically by search key. You pass the method the name of the 
function displayItem , which appears in pseudocode as follows: 

  displayItem(anItem: ItemType): void 

Display  anItem.getName()
Display  anItem.getPopulation()  

Tasks that use  the
city’s name as the 
search key 
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 Although the visitation order of  traverse  is signifi cant for this fi rst task, it is immaterial for the next 
one.

•  Increase the population of each city by 10 percent.   To perform this task, you pass to 
traverse  the name of the function  updatePopulation , which we defi ne in pseudocode as 
follows: 

updatePopulation(anItem: ItemType): void 

        anItem.setPopulation(1.1 * anItem.getPopulation())     

   18.1.1  An Interface for the ADT Dictionary 

 To complete our specifi cation of the ADT dictionary, we write the interface shown in Listing 18-1. 
Note that the interface specifi es two data-type parameters— KeyType  and  ItemType —in the 
statement 

   template<class KeyType , class ItemType> 

 These parameters make it possible for the data type of the dictionary’s data items to differ from the 
data type of their search keys. 

LISTING 18-1 An interface for the ADT dictionary

  /** An interface for the ADT dictionary. 
 @file DictionaryInterface.h */ 

#ifndef _DICTIONARY_INTERFACE 
#define _DICTIONARY_INTERFACE 

#include "NotFoundException.h" 

  template < class KeyType , class ItemType> 
  class DictionaryInterface 
 { 
  public : 
   /** Sees whether this dictionary is empty. 
    @return  True if the dictionary is empty; 
       otherwise returns false. */ 

virtual bool isEmpty() const = 0; 

   /** Gets the number of items in this dictionary. 
    @return  The number of items in the dictionary. */ 

virtual int getNumberOfItems() const = 0; 

   /** Inserts an item into this dictionary according to the item’s 
       search key. 
    @pre  The search key of the new item differs from all search 
        keys presently in the dictionary. 
    @post  If the insertion is successful, newItem is in its 
        proper position within the dictionary. 
    @param searchKey  The search key associated with the item to be inserted.
    @param newItem  The item to add to the dictionary. 
    @return  True if item was successfully added, or false if not. */ 

virtual bool add( const KeyType& searchKey, const ItemType& newItem) = 0; 
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   /** Removes an item with the given search key from this dictionary. 
    @post  If the item whose search key equals searchKey 
      existed in the dictionary, the item was removed. 
    @param searchKey  The search key of the item to be removed. 
    @return  True if the item was successfully removed, or false if not. */ 

virtual bool remove( const KeyType& searchKey) = 0; 

   /** Removes all entries from this dictionary. */ 
virtual void clear() = 0; 

   /** Retrieves an item with a given search key from a dictionary. 
    @post  If the retrieval is successful, the item is returned. 
    @param searchKey  The search key of the item to be retrieved. 
    @return  The item associated with the search key. 
    @throw  NotFoundException if the item does not exist. */ 

virtual ItemType getItem( const KeyType& searchKey) const  
throw (NotFoundException) = 0; 

   /** Sees whether this dictionary contains an item with a given 
       search key. 
    @post  The dictionary is unchanged. 
    @param searchKey  The search key of the item to be retrieved. 
    @return  True if an item with the given search key exists in the 
      dictionary. */ 

virtual bool contains( const KeyType& searchKey) const = 0; 

   /** Traverses this dictionary and calls a given client function once 
       for each item. 
    @post  The given function’s action occurs once for each item in the 
       dictionary and possibly alters the item. 
    @param visit  A client function. */ 

virtual void traverse( void visit(ItemType&)) const = 0; 
 }; // end DictionaryInterface 
 #endif   

Question 1   Using the ADT dictionary operations, write pseudocode for a  replace  func-
tion at the client level that replaces the dictionary item whose search key is  x  with another 
item whose search key is also  x . 

CHECK POINT

   18.2 Possible Implementations 
 In previous chapters, ADT implementations often were either array based or link based. That is, you 
used either an array or a chain of linked nodes to store the ADT’s items. Such implementations are 
called linear  because they represent items one after another in a data structure and thus mirror the fl at, 
list-like appearance of the city data given in  Figure   18-1   . 

 Linear implementations of a dictionary are certainly possible and fall into four categories:    

•   Sorted (by search key), array-based  
•   Sorted (by search key), link-based  

Four categories 
of  linear 
implementations 
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•   Unsorted, array-based  
•   Unsorted, link-based   

 The unsorted implementations store the items in no particular order; they can insert a new item 
into any convenient location. Notice that the  add  operation has two parameters: a data item and the 
item’s search key. The sorted implementations must insert a new item into its proper position as deter-
mined by the value of its search key. Whether sorted or unsorted, the dictionary must not only store 
both pieces of data—search key and data item—but also form an association between the two. To do 
so, we will encapsulate each item with its search key into an object of a new class,  Entry , as pictured 
in  Figure   18-3   .  

FIGURE 18-3         A dictionary entry   

Data itemSearch key

 The array-based and link-based linear implementations have the basic structures shown in 
 Figure   18-4   . Both implementations maintain a count of the present number of items in the diction-
ary. The two implementations in this fi gure happen to be sorted. As you will see, the unsorted and 
sorted implementations have their relative advantages and disadvantages.   

FIGURE 18-4         The data members for two sorted linear implementations of the ADT dictionary 
for the data in  Figure   18-1   : (a) array based; (b) link based   

headPtr
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BarcelonaAthens Venice

VeniceBarcelonaAthens

     Note:   A linear array-based implementation of the ADT dictionary must shift data dur-
ing an insertion in sorted order and when removing an entry. These shifts can be expen-
sive, particularly for large dictionaries. 

 Although a linear link-based implementation of the ADT dictionary eliminates the 
need to shift data, it does not support the insertion and removal operations any more effi -
ciently than does an array-based implementation, because you cannot perform a binary 
search in a reasonable fashion. 

 The header fi le for the class  Entry  is in Listing 18-2. Notice that, like  DictionaryInterface , the 
class Entry  specifi es two data-type parameters. We leave  Entry ’s implementation for you as an exercise. 
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LISTING 18-2 A header fi le for a class of dictionary entries

  /** A class of entry objects for an array-based implementation of the 
 ADT dictionary. 
 @file Entry.h */ 

#ifndef _ENTRY 
#define _ENTRY 

  template < class KeyType , class ItemType> 
  class Entry 
 { 
  private : 
   ItemType item; 
   KeyType searchKey; 

  protected : 
void setKey( const KeyType& searchKey); 

  public : 
   Entry(); 
   Entry(ItemType newEntry, KeyType searchKey); 
   ItemType getItem()  const ; 
   KeyType getKey()  const ; 

void setItem( const ItemType& newEntry); 

bool  operator==(const Entry<KeyType, ItemType>& rightHandItem) const ; 
bool  operator>(const Entry<KeyType, ItemType>& rightHandItem) const ; 

 }; // end Entry 
#include "Entry.cpp" 
 #endif    

Note: Observations about the class Entry

 The class  Entry  has two data members, a dictionary item and an associated search key. It 
also has a set method and a get method for the item portion, but only a public get method 
for the search key. This design prevents us from accidentally changing an  Entry  object’s 
search key, as doing so would destroy the integrity of the dictionary. However,  Entry
does have a protected method  setKey . This method is necessary so that the constructor 
of any derived class of  Entry  can initialize the search key. 

 Notice that the class overloads the operators  ==  and  > . While we will not need these 
overloaded operators for the array-based dictionary, we will use them when we store the 
dictionary’s entries in a binary search tree.   

 At this point in your study of ADTs, you have other choices for a dictionary implementation. For 
instance, you can implement the ADT dictionary by using the ADT list, sorted list, or binary search 
tree. The binary search tree implementation, as illustrated in  Figure   18-5   , is an example of a nonlin-
ear implementation and offers several advantages over linear implementations. Among these advan-
tages is the opportunity to reuse the implementation of the ADT binary search tree discussed in 
 Chapter   16   . Implementations based on the ADTs list and sorted list also share this advantage, and 
they are left for you to consider as exercises.  

A binary search tree 
implementation is 
nonlinear
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 We also will consider an important unsorted implementation that uses a technique known as 
hashing. Although based on an array, this implementation is unlike any you have seen in this book. 

   18.2.1  A Sorted Array-Based Implementation of the ADT Dictionary 

 Whether a dictionary organizes its entries in sorted order by search key or leaves them unsorted, an 
array-based implementation has data members that are similar to those in array-based implementa-
tions of other ADTs that you have seen, namely an array of data items, a count of the items, and a 
maximum number of items. We have already seen that the data items will be  Entry  objects that con-
tain both a search key and some other data. 

 For a sorted dictionary, the operation  traverse  should visit the dictionary’s data items in an 
order such that their search keys are in sorted order. Note that we have specifi ed this behavior in the 
header fi le for the class of dictionaries given in Listing 18-3. Notice also that this dictionary requires 
that its search keys be unique. This requirement will simplify our implementation, but Exercises 7 
and 8 at the end of this chapter ask you to remove this restriction. 

 The declaration of the class  ArrayDictionary  contains nothing unusual, but it does declare two 
private methods— destroyDictionary  and  findEntryIndex . The former method can be called by 
both the destructor and the public method  clear . The latter method locates the entry in the array 
items  that has a given search key. This method is useful for the public methods  remove ,  getItem , and 
contains . Notice that both private methods perform operations needed by more than one public 
method, enabling us to avoid repetitive code in the defi nitions of the public methods. 

FIGURE 18-5         The data members for a binary search tree implementation of the ADT 
dictionary for the data in  Figure   18-1      
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LISTING 18-3 A header fi le for the class ArrayDictionary

  /** An array-based implementation of the ADT dictionary 
 that organizes its data items in sorted search-key order. 
 Search keys in the dictionary are unique. 
 @file ArrayDictionary.h */

#ifndef _ARRAY_DICTIONARY 
#define _ARRAY_DICTIONARY 

#include "DictionaryInterface.h" 
#include "Entry.h" 
#include "NotFoundException.h" 

  template < class KeyType, class ItemType> 
  class ArrayDictionary : public DictionaryInterface<KeyType, ItemType> 
 { 
  private : 

static const int DEFAULT_CAPACITY = 21; // Small capacity to test for 
                      // a full dictionary 

   Entry<KeyType, ItemType>* items;  // Array of dictionary entries 
int itemCount;                        // Current count of dictionary items 
int maxItems;                         // Maximum capacity of the dictionary 

void destroyDictionary(); 
int findEntryIndex( int firstIndex, int lastIndex, 

const KeyType& searchKey) const ; 

  public : 
   ArrayDictionary(); 
   ArrayDictionary( int maxNumberOfEntries); 
   ArrayDictionary( const ArrayDictionary<KeyType, ItemType>& dict); 

virtual ~ArrayDictionary(); 

bool isEmpty() const ; 
int getNumberOfItems() const ; 
bool add( const KeyType& searchKey, const ItemType& newItem); 
bool remove( const KeyType& searchKey); 
void clear(); 

   ItemType getItem( const KeyType& searchKey) const  
             throw (NotFoundException); 

bool contains( const KeyType& searchKey) const ; 

/** Traverses the items in this dictionary in sorted search-key order 
and calls a given client function once for each item. */ 

void traverse( void visit(ItemType&)) const ; 
 }; // end ArrayDictionary 
#include "ArrayDictionary.cpp" 
 #endif 

 The requirement that we traverse the dictionary in sorted search-key order provides one rea-
son to sort the array  items  according to the search key. While we could sort items each time 
traverse  is called, maintaining this array in sorted order has advantages other than avoiding a 
sorting step. One important advantage of a sorted array is that the private method  findEntryIndex
can perform a recursive binary search when looking for a particular search key. Notice that the 
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This dictionary 
implementation has 
a binary search tree 
as a data member 

declaration of this method in Listing 18-3 provides two indices as parameters to indicate the por-
tion of the array to search. 

 The public method  add  bears the responsibility for keeping the array  items  sorted. Let’s examine 
its defi nition: 

   template < class KeyType, class ItemType> 
  bool ArrayDictionary<KeyType, ItemType>::add( const ItemType& newItem, 

const KeyType& searchKey) 
 { 

bool ableToInsert = (itemCount < maxItems); 
if (ableToInsert) 

   { 
// Make room for new entry by shifting all entries at 
// positions >= newPosition toward the end of the array 
// (no shift if newPosition == itemCount + 1). Performing 
// a binary search doesn’t help here, because we need to 
// shift the entries while looking for the insertion location. 
int index = itemCount; 

// Short-circuit evaluation is important 
while ( (index > 0) && (searchKey < items[index-1].getKey()) ) 

        { 
            items[index] = items[index-1]; 
            index–-; 
        }  // end while 

// Insert new entry 
        items[index] = Entry<KeyType, ItemType>(newItem, searchKey); 
        itemCount++; // Increase count of entries 
   }   // end if 

return ableToInsert; 
} // end add 

 Programming Problem 1 at the end of this chapter asks you to complete the implementation of 
ArrayDictionary .       

Question 2   Explain how the  while  loop in the previous defi nition of the method  add
locates the insertion point for the new entry in the array  items . 

CHECK POINT

Question 3   Why is short-circuit evaluation important in the  while  loop of the previous 
defi nition of the method  add ? 

Question 4   We mentioned that the  remove  method calls the private method  findEntryIndex
to locate the entry to remove. Assuming that the entry is located, what does  remove  need to do 
after it gets the index of this entry? 

Question 5   What is the defi nition of the method  traverse  for  ArrayDictionary ? 

   18.2.2  A Binary Search Tree Implementation of the ADT Dictionary 

 Although linear implementations of the ADT dictionary are fi ne for specifi c applications, they are not 
suitable as general-purpose classes. The following nonlinear link-based implementation uses a binary 
search tree to represent the items in the ADT dictionary. That is, the dictionary class will use 
composition and thus will have a binary search tree as one of its data members. In this way, our class 
reuses the class BinarySearchTree  from  Chapter   16   .    
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The header fi le.   The header fi le in Listing 18-4 declares the class  TreeDictionary . Like 
ArrayDictionary ,  TreeDictionary  stores  Entry  objects that encapsulate data items with their cor-
responding search keys. Much of this class is the same as or is similar to  ArrayDictionary , except 
for the private section. It is there that we declare the binary search tree,  itemTree , along with a method 
to help with the traversal operation. 

LISTING 18-4   A header fi le for the class TreeDictionary

  /** A binary search tree implementation of the ADT dictionary 
 that organizes its data items in sorted search-key order. 
 Search keys in the dictionary are unique. 
 @file TreeDictionary.h */ 

#ifndef _TREE_DICTIONARY 
#define _TREE_DICTIONARY 

#include "DictionaryInterface.h" 
#include "BinarySearchTree.h" 
#include "Entry.h" 
#include "NotFoundException.h" 

  template < class KeyType, class ItemType> 
  class TreeDictionary : public DictionaryInterface<KeyType, ItemType> 
 { 
  private : 

// Binary search tree of dictionary entries  
   BinarySearchTree<Entry<KeyType, ItemType> > itemTree; 

void traversalHelper(Entry<KeyType, ItemType>& theEntry); 

  public : 
   TreeDictionary(); 
   TreeDictionary(int maxNumberOfEntries); 
   TreeDictionary(const TreeDictionary<KeyType, ItemType>& dict); 

virtual ~TreeDictionary(); 

// The declarations of the public methods appear here and are the 
// same as given in Listing 18-3 for the class ArrayDictionary. 

   . . . 

 }; // end TreeDictionary 
#include "TreeDictionary.cpp" 
 #endif   

The method implementations.   Several of the methods in  TreeDictionary  simply call the analo-
gous method in BinarySearchTree . For example, the method  add  creates an  Entry  object from the 
item and search key passed to it and then passes that object to the  add  method in  BinarySearchTree . 
The resulting defi nition follows: 

   template < class KeyType, class ItemType> 
  bool TreeDictionary<KeyType, ItemType>::add( const ItemType& newItem, 

const KeyType& searchKey) 
 { 

return itemTree.add(Entry<KeyType, ItemType>(newItem, searchKey)); 
} // end add 
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 Each of the methods  remove ,  getItem , and  contains  is passed a search key as its only argument. 
Each method must search the binary search tree for an  Entry  object that has a particular search key. 
How will  TreeDictionary ’s method  remove , for example, call  BinarySearchTree ’s method  remove ? 
After all, it requires an Entry  object as its argument. 

 The methods of  BinarySearchTree  compare  Entry  objects by using either of the operators  ==  or 
> . These operators are the same ones that  Entry  overloads. Thus, we can control how  Binary-
SearchTree  will make these comparisons. Because we are searching for a specifi c search key, we 
overload  ==  and  >  to examine only the search-key portion of an  Entry  object. For example, the defi ni-
tion of the overloaded operator  ==  in  Entry  is 

   template < class KeyType, class ItemType> 
  bool Entry<KeyType, ItemType>::operator==(
                          const Entry<KeyType, ItemType>& rightHandItem) const  
 { 

return (searchKey == rightHandItem.getKey()); 
} // end operator== 

 Now that  BinarySearchTree  can compare  Entry  objects based only on their search keys, how 
does TreeDictionary ’s method  remove  call  BinarySearchTree ’s  remove ? Because  Binary-
SearchTree ’s  remove  expects an  Entry  object as an argument,  TreeDictionary ’s  remove  creates an 
Entry  object that has a specifi c search key and any item portion, and passes it to the invoked method. 
To create this  Entry  object, you can write the following expression: 

  Entry<KeyType, ItemType>(ItemType(), searchKey) 

 The result is a call to  Entry ’s second constructor with these two arguments: the result of a call to 
ItemType ’s default constructor and the search key that was passed to  TreeDictionary ’s  remove  as an 
argument. Thus, the remove method in TreeDictionary  has the following defi nition: 

   template < class KeyType, class ItemType> 
  bool TreeDictionary<KeyType, ItemType>::remove( const KeyType& searchKey) 
 { 

return itemTree.remove( Entry<KeyType, ItemType>(ItemType(), searchKey)); 
} // end remove 

 We leave the rest of this implementation for you to complete as an exercise.     

Note:   Usually a binary search tree can support the ADT dictionary operations quite effi -
ciently. However, in the worst case, when the tree approaches a linear shape, the perform-
ance of the dictionary operations is comparable to that of a linear link-based implementation. 
If a given application cannot tolerate poor performance, you should use the dictionary 
implementations presented either in  Section   18.4    of this chapter or in  Chapter   19   . 

   18.3 Selecting an Implementation 
 A major goal of this chapter is to indicate how the requirements of a particular application infl u-
ence the selection of an implementation. The discussion here elaborates on the comments made in 
 Section   10.2.4     of Chapter 10. Some applications require all of the ADT dictionary operations given 
earlier; others require either a subset of them or additional operations. Before choosing an imple-
mentation of the ADT dictionary, you as problem solver should carefully analyze which operations 
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you really need for the application at hand. It is tempting to want all possible operations, but this 
strategy is a poor one, because often one implementation supports some of the operations more 
effi ciently than another implementation does. Therefore, if you include an operation that you never 
use, you might end up with an implementation of the ADT that does not best suit your purpose.       

 In addition to knowing what operations are needed for a given application, the ADT implementer 
should know approximately how often the application will perform each operation. Although some 
applications may require many occurrences of every operation, other applications may not. For exam-
ple, if you maintained a dictionary of major cities—such as those in  Figure   18-1   —you would expect 
to perform many more retrieval operations than additions or removals. Thus, if you seldom add items 
to a dictionary, you can tolerate an implementation that results in an ineffi cient  add  operation, as long 
as frequently used operations are effi cient. Of course, as  Chapter   10    mentioned, if an ADT operation 
is to be used in a life-or-death situation, that operation must be effi cient even if you rarely need it. The 
necessary operations, their expected frequency of occurrence, and their required response times are 
therefore some factors that infl uence which implementation of an ADT you should select for a par-
ticular application. You should, however, remain conscious of factors other than effi ciency, as dis-
cussed in  Chapter   10   .    

   18.3.1  Three Scenarios 

 Consider now several different application scenarios, each of which requires a particular mix of the 
dictionary operations. The analysis of various implementations of the ADT dictionary will illustrate 
some of the basic concerns of the analysis of algorithms. You will see, given an application, how to 
select an implementation that supports in a reasonably effi cient manner the required mix of diction-
ary operations. 

  Scenario A: Insertion and traversal in no particular order.   Mary’s sorority plans to raise money 
for a local charity. Tired of previous fund-raisers, Mary suggests a brainstorming session to dis-
cover a new money-making strategy. As sorority members voice their ideas, Mary records them by 
adding each new thought to a dictionary. Later, she will print a report of all the ideas currently in 
the dictionary. Assume that the organization of the report is irrelevant—the items can be sorted or 
unsorted. Also assume that operations such as retrieval, removal, or traversal in sorted order either 
do not occur or occur so infrequently that they do not infl uence your choice of an implementation.    

 For this application, maintaining the items in a sorted order has no advantage. In fact, by not 
maintaining a sorted order, the  add  operation can be quite effi cient. For either unsorted linear imple-
mentation, you can insert a new item into any convenient location. For an unsorted array-based imple-
mentation, you can easily insert a new item after the last item in the array—that is, at location 
items[itemCount] .  Figure   18-6   a shows the result of this insertion after  itemCount  has been updated. 
For a link-based implementation, you can simply insert a new item at the beginning of the linked 
chain. As  Figure   18-6   b illustrates, the head pointer points to the new item, and the new item points to 
the item that was previously fi rst in the chain. Thus, you can insert a new item quickly into either 
unsorted implementation of a dictionary; in fact, the  add  operation is O(1): It requires a constant time 
for either implementation regardless of the dictionary size.  

 Should you choose the array-based or the link-based implementation? As you have seen with 
other ADTs, an implementation that uses dynamically allocated memory is appropriate if you do not 
have a good estimate of the maximum possible size of the dictionary. Mary’s brainstorming session 
likely falls into this category. On the other hand, if you know that the dictionary’s maximum size is not 
drastically larger than its expected size,  1   the choice is mostly a matter of style. An array-based 

What operations are 
needed?

How often is each 
operation required? 

An unsorted order is 
effi cient 

 1    Section   4.5    of  Chapter   4    discussed how the expected and maximum number of items in an ADT affect an array-based
implementation.

Array-based versus 
pointer-based 
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implementation requires less space than a link-based implementation, because no explicit pointer is 
stored. The extra cost of this pointer relative to the size of the data items, however, is insignifi cant in 
most situations because large data items are typical.     

 Should you use a binary search tree in the dictionary implementation for this application? 
Because such an implementation orders the dictionary items, it does more work than the applica-
tion requires. In fact, as you saw in  Chapter   15   , insertion into a binary search tree is O(log  n ) in the 
average case; it is slower than the O(1) linear implementations.  

  Scenario B: Retrieval.   When you use a word processor’s thesaurus to look up synonyms for a word, 
you use a retrieval operation. If an ADT dictionary represents the thesaurus, each dictionary item is a 
record that contains both the word—which is the search key—and the word’s synonyms. Frequent 
retrieval operations require a dictionary implementation that allows you to search effi ciently for an 
item, given its search key. Typically, you cannot alter the thesaurus, so no insertion or removal opera-
tions are necessary. 

 For an array-based implementation, you can use a binary search to retrieve a particular word’s 
synonyms, if the array is sorted. On the other hand, for a link-based implementation, you must 
traverse the linked chain from its beginning until you encounter the word. The binary search performs 
this retrieval in signifi cantly less time than is required to traverse a linked chain. Two questions come 
to mind at this point:       

•   Is a binary search of a linked chain possible?  
•   How much more effi cient is a binary search of an array than a sequential search of a linked 

chain?

 Can you perform a binary search of a linked chain? Yes, but too ineffi ciently to be practical. Con-
sider the very fi rst step of the binary search algorithm:   

Look at the “middle” item in the dictionary

FIGURE 18-6         Insertion for unsorted linear implementations: (a) array based; (b) link based   
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 If  n  items are in a linked chain, how can you possibly get to the middle one? You can traverse the chain 
from its beginning until you have visited  n  / 2 items. But, as you will see in the answer to the second 
question posed before, just this fi rst step will often take longer than the entire binary search of an 
array. Further, you would have the same problem of fi nding the “middle” item at each recursive step. 
It is thus not practical to perform a binary search for the linear link-based implementation. This 
observation is extremely signifi cant. 

 On the other hand, if  n  items are in an array  items , the middle item is at location  n  / 2 and can be 
accessed directly. Thus, a binary search of an array requires considerably less time than an algorithm 
that must inspect every item in the dictionary. What does “considerably less time” mean? As you 
know, without the ability to perform a binary search, you may have to inspect every item in the dic-
tionary, either to locate an item with a particular search key or to detect that such an item is not 
present. In other words, if a dictionary has size  n,  you will have to inspect as many as  n  items; thus, 
such a search is O( n ). How much better can you do with a binary search? Recall from  Chapter   10    that 
a binary search is O(log 2n ) in its worst case and that an O(log 2n ) algorithm is substantially more effi -
cient than an O( n ) algorithm. For example, log 2 1,024 = 10 and log 2 1,048,576 = 20. For a large dic-
tionary, the binary search has an enormous advantage.       

 Because a thesaurus is probably large, you must choose an implementation for which a binary 
search is practical. As you have just seen, this observation eliminates the linear link-based imple-
mentations. The sorted array-based implementation is fi ne here, because you know the size of the 
thesaurus. 

 An implementation using a binary search tree is also a good choice for retrieval-dominated 
applications. As you saw in  Chapter   15   , searching a binary search tree is O(log  n ) if the tree is bal-
anced. Because the thesaurus does not change, you can create a balanced tree that remains balanced 
and be assured of an effi cient search. Although the pointers in a binary search tree add a space cost, as 
scenario A mentioned, this cost is relatively insignifi cant when the data items are large.  

  Scenario C: Insertion, removal, retrieval, and traversal in sorted order.   If your local library has 
computerized its catalog of books, you perform a retrieval operation when you access this catalog. 
The library staff uses insertion and removal operations to update the catalog and a traversal to save the 
entire catalog in a fi le. Presumably, retrieval is the most frequent operation, but the other operations 
are not infrequent enough to ignore. If they were, this scenario would be the same as scenario B! 

 To insert into a dictionary an item whose search key is  X , you must fi rst determine where the item 
belongs in the dictionary’s sorted order. Similarly, to remove from the dictionary an item that has  X  as 
its search key, you must fi rst locate the item. Thus, both the  add  and  remove  operations perform the 
following steps:     

1.   Find the appropriate position in the dictionary.  
2.   Insert into (or remove from) this position.     

 Step 1 is far more effi cient if the dictionary implementation is array based instead of link based. For 
an array-based implementation, you can use a binary search to determine—in the case of insertion—
where the new item  X  belongs and—in the case of removal—where the item is located. On the other 
hand, for a link-based implementation, you know from the discussion in scenario B that a binary 
search is impractical, and so you must traverse the chain from its beginning. You also saw in scenario 
B that it takes signifi cantly less time to perform a binary search of an array than it does to traverse a 
linked chain.       

 Thus, because it facilitates a binary search, the array-based implementation is superior with 
respect to step 1 of add  and  remove . However, as you may have guessed, the link-based implementa-
tion is better for step 2, the actual insertion or removal of the item. Under the array-based implemen-
tation, add  must shift array entries to make room for the new item, as  Figure   18-7   a illustrates. The 
worst case would require that every array entry be shifted. On the other hand, under the link-based 

If  you know the 
dictionary’s 
maximum size, a 
sorted array-based 
implementation is 
appropriate for 
frequent retrievals 

If  you do not know 
the dictionary’s 
maximum size, 
use a binary 
search tree in the 
implementation 

Both add and 
remove perform 
these two steps 

Use an array-based 
implementation for 
step 1 

Use a link-based 
implementation for 
step 2 
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insertions and 
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implementation, you can accomplish this second step simply by changing at most two pointers, as 
 Figure   18-7   b indicates. Similar comments are true for the  remove  operation. It must shift array entries 
to fi ll in the gap created when an item is removed, but it needs to change only two pointers at most to 
remove an item from a linked chain.  

 When you take steps 1 and 2 together, you will fi nd that the sorted array-based and sorted link-
based implementations of add  or  remove  both require roughly the same amount of time—they are 
both O( n ). Neither implementation supports these two operations particularly well. The binary search 
tree implementation, however, combines the best features of the two linear implementations. Because 
it is link based, you avoid shifting data, and the dictionary can grow dynamically as needed. You can 
also retrieve items from a binary search tree effi ciently.      

Note:   When designing an ADT to solve a particular problem, do not include unneces-
sary operations. The proper choice of an implementation depends on the mix of requested 
operations, and if you request an operation that you do not need, you might get an imple-
mentation that does not best support what you are really doing. 

Summary.   Although linear implementations of a dictionary are less sophisticated and generally 
require more time to perform their operations than a binary search tree implementation, they are nev-
ertheless useful for many applications. Because linear implementations are easy to understand con-
ceptually, they are appropriate for dictionaries that will contain only a small number of entries. In 
such cases effi ciency is not as great a concern as are simplicity and clarity. Even when a dictionary is 
large, a linear implementation may still be appropriate for applications that can use an unsorted dic-
tionary and have few removals.     

FIGURE 18-7         Insertion for sorted linear implementations: (a) array based; (b) pointer based   
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 The nonlinear, binary search tree implementation of the ADT dictionary can be a better choice 
than a linear implementation, in general. If an n -node binary search tree has minimum height—that 
is, has height < log 2 ( n  + 1) =—the binary search tree implementation of the ADT dictionary certainly 
succeeds where the linear implementations failed: You can, with effi ciency comparable to that of a 
binary search, locate an item in both the retrieval operation and the fi rst steps of the  add  and  remove
operations. In addition, the link-based implementation of the binary search tree permits dynamic 
allocation of its nodes, so that it can handle a dictionary whose maximum size is unknown.    

 This implementation also effi ciently performs the second step of the insertion and removal oper-
ations: The actual insertion or removal of a node requires only a few pointer changes—plus a short 
traversal to the inorder successor if the node to be removed has two children—rather than the possible 
shifting of all the dictionary entries, as the array-based implementations require. The binary search 
tree implementation therefore combines the best aspects of the two linear implementations, yet avoids 
their disadvantages. 

 As  Chapter   15    showed, however, the height of a binary search tree depends on the order in 
which you perform the  add  and  remove  operations on the tree and can be as large as  n . If the inser-
tion and removal operations occur in a random order, the height of the binary search tree will be 
quite close to its minimum value. You do need to watch for a possible increase in the tree’s height, 
however, and the resulting decrease in performance. If instead you use a variation of the binary 
search tree that remains balanced—as the next chapter will describe—you can keep the height of 
the tree near log 2n . 

  Figure   18-8    summarizes the order of the insertion, removal, retrieval, and traversal operations for 
the dictionary implementations discussed so far in this chapter.         

Note: Comparing linear implementations of the ADT dictionary 

•    An unsorted array-based implementation of the ADT dictionary can effi ciently insert 
an item at the end of an array. A removal, however, will usually require shifting data so 
that no gap remains in the array. Because the items are unsorted, retrieval will require a 
sequential search.  

•    A sorted array-based implementation usually requires shifting data during both inser-
tions and removals. Retrieval, however, can use an effi cient binary search because the 
items are sorted.  

•    An unsorted link-based implementation can effi ciently insert an item at the beginning 
of a linked chain. A removal will require a sequential search but no data shifts. Re-
trieval will also require a sequential search.  

•    A sorted link-based implementation requires a sequential search but no data shifts dur-
ing both insertions and removals. Retrieval will also require a sequential search.   
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FIGURE 18-8         The average-case order of the ADT dictionary operations for various 
implementations
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   18.4 Hashing
 The binary search tree provides an excellent implementation of the ADT dictionary, as do the bal-
anced search trees discussed in  Chapter   19   . They allow you to perform all of the dictionary operations 
quite effi ciently. If, for example, a dictionary contains 10,000 items, the operations  getItem,   add,  and 
remove  each require approximately log 2 10,000 ≈ 13 steps. As impressive as this effi ciency may be, 
situations do occur for which the search-tree implementations are not adequate. 

 As you know, time can be vital. For example, when a person calls the 911 emergency system, the 
system detects the caller’s telephone number and searches a database for the caller’s address. Simi-
larly, an air traffi c control system searches a database of fl ight information, given a fl ight number. 
Clearly these searches must be rapid. 

 A radically different strategy is necessary to locate (and insert or remove) an item virtually 
instantaneously. Imagine an array  table  of  N  items—with each array slot capable of holding a single 
dictionary item—and a seemingly magical box called an “address calculator.” Whenever you have a 
new item that you want to insert into the dictionary, the address calculator will tell you where you 
should place it in the array.  Figure   18-9    illustrates this scenario.     

 You can thus easily perform an insertion into the dictionary as follows: 

  add(newItem: ItemType): boolean 

i = the array index that the address calculator gives you for  newItem’s search key  
table[i] = newItem  

 This  add  operation is O(1); that is, it requires constant time. 
 You also use the address calculator for the  getItem  and  remove  operations. If you want to retrieve 

an item that has a particular search key ,  you simply ask the address calculator to tell you where it 
would insert such an item. Because you would have inserted the item earlier by using the  add  algo-
rithm just given, if the desired item is present in the dictionary, it will be in the array location that the 
address calculator specifi es. 

Note: Perspective

 You might wonder why, if the binary search tree implementation of the ADT dictionary is 
so good, we studied the linear implementations at all. There are three reasons. The fi rst 
and foremost reason is perspective.  Section   10.2.4    of  Chapter   10    spoke of the dangers of 
overanalyzing a problem. If the size of the problem is small, the difference in effi ciency 
among the possible solutions is likely insignifi cant. In particular, if the size of the dic-
tionary is small, a linear implementation is adequate and simple to understand. 

 The second reason is effi ciency: A linear implementation can be quite effi cient for 
certain situations. For example, a linear implementation was best for scenario A, where 
the predominant operations are insertion and traversal in no particular order. For scenario 
B, where the predominant operation is retrieval, the sorted array-based implementation is 
adequate, if the maximum number of items is known. For these situations, a concern for 
simplicity suggests that you use a linear implementation and not a binary search tree, 
even for large dictionaries. 

 The third reason is motivation. By seeing scenarios for which the linear implementa-
tions are not adequate, you are forced to look beyond arrays and consider other imple-
mentations, such as the binary search tree. Actually looking at both a linear 
implementation and a binary search tree implementation allows you to see these inade-
quacies more clearly. 

 Dictionary 
operations without 
searches 

VideoNote

Hashing
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 Thus, the  getItem  operation appears in pseudocode as follows: 

  getItem(searchKey: KeyType): ItemType throw NotFoundException 

i = the array index that the address calculator gives you for an item whose search  
key equals  searchKey

if  (table[i].getKey() == searchKey) 
return  table[i]

else  
Throw  NotFoundException

 Similarly, the pseudocode for the  remove  operation is 

  remove(searchKey: KeyType): boolean 

i = the array index that the address calculator gives you for an item whose search  
key equals  searchKey

if  (table[i].getKey() == searchKey) 
{

Remove the item from  table[i]
        isSuccessful = true  

}
else  

        isSuccessful = false  

return  isSuccessful

 It thus appears that you can perform the operations  getItem,   add,  and  remove  virtually instanta-
neously. You never have to search for an item; instead, you simply let the address calculator determine 
where the item should be. The amount of time required to carry out the operations is O(1) and depends 
only on how quickly the address calculator can perform this computation. 

 If you are to implement such a scheme, you must, of course, be able to construct an address cal-
culator that can, with very little work, tell you where a given item should be. Address calculators are 
actually not as mysterious as they seem; in fact, many exist that can approximate the idealized behav-
ior just described. Such an address calculator is usually referred to as a  hash function . The scheme 
just described is an idealized description of a technique known as  hashing , and the array  table  is 
called the hash table .    

 To understand how a hash function works, consider the 911 emergency system mentioned ear-
lier. If, for each person, the system had a record whose search key was the person’s telephone number, 
it could store these records in a search tree. Although searching a tree would be fast, faster access to a 
particular record would be possible by storing the records in an array  table , as follows. You store the 
record for a person whose telephone number is  t  into  table[t] . Retrieval of the record, then, is 

FIGURE 18-9         Address calculator   
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an array index 

almost instantaneous given its search key  t . For example, you can store the record for the telephone 
number 123-4567 in table[1234567] . If you can spare 10 million memory locations for  table , this 
approach is fi ne. You need not use memory so extravagantly, however, because 911 systems are 
regional. If you consider only one telephone exchange, for example, you can store the record for the 
number 123-4567 in table[4567]  and get by with an array  table  of 10,000 locations. 

 The transformation of 1234567 into an array index 4567 is a simple example of a hash function. 
A hash function h  must take an arbitrary integer  x  and map it into an integer that you can use as an 
array index. In our example, such indices would be in the range 0 through 9999. That is,  h  is a function 
such that for any integer  x , 

h ( x ) � i , where  i  is an integer in the range 0 through 9999 

 Because the database contains entries for every telephone number in a particular exchange, the 
array  table  is completely full. In this sense, our example is not typical of hashing applications and 
serves only to illustrate the idea of a hash function. What if many fewer entries were in the array? 
Consider, for example, an air traffi c control system that stores an entry for each current fl ight accord-
ing to its four-digit fl ight number. You could store an entry for Flight 4567 in  table[4567] , but you 
still would need an array of 10,000 locations, even if only 50 fl ights were current.    

 A different hash function would save memory. If you allow space for a maximum of 101 fl ights, 
for example, so that the array  table  has indices 0 through 100, the necessary hash function  h  should 
map any four-digit fl ight number into an integer in the range 0 through 100. 

 If you have such a hash function  h —and you will see several suggestions for hash functions 
later—the dictionary operations are easy to write. For example, in the  getItem  algorithm, the step 

  i = the array index that the address calculator gives you for an item whose search  
key equals  searchKey  

 is implemented simply as 

  i = h(searchKey)  

 In the previous example,  searchKey  would be the fl ight number. 
 Although the dictionary operations appear to be virtually instantaneous, is hashing really as 

good as it sounds? If it really was this good, there would have been little reason for developing all 
those other dictionary implementations. Hashing would beat them hands down! 

 Why is hashing not quite as simple as it seems? You might fi rst notice that since the hashing 
scheme stores the items in an array, it would appear to suffer from the familiar problems associated 
with a fi xed-size implementation. Obviously, the hash table must be large enough to contain all of the 
items that you want to store. This requirement is not the crux of the implementation’s diffi culty, how-
ever, for—as you will see later—there are ways to allow the hash table to grow dynamically. But the 
implementation does have a major pitfall, even given the assumption that the number of items to be 
stored will never exceed the size of the hash table. 

 Ideally, you want the hash function to map each search key  x  into a unique integer  i . The hash 
function in the ideal situation is called a perfect hash function . In fact, it is possible to construct 
perfect hash functions if you know all of the possible search keys that  actually  occur in the dictionary. 
You have this knowledge for the 911 example, since everyone is in the database, but not for the air 
traffi c control example. Usually, you will not know the values of the search keys in advance.    

 In practice, a hash function can map two or more search keys  x  and  y  into the  same  integer. That 
is, the hash function tells you to store two or more items in the same array location  table[i] . This 
occurrence is called a  collision.  Thus, even if fewer than 101 items were present in the hash table 
table[0..100] ,  h  could very well tell you to place more than one item into the same array location. 
For example, if two items have search keys 4567 and 7597, and if    

A perfect hash 
function maps each 
search key into a 
unique location of  
the hash table 

A perfect hash 
function is possible 
if  you know all the 
search keys 
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h (4567) � h (7597) = 22 

h  will tell you to place the two items into the same array location,  table[22] . That is, the search keys 
4567 and 7597 have collided.    

 Even if the number of items that can be in the array at any one time is small, the only way to avoid 
collisions completely is for the hash table to be large enough that each possible search-key value can 
have its own location. If, for example, Social Security numbers were the search keys, you would need 
an array location for each integer in the range 000000000 through 999999999. This situation would 
certainly require a good deal of storage! Because reserving vast amounts of storage is usually not 
practical, collision-resolution schemes are necessary to make hashing feasible. Such schemes usually 
require that the hash function place items evenly throughout the hash table. 

 To summarize, a typical hash function must    

•   Be easy and fast to compute  
•   Place items evenly throughout the hash table   

 Note that the size of the hash table affects the ability of the hash function to distribute the items evenly 
throughout the table. The requirements of a hash function will be discussed in more detail later in this 
chapter. 

 Consider now several hash functions and  collision-resolution schemes . 

   18.4.1  Hash Functions 

 It is suffi cient to consider hash functions that have an arbitrary integer as an argument. Why? If a 
search key is not an integer, you can simply map the search key into an integer, which you then hash. 
At the end of this section, you will see one way to convert a string into an integer. 

 There are many ways to convert an arbitrary integer into an integer within a certain range, such as 
0 through 100. Thus, there are many ways to construct a hash function. Many of these functions, how-
ever, will not be suitable. Here are several simple hash functions that operate on positive integers.    

  Selecting digits.   If your search key is the nine-digit employee ID number 001364825, you could 
select the fourth digit and the last digit, to obtain 35 as the index to the hash table. That is, 

h (001364825) � 35 ( select the fourth and last digits )

 Therefore, by using digit selection to defi ne your hash function, you would store the item whose 
search key is 001364825 in  table[35] . 

 You do need to be careful about which digits you choose in a particular situation. For example, 
the fi rst three digits of a Social Security number are based on the geographic region in which the 
number was assigned. If you select only these digits, you will map all people from the same state into 
the same location of the hash table. 

 Digit-selection hash functions are simple and fast, but generally they do not evenly distribute the 
items in the hash table. A hash function really should utilize the entire search key.     

  Folding.   One way to improve on the previous approach of selecting digits is to add the digits. The 
resulting process is known as folding. For example, you can add all of the digits in 001364825 to obtain 

 0�0�1�3�6�4�8�2�5 � 29  ( add the digits )

 Therefore, you would store the item whose search key is 001364825 in  table[29] . Notice that if you 
add all of the digits from a nine-digit search key, 

 0� h(search key )�81

Requirements for a 
hash function 

It is suffi cient for 
hash functions to 
operate on integers 

Digit selection does 
not distribute items 
evenly in the hash 
table 
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 That is, you would use only  table[0]  through  table[81]  of the hash table. To change this situation 
or to increase the size of the hash table, you can group the digits in the search key and add the groups. 
For example, you could form three groups of three digits from the search key 001364825 and add 
them as follows: 

 001�364�825 � 1,190 

 For this hash function, 

 0 �  h ( search key )� 3 � 999 � 2,997 

 Clearly, if 2,997 is larger than the size of the hash table that you want, you can alter the groups that 
you choose. Perhaps not as obvious is that you can apply more than one hash function to a search key. 
For example, you could select some of the digits from the search key before adding them, or you 
could either select digits from the previous result 2,997 or apply folding to it once again by adding 29 
and 97.     

  Modulo arithmetic.   Modulo arithmetic provides a simple and effective hash function that we will 
use in the rest of this chapter. For example, consider the function  2

h ( x ) � x  mod  tableSize  

 where the hash table has  tableSize  elements. In particular, if  tableSize  is 101,  h ( x ) =  x  mod 101 maps 
any integer  x  into the range 0 through 100. For example,  h  maps 001364825 into 12. 

 For  h ( x ) =  x  mod  tableSize , many  x ’s map into  table[0] , many  x ’s map into  table[1] , and so on. 
That is, collisions occur. However, you can distribute the dictionary items evenly over all of  table —
thus reducing collisions—by choosing a prime number as  tableSize . For instance, 101 in the previous 
example is prime. The choice of table size will be discussed in more detail later in this chapter. For 
now, realize that 101 is used here as a simple example of a prime table size. For the typical hash table, 
101 is much too small.     

  Converting a character string to an integer.   If your search key is a character string—such as a 
name—you could convert it into an integer before applying the hash function  h ( x ). To do so, you 
could fi rst assign an integer value to each character in the string. For example, for the word “NOTE” 
you could assign the ASCII values 78, 79, 84, and 69, to the letters  N ,  O ,  T , and  E , respectively. Or, if 
you assign the values 1 through 26 to the letters  A  through  Z , you could assign 14 to  N , 15 to  O , 20 to 
T , and 5 to  E . 

 If you now simply add these numbers, you will get an integer, but it will not be unique to the char-
acter string. For example, the word “TONE” will give you the same result. Instead, you can write the 
numeric value for each character in binary and concatenate the results. If you assign the values 1 
through 26 to the letters A  through  Z , you obtain the following result for the word “NOTE”: 

N is 14, or 01110 in binary  
O is 15, or 01111 in binary  
T is 20, or 10100 in binary  
E is 5, or 00101 in binary   

 Concatenating the binary values gives you the binary integer 

 01110011111010000101 

 which is 474,757 in decimal. You can apply the hash function  x  mod  tableSize  for  x  = 474,757. 

 2   Remember that this book uses “mod” as an abbreviation for the mathematical operation modulo. In C++, the modulo 
operator is %. 

The dictionary size 
should be prime 



 Hashing 549

 Now consider a more effi cient way to compute 474,757. Rather than converting the previous 
binary number to decimal, you can evaluate the expression 

 14 � 323 � 15 � 322 � 20 � 321 � 5 � 320

 This computation is possible because we have represented each character as a 5-bit binary number, 
and 2 5  is 32. 

 By factoring this expression, you can minimize the number of arithmetic operations. This tech-
nique is called Horner’s rule and results in    

 ((14 � 32 � 15) � 32 � 20) � 32 � 5 

 Although both of these expressions have the same value, the result in either case could very well be 
larger than a typical computer can represent; that is, an overfl ow can occur. If you use the hash 
function

h ( x ) � x  mod  tableSize

 you can prevent an overfl ow by applying the modulo operator after computing each parenthesized 
expression in Horner’s rule. The implementation of this algorithm is left as an exercise.    

Horner’s rule 
minimizes the 
number of  
computations 

     Programming Tip:   You can use the following hash function—named 
getHashIndex —in your programs. C++ Interlude 7 will discuss the Standard Template 
Library (STL) and make sense of the way that this function uses the STL. 

   template < class KeyType, class ItemType> 
  int HashedDictionary<KeyType, ItemType>:: 
 getHashIndex( const KeyType& key) const  
 { 

// We are creating a hash function type called hashFunction that hashes 
// a search key. First we create an unordered_map object for our KeyType 
// and ItemType. 

   std::tr1::unordered_map<KeyType, ItemType> mapper; 

// Then we invoke the method hash_function to return the hash function 
// for the KeyType and assign it to 'hashFunction'. 
typename std::tr1::unordered_map<KeyType, ItemType>:: 

         hasher hashFunction = mapper.hash_function(); 

// Need static_cast because hashFunction returns an unsigned long. 
return static_cast < int>(hashFunction(searchKey) % hashTableSize); 

} // end getHashIndex 

   18.4.2  Resolving Collisions 

 Consider the problems caused by a collision. Suppose that you want to insert an item whose search 
key is 4567 into the hash table  table,  as was described previously. The hash function  h ( x ) =  x  mod 
101 tells you to place the new item in  table[22] , because 4567 mod 101 is 22. Suppose, however, 
that table[22]  already contains an item, as  Figure   18-10    illustrates. If earlier you had placed 7597 
into table[22]  because 7597 mod 101 equals 22, where do you place the new item? You certainly do 
not want to disallow the insertion on the grounds that the dictionary is full: You could have a collision 
even when inserting into a dictionary that contains only one item!  
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collision resolution 

 Two general approaches to collision resolution are common. One approach places the new item 
into another location within the hash table. A second approach changes the structure of the hash table 
so that each location table[i]  can accommodate more than one item. The collision-resolution 
schemes described next exemplify these two approaches.    

  Approach 1: Open addressing.   During an attempt to insert a new item into a dictionary, if the hash 
function indicates a location in the hash table that is already occupied, you look—or probe—for
some other empty, or  open,  location in which to place the item. The sequence of locations that you 
examine is called the  probe sequence . 

 Such schemes are said to use  open addressing . The concern, of course, is that you must be 
able to fi nd a dictionary item effi ciently after you have inserted it. That is, the  remove  and  getItem
operations must be able to reproduce the probe sequence that  add  used and must do so effi ciently. 

 The difference among the various open-addressing schemes is the technique used to probe for an 
empty location. We briefl y describe three such techniques. 

Linear probing.   In this simple scheme to resolve a collision, you search the hash table sequentially, 
starting from the original hash location. More specifi cally, if  table[h(searchKey)]  is occupied, you 
check the dictionary locations  table[h(searchKey)+1] ,  table[h(searchKey)+2] , and so on until 
you fi nd an available location.  Figure   18-11    illustrates the placement of four items that all hash into 
the same location table[22]  of the hash table, assuming a hash function  h ( x ) =  x  mod 101. Typically, 
you  wrap around  from the last array location to the fi rst array location if necessary.     

 In the absence of removals, the implementation of  getItem  under this scheme is straightforward. 
You need only follow the same probe sequence that  add  used until you either fi nd the item you are 
searching for; reach an empty location, which indicates that the item is not present; or visit every 
table location. 

 Removals, however, complicate matters slightly. The  remove  operation itself is no problem. You 
merely fi nd the desired item, as in  getItem , and remove it from the hash table, making the location 
empty. But now what happens when  getItem  needs to locate an item? The new empty locations that 
remove  created along a probe sequence could cause  getItem  to stop prematurely, incorrectly indicat-
ing a failure. You can solve this problem by placing a table location into one of three states: occupied 

FIGURE 18-10         A collision   
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(currently in use), empty (has not been used), or removed (was once occupied but is now available). 
You then modify the  getItem  operation to continue probing when it encounters a location in the 
removed state. Similarly, you modify  add  to insert into locations that are in either the empty or 
removed states.       

 One of the problems with the linear-probing scheme is that items tend to  cluster  together in the 
hash table. That is, the table contains groups of consecutively occupied locations. This phenomenon 
is called primary clustering . Clusters can get close to one another and, in fact, merge into a larger 
cluster. Large clusters tend to get even larger. Thus, one part of the hash table might be quite densely 
populated, even though another part has relatively few items.    

FIGURE 18-11         Linear probing with  h ( x ) =  x  mod 101   
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Note:   Primary clustering causes long probe searches and therefore decreases the over-
all effi ciency of hashing. 

Question 6   Write the pseudocode for the  remove  operation when linear probing is used to 
implement the hash table. 

CHECK POINT

Quadratic probing.   You can virtually eliminate primary clusters simply by adjusting the linear prob-
ing scheme just described. Instead of probing consecutive table locations from the original hash loca-
tiontable[h(searchKey)] , you check locations  table[h(searchKey)+12],   table[h(searchKey)+22],
table[h(searchKey)+32],  and so on until you fi nd an available location.  Figure   18-12    illustrates this 
open-addressing scheme—which is called  quadratic probing —for the same items that appear in 
 Figure   18-11   . 

 Unfortunately, when two items hash into the same location, quadratic probing uses the same 
probe sequence for each item. The resulting phenomenon—called  secondary clustering —delays the 
resolution of the collision. Although the research of quadratic probing remains incomplete, it appears 
that secondary clustering is not a problem.  
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  Double hashing.   Double hashing, which is yet another open-addressing scheme, drastically reduces 
clustering. The probe sequences that both linear probing and quadratic probing use are  key inde-
pendent . For example, linear probing inspects the locations in the hash table sequentially no matter 
what the hash key is. In contrast, double hashing defi nes  key-dependent  probe sequences. In this 
scheme the probe sequence still searches the hash table in a linear order, starting at the location 
h1 ( key ), but a second hash function  h2  determines the size of the steps taken. 

 Although you choose  h1  as usual, you must follow these guidelines for  h2 :    

h2  ( key ) � 0 

h2 � h1

 Clearly, you need a nonzero step size  h2 ( key ) to defi ne the probe sequence. In addition,  h2  must differ 
from h1  to avoid clustering.    

 For example, let  h1  and  h2  be the primary and secondary hash functions defi ned as   

h1  ( key ) � key mod 11

h2  ( key ) � 7 � (key mod 7)

 where a hash table of only 11 items is assumed, so that you can readily see the effect of these functions 
on the hash table. If  key  = 58,  h1  hashes  key  to dictionary location 3 (58 mod 11), and  h2  indicates that 
the probe sequence should take steps of size 5 (7 – 58 mod 7). In other words, the probe sequence will 
be 3, 8, 2 (wraps around), 7, 1 (wraps around), 6, 0, 5, 10, 4, 9. On the other hand, if  key  = 14,  h1
hashes key  to table location 3 (14 mod 11), and  h2  indicates that the probe sequence should take steps 
of size 7 (7 – 14 mod 7), and so the probe sequence would be 3, 10, 6, 2, 9, 5, 1, 8, 4, 0. 

 Each of these probe sequences visits  all  the table locations. This phenomenon always occurs if 
the size of the hash table and the size of the probe step are relatively prime, that is, if their greatest 
common divisor is 1. Because the size of a hash table is commonly a prime number, it will be rela-
tively prime to all step sizes. 

  Figure   18-13    illustrates the insertion of 58, 14, and 91 into an initially empty hash table. Because 
h1 (58) is 3, you place 58 into  table[3] . You then fi nd that  h1 (14) is also 3, so to avoid a collision, you 
step by  h2 (14) = 7 and place 14 into  table[3   +   7] , or  table[10] . Finally,  h1 (91) is 3 and  h2 (91) is 7. 

Guidelines for the 
step-size function h 2  

Primary and 
secondary hash 
functions

FIGURE 18-12         Quadratic probing with  h ( x ) =  x  mod 101   
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Because table[3]  is occupied, you probe  table[10]  and fi nd that it, too, is occupied. You fi nally 
store 91 in table[(10   +   7)   %   11] , or  table[6] . 

 While more than two hash functions can be desirable, such schemes are diffi cult to implement.    

FIGURE 18-13         Double hashing during the insertion of 58, 14, and 91   
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Question 7   What is the probe sequence that double hashing uses when 

h1  ( key ) � key mod 11, h2  ( key ) � 7 � ( key  mod 7), and  key � 19?CHECK POINT

Note: Rehashing

 After creating a new, larger hash table of an appropriate size, you use the dictionary 
method add  to add each item in the original hash table to the new table. The method com-
putes the hash index using the size of the new table and handles any collisions. This 
process of enlarging a hash table and computing new hash indices for its contents is 
called rehashing . You can see that increasing the size of a hash table requires considera-
bly more work than increasing the size of an ordinary array. Rehashing is a task that you 
should not do often. 

  Increasing the size of the hash table.   With any of the open-addressing schemes, as the hash 
table fi lls, the probability of a collision increases. At some point, a larger hash table becomes desira-
ble. If you use a dynamically allocated array for the hash table, you can increase its size whenever the 
dictionary becomes too full. 

 You cannot simply double the size of the array, as we did in earlier chapters, because the size of 
the hash table must remain prime. In addition, you do not simply move the items from the original 
hash table to the new hash table. If your hash function is  x  mod  tableSize , it changes as  tableSize
changes. Thus, you need to apply your new hash function to every item in the old hash table before 
placing it into the new hash table.    
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  Approach 2: Restructuring the hash table.   Another way to resolve collisions is to change the 
structure of the array  table —the hash table—so that it can accommodate more than one item in the 
same location. We describe two such ways to alter the hash table.    

Buckets.   If you defi ne the hash table so that each location  table[i]  is itself an array—called a 
bucket —you can store the items that hash into  table[i]  in this array. The problem with this 
approach, of course, is choosing the size b  of each bucket. If  b  is too small, you will only have post-
poned the problem of collisions until  b  + 1 items map into some array location. If you attempt to make 
b  large enough so that each array location can accommodate the largest number of items that might 
map into it, you are likely to waste a good deal of storage.     

  Separate chaining.   A better approach than using buckets is to design the hash table as an array of 
linked chains. In this collision-resolution technique, known as  separate chaining , each entry 
table[i]  is a pointer to a chain of linked nodes containing the items that the hash function has 
mapped into location i , as  Figure   18-14    illustrates. Separate chaining provides a successful approach 
to resolving collisions. With separate chaining, the size of the dictionary is dynamic and can exceed 
the size of the hash table, because each linked chain can be as long as necessary. As you will see in the 
next section, the length of these chains affects the effi ciency of retrievals and removals. Even so, sep-
arate chaining is the most time-effi cient collision-resolution scheme.    

 We will discuss an implementation of the ADT dictionary using hashing and separate chaining in 
 Section   18.4.6    of this chapter.         

FIGURE 18-14         Separate chaining   

0

1

2

tableSize – 1

table

Each location of 
the hash table 
contains a pointer 
to a linked chain

Question 8   If  h ( x ) =  x  mod 7 and separate chaining resolves collisions, what does the 
hash table look like after the following insertions occur: 8, 10, 24, 15, 32, 17? Assume that 
each item contains only a search key. 

CHECK POINT
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   18.4.3  The Effi ciency of Hashing 

 An analysis of the average-case effi ciency of hashing involves the  load factor alpha (�)  , which is the 
ratio of the current number of items in the dictionary to the maximum size of the array  dictionary . 
That is,    

� 5
Current number of table items

tableSize
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� is a measure of how full the hash table is. As the table fi lls, α increases and the chance of collision 
increases, so search times increase. Thus, hashing effi ciency decreases as � increases. 

 Unlike the effi ciency of earlier dictionary implementations, the effi ciency of hashing does not 
depend solely on the number  n  of items in the dictionary. While it is true that for a fi xed  tableSize
effi ciency decreases as  n  increases, for a given  n  you can choose  tableSize  to increase effi ciency. 
Thus, when determining the size of the hash table, you should estimate the largest possible  n  and 
select tableSize  so that � is small. As you will see shortly, � should not exceed 2/3.    

 Hashing effi ciency for a particular search also depends on whether the search is successful. An 
unsuccessful search requires more time in general than a successful search. The following analyses  3

enable a comparison of collision-resolution techniques.  

  Linear probing.   For linear probing, the approximate average number of comparisons that a search 
requires is 

1

2
c1 1 1

1 2 �
d      for a successful search, and 

1

2
c1 1 111 2 � 2 2 d      for an unsuccessful search 

 As collisions increase, the probe sequences increase in length, causing increased search times. 
For example, for a dictionary that is two-thirds full (� = 2/3), an average unsuccessful search 
might require at most fi ve comparisons, or probes, while an average successful search might 
require at most two comparisons. To maintain effi ciency, it is important to prevent the hash table 
from fi lling up.     

  Quadratic probing and double hashing.   The effi ciency of both quadratic probing and double hash-
ing is given by 

2 loge (1 2 �)

�
   for a successful search, and 

1

1 2 �
     for an unsuccessful search 

 On average, both techniques require fewer comparisons than linear probing. For example, for a dic-
tionary that is two-thirds full, an average unsuccessful search might require at most three compari-
sons, or probes, while an average successful search might require at most two comparisons. As a 
result, you can use a smaller hash table for both quadratic probing and double hashing than you can 
for linear probing. However, because they are open-addressing schemes, all three approaches suffer 
when you are unable to predict the number of insertions and removals that will occur. If your hash 
table is too small, it will fi ll up, and search effi ciency will decrease.     

  Separate chaining.   Because the dictionary’s  add  operation places the new item at the beginning of a 
linked chain within the hash table, it is O(1). The  getItem  and  remove  operations, however, are not as 
fast. They each require a search of the linked chain of items, so ideally you would like for these chains 
to be short.    

 For separate chaining,  tableSize  is the number of chains, not the maximum number of diction-
ary items. Thus, it is entirely possible, and even likely, that the current number of dictionary items 
n  exceeds  tableSize . That is, the load factor �, or n  /  tableSize , can exceed 1. Because  tableSize  is 
the number of linked chains,  n  /  tableSize —that is, �—is the average length of each linked chain. 

 3   D. E. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming (Menlo Park, CA: Addison-Wesley, 1973). 
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 Some searches of the hash table are unsuccessful because the relevant chain is empty. Such 
searches are virtually instantaneous. For an unsuccessful search of a nonempty chain, however, 
getItem  and  remove  must examine the entire chain, or � items in the average case. On the other hand, 
a successful search must examine a nonempty chain. In the average case, the search will locate the 
item in the middle of the chain. That is, after determining that the linked chain is not empty, the search 
will examine � / 2 items. 

 Thus, the effi ciency of the retrieval and removal operations under the separate-chaining approach is    

1 1
�

2
     for a successful search, and 

� for an unsuccessful search 

 Even if the linked chains typically are short, you should still estimate the worst case. If you seri-
ously underestimate  tableSize , or if most of the dictionary items happen to hash into the same loca-
tion, the number of items in a chain could be quite large. In fact, in the worst case, all  n  items in the 
dictionary could be in the same linked chain! 

 As you can see, the time that a retrieval or removal operation requires can range from almost 
nothing—if the linked chain to be searched either is empty or has only a couple of items in it—to the 
time required to search a chain that contains all the items in the dictionary, if all the items hashed into 
the same location.  

  Comparing techniques.    Figure   18-15    plots the relative effi ciency of the collision-resolution 
schemes just discussed. When the hash table is about half full—that is, when � is 0.5—the techniques 
are nearly equal in effi ciency. As the dictionary fi lls and � approaches 1, separate chaining is the most 
effi cient technique. Does this mean that we should discard all other search algorithms in favor of 
hashing with separate chaining?  

FIGURE 18-15         The relative effi ciency of four collision-resolution methods   
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 No. The analyses here are average-case analyses. Although an implementation of the ADT dic-
tionary that uses hashing might often be faster than one that uses a search tree, in the worst case it can 
be much slower. If you can afford both an occasional slow search and a large  tableSize —that is, a 
small �—then hashing can be an attractive dictionary implementation. However, if you are perform-
ing a life-and-death search for your city’s poison control center, a search-tree implementation would 
at least provide you with a guaranteed limit on its worst-case behavior.   

 Furthermore, while separate chaining is the most time-effi cient collision-resolution scheme, you 
do have the storage overhead of the pointers in the linked chain. If the data entries in the dictionary are 
small, the pointers add a signifi cant overhead in storage, and you may want to consider a simpler 
collision-resolution scheme. On the other hand, if the entries are large, the addition of a pointer is 
insignifi cant, so separate chaining is a good choice.    

In the worst case, 
a hashing 
implementation 
of  a dictionary can 
be much slower 
than other 
implementations 

Note: Maintaining the performance of hashing

 Collisions and their resolution typically cause the load factor � to increase and the effi -
ciency of the dictionary operations to decrease. To maintain effi ciency, you should 
restrict the size of � as follows: 

•   � < 0.5 for open addressing  
•   � < 1.0 for separate chaining   

 Should the load factor exceed these bounds, you must increase the size of the hash table 
using rehashing. 

   18.4.4  What Constitutes a Good Hash Function? 

 Before we conclude this introduction to hashing, consider in more detail the issue of choosing a hash 
function to perform the address calculations for a given application. A great deal has been written on 
this subject, most of which is beyond the mathematical level of this book. However, this section will 
present a brief summary of the major concerns. 

•  Is the hash function easy and fast to compute?   If a hashing scheme is to perform dictionary 
operations almost instantaneously and in constant time, you certainly must be able to calculate 
the hash function rapidly. Most of the common hash functions require only a single division 
(like the modulo operation), a single multiplication, or some kind of “bit-level” operation on 
the internal representation of the search key. In all these cases, the requirement that the hash 
function be easy and fast to compute is satisfi ed.  

•  Does the hash function scatter the data evenly throughout the hash table?   Unless you use 
a perfect hash function—which is usually impractical to construct—you typically cannot 
avoid collisions entirely. For example, to achieve the best performance from a separate-
chaining scheme, each entry  table[i]  should point to a chain containing approximately 
the same number of items; that is, each chain should contain approximately  n  /  tableSize
items (and thus no chain should contain signifi cantly more than  n  /  tableSize  items). To 
accomplish this goal, your hash function should scatter the search keys evenly throughout 
the hash table.     

•  How well does the hash function scatter random data?   If every search-key value is equally 
likely, will the hash function scatter the search keys evenly? For example, consider nine-digit 
employee ID numbers as the search keys, a hash table  table[0..39] , and a hash function 
h ( x ) = (fi rst two digits of  x ) mod 40. If all employee ID numbers are equally likely, does a given 
ID number x  have equal probability of hashing into any one of the 40 array locations? For this 
hash function, the answer is no. Only ID numbers that start with 19, 59, and 99 map into 
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 General 
requirements of  a 
hash function 

table[19] , while only ID numbers that start with 20 and 60 map into  table[20] . In general, 
three different ID  prefi xe s—that is, the fi rst two digits of an ID number—map into each array 
location 0 through 19 ,  while only two different prefi xes map into each array location 20 
through 39. Because all ID numbers are equally likely—and thus all prefi xes 00 through 99 are 
equally likely—a given ID number is 50 percent more likely to hash into one of the locations 0 
through 19 than it is to hash into one of the locations 20 through 39 .  As a result, each array 
location 0 through 19 would contain, on average, 50 percent more items than each location 20 
through 39.    

 Thus, the hash function 

h ( x ) � (fi rst two digits of  x ) mod 40 

  does not scatter random data evenly throughout the array  table[0..39] . On the other hand, it 
can be shown that the hash function 

h ( x ) � x  mod 101 

  does, in fact, scatter random data evenly throughout the array  table[0..100] .      
•  How well does the hash function scatter nonrandom data?   Even if a hash function scatters 

random data evenly, it may have trouble with nonrandom data. In general, no matter what hash 
function you select, it is always possible that the data will have some unlucky pattern that will 
result in uneven scattering. Although there is no way to guarantee that a hash function will 
scatter all data evenly, you can greatly increase the likelihood of this behavior. 

 As an example, consider a hash table  table[0..39]  and a hash function  h ( x ) = fi rst two 
digits of x . If every ID number is equally likely,  h  will scatter the search keys evenly through-
out the array. But what if every ID number is not equally likely? For instance, a company 
might assign employee IDs according to department, as follows: 

   10xxxxx  Sales  
  20xxxxx  Customer Relations  
  . . .  
  90xxxxx  Data Processing   

  Under this assignment, only 9 out of the 100 array locations would contain any items at all. 
Further, those locations corresponding to the largest departments (Sales, for example, which 
corresponds to  table[10] ) would contain more items than those locations corresponding to 
the smallest departments. This scheme certainly does not scatter the data evenly. 

 Much research has been done into the types of hash functions you should use to guard 
against various types of patterns in the data. The results of this research are really in the prov-
ince of more advanced courses, but two general principles can be noted here: 

•   The calculation of the hash function should involve the  entire search key . Thus, for exam-
ple, computing a modulo of the entire ID number is much safer than using only its fi rst 
two digits.     

•   If a hash function uses modulo arithmetic, the  base should be prime;  that is, if  h  is of the 
form 

h ( x ) =  x  mod  tableSize

  then  tableSize  should be a prime number. This selection of  tableSize  is a safeguard against 
many subtle kinds of patterns in the data (for example, search keys whose digits are likely to 
be multiples of one another). Although each application can have its own particular kind of 
patterns and thus should be analyzed on an individual basis, choosing a prime number for 
tableSize  is an easy way to safeguard against some common types of patterns in the data. 

A function that does 
not scatter random 
data evenly 

A function that does 
scatter random data 
evenly
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   18.4.5   Dictionary Traversal:  An Ineffi cient Operation 
Under Hashing 

 For many applications, hashing provides the most effi cient implementation of the ADT diction-
ary. One important dictionary operation—traversal in sorted order—performs poorly when hash-
ing implements the dictionary. As was mentioned previously, a good hash function scatters items 
as randomly as possible throughout the array, so that no ordering relationship exists between a 
search key that hashes into  table[i]  and one that hashes into  table[i + 1] . As a consequence, 
if you must traverse the dictionary in sorted order, you fi rst would have to sort the items. If sort-
ing were required frequently, hashing would be a far less attractive implementation than a search 
tree. 

 Traversing a dictionary in sorted order is really just one example of a whole class of opera-
tions that hashing does not support well. Many similar operations that you often wish to perform 
on a dictionary require that the items be ordered. For example, consider an operation that must 
fi nd the dictionary item whose search key is the smallest or largest. If you use a search-tree imple-
mentation, these items are in the leftmost and rightmost nodes of the tree, respectively. If you use 
a hashing implementation, however, you do not know where these items are—you would have to 
search the entire dictionary. A similar type of operation is a  range query , which requires that you 
retrieve all items whose search keys fall into a given range of values. For example, you might want 
to retrieve all items whose search keys are in the range 129 to 755. This task is relatively easy to 
perform by using a search tree (see Exercise 3 in the next chapter), but if you use hashing, there is 
no effi cient way to answer the range query.    

 In general, if an application requires any of these ordered operations, you should probably use a 
search tree. Although the  getItem,   add,  and  remove  operations are somewhat more effi cient when 
you use hashing to implement the dictionary instead of a balanced search tree, the balanced search 
tree supports these operations so effi ciently itself that, in most contexts, the difference in speed for 
these operations is negligible (whereas the advantage of the search tree over hashing for the ordered 
operations is signifi cant).    

 In the context of external storage, however, the story is different. For data that is stored exter-
nally, the difference in speed between hashing’s implementation of  getItem  and a search tree’s imple-
mentation may well be signifi cant, as you will see in  Chapter   21   . In an external setting, it is not 
uncommon to see a hashing implementation of the getItem  operation and a search-tree implementa-
tion of the ordered operations used simultaneously.  

   18.4.6   Using Hashing and Separate Chaining 
to Implement the ADT Dictionary 

 Let’s now use hashing to implement the ADT dictionary. We will resolve collisions by using separate 
chaining.

  The hash table.   Recall from  Figure   18-14    that to use separate chaining, you create a hash table of 
pointers to chains of linked nodes that represent entries in the dictionary. Although each node in a 
chain could contain an object of the class Entry , as given earlier in Listing 18-2—and as you might 
do in any of the linked-based implementations mentioned earlier in this chapter—we will derive a 
new class,  HashedEntry , from  Entry  and add a pointer fi eld, as  Figure   18-16    illustrates. Listing 18-5 
shows the declaration of this new class. Notice that  HashedEntry  is like a combination of the classes 
Node —which we have used in previous link-based implementations—and  Entry . In particular, it has 
the data members and methods of Entry , as well as the pointer data fi eld and the methods  getNext
and setNext  of  Node .      

Items hashed into 
table[i] and 
table[i+1] have 
no ordering 
relationship 
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LISTING 18-5 The class HashedEntry

  /** A class of entry objects for a hashing implementation of the 
     ADT dictionary. 
 @file HashedEntry.h */ 

#ifndef _HASHED_ENTRY 
#define _HASHED_ENTRY 

#include "Entry.h" 

  template < class KeyType, class ItemType> 
  class HashedEntry : public Entry<KeyType, ItemType> 
 { 

private : 

   HashedEntry<KeyType, ItemType>* nextPtr; 

  public : 
   HashedEntry(); 
   HashedEntry(ItemType newEntry, KeyType searchKey); 
   HashedEntry(ItemType newEntry, KeyType searchKey, 

          HashedEntry<KeyType, ItemType>* nextEntryPtr); 

void setNext(HashedEntry<KeyType, ItemType>* nextEntryPtr); 
   HashedEntry<KeyType, ItemType>* getNext()  const ; 
 }; // end HashedEntry 

#include "HashedEntry.cpp" 
 #endif 

 Now the data members of our dictionary class,  HashedDictionary , are 

  HashedEntry<KeyType, ItemType>** hashTable; // Array of pointers to entries 
  int itemCount; // Count of dictionary entries 
  int hashTableSize; // Table size must be prime 
  static const int DEFAULT_SIZE = 101;

 The array  hashTable  contains pointers to the  itemCount  entries in the dictionary. The fi eld 
hashTableSize  is the size of this array. The constructors will set the value of this fi eld, either to 
DEFAULT_SIZE  or to a value given by the client. We note again that this value must be a prime number. 
Any value given to the constructor will need to be checked to determine whether it is prime and, if not, 
replaced by a prime number. 

The method add.   To insert a new entry into the dictionary, you place it at the beginning of the chain 
that the hash function indicates. Assuming that the initial values of the pointers in the hash table are 
each nullptr , the following pseudocode describes the algorithm for the  add  operation: 

  add(newItem: ItemType, searchKey: KeyType): boolean 

p = pointer to a new  HashedEntry object containing  newItem and  searchKey

FIGURE 18-16         A dictionary entry when separate chaining is used   

Search keyData item
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i = h(searchKey) 
if  (hashTable[i] == nullptr)

hashTable[i] = p 
else  
{

// Add new entry to beginning of chain  
p->setNext(hashTable[i])
hashTable[i] = p 

}
return   true

 Recall that we assume that the search key given to  add  is not already in the dictionary. 
 The defi nition of  add  in the implementation fi le for  HashedDictionary  is 

   template < class KeyType, class ItemType> 
  bool HashedDictionary<KeyType, ItemType>::add( const ItemType& newItem, 
  const KeyType& searchKey) 
 { 

// Create entry to add to dictionary 
    HashedEntry<KeyType, ItemType>* entryToAddPtr = 

new HashedEntry<KeyType, ItemType>(newItem, searchKey); 

// Compute the hashed index into the array 
int itemHashIndex = getHashIndex(searchKey); 

// Add the entry to the chain at itemHashIndex 
if (hashTable[itemHashIndex] == nullptr ) 

    { 
        hashTable[itemHashIndex] = entryToAddPtr; 
    } 

else  
    { 
        entryToAddPtr->setNext(hashTable[itemHashIndex]); 
        hashTable[itemHashIndex] = entryToAddPtr; 
    }   // end if 

return true ; 
} // end add   

  The method remove.  To remove an entry, given its search key, from the dictionary, you proceed as 
the following pseudocode indicates: 

  remove(searchKey: KeyType): boolean 

i = h(searchKey) 
if  (hashTable[i] != nullptr)
{

Search the chain pointed to by  hashTable[i] for  searchKey
if  (searchKey is in the first node)
{

p = hashTable[i] 
hashTable[i] = hashTable[i]->getNext() 
delete  p
return true  

}
else  
{

           curPtr = pointer to the entry containing  searchKey
           prevPtr = pointer to the previous entry in the chain  
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           prevPtr->setNext(curPtr->getNext())
            delete  curPtr
            return true  
      }
}
else  

return false   

HashedDictionary ’s defi nition of  remove  follows: 

   template < class KeyType, class ItemType> 
  bool HashedDictionary<KeyType, ItemType>::remove( const KeyType& searchKey) 
 { 

bool itemFound = false ; 

// Compute the hashed index into the array 
int itemHashIndex = getHashIndex(searchKey); 
if (hashTable[itemHashIndex] != nullptr)

    { 
// Special case - first node has target 
if (searchKey == hashTable[itemHashIndex]->getKey()) 

        { 
           HashedEntry<KeyType, ItemType>* entryToRemovePtr = 

                               hashTable[itemHashIndex]; 
           hashTable[itemHashIndex] = hashTable[itemHashIndex]->getNext(); 

delete entryToRemovePtr; 
           entryToRemovePtr =  nullptr ; // For safety 
           itemFound =  true ; 
        } 

else  // Search the rest of the chain 
        { 
           HashedEntry<KeyType, ItemType>* prevPtr = hashTable[itemHashIndex]; 
           HashedEntry<KeyType, ItemType>* curPtr = prevPtr->getNext();   

while ((curPtr != nullptr) && !itemFound ) 
           { 

// Found item in chain so remove that node 
if (searchKey == curPtr->getKey()) 

               { 
                    prevPtr->setNext(curPtr->getNext()); 
                     delete curPtr; 
                    curPtr =  nullptr ; // For safety 
                    itemFound =  true ; 
               } 

else  // Look at next entry in chain 
               { 
                    prevPtr = curPtr; 
                    curPtr = curPtr->getNext(); 
               }  // end if 
           }  // end while 
        }  // end if 
    }  // end if 

return itemFound; 
} // end remove 

 The rest of the implementation of the class  HashedDictionary  is left as an exercise.     



 Exercises 563

     SUMMARY   

1.  The ADT dictionary supports value-oriented operations, such as “Retrieve all the information about John Smith.”

2. The linear implementations (array-based and link-based) of a dictionary are adequate only in limited situations, 
such as when the dictionary is small or for certain operations. In those situations, the simplicity of a linear 
implementation may be an advantage. A linear implementation of a dictionary, however, is not suitable as a 
general-purpose, reusable class. 

3. A nonlinear link-based (binary search tree) implementation of the ADT dictionary provides the best aspects of 
the two linear implementations. The link-based implementation allows the dictionary to grow dynamically and 
allows insertions and removals of data to occur through pointer changes instead of data movement. In addition, 
the binary search tree allows you to use a binary-search-like algorithm when searching for an item with a speci-
fi ed value. These characteristics make a nonlinear dictionary implementation far superior to the linear imple-
mentations in many applications.

4.  Hashing as a dictionary implementation calculates where a data item should be rather than searching for it. 
Hashing allows for very effi cient retrievals, insertions, and removals. 

5. The hash function should be extremely easy to compute—it should require only a few operations—and it should 
scatter the search keys evenly throughout the hash table. 

6. A collision occurs when two different search keys hash into the same array location. Two ways to resolve colli-
sions are through probing and chaining.

7. Separate chaining is the most time-effi cient collision-resolution scheme. 

8. Hashing does not effi ciently support operations that require the table items to be ordered—for example, travers-
ing the table in sorted order. 

9. When dictionary operations such as traversal are not important to a particular application, if you know the 
maximum number of dictionary items, and if you have ample storage, hashing is an implementation for a dic-
tionary that is simpler and faster than balanced search tree implementations. Tree implementations, however, 
are dynamic and do not require you to estimate the maximum number of table items. 

  EXERCISES   

1.  Implement the class Entry, as given in Listing 18-2, and then complete the sorted array-based implementation 
of the ADT dictionary. 

2.   Consider an operation replace(replacementItem, searchKey) that locates, if possible, the item in a diction-
ary with the given search key. If the dictionary contains such an item, the method replaces it with replacement-
Item . 

 a. Write implementations of replace for the classes ArrayDictionary, TreeDictionary, and Hashed-
Dictionary, as described in this chapter.  

 b. For TreeDictionary, under what circumstances can replace replace an item without altering the 
structure of the binary search tree? (See Exercise 6 in  Chapter   16   .)   

3.  Imagine an application program that behaves like an English dictionary. The user types a word and the program 
provides the word’s defi nition. Thus, the dictionary needs only a retrieval operation. Which implementation of 
the ADT dictionary would be most effi cient as an English dictionary? 

4. When you use a word processor’s spell checker, it compares the words in your document with words in a dictionary. 
You can add new words to the dictionary as necessary. Thus, this dictionary needs frequent retrievals and occasional 
insertions. Which implementation of the ADT dictionary would be most effi cient as a spell checker’s dictionary?
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5.   A C++ compiler uses a symbol table to keep track of the identifi ers that a program uses. When the compiler 
encounters an identifi er, it searches the symbol table to see whether that identifi er has already been encoun-
tered. If the identifi er is new, it is inserted into the table. Thus, the symbol table needs only insertion and 
retrieval operations. Which implementation of the ADT dictionary would be most effi cient as a symbol 
table? 

6. Consider adding operations to the ADT dictionary to form the union and intersection of two given dictionar-
ies. Each operation returns a new dictionary. The union should combine all of the entries in both dictionaries 
into a third dictionary. The intersection should be a dictionary of the entries common to both of the two 
dictionaries. 

Within each given dictionary, search keys are not repeated. However, an entry in one dictionary could have 
the same search key as an entry in the second dictionary. Propose and discuss ways to specify these two opera-
tions for this case. 

7. The implementations of the ADT dictionary given in this chapter make the following assumption: At any time, a 
dictionary contains at most one item with a given search key. Although the defi nition of the ADT required for a 
specifi c application may not allow duplicates, it is probably wise to test for them rather than simply to assume 
that they will not occur. Why? 

 Modify the dictionary implementations so that they test for—and disallow—any duplicates. What diction-
ary operations are affected? What are the implications for the unsorted linear implementations? 

8. Although disallowing duplicate search keys in the ADT dictionary is reasonable for some applications, it is just 
as reasonable to have an application that will allow duplicates. 

 a. What are the implications of inserting identical items with the same search keys? What are the implica-
tions for the removal and retrieval operations?  

 b. What are the implications of inserting items that are not identical but have the same search key? 
Specifi cally, what would the implementations of add, remove, and getItem do?

9.  Suppose that you want to support two remove operations for the ADT dictionary—for example, removeByName
and removeByID. Describe an effi cient implementation for these operations. 

10. Repeat Exercise 9, but instead use a binary search tree to organize one of the search keys and a sorted linked 
chain to organize the second search key. 

11. Can you use a heap instead of a binary search tree as an implementation of the ADT dictionary? 

12.   Write pseudocode for the dictionary operations add, remove , and getItem when the implementation uses 
hashing and linear probing to resolve collisions. 

13.   Write the pseudocode for the remove operation when the implementation uses hashing and separate chaining to 
resolve collisions. 

14. The success of a hash-table implementation of the ADT dictionary is related to the choice of a good hash func-
tion. A good hash function is one that is easy to compute and will evenly distribute the possible data. Comment 
on the appropriateness of the following hash functions. What patterns would hash to the same location? 

 a. The hash table has size 2,048. The search keys are English words. The hash function is

h ( key ) � (Sum of positions in alphabet of key’s  letters) mod 2048   

 b. The hash table has size 2,048. The keys are strings that begin with a letter. The hash function is 

h ( key ) � (position in alphabet of fi rst letters  key ) mod 2048  

Thus, “BUT” maps to 2. How appropriate is this hash function if the strings are random? What if the 
strings are English words?  
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 c. The hash table is 10,000 entries long. The search keys are integers in the range 0 through 9999. The
hash function is

h ( key ) � ( key* random ) truncated to an integer  

where random represents a sophisticated random-number generator that returns a real value between 
0 and 1.

 d.   The hash table is 10,000 entries long (HASH_TABLE_SIZE is 10000). The search keys are integers in the 
range 0 through 9999. The hash function is given by the following C++ function:

int hashIndex(int x)
{
        for (int i = 1; i <= 1000000; i++) 
       x = (x * x) % HASH_TABLE_SIZE; 

return x;
} // end hashIndex    

  PROGRAMMING PROBLEMS   

1.  Complete the implementation of the class ArrayDictionary as given in Listing 18-3. 

2.   Complete the implementation of the class TreeDictionary as given in Listing 18-4.

3. Write the sorted link-based, unsorted array-based, and unsorted link-based implementations of the ADT 
dictionary described in this chapter. 

4. Write unsorted and sorted implementations of the ADT dictionary that use, respectively, the ADTs list and 
sorted list, which  Chapters   8    and    12    described. 

5. Repeat Programming Problem 5 of  Chapter   16   , using the ADT dictionary as the database. 

6. Develop a program that can be used to test an implementation of the ADT dictionary. 

7. Implement the symbol table described in Exercise 5 by reusing the class TreeDictionary , as described in 
 Section   18.2.2    of this chapter.

8. Consider any collection of data that you can organize in at least two ways. For example, you can order 
employees by name or by Social Security number and books by title or by author. Note that other information 
about the employees or books is present in the database but is not used to organize these items. This program 
assumes that the search keys (for example, book title or book author) are unique and are strings. Thus, in the 
previous examples, the Social Security number must be a string instead of an integer, and only one book per 
author is permitted. Choose any set of data that conforms to these requirements, and create a text fi le. 

Program behavior. When your program begins execution, it should read your text fi le. It then should pro-
vide some typical database management operations, all under user control via an interface of your design. For 
example, you should be able to add an item, remove an item, display (that is, retrieve) an item, and display all of 
the items in search-key order. You should be able to use either of two search keys to designate the item to be 
removed or displayed. 

Implementation notes. The items in the database should be objects that contain two search keys and 
additional data, all of which appear in the text fi le. Thus, you need to design and implement a class of these 
objects. 

Although your program could create two dictionaries from these objects—one organized by one search key 
(such as the employee name) and the other organized by another search key (such as the Social Security 
number)—this approach could waste a substantial amount of memory due to the duplication of all of the data in 
both dictionaries. 
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 A better approach revises the ADT dictionary to provide operations according to two search keys. For 
example, you want to be able to remove by name and by Social Security number. The underlying data structure 
for the dictionary’s implementation should be a binary search tree. Actually, you will want two binary search 
trees so that you can organize the data in two ways: by name and by Social Security number, for example. 

 To avoid duplicated data, store the data in an ADT list and let each node in the binary search trees contain 
the position of the actual data item in the list, instead of the data item itself. 

 Your program can be specifi c to the type of database (employees, books, and so on), or it can be more gen-
eral. For example, you could determine the search-key descriptions that the user interface displays by requiring 
that they be in the text fi le. 

9.   Repeat Programming Problem 7, but use the class HashedDictionary, as described in  Section   18.4.6   , which 
uses separate chaining to resolve collisions. Use the hash function h(x) = x mod tableSize and the algorithm that 
involves Horner’s rule, as described in  Section   18.4.1    about hash functions, to convert a variable into an integer x.

Because you add an item to the dictionary only if its search key is not already present, does the time required 
for an insertion increase? 

10. Repeat Programming Problem 9, but this time 

 a. Use linear probing as the collision-resolution scheme.  
 b. Use double hashing as the collision-resolution scheme.  
 c. Use quadratic probing as the collision-resolution scheme.   

11. Repeat Programming Problem 9, but allocate the hash table dynamically. If the hash table becomes more than 
half full, increase its size to the fi rst prime number greater than 2 �   tableSize . 

12. Repeat Programming Problem 9, but experiment with variations of chaining. For example, the hash table could 
point to binary search trees instead of chains of linked entries. 
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 Although  Chapter   18    described the advantages of using the binary search tree to 
implement the ADT dictionary, the effi ciency of this implementation suffers when the 
tree loses its balance. This chapter introduces various other search trees, which remain 
balanced in all situations and thus enable dictionary operations whose effi ciency is 
comparable to a binary search.  
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      19.1 Balanced Search Trees 
 As you saw in the previous chapter, the effi ciency of the binary search tree implementation of the 
ADT dictionary is related to the tree’s height. The operations  add ,  remove , and  getItem  follow a path 
from the root of the tree to the node that contains the desired item (or, in the case of the  add  operation, 
to the node that is to become the parent of the new item). At each node along the path, you compare a 
given value to the search key in the node and determine which subtree to search next. Because the 
maximum number of nodes on such a path is equal to the height of the tree, the maximum number of 
comparisons that the dictionary operations can require is also equal to this height. 

 As you know, the height of a binary search tree of  n  nodes ranges from a maximum of  n  to a mini-
mum of < log 2 ( n  + 1) =  As a consequence, locating a particular item in a binary search tree requires 
between  n  and < log 2 ( n  + 1) =  comparisons. Thus, a search of a binary search tree can be as ineffi cient as 
a sequential search of a chain of linked nodes or as effi cient as a binary search of a sorted array. Effi -
ciency was the primary reason for developing the binary search tree implementation of the dictionary: 
We wanted to perform a search of a linked structure as effi ciently as we could perform a binary search 
of an array. Thus, we certainly want the optimum behavior of the binary search tree. 

 What affects the height of a binary search tree? As you learned in  Chapters   15    and    16   , the height 
of the tree is quite sensitive to the order in which you insert or remove items. For example, consider a 
binary search tree that contains the items 10, 20, 30, 40, 50, 60, and 70. If you inserted the items into 
the tree in ascending order, you would obtain a binary search tree of maximum height, as shown in 
 Figure   19-1   a. If, on the other hand, you inserted the items in the order 40, 20, 60, 10, 30, 50, 70, you 
would obtain a balanced binary search tree of minimum height, as shown in  Figure   19-1   b.     

 As you can see, if you use the algorithms in  Chapter   16    to maintain a binary search tree, insertions 
and removals can cause the tree to lose its balance and approach a linear shape. Such a tree is no better 
than a linear chain of linked nodes. For this reason, it is desirable in many applications to use one of 

The height of  a 
binary search tree is 
sensitive to the 
order of  insertions 
and removals 

Various search trees 
can retain their 
balance despite 
insertions and 
removals 

FIGURE 19-1         (a) A binary search tree of maximum height; (b) a binary search tree of 
minimum height   
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several variations of the basic binary search tree. Such trees can absorb insertions and removals without 
a deterioration of their balance and are easier to maintain than a minimum-height binary search tree. In 
addition, you can search these trees almost as effi ciently as you can search a minimum-height binary 
search tree. This chapter discusses the better-known search trees to give you a sense of the possibilities. 
We continue to assume that the entries in a tree are unique—that is, that there are no duplicates. 

   19.2 2-3 Trees 
 A  2-3 tree  is a tree in which each internal node (nonleaf) has either two or three children and all leaves 
are at the same level. For example,  Figure   19-2    shows a 2-3 tree of height 3. A node with two children 
is called a 2-node —the nodes in a binary tree are all 2-nodes—and a node with three children is 
called a 3-node .

FIGURE 19-2         A 2-3 tree of height 3   
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binary tree 

A 2-3 tree is never 
taller than a 
minimum-height
binary tree 

     Note: 2-3 trees

T  is a 2-3 tree of height  h  if one of the following is true: 

•    T  is empty, in which case  h  is 0.  
•    T  is of the form   

r

TL TR

 A 2-3 tree is not a binary tree, because a node can have three children; nevertheless, a 2-3 tree 
does resemble a full binary tree. If a particular 2-3 tree contains only 2-nodes—a possibility, accord-
ing to the defi nition—it is like a full binary tree, because all of its internal nodes have two children 
and all of its leaves are at the same level. If, on the other hand, some of the internal nodes of a 2-3 tree 
do have three children, the tree will contain more nodes than a full binary tree of the same height. 
Therefore, a 2-3 tree of height h  always has at least as many nodes as a full binary tree of height  h ; that 
is, it always has at least 2 h  – 1 nodes. To put this another way, a 2-3 tree with  n  nodes never has height 
greater than < log 2 ( n  + 1) = , the minimum height of a binary tree with  n  nodes.       

 Given these observations, a 2-3 tree might be useful as an implementation of the ADT dictionary. 
Indeed, this is the case if the 2-3 tree orders its nodes to make it useful as a search tree. Just as we dis-
tinguish between a binary tree and a binary search tree, we could distinguish between a “2-3 tree” and 
a “2-3 search tree.” The previous description would defi ne a 2-3 tree, and the recursive defi nition 
given next would defi ne a 2-3 search tree. Most people, however, do not make such a distinction and 
use the term “2-3 tree” to mean “2-3 search tree;” we will do so as well. The following recursive defi -
nition of a 2-3 tree specifi es the order of its nodes, making it a search tree: 

VideoNote

2-3 trees
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  Thus, the items in a 2-3 tree are ordered. For example, the tree in  Figure   19-4    is a 2-3 tree.     

 where  r  is a node that contains one data item and  TL  and  TR  are both 2-3 trees, each of 
height h  – 1. In this case, the item in  r  must be greater than each item in the left subtree 
TL  and smaller than each item in the right subtree  TR .

•    T  is of the form   

r

TL TRTM

 where  r  is a node that contains two data items and  TL ,  TM , and  TR  are 2-3 trees, each of 
height h  – 1. In this case, the smaller item in  r  must be greater than each item in the left 
subtree TL  and smaller than each item in the middle subtree  TM . The larger item in 
r  must be greater than each item in the middle subtree  TM  and smaller than each item in 
the right subtree TR .

     Note: Rules for placing data items in the nodes of a 2-3 tree 

 The previous defi nition of a 2-3 tree implies the following rules for how you may place 
data items in its nodes: 

•    A 2-node, which has two children, must contain a single data item that is greater 
than the left child’s item(s) and less than the right child’s item(s), as  Figure   19-3   a 
illustrates.  

•    A 3-node, which has three children, must contain two data items,  S  and  L , that satisfy the 
following relationships, as  Figure   19-3   b illustrates:  S  is greater than the left child’s item(s) 
and less than the middle child’s item(s);  L  is greater than the middle child’s item(s) and
less than the right child’s item(s).  

•    A leaf may contain either one or two data items.   

Items in a 2-3 tree 
are ordered 

FIGURE 19-3         Nodes in a 2-3 tree: (a) a 2-node; (b) a 3-node   
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 Listing 19-1 declares a class of nodes for a 2-3 tree. When a node contains only one data item, 
you can place it in  smallItem  and use  leftChildPtr  and  midChildPtr  to point to the node’s chil-
dren. To be safe, you can place  nullptr  in  rightChildPtr . 

FIGURE 19-4         A 2-3 tree   
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  LISTING 19-1 A header fi le for a class of nodes for a 2-3 tree

  /** A class of nodes for a link-based 2-3 tree. 
  @file TriNode.h */ 

#ifndef _TRI_NODE 
#define _TRI_NODE 

  template < class ItemType> 
  class TriNode 
 { 
  private : 
  ItemType smallItem, largeItem; // Data portion 
  TriNode<ItemType>* leftChildPtr;   // Left-child pointer 
  TriNode<ItemType>* midChildPtr;    // Middle-child pointer 
  TriNode<ItemType>* rightChildPtr; // Right-child pointer 

  public : 
  TriNode(); 
  TriNode( const ItemType& anItem); 
  TriNode( const ItemType& anItem, TriNode<ItemType>* leftPtr, 
            TriNode<ItemType>* midPtr, TriNode<ItemType>* rightPtr); 

bool isLeaf() const ; 
bool isTwoNode() const ; 
bool isThreeNode() const ; 

  ItemType getSmallItem() const ; 
  ItemType getLargeItem() const ; 

void setSmallItem( const ItemType& anItem); 
void setLargeItem( const ItemType& anItem); 

(continues)
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  TriNode<ItemType>* getLeftChildPtr() const ; 
  TriNode<ItemType>* getMidChildPtr() const ; 
  TriNode<ItemType>* getRightChildPtr() const ; 

void setLeftChildPtr(TriNode<ItemType>* leftPtr); 
void setMidChildPtr(TriNode<ItemType>* midPtr); 
void setRightChildPtr(TriNode<ItemType>* rightPtr); 

 }; // end TriNode 
#include "TriNode" 
 #endif 

   19.2.1  Traversing a 2-3 Tree 

 The algorithms for the traversal, retrieval, insertion, and removal operations on a 2-3 tree are recur-
sive. You can avoid distracting implementation details by defi ning the base case for these recursive 
algorithms to be a leaf rather than an empty subtree. As a result, the algorithms must assume that they 
are not passed an empty tree as an argument. 

 You can traverse a 2-3 tree in sorted order by performing the analogue of an inorder traversal on a 
binary tree:    

  //  Traverses a nonempty 2-3 tree in sorted order.  
inorder(23Tree: TwoThreeTree): void  

if  (23Tree’s root node r is a leaf   )
 Visit the data item(s)  

else if  (r has two data items )
{

inorder( left subtree of 23Tree’s root)
Visit the first data item  
inorder(middle subtree of  23Tree’s root)
Visit the second data item  
inorder(right subtree of  23Tree’s root )

 } 
else  // r has one data item  
{

inorder(left subtree of  23Tree’s root)
Visit the data item  
inorder( right subtree of 23Tree’s root)

}  

   19.2.2  Searching a 2-3 Tree 

 The ordering of items in a 2-3 tree is analogous to the ordering for a binary search tree and allows you to 
search a 2-3 tree effi ciently for a particular item. In fact, the retrieval operation for a 2-3 tree is quite 
similar to the retrieval operation for a binary search tree, as you can see from the following pseudocode:    

  //  Locates the value  target in a nonempty 2-3 tree. Returns either the located  
 //  entry or throws an exception if such a   node is not found.  
findItem(23Tree: TwoThreeTree, target: ItemType): ItemType 

if  (target  is in  23Tree ’s root node  r)
{ //  The item has been found  

       treeItem =  the data portion of  r
      return  treeItem //  Success  

}

Inorder traversal 

Searching a 2-3 tree 
is effi cient 
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else if  (r is a leaf ) 
throw  NotFoundException //  Failure  

//  Else search the appropriate subtree  
else if  (r has two data items ) 
{

if  (target <  smaller item in  r)
return  findItem(r ’s left subtree, target) 

else if  (target <  larger item in r)
return  findItem(r ’s middle subtree, target) 

else  
return  findItem(r ’s right subtree, target) 

}
else  // r has one data item  
{

if  (target < r ’s data item)
return  findItem(r ’s left subtree, target) 

else  
return  findItem(r’s right subtree, target) 

}  

 You can search the 2-3 tree and the shortest binary search tree with approximately the same 
effi ciency, because 

•   A binary search tree with  n  nodes cannot be shorter than < log 2 ( n  + 1) =
•   A 2-3 tree with  n  nodes cannot be taller than < log 2 ( n  + 1) =
•   A node in a 2-3 tree has at most two items   

 Searching a 2-3 tree is not more effi cient than searching a binary search tree, however. This observa-
tion may surprise you because, after all, the nodes of a 2-3 tree can have three children, and hence a 2-3 
tree might indeed be shorter than the shortest possible binary search tree. Although true, this advantage 
in height is offset by the extra time required to compare a given value with two values instead of only one. 
In other words, although you might visit fewer nodes when searching a 2-3 tree, you might have to make 
more comparisons at each node. As a consequence, the number of comparisons that you need to search a 
2-3 tree for a given item is approximately equal to the number of comparisons required to search a binary 
search tree that is as balanced as possible. This number is approximately log 2n . 

 If you can search a 2-3 tree and a balanced binary search tree with approximately the same effi -
ciency, why then should you use a 2-3 tree? Because although maintaining the balance of a binary 
search tree is diffi cult in the face of insertion and removal operations, maintaining the shape of a 2-3 
tree is relatively simple. For example, consider the two trees in  Figure   19-5   . The fi rst tree is a binary 
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FIGURE 19-5         (a) A balanced binary search tree; (b) a 2-3 tree with the same entries   

Searching a 2-3 tree 
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search tree and the second is a 2-3 tree. Both trees contain the same data items. The binary search tree 
is as balanced as possible, and thus you can search both it and the 2-3 tree for an item with approxi-
mately the same effi ciency. If, however, you perform a sequence of insertions on the binary search 
tree—by using the insertion algorithm of  Chapter   16   —the tree can quickly lose its balance, as  Figure 
  19-6   a indicates. In this example, we have inserted the values 32 through 39 in numerical order. As you 
soon will see, you can perform the same sequence of insertions on the 2-3 tree without a degradation 
in the tree’s shape—it will retain its structure, as  Figure   19-6   b shows.     

     The new values (32 through 39) that were inserted into the binary search tree of  Figure   19-5   a 
appear along a single path in  Figure   19-6   a. The insertions increased the height of the binary search 
tree from 4 to 12—an increase of 8. On the other hand, the new values have been spread throughout 
the 2-3 tree in  Figure   19-6   b. As a consequence, the height of the resulting tree is only 1 greater than 
the height of the original 2-3 tree in  Figure   19-5   b. We demonstrate these insertions into the original 
2-3 tree next.  
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FIGURE 19-6         (a) The binary search tree of  Figure   19-5   a after inserting the sequence of values 
32 through 39; (b) the 2-3 tree of  Figure   19-5   b after the same insertions   
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   19.2.3  Inserting Data into a 2-3 Tree 

 Because the nodes of a 2-3 tree can have either two or three children and can contain one or two 
values, you can insert items into the tree while maintaining its shape. The following paragraphs 
informally describe the sequence of insertions that produced the 2-3 tree shown in  Figure   19-6   b 
from the original tree in  Figure   19-5   b. 

  Insert 39.   As is true with a binary search tree, the fi rst step in inserting a node into a 2-3 tree is to 
locate the node at which the search for the value to be inserted would terminate. To do this, you can 
use the search strategy of the  findItem  algorithm given previously; an unsuccessful search will 
always terminate at a leaf. With the tree in  Figure   19-5   b, the search for 39 terminates at the leaf <40>. 
(We will use this angle-bracket notation to denote a node and its contents.) Because this node con-
tains only one item, you can simply insert the new item into this node. The result is the 2-3 tree in 
 Figure   19-7   .   

Insertion into a 
2-node leaf  is 
simple

FIGURE 19-7         After inserting 39 into the tree in Figure 19-5b   
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    Insert 38.   In a similar manner, you would search the tree in  Figure   19-7    for 38 and fi nd that the 
search terminates at the node <39 40>. You cannot place 38 in this node, as  Figure   19-8   a illustrates, 
because a node cannot contain three values. You arrange these three values, however, into the smallest 
(38), middle (39), and largest (40) values. You can move the middle value (39) up to the node’s parent 
p  and separate the remaining values, 38 and 40, into two nodes that you attach to  p  as children, as 
 Figure   19-8   b indicates. Because you chose to move up the middle value of <38 39 40>, the parent 
correctly separates the values of its children; that is, 38 is less than 39, which is less than 40. The 
result of the insertion is the 2-3 tree in  Figure   19-8   c.   

Insertion into a 
3-node causes it to 
divide 

FIGURE 19-8         The steps for inserting 38 into the tree in Figure 19-7: (a) The located node has 
no room; (b) the node splits; (c) the resulting tree   
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     Insert 37.   The insertion of 37 into the tree in  Figure   19-8   c is easy because 37 belongs in a leaf that 
currently contains only one value, 38. The result of this insertion is the 2-3 tree in  Figure   19-9   . 

FIGURE 19-9         After inserting 37 into the tree in Figure 19-8c   
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    Insert 36.   The search for 36 terminates at the node <37 38> of the tree in  Figure   19-9   , but the node has 
no room for 36, as  Figure   19-10   a indicates. Thus, you arrange the three values 36, 37, and 38 into the 
smallest (36), middle (37), and largest (38) values, as you did previously. You then try to move the middle 
value (37) up to the node’s parent <30 39> and give the parent children containing the smallest (36) and 
largest (38) values, as  Figure   19-10   b illustrates. However, the node <30 39> cannot contain three values 
and have four children. This situation is familiar, with the slight difference that the overcrowded node is 
not a leaf but rather has four children. As you did before, you divide the node into the smallest (30), mid-
dle (37), and largest (39) values and then move the middle value up to the node’s parent. 

 Because you are splitting an internal node, you now must account for its four children—that is, what 
happens to nodes <10 20>, <36>, <38>, and <40>? The solution is to attach the left pair of children—<10 
20> and <36>—to the smallest value (30) and attach the right pair of children—<38> and <40>—to the 
largest value (39), as shown in  Figure   19-10   c. The fi nal result of this insertion is the 2-3 tree in  Figure   19-10   d. 

FIGURE 19-10         (a), (b), (c) The steps for inserting 36 into the tree in Figure 19-9; (d) the 
resulting tree   
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    Insert 35, 34, and 33.   Each of these insertions is similar to the previous ones.  Figure   19-11    shows 
the tree after the three insertions. 

     The insertion algorithm.   Let’s consider the general strategy for inserting an item into a 2-3 tree. To 
begin, you locate the leaf at which the search for the new item would terminate. If the leaf does not 
contain two items, you insert the new item into the leaf, and you are done. However, if the leaf already 
contains two items, you must split it into two nodes,  n1  and  n2 . As  Figure   19-12    illustrates, you place 
the smallest item S  into  n1 , place the largest item  L  into  n2 , and try to move the middle item  M  up to the 
original leaf’s parent. If the parent has room for a new item—as is true here—nodes  n1  and  n2  become 
children of the parent, and you are fi nished. The parent now has only three children and contains two 
items.

FIGURE 19-11         The tree after the insertion of 35, 34, and 33 into the tree in Figure 19-10d   
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     Question 1   To be sure that you fully understand the insertion algorithm, insert 32 into the 
2-3 tree in  Figure   19-11   . The result should be the tree shown in  Figure   19-6   b. Once again, 
compare this tree with the binary search tree in  Figure   19-6   a and notice the dramatic advan-
tage of the 2-3 tree’s insertion strategy. 

CHECK POINT

When a leaf  would 
contain three items, 
split it into two 
nodes

FIGURE 19-12         Splitting a leaf in a 2-3 tree when the leaf is a (a) left child; (b) right child   
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   On the other hand, if the parent cannot accommodate the item moving up, you must split the par-
ent, as follows. You split an internal node  n  that contains three items by using the process just described 
for a leaf, except that you must also take care of  n ’s four children. As  Figure   19-13    illustrates, you split 
n  into  n1  and  n2 , place  n ’s smallest item  S  into  n1 , attach  n ’s two leftmost children to  n1 , place  n ’s largest 
item L  into  n2 , attach  n ’s two rightmost children to  n2 , and move  n ’s middle item  M  up to  n ’s parent. 

When an internal 
node would contain 
three items, split it 
into two nodes and 
accommodate its 
children 

FIGURE 19-13         Splitting an internal node in a 2-3 tree when the node is a (a) left child; 
(b) right child   
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  After this, the process of splitting a node and moving an item up to the parent continues recur-
sively until a node is reached that had only one item before the insertion and thus has only two items 
after it takes on a new item. Notice in the previous sequence of insertions that the tree’s height never 
increased from its original value of 3. In general, an insertion will not increase the height of the tree as 
long as there is at least one node containing only one item on the path from the root to the leaf into 
which the new item is inserted. The insertion strategy of a 2-3 tree has thus postponed the growth of 
the tree’s height much more effectively than the strategy of a basic binary search tree did. 

  When the height of a 2-3 tree does grow, it does so from the top. An increase in the height of a 2-3 
tree will occur if every node on the path from the root of the tree to the leaf into which the new item is 
inserted contains two items. In this case, the recursive process of splitting a node and moving an item 
up to the node’s parent will eventually reach the root  r . When this occurs you must split  r  into  r1  and  r2
exactly as you would any other internal node. However, you must create a new node that contains the 
middle item of r  and becomes the parent of  r1  and  r2 . Thus, the new node is the new root of the tree, as 
 Figure   19-14    illustrates.     

When the root would 
contain three items, 
split it into two 
nodes and create a 
new root node 

FIGURE 19-14         Splitting the root of a 2-3 tree   
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 The following high-level algorithm summarizes the entire insertion strategy:    

//  Inserts a new item into a 2-3 tree whose items are distinct and differ from the  
//  new item . 
insertItem(23Tree: TwoThreeTree, newItem: ItemType) 

Locate the leaf,  leafNode, in which  newItem belongs  
Add  newItem to  leafNode

if  (leafNode has three items)
    split(leafNode) 

// Splits node n, which contains two items. Note: If n is  
  // not a leaf, it has four children.  
split(n: TwoThreeNode) 

if  (n is the root )
       Create a new node p

else  
       Let  p be the parent of  n

 Replace node  n with two nodes,  n1 and  n2,  so that p is their parent  
Give  n1 the item in  n with the smallest value  
Give  n2  the item in  n with the largest value  

if  (n is not a leaf )
{

       n1 becomes the parent of n ’s two leftmost children  
       n2  becomes the parent of n ’s two rightmost children  

}
 Move the item in  n that has the middle value up to p
if  (p now has three items )

      split(p)

2-3 tree insertion 
algorithm

     Question 2   What is the result of inserting 5, 40, 10, 20, 15, and 30—in the order given—
into an initially empty 2-3 tree? Note that insertion of one item into an empty 2-3 tree will 
create a single node that contains the inserted item. 

     Question 3   What is the result of inserting 3 and 4 into the 2-3 tree that you created in the 
previous question? 

CHECK POINT

     19.2.4  Removing Data from a 2-3 Tree 

 The removal strategy for a 2-3 tree is the inverse of its insertion strategy. Just as a 2-3 tree spreads 
insertions throughout the tree by splitting nodes when they would become too full, it spreads remov-
als throughout the tree by merging nodes when they become empty. As an illustration of the 2-3 tree’s 
removal strategy, consider the removal of 70, 100, and 80 from the tree in  Figure   19-15   a. 

  Remove 70.   By searching the tree in  Figure   19-15   a, you discover that 70 is in the node <70 90>. 
Because you always want to begin the removal process at a leaf, the fi rst step is to swap 70 with its 
inorder successor—the value that follows it in the sorted order. Because 70 is the smaller of the two 
values in the node, its inorder successor (80) is the smallest value in the node’s middle subtree. Note 
that the inorder successor of an item in an internal node will always be in a leaf. After the swap, the 
tree appears as shown in  Figure   19-15   b. The value 80 is in a legal position of the search tree because it 
is larger than all the values in its node’s left subtree and smaller than all the values in its node’s right 
subtree. The value 70 is not in a legal position, but this is of no concern, because the next step is to 
remove this value from the leaf.   

Swap the value to 
be removed with its 
inorder successor 
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   In general, after you remove a value from a leaf, another value may remain in the leaf (because 
the leaf contained two values before the removal). If this is the case, you are done, because a leaf of a 
2-3 tree can contain a single value. In this example, however, once you remove 70 from the leaf, the 
node is left without a value, as  Figure   19-15   c indicates. 

 You then delete the node, as  Figure   19-15   d illustrates. At this point you see that the parent of the 
deleted node contains two values (80 and 90) but has two children (60 and 100). This situation is not 
allowed in a 2-3 tree. You can remedy the problem by moving the smaller value (80) down from the 
parent into the left child, as  Figure   19-15   e illustrates. Deleting the leaf node and moving a value down 
to a sibling of the leaf is called merging the leaf with its sibling. The 2-3 tree that results from this 
removal operation is shown in  Figure   19-15   f.   

    Remove 100.   The search strategy discovers that 100 is in the leaf <100> of the tree in  Figure   19-15   f. 
When you remove the value from this leaf, the node becomes empty, as  Figure   19-16   a indicates. In 
this case, however, no merging of nodes is required, because the sibling <60 80> can spare a value. 
That is, the sibling has two values, whereas a 2-3 tree requires only that it have at least one value. 
However, if you simply move the value 80 into the empty node—as  Figure   19-16   b illustrates—you 
fi nd that the search-tree order is destroyed: The value in 90’s right child should be greater than 90, but 
it is 80. Instead, you move the larger value (80) from <60 80> into the parent and move the value 

FIGURE 19-15         (a) A 2-3 tree; (b), (c), (d), (e) the steps for removing 70; (f) the resulting tree   
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90 down from the parent into the node that had been empty, as  Figure   19-16   c shows. This distribution 
preserves the search-tree order, and you have thus completed the removal. The resulting 2-3 tree is 
shown in  Figure   19-16   d.   

     Remove 80.   The search strategy fi nds that 80 is in an internal node of the tree in  Figure   19-16   d. You 
thus must swap 80 with its inorder successor, 90, as  Figure   19-17   a illustrates. When you remove 80 
from the leaf, the node becomes empty, as  Figure   19-17   b shows. Because the sibling of the empty 
node has only one value, you cannot redistribute as you did in the previous removal of 100. Instead 
you must merge the nodes, bringing the value 90 down from the parent and deleting the empty leaf, as 
 Figure   19-17   c indicates. 

 You are not yet fi nished, however, because the parent contains no data and has only one child. You 
must recursively apply the removal strategy to this internal node without a value. First, you should 
check to see whether the node’s sibling can spare a value. Because the sibling <30> contains only the 
single value 30, you cannot redistribute—you must merge the nodes. The merging of two internal 
nodes is identical to the merging of leaves, except that the child <60 90> of the empty node must be 
adopted. Because the sibling of the empty node contains only one value—and hence can have only 
two children, as stated in the rule for 2-nodes—it can become the parent of <60 90> only if you bring 
the value 50 down from the sibling’s parent. The tree now appears as shown in  Figure   19-17   d. Note 
that this operation preserves the search property of the tree.  

 Now the parent of the merged nodes is left without a data item and only a single child. Usually, 
you would apply the recursive removal strategy to this node, but this case is special because the node 
is the root. Because the root is empty and has only one child, you can simply delete it, allowing <30 
50> to become the root of the tree, as  Figure   19-17   e illustrates. This deletion has thus caused the 
height of the tree to shrink by 1. 

 To summarize, we have removed 70, 100, and 80 from the 2-3 tree in  Figure   19-15   a and obtained 
the 2-3 tree in  Figures   19-17   e and    19-18   a. In contrast, after removing 70, 100, and 80 from the bal-
anced binary search tree in  Figure   19-5   a, you are left with the tree in  Figure   19-18   b. Notice that the 

FIGURE 19-16         (a), (b), (c) The steps for removing 100 from the tree in Figure 19-15f; 
(d) the resulting tree   
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FIGURE 19-17         The steps for removing 80 from the tree in Figure 19-16d   
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removals affected only one part of the binary search tree, causing it to lose its balance. The left sub-
tree has not been affected at all, and thus the overall height of the tree has not been diminished. 

    The removal algorithm.   In summary, to remove an item  I  from a 2-3 tree, you fi rst locate the node  n
that contains it. If n  is not a leaf, you fi nd  I ’s inorder successor and swap it with  I . As a result of the 
swap, the removal always begins at a leaf. If the leaf contains an item in addition to  I , you simply 
remove  I  and you are done. On the other hand, if the leaf contains only  I,  removing  I  would leave the 
leaf without a data item. In this case you must perform some additional work to complete the removal. 

 You fi rst check the siblings of the now-empty leaf. If a sibling has two items, you redistribute the 
items among the sibling, the empty leaf, and the leaf’s parent, as  Figure   19-19   a illustrates. If no sib-
ling of the leaf has two items, you merge the leaf with an adjacent sibling by moving an item down 
from the leaf’s parent into the sibling—it had only one item before, so it has room for another—and 
deleting the empty leaf. This case is shown in  Figure   19-19   b.   

  By moving an item down from a node  n , as just described, you might cause  n  to be left without a 
data item and with only one child. If so, you recursively apply the removal algorithm to  n . Thus, if  n
has a sibling with two items—and three children—you redistribute the items among  n , the sibling, 
and n ’s parent. You also give  n  one of its sibling’s children, as  Figure   19-19   c indicates. 

 If  n  has no sibling with two items, you merge  n  with a sibling, as  Figure   19-19   d illustrates. That 
is, you move an item down from the parent and let the sibling adopt  n ’s one child. (At this point you 
know that the sibling previously had only one item and two children.) You then delete the empty leaf. 
If the merge causes  n ’s parent to be without an item, you recursively apply the removal process to it.   

  If the merging continues so that the root of the tree is without an item—and has only one 
child—you simply delete the root. When this step occurs, the height of the tree is reduced by 1, as 
 Figure   19-19   e illustrates.  

 A high-level statement of the algorithm for removing data from a 2-3 tree follows:    

  //  Removes the given data item from a 2-3 tree. Returns true if successful  
 //  or false if no such item exists.  
removeItem(23Tree: TwoThreeTree, dataItem: ItemType): boolean 

Attempt to locate dataItem
if  (dataItem is found)
{

if  (dataItem is not in a leaf)
Swap  dataItem with its inorder successor, which will be in a leaf leafNode

       //  The removal always begins at a leaf  
Remove  dataItem from leaf   leafNode
if  (leafNode now has no items)

fixTree(leafNode)
return true  

}
else  

return false  

 //  Completes the removal when node n is empty by either deleting the root,  
 //  redistributing values, or merging nodes. Note: If n is internal, it has one child.  
fixTree(n: TwoThreeNode) 

if  (n is the root)
Delete the root  

else  
{

Let  p  be the parent of  n
if  (some sibling of n has two items ) 
{

Distribute items appropriately among  n,  the sibling, and  p

Redistribute values 

Merge nodes 

2-3 tree removal 
algorithm
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if  (n is internal ) 
 Move the appropriate child from sibling to  n

}
else  //  Merge the node  
{

Choose an adjacent sibling  s of n
 Bring the appropriate item down from  p into  s
if  (n  is internal )

Move  n ’s child to  s
Remove node  n
if  (p is now empty )

        fixTree(p) 
}

  } 

 The details of the C++ implementation of the preceding insertion and removal algorithms for 2-3 
trees are rather involved. The implementation is left as a challenging exercise (Programming Problem 2). 

 You might be concerned about the overhead that the insertion and removal algorithms incur in 
the course of maintaining the 2-3 structure of the tree. That is, after the search strategy locates either 
the item or the position for the new item, the insertion and removal algorithms sometimes have to 
perform extra work, such as splitting and merging nodes. However, this extra work is not a real con-
cern. A rigorous mathematical analysis would show that the extra work required to maintain the struc-
ture of a 2-3 tree after an insertion or a removal is not signifi cant. In other words, when analyzing the 
effi ciency of the  insertItem  and  removeItem  algorithms, it is suffi cient to consider only the time 
required to locate the item (or the position for the insertion). Given that a 2-3 tree is always balanced, 
you can search a 2-3 tree in all situations with the logarithmic effi ciency of a binary search.     

   Thus, a 2-3 tree implementation of the ADT dictionary is guaranteed to have effi cient operations. 
Although a binary search tree that is as balanced as possible minimizes the amount of work required 
by the ADT dictionary operations, its balance is diffi cult to maintain. A 2-3 tree is a compromise: 
Although searching it may not be quite as effi cient as searching a binary search tree of minimum 
height, it is relatively simple to maintain. 

A 2-3 tree is always 
balanced

A 2-3 tree 
implementation of  a 
dictionary is O(log  n ) 
for all of  its 
operations 

     Question 4   What is the result of removing the 10 from the 2-3 tree that you created in 
Checkpoint Question 1? 

CHECK POINT

   19.3 2-3-4 Trees 
 If a 2-3 tree is so good, are trees whose nodes can have more than three children even better? To some 
extent, the answer is yes. A  2-3-4 tree  is like a 2-3 tree, but it also allows  4-nodes , which are nodes 
that have four children and three data items. For example,  Figure   19-20    shows a 2-3-4 tree of height 3 

FIGURE 19-20         A 2-3-4 tree with the same data items as the 2-3 tree in  Figure   19-6   b   
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that has the same items as the 2-3 tree in  Figure   19-6   b. As you will see, you can perform insertions 
and removals on a 2-3-4 tree with fewer steps than a 2-3 tree requires.   

Note: 2-3-4 trees 

T  is a 2-3-4 tree of height  h  if one of the following is true:    

•    T  is empty, in which case  h  is 0.  
•    T  is of the form   

r

TL TR

 where  r  is a node that contains one data item and  TL  and  TR  are both 2-3-4 trees, each of 
height h  – 1. In this case, the item in  r  must be greater than each item in the left subtree 
TL  and smaller than each item in the right subtree  TR .

•    T  is of the form   
r

TL TRTM

 where  r  is a node that contains two data items and  TL ,  TM , and  TR  are 2-3-4 trees, each of 
height h  – 1. In this case, the smaller item in  r  must be greater than each item in the left 
subtree TL  and smaller than each item in the middle subtree  TM . The larger item in  r
must be greater than each item in  TM  and smaller than each item in the right subtree  TR .

•    T  is of the form   
r

TL TRTML TMR

 where  r  is a node that contains three data items and  TL ,  TML ,  TMR , and  TR  are 2-3-4 trees, 
each of height h  – 1. In this case, the smallest item in  r  must be greater than each item in 
the left subtree TL  and smaller than each item in the middle-left subtree  TML . The middle 
item in r  must be greater than each item in  TML  and smaller than each item in the mid-
dle-right subtree TMR . The largest item in  r  must be greater than each item in  TMR  and 
smaller than each item in the right subtree TR . 

A 2-3-4 tree 

     Note: Rules for placing data items in the nodes of a 2-3-4 tree 

 The previous defi nition of a 2-3-4 tree implies the following rules for how you may place 
data items in its nodes: 

•    A 2-node, which has two children, must contain a single data item that satisfi es the 
relationships pictured earlier in  Figure   19-3   a.  

•    A 3-node, which has three children, must contain two data items that satisfy the 
relationships pictured earlier in  Figure   19-3   b.  
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  Although a 2-3-4 tree has more effi cient insertion and removal operations than a 2-3 tree, a 2-3-4 
tree has greater storage requirements due to the additional data members in its 4-nodes, as the begin-
ning of the class QuadNode  indicates:       

   template < class ItemType> 
  class QuadNode 
 { 
  private : 
   ItemType smallItem, middleItem, largeItem; // Data portion 
   QuadNode<ItemType>* leftChildPtr;         // Left-child pointer 
   QuadNode<ItemType>* leftMidChildPtr;       // Middle-left-child pointer 
   QuadNode<ItemType>* rightMidChildPtr;     // Middle-right-child pointer 
   QuadNode<ItemType>* rightChildPtr;        // Right-child pointer 

// Constructors, accessor methods, and mutator methods are here. 

   . . . 

 }; // end QuadNode 

 As you will see later, however, you can transform a 2-3-4 tree into a special binary tree that reduces 
the storage requirements. 

   19.3.1  Searching and Traversing a 2-3-4 Tree 

 The search algorithm and the traversal algorithm for a 2-3-4 tree are simple extensions of the corre-
sponding algorithms for a 2-3 tree. For example, to search the tree in  Figure   19-20    for 31, you would 
search the left subtree of the root, because 31 is less than 37; search the middle subtree of the node 
<30 35>, because 31 is between 30 and 35; and terminate the search at the left child pointer of <32 33 
34>, because 31 is less than 32—deducing that 31 is not in the tree. Exercise 8 asks you to complete 
the details of searching and traversing a 2-3-4 tree.  

   19.3.2  Inserting Data into a 2-3-4 Tree 

 The insertion algorithm for a 2-3-4 tree, like the insertion algorithm for a 2-3 tree, splits a node by 
moving one of its items up to its parent node. For a 2-3 tree, the search algorithm traces a path from 
the root to a leaf and then backs up from the leaf as it splits nodes. To avoid this return path after 

•    A 4-node, which has four children, must contain three data items  S ,  M , and  L  that 
satisfy the following relationships, as  Figure   19-21    illustrates:  S  is greater than the 
left child’s item(s) and less than the middle-left child’s item(s);  M  is greater than the 
middle-left child’s item(s) and less than the middle-right child’s item(s);  L  is greater 
than the middle-right child’s item(s) and less than the right child’s item(s).  

•    A leaf may contain either one, two, or three data items.   

FIGURE 19-21         A 4-node in a 2-3-4 tree   
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reaching a leaf, the insertion algorithm for a 2-3-4 tree splits 4-nodes as soon as it encounters them 
on the way down the tree from the root to a leaf. As a result, when a 4-node is split and an item is 
moved up to the node’s parent, the parent cannot possibly be a 4-node, and so it can accommodate 
another item. 

 As an example of the algorithm, consider the tree in  Figure   19-22   a. This one-node tree is the 
result of inserting 60, 30, and 10 into an initially empty 2-3-4 tree. We will now insert more data into 
this tree.   

   Insert 20.   While determining the insertion point, you begin at the root and encounter the 4-node <10 
30 60>, which you split by moving the middle value 30 up. Because the node is the root, you create a 
new root, move 30 into it, and attach two children, as  Figure   19-22   b illustrates. You continue the 
search for 20 by examining the left subtree of the root, because 20 is less than 30. The insertion results 
in the tree in  Figure   19-22   c. 

Split 4-nodes as 
they are 
encountered

FIGURE 19-22         Inserting 20 into a one-node 2-3-4 tree (a) the original tree; (b) after splitting the 
node; (c) after inserting 20   
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  Insert 50 and 40.   The insertions of 50 and 40 do not require split nodes and result in the tree in 
 Figure   19-23   . 

FIGURE 19-23         After inserting 50 and 40 into the tree in Figure 19-22c   
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  Insert 70.   While searching  Figure   19-23    for 70’s insertion point, you encounter the 4-node <40 50 
60>, because 70 is greater than 30. You split this 4-node by moving 50 up to the node’s parent, <30>, 
to get the tree in  Figure   19-24   a. You then insert 70 into the leaf <60>, as  Figure   19-24   b illustrates. 

FIGURE 19-24         The steps for inserting 70 into the tree in Figure 19-23: (a) after splitting the 
4-node; (b) after inserting 70   
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  Insert 90.   As you search  Figure   19-25    for 90’s insertion point, you traverse the root’s right subtree, 
because 90 is greater than 50, and encounter the 4-node <60 70 80>. You split this 4-node into two 
nodes and move 70 up to the root, as  Figure   19-26   a indicates. Finally, because 90 is greater than 70, 
you insert 90 into the leaf <80> to get the tree in  Figure   19-26   b. 

  Insert 80 and 15.   These insertions do not require split nodes and result in the tree in  Figure   19-25   . 

FIGURE 19-25         After inserting 80 and 15 into the tree in Figure 19-24b   
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FIGURE 19-26         The steps for inserting 90 into the tree in Figure 19-25   
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  Insert 100.   As you begin to search  Figure   19-26   b, you immediately encounter a 4-node at the tree’s 
root. You split this node into two nodes and move 50 up to a new root, as  Figure   19-27   a indicates. 
After continuing the search, you insert 100 into <80 90> to get the tree in  Figure   19-27   b. 

FIGURE 19-27         The steps for inserting 100 into the tree in Figure 19-26b   
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  Splitting 4-nodes during insertion.   As you have just seen, you split each 4-node as soon as you 
encounter it during your search from the root to the leaf that will accommodate the new item to be 
inserted. As a result, each 4-node either will 

•   Be the root,  
•   Have a 2-node parent, or  
•   Have a 3-node parent   
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   Figure   19-29    illustrates the two possible situations that can occur when you split a 4-node whose 
parent is a 2-node. For example, when you split <40 50 60> during the insertion of 70 into the tree in 
 Figure   19-23   , you get the tree in  Figure   19-24   a. 

  Figure   19-28    illustrates how to split a 4-node that is the tree’s root. You have seen two previous 
examples of this: We split <10 30 60> in  Figure   19-22   a, resulting in the tree in  Figure   19-22   b. We 
also split <30 50 70> during the insertion of 100 into the tree in  Figure   19-26   b, giving us the tree in 
 Figure   19-27   a. 

FIGURE 19-28         Splitting a 4-node root during insertion into a 2-3-4 tree   
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FIGURE 19-29         Splitting a 4-node whose parent is a 2-node during insertion into a 2-3-4 tree, 
when the 4-node is a (a) left child; (b) right child   
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     Question 5   Insert 25 into the 2-3-4 tree in Figure 19-27b. 

     Question 6   Insert 3 and 4 into the 2-3-4 tree that you created in the previous question. CHECK POINT

  Figure   19-30    illustrates the three possible situations that can occur when you split a 4-node 
whose parent is a 3-node. For example, when you split <60 70 80> during the insertion of 90 into the 
tree in  Figure   19-25   , you get the tree in  Figure   19-26   a. 
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     19.3.3  Removing Data from a 2-3-4 Tree 

 The removal algorithm for a 2-3-4 tree has the same beginning as the removal algorithm for a 
2-3 tree. You first locate the node  n  that contains the item  I  that you want to remove. You then 
find  I ’s inorder successor and swap it with  I  so that the removal will always be at a leaf. If that 
leaf is either a 3-node or a 4-node, you simply remove  I . If you can ensure that  I  does not occur 
in a 2-node, you can perform the removal in one pass through the tree from root to leaf, unlike 
removal from a 2-3 tree. That is, you will not have to back away from the leaf and restructure 
the tree. 

 In fact, you can guarantee that  I  does not occur in a 2-node by transforming each 2-node that 
you encounter during the search for  I  into either a 3-node or a 4-node. Several cases are possible, 
depending on the confi guration of the 2-node’s parent and its nearest sibling. (Arbitrarily, a 
node’s nearest sibling is its left sibling, unless the node is a left child, in which case its nearest 
sibling is to its right.) That is, either the parent or the sibling could be a 2-node, a 3-node, or a 
4-node. For example, if the next node that you encounter is a 2-node and both its parent and near-
est sibling are 2-nodes, apply the transformation that  Figure   19-28    illustrates, but in reverse; 
however, if the parent is a 3-node, apply the transformation that  Figure   19-29    illustrates, but in 
reverse; and if the parent is a 4-node, apply the transformation that  Figure   19-30    illustrates, but 
in reverse.    

 The details of removal from a 2-3-4 tree are left to you as a challenging exercise (Exercise 8). 
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FIGURE 19-30         Splitting a 4-node whose parent is a 3-node during insertion into a 2-3-4 tree, 
when the 4-node is a (a) left child; (b) middle child; (c) right child   
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     19.4 Red-Black Trees 
 A 2-3-4 tree is appealing because it is balanced and because its insertion and removal operations 
use only one pass from root to leaf. On the other hand, a 2-3-4 tree requires more storage than a 
binary search tree that contains the same data because a 2-3-4 tree has nodes that must accommo-
date up to three data items. A typical binary search tree, however, might not be balanced.   

  You can use a special binary search tree—a  red-black tree —to represent a 2-3-4 tree that 
retains the advantages of a 2-3-4 tree without the storage overhead. The idea is to represent each 
3-node and 4-node in a 2-3-4 tree as an equivalent binary search tree. To distinguish between 
2-nodes that appeared in the original 2-3-4 tree and 2-nodes that were generated from 3-nodes and 
4-nodes, you use red and black child pointers. Let all the child pointers in the original 2-3-4 tree 
be black, and use red child pointers to link the 2-nodes that result when you split 3-nodes and 
4-nodes.   

2-3 and 2-3-4 trees 
are attractive 
because their 
balance is easy to 
maintain

Insertion and 
removal algorithms 
for a 2-3-4 tree 
require fewer steps 
than those for a 
2-3 tree 

Allowing nodes with 
more than four 
children is 
counterproductive 

     Note: 2-3 trees versus 2-3-4 trees 

 The advantage of both 2-3 and 2-3-4 trees is their easy-to-maintain balance, not their 
shorter height. Even if a 2-3 tree is shorter than a balanced binary search tree, the 
reduction in height is offset by the increased number of comparisons that the search 
algorithm might require at each node. The situation is similar for a 2-3-4 tree, but its 
insertion and removal algorithms require only one pass through the tree and so are 
more effi cient than those for a 2-3 tree. This decrease in effort makes the 2-3-4 tree 
more attractive than the 2-3 tree.         

     Note: Nodes with more than four children? 

 Should we consider trees whose nodes have even more than four children? Although a 
tree whose nodes can each have 100 children would be shorter than a 2-3-4 tree, its search 
algorithm would require more comparisons at each node to determine which subtree to 
search. Thus, allowing the nodes of a tree to have many children is counterproductive. 
Such a search tree is appropriate, however, when it is implemented in external storage, 
because moving from node to node is far more expensive than comparing the data values 
in a node. In such cases, a search tree with the minimum possible height is desirable, even 
at the expense of additional comparisons at each node.  Chapter   21    will discuss external 
search trees further.    

A 2-3-4 tree requires 
more storage than a 
binary search tree 

A red-black tree has 
the advantages of  a 
2-3-4 tree but 
requires less 
storage 

     Note:   In a red-black tree, red pointers link the 2-nodes that now contain the values that 
were in a 3-node or a 4-node. 

  Figure   19-31    indicates how to represent a 4-node and a 3-node as binary trees. Because there are 
two possible ways to represent a 3-node as a binary tree, a red-black representation of a 2-3-4 tree is 
not unique.  Figure   19-32    gives a red-black representation for the 2-3-4 tree in  Figure   19-20   . In all of 
these fi gures, a dashed blue line represents a red pointer and a solid black line represents a black 
pointer. 
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   A node in a red-black tree is similar to a node in a binary search tree, but it must also store the 
pointer colors, as the following C++ statements indicate:    

   enum Color {RED, BLACK}; 

  template < class ItemType> 
  class RedBlackNode : public BinaryNode<ItemType> 
 { 
  private : 
   Color leftColor, rightColor; 

  public : 
    // Get and set methods for leftColor and rightColor 

// . . .

 }; // end RedBlackNode 

FIGURE 19-31         Red-black representation of (a) a 4-node; (b) a 3-node   
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FIGURE 19-32         A red-black tree that represents the 2-3-4 tree in  Figure   19-20      
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     Note:   Even with the pointer colors, a node in a red-black tree requires less storage than 
a node in a 2-3-4 tree. Keep in mind that the transformations in  Figure   19-31    imply a 
change in the structure of the nodes. 
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   19.4.1  Searching and Traversing a Red-Black Tree 

 Because a red-black tree is a binary search tree, you can search and traverse it by using the algorithms 
for a binary search tree. You simply ignore the color of the pointers.  

   19.4.2  Inserting into and Removing from a Red-Black Tree 

 Because a red-black tree actually represents a 2-3-4 tree, you simply need to adjust the 2-3-4 inser-
tion algorithms to accommodate the red-black representation. Recall that while searching a 2-3-4 
tree, you split each 4-node that you encounter, so it is suffi cient to reformulate that process in terms 
of the red-black representation. For example,  Figure   19-31   a shows the red-black representation of 
a 4-node. Thus, to identify a 4-node in its red-black form, you look for a node that has two red 
pointers. 

 Suppose that the 4-node is the root of the 2-3-4 tree.  Figure   19-28    shows how to split the root into 
2-nodes. By comparing this fi gure with  Figure   19-31   a, you see that to perform an equivalent opera-
tion on a red-black tree, you simply change the color of its root’s pointers to black, as  Figure   19-33    
illustrates.

Splitting the 
equivalent of  a 
4-node requires only 
simple color 
changes 

FIGURE 19-33         Splitting a red-black representation of a 4-node that is the root   
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   Figure   19-29    shows how to split a 4-node whose parent is a 2-node. If you reformulate this fi gure 
by using the red-black notation given in  Figure   19-31   , you get  Figure   19-34   . Notice that this case also 
requires only color changes within the red-black tree.   

   Finally,  Figure   19-30    shows how to split a 4-node whose parent is a 3-node. Figure 19-35 
shows this process for a red-black tree, using the transformations that  Figure   19-31    describes. 
Note that each of the configurations before the split in  Figure   19-30    has two red-black repre-
sentations, as  Figure   19-35    illustrates. As you can see, each pair of representations transforms 
into the same red-black configuration. Of the six possibilities given in  Figure   19-35   , only two 
require simple color changes. The others also require changes to the pointers themselves. These 
pointer changes, which are called  rotations , result in a shorter tree.    

 The removal algorithm is derived in an analogous fashion from the 2-3-4 tree removal algorithm. 
Because insertion and removal operations on a red-black tree frequently require only color changes, 
they are more effi cient than the corresponding operations on a 2-3-4 tree. 

 Exercise 11 asks you to complete the details of the insertion and removal algorithms.  

Pointer changes 
called rotations 
result in a shorter 
tree

     Question 8   What red-black tree represents the 2-3-4 tree in  Figure   19-27   a? 
CHECK POINT

     Question 7   Why does a node in a red-black tree require less memory than a node in a 
2-3-4 tree? 

CHECK POINT
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FIGURE 19-34         Splitting a red-black representation of a 4-node whose parent is a 2-node, when 
the 4-node is a (a) left child; (b) right child   

FIGURE 19-35         Splitting a red-black representation of a 4-node whose parent is a 2-node    
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FIGURE 19-35 Splitting a red-black representation of a 4-node whose parent is a 2-node 
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     19.5 AVL Trees 
 An  AVL tree —named for its inventors, Adel’son-Vel’skii and Landis—is a balanced binary search 
tree. Because the heights of the left and right subtrees of any node in a balanced binary tree differ by 
no more than 1, you can search an AVL tree almost as effi ciently as a minimum-height binary search 
tree. This section will simply introduce you to the notion of an AVL tree—which is the oldest form of 
balanced binary tree—and leave the details for another course.   

  It is, in fact, possible to rearrange any binary search tree of  n  nodes to obtain a binary search 
tree with the minimum possible height < log 2 ( n  + 1) = . Recall, for example, the algorithms devel-
oped in  Section   16.4    of  Chapter   16    that use a fi le to save and restore a binary search tree. You can 
start with an arbitrary binary search tree, save its values in a fi le, and then construct from these 
same values a new binary search tree of minimum height. Although this approach may be appro-
priate in the context of a dictionary that occasionally is saved and restored, it requires too much 
work to be performed every time an insertion or removal leaves the tree unbalanced. The cost of 
repeatedly rebuilding the tree could very well outweigh the benefi t of searching a tree of mini-
mum height. 

 The AVL algorithm is a compromise. It maintains a binary search tree with a height close to the 
minimum, but it is able to do so with far less work than would be necessary to keep the height of the 
tree exactly equal to the minimum. The basic strategy of the AVL algorithm is to monitor the shape of 
the binary search tree. You insert or delete nodes just as you would for any binary search tree, but after 
each insertion or deletion, you check that the tree is still an AVL tree. That is, you determine whether 
any node in the tree has left and right subtrees whose heights differ by more than 1. For example, sup-
pose that the binary search tree in  Figure   19-36   a is the result of a sequence of insertions and removals. 
The heights of the left and right subtrees of the root <30> differ by 2. You can restore this tree’s AVL 
property—that is, its balance—by rearranging its nodes. For instance, you can rotate the tree so that 
the node <20> becomes the root, with left child <10> and right child <30>, as in  Figure   19-36   b. 
Notice that you cannot arbitrarily rearrange the tree’s nodes, because you must take care not to destroy 
the search tree’s ordering property in the course of the rebalancing.     

    Rotations are not necessary after every insertion or removal. For example, you can insert 40 into 
the AVL tree in  Figure   19-36   b and still have an AVL tree, as  Figure   19-36   c shows. However, when a 
rotation is necessary to restore a tree’s AVL property, the rotation will be one of two possible types. 
Let’s look at an example of each type. 

 Suppose that you insert a new node containing 60 into an AVL tree to get the tree in  Figure   19-37   a. 
An imbalance occurs at the node <20>; that is, this node’s left and right subtrees differ in height by 
more than 1. A  single rotation  to the left is necessary to obtain the balanced tree in  Figure   19-37   b: 
<40> becomes the parent of <20>, which adopts <30> as its right child.  Figure   19-37   c shows this 
rotation in a more general form. It shows, for example, that before the rotation the left and right 

An AVL tree is a 
balanced binary 
search tree 

An AVL tree 
maintains a height 
close to the 
minimum

Rotations restore 
the balance 

FIGURE 19-36         (a) An unbalanced binary search tree; (b) a balanced tree after rotation; 
(c) a balanced tree after insertion   
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FIGURE 19-37         (a) Before; (b) and after a single left rotation that decreases the tree’s height; 
(c) the rotation in general   
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FIGURE 19-38         (a) Before; (b) and after a single left rotation that does not affect the tree’s 
height; (c) the rotation in general   
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FIGURE 19-39         (a) Before; (b) during; and (c) after a double rotation that decreases the tree’s 
height; (d) the double rotation in general   
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subtrees of the node <40> have heights  h  and  h  + 1, respectively. After the rotation, the tree is bal-
anced and, in this particular case, has decreased in height from  h  + 3 to  h  + 2. 

   Figure   19-38    shows examples of a single left rotation that restores a tree’s balance but does not 
affect its height. An analogous single right rotation would produce mirror images of these examples. 

  A more complex rotation might be necessary. For example, consider the tree in  Figure   19-39   a, 
which is the result of nodes being added to or deleted from an AVL tree. The left and right subtrees of 
the node <40> differ in height by more than 1. A double rotation is necessary to restore this tree’s bal-
ance.  Figure   19-39   b shows the result of a left rotation about <20>, and  Figure   19-39   c shows the result 
of a right rotation about <40>.  Figure   19-39   d illustrates this double rotation in a more general form. 
Mirror images of these fi gures would provide examples of other possible double rotations. 

  It can be proven that the height of an AVL tree with  n  nodes will always be very close to the theo-
retical minimum of < log 2 ( n  + 1) = . The AVL tree implementation of a dictionary is, therefore, one 
implementation that guarantees a binary search-like effi ciency. Usually, however, implementations 
that use either a 2-3-4 tree or a red-black tree will be simpler.      
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     SUMMARY   

1.  A 2-3 tree and a 2-3-4 tree are variants of a binary search tree. The internal nodes of a 2-3 tree can have either 
two or three children. The internal nodes of a 2-3-4 tree can have either two, three, or four children. Allowing 
the number of children to vary permits the insertion and removal algorithms to maintain the balance of the 
tree easily. 

2.  The insertion and removal algorithms for a 2-3-4 tree require only a single pass from root to leaf and, thus, are 
more effi cient than the corresponding algorithms for a 2-3 tree. 

3.  A red-black tree is a binary tree representation of a 2-3-4 tree that requires less storage than a 2-3-4 tree. 
Insertions and removals for a red-black tree are more effi cient than the corresponding operations on a 
2-3-4 tree. 

4.  An AVL tree is a binary search tree that is guaranteed to remain balanced. The insertion and removal algorithms 
perform rotations in the event that the tree starts to stray from a balanced shape. 

1.  Consider the following sequence of operations on an initially empty search tree:

   Insert 10 
   Insert 100  
  Insert 30 
   Insert 80 
   Insert 50  
  Remove 10  
  Insert 60 
   Insert 70 
   Insert 40 
   Remove 80 
   Insert 90 
   Insert 20 
   Remove 30 
   Remove 70  

 What does the tree look like after these operations execute if the tree is 
a.   A binary search tree?     d.   A red-black tree? 
b.   A 2-3 tree?     e.   An AVL tree? 
c.   A 2-3-4 tree?   

2.  What are the advantages of implementing the ADT dictionary with a 2-3 tree instead of a binary search tree? 
Why do you not, in general, maintain a completely balanced binary search tree? 

3.  Write a pseudocode function that performs a range query for a 2-3 tree. That is, the function should visit all 
items that are within a given range of values. For example, your function should visit all values between 100 
and 1,000. 

      EXERCISES   
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4.  Given the 2-3 tree in  Figure   19-40   , draw the tree that results after inserting  k ,  b ,  c ,  y , and  w  into the tree.  

5.  Given the 2-3 tree in  Figure   19-41   , draw the tree that results after removing  t ,  e ,  k , and  d  from the tree.  

6.  Draw the 2-3-4 tree that results from inserting  o ,  d ,  j ,  h ,  s ,  g , and a , in the order given, into a 2-3-4 tree that 
contains a single node whose value is  n . 

7.  Assume that the tree in  Figure   19-5   b is a 2-3-4 tree, and insert 39, 38, 37, 36, 35, 34, 33, and 32 into it. What 
2-3-4 tree results? 

*8.  Write pseudocode for the insertion, removal, retrieval, and traversal operations for a 2-3-4 tree. 

9.   Figure   19-32    is a red-black tree that represents the 2-3-4 tree in  Figure   19-20   . Draw another red-black tree that 
also represents the same 2-3-4 tree. 

10.  What 2-3-4 tree does the red-black tree in  Figure   19-42    represent?  

11.  Write pseudocode for the insertion, removal, retrieval, and traversal operations for a red-black tree. 

12.  Write a C++ function that converts a 2-3-4 tree to a red-black tree. 

FIGURE 19-40         A 2-3 tree for Exercise 4   
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      PROGRAMMING PROBLEMS           

1.  Implement the ADT dictionary by using a 2-3-4 tree. 

  *2.  Implement the ADT dictionary by using a 2-3 tree. (This implementation is more diffi cult than the 2-3-4 
implementation.)

3.  Implement the ADT dictionary by using a red-black tree. 

4.  Repeat Programming Problem 5 of  Chapter   16    using a dictionary implemented with a balanced search tree. 

   FIGURE 19-42         A red-black tree for Exercise 10   
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Graphs are an important mathematical concept with signifi cant applications not only 
in computer science, but also in many other fi elds. You can view a graph as a 
mathematical construct, a data structure, or an abstract data type. This chapter provides 
an introduction to graphs that allows you to view a graph in any of these three ways. It 
also presents the major operations and applications of graphs that are relevant to the 
computer scientist.   
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      20.1  Terminology 
 You are undoubtedly familiar with graphs: Line graphs, bar graphs, and pie charts are in common 
use. The simple line graph in  Figure   20-1    is an example of the type of graph that this chapter 
considers: a set of points that are joined by lines. Clearly, graphs provide a way to illustrate data. 
However, graphs also represent the relationships among data items, and it is this feature of graphs 
that is important here.     

 A  graph   G  consists of two sets: a set  V  of vertices, or nodes, and a set  E  of edges that connect the 
vertices. For example, the campus map in  Figure   20-2   a is a graph whose vertices represent buildings 
and whose edges represent the sidewalks between the buildings. This defi nition of a graph is more 
general than the defi nition of a line graph. In fact, a line graph, with its points and lines, is a special 
case of the general defi nition of a graph.        

  G = { V, E}; that is, a 
graph is a set of  
vertices and edges 

Adjacent vertices 
are joined by an 
edge 

A path between 
two vertices is a 
sequence of  edges 

FIGURE 20-1         An ordinary line graph   

FIGURE 20-2         (a) A campus map as a graph; (b) a subgraph   
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 A  subgraph  consists of a subset of a graph’s vertices and a subset of its edges.  Figure   20-2   b 
shows a subgraph of the graph in  Figure   20-2   a. Two vertices of a graph are  adjacent  if they are joined 
by an edge. In  Figure   20-2   b, the Library and the Student Union are adjacent. A path between two 
vertices is a sequence of edges that begins at one vertex and ends at another vertex. For example, there 
is a path in  Figure   20-2   a that begins at the Dormitory, leads fi rst to the Library, then to the Student 

VideoNote

Graph concepts
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Union, and fi nally back to the Library. Although a path may pass through the same vertex more than 
once, as the path just described does, a simple path  may not. The path Dormitory–Library–Student 
Union is a simple path. A  cycle  is a path that begins and ends at the same vertex; a  simple cycle  is a 
cycle that does not pass through other vertices more than once. The path Library–Student Union–
Gymnasium–Dormitory–Library is a simple cycle in the graph in  Figure   20-2   a. A graph is connected
if each pair of distinct vertices has a path between them. That is, in a connected graph you can get 
from any vertex to any other vertex by following a path.  Figure   20-3   a shows a connected graph. 
Notice that a connected graph does not necessarily have an edge between every pair of vertices.  
Figure   20-3   b shows a  disconnected  graph.                         

 In a  complete   graph , each pair of distinct vertices has an edge between them. The graph in  
Figure   20-3   c is complete. Clearly, a complete graph is also connected, but the converse is not true; 
notice that the graph in  Figure   20-3   a is connected but is not complete. 

 Because a graph has a  set  of edges, a graph cannot have duplicate edges between vertices. How-
ever, a  multigraph , as illustrated in  Figure   20-4   a, does allow multiple edges. Thus, a multigraph is 
not a graph. A graph’s edges cannot begin and end at the same vertex.  Figure   20-4   b shows such an 
edge, which is called a  self edge or loop.

 You can label the edges of a graph. When these labels represent numeric values, the graph is 
called a weighted graph . The graph in  Figure   20-5   a is a weighted graph whose edges are labeled 
with the distances between cities. 

 All of the previous graphs are examples of  undirected graphs , because the edges do not indicate 
a direction. That is, you can travel in either direction along the edges between the vertices of an undi-
rected graph. In contrast, each edge in a directed graph, or digraph, has a direction and is called a 

A simple path 
passes through a 
vertex only once 

A cycle is a path that 
begins and ends at 
the same vertex 

A connected graph 
has a path between 
each pair of  distinct 
vertices 

A complete graph 
has an edge 
between each pair 
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FIGURE 20-3         Graphs that are (a) connected; (b) disconnected; and (c) complete   
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FIGURE 20-4         (a) A multigraph is not a graph; (b) a self edge is not allowed in a graph   
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directed edge . Although each distinct pair of vertices in an undirected graph has only one edge 
between them, a directed graph can have two edges between a pair of vertices, one in each direction. 
For example, the airline fl ight map in  Figure   20-5   b is a directed graph. There are fl ights in both direc-
tions between Providence and New York, but, although there is a fl ight from San Francisco to Albu-
querque, there is no fl ight from Albuquerque to San Francisco. You can convert an undirected graph to 
a directed graph by replacing each edge with two directed edges that point in opposite directions.       

 The defi nitions just given for undirected graphs apply also to directed graphs, with changes that 
account for direction. For example, a directed path is a sequence of directed edges between two vertices, 
such as the directed path in  Figure   20-5   b that begins in Providence, goes to New York, and ends in San 
Francisco. However, the defi nition of adjacent vertices is not quite as obvious for a digraph. If there is a 
directed edge from vertex  x  to vertex  y , then  y  is adjacent to  x.  (Alternatively,  y  is a successor of x , and  x  is 
a predecessor of y .) It does not necessarily follow, however, that  x  is adjacent to  y . Thus, in  Figure   20-5   b, 
Albuquerque is adjacent to San Francisco, but San Francisco is not adjacent to Albuquerque. 

   20.2  Graphs as ADTs 
 You can treat graphs as abstract data types. Insertion and removal operations are somewhat different 
for graphs than for other ADTs that you have studied, in that they apply to either vertices or edges. 
You can defi ne the ADT graph so that its vertices either do or do not contain values. A graph whose 
vertices do not contain values represents only the relationships among vertices. Such graphs are not 
unusual, because many problems have no need for vertex values. However, the following ADT graph 
operations do assume that the graph’s vertices contain values. 

In a directed graph, 
vertex  y is adjacent 
to vertex  x if  there is 
a directed edge from 
x to y  

FIGURE 20-5         (a) A weighted graph; (b) a directed graph   
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 Several variations of this ADT are possible. For example, if the graph is directed, you can replace 
occurrences of “edges” in the previous operations with “directed edges.” You can also add traversal 
operations to the ADT. Graph-traversal algorithms are discussed in Section 20.3.   

Listing 20-1 contains an interface that specifi es in more detail the ADT operations for an undi-
rected graph.

LISTING 20-1 A C++ interface for undirected, connected graphs

/** An interface for the ADT undirected, connected graph. 
 @file GraphInterface.h */
#ifndef _GRAPH_INTERFACE
#define _GRAPH_INTERFACE

template<class LabelType>
class GraphInterface
{
public:

 /** Gets the number of vertices in this graph.
@pre  None.

     @return  The number of vertices in the graph. */
virtual int getNumVertices() const = 0;

 /** Gets the number of edges in this graph.
     @pre  None.
     @return  The number of edges in the graph. */

virtual int getNumEdges() const = 0;

/** Creates an undirected edge in this graph between two vertices
        that have the given labels. If such vertices do not exist, creates
        them and adds them to the graph before creating the edge.
     @param start  A label for the first vertex. 
     @param end  A label for the second vertex.
     @param edgeWeight  The integer weight of the edge.
     @return  True if the edge is created, or false otherwise. */

virtual bool add(LabelType start, LabelType end, int edgeWeight) = 0;

 /** Removes an edge from this graph. If a vertex has no other edges, 
         it is removed from the graph since this is a connected graph. 

Note: ADT graph operations 
•   Test whether a graph is empty.  
•   Get the number of vertices in a graph.  
•   Get the number of edges in a graph.  
•   See whether an edge exists between two given vertices.  
•    Insert a vertex in a graph whose vertices have distinct values that differ from the new 

vertex’s value.  
•   Insert an edge between two given vertices in a graph.  
•    Remove a particular vertex from a graph and any edges between the vertex and other 

vertices.  
•   Remove the edge between two given vertices in a graph.  
•   Retrieve from a graph the vertex that contains a given value.    

(continues)
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     @pre  None.
     @param start  A label for the first vertex.
     @param end  A label for the second vertex.
     @return  True if the edge is removed, or false otherwise. */

virtual bool remove(LabelType start, LabelType end) = 0;

 /** Gets the weight of an edge in this graph.
     @return  The weight of the specified edge. 
         If no such edge exists, returns a negative integer. */

virtual int getEdgeWeight(LabelType start, LabelType end) const = 0;

 /** Performs a depth-first search of this graph beginning at the given
         vertex and calls a given function once for each vertex visited.
     @param start  A label for the first vertex.
     @param visit  A client-defined function that performs an operation on
        or with each visited vertex. */

virtual void depthFirstTraversal(LabelType start, void visit(LabelType&)) = 0;

 /** Performs a breadth-first search of this graph beginning at the given
        vertex and calls a given function once for each vertex visited.
     @param start  A label for the first vertex.
     @param visit  A client-defined function that performs an operation on
        or with each visited vertex. */

virtual void breadthFirstTraversal(LabelType start, void visit(LabelType&)) = 0;
}; // end GraphInterface
#endif

Adjacency list 

  20.2.1 Implementing Graphs 

  The two most common implementations of a graph are the adjacency matrix and the adjacency list. 
An adjacency matrix  for a graph with  n  vertices numbered 0, 1, . . .,  n  – 1 is an  n  by  n  array   matrix 
such that  matrix[i][j]   is 1 ( true ) if there is an edge from vertex  i  to vertex  j , and 0 ( false ) otherwise. 
 Figure   20-6    shows a directed graph and its adjacency matrix. Notice that the diagonal entries 
 matrix[i][i]   are 0, although sometimes it can be useful to set these entries to 1. You should choose 
the value that is most convenient for your application. 

 When the graph is weighted, you can let  matrix[i][j]  be the weight that labels the edge from 
vertex  i  to vertex  j,  instead of simply 1, and let  matrix[i][j]  equal ∞ instead of 0 when there is no 
edge from vertex  i  to vertex  j . For example,  Figure   20-7    shows a weighted undirected graph and its 
adjacency matrix. Notice that the adjacency matrix for an undirected graph is symmetrical; that is, 
matrix[i][j]  equals  matrix[j][i] . 

 Our defi nition of an adjacency matrix does not mention the value, if any, in a vertex. If you need 
to associate values with vertices, you can use a second array,  values ,  to represent the  n  vertex values. 
The array  values  is one-dimensional, and  values[i]  is the value in vertex  i .        

  An  adjacency list  for a graph with  n  vertices numbered 0, 1, . . .,  n  – 1 consists of  n  linked chains. 
The ith  linked chain has a node for vertex  j  if and only if the graph contains an edge from vertex  i  to 
vertex  j . This node can contain the vertex  j ’s value, if any. If the vertex has no value, the node needs to 
contain some indication of the vertex’s identity.  Figure   20-8    shows a directed graph and its adjacency 
list. You can see, for example, that vertex 0 ( P ) has edges to vertex 2 ( R ) and vertex 5 ( W ). Thus, the 
fi rst linked chain in the adjacency chain contains nodes for  R  and  W .

  Figure   20-9    shows an undirected graph and its adjacency list. The adjacency list for an undi-
rected graph treats each edge as if it were two directed edges in opposite directions. Thus, the edge 

Adjacency matrix 
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between  A  and  B  in  Figure   20-9   a appears as edges from  A  to  B  and from  B  to  A  in  Figure   20-9   b. The 
graph in 20-9a happens to be weighted; you can include the edge weights in the nodes of the adja-
cency list, as shown in  Figure   20-9   b.    

  Which of these two implementations of a graph—the adjacency matrix or the adjacency list—is 
better? The answer depends on how your particular application uses the graph. For example, the two 
most commonly performed graph operations are   

1.   Determine whether there is an edge from vertex  i  to vertex  j
2.   Find all vertices adjacent to a given vertex  i

 The adjacency matrix supports the fi rst operation somewhat more effi ciently than does the adja-
cency list. To determine whether there is an edge from  i  to  j  by using an adjacency matrix, you need 

FIGURE 20-7         (a) A weighted undirected graph and (b) its adjacency matrix   
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FIGURE 20-6         (a) A directed graph and (b) its adjacency matrix   
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only examine the value of  matrix[i][j] . If you use an adjacency list, however, you must traverse the 
ith  linked chain to determine whether a vertex corresponding to vertex  j  is present.    

 The second operation, on the other hand, is supported more effi ciently by the adjacency list. To 
determine all vertices adjacent to a given vertex  i , given the adjacency matrix, you must traverse 
the ith  row of the array; however, given the adjacency list, you need only traverse the  ith  linked chain. 
For a graph with  n  vertices, the  ith  row of the adjacency matrix always has  n  entries, whereas the  ith

linked chain has only as many nodes as there are vertices adjacent to vertex  i , a number typically far 
less than n .   

  Consider now the space requirements of the two implementations. On the surface it might appear 
that the adjacency matrix requires less memory than the adjacency list, because each entry in the 

FIGURE 20-8         (a) A directed graph and (b) its adjacency list   
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matrix is simply an integer, whereas each list node contains both a value to identify the vertex and a 
pointer. The adjacency matrix, however, always has  n2  entries, whereas the number of nodes in an 
adjacency list equals the number of edges in a directed graph or twice that number for an undirected 
graph. Even though the adjacency list also has  n  head pointers, it often requires less storage than an 
adjacency matrix. 

 Thus, when choosing a graph implementation for a particular application, you must consider 
such factors as what operations you will perform most frequently on the graph and the number of 
edges that the graph is likely to contain. For example,  Chapters 5 and   6    presented the HPAir prob-
lem, which was to determine whether an airline provided a sequence of fl ights from an origin city to 
a destination city. The fl ight map for that problem is in fact a directed graph and appeared earlier in 
this chapter in  Figure   20-8   a.  Figures   20-6   b and    20-8   b show, respectively, the adjacency matrix and 
adjacency list for this graph. Because the most frequent operation was to fi nd all cities (vertices) 
adjacent to a given city (vertex), the adjacency list would be the more effi cient implementation of 
the fl ight map. The adjacency list also requires less storage than the adjacency matrix, which you 
can demonstrate as an exercise.   

   20.3  Graph Traversals 
 The solution to the HPAir problem in  Chapter   6    involved an exhaustive search of the graph in  
Figure   20-8   a to determine a directed path from the origin vertex (city) to the destination vertex 
(city). The algorithm  searchS  started at a given vertex and traversed edges to other vertices until 
it either found the desired vertex or determined that no (directed) path existed between the 
two vertices.       

 What distinguishes  searchS  from a standard graph traversal is that  searchS  stops when it 
fi rst encounters the designated destination vertex. A  graph-traversal  algorithm, on the other 
hand, will not stop until it has visited  all of the vertices that it can reach.  That is, a graph traversal 
that starts at vertex  v  will visit all vertices  w  for which there is a path between  v  and  w . Unlike a 
tree traversal, which always visits  all of the nodes in a tree, a graph traversal does not necessarily 
visit all of the vertices in the graph unless the graph is connected. In fact, a graph traversal visits 
every vertex in the graph if and only if the graph is connected, regardless of where the traversal 
starts. (See Exercise 18.) Thus, you can use a graph traversal to determine whether a graph is 
connected. 

 If a graph is not connected, a graph traversal that begins at vertex  v  will visit only a subset 
of the graph’s vertices. This subset is called the  connected component  containing  v . You 
can determine all of the connected components of a graph by repeatedly starting a traversal at an 
unvisited vertex.    

 If a graph contains a cycle, a graph-traversal algorithm can loop indefi nitely. To prevent such a 
misfortune, the algorithm must mark each vertex during a visit and must never visit a vertex more 
than once. 

 Two basic graph-traversal algorithms, which apply to either directed or undirected graphs, are 
presented next. These algorithms visit the vertices in different orders, but if they both start at the same 
vertex, they will visit the same set of vertices.  Figure   20-10    shows the traversal order for the two algo-
rithms when they begin at vertex  v .

   20.3.1 Depth-First Search 

  From a given vertex  v , the  depth-fi rst search (DFS)  strategy of graph traversal proceeds along a path 
from v  as deeply into the graph as possible before backing up. That is, after visiting a vertex, a DFS 
visits, if possible, an unvisited adjacent vertex.    

A graph traversal 
visits all of  the 
vertices that it can 
reach 

A graph traversal 
visits all vertices if  
and only if  the graph 
is connected 

A connected 
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subset of  vertices 
visited during a 
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An adjacency list 
supports operation 
2 more effi ciently 
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 The DFS strategy has a simple recursive form: 

  // Traverses a graph beginning at vertex v by using a  
// depth-first search: Recursive version.  
  dfs(v: Vertex) 

Mark v as visited  
for  (each unvisited vertex u adjacent to v)  

dfs(u)   

 The depth-fi rst search algorithm does not completely specify the order in which it should visit 
the vertices adjacent to  v . One possibility is to visit the vertices adjacent to  v  in sorted (that is, alpha-
betic or numerically increasing) order. This possibility is natural either when an adjacency matrix 
represents the graph or when the nodes in each linked chain of an adjacency list are linked in sorted 
order.    

 As  Figure   20-10   a illustrates, the DFS traversal algorithm marks and then visits each of the 
vertices  v ,  u ,  q , and  r . When the traversal reaches a vertex—such as  r —that has no unvisited adja-
cent vertices, it backs up and visits, if possible, an unvisited adjacent vertex. Thus, the traversal 
backs up to q  and then visits  s . Continuing in this manner, the traversal visits vertices in the order 
given in the fi gure.    

 An iterative version of the DFS algorithm is also possible by using a stack: 

  // Traverses a graph beginning at vertex v by using a  
// depth-first search: Iterative version.  
  dfs(v: Vertex)  

s= a new empty stack  

// Push v onto the stack and mark it  
s.push(v)
Mark v as visited  

// Loop invariant: there is a path from vertex v at the  
   // bottom of the stack s to the vertex at the top of s

while (!s.isEmpty())  

FIGURE 20-10         Visitation order for (a) a depth-fi rst search; (b) a breadth-fi rst search   
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{
       if (no unvisited vertices are adjacent to  the vertex on the top of the stack)

s.pop() // Backtrack  

 else   
{

Select an unvisited vertex u adjacent to      the vertex on the top of the stack  
s.push(u)  

  Mark u as visited  
}

}  

 The  dfs  algorithm is similar to  searchS  of  Chapter   6   , but the  while  statement in  searchS  termi-
nates when the top of the stack is  destinationCity . 

 For another example of a DFS traversal, consider the graph in  Figure   20-11   .  Figure   20-12    shows 
the contents of the stack as the previous function  dfs  visits vertices in this graph, beginning at vertex 
a.  Because the graph is connected, a DFS traversal will visit every vertex. In fact, the traversal visits 
the vertices in this order:  a, b, c, d, g, e, f, h, i .

 The vertex from which a depth-fi rst traversal embarks is the vertex that it visited most recently. 
This last visited, fi rst explored  strategy is refl ected both in the explicit stack of vertices that the iterative 
dfs  uses and in the implicit stack of vertices that the recursive  dfs  generates with its recursive calls. 

    20.3.2 Breadth-First Search 

 After visiting a given vertex  v,  the  breadth-fi rst search (BFS)  strategy of graph traversal visits every 
vertex adjacent to  v  that it can before visiting any other vertex. As  Figure   20-10   b illustrates, after 
marking and visiting v , the BFS traversal algorithm marks and then visits each of the vertices  u ,  w , 
and x . Since no other vertices are adjacent to  v , the BFS algorithm visits, if possible, all unvisited ver-
tices adjacent to u . Thus, the traversal visits  q  and  t . Continuing in this manner, the traversal visits 
vertices in the order given in the fi gure. 

 A BFS traversal will not embark from any of the vertices adjacent to  v  until it has visited all pos-
sible vertices adjacent to  v.  Whereas a DFS is a  last visited ,  fi rst explored  strategy, a BFS is a  fi rst vis-
ited ,  fi rst explored  strategy. It is not surprising, then, that a breadth-fi rst search uses a queue. An 
iterative version of this algorithm follows.    

FIGURE 20-11         A connected graph with cycles   
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  // Traverses a graph beginning at vertex v by using a 
// breadth-first search: Iterative version.  
  bfs(v: Vertex) 

q = a new empty queue

// Add v to queue and mark it  
q.enqueue(v)  
Mark v as visited  

 while (!q.isEmpty())  
 { 

      q.dequeue(w)

// Loop invariant: there is a path from vertex w to  every vertex in the queue q 
 for (each unvisited vertex u adjacent to w)  
{

Mark u as visited  
q.enqueue(u)  

  } 
   } 

  Figure   20-13    shows the contents of the queue as  bfs  visits vertices in the graph in  Figure   20-11   , 
beginning at vertex  a . In general, a breadth-fi rst search will visit the same vertices as a depth-fi rst 
search, but in a different order. In this example, the BFS traversal visits all of the vertices in this order: 
a ,  b ,  f ,  i ,  c ,  e ,  g ,  d ,  h .

 A recursive version of BFS traversal is not as simple as the recursive version of DFS traversal. 
Exercise 19 at the end of this chapter asks you to think about why this is so.  

FIGURE 20-12         The results of a depth-fi rst traversal, beginning at vertex  a , of the graph in 
 Figure   20-11      
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   20.4  Applications of Graphs 
 There are many useful applications of graphs. This section surveys some of these common applications. 

  20.4.1 Topological Sorting 

 A directed graph without cycles, such as the one in  Figure   20-14   , has a natural order. For example, 
vertex  a  precedes  b,  which precedes  c . Such a graph has signifi cance in ordinary life. If the vertices 
represent academic courses, the graph represents the prerequisite structure for the courses. For exam-
ple, course a  is a prerequisite to course  b,  which is a prerequisite to both courses  c  and  e . In what order 
should you take all seven courses so that you will satisfy all prerequisites? There is a linear order, 
called a topological order , of the vertices in a directed graph without cycles that answers this ques-
tion. In a list of vertices in topological order, vertex  x  precedes vertex  y  if there is a directed edge from 
x  to  y  in the graph.  

FIGURE 20-13 The results of a breadth-fi rst traversal, beginning at vertex a, of the graph in 
Figure 20-11       
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 The vertices in a given graph may have several topological orders. For example, two topological 
orders for the vertices in  Figure   20-14    are 

   a, g, d, b, e, c, f   

 and 

   a, b, g, d, e, f, c   

 If you arrange the vertices of a directed graph linearly and in a topological order, the edges will 
all point in one direction.  Figure   20-15    shows two versions of the graph in  Figure   20-14    that corre-
spond to the two topological orders just given.  

 Arranging the vertices into a topological order is called  topological sorting . There are several 
simple algorithms for fi nding a topological order. First, you could fi nd a vertex that has no successor. 
You remove from the graph this vertex and all edges that lead to it, and add it to the beginning of a list 
of vertices. You add each subsequent vertex that has no successor to the beginning of the list. When 
the graph is empty, the list of vertices will be in topological order. The following pseudocode describes 
this algorithm:   

   // Arranges the vertices in graph theGraph into a
// topological order and places them in list aList.
  topSort1(theGraph: Graph, aList: List)  

n = number of vertices in theGraph 
for (step = 1 through n)  
{

Select a vertex v that has no successors  
aList.insert(1, v)  
Remove from theGraph vertex v and its edges  

}

 When the traversal ends, the list  aList  of vertices will be in topological order.  Figure   20-16    
traces this algorithm for the graph in  Figure   20-14   . The resulting topological order is the one that 
 Figure   20-15   a represents.  

 Another algorithm is a simple modifi cation of the iterative depth-fi rst search algorithm. First you 
push all vertices that have no predecessor onto a stack. Each time you pop a vertex from the stack, you 
add it to the beginning of a list of vertices. The pseudocode for this algorithm is    

  // Arranges the vertices in graph theGraph into a
// topological order and places them in list aList.  
  topSort2(theGraph: Graph, aList: List)  

FIGURE 20-15         The graph in  Figure   20-14    arranged according to the topological orders (a)  a, g, 
d, b, e, c, f  and (b)  a, b, g, d, e, f, c
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s = a new empty stack 
for (all vertices v in the graph)  

 if (v has no predecessors)  
{

s.push(v)  
Mark v as visited  

}
 while (!s.isEmpty())
{

 if (all vertices adjacent to the vertex on     the top of the stack have been visited)  
{

s.pop(v)
aList.insert(1, v)  

}
 else   
{

FIGURE 20-16         A trace of topSort1 for the graph in  Figure   20-14      
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Select an unvisited vertex u adjacent to     the vertex on the top of the stack  
s.push(u)  
Mark u as visited  

}
   } 

 When the traversal ends, the list  aList  of vertices will be in topological order.  Figure   20-17    
traces this algorithm for the graph in  Figure   20-14   . The resulting topological order is the one that 
 Figure   20-15   b represents.     

FIGURE 20-17         A trace of topSort2 for the graph in  Figure   20-14      
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  20.4.2 Spanning Trees 

  A tree is a special kind of undirected graph, one that is connected but that has no cycles. Each vertex in 
the graph in  Figure   20-3   a could be the root of a different tree. Although all trees are graphs, not all graphs 
are trees. The nodes (vertices) of a tree have a hierarchical arrangement that is not required of all graphs. 

 A  spanning tree  of a connected undirected graph  G  is a subgraph of  G  that contains all of  G ’s 
vertices and enough of its edges to form a tree. For example,  Figure   20-18    shows a spanning tree for 
the graph in  Figure   20-11   . The dashed lines in  Figure   20-18    indicate edges that were omitted from the 
graph to form the tree. There may be several spanning trees for a given graph.  

 If you have a connected undirected graph with cycles and you remove edges until there are no 
cycles, you will obtain a spanning tree for the graph. It is relatively simple to determine whether a 
graph contains a cycle. One way to make this determination is based on the following observations 
about undirected graphs:    

1. A connected undirected graph that has  n  vertices must have at least  n  – 1 edges.  To 
establish this fact, recall that a connected graph has a path between every pair of vertices. 
Suppose that, beginning with  n  vertices, you choose one vertex and draw an edge between it 
and any other vertex. Next, draw an edge between this second vertex and any other unat-
tached vertex. If you continue this process until you run out of unattached vertices, you will 
get a connected graph like the ones in  Figure   20-19   . If the graph has  n  vertices, it has  n  – 1 
edges. In addition, if you remove an edge, the graph will not be connected.  



 Applications of Graphs 619

2. A connected undirected graph that has  n  vertices and exactly  n  – 1 edges cannot contain 
a cycle.  To see this, begin with the previous observation: To be connected, a graph with  n
vertices must have at least  n  – 1 edges. If a connected graph did have a cycle, you could 
remove any edge along that cycle and still have a connected graph. Thus, if a connected 
graph with  n  vertices and  n  – 1 edges did contain a cycle, removing an edge along the cycle 
would leave you with a connected graph with only  n  – 2 edges, which is impossible accord-
ing to observation 1.  

3. A connected undirected graph that has  n  vertices and more than  n  – 1 edges must 
contain at least one cycle.  For example, if you add an edge to any of the graphs in  Figure 
  20-19   , you will create a cycle within the graph. This fact is harder to establish and is left as 
an exercise. (See Exercise 17 at the end of this chapter.)       

 Thus, you can determine whether a connected graph contains a cycle simply by counting its 
vertices and edges. 

 It follows, then, that a tree, which is a connected undirected graph without cycles, must connect 
its n  nodes with  n  – 1 edges. Thus, to obtain the spanning tree of a connected graph of  n  vertices, you 
must remove edges along cycles until  n  – 1 edges are left. 

 Two algorithms for determining a spanning tree of a graph are based on the previous traversal 
algorithms and are presented next. In general, these algorithms will produce different spanning trees 
for any particular graph. 

  The DFS spanning tree.   One way to determine a spanning tree for a connected undirected graph is 
to traverse the graph’s vertices by using a depth-fi rst search. As you traverse the graph, mark the edges 
that you follow. After the traversal is complete, the graph’s vertices and marked edges form a spanning 

FIGURE 20-18         A spanning tree for the graph in  Figure   20-11      
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tree, which is called the  depth-fi rst search (DFS) spanning tree . (Alternatively, you can remove the 
unmarked edges from the graph to form the spanning tree.) Simple modifi cations to the previous itera-
tive and recursive versions of  dfs  result in algorithms to create a DFS spanning tree. For example, the 
recursive algorithm follows: 

  // Forms a spanning tree for a connected undirected graph  
// beginning at vertex v by using depth-first search:  
// Recursive version.  
  dfsTree(v: Vertex) 

Mark v as visited  

 for (each unvisited vertex u adjacent to v)  
{

Mark the edge from u to v
dfsTree(u)  

}

 When you apply this algorithm to the graph in  Figure   20-11   , you get the DFS spanning tree 
rooted at vertex  a  shown in  Figure   20-20   . The fi gure indicates the order in which the algorithm visits 
vertices and marks edges. You should reproduce these results by tracing the algorithm. 

    The BFS spanning tree.   Another way to determine a spanning tree for a connected undirected 
graph is to traverse the graph’s vertices by using a breadth-fi rst search. As you traverse the 
graph, mark the edges that you follow. After the traversal is complete, the graph’s vertices and 
marked edges form a spanning tree, which is called the  breadth-fi rst search (BFS) spanning 
tree . (Alternatively, you can remove the unmarked edges from the graph to form the spanning 
tree.) You can modify the previous iterative version of  bfs  by marking the edge between  w  and  u
before you add  u to the queue. The result is the following iterative algorithm to create a 
BFS spanning tree. 

  // Forms a spanning tree for a connected undirected graph  
// beginning at vertex v by using breadth-first search:  
// Iterative version. 
  bfsTree(v: Vertex) 

q = a new empty queue  

// Add v to queue and mark it  

DFS spanning tree 
algorithm

FIGURE 20-20         The DFS spanning tree rooted at vertex a for the graph in  Figure   20-11      

i

a

g

e

b

c

d

h

f

Root (1)

(2)

(3)

(5)

(7)

(4)

(6)

(8)

The DFS spanning tree algorithm visits vertices in this 
order: a, b, c, d, g, e, f, h, i. Numbers indicate the order 
in which the algorithm marks edges.



 Applications of Graphs 621

q.enqueue(v)
Mark v as visited  

 while (!q.isEmpty())
{

q.dequeue(w)

//  Loop invariant: there is a path from vertex w to
// every vertex in the queue q
 for (each unvisited vertex u adjacent to w)  
{

Mark u as visited  
Mark edge between w and u
q.enqueue(u)  

}
   } 

 When you apply this algorithm to the graph in  Figure   20-11   , you get the BFS spanning 
tree rooted at vertex  a  shown in  Figure   20-21   . The figure indicates the order in which the 
algorithm visits vertices and marks edges. You should reproduce these results by tracing the 
algorithm.    

  20.4.3 Minimum Spanning Trees 

 Imagine that a developing country hires you to design its telephone system so that all the cities in the 
country can call one another. Obviously, one solution is to place telephone lines between every pair of 
cities. However, your engineering team has determined that due to the country’s mountainous terrain, 
it is impossible to put lines between certain pairs of cities. The team’s report contains the weighted 
undirected graph in  Figure   20-22   . The vertices in the graph represent  n  cities. An edge between two 
vertices indicates that it is feasible to place a telephone line between the cities that the vertices repre-
sent, and each edge’s weight represents the installation cost of the telephone line. Note that if this 
graph is not connected, you will be unable to link all of the cities with a network of telephone lines. 
The graph in  Figure   20-22    is connected, however, making the problem feasible.  

 If you install a telephone line between each pair of cities that is connected by an edge in the graph, 
you will certainly solve the problem. However, this solution may be too costly. From observation 1 in 

FIGURE 20-21         The BFS spanning tree rooted at vertex a for the graph in  Figure   20-11      
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the previous section, you know that  n  – 1 is the minimum number of edges necessary for a graph of  n
vertices to be connected. Thus,  n  – 1 is the minimum number of lines that can connect  n  cities. 

 If the cost of installing each line is the same, the problem is reduced to one of fi nding any 
spanning tree of the graph. The total installation cost—that is, the  cost of the spanning tree —is 
the sum of the costs of the edges in the spanning tree. However, as the graph in  Figure   20-22    
shows, the cost of installing each line varies. Because there may be more than one spanning tree, 
and because the cost of different trees may vary, you need to solve the problem by selecting a span-
ning tree with the least cost; that is, you must select a spanning tree for which the sum of the edge 
weights (costs) is minimal. Such a tree is called the  minimum spanning tree , and it need not be 
unique. Although there may be several minimum spanning trees for a particular graph, their costs 
are equal. 

 One simple algorithm, called Prim’s algorithm, fi nds a minimum spanning tree that begins at any 
vertex. Initially, the tree contains only the starting vertex. At each stage, the algorithm selects a least-
cost edge from among those that begin with a vertex in the tree and end with a vertex not in the tree. 
The latter vertex and least-cost edge are then added to the tree. The following pseudocode describes 
this algorithm:    

  // Determines a minimum spanning tree for a weighted,  
// connected, undirected graph whose weights are 
// nonnegative, beginning with any vertex v.
  primsAlgorithm(v: Vertex) 

Mark vertex v as visited and include it in the minimum     spanning tree  
 while (there are unvisited vertices)  
{

Find the least-cost edge (v, u) from a visited     vertex v to some unvisited vertex u
 Mark u as visited  
Add the vertex u and the edge (v, u) to the minimum     spanning tree  

}

  Figure   20-23    traces  primsAlgorithm  for the graph in  Figure   20-22   , beginning at vertex  a . Edges 
added to the tree appear as solid lines, while edges under consideration appear as dashed lines.  

 It is not obvious that the spanning tree that  primsAlgorithm  determines will be minimal. 
However, the proof that  primsAlgorithm  is correct is beyond the scope of this book.  

FIGURE 20-22         A weighted, connected, undirected graph   
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FIGURE 20-23         A trace of  primsAlgorithm  for the graph in  Figure   20-22   , beginning at vertex a
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  20.4.4 Shortest Paths 

 Consider once again a map of airline routes. A weighted directed graph can represent this map: The 
vertices are cities, and the edges indicate existing fl ights between cities. The edge weights represent 
the mileage between cities (vertices); as such, the weights are not negative. For example, you could 
combine the two graphs in  Figure   20-5    to get such a weighted directed graph.   

  Often for weighted directed graphs you need to know the shortest path between two particular 
vertices. The  shortest path  between two given vertices in a weighted graph is the path that has the 
smallest sum of its edge weights. Although we use the term “shortest,” realize that the weights could 
be a measure other than distance, such as the cost of each fl ight in dollars or the duration of each fl ight 
in hours. The sum of the weights of the edges of a path is called the path’s  length  or  weight  or  cost . 

 For example, the shortest path from vertex 0 to vertex 1 in the graph in  Figure   20-24   a is not the 
edge between 0 and 1—its cost is 8—but rather the path from 0 to 4 to 2 to 1, with a cost of 7. For 
convenience, the starting vertex, or origin, is labeled 0 and the other vertices are labeled from 1 to 
n  – 1. Notice the graph’s adjacency matrix in  Figure   20-24   b.     

 The following algorithm, which is attributed to E. Dijkstra, actually determines the shortest 
paths between a given origin and  all  other vertices. The algorithm uses a set  vertexSet  of selected ver-
tices and an array  weight,  where  weight [ v ] is the weight of the shortest (cheapest) path from vertex 0 
to vertex  v  that passes through vertices in  vertexSet . 

 If  v  is in  vertexSet,  the shortest path involves only vertices in  vertexSet . However, if  v  is not in 
vertexSet,  then  v  is the only vertex along the path that is not in  vertexSet.  That is, the path ends with an 
edge from a vertex in  vertexSet  to  v .

Initially,  vertexSet  contains only vertex 0, and  weight  contains the weights of the single-edge 
paths from vertex 0 to all other vertices. That is,  weight [ v ] equals  matrix [0][ v ] for all  v , where  matrix
is the adjacency matrix. Thus, initially  weight  is the fi rst row of  matrix . 

 After this initialization step, you fi nd a vertex  v  that is not in  vertexSet  and that minimizes 
weight [ v ]. You add  v  to  vertexSet . For all (unselected) vertices  u  not in  vertexSet , you check the values 
weight [ u ] to ensure that they are indeed minimums. That is, can you reduce  weight [ u ]—the weight of 
a path from vertex 0 to vertex  u —by passing through the newly selected vertex  v ? 

 To make this determination, break the path from 0 to  u  into two pieces and fi nd their weights as 
follows: 

weight[v] = weight of the shortest path from 0 to v
matrix[v][u] = weight of the edge from v to u

 Then compare  weight [ u ] with  weight [ v ] +  matrix [ v ][ u ] and let 

weight[u] = the smaller of the values weight[u] and weight[v] + matrix[v][u]     

FIGURE 20-24         (a) A weighted directed graph and (b) its adjacency matrix   
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 The pseudocode for  Dijkstra’s shortest-path algorithm  is as follows:       

  // Finds the minimum-cost paths between an origin vertex  
// (vertex 0) and all other vertices in a weighted directed   
 //  graph theGraph; theGraph’s weights are nonnegative.  
  shortestPath(theGraph: Graph, weight:  WeightArray) 

 // Step 1: initialization  
Create a set vertexSet that contains only vertex 0
n = number of vertices in theGraph
 for (v = 0 through n - 1)

weight[v] = matrix[0][v] 

// Steps 2 through n
// Invariant: For v not in vertexSet, weight[v] is the 

   // smallest weight of all paths from 0 to v that pass   
   // through only vertices in vertexSet before reaching  
   // v. For v in vertexSet, weight[v] is the smallest  
   // weight of all paths from 0 to v (including paths  
   // outside vertexSet), and the shortest path  
   //  from 0 to v lies entirely in vertexSet.

 for (step = 2 through n)  
{

Find the smallest weight[v] such that v is not     in vertexSet
Add v to vertexSet 

// Check weight[u] for all u not in vertexSet
 for (all vertices u not in vertexSet)

 if (weight[u] > weight[v] + matrix[v][u]) 
weight[u] = weight[v] + matrix[v][u]

}  

 The loop invariant states that once a vertex  v  is placed in  vertexSet,   weight [ v ] is the weight of the 
absolutely shortest path from 0 to  v  and will not change. 

  Figure   20-25    traces the algorithm for the graph in  Figure   20-24   a. The algorithm takes the follow-
ing steps:  

Step 1.    vertexSet  initially contains vertex 0, and  weight  is initially the fi rst row of the graph’s 
adjacency matrix, shown in  Figure   20-24   b. 

Step 2.    weight [4] = 4 is the smallest value in  weight,  ignoring  weight [0] because 0 is in 
vertexSet . Thus,  v  = 4, so add 4 to  vertexSet . For vertices not in  vertexSet— that is, for 
u  = 1, 2, and 3 — check whether it is shorter to go from 0 to 4 and then along an edge to 
u  instead of directly from 0 to  u  along an edge. For vertices 1 and 3, it is not shorter to 

FIGURE 20-25         A trace of the shortest-path algorithm applied to the graph in  Figure   20-24   a   
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include vertex 4 in the path. However, for vertex 2 notice that  weight [2] = ∞ > weight [4] 
+ matrix [4][2] = 4 + 1 = 5. Therefore, replace  weight [2] with 5. You can also verify this 
conclusion by examining the graph directly, as  Figure   20-26   a shows. 

Step 3.    weight [2] = 5 is the smallest value in  weight,  ignoring  weight [0] and  weight [4] because 
0 and 4 are in vertexSet . Thus,  v  = 2, so add 2 to  vertexSet . For vertices not in  vertex-
Set— that is, for  u  = 1 and 3 — check whether it is shorter to go from 0 to 2 and then 
along an edge to u  instead of directly from 0 to  u  along an edge. (See  Figures   20-26   b 
and    20-26   c.) 

FIGURE 20-26         Checking  weight [u] by examining the graph: (a)  weight [2] in step 2; 
(b) weight [1] in step 3; (c)  weight [3] in step 3; (d)  weight [3] in step 4   
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 Notice that 

weight [1] = 8 >  weight [2] +  matrix [2][1] = 5 + 2 = 7. Therefore, replace  weight [1] with 7. 

weight [3] = 9 >  weight [2] +  matrix [2][3] = 5 + 3 = 8. Therefore, replace  weight [3] with 8. 

Step 4.    weight [1] = 7 is the smallest value in  weight,  ignoring  weight [0],  weight [2], and 
weight [4] because 0, 2, and 4 are in  vertexSet.  Thus,  v  = 1, so add 1 to  vertexSet.  For 
vertex 3, which is the only vertex not in  vertexSet,  notice that  weight [3] = 8 <  weight [1] 
+ matrix [1][3] = 7 + ∞, as  Figure   20-26   d shows. Therefore, leave  weight [3] as it is. 

Step 5.   The only remaining vertex not in  vertexSet  is 3, so add it to  vertexSet  and stop. 

  The fi nal values in  weight  are the weights of the shortest paths. These values appear in the last 
line of  Figure   20-25   . For example, the shortest path from vertex 0 to vertex 1 has a cost of  weight [1], 
which is 7. This result agrees with our earlier observation about  Figure   20-24   . We saw then that the 
shortest path is from 0 to 4 to 2 to 1. Also, the shortest path from vertex 0 to vertex 2 has a cost of 
weight [2], which is 5. This path is from 0 to 4 to 2. 

 The  weights  in  weight  are the smallest possible, as long as the algorithm’s loop invariant is true. 
The proof that the loop invariant is true is by induction on  step ,  and is left as a diffi cult exercise. (See 
Exercise 20.)  

  20.4.5 Circuits 

 A  circuit  is simply another name for a type of cycle that is common in the statement of certain prob-
lems. Recall that a cycle in a graph is a path that begins and ends at the same vertex. Typical circuits 
either visit every vertex once or visit every edge once. 

 Probably the fi rst application of graphs occurred in the early 1700s when Euler proposed a bridge 
problem. Two islands in a river are joined to each other and to the river banks by several bridges, as 
 Figure   20-27   a illustrates. The bridges correspond to the edges in the multigraph in  Figure   20-27   b, 
and the land masses correspond to the vertices. The problem asked whether you can begin at a vertex 
v,  pass through every edge exactly once, and terminate at  v . Euler demonstrated that no solution exists 
for this particular confi guration of edges and vertices.     

 For simplicity, we will consider an undirected graph rather than a multigraph. A path in an undi-
rected graph that begins at a vertex  v,  passes through every edge in the graph exactly once, and termi-
nates at v  is called an  Euler circuit . Euler showed that an Euler circuit exists if and only if each vertex 
touches an even number of edges. Intuitively, if you arrive at a vertex along one edge, you must be able 
to leave the vertex along another edge. If you cannot, you will not be able to reach all of the vertices. 

FIGURE 20-27         (a) Euler’s bridge problem and (b) its multigraph representation   
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 Finding an Euler circuit is like drawing each of the diagrams in  Figure   20-28    without lifting 
your pencil or redrawing a line, and ending at your starting point. No solution is possible for  Fig-
ure   20-28   a, but you should be able to fi nd one easily for  Figure   20-28   b.  Figure   20-29    contains 
undirected graphs based on  Figure   20-28   . In  Figure   20-29   a, vertices  h  and  i  each touch an odd 
number of edges (three), so no Euler circuit is possible. On the other hand, each vertex in  Figure 
  20-29   b touches an even number of edges, making an Euler circuit feasible. Notice also that the 
graphs are connected. If a graph is not connected, a path through  all  of the vertices would not be 
possible. 

   Let’s fi nd an Euler circuit for the graph in  Figure   20-29   b, starting arbitrarily at vertex  a . The strat-
egy uses a depth-fi rst search that marks edges instead of vertices as they are traversed. Recall that a 
depth-fi rst search traverses a path from  a  as deeply into the graph as possible. By marking edges 
instead of vertices, you will return to the starting vertex; that is, you will fi nd a cycle. In this example, 
the cycle is  a ,  b ,  e ,  d ,  a  if we visit the vertices in alphabetical order, as  Figure   20-30   a shows. Clearly 
this is not the desired circuit, because we have not visited every edge. We are not fi nished, however. 

 To continue, fi nd the fi rst vertex along the cycle  a ,  b ,  e ,  d ,  a  that touches an unvisited edge. In our 
example, the desired vertex is  e . Apply our modifi ed depth-fi rst search, beginning with this vertex. 
The resulting cycle is  e ,  f ,  j ,  i ,  e . Next you join this cycle with the one you found previously. That is, 
when you reach  e  in the fi rst cycle, you travel along the second cycle before continuing in the fi rst 
cycle. The resulting path is  a ,  b ,  e ,  f ,  j ,  i ,  e ,  d ,  a , as  Figure   20-30   b shows.  

 The fi rst vertex along our combined cycle that touches an unvisited edge is  i . Beginning at  i , our 
algorithm determines the cycle  i ,  h ,  d ,  c ,  g ,  h ,  k ,  l ,  i . Joining this to our combined cycle results in the 
Euler circuit a ,  b ,  e ,  f ,  j ,  i ,  h ,  d ,  c ,  g ,  h ,  k ,  l ,  i ,  e ,  d ,  a . (See  Figure   20-30   c.)  

FIGURE 20-28         Pencil and paper drawings   

(a) (b)

FIGURE 20-29         Connected undirected graphs based on the drawings in  Figure   20-28      
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  20.4.6 Some Diffi cult Problems 

 The next three applications of graphs have solutions that are beyond the scope of this book.    

  The traveling salesperson problem.   A Hamilton circuit is a path that begins at a vertex  v,  passes 
through every vertex in the graph exactly once, and terminates at  v . Determining whether an arbitrary 
graph contains a Hamilton circuit can be diffi cult. A well-known variation of this problem—the 
traveling salesperson problem—involves a weighted graph that represents a road map. Each edge has 
an associated cost, such as the mileage between cities or the time required to drive from one city to the 
next. The salesperson must begin at an origin city, visit every other city exactly once, and return to the 
origin city. However, the circuit traveled must be the least expensive. 

Loop invariant FIGURE 20-30         The steps to determine an Euler circuit for the graph in  Figure   20-29   b   
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 Unfortunately for this traveler, solving the problem is no easy task. Although a solution does 
exist, it is quite slow, and no better solution is known.  

  The three utilities problem.   Imagine three houses  A, B,  and  C  and three utilities  X, Y,  and  Z  (such as 
telephone, water, and electricity), as  Figure   20-31    illustrates. If the houses and the utilities are verti-
ces in a graph, is it possible to connect each house to each utility with edges that do not cross one 
another? The answer to this question is no.   

   A graph is  planar  if you can draw it in a plane in at least one way so that no two edges cross. The 
generalization of the three utilities problem determines whether a given graph is planar. Making this 
determination has many important applications. For example, a graph can represent an electronic 
circuit where the vertices represent components and the edges represent the connections between 
components. Is it possible to design the circuit so that the connections do not cross? The solutions to 
these problems are also beyond the scope of this book.  

  The four-color problem.   Given a planar graph, can you color the vertices so that no adjacent verti-
ces have the same color, if you use at most four colors? For example, the graph in  Figure   20-11    is 
planar because none of its edges cross. You can solve the coloring problem for this graph by using 
only three colors. Color vertices  a, c, g,  and  h  red, color vertices  b, d, f,  and  i  blue, and color vertex  e
green. 

 The answer to our question is yes, but it is diffi cult to prove. In fact, this problem was posed more 
than a century before it was solved in the 1970s with the use of a computer.             

FIGURE 20-31         The three utilities problem   

A B C

X Y Z

Question 1      Describe the graphs in  Figure   20-32   . For example, are they directed? 
Connected? Complete? Weighted?  

Question 2      Use the depth-fi rst strategy and the breadth-fi rst strategy to traverse the graph 
in  Figure   20-32   a, beginning with vertex 0. List the vertices in the order in which each traver-
sal visits them.  

Question 3      Write the adjacency matrix for the graph in  Figure   20-32   a.  

Question 4      Add an edge to the directed graph in  Figure   20-14    that runs from vertex d to 
vertex b. Write all possible topological orders for the vertices in this new graph.  

Question 5      Is it possible for a connected undirected graph with fi ve vertices and four 
edges to contain a simple cycle? Explain.  

CHECK POINT

A planar graph can 
be drawn so that no 
two edges cross 
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      SUMMARY   

Question 6      Draw the DFS spanning tree whose root is vertex 0 for the graph in 
 Figure   20-33   .  

Question 7      Draw the minimum spanning tree whose root is vertex 0 for the graph in 
 Figure   20-33   .    

Question 8      What are the shortest paths from vertex 0 to each vertex of the graph in  Figure   20-
24   a? (Note the weights of these paths in  Figure   20-25   .)   

FIGURE 20-32         Graphs for Checkpoint Questions 1, 2, and 3   
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FIGURE 20-33         A graph for Checkpoint Questions 6 and 7 and for Exercises 1 and 4   
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  1.   The two most common implementations of a graph are the adjacency matrix and the adjacency list. Each has its 
relative advantages and disadvantages. The choice should depend on the needs of the given application. 

  2.   Graph searching is an important application of stacks and queues. Depth-fi rst search (DFS) is a graph-traversal 
algorithm that uses a stack to keep track of the sequence of visited vertices. It goes as deep into the graph as it 
can before backtracking. Breadth-fi rst search (BFS) uses a queue to keep track of the sequence of visited verti-
ces. It visits all possible adjacent vertices before traversing further into the graph. 

  3.   Topological sorting produces a linear order of the vertices in a directed graph without cycles. Vertex  x  precedes 
vertex  y  if there is a directed edge from  x  to  y  in the graph. 

  4.   Trees are connected undirected graphs without cycles. A spanning tree of a connected undirected graph is a 
subgraph that contains all of the graph’s vertices and enough of its edges to form a tree. DFS and BFS traversals 
produce DFS and BFS spanning trees. 

  5.   A minimum spanning tree for a weighted undirected graph is a spanning tree whose edge-weight sum is mini-
mal. Although a particular graph can have several minimum spanning trees, their edge-weight sums will be the 
same.

  6.   The shortest path between two vertices in a weighted directed graph is the path that has the smallest sum of its 
edge weights. 
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      EXERCISES   

  7.   An Euler circuit in an undirected graph is a cycle that begins at vertex  v , passes through every edge in the graph 
exactly once, and terminates at  v . 

  8.   A Hamilton circuit in an undirected graph is a cycle that begins at vertex  v , passes through every vertex in the 
graph exactly once, and terminates at  v . 

  When given a choice of vertices to visit, the traversals in the following exercises should visit vertices in sorted order.  

  1.       Give the adjacency matrix and adjacency list for 

a.   The weighted graph in  Figure   20-33     
 b.   The directed graph in  Figure   20-34        

  2.   Show that the adjacency list in  Figure   20-8   b requires less memory than the adjacency matrix in  Figure   20-6   b. 

  3.   Consider  Figure   20-35    and answer the following: 

a.   Will the adjacency matrix be symmetrical?  
 b.   Provide the adjacency matrix.  
 c.   Provide the adjacency list.   

  4.   Use both the depth-fi rst strategy and the breadth-fi rst strategy to traverse the graph in  Figure   20-33   , beginning 
with vertex 0, and the graph in  Figure   20-36   , beginning with vertex  a . List the vertices in the order in which each 
traversal visits them.    

  5.   By modifying the DFS traversal algorithm, write pseudocode for an algorithm that determines whether a graph 
contains a cycle. 

  6.   Using the topological sorting algorithm   topSort1  , as given in this chapter, write the topological order of the 
vertices for each graph in  Figure   20-37   . 

  7.   Trace the DFS topological sorting algorithm   topSort2  , and indicate the resulting topological order of the verti-
ces for each graph in  Figure   20-37   . 

  8.   Revise the topological sorting algorithm   topSort1   by removing predecessors instead of successors. Trace the 
new algorithm for each graph in  Figure   20-37   . 

  9.   Trace the DFS and BFS spanning tree algorithms, beginning with vertex  a  of the graph in  Figure   20-11   , and 
show that the spanning trees are the trees in  Figures   20-20    and    20-21   , respectively. 

FIGURE 20-34         A graph for Exercise 1   

a

d

e

f

i

gh

b

c



 Exercises 633

FIGURE 20-35         A graph for Exercise 3   
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FIGURE 20-36         A graph for Exercises 4 and 10   
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  10.   Draw the DFS and BFS spanning trees rooted at  a  for the graph in  Figure   20-36   . Then draw the minimum span-
ning tree rooted at a  for this graph. 

  11.   For the graph in  Figure   20-38   , 

 a.   Draw all the possible spanning trees.  
 b.   Draw the minimum spanning tree.       

  12.   Write pseudocode for an iterative algorithm that determines a DFS spanning tree for an undirected graph. Base 
your algorithm on the traversal algorithm   dfs  . 

  13.   Draw the minimum spanning tree for the graph in  Figure   20-22    when you start with 

 a.   Vertex  g
 b.   Vertex  c    

  *14.   Trace the shortest-path algorithm for the graph in  Figure   20-39   , letting vertex 0 be the origin.  

  *15.   Implement the shortest-path algorithm in C++. How can you modify this algorithm so that any vertex can be the 
origin?
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  *16.   Determine an Euler circuit for the graph in  Figure   20-40   . Why is one possible?  

  *17.   Prove that a connected undirected graph with n vertices and more than  n  – 1 edges must contain at least one 
simple cycle. (See observation 3 in Section 20.4.2.)  

  *18.   Prove that a graph-traversal algorithm visits every vertex in the graph if and only if the graph is connected, 
regardless of where the traversal starts.  

FIGURE 20-37         Graphs for Exercises 6, 7,  and 8   
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FIGURE 20-38         A graph for Exercise 11   

FIGURE 20-39         A graph for Exercise 14   
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FIGURE 20-40         A graph for Exercise 16   
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  *19.  Although the DFS traversal algorithm has a simple recursive form, a recursive BFS traversal algorithm is not 
straightforward.  

 a.   Explain why this statement is true.  
 b.   Write the pseudocode for a recursive version of the BFS traversal algorithm.    

  *20.   Prove that the loop invariant of Dijkstra’s shortest-path algorithm is true by using a proof by induction on   step  . 

      PROGRAMMING PROBLEMS   

  1.   Write a C++ class derived from GraphInterface, as given in Listing 20-1. Use an adjacency matrix to represent 
the graph. 

  2.   Repeat the previous programming problem, but represent the graph using an adjacency list instead of an adja-
cency matrix. 

  3.  Repeat Programming Problems 1 and 2, but allow the graph to be either weighted or unweighted and either 
directed or undirected.

  4.   Extend Programming Problem 3 by adding ADT operations such as   isConnected   and   hasCycle  . Also, include 
operations that perform a topological sort for a directed graph without cycles, determine the DFS and BFS 
spanning trees for a connected graph, and determine a minimum spanning tree for a connected undirected 
graph. 

  5.   The HPAir problem was the subject of Programming Problems 11 through 14 of  Chapter   6   . Revise these prob-
lems by implementing the ADT fl ight map as a derived class of the graph class that you wrote for Programming 
Problem 3. 
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A ll of the previous dictionary implementations assume that the data items reside in 
the computer’s internal memory. Many real-world applications, however, require a 
dictionary so large that it greatly exceeds the amount of available internal memory. In 
such situations, you must store the dictionary on an external storage device such as a 
disk and perform dictionary operations there. 

 This chapter considers the problem of data management in an external environment 
by using a direct access fi le as a model of external storage. In particular, this chapter 
discusses how to sort the data in an external fi le by modifying the merge sort algorithm 
and how to search an external fi le by using generalizations of the hashing and search-
tree schemes developed previously.   
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      21.1  A Look at External Storage 
 You use external storage when your program reads data from and writes data to a C++ fi le. Also, when 
you use a word processing program, for example, and choose  Save , the program saves your current 
document in a fi le. This action enables you to exit the program and then use it later to retrieve your 
document for revision. This is one of the advantages of external storage: It exists beyond the execu-
tion period of a program. In this sense, it is “permanent” instead of volatile like internal memory.    

 Another advantage of external storage is that, in general, there is far more of it than internal 
memory. If you have a collection of one million data items, each of which is an object of moderate 
size, you will probably not be able to store the entire collection in internal memory at one time. On 
the other hand, this much data can easily reside on an external disk. As a consequence, when dealing 
with collections of this magnitude, you cannot simply read all of the data into memory when you 
want to operate on it and then write it back onto the disk when you are fi nished. Instead, you must 
devise ways to operate on data—for example, sort it and search it—while it resides externally.    

 In general, you can create fi les for either sequential access or direct access. To access the data 
stored at a given position in a  sequential access fi le , you must advance the fi le window beyond all the 
intervening data. In this sense, a sequential access fi le resembles a linked chain. To access a particular 
node in the chain, you must traverse the chain from its beginning until you reach the desired node. In 
contrast, a direct access fi le  allows you to access the data at a given position directly. A direct access 
fi le resembles an array in that you can access the element at  data[i]  without fi rst accessing the ele-
ments before data[i] .

 Without direct access fi les, it would be impossible to support the dictionary operations effi ciently 
in an external environment. Many programming languages, including C++, support both sequential 
access and direct access of fi les. However, to permit a language-independent discussion, we will con-
struct a model of direct access fi les that illustrates how a programming language that does not support 
such fi les might implement them. This model will be a simplifi cation of reality but will include the 
features necessary for this discussion. 

 Imagine that a computer’s memory is divided into two parts: internal memory and external mem-
ory, as  Figure   21-1    illustrates. Assume that an executing program, along with its nonfi le data, resides 
in the computer’s internal memory; the permanent fi les of a computer system reside in the external 
memory. Further assume that the external storage devices have the characteristics of a disk (although 
some systems use other devices).  

 A fi le consists of  data records . A data record can be anything from a simple value, such as an 
integer, to an aggregate structure, such as an employee record. For simplicity, assume that the data 
records in any one fi le are all of the same type.    

 The records of a fi le are organized into one or more  blocks , as  Figure   21-2    shows. The size of a 
block—that is, the number of bits of data it can contain—is determined by both the hardware confi gu-
ration and the system software of the computer. In general, an individual program has no control over 
this size. Therefore, the number of records in a block is a function of the size of the records in the fi le. 
For example, a fi le of integer records will have more records per block than a fi le of employee records. 

External storage 
exists after program 
execution 

Generally, there is 
more external 
storage than internal 
memory 

Direct access fi les 
are essential for 
external dictionaries 

FIGURE 21-1         Internal and external memory   
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 Much as you number the elements of an array, you can number the blocks of a fi le in a linear 
sequence. With a direct access fi le, a program can read a given block from the fi le by specifying its 
block number, and similarly, it can write data out to a particular block. In this regard a direct access 
fi le resembles an array of arrays, with each block of the fi le analogous to a single array element, which 
is itself an array that contains several records.   

 In this direct access model,  all input and output is at the block level rather than at the record level . 
That is, you can read and write a block of records, but you cannot read or write an individual record. 
Reading or writing a block is called a  block access . 

 The algorithms in this chapter assume that commands exist for reading and writing blocks. The 
pseudocode statement 

   buf.readBlock(dataFile, i)   

 will read the  ith  block of fi le  dataFile  and place it in an object  buf . The object must accommodate the 
many records that each block of fi le  dataFile  contains. For example, if each block contains 100 
employee records,  buf  must store at least 100 employee records. The object  buf  is called a  buffer , which 
is a location that temporarily stores data as it makes its way from one process or location to another. 

 Once the system has read a block into  buf , the program can process—for example, inspect or 
modify—the records in the block. Also, because the records in the object  buf  are only copies of the 
records in the fi le  dataFile , if a program does modify the records in  buf , it must write  buf  back out to 
dataFile , so that the fi le also refl ects the modifi cations. We assume that the statement 

   buf.writeBlock(dataFile, i)   

 will write the contents of  buf  to the  ith  block of the fi le  dataFile . If  dataFile  contains  n  blocks, the 
statement

   buf.writeBlock(dataFile, n + 1)   

 will append a new block to  dataFile , and thus the fi le can grow dynamically, just as a C++ fi le can. 
 Again, realize that these input and output commands allow you to read and write only entire 

blocks. As a consequence, even if you need to operate on only a single record of the fi le, you must 
access an entire block. For example, suppose that you want to give employee Smith a $1,000 raise. If 
Smith’s record is in block  i  (how to determine the correct block is discussed later in the chapter), you 
would perform the following steps:   

   // Read block i from file dataFile into buffer buf
  buf.readBlock(dataFile, i)   

B1 B2 B3 B4 Bi

Last block
of file

jth record
of i th block

↑ k records
per block

FIGURE 21-2         A fi le partitioned into blocks of records   



640 CHAPTER 21 Processing Data in External Storage 

Reduce the number 
of  block accesses 

File access time is 
the dominant factor 
when considering 
an algorithm’s 
effi ciency 

Find the entry buf.getRecord(j) that contains the
  record whose search key is “Smith”

   // Increase the salary portion of Smith’s record  
  (buf.getRecord(j)).setSalary((buf.getRecord(j)).getSalary() + 1000) 

//Write changed block back to file dataFile
buf.writeBlock(dataFile, i)

 The time required to read or write a block of data is typically much longer than the time required 
to operate on the block’s data once it is in the computer’s internal memory.  1   For example, you typi-
cally can inspect every record in the buffer  buf  in less time than that required to read a block into the 
buffer. As a consequence, you should reduce the number of required block accesses. In the previous 
pseudocode, for instance, you should process as many records in  buf  as possible before writing it to 
the fi le. You should pay little attention to the time required to operate on a block of data once it has 
been read into internal memory.     

 Interestingly, several programming languages, including C++, have commands to make it  appear
that you can access records one at a time. In general, however, the system actually performs input and 
output at the block level and perhaps hides this fact from the program. For example, if a programming 
language includes the statement 

   rec.readRecord(dataFile, i)   // Reads the ith record of file dataFile into rec.

 the system probably accesses the entire block that contains the  ith  record. Our model of input and out-
put therefore approximates reality reasonably well. 

 In most external data-management applications, the time required for block accesses typically 
dominates all other factors. The rest of the chapter discusses how to sort and search externally stored 
data. The goal will be to reduce the number of required block accesses.     

   21.2  Sorting Data in an External File 
 This section considers the following problem of sorting data that resides in an external fi le:    

 An external fi le contains 1,600 employee records. You want to sort these records by Social Secu-
rity number. Each block contains 100 records, and thus the fi le contains 16 blocks  B1 ,  B2 , and so 
on to B16 . Assume that the program can access only enough internal memory to manipulate about 
300 records (three blocks’ worth) at one time. 

 Sorting the fi le might not sound like a diffi cult task, because you have already seen several sort-
ing algorithms earlier in this book. There is, however, a fundamental difference here in that the fi le is 
far too large to fi t into internal memory all at once. This restriction presents something of a problem 
because the sorting algorithms presented earlier assume that all the data to be sorted is available at 
one time in internal memory (for example, that it is all in an array). Fortunately, however, we can 
remove this assumption for a modifi ed version of merge sort. 

 The basis of the merge sort algorithm is that you can easily merge two sorted segments—such as 
arrays—of data records into a third sorted segment that is the combination of the two. For example, if 
S1  and  S2  are sorted segments of records, the fi rst step of the merge is to compare the fi rst record of 

 1   Data enters or leaves a buffer at a rate that differs from the record-processing rate. (Hence, a buffer between two processes
compensates for the difference in the rates at which they operate on data.) 

A sorting problem 

VideoNote

Sorting fi le data



External merge sort 
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each segment and select the record with the smaller sort key. If the record from  S1  is selected, the next 
step is to compare the second record of S1  to the fi rst record of  S2 . This process is continued until all of 
the records have been considered. The key observation is that at any step, the merge never needs to 
look beyond the  leading edge  of either segment. 

 This observation makes a merge sort appropriate for the problem of sorting external fi les, if you 
modify the algorithm appropriately. Suppose that the 1,600 records to be sorted are in the fi le  F  and 
that you are not permitted to alter this fi le. You have two work fi les,  F1  and  F2 . One of the work fi les 
will contain the sorted records when the algorithm terminates. The algorithm has two phases: Phase 1 
sorts each block of records, and phase 2 performs a series of merges. 

Phase 1.  Read a block from  F  into internal memory, sort its records by using an internal sort, and 
write the sorted block out to  F1  before you read the next block from  F . After you process all 16 
blocks of  F ,  F1  contains 16  sorted runs   R1 ,  R2 , and so on to  R16 ; that is,  F1  contains 16 blocks of 
records, with the records within each block sorted among themselves, as  Figure   21-3   a illustrates.    
Phase 2.  Phase 2 is a sequence of merge steps. Each merge step merges pairs of sorted runs to 
form larger sorted runs. With each merge step, the number of blocks in each sorted run doubles, 
and thus the total number of sorted runs is halved. For example, as  Figure   21-3   b shows, the fi rst 

R

B

1

1

R

B

2

2

R

B

3

3

R

B

4

4

R

B

5

5

R

B

6

6

R

B

7

7

R

B

8

8

R

B

9

9

R

B

10

10

R

B

11

11

R

B

12

12

R

B

13

13

R

B

14

14

R

B

15

15

R

B

16

16

R1

B  - B1        2

R2

B  - B3        4

R3

B  - B5        6

R4

B  - B7        8

R5

B  - B9       10

R6

B   - B11       12

R7

B   - B13       14

R8

B   - B15       16

R1 R2 R3 R4

B   - B13       16B  - B1        4 B  - B5        8 B  - B9        12

R1

B  - B1        8

R2

B  - B9        16

F1

F2

F1

F2

16 sorted runs, 1 block each

8 sorted runs, 2 blocks each

4 sorted runs, 4 blocks each

2 sorted runs, 8 blocks each

(a)

(b)

(c)

(d)

FIGURE 21-3         (a) Sixteen sorted runs, one block each, in fi le F1 ; (b) Eight sorted runs, two 
blocks each, in fi le F2 ; (c) Four sorted runs, four blocks each, in fi le F1 ; (d) Two 
sorted runs, eight blocks each, in fi le F2
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merge step merges eight pairs of sorted runs from  F1  ( R1  with  R2 ,  R3  with  R4 , . . .,  R15  with  R16 ) to 
form eight sorted runs, each two blocks long, which are written to  F2 . The next merge step merges 
four pairs of sorted runs from  F2  ( R1  with  R2 ,  R3  with  R4 , . . .,  R7  with  R8 ) to form four sorted runs, 
each four blocks long, which are written back to  F1 , as  Figure   21-3   c illustrates. The next step 
merges the two pairs of sorted runs from  F1  to form two sorted runs, which are written to  F2 . (See 
 Figure   21-3   d.) The fi nal step merges the two sorted runs into one, which is written to  F1 . At this 
point, F1  will contain all of the records of the original fi le in sorted order. 

 Given this overall strategy, how can you merge the sorted runs at each step of phase 2? The state-
ment of the problem provides only suffi cient internal memory to manipulate at most 300 records at 
once. However, in the later steps of phase 2, runs contain more than 300 records each, so you must 
merge the runs a piece at a time. To accomplish this merge, you must divide the program’s internal 
memory into three arrays,  in1 ,  in2 , and  out , each capable of holding 100 records (the block size). 
You read block-sized pieces of the runs into the two  in  arrays and merge them into the  out  array. 
Whenever an  in  array is exhausted—that is, when all of its entries have been copied to  out —you read 
the next piece of the run into an  in  array; whenever the  out  array becomes full, you write this com-
pleted piece of the new sorted run to one of the fi les. 

 Consider how you can perform the fi rst merge step. You start this step with the pair of runs  R1  and 
R2 , which are in the fi rst and second blocks, respectively, of the fi le  F1 . (See  Figure   21-3   a.) Because at 
this fi rst merge step each run contains only one block, an entire run can fi t into one of the  in  arrays. 
You can thus read  R1  and  R2  into the arrays  in1  and  in2 , and then merge  in1  and  in2  into  out .  How-
ever, although the result of merging  in1  and  in2  is a sorted run two blocks long (200 records),  out  can 
hold only one block (100 records). Thus, when in the course of the merge  out  becomes full, you write 

Merging sorted runs 
in Phase 2 

FIGURE 21-4         (a) Merging single blocks; (b) merging long runs   
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Pseudocode to 
merge sorted runs 

its contents to the fi rst block of  F2 , as  Figure   21-4   a illustrates. The merging of  in1  and  in2  into  out
then resumes. The array  out  will become full for a second time only after all of the records in  in1  and 
in2  are exhausted. At that time, write the contents of  out  to the second block of  F2 . You merge the 
remaining seven pairs from  F  in the same manner and append the resulting runs to  F2 .

 This fi rst merge step is conceptually a bit easier than the others, because the initial runs are 
only one block in size, and thus each can fi t entirely into one of the  in  arrays. What do you do in the 
later steps when the runs to be merged are larger than a single block? Consider, for example, the 
merge step in which you must merge runs of four blocks each to form runs of eight blocks each. 
(See  Figure   21-3   c.) The fi rst pair of these runs to be merged is in blocks 1 through 4 and 5 through 
8 of F1 .  

 The algorithm will read the fi rst block of  R1 —which is the fi rst block  B1  of the fi le—into  in1 , and 
it will read the fi rst block of  R2 —which is  B5 —into  in2 , as  Figure   21-4   b illustrates. Then, as it did 
earlier, the algorithm merges  in1  and  in2  into  out .  The complication here is that as soon as you fi nish 
moving all of the records from either  in1  or  in2 , you must read the next block from the corresponding 
run. For example, if you fi nish  in2  fi rst, you must read the next block of  R2 —which is  B6 —into  in2
before the merge can continue. The algorithm thus must detect when the  in  arrays become exhausted 
as well as when the  out  array becomes full. 

 A high-level description of the algorithm for merging arbitrary-sized sorted runs  Ri  and  Rj  from 
F1  into  F2  is as follows:    

   Read the first block of Ri into in1
Read the first block of Rj into in2

while    (either in1 or in2 is not exhausted)
{
        Select the smaller “leading” record of in1 and in2   and place it into 
        the next position of out (if     one of the arrays is exhausted, select the  

leading record from the other)  

           if    (out is full)
       Write its contents to the next block of F2

    if   (in1 is exhausted and blocks remain in Ri)
                  Read the next block into in1

   if (in2 is exhausted and blocks remain in Rj)
                  Read the next block into in2
}    

 A pseudocode version of the external sorting algorithm follows. Notice that it uses  readBlock
and writeBlock , as introduced in the previous section, and assumes a function  copyFile  that copies a 
fi le. To avoid further complications, the solution assumes that the number of blocks in the fi le is a 
power of  2. This assumption allows the algorithm always to pair off the sorted runs at each step of the 
merge phase, avoiding special end-of-fi le testing that would obscure the algorithm. Also note that the 
algorithm uses two temporary fi les and copies the fi nal sorted temporary fi le to the designated output 
fi le. 

   // Sorts a file by using an external merge sort.  
  // Precondition: unsortedFileName is the name of an external  
// file to be sorted. sortedFileName is the name that the  
  // function will give to the resulting sorted file.  
  // Postcondition: The new file named sortedFileName is sorted.  
  // The original file is unchanged. Both files are closed.      
  // Calls: blockSort, mergeFile, and copyFile.   

A pseudocode 
mergesort function 
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  // Simplifying assumption: The number of blocks in the  
  // unsorted file is an exact power of 2.  
externalMergesort(unsortedFileName: string, 

sortedFileName: string)

   Associate unsortedFileName with the file variable inFile
         and sortedFileName with the file variable outFile

// Phase 1: Sort file block by block and count the blocks  
blockSort(inFile, tempFile1, numberOfBlocks) 

   // Phase 2: Merge runs of size 1, 2, 4, 8,..., numberOfBlocks/2  
  //  (uses two temporary files and a      toggle that keeps files for each merge step)  
toggle = 1  
    for (size = 1 through numberOfBlocks/2 with    increments of size)
{

         if    (toggle == 1)
        mergeFile(tempFile1, tempFile2, size, numberOfBlocks) 
         else

{
        mergeFile(tempFile2, tempFile1, size, numberOfBlocks) 
        toggle = -toggle 

}
}

 // Copy the current temporary file to outFile  
if    (toggle == 1)  
      copyFile(tempFile1, outFile) 
   else  
      copyFile(tempFile2, outFile)   

 Notice that  externalMergesort  calls  blockSort  and  mergeFile , which calls  mergeRuns .  The pseu-
docode for these functions follows. 

   // Sorts each block of records in a file.  
  // Precondition: The file variable inFile is associated  
  // with the file to be sorted . 
  // Postcondition: The file associated with the file variable  
  // outFile contains the blocks of inFile. Each block is  
  // sorted; numberOfBlocks is the number of blocks processed.  
  // Both files are closed.  
  // Calls: readBlock and writeBlock to perform direct access  
  // input and output, and sortBuffer to sort an array.  
  blockSort(inFile: File, outFile: File,     numberOfBlocks: integer) 

  Prepare inFile for input  
Prepare outFile for output  

  numberOfBlocks = 0  
while (more blocks in inFile remain to be read)
{
  numberOfBlocks++
  buffer.readBlock(inFile, numberOfBlocks)  

  sortArray(buffer) // Sort with some internal sort  

      buffer.writeBlock(outFile, numberOfBlocks) 
}

   Close inFile and outFile
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  // Merges blocks from one file to another.
  // Precondition:  inFile is an external file that contains  
  // numberOfBlocks sorted blocks organized into runs of  
  // runSize blocks each.  
  // Postcondition: outFile contains the merged runs of  
  // inFile. Both files are closed.  
  // Calls: mergeRuns.  
mergeFile(inFile: File, outFile: File, 

  runSize: integer, numberOfBlocks: integer)

   Prepare inFile for input  
   Prepare outFile for output  

for    (next = 1 to numberOfBlocks with increments of 2 * runSize)  
{
  // Invariant: Runs in outFile are ordered  
        mergeRuns(inFile, outFile, next, runSize)  
}
  Close inFile and outFile  

  // Merges two consecutive sorted runs in a file.  
  // Precondition: fromFile is an external file of sorted runs  
  // open for input. toFile is an external file of sorted runs  
  // open for output. start is the block number of the first  
  // run on fromFile to be merged; this run contains size  
  // blocks.  
  // Run 1: Block start to block start + size - 1  
  // Run 2: Block start + size to start + (2 * size) - 1  
  // Postcondition: The merged runs from fromFile are appended  
  // to toFile. The files remain open.  
mergeRuns(fromFile: File, toFile: File, 

      start: integer, size: integer)

   // Initialize the input buffers for runs 1 and 2  
   in1.readBlock(fromFile, first block of Run 1)
in2.readBlock(fromFile, first block of Run 2)

   // Merge until one of the runs is finished. Whenever an  
   // input buffer is exhausted, the next block is read.  
   // Whenever the output buffer is full, it is written.  
while  (neither run is finished)
{  
  // Invariant: out and each block in toFile are ordered  
  Select the smaller “leading edge” of in1 and in2, and  
              place it in the next position of out

if (out is full)  
out.writeBlock(toFile, next block of toFile)

if (in1 is exhausted and blocks remain in Run 1)
          in1.readBlock(fromFile, next block of Run 1)

if (in2 is exhausted and blocks remain in Run 2)  
          in2.readBlock(fromFile, next block of Run 2)  
   }

   // Assertion: Exactly one of the runs is complete  

  // Append the remainder of the unfinished input  
  // buffer to the output buffer and write it  
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while (in1 is not exhausted)  
      // Invariant: out is ordered  

Place next item of in1 into the next position of out

while (in2 is not exhausted)  
      // Invariant: out is ordered  

Place next item of in2 into the next position of out

out.writeBlock(toFile, next block of toFile)

  // Finish off the remaining complete blocks  

while (blocks remain in Run 1)
  {
    // Invariant: Each block in toFile is ordered  
  in1.readBlock(fromFile, next block of Run 1)
  in1.writeBlock(toFile, next block of toFile)
}

while (blocks remain in Run 2)
  {
    // Invariant: Each block in toFile is ordered  
  in2.readBlock(fromFile, next block of Run 2)  
  in2.writeBlock(toFile, next block of toFile)
  }   

   21.3  External Dictionaries 
 This section discusses techniques for organizing records in external storage so that you can effi -
ciently perform ADT dictionary operations such as retrieval, insertion, removal, and traversal. 
Although this discussion will only scratch the surface of this topic, you do have a head start: Two of 
the most important external dictionary implementations are variations of hashing and the 2-3 tree, 
which you studied in  Chapters   18 and 19   .    

 Suppose that you have a direct access fi le of records that are to be dictionary items. The fi le is 
partitioned into blocks, as described earlier in this chapter. One of the simplest dictionary implemen-
tations stores the records in order by their search key, perhaps sorting the fi le by using the external 
merge sort algorithm developed in the previous section. Once it is sorted, you can easily traverse the 
fi le in sorted order by using the following algorithm:    

// Traverses the sorted file dataFile in sorted order,  
// calling function visit once for each item.  
  traverse(dataFile: File,  numberOfBlocks: integer, 

  recordsPerBlock: integer, visit: FunctionType) 
   // Read each block of file dataFile into an internal      buffer buf
for (blockNumber = 1 through numberOfBlocks)
  {
    buf.readBlock(dataFile, blockNumber) 
  // Visit each record in the block  

  for (recordNumber = 1 through recordsPerBlock)  
  Visit record buf.getRecord(recordNumber-1)  

}

 To perform the retrieval operation on the sorted fi le, you can use a binary search algorithm as 
follows: 

   // Searches blocks first through last of the file dataFile  
  // for the record whose search key equals searchkey  

VideoNote

Managing 
external data
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  // Returns the record if found, else throws NotFoundException.  
  getItem(dataFile: File, recordsPerBlock: integer, 

      first: integer, last: integer, 
      searchKey: KeyType    ): ItemType 

if (first > last or     nothing is left to read from dataFile)
           throw NotFoundException   

else   
  {

// Read the middle block of file dataFile into   array buf
         mid = (first + last)/2 
         buf.readBlock(dataFile, mid) 

if ( (searchKey >= (buf.getRecord(0)).getKey()) &&
      (searchKey <=     (buf.getRecord(recordsPerBlock-1)).getKey()) )

       {
// Desired block is found  

     Search buffer buf for record buf.getRecord(j)  whose search key equals searchKey
       if (record is found)
        return = buf.getRecord(j)          

   else   
   throw NotFoundException   

       }   

// Else search appropriate half of the file  
   else if  (searchKey < (buf.getRecord(0)).getKey()) 

return  getItem(dataFile, recordsPerBlock, first, mid-1, searchKey) 

   else   
return getItem(dataFile, recordsPerBlock, mid+1, last, searchKey) 

  }

 The    retrieval algorithm recursively splits the fi le in half and reads the middle block into the 
internal object  buf .  Splitting a fi le segment requires that you know the numbers of the fi rst and last 
blocks of the segment. You would pass these values as arguments, along with the fi le variable, to 
getItem . 

 Once you have read the middle block of the fi le segment into  buf , you determine whether a 
record whose search key equals  searchKey  could be in this block. You can make this determination 
by comparing  searchKey  to the smallest search key in  buf —which is in  buf.getRecord(0) —and 
to the largest search key in  buf , which is in  buf.getRecord(recordsPerBlock-1) . If  searchKey
does not lie between the values of the smallest and largest search keys in  buf , you must recursively 
search one of the halves of the fi le (which half to search depends on whether  searchKey  is less than 
or greater than the search keys in the block you just examined). If, on the other hand,  searchKey
does lie between the values of the smallest and largest search keys of the block in  buf , you must 
search buf  for the record. Because the records within the block  buf  are sorted, you could use a 
binary search on the records within this block. However, the number of records in the block  buf  is 
typically small, and thus the time required to scan the block sequentially is insignifi cant compared 
to the time required to read the block from the fi le. It is therefore common simply to scan the block 
sequentially.    

 This external implementation of the ADT dictionary is not very different from the internal sorted 
array-based implementation. As such, it has many of the same advantages and disadvantages. Its 
main advantage is that because the records are sorted sequentially, you can use a binary search to 
locate the block that contains a given search key. The main disadvantage of the implementation is 
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  add and remove
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due to shifting 
records

that, as is the case with an array-based implementation, the  add  and  remove  operations must shift 
dictionary items. Shifting records in an external fi le is, in general, far more costly than shifting array 
items. A fi le may contain an enormous number of large records, which are organized as several thou-
sand blocks. As a consequence, the shifting could require a prohibitively large number of block 
accesses.

 Consider, for example,  Figure   21-5   . If you insert a new record into block  k , you must shift the 
records not only in block  k , but also in every block after it. As a result, you must shift some records 
across block boundaries. Thus, for each of these blocks, you must read the block into internal mem-
ory, shift its records by using a statement such as 

   buf.setRecord(i+1, buf.getRecord(i))   

 and write the block to the fi le so that the fi le refl ects the change. This large number of block accesses 
makes the external sorted array-based implementation practical only for dictionaries where inser-
tions and removals are rare.  

   21.3.1  Indexing an External File 

 Two of the best external dictionary implementations are variations of the internal hashing and search-
tree schemes. The biggest difference between the internal and external versions of these implementa-
tions is that in the external versions, it is often advantageous to organize an  index  to the data fi le 
rather than to organize the data fi le itself. An index to a data fi le is conceptually similar to other 
indexes with which you are familiar. For example, consider a library catalog. Rather than looking all 
over the library for a particular title, you can simply search the catalog. The catalog is typically organ-
ized alphabetically by title (or by author), so it is a simple matter to locate the appropriate entry. The 
entry for each book contains an indication (for example, a Library of Congress number) of where on 
the shelves you can fi nd the book.    

 Using a catalog to index the books in a library has at least three benefi ts: 

•   Because each catalog entry is much smaller than the book it represents, the entire catalog 
for a large library can fi t into a small space. A patron can thus locate a particular book 
quickly.  

•   The library can organize the books on the shelves in any way, without regard to how easy it 
will be for a patron to scan the shelves for a particular book. To locate a particular book, the 
patron searches the catalog for the appropriate entry.  

•   The library can have different types of catalogs to facilitate different types of searches. For 
example, it can have one catalog organized by title and another organized by author.   

Advantages of  a 
library catalog 

FIGURE 21-5         Shifting across block boundaries   
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 Now consider how you can use an index to a data fi le to much the same advantage as the 
library catalog. As  Figure   21-6    illustrates, you can leave the data fi le in a disorganized state and 
maintain an organized index to it. When you need to locate a particular record in the data fi le, you 
search the index for the corresponding entry, which will tell you where to fi nd the desired record in 
the data fi le.     

 An index to the data fi le is simply another fi le, called the  index fi le , that contains an  index 
record  for each record in the data fi le, just as a library catalog contains an entry for each book in 
the library. An index record has two parts: a key, which contains the same value as the search key 
of its corresponding record in the data fi le, and a “pointer,” which shows the number of the block in 
the data fi le that contains this data record. (Despite its name, an index record’s pointer contains an 
integer, not a C++ pointer.) You thus can determine which block of the data fi le contains the record 
whose search key equals  searchKey  by searching the index fi le for the index record whose key 
equals searchKey . 

 Maintaining an index to a data fi le has benefi ts analogous to those provided by the library’s 
catalog:      

•   In general, an index record will be much smaller than a data record. While the data record may 
contain many components, an index record contains only two: a key, which is also part of the 
data record, and a single integer pointer, which is the block number. Thus, just as a library cata-
log occupies only a small fraction of the space occupied by the books it indexes, an index fi le is 
only a fraction of the size of the data fi le. As you will see, the small size of the index fi le often 
allows you to manipulate it with fewer block accesses than you would need to manipulate the 
data fi le.  

•   Because you do not need to maintain the data fi le in any particular order, you can insert new 
records in any convenient location, such as at the end of the fi le. As you will see, this fl exibility 
eliminates the need to shift the data records during insertions and removals.  

•   You can maintain several indexes simultaneously. Just as a library can have one catalog organ-
ized by title and another organized by author, you can have one index fi le that indexes the data 
fi le by one search key (for example, an index fi le that consists of < name ,  pointer > records), 
and a second index fi le that indexes the data fi le by another search key (for example, an index 
fi le that consists of < socSec ,  pointer > records). Such  multiple indexing  is discussed briefl y 
at the end of this chapter.    

 Although you do not organize the data fi le, you must organize the index fi le so that you can 
search and update it rapidly. Before considering how to organize an index fi le by using either hashing 
or search-tree schemes, fi rst consider a less complex organization that illustrates the concepts of 

FIGURE 21-6         A data fi le with an index   
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indexing. In particular, let the index fi le simply store the index records sequentially, sorted by their 
keys, as shown in  Figure   21-7   .  

 To perform the    retrieval operation, for example, you can use a binary search on the index fi le as 
follows: 

   // Searches the file dataFile for the record whose search key     equals searchKey.
  // Returns the record if found, else throws NotFoundException.
getItem(indexFile: File, dataFile: File,

  searchKey: KeyType): ItemType

   if  (no blocks are left in indexFile to read)
   throw NotFoundException   
   else   
  {
       // Read the middle block of indexfile into object buf
         mid = number of middle block of indexFile  
         buf.readBlock(indexFile, mid) 

   if  ((searchKey >= (buf.getRecord(0)).getKey()) && 
          (searchKey <=   (buf.getRecord(indexrecordsPerBlock-1)).getKey()))  

{
       // Desired block of index file found  
         Search buf for index file record     whose key value equals searchKey  

          if  (index record buf.getRecord(j) is found)
       {
  blockNum = number of the data-file block to     which buf.getRecord(j) points  
  data.readBlock(dataFile, blockNum) 
  Find data record whose search     key equals searchKey
  return data.getRecord(k) 
         }

          else  
   throw NotFoundException   

       }
          else if  (indexFile is one block in size)  

  throw NotFoundException // No more blocks in file  

FIGURE 21-7         A data fi le with a sorted index fi le   
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       // Else search appropriate half of index file  
          else if  (searchKey < (buf.getRecord(0)).getKey())

           return  getItem(first half of indexFile, dataFile, 
  searchKey)

          else   
        return  getItem(second half of indexFile, dataFile, 

          searchKey) 
}

 Because the index records are far smaller than the data records, the index fi le contains far fewer 
blocks than the data fi le. For example, if the index records are one-tenth the size of the data records 
and the data fi le contains 1,000 blocks, the index fi le will require only about 100 blocks. As a result, 
the use of an index cuts the number of block accesses in  getItem  down from about log 2 1000 � 10 to 
about 1 + log 2 100 � 8. (The one additional block access is into the data fi le once you have located the 
appropriate index record.)    

 The reduction in block accesses is far more dramatic for the  add  and  remove  operations. In the 
implementation of an external dictionary discussed earlier in this section, if you insert a record into or 
remove a record from the fi rst block of data, for example, you have to shift records in every block, 
requiring that you access all 1,000 blocks of the data fi le. (See  Figure   21-5   .)    

 However, when you perform an insertion or a removal by using the index scheme, you have to 
shift only index records. When you use an index fi le, you do not keep the data fi le in any particular 
order, so you can insert a new data record into any convenient location in the data fi le. This fl exibil-
ity means that you can simply insert a new data record at the end of the fi le or at a position left 
vacant by a previous removal (as you will see). As a result, you never need to shift records in the 
data fi le. However, you do need to shift records in the index fi le to create an opening for a corre-
sponding index entry in its proper sorted position. Because the index fi le contains many fewer 
blocks than the data fi le (100 versus 1,000 in the previous example), the maximum number of block 
accesses required is greatly reduced. A secondary benefi t of shifting index records rather than data 
records is a reduction in the time requirement for a single shift. Because the index records them-
selves are smaller, the time required for the statement  buf.setRecord(i+1, buf.getRecord(i))
is decreased. 

 Removals under the index scheme reap similar benefi ts. Once you have searched the index fi le 
and located the data record to be removed, you can simply leave its location vacant in the data fi le, and 
thus you need not shift any data records. You can keep track of the vacant locations in the data fi le, so 
that you can insert new data records into the vacancies, as was mentioned earlier. The only shifting 
required is in the index fi le to fi ll the gap created when you remove the index record that corresponds 
to the deleted data record.    

 Even though this scheme is an improvement over maintaining a sorted data fi le, in many applica-
tions it is far from satisfactory. The 100 block accesses that could be required to insert or remove an 
index record often would be prohibitive. Far better implementations are possible when you use either 
hashing or search trees to organize the index fi le.    

   21.3.2  External Hashing  

 The external hashing scheme is quite similar to the internal scheme described in  Chapter   18   . In the 
internal hashing scheme, each entry of the array  table —the hash table—contains a pointer to the 
beginning of a chain of items that hash into that location. In the external hashing scheme, each entry 
of table  still contains a pointer to the beginning of a chain, but here each chain consists of  blocks 
of index records.  In other words, you hash an index fi le rather than the data fi le, as  Figure   21-8    

Shift index records 
instead of  data 
records

An unsorted data 
fi le with a sorted 
index is more 
effi cient than a 
sorted data fi le, but 
other schemes are 
even better 

You hash the index 
fi le instead of  the 
data fi le 
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illustrates. (In many applications the array  table  is itself so large that you must keep it in external 
storage—for example, in the fi rst  K  blocks of the index fi le. To avoid this extra detail, you can assume 
here that the array  table  is an internal array.)  

 Associated with each entry  table[i]  is a linked chain of blocks of the index fi le, as you can see 
in  Figure   21-8   . Each block of  table[i] ’s linked chain contains index records whose keys (and thus 
whose corresponding data records’ search keys) hash into location  i .  To form the linked chains, you 
must reserve space in each block for a block pointer—the integer block number of the next block in 
the chain—as  Figure   21-9    illustrates. That is, in this linked chain the pointers are integers, not C++ 
pointers. A pointer value of –1 is used as a  null  pointer. 

Retrieval under external hashing of an index fi le.   The retrieval operation appears in pseudocode 
as follows: 

   // Searches the data file for the record whose search key equals searchKey.  
  // Returns the record if found, else throws NotFoundException.
  getItem(indexFile: File, dataFile: File,
  searchKey: KeyType): ItemType

FIGURE 21-8         A hashed index fi le   
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// Apply the hash function to the search key  
   i = h(searchKey) 

// Find the first block in the chain of index blocks –  
// these blocks contain index records that hash into  location i  
   p = table[i] 

   // if p == -1, no values have hashed into location i
    if  (p != -1)
  buf.readBlock(indexFile, p) 

   // Search for the block with the desired index record  
   while  (p != -1 and buf does not contain an index record     whose key value equals searchKey)  
{
  p = number of next block in chain  
         // if p equals -1, you are at the last block in the chain  

   if  (p != -1) 
  buf.readBlock(indexFile, p) 
   }

     // Retrieve the data item if present  
   if  (p != -1) 
  {

// buf.getRecord(j) is the index record whose     key value equals searchKey
       blockNum = number of the data-file block to    which buf.getRecord(j) points  
       data.readBlock(dataFile, blockNum) 
  Find data record data.getRecord(k) whose search key     equals searchKey
  return data.getRecord(k)      
}
  else   

  throw NotFoundException      

  Insertion under external hashing of an index fi le.   The external hashing versions of the insertion 
and removal operations are also similar to the internal hashing versions. The major difference is that, 
in the external environment, you must insert or remove both a data record and the corresponding 
index record. 

 To insert a new data record whose search key is  searchKey , you take the following steps: 

 1. Insert the data record into the data fi le.   Because the data fi le is not ordered, the new 
record can go anywhere you want. If a previous removal has left a free slot in the middle of 
the data fi le, you can insert it there. 

 If no slots are free, you insert the new data record at the end of the last block, or, 
if necessary, you append a new block to the end of the data fi le and store the record 
there. In either case, let p  denote the number of the block that contains this new 
data record.  

 2. Insert a corresponding index record into the index fi le.   You need to insert into the 
index fi le an index record that has key value  searchKey  and pointer value  p . (Recall that  p
is the number of the block in the data fi le into which you inserted the new data record.) 
Because the index fi le is hashed, you fi rst apply the hash function to  searchKey , letting 

   i = h(searchKey)   

 You then insert the index record < searchKey ,  p > into the chain of blocks that the entry 
table[i]  points to. You can insert this record into any block in the chain that contains a 
free slot, or, if necessary, you can allocate a new block and link it to the beginning of the 
chain.
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  Removal under external hashing of an index fi le.   To remove the data record whose search key is 
searchKey , you take the following steps: 

 1. Search the index fi le for the corresponding index record.   You apply the hash function to 
searchKey , letting 

i = h(searchKey)

 You then search the chain of index blocks pointed to by the entry  table[i]  for an index 
record whose key value equals  searchKey .  If you do not fi nd such a record, you can 
conclude that the data fi le does not contain a record whose search key equals  searchKey . 
However, if you fi nd an index record < searchKey ,  p >, you remove it from the index fi le 
after noting the block number  p , which indicates where in the data fi le you can fi nd the data 
record to be removed.  

 2. Remove the data record from the data fi le.   You know that the data record is in block  p  of 
the data fi le. You simply access this block, search the block for the record, remove the 
record, and write the block back to the fi le.   

 Observe that for each of the operations  getItem ,  add , and  remove  the number of block accesses 
is very low. You never have to access more than one block of the data fi le, and at worst you have to 
access all of the blocks along a single hash chain of the index fi le. You can take measures to keep the 
length of each of the chains quite short (for example, one or two blocks long), just as you can with 
internal hashing. You should make the size of the array  table  large enough so that the average length 
of a chain is near one block, and the hash function should scatter the keys evenly. If necessary, you can 
even structure each chain as an external balanced search tree by using the techniques described in the 
next section.    

 The hashing implementation is the one to choose when you need to perform retrieval, insertion, 
and removal operations on a large external dictionary. As is the case with internal hashing, however, 
this implementation is not practical for certain other operations, such as sorted traversal, retrieval of 
the smallest or largest item, and range queries that require ordered data. When these types of opera-
tions are added to the basic dictionary operations, you should use a search-tree implementation 
instead of hashing.   

   21.3.3  B-Trees 

 Another way to search an external dictionary is to organize it as a balanced search tree. Just as you 
can apply external hashing to the index fi le, you can organize the index fi le, not the data fi le, as an 
external search tree. The implementation developed here is a generalization of the 2-3 tree of 
 Chapter   19   . 

 You can organize the blocks of an external fi le into a tree structure by using block numbers for 
child pointers. In  Figure   21-10   a, for example, the blocks are organized into a 2-3 tree. Each block of 
the fi le is a node in the tree and contains three child pointers, each of which is the integer block 
number of the child. A child pointer value of –1 plays the role of a  null  pointer, and thus, for example, 
a leaf will contain three child pointers with the value –1.    

 If you organized the index fi le into a 2-3 tree, each node (block of the index fi le) would contain 
either one or two index records, each of the form < key ,  pointer >, and three child pointers. The 
pointer portion of an index record has nothing to do with the tree structure of the index fi le;  pointer
indicates the block (in the data fi le) that contains the data record whose search key equals  key . (See 
 Figure   21-10   b.) To help avoid confusion, the pointers in the tree structure of the index fi le will be 
referred to as child pointers. 
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 You must organize the index records in the tree so that their keys obey the same search-tree 
ordering property as an internal 2-3 tree. This organization allows you to retrieve the data record with 
a given value in its search key as follows:  

   // Searches the data file for the record whose search key equals searchKey.
  // Returns the record if found, else throws NotFoundException.
  // rootNum is the block number (of  the index file) that contains the root of the tree.   
  getItem(indexFile: File, dataFile: File, rootNum: integer, 

  searchKey: KeyType): ItemType 

   if  (no blocks are left in the index file to read)
  throw NotFoundException   

   else   
     {
  // Read from index file into internal array buf the   block that contains the root of the 2-3 tree 
   buf.readBlock(indexFile, rootNum) 

         // Search for the index record whose key value   equals searchKey
   if (searchKey is in the root)  
         {

 blockNum = number of the data-file block that     index record specifies  
   data.readBlock(dataFile, blockNum) 
  Find data record data.getRecord(k) whose     search key equals searchKey
  return data.getRecord(k)

 } 

FIGURE 21-10         (a) Blocks organized into a 2-3 tree; (b) a single node of the 2-3 tree   
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    // Else search the appropriate subtree  
   else if  (the root is a leaf  )

  throw NotFoundException   
   else   

    { 
   child = block number of root of     appropriate subtree  
   return  getItem(indexFile, dataFile, child, searchKey)
     }
   }    

 You also can perform insertions and removals in a manner similar to those in the internal ver-
sion, with the addition that you must insert records into and remove records from both the index 
fi le and the data fi le (as was the case in the external hashing scheme described earlier). In the 
course of insertions into and removals from the index fi le, you must split and merge nodes of the 
tree just as you do for the internal version. You perform insertions into and removals from the data 
fi le—which, recall, is not ordered in any way—exactly as described for the external hashing 
implementation. You thus can support the dictionary operations fairly well by using an external 
version of the 2-3 tree.    

 However, you can generalize the 2-3 tree to a structure that is even more suitable for an external 
environment. Recall the discussion in  Chapter   19    about search trees whose nodes can have many chil-
dren. Adding more children per node reduces the height of the search tree but increases the number of 
comparisons at each node during the search for a value. 

 In an external environment, however, the advantage of keeping a search tree short far out-
weighs the disadvantage of performing extra work at each node. As you traverse the search tree in 
an external environment, you must perform a block access for each node visited. Because the time 
required to access a block of an external fi le is, in general, far greater than the time required to 
process the data in that block once it has been read in, the overriding concern is to reduce the 
number of block accesses required. This fact implies that you should attempt to reduce the height 
of the tree, even at the expense of requiring more comparisons at each node. In an external search 
tree, you should thus allow each node to have as many children as possible, with only the block 
size as a limiting factor.    

 How many children can a block of some fi xed size accommodate? If a node is to have  m  children, 
clearly you must be able to fi t  m  child pointers in the node. In addition to child pointers, however, the 
node must also contain index records.   Before you can answer the question of how many children a 
block can accommodate, you must fi rst consider this related question: If a node  N  in a search tree has 
m  children, how many key values—and thus how many index records—must it contain?    

 In a binary search tree, if the node  N  has two children, it must contain one key value, as  Figure   21-11   a 
indicates. You can think of the key value in node  N  as separating the key values in  N ’s two subtrees—all of 
the key values in  N ’s left subtree are less than  N ’s key value, and all of the key values in  N ’s right subtree 
are greater than  N ’s key value. When you are searching the tree for a given key value, the key value in  N
tells you which branch to take. 

 Similarly, if a node  N  in a 2-3 tree has three children, it must contain two key values. (See  Figure 
  21-11   b.) These two values separate the key values in  N ’s three subtrees—all of the key values in the 
left subtree are less than N ’s smaller key value, all of the key values in  N ’s middle subtree lie between 
N ’s two key values, and all of the key values in  N ’s right subtree are greater than  N ’s larger key value. 
As is the case with a binary search tree, this requirement allows a search algorithm to know which 
branch to take at any given node.    

 In general, if a node  N  in a search tree is to have  m  children, it must contain  m  – 1 key values to 
separate the values in its subtrees correctly. (See  Figure   21-11   c.) Suppose that you denote the sub-
trees of N  as  S0 ,  S1 , and so on to  Sm–1  and denote the key values in  N  as  K1 ,  K2 , and so on to  Km–1  (with 
K1  <  K2  < · · · <  Km–1 ). The key values in  N  must separate the values in its subtrees as follows:   

Keep an external 
search tree short 

2-3 tree: the number 
of  records and 
children per node 

General search tree: 
the number of  
records and children 
per node 
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•   All the values in subtree  S0  must be less than the key value  K1 .
•   For all  i , 1 � i � m  – 2, all the values in subtree  Si  must lie between the key values  Ki  and  Ki+1 .
•   All the values in subtree  Sm –1  must be greater than the key value  Km –1 .    

 If every node in the tree obeys this property, you can search the tree by using a generalized ver-
sion of a search tree’s retrieval algorithm as follows: 

   // Searches the data file for the record whose search key equals searchKey.  
  // Returns the record if found, else throws NotFoundException.
  getItem(indexFile: File, dataFile: File, rootNum: integer, 

  searchKey: KeyType): ItemType

   if  (no blocks are left in the index file to read)
  throw NotFoundException   

   else   
     {   // Read from index file into internal array buf the  
  // block that contains the root of the tree  
         buf.readBlock(indexFile, rootNum) 

// Search for the index record whose key value    equals searchKey

   if  (searchKey is one of the Ki in the root)
       {
             blockNum = number of the data-file block that    index record specifies  
             data.readBlock(dataFile, blockNum) 
  Find data record data.getRecord(k) whose    search key equals searchKey
  return data.getRecord(k)
       } 

// Else search the appropriate subtree  
   else if  (the root is a leaf)  

   throw NotFoundException   

FIGURE 21-11         (a) A node with two children; (b) a node with three children; (c) a node with  m
children
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   else  
  {

  Determine which subtree Si to search  
        child = block number of the root of Si
         return  getItem(indexFile, dataFile, child, searchKey)
  }  
  }

 Now return to the question of how many children the nodes of the search tree can have—that is, 
how big can  m  be? If you wish to organize the index fi le into a search tree, the items that you store in 
each node will be records of the form  <key ,  pointer> . Thus, if each node in the tree (which, recall, is 
a block of the index fi le) is to have  m  children, it must be large enough to accommodate  m  child point-
ers and m  – 1 records of the form < key ,  pointer >. You should choose  m  to be the largest integer such 
that m  child pointers (which, recall, are integers) and  m  – 1  <key ,  pointer>  records can fi t into a sin-
gle block of the fi le. Actually, the algorithms are somewhat simplifi ed if you always choose an odd 
number for m . That is, you should choose  m  to be the largest odd integer such that  m  child pointers 
and m  – 1 index records can fi t into a single block.    

 Ideally, then, you should structure the external search tree so that every internal node has  m  chil-
dren, where  m  is chosen as just described, and all leaves are at the same level, as is the case with full 
trees and 2-3 trees. For example,  Figure   21-12   a shows a full tree whose internal nodes each have fi ve 
children. Although this search tree has the minimum possible height, its balance is too diffi cult to 
maintain in the face of insertions and removals. As a consequence, you must make a compromise. You 
can still insist that all the leaves of the search tree be at the same level—that is, that the tree be bal-
anced—but you must allow each internal node to have between  m  and [ m /2] + 1 children. (The [ ] 
notation means greatest integer in . Thus, [5/2] is 2, for example.)  

FIGURE 21-12         (a) A full tree whose internal nodes have fi ve children; (b) the format of a 
single node   
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A 2-3 tree is a B-tree 
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 This type of search tree is known as a B-tree of degree m  and has the following characteristics:      

•   All leaves are at the same level.  
•   Each node contains between  m  – 1 and [ m /2] records, and each internal node has one more 

child than it has records. An exception to this rule is that the root of the tree can contain as few 
as one record and can have as few as two children. This exception is necessitated by the inser-
tion and removal algorithms described next.    

 A 2-3 tree is a B-tree of degree 3. Furthermore, the manner in which the B-tree insertion and 
removal algorithms maintain the structure of the tree is a direct generalization of the 2-3 tree’s strat-
egy of splitting and merging nodes.   These algorithms are illustrated next by means of an exam-
ple. Assume that the index file is organized into a B-tree of degree 5—that is, 5 is the maximum 
and 3 is the minimum number of children that an internal node—other than the root—in the 
tree can have. (Typically, a B-tree will be of a higher degree, but the diagrams would get out of 
hand!) 

  Insertion into a B-tree.   To insert a data record with search key 55 into the tree shown in  Figure   21-13   , 
you take the following steps: 

 1. Insert the data record into the data fi le.   First you fi nd block  p  in the data fi le into which 
you can insert the new record. As was true with the external hashing implementation, block 
p  is either any block with a vacant slot or a new block.  

 2. Insert a corresponding index record into the index fi le.   You now must insert the index 
record <55, p > into the index fi le, which is a B-tree of degree 5. The fi rst step is to locate 
the leaf of the tree in which this index record belongs by determining where the search for 
55 would terminate.    

 Suppose that this is the leaf  L  shown in  Figure   21-14   a. Conceptually, you insert the 
new index record into  L , causing it to contain fi ve records ( Figure   21-14   b). Since a node 
can contain only four records, you must split  L  into  L1  and  L2 . With an action analogous to 
the splitting of a node in a 2-3 tree, L1  gets the two records with the smallest key values,  L2
gets the two records with the largest key values, and the record with the middle key value 
(56) is moved up to the parent  P.  (See  Figure   21-14   c.) 

B-tree of  degree  m  

FIGURE 21-13         A B-tree of degree 5   
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 In this example,  P  now has six children and fi ve records, so it must be split into  P1  and 
P2 . The record with the middle key value (56) is moved up to  P ’s parent,  Q . Then  P ’s 
children must be distributed appropriately, as happens with a 2-3 tree when an internal node 
is split. (See  Figure   21-14   d.) 

 At this point the insertion is complete, as  P ’s parent  Q  now contains only three records 
and has only four children. In general, though, an insertion might cause splitting to propagate 
all the way up to the root ( Figure   21-14   e). If the root must be split, the new root will contain 
only one record and have only two children—the defi nition of a B-tree allows for this 
eventuality. 

  Removal from a B-tree.   To remove a data record with a given search key from a B-tree, you take the 
following steps: 

 1. Locate the index record in the index fi le.   You use the search algorithm to locate the 
index record with the desired key value. If this record is not already in a leaf, you swap 

FIGURE 21-14         (a through d) The steps for inserting 55 ; (e) splitting the root   
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it with its inorder successor. Suppose that the leaf  L  shown in  Figure   21-15   a contains the 
index record with the desired key value, 73. After noting the value  p  of the pointer in 
this index record (you will need  p  in step 2 to remove the data record), you remove the 
index record from  L  ( Figure   21-15   b). Because  L  now contains only one value (recall that 
a node must contain at least two values), and since  L ’s siblings cannot spare a value, you 
merge  L  with one of the siblings and bring down a record from the parent  P  ( Figure 
  21-15   c). Notice that this step is analogous to the merge step for a 2-3 tree. However,  P
now has only one value and two children, and since its siblings cannot spare a record 
and child, you must merge  P  with its sibling  P1  and bring a record down from P’s parent, 
Q . Because  P  is an internal node, its children must be adopted by  P1 . (See  Figure 
  21-15   d.) 

 After this merge,  P ’s parent  Q  is left with only two children and one record. In 
this case, however,  Q ’s sibling  Q1  can spare a record and a child, so you redistribute 
children and records among Q1 ,  Q  and the parent  S  to complete the removal. (See 
 Figure   21-15   e.) If a removal ever propagates all the way up to the root, leaving it 
with only one record and only two children, you are f inished because the definition 
of a B-tree allows this situation. If a future removal causes the root to have a single 
child and no records, you remove the root so that the tree’s height decreases by 1, as 
 Figure   21-15   f illustrates. The removal of the index record is complete, and you now 
must remove the data record.  

FIGURE 21-15         (a through e) The steps for removing 73 ; (f) removing the root   
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 2. Remove the data record from the data fi le.   Prior to removing the index record, you noted 
the value  p  of its pointer. Block  p  of the data fi le contains the data record to be removed. 
Thus, you simply access block  p , remove the data record, and write the block back to the 
fi le. The high-level pseudocode for the insertion and removal algorithms parallels that of 
the 2-3 tree and is left as an exercise.      

   21.3.4  Traversals 

 Now consider the operation       traverse  in sorted order, which is one of the operations that hashing 
does not support at all effi ciently. Often an application requires only that the traversal display the 
search keys of the records. If such is the case, the B-tree implementation can effi ciently support the 
operation, because you do not have to access the data fi le. You can visit the search keys in sorted order 
by using an inorder traversal of the B-tree, as follows:    

   // Traverses in sorted order an index file that is organized as a B-tree of degree m.   
  // blockNum is the block number of     the root of the B-tree in the index file.  
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  traverse(blockNum: integer, m: integer) 

   if  (blockNum != -1) 
{

// Read the root into internal array buf
      buf.readBlock(indexFile, blockNum) 

         // Traverse the children  

         // Traverse S0  
         Let p be the block number of the 0th child of buf
  traverse(p, m) 

   for  (i = 1 through m - 1)
         {

Display key Ki of buf

// Traverse Si  
  Let p be the block number of the ith child of buf
  traverse(p, m) 
          }
}   

 This traversal accomplishes the task with the minimum possible number of block accesses because 
each block of the index fi le is read only once. This algorithm, however, assumes that enough internal 
memory is available for a recursive stack of  h  blocks, where  h  is the height of the tree. In many situa-
tions this assumption is reasonable—for example, a 255-degree B-tree that indexes a fi le of 16 million 
data records has a height of no more than 3. When internal memory cannot accommodate  h  blocks, 
you must use a different algorithm. (See Exercise 12.)    

 If the traversal must display the entire data record (and not just the search key), the B-tree imple-
mentation is less attractive. In this case, as you traverse the B-tree, you must access the appropriate 
block of the data fi le. The traversal becomes      

   // Traverses in sorted order a data file that is indexed     with a B-tree of degree m.
// blockNum is the block number     of the root of the B-tree.  
  traverse(blockNum: integer, m: integer) 

   if  (blockNum != -1)
{

     // Read the root into internal array buf
  buf.readBlock(indexFile, blockNum) 
   // Traverse S0  
      Let p be the block number of the 0th child of buf
  traverse(p, m) 

   for (i = 1 through m - 1)
{

           Let p_i be the pointer in the ith index     record of buf
           data.readBlock(dataFile, p_i) 
           Extract from data the data record whose search key     equals Ki  
           Display the data record  

         // Traverse Si  
           Let p be block number of the ith child of buf
           traverse(p, m) 

}
  }

Accessing the entire 
data record 

 Sorted-order 
traversal of  a data 
fi le indexed with a 
B-tree

Inorder traversal of  
a B-tree index fi le 
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 This traversal requires you to read a block of the data fi le before you display each data record; that 
is, the number of data-fi le block accesses is equal to the number of data records. In general, such a 
large number of block accesses would not be acceptable. If you must perform this type of traversal 
frequently, you probably would modify the B-tree scheme so that the data fi le itself was kept 
nearly sorted.  

   21.3.5  Multiple Indexing 

 Before concluding the discussion of external implementations, let’s consider the multiple indexing of 
a data fi le.  Programming Problem 8 in Chapter   18    asked you to support multiple organizations for 
data stored in internal memory. Such a problem is also common for data stored externally. For exam-
ple, suppose that a data fi le contains a collection of employee records on which you need to perform 
two types of retrievals:   

   // Retrieves the item whose search key contains the   name aName.
  retrieveN(aName: NameType): ItemType 

// Retrieves the item whose search key contains the  
// Social Security Number ssn.  
  retrieveS(ssn: SSNType): ItemType    

 One solution to this problem is to maintain two independent index fi les to the data fi le. For exam-
ple, you could have one index fi le that contains index records of the form  <name ,  pointer>  and a sec-
ond index fi le that contains index records of the form  <socSec ,  pointer> .  These index fi les could 
both be hashed, could both be B-trees, or could be one of each, as  Figure   21-16    indicates. The choice 
would depend on the operations you wanted to perform with each search key. Similarly, if an applica-
tion required extremely fast retrievals on  socSec  and also required operations such as traverse in 
sorted  socSec  order and range queries on  socSec , it might be reasonable to have two  socSec  index 
fi les—one hashed, the other a B-tree.  

Generally, the 
previous traversal is 
unacceptable 

FIGURE 21-16         Multiple index fi les   
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A removal by name 
must update both 
indexes 

Question 1  Consider two fi les of 1,600 employee records each. The records in each fi le 
are organized into sixteen 100-record blocks. One fi le is sequential access and the other is 
direct access. Describe how you would append one record to the end of each fi le. 

CHECK POINT

Question 2   Trace externalMergesort  with an external fi le of 16 blocks. Assume that the 
arrays   in1 ,   in2 , and   out are each one block long. List the calls to the various functions in the 
order in which they occur. 

Question 3   Trace the retrieval algorithm for an indexed external fi le when the search 
key is less than all keys in the index. Assume that the index fi le stores the index records 
sequentially, sorted by their search keys, and contains 20 blocks of 50 records each. Also 
assume that the data fi le contains 100 blocks, and that each block contains 10 employee 
records. List the calls to the various functions in the order in which they occur. 

Question 4 Repeat Checkpoint Question 3, but this time assume that the search key 
equals the key in record 26 of block 12 of the index. Also assume that record 26 of the 
index points to block 98 of the data fi le. 

 Although you can perform each retrieval operation by using only one of the indexes 
(that is, use the name  index for  retrieveN  and the  socSec  index for  retrieveS ), insertion 
and removal operations must update both indexes. For example, the remove-by-name 
operation removeN(Jones)  requires the following steps:    

 1.   Search the  name  index fi le for Jones and remove the index record.  
 2.    Remove the appropriate data record from the data fi le, noting the  socSec  value  ssn

of this record. 
 3.    Search the  socSec  index fi le for  ssn  and remove this index record.   

 In general, the price paid for multiple indexing is more storage space and an additional 
overhead for updating each index whenever you modify the data fi le. 

 This chapter has presented at a very high level the basic principles of managing data in 
external storage. The details of implementing the algorithms depend heavily on your specifi c 
computing system. Particular situations often mandate either variations of the techniques 
described here or completely different approaches. In future courses and work experience, 
you will undoubtedly learn much more about these techniques. 

              SUMMARY   

1. An external fi le is partitioned into blocks. Each block typically contains many data records, and a block is gen-
erally the smallest unit of transfer between internal and external memory. That is, to access a record, you must 
access the block that contains it. 

2.  You can access the ith block of a direct access fi le without accessing the blocks that precede it. In this sense 
direct access fi les resemble arrays. 

  3.   Before you can process (for example, inspect or update) a record, you must read it from an external fi le into 
internal memory. Once you modify a record, you must write it back to the fi le. 
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  4.  Block accesses are typically quite slow when compared to other computer operations. Therefore, you must 
carefully organize a fi le so that you can perform tasks by using only a few block accesses. Otherwise, response 
time can be very poor. 

5.  You can modify the merge sort algorithm, presented in  Chapter   11   , so that it can sort an external fi le of records 
without requiring all of the records to be in internal memory at one time. 

6. An index to a data fi le is a fi le that contains an index record for each record in the data fi le. An index record 
contains both the search key of the corresponding data record and the number of the block in the data fi le that 
contains the data record. 

  7.  If a record is inserted into or removed from a data fi le, you must make the corresponding change to the index 
fi le. If a data fi le has more than one index fi le, you must update each index fi le. Thus, multiple indexing has an 
overhead. 

  8.  You can organize an index fi le by using either hashing or a B-tree. These schemes allow you to perform the 
basic dictionary operations by using only a few block accesses. 

9. Although external hashing generally permits retrievals, insertions, and removals to be performed more quickly 
than does a B-tree, it does not support such operations as sorted traversals or range queries. This defi ciency is 
one motivation for multiple indexing. 

  10.  You can have several index fi les for the same data fi le. Such multiple indexing allows you to perform different 
types of operations effi ciently, such as retrieval by name and retrieval by Social Security number. 

  EXERCISES   

1. Assuming the existence of readBlock and writeBlock functions, write a pseudocode program for shifting data 
to make a gap at some specifi ed location of a sorted fi le. Pay particular attention to the details of shifting the last 
item out of one block and into the fi rst position of the next block. You can assume that the last record of the fi le 
is in record lastRec of block lastBlock and that lastBlock is not full. (Note that this assumption permits 
shifting without allocating a new block to the fi le.) 

2.  The problem of managing the blocks of an external data fi le indexed by either a B-tree or an external hashing 
scheme is similar to that of managing memory for internal structures. When an external structure such as a data 
fi le needs more memory (for example, to insert a new record), it gets a new block from a free list that the system 
manages. That is, if the fi le contains  n  blocks, the system can allocate to it an ( n  + 1) th  block. When the fi le no 
longer needs a block, you can deallocate it and return it to the system. 

 The complication in the management of external storage is that a block allocated to a fi le may have availa-
ble space interspersed with data. For example, after you have removed a record from the middle of a data fi le, 
the block that contained that record will have space available for at least one record. Therefore, you must be 
able to keep track of blocks that have space available for one or more records as well as recognize when blocks 
are completely empty (so that you can return them to the system). 

 Assuming the existence of allocateBlock and returnBlock functions that get empty blocks from and 
return empty blocks to the system, write pseudocode implementations of the following external memory-man-
agement functions: 
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   // Determines the block number (blockNum) and record number (recNum)      of an available slot in file  
  // dataFile. A new block is allocated to the file from     the system if necessary.  
  getSlot(dataFile: File, blockNum: integer, 

  recNum: integer) 

  // Makes record recNum in block blockNum of file dataFile available.   
  // The block is returned to the     system if it becomes empty.  
  freeSlot(dataFile: File, blockNum: integer, 

    recNum: integer)   

What data structure is appropriate to support these operations? You may assume that you can distinguish slots 
of a block that do not contain a record from those that do. You can make this distinction either by having a con-
vention for null values within a record or by adding an empty/full fl ag. 

3.   Describe pseudocode algorithms for insertion into and removal from a dictionary implemented externally with 
a hashed index fi le. 

4. Execute the following sequence of operations on an initially empty dictionary   book   that is implemented as a 
B-tree of degree 5. Note that insertion into an empty B-tree will create a single node that contains the inserted 
item.

book.add(10)
  book.add(100) 
  book.add(30) 
  book.add(80) 
  book.add(50) 
  book.remove(10) 
  book.add(60) 
  book.add(70) 
  book.add(40) 
  book.remove(80) 
  book.add(90) 
  book.add(20) 
  book.remove(30) 
  book.remove(70)   

5. Given a B-tree of degree 5 and a height of 3, 

 a. What is the maximum number of nodes (including the root)?  
 b. What is the maximum number of records that can be stored?

6.  Given the B-tree of degree 7 in  Figure   21-17   , draw the B-tree that results after the insertion of m ,  o ,  y ,  r, c ,  i ,  k , 
w, and h . 

7.  Given the B-tree of degree 7 in  Figure   21-18   , draw the B-tree that results after the removal of s ,  t, p ,  m ,  k , and  e . 

8.  Describe a pseudocode algorithm for fi nding an item’s inorder successor in an external B-tree. 

9.  Describe pseudocode algorithms for insertion into and removal from an ADT dictionary implemented with an 
index fi le organized as a B-tree. 

10. Write a rangeQuery function for a B-tree in pseudocode. (See Exercise 3 of  Chapter 19 .) Assume that only the 
key values are needed (as opposed to the entire data record). 
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FIGURE 21-17 A B-tree for Exercise 6   
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FIGURE 21-18 A B-tree for Exercise 7   

11.   Integrate calls to the appropriate memory-management functions (see Exercise 2) into the pseudocode for add
and remove under both the B-tree and hashing schemes. (See Exercises 3 and 9.) 

12. The B-tree traversal algorithm presented in this chapter assumes that internal memory is large enough to 
accommodate the recursive stack that contains up to  h  blocks, where  h  is the height of the B-tree. If you 
are in an environment where this assumption is not true, modify the traversal algorithm so that the recur-
sive stack contains block numbers rather than the actual blocks. How many block accesses does your 
algorithm have to perform? 

13.   a. Write pseudocode B-tree implementations of traversals and range queries that need to access entire 
data records, not simply the search keys. How many block accesses do your functions require?   

 b.   To reduce the number of block accesses required by these operations, various modifi cations of the 
basic B-tree structure are frequently used. The central idea behind such structures is to keep the data 
fi le itself sorted. First, assume that you can keep the data fi le in sequential sorted order—that is, the 
records are sorted within each block and the records in  Bi–1  are less than the records in  Bi  for  i = 2, 3, 
and so on to the number of blocks in the fi le. Rewrite your implementations of the traversal and 
range-query operations to take advantage of this fact. How many block accesses do these operations 
now require?   

 c. Because it is too ineffi cient to maintain a sequentially sorted data fi le in the face of frequent insertions and 
removals, a compromise scheme is often employed. One such possible compromise is as follows. If a data 
record belongs in block B and B is full, a new block is allocated and linked to B, allowing the new record 
to be inserted into its proper sorted location. The diffi culty is that you must now view each index record in 
the B-tree as indicating the fi rst of possibly several blocks in a chain of blocks that might contain the 
corresponding data record. Rewrite the add  , remove, getItem, traverse, and rangeQuery operations in 
terms of this implementation. What is the effect on their effi ciency? 

14.  Write an iterative (nonrecursive) version of   the internal merge sort, as given in  Chapter   11   , that is based on the 
external version that this chapter describes. That is, merge sorted runs that double in size at each pass of the 
array. 
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  PROGRAMMING PROBLEMS   

1.        a.   Implement in C++ the externalMergesort algorithm given in Section 21.2 by using the functions 
seekg and seekp. Assume that the fi le to be sorted is a fi le of type int and that each block contains one 
integer. Further assume that the fi le contains 2 n  integers for some integer  n .

 b.   Now assume that each block contains many integers. Write C++ functions that simulate readBlock
and writeBlock.  Implement externalMergesort by using these functions.  

 c.   Extend your implementation of externalMergesort by removing the restriction that the fi le contains 
2n  blocks.   

2.  Implement the ADT dictionary by using a sorted index fi le, as described in Section 21.3.1. 

3.   Implement an ADT dictionary that uses a sorted index fi le using the STL map container. 

4.  Implement a simple dictionary application, such as the one described in Exercise 4 of  Chapter   18   , using the 
external dictionary of Programming Problem 3. 

5.   Implement the ADT dictionary by using a hashed index fi le, as described in Section 21.3.2. 

6. Implement the ADT dictionary by using a B-tree, as described in Section 21.3.3. 

7.  Repeat Programming Problem 8 of  Chapter   18   , using an external dictionary. 
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This interlude gives an overview of some useful methods available with each of the 
STL containers and in the STL algorithms library. We do not attempt to describe the 
entire library.   

      C7.1 STL Containers 
 Throughout this text we have been designing and implementing containers that hold 
collections of objects. Each ADT was inspired by a problem to solve and was 
designed to effi ciently solve that specifi c problem. While each ADT can be used in a 
variety of situations, we need to consider the strengths and weaknesses of each one 
when choosing which to use. 

 C++ comes with a library of containers that implement many of the more com-
monly used ADTs. These classes are defi ned in the Standard Template Library , or 
STL . Many of the ADTs that are presented in this text have a corresponding class in the 
STL. For example, the STL defi nes a  stack    class that is similar to the class  Linked-
Stack  presented in  Chapter   7   . Just like the ADTs we designed, each container in the 
STL has strengths and weaknesses that you need to consider when deciding which one 
to use. 

 You may wonder why we spent so much time developing ADTs in this text if 
they are already provided in the STL. There are many reasons for doing so; here are 
just a few: 

    C++
Interlude 

VideoNote

C++ STL
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•   Developing simple ADTs provides a foundation for learning to develop other ADTs, espe-
cially ones that are not in the STL.  

•   STL containers are not part of a class hierarchy and so cannot take advantage of polymor-
phism in the same way our ADTs can.  

•   You might fi nd yourself working in a language that does not provide any predefi ned ADTs. 
You need to have the ability to develop ADTs on your own, and hence you must understand the 
process.

•   If the ADTs defi ned by the language you are using are insuffi cient, you may need to develop 
your own or enhance existing ones.   

 The STL provides support for predefi ned ADTs through the use of three basic items: containers, 
iterators, and algorithms. Containers are objects, such as a list, that hold other objects. Iterators   pro-
vide a way to cycle through the contents of a container and are described in C++ Interlude 6. Algo-
rithms, such as a sorting algorithm, act on containers. STL containers are implemented as templates, 
similar to the ADTs we implemented in this text. 

 You already are familiar with one STL class—the class  vector —which we used in  Chapter   3    to 
implement the ADT bag method  toVector .  Moreover, many introductory C++ courses use the STL 
class vector  instead of arrays as a simple way to store multiple items of a similar type 

 There are three types of containers in the STL: 

•  Container adapters   provide effi cient, restricted, position-based access to the collection. They 
are considered adapters because they use other STL containers to implement their operations.  

•  Sequence containers   provide effi cient sequential access to the collection. The containers in 
this group provide various trade-offs in effi ciency for insertions and removals.  

•  Associative containers   provide effi cient key-based access to the collection. Each of these 
containers organizes and accesses the search keys to provide effi cient groups of operations.   

 Each container type implements similar operations, but with a different emphasis in effi ciency. 
You’ll fi nd that many of these operations have corresponding operations in the ADTs that we defi ned 
in this text, but the STL names might be different. 

 Two operations that all STL containers defi ne are  empty  and  size . These correspond to  isEmpty
and getLength , respectively, in this book’s ADTs. For sequence and associative containers, the  con-
tainer size  is the number of entries it can hold. If the container is empty, not only does it not have any 
entries, but it cannot hold any. To add a new entry to the container, you must either use one of the 
methods that increases the container size during the add  operation or, in the case of sequence contain-
ers, resize the container using the resize  method. 

 OPERATIONS COMMON TO ALL STL CONTAINERS

 OPERATION  DESCRIPTION  EFFICIENCY

 Constructor  Creates a container; sequence containers allow the 
user to specify an initial size. 

 Varies 

 Destructor  Destroys all entries in the container, and then 
destroys the container. 

 O( n ) 

  operator=   Assigns entries in the container on the right-hand 
side to the one on the left-hand side. 

 O( n ) 

 bool empty()  Returns true if the container is empty (size is 0).  O(1) 

 uint 1  size()   Returns the number of locations in the container.  O(1)  

 1   uint is the data type for an unsigned integer 
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    Operations that remove entries from a collection throw an exception when they fail. 
 To use one of the STL classes, you must include the appropriate header fi le, which has the same 

name as the STL class. So to use the class stack , for example, your code must have the following 
statement:

  #include <stack>; 

 To instantiate an STL container, you must supply the type of item it will hold, just as we instantiated 
our ADTs. For example, the following statement creates a vector that can hold 10 strings: 

  vector<string> cities(10); // Create a vector to hold 10 strings  

 All STL containers are part of the  std::  namespace. Therefore, if you do not use the statement 

  using namespace std; 

 in your code, you must precede any reference to the container with  std::  as shown here; 

  std::vector<std::string> cities(10); // Create a vector to hold 10 strings 

 In our ADTs, we used  ItemType  to represent the type of the item stored in the collection. The 
STL header fi les use  value_type  or simply  T  to represent the item in a collection. If the collection is 
similar to our ADT dictionary, with key and item types, the STL uses  key_type  and  mapped_type
respectively. 

   C7.1.1  STL Container Adapters 

 The STL container adapter classes are  stack ,  queue  and  priority_queue . These correspond to the 
ADTs stack, queue, and priority queue and are optimized so that the operations listed below perform 
at O(1). These containers grow to accommodate new entries as the entries are added. When entries 
are removed, the size of the container decreases. Thus, each of these containers has a size exactly 
equal to the number of entries in it currently.          

 STL STACK OPERATIONS

 OPERATION  DESCRIPTION

value_type& top()  Returns a reference to the top entry on the stack. 

 void  push(value_type& item)   Pushes  item  onto the top of the stack. 

 void  pop()   Removes the top entry from the stack. 

 STL QUEUE OPERATIONS

 OPERATION  DESCRIPTION

value_type& front()   Returns a reference to the front entry in the queue. 

value_type& back()   Returns a reference to the last (back) entry in the queue. 

 void  push(value_type& item)   Adds  item  onto the back of the queue. 

 void  pop()   Removes the front entry from the queue. 
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 STL PRIORITY_QUEUE OPERATIONS

 OPERATION  DESCRIPTION

value_type& top()   Returns a reference to the front entry in the priority queue. 

void push(value_type& item)   Inserts  item  into the priority queue. 

 void  pop()   Removes the front entry in the priority queue. 

 Listing C7-1 provides an example of how to use the STL  stack . 

LISTING C7-1   Example use of the STL stack

#include <iostream> 
#include <stack> 
  using namespace std; 

  int main() 
 { 
  stack< int> aStack; 

// Right now, the stack is empty 
if (aStack.empty()) 

       cout << "The stack is empty." << endl; 

for ( int j = 0; j < 5; j++) 
       aStack.push(j); // Places items on top of stack 

  while (!aStack.empty()) 
   { 
       cout << aStack.top() << " "; 
       aStack.pop(); 
   }  // end while 

return 0; 

} // end main 

  Output  

The stack is empty. 
 4 3 2 1 0    

   C7.1.2  Sequence Containers 

 The elements in a sequence container are ordered in a linear sequence and can be accessed, inserted, and 
removed by position. Similar to the arrangement in traditional arrays, the positions in sequence contain-
ers are numbered from 0 to size -  1. The  front  of these containers is at position 0, and the  back  is at 
position size -  1. 

 The STL sequence containers are:  array ,  vector ,  deque ,  list , and  forward_list . Let’s con-
sider each of these containers. 

  The sequence container  array .  As part of the recent C11 standard, the STL  array  provides a fi xed-
size container that is implemented as a traditional array, so unlike other STL containers, an STL 
array  container cannot grow or shrink in size. You can access individual elements in an STL array 
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just as you access elements in a traditional array, by using the operator  [ ] . An advantage of an STL 
array over traditional C++ arrays is the method  at  that allows for range checking. For example, a 
traditional array declared as 

  int myArray[5]; 

 permits the programmer to access elements beyond the memory allocated to the array by using an 
expression such as  myArray[24] . This leads to unpredictable results and is a common source of errors 
in a program. 

 An STL array declared as 

  array<int> mySTLArray(5); 

 would have the same issue if the programmer used the expression  mySTLArray[24] . In situations 
where accessing elements outside the bounds of the array is possible, it is better to use an expression 
such as mySTLArray.at(24) . This expression will throw an  out_of_bounds  exception that you can 
catch, enabling you to fi x the error and allow the program to continue execution safely. 

 Two other important features of the STL  array  are its  size  method—enabling you to determine 
how many locations are in the array—and the availability of iterators for array traversal, as discussed 
in C++ Interlude 6. 

 STL ARRAY OPERATIONS

 OPERATION  DESCRIPTION  EFFICIENCY

value_type& front()   Returns a reference to the front entry in the array.  O(1) 

value_type& back()   Returns a reference to the last (back) entry in the array.  O(1) 

value_type& at(size_type n)   Behaves the same as  [ ],  but performs a bounds check.  O(1) 

void fill(constvalue_type& val)   Fills array elements with  val .  O( n ) 

iterator begin()   Returns an iterator to the fi rst element in the container.  O(1) 

iterator end()   Returns an iterator to the last element in the container.  O(1) 

reverse_iterator rbegin()   Returns a reverse iterator to the last element in the container.  O(1) 

reverse_iterator rend()   Returns a reverse iterator to the fi rst element in the container.  O(1) 

    Other STL sequence containers have many operations in common but are optimized differently. 
For example,  vector  and  deque  permit effi cient access to specifi c locations using the  [ ]  operator, 
but list  is better for sorting. Though these containers can be constructed with an initial size, they 
also grow and shrink as entries are added and removed. If you realize that you need to add a signifi -
cant number of entries to the container, a  resize  method lets you adjust the number of elements.     

 OPERATIONS COMMON TO STL SEQUENCE CONTAINERS

 OPERATION  DESCRIPTION  EFFICIENCY

value_type& front()   Returns a reference to the front entry in the container.  O(1) 

value_type& back()   Returns a reference to the last (back) entry in the 
container. 

 O(1) 

(continues)
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 void  push_back(value_type& item)   Adds  item  onto the back of the container 
(grows container). 

 O(1) 

 void  pop_back(value_type& item)   Removes the back entry from the container 
(shrinks container). 

 O(1) 

 void resize (uint newSize)  Resizes the container to have  newSize  elements.  O( n ) 

 void  clear()   Destroys all entries in the container, and resizes the 
container to a size of 0. 

 O( n ) 

  void insert(uint position,

                  value_type& item) 
 Inserts  item  at  position  and grows the container.  Varies 

  void insert(iterator itPosition, 

                   value_type& item) 
 Inserts  item  at itPosition and grows the container.  Varies 

 void  erase( uint position)  Removes element   position  from the container 
(shrinks container). 

 Varies 

 void  erase( iterator itPosition)  Removes element itPosition from container 
(shrinks container). 

 Varies 

iterator begin()   Returns an iterator to the fi rst element of the container.  O(1) 

iterator end()   Returns an iterator to the last element of the container.  O(1) 

reverse_iterator rbegin()   Returns a reverse iterator to the last element of the 
container. 

 O(1) 

reverse_iterator rend()   Returns a reverse iterator to the fi rst element of the 
container. 

 O(1) 

  The STL class vector.  The STL class  vector  is implemented using dynamic arrays so that it can 
increase in size as necessary. You access individual elements in a  vector  just as you do for an STL 
array by using either  [ ]  or  at . Since vectors are stored as an array in a contiguous sequence of 
memory locations, vectors are good for accessing elements by either position or iteration, and for 
adding elements to or removing elements from the back.     

 ADDITIONAL STL VECTOR OPERATION

 OPERATION  DESCRIPTION  EFFICIENCY

value_type& at(size_type n)   Behaves the same as  [ ],  but performs a bounds check.  O(1) 

  The STL container deque.  The STL container  deque  allows access to individual elements using 
[ ]  and enables the effi cient addition and removal of entries at both its front and back.  Unlike our 
ADT deque, the STL deque  permits insertion ( insert ) and removal ( erase ) from the interior of 
the container. 

 The STL  deque  does not use contiguous memory locations, but stores sequences of its entries in 
multiple blocks of memory that it tracks internally. While this makes the STL  deque  more complex to 
implement, it enables it to grow in size more effi ciently, since additional memory can be allocated 
without the need to copy all existing entries into the new elements.     
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  The STL class list.  The STL class  list  is typically implemented using some form of a doubly 
linked chain. It is optimized for the insertion and removal of entries but does not provide subscripting, 
because element access would be ineffi cient. Bidirectional iterators are provided to access list entries. 
The STL list  can effi ciently insert and remove entries at any location in the container. This perform-
ance is improved if an iterator, either forward or reverse, is used to determine position. The nature of 
the STL list  is well suited for sorting and merging operations, and it has methods that implement 
those algorithms. The STL  list  does not provide direct access to elements by position. Access to 
elements other than the front or back must be done using an iterator.  

  The STL container forward_list.  Another C11 STL container is  forward_list . It is similar in effi -
ciency to the STL list. Since the STL forward _list is implemented as a singly linked chain, it performs 
better with operations using forward iterators and requires less storage than the STL  list.  The STL 
forward_list  offers the same functionality for sorting, merging, and element access as the STL  list . 

 ADDITIONAL STL DEQUE OPERATIONS

 OPERATION  DESCRIPTION  EFFICIENCY

value_type& at(size_type n)   Behaves the same as  [ ],  but performs a bounds check.  O(1) 

 void  push_front(value_type& item)   Adds  item  onto the front of the deque (grows container).  O(1) 

 void  pop_front(value_type& item)   Removes the front entry from the deque (shrinks container).  O(1)

 ADDITIONAL STL LIST AND FORWARD_LIST OPERATIONS

 OPERATION  DESCRIPTION  EFFICIENCY

void push_front(value_type& item)   Adds  item  onto the front of the list (grows container).  O(1) 

 void  pop_front(value_type& item)   Removes the front entry from the list (shrinks container).  O(1) 

 void  remove(value_type& val)   Removes all items from the list that are equal to  val .  O( n ) 

 void  sort()   Sorts the list in ascending order.  O( n ) 

void merge(list<value_type>& rhs)   Merges  rhs  with the current list by placing entries in 
their correct sorted order, resulting in a sorted list of 
all entries. 

 O( n ) 

  void slice(iterator position,

         list<value_type>& rhs) 

 Inserts entries in  rhs  into the current list by placing them 
at position ; other forms specify the number of entries. 

 O( n ) 

 void  reverse()   Reverses the order of entries in the list.  O( n)

 Listing C7-2 contains an example that uses the STL  list  to maintain a list of groceries. Each 
entry is inserted in the front of the list, and then the list is sorted. 

LISTING C7-2     Example of using the STL list

#include <iostream> 
#include <string> 

(continues)
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 2   The unordered hash-based containers are part of C11-TR1 (Technical Report 1) and should be preceded by the tr1::
namespace indicator, even if you include the statement using namespace std; in your program. 

#include <list> 
using namespace std; 

  int main() 
 { 

   list<string> groceryList; // Create an empty list
   list<string>::iterator myPosition = groceryList.begin(); 

   groceryList.insert(myPosition, "apples"); 
   groceryList.insert(myPosition, "bread"); 
   groceryList.insert(myPosition, "juice"); 
   groceryList.insert(myPosition, "carrots"); 

   cout << "Number of items on my grocery list: " 
         << groceryList.size() << endl; 

   groceryList.sort(); 

   cout << "Items are:" << endl; 
   myPosition = groceryList.begin(); 

while (myPosition != groceryList.end()) 
   { 
      cout << *myPosition << endl; 
      ++myPosition; 
   }  // end while 
} // end main 

  Output  

  Number of items on my grocery list: 4 
Items are: 
 apples 
 bread 
 carrots 
 juice     

   C7.1.3  Associative Containers 

 STL associative containers store their entries according to search keys, much as our value-based 
ADT dictionary does. There are two basic associative containers— set  and  map —with several vari-
ations of each.  The STL  set  uses the entry to be stored as the key and uses a binary tree for its 
structure. The STL  map  uses a separate entry as the key, similar to the technique used by our ADT 
dictionary. The STL  set  and STL  map  both expect unique keys, and they store entries in ascending 
order based on these keys. 

 The STL  multiset  and STL  multimap  are variations of the STL  set  and STL  map , respectively, 
that permit multiple occurrences of the search keys. The STL containers  unordered_set ,  unor-
dered_map ,  unordered_multiset , and  unordered_multimap  are hash-based implementations of 
the corresponding ordered STL containers.  2

 Since they are hash based, the unordered associative containers are faster for direct access of an 
entry based on its search key. The ordered associative containers are better for iterator-based access. 
The STL map  and STL  unordered_map  containers permit direct access to entries using the  [ ]  operator.    
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 Generally, the operations of the STL  map  and its variations have the same behavior as those of the STL 
set , though the parameters are different since the STL  map  uses a key for each mapped value stored in 
the container. For insertion operations, the STL  map  expects a  pair_type  that contains both the key 
and the entry value mapped to that key. 

 For example, the following code declares a map with a key of type  char  and a mapped type of 
int . It then stores several values in the map and uses an iterator to display them: 

  #include <iostream> 
#include <map> 
using namespace std; 

int main () 
 { 
   map<char, int> myMap; 
   myMap.insert(pair<char, int>('A', 100)); 
   myMap.insert(pair<char, int>('B', 200)); 
   myMap.insert(pair<char, int>('C', 300)); 
   map<char, int>::iterator mapIterator; 

for (mapIterator = myMap.begin(); mapIterator != myMap.end(); ++mapIterator) 
      cout << "Key: " << mapIterator->first; 
      cout << "  Value: " << mapIterator->second << endl; 

return 0; 
} // end main 

 OPERATIONS COMMON TO THE STL SET AND MULTISET

 OPERATION  DESCRIPTION  EFFICIENCY

 void  clear()   Destroys all entries in the container, and resizes 
the container to the size of 0. 

 O( n ) 

 void  insert( value_type& item)  Inserts  item  and grows the container.  O(log  n ) 

 void  erase( value_type& item)  Removes all entries matching  item  from the 
container (shrinks container). 

 O(log  n ) 

 void  erase( iterator& position)  Removes the entry at  position  from the container 
(shrinks container). 

 O(1) 

iterator find( value_type& item )  Returns the iterator referencing  item  .  O(log  n ) 

  uint  count( value_type& item)  Counts the occurrences of item in the container. For 
set  this is at most 1; it can vary for  multiset . 

 O(log  n ) 

  iterator lower_bound (value_type& item)  Returns an iterator referencing the fi rst element 
not less than item  .

 O(log  n ) 

  iterator upper _bound (value_type& item)  Returns an iterator referencing the fi rst element 
greater than  item  .

 O(log  n ) 

iterator begin()   Returns an iterator to the fi rst element of the container.  O(1)

iterator end()   Returns an iterator to the last element of the container.  O(1)

reverse_iterator rbegin()   Returns a reverse iterator to the last element of 
the container. 

 O(1) 

reverse_iterator rend()   Returns a reverse iterator to the fi rst element of 
the container. 

 O(1) 
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 As an alternative to the  insert  statement, you can use the  [ ]  operator: 

     myMap['A'] = 100; 
   myMap['B'] = 200; 
   myMap['C'] = 300; 

 Other operations for the STL  map  use a parameter of  key_type  or an iterator to identify the entry to 
act upon.    

 OPERATIONS  COMMON TO THE STL MAP AND MULTIMAP

 OPERATION  DESCRIPTION  EFFICIENCY

 void  clear()   Destroys all entries in the container and changes its size to 0.  O( n ) 

 void  insert(pair_type& item)   Inserts  item  (grows container).  O(log  n ) 

uint erase(key_type& item)   Removes all entries matching  item  from the container 
(shrinks container). 

 O(log  n ) 

 void  erase(iterator& position)   Removes the entry at  position  from the container 
(shrinks container). 

 O(1) 

iterator find(key_type& item)   Returns an iterator referencing  item .  O(log  n ) 

 uint  count(key_type& item)   Counts the occurrences of  item  in the container.  
 For  set , this count is at most 1; it can vary for  multiset . 

 O(log  n ) 

iterator lower_bound (key_type& item)  Returns an iterator referencing the fi rst entry not less 
than item . 

 O(log  n ) 

iterator upper _bound (key_type& item)  Returns an iterator referencing the fi rst entry greater 
than item . 

 O(log  n ) 

iterator begin()   Returns an iterator to the fi rst entry of the container.  O(1) 

iterator end()   Returns an iterator to the last entry of the container.  O(1) 

reverse_iterator rbegin()   Returns a reverse iterator to the last entry of the container.  O(1) 

reverse_iterator rend()   Returns a reverse iterator to the fi rst entry of the container.  O(1) 

 As mentioned earlier, the unordered variations of the associative containers are hash-based—
they use a hashing function to determine the position of an entry inserted into the container. When 
you instantiate an unordered associative container, you can use the default hash function for the type 
of data you are inserting or you can specify your own. Most often, the default hash function will pro-
duce acceptable results, but if you are testing your own hashing algorithm, you have the option to pass 
it to the constructor of an unordered associative container. 

 Since hash functions are diffi cult to write, it is often helpful to take advantage of an STL provided 
hash. The current C++ standard, C11, does not provide a stand-alone hash function. An unordered 
associative container, typically an  unordered_map , must be instantiated fi rst. Then, the hash function 
for that container can be used to hash any key of the correct type.  Section   18.4.1    in  Chapter   18    contains 
a Programming Tip that demonstrates one way to use this hash within the  getHashIndex  function. 

 Let’s look at a slightly different way of implementing the  getHashIndex  function in the  Hashed-
Dictionary  class discussed in Chapter 18. We need to take two steps when using the  unorder_map  hash 
function within getHashIndex : Instantiate an  unordered_map  object, and create a variable to represent 
the hash function. We can accomplish both of these tasks within the header fi le of  HashedDictionary . 



 STL Containers 681

 In the private section of our header fi le, we instantiate our  mapper  object:  

  std::tr1::unordered_map<KeyType, ItemType> mapper; 

 The sole purpose of the dummy object  mapper  is to give us access to its hash function. 
 We then call the method  hash_function  and store the reference it returns in the variable 

hashFunction : 

  typename std::tr1::unordered_map<KeyType, ItemType>::hasher hashFunction =
                                                                  mapper.hash_function(); 

 The returned reference is to the hash function used to hash our  KeyType . Note that the variable  hash-
Function  is of type  hasher . In the C11 standard, hashing functions are functions of this type. They 
have a single parameter of type  KeyType  and return an unsigned integer that represents the hash value 
of the key. The keyword  typename  is required so that the compiler understands that this statement is 
based on the template parameters. 

 Because  hashFunction  is defi ned and initialized in the header fi le, it is available to any method 
in the HashedDictionary  class. When it is used, we need to use the modulo operator, since 
hashFunction  returns an unsigned integer in the range  0  to  UINT_MAX —the maximum unsigned inte-
ger. After the modulo operator is applied, we can cast the result to be the type of index we need for our 
dictionary. Thus, we have the following statement: 

  int hashIndex = static_cast<int>(hashFunction(searchKey) % hashTableSize); 

 The code in Listing C7-3 gives an example of how to use a hash function when it is not part 
of an ADT. This example creates a hash function for  string  objects. Since the key type of the 
map determines the hash function, the type of the mapped value is not important; hence we use 
int . 

LISTING C7-3     Alternative defi nition of a hashing function

#include <iostream> 
#include <string> 
#include <tr1/unordered_map> // Note header name since this is in tr1 
  using namespace std; 

// Create a type since this is a long name to use (optional) 
  typedef std::tr1::unordered_map<string, int> StringKeyMap; 

// Create a dummyMap object so we can get its hash function 
StringKeyMap dummyMap; 

// Capture the hash function for use in program 
StringKeyMap::hasher myHashFunction = dummyMap.hash_function(); 

  int main () 
 { 
   cout << "Hashing a String: " << myHashFunction("Hashing a String:") << endl; 
   cout << "Smashing a String: " << myHashFunction ("Smashing a String:") << endl; 

return 0; 
} // end main 

  Output  

Hashing a String: 2084157801917477989 
Smashing a String: 14048775086903850803     
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   C7.2 STL Algorithms 
 One of the strengths of the STL container library is the set of functions defi ned in the header 
<algorithm> . These functions are designed to operate on ranges of elements in any container with 
iterators. In C++ Interlude 6 you saw a few of these:  for_each ,  find ,  count ,  advance , and  dis-
tance .  In most cases, the type of container is not important, but it must support iterators. This 
makes possible the comparison of differing types of containers. For instance, the entries stored in a 
vector  can be compared to those stored in a  map . 

 The fi rst group of algorithms search and compare items in a range. Though they may change a 
value, they do not modify the structure of the containers. Several algorithms, such as  for_each , 
find_if , and  count_if , apply helper functions to each entry during the traversal in a manner similar 
to the tree traversals presented in  Chapter   15   . The table below only shows one form of each function.  
Most functions have several forms that allow additional customization of the range of container 
entries to process and the functions to use for comparison. Also, STL  map  operations, such as  upper_
bound  and  lower_bound  can be used as functions and applied to other container types.    

 STL SEARCH AND COMPARE ALGORITHMS

 OPERATION  DESCRIPTION

  void for_each(iterator start, 

     iterator end,  

     Function fun) 

 Applies  fun  to the range specifi ed by  start  and  end.

  iterator find(iterator start, 
     iterator end,  

    value_type& val) 

 Returns an iterator to val in the range specifi ed by  start  and  end . 

iterator find_if(iterator start, 

          iterator end,  

         PredFunction fun) 

 Returns an iterator to the entry between  start  and  end  that 
makes the predicate function  fun  true. 

  uint count(iterator start, 

          iterator end,  

         value_type& val) 

 Counts the number of occurrences of  val  between  start  and  end . 

  uint count_if(iterator start, 

      iterator end,  

     PredFunction fun)

 Counts the number of entries between  start  and  end  that make 
the predicate function fun  true. 

  bool equal(iterator start1, 

          iterator end1,  

         iterator start2) 

 Compares the entries between  start1  and  end1  to those 
beginning at  start2 . Returns true if all items match. 

  value_type& min (value_type& item1, 

       value_type& item2) 
 Returns the minimum of  item1  and  item2 . 

  value_type& min_element (iterator start, 

         iterator end) 
 Returns the minimum value in the range from  start  to  end . 

  value_type& max (value_type& item1, 

       value_type& item2) 
 Returns the maximum of  item1  and  item2 . 

  value_type& max_element (iterator start, 

         iterator end) 
 Returns the maximum value in the range from  start  to  end . 
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 The sequence-modifi cation algorithms change the entries stored in a container within a range 
specifi ed by two iterators. The entries can be either 

•   Replaced by a specifi c value using  fill
•   Copied or moved to new locations using  copy  or  move
•   Removed based on specifi ed conditions using  remove , or  
•   Have operations applied to them using  transform

 The following table lists a few of the more common operations and the syntax used to invoke them.    

 STL SEQUENCE MODIFICATION ALGORITHMS

 OPERATION  DESCRIPTION

  iterator copy(iterator start1, 

      iterator end1,  

      iterator start2) 

 Copies the entries within the range  start1  to  end1  to the 
positions beginning at  start2  within the same or another 
container. Returns an iterator to the last entry copied. 

  iterator copy_backward (iterator start1, 

         iterator end1,  

         iterator start2) 

 Copies the entries within the range  start1  to  end1  to the 
positions beginning at  start2  (used if ranges overlap in the 
same container). Copies entries starting at  end1   -   1 . Returns 
an iterator to the last entry copied. 

  void swap(value_type& item1, 

           value_type& item2) 
 Swaps the values of two objects,  item1  and  item2 . 

  iterator transform (iterator start1, 

             iterator end1,  

             iterator start2, 

             UnaryOperator op) 

 Applies the given unary operator  op  to items within the range 
start1  to  end1  and places the result in elements beginning at 
start2 . Returns an iterator to the last element in the result 
container. 

  iterator transform (iterator start1, 

             iterator end1, 

             iterator operand2,  

             iterator start2, 

             BinaryOperator bop) 

 Uses items within the range  start1  to  end1  as the left-hand 
operand for bop  and the entries beginning at  operand2  as the 
right-hand operand. Places the result in elements beginning 
at start2 . Returns an iterator to the last element in the result 
container. 

  void fill(iterator start1, 

           iterator end1,  

           value_type& val) 

 Sets all entries within the range from  start1  to  end1  to the 
value  val . 

 The STL algorithm library also provides a number of operations that perform sorting or heap 
operations on a range of elements in a container. It also includes operations, such as  partition  and 
nth_element  that can be used to implement user-developed sorting algorithms.       

 STL SORTING AND HEAP ALGORITHMS

 OPERATION  DESCRIPTION

  void sort(iterator start, 

       iterator end) 

 Sorts entries within the range  start  to  end  into ascending 
order. 

(continues)
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  void stable_sort(iterator start, 

        iterator end) 

 Sorts entries within the range  start  to  end  into ascending 
order but has stability in ordering—that is, the relative 
order of equal values is maintained. 

iterator partition (iterator start, 

           iterator end,  

           PredFunction fun) 

 Rearranges all entries within the range from  start  to  end  so 
that those that make the predicate function  fun  true are 
before those for which the function is false. 

  iterator partition_stable (iterator start, 

                      iterator end,  

                      PredFunction fun) 

 Behaves the same as  partition , but has stability in 
ordering—that is, the relative order of equal values is 
maintained.

  void nth_element (iterator start, 

         iterator nth,  

         iterator end) 

 Rearranges the entries within the range  start  to  end  so that 
the entry in position  nth  is in the correct sorted 
position—that is, it is in the nth  position in the sorted 
sequence.

  void make_heap (iterator start, 

      iterator end)  

 Rearrange the entries in the range  start  to  end  to form a heap. 

  void push_heap (iterator start, 

       iterator end)  

 Assumes that the entries within the range  start  to  end   -   1
form a heap and places the entry at position  end  into the 
correct location in the heap, extending the heap to 
position end . 

  void pop_heap (iterator start, 

     iterator end)  

 Moves the value at position  start  to position  end   -   1  and 
rebuilds the heap in the range start  to  end   -   2  inclusive. 

  void sort_heap (iterator start, 

       iterator end)  

 Assumes that the entries within the range  start  to  end   -   1
form a heap and turns the heap back into a sorted 
container. 
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  Prerequisite 
 Knowledge of a modern programming language 

 This book assumes that you already know how to write programs in a modern programming 
language. If that language is C++, you can probably skip this appendix, returning to it for reference as 
necessary. If instead you know a language such as Java or C, this appendix will introduce you to C++. 
Also, Appendixes K and L compare C++ to Java and Python, respectively. 

 It isn’t possible to cover all of C++ in these pages. Instead this appendix focuses on the parts of 
the language used in this book. First we look at the basics of data types, variables, expressions, opera-
tors, and simple input/output. We continue with functions, decision constructs, looping constructs, 
arrays, and strings. Various C++ Interludes, which appear throughout the book as needed, will cover 
classes, pointers, exceptions, and fi les.  

  A.1 Language Basics 
 Let’s begin with the elements of the language that allow you to perform simple computations. For 
example, the C++ program in Figure A-1 computes the volume of a sphere. Running this program 
produces the following output, where the user’s response appears in blue: 

  Enter the radius of the sphere: 19.1  
The volume of a sphere of radius 19.1 is 29186.927734 

 A typical C++ program consists of several modules, some of which you write and some of which 
you use from standard libraries. C++ provides a  source-inclusion facility , which allows the system 
to include  the contents of a fi le automatically at a specifi ed point in a program before the program is 
compiled. For example, our sample program uses a standard library to perform input and output 
operations. The fi rst line of this program is an  include  directive that names a  standard   header
iostream , which enables the program to use the input/output module. The second line informs the 
compiler to use the standard namespace (see Section C1.2 in C++ Interlude 1). 

 A C++ program is a collection of functions, one of which must be called  main . Program 
execution always begins with the function  main . The following paragraphs provide an overview of 
the basics of C++ and refer to the simple program in Figure A-1 by line number. Note that the only 
function this simple program contains is  main .       

  A.1.1 Comments 

 Each comment line in C++ begins with two slashes  //  and continues until the end of the line. 
You can also begin a multiple-line comment with the characters  /*  and end it with  */ . However, a 

Each C++ program 
must contain a 
function main  

Each comment line 
begins with two 
slashes
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comment that begins with  /*  and ends with  */  cannot contain another comment that begins with  /*
and ends with */ . 

 Appendix I talks about documentation comments that begin with  /**  and end with  */ . We use 
this style of comment in this book at the beginning of classes, methods, and functions.     

  A.1.2 Identifi ers and Keywords 

 A C++  identifi er  is a sequence of letters, digits, and underscores that must begin with either a letter or 
an underscore. C++ distinguishes between uppercase and lowercase letters, so be careful when typing 
identifi ers. 

 You use identifi ers to name various parts of the program. Certain identifi ers, however, are 
reserved by C++ as  keywords , and you should not use them for other purposes. A list of all C++ 
reserved keywords appears inside the cover of this book. The keywords that occur within C++ state-
ments in this book appear in color.     

  A.1.3 Fundamental Data Types 

 The fundamental data types in C++ are organized into four categories: boolean, character, integer, 
and fl oating point. With the exception of boolean, each category contains several data types. For most 
applications, you can use 

bool  for boolean values  
char  for character values  
int  for integer values  
double  for fl oating-point values   

FIGURE A-1         A simple C++ program    

1. Enables input and output ------------> 

 2. Opens the standard namespace ----> 

 3. Begins the function main ------------>

4. A comment ----------------------------->

5. Begins body of function --------------> 

6. Defines a constant  --------------------> 

7. Declares a variable  --------------------> 

8. Displays a prompt to the user -------> 

9. Reads radius ------------------------->

10. Declares and computes volume ---> 

 11. Displays results ------------------------->

 12. Statement continues ------------------>

 13. Statement continues ----------------->

 14. Normal program termination ------->

 15. Ends body of function ---------------->   

#include <iostream>

using namespace std;

int main()

// Computes the volume of a sphere of a given radius.

{

const double PI = 3.14159;

double radius;

   cout << "Enter the radius of the sphere: ";

   cin  >> radius;

double volume = 4 * PI * radius * radius * radius / 3;

   cout << "The volume of a sphere of radius " 

        << radius << " inches is " << volume 

        << " cubic inches.\n";

return 0;

} // end program

C++ is case-
sensitive 
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 A boolean value can be either true or false. Characters are represented by their ASCII integer 
values, which are listed in Appendix J. Integer values are either signed, such as –5 and +98, or 
unsigned, such as 5 and 98. The  fl oating-point types  are used for real numbers that have both an inte-
ger portion and a fractional portion. Boolean, character, and integer types are called  integral types . 
Integral and fl oating-point types are called  arithmetic types . 

 Most of the data types are available in several forms and sizes. Although you will probably not 
need more than the four types given previously, Figure A-2 lists the available fundamental data types 
for your reference. 

 The size of a data type affects the range of its values. For example, a  long  integer can have a 
larger magnitude than a  short  integer. The sizes of—and therefore the specifi c ranges for—a data 
type depend on the particular computer and version of C++ that you use. C++, however, provides a 
way to determine these ranges, as you will see later in Section A.1.6.     

  A.1.4 Variables 

 A variable, whose name is a C++ identifi er, represents a memory location that contains a value of a 
particular data type. You declare a variable’s data type by preceding the variable name with the data 
type, as in 

   double radius; // Radius of a sphere 

 Note that you can write a comment on the same line to describe the purpose of the variable. 
 This declaration is also a defi nition in that it assigns memory for the variable  radius . The memory, 

however, has no particular initial value and so is said to be uninitialized. The program in Figure A-1 
declares radius  without an initial value and later reads its value by using  cin >> radius . 

 When possible, you should avoid uninitialized variables. That is, you should initialize a variable 
when you fi rst declare its data type or, alternatively, declare a variable’s data type when you fi rst assign 
it a value. For example,  volume  appears for the fi rst time in line 10 of Figure A-1 in the statement 

   double volume = 4 * PI * radius * radius * radius / 3; 

 Because we did not declare  volume ’s data type earlier in the program—thus avoiding an uninitialized 
value—we declare its data type  and  assign it a value in the same statement.  

  A.1.5 Literal Constants 

 You use  literal constants  to indicate particular values within a program. The 4 and 3 in line 10 of 
Figure A-1 are examples of literal constants that are used within a computation. You can also use a 
literal constant to initialize the value of a variable. For example, you use  true  and  false  as the values 
of a boolean variable, as mentioned previously. 

FIGURE A-2         Fundamental data types   
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 You write decimal integer constants without commas, decimal points, or leading zeros. The 
default data type of such a constant is either  int , if small enough, or  long . 

 You write fl oating-point constants, which have a default type of  double , with a decimal point. 
You can specify an optional power-of-10 multiplier by writing  e  or  E  followed by the power of 10. For 
example,  1.2e–3  means 1.2 × 10 −3 .    

 Character constants are enclosed in single quotes—for example,  'A'  and  '2' —and have a 
default type of  char . You write a literal character string as a sequence of characters enclosed in double 
quotes.

 Several characters have names that use a backslash notation, as given in Figure A-3. This nota-
tion is useful when you want to embed one of these characters within a literal character string. For 
example, the program in Figure A-1 uses the new-line character  \n  in the string  "cubic inches.\n"
to end the line of output with a carriage return. You will learn about this use of  \n  in the discussion of 
output later in this appendix. You also use the backslash notation to specify either a single quote as a 
character constant ( '\'')  or a double quote within a character string.    

Do not begin a 
decimal integer 
constant with zero 

FIGURE A-3         Some special character constants   
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\n
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New line

Tab

Single quote

Double quote

Zero

     Programming Tip:   Do not begin a decimal integer constant with zero. A constant 
that begins with zero is either an octal constant or a hexadecimal constant.  1

 1   Octal and hexadecimal constants are also available, but they are not used in this book. An octal constant begins with  0 , a hex 
constant with 0x  or  0X . 

   A.1.6 Named Constants 

 Unlike variables, whose values can change during program execution,  named constants  have values 
that do not change. The declaration of a named constant is like that of an initialized variable, but the 
keyword  const  precedes the data type. For example, the statement    

   const double PI = 3.14159; 

 declares  PI  as a named fl oating constant, as is the case in the sample program in Figure A-1. Once a 
named constant such as PI  is declared, you can use it, but you cannot assign it another value. By using 
named constants, you make your program both easier to read and easier to modify.   

  The standard header fi le  climits  contains named constants such as  INT_MIN  and  LONG_MAX  that 
specify installation-dependent maximum and minimum values for the integral data types. Likewise, 
the standard header fi le  cfloat  contains named constants that specify installation-dependent maxi-
mum and minimum values for the fl oating data types. You use the  include  directive to gain access to 
these header fi les.  

The value of  a 
named constant 
does not change 

Named constants 
make a program 
easier to read and 
modify
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  A.1.7 Enumerations 

Enumeration  provides another way to name integer constants. For example, the statement    

   enum {SUN, MON, TUE, WED, THU, FRI, SAT}; 

 is equivalent to the statements 

   const int SUN = 0; 
  const int MON = 1; 
. . . 
  const int SAT = 6; 

 By default, the values assigned to the constants—called  enumerators —begin with zero and are con-
secutive. You can, however, assign explicit values to any or all of the enumerators, as in 

   enum {PLUS = '+', MINUS = '–'}; 

 By naming an enumeration, you create a distinct integral type. For example,    

   enum Season {WINTER, SPRING, SUMMER, FALL}; 

 creates a type  Season . The variable  whichSeason , declared as 

  Season whichSeason; 

 can have values  WINTER ,  SPRING ,  SUMMER , or  FALL . This use of named enumerations instead of  int  can 
make your program easier to understand.  

  A.1.8 The  typedef  Statement 

 You use the  typedef  statement to give another name to an existing data type. In this way, you can 
make your program easier to modify and to read. For example, the statement    

   typedef double Real; 

 declares  Real  as a synonym for  double  and allows you to use  Real  and  double  interchangeably. 
 Suppose that you revise the program in Figure A-1 by using  Real  as follows: 

   int main() 
 { 
   typedef double Real; 

const Real PI = 3.14159; 
Real radius; 

cout << "Enter the radius of the sphere: "; 
cin >> radius; 
Real volume = 4 * PI * radius * radius * radius / 3; 
. . . 

 At fi rst glance, this program does not seem to be more advantageous than the original version, but 
suppose that you decide to increase the precision of your computation by declaring  PI ,  radius , and 
volume  as  long double  instead of  double . In the original version of the program (Figure A-1), you 
would have to locate and change each occurrence of  double  to  long double . In the revised program, 
you simply change the  typedef  statement to 

   typedef long double Real; 

 Realize that  typedef  does not create a new data type, but simply declares a new name for a data 
type. A new data type requires more than a name; it requires a set of operations. C++, however, does 
provide a way to create your own data types, as described in C++ Interlude 1.     
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  A.1.9 Assignments and Expressions 

 You form an  expression  by combining variables, constants, operators, and parentheses. The assign-
ment statement 

  volume = 4 * PI * radius * radius * radius / 3; 

 assigns to the previously declared variable  volume  the value of the arithmetic expression on the right-
hand side of the assignment operator =, assuming that PI  and  radius  have values. The assignment 
statement

   double volume = 4 * PI * radius * radius * radius / 3; 

 which appears in line 10 of Figure A-1, also declares  volume ’s data type, since it was not declared 
previously. 

 The various kinds of expressions that you can use in an assignment statement are discussed next. 

  Arithmetic expressions.   You can combine variables and constants with arithmetic operators and 
parentheses to form arithmetic expressions. The arithmetic operators are 

+  Binary add or unary plus 
-  Binary subtract or unary minus 
*  Multiply 
/  Divide 
%  Remainder after division 

 The operators  * ,  / , and  %  have the same  precedence ,2   which is higher than that of  +  and  - ; unary 
operators3   have a higher precedence than binary operators. The following examples demonstrate 
operator precedence:      

a – b / c  means  a −  ( b/c )  (precedence of / over −)  
−5 / a  means ( − 5)/ a   (precedence of unary operator −)  
a / −5  means  a /( − 5)  (precedence of unary operator −)  

 Arithmetic operators and most other operators are left-associative. That is, operators of the same 
precedence execute from left to right within an expression. Thus,    

  a / b * c 

 means 

  (a / b) * c 

 The assignment operator and all unary operators are right-associative, as you will see later. You can 
use parentheses to override operator precedence and associativity.  

  Relational and logical expressions.   You can combine variables and constants with parentheses; with 
the relational, or comparison, operators < ,  <= ,  >= , and  > ; and with the equality operators  ==  (equal to) 
and !=  (not equal to) to form a relational expression. Such an expression is true or false according to 
the validity of the specifi ed relation. For example, the expression  5 ==   4  has a value of  false  because 5 
is not equal to 4. Note that equality operators have a lower precedence than relational operators. 

   You can combine variables and constants of the arithmetic types, relational expressions, and the 
logical operators  &&  (and) and  ||  (or) to form logical expressions, which are either true or false. C++ 
evaluates logical expressions from left to right and stops as soon as the value of the entire expression 

 2   A list of all C++ operators and their precedences appears inside the cover of this book. 
 3   A unary operator requires only one operand; for example, the - in -5. A binary operator requires two operands; for example, 
the + in 2 + 3. 
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is apparent; that is, C++ uses short-circuit evaluation . For example, C++ determines the value of 
each of the following expressions without evaluating  (a < b) : 

  (5 == 4) && (a < b) // False since (5 == 4) is false 
(5 == 5) || (a < b) // True since (5 == 5) is true 

Sometimes the 
value of  a logical 
expression is 
apparent before it is 
completely
examined 

     Programming Tip:   Remember that  =  is the assignment operator;  ==  is the equality 
operator. 

  Conditional expressions.   The expression 

  expression  1   ?   expression  2   :   expression  3

 has the value of either  expression2  or  expression3  according to whether  expression1  is true or false, 
respectively. For example, the statement 

  larger = ((a > b) ? a : b); 

 assigns the larger of  a  and  b  to  larger , because the expression  a >   b  is true if  a  is larger than  b  and 
false if not.  

  Implicit type conversions.   Automatic conversions from one data type to another can occur during 
assignment and during expression evaluation. For assignments, the data type of the expression on the 
right-hand side of the assignment operator is converted to the data type of the item on the left-hand 
side just before the assignment occurs. Floating-point values are truncated—not rounded—when 
they are converted to integral values.   

  During the evaluation of an expression, any values of type  char  or  short  are converted to  int . 
Similarly, any enumerator value is converted to  int  if  int  can represent all the values of that particu-
lar enum ; otherwise, it is converted to  unsigned . These conversions are called  integral promotions . 
After these conversions, if the operands of an operator differ in data type, the data type that is lower in 
the following hierarchy is converted to one that is higher ( int  is lowest): 

int→ unsigned→ long→ unsigned long→ float→ double→ long double

 For example, if  a  is  long  and  b  is  float ,  a + b  is  float . Only a copy of  a ’s  long  value is converted to 
float  prior to the addition, so that the value stored at  a  is unchanged.  

  Explicit type conversions.   You can explicitly convert from one data type to another using a static 
cast, with the following notation:    

static_cast < type >( expression )

 which converts  expression  to the data type  type . For example,  static_cast<int>(14.9)  converts the 
double  value 14.9 to the  int  value 14. Thus, the sequence 

   double volume = 14.9; 
cout << static_cast< int >(volume); 

 displays 14 but does not change the value of  volume .

  Other assignment operators.   In addition to the assignment operator  = , C++ provides several two-
character assignment operators that perform another operation before assignment. For example, 

a += b  means  a = a + b

 Other operators, such as  −= ,  *= ,  /= , and  %= , have analogous meanings. 
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 Two more operators,  ++  and  –– , provide convenient incrementing and decrementing operations:    

a++  means  a += 1 , which means  a = a + 1

 Similarly, 

a––  means  a −= 1 , which means  a = a - 1

 The operators  ++  and  −−  can either follow their operands, as you just saw, or precede them. Although 
++a , for instance, has the same effect as  a++ , the results differ when the operations are combined with 
assignment. For example, 

b = ++a  means  a = a + 1; b = a

 Here, the  ++  operator acts on  a   before  assigning  a ’s new value to  b . In contrast, 

b = a++  means  b = a; a = a + 1

 The assignment operator assigns  a ’s old value to  b  before the  ++  operator acts on  a . That is, the  ++
operator acts on a   after  the assignment. The operators  ++  and  ––  are often used within loops and with 
array indices, as you will see later in this appendix. When we use these operators with arithmetic 
variables, we write the operator after the variable. 

 In addition to the operators described here, C++ provides several other operators. A summary of 
all C++ operators and their precedences appears inside the cover of this book.    

  A.2 Input and Output Using iostream
 A typical C++ program reads its input from a keyboard and writes its output to a display. Such input 
and output consist of streams, which are simply sequences of characters that either come from or go 
to an input or output (I/O) device. 

 The data type of an input stream is  istream , and the data type of an output stream is  ostream . 
The iostream  library provides these data types and three default stream variables:  cin  for the 
standard input stream, cout  for the standard output stream, and  cerr  for the standard error stream, 
which also is an output stream. Your program gains access to the  iostream  library by including 
the iostream  header fi le. This section provides a brief introduction to simple input and output. 

  A.2.1 Input 

 C++ provides the input operator  >>  to read integers, fl oating-point numbers, and characters into 
variables whose data types are any of the fundamental data types. The input operator has the input 
stream as its left operand and the variable that will contain the value read as its right operand. 
Thus,    

  cin >> x; 

 reads a value for  x  from the standard input stream. The  >>  operator is left-associative. Thus, 

  cin >> x >> y 

 means 

  (cin >> x) >> y 

 That is, both of these expressions read characters for  x  from the input stream and then read subsequent 
characters for y . 

The operators ++ 
and −− are useful for 
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 The input operator  >>  skips whitespace, such as blanks, tabs, and new-line characters, that might 
occur between values in the input data line. For example, after the program segment    

   int ia = 0; 
  int ib = 0; 
  double da = 0; 
  double db = 0; 
cin >> ia >> da >> ib; 
cin >> db; 

 reads the data line 

  21  -3.45  -6 475.1e-2 <eol>   

 the variable  ia  contains 21,  da  contains –3.45,  ib  contains –6, and  db  contains 4.751. A subsequent 
attempt to read from cin  will look beyond the end of the line ( <eol> ) and read from the next data line, 
if one exists. An error occurs if no data exists for a corresponding variable processed by  >>  or if the 
variable’s data type does not match the type of the data available. For example, after the previous pro-
gram segment reads the data line 

  -1.23  456.1e-2  -7 8 <eol>   

 the variable  ia  contains –1,  da  contains 0.23,  ib  contains 456, and  db  contains 0.001. The rest of the 
data line is left for a subsequent read, if any. As another example, if the segment attempts to read a 
data line that begins with  .21 , the read would terminate because  ia  is  int  and  .21  is not. 

 An expression such as  cin >> x  has a value after the read operation takes place. If the operation 
is successful, this value is true; otherwise the value is false. You can examine this value by using the 
selection and iteration statements that are described later in this appendix. 

 You can also use the  >>  operator to read individual characters from the input stream into character 
variables. Again, any whitespace is skipped. For example, after the program segment 

   char ch1 = ''; 
  char ch2 = ''; 
  char ch3 = ''; 
cin >> ch1 >> ch2 >> ch3; 

 reads the data line 

  xy z 

ch1  contains  'x' ,  ch2  contains  'y' , and  ch3  contains  'z' . 
 You can read whitespace when reading individual characters into character variables by using the 

C++ method get . Either of the statements    

  cin.get(ch1); 

 or 

  ch1 = cin.get(); 

 reads the next character, even if it is a blank, a tab, or a new-line character, from the input stream into 
the char  variable  ch1 . 

 Section A.7, later in this appendix, describes how to read character strings.  

  A.2.2 Output 

 C++ provides the output operator  <<  to write character strings and the contents of variables whose 
data types are any of the fundamental ones. For example, the program segment   

The input operator 
>> skips whitespace 

Use get to read 
whitespace

The output operator 
<< writes to an 
output stream 



 Input and Output Using iostream 695

    int count = 5; 
  double average = 20.3; 
cout << "The average of the " << count 

<< " distances read is " << average 
<< " miles.\n"; 

 produces the following output: 

  The average of the 5 distances read is 20.3 miles. 

 Like the input operator, the output operator is left-associative. Thus, the previous statements append 
the string "The   average   of   the"  to the output stream, then append the characters that represent the 
value of  count , and so on. 

 Note the use of the new-line character  \n , which you can conveniently embed within a character 
string. Observe also that the output operator does not automatically introduce whitespace between values 
that are written; you must do so explicitly. The following statements provide another example of this: 

   int x = 2; 
  int y = 3; 
  char ch = 'A'; 
cout << x << y << ch << "\n"; // Displays 23A 

 Although you can use the output operator to display individual characters, you can also use the 
put  method for this task. Further, you can specify a character either as a  char  variable or in ASCII. 
Thus, the statements 

   char ch = 'a'; 
cout.put(ch); // Displays a 
cout.put('b'); // Displays b 
cout.put(99); // Displays c, which is 99 in ASCII 
 cout.put(ch+3); // Displays d 
 cout.put('\n'); // Carriage return 

 display  abcd  followed by a carriage return. 
 Section A.7, later in this appendix, provides further information about writing character strings.  

  A.2.3 Manipulators 

 C++ enables you to gain more control over the format of your output and the treatment of whitespace 
during input than the previous discussion has indicated. Most of these techniques apply to the format 
of output. 

 Suppose, for example, that you have computed your grade point average and you want to 
display it with one digit to the right of the decimal point. If the fl oating variable  gpa  contains 4.0, the 
statement 

  cout << "My GPA is " << gpa << "\n"; 

 writes 4 without a decimal point. A number of  manipulators  affect the appearance of your output. 
You can use these with  cout :    

  cout << manipulator ; 

 where  manipulator  has any of the values listed in Figure A-4. A manipulator is a predefi ned value or 
function that you use with the input and output operator. For example,    

  cout << showpoint; 

 uses the  showpoint  manipulator and causes all fl oating-point output to appear with a decimal point.   
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  Even if you use the  showpoint  manipulator,  gpa  will likely appear as 4.00000 instead of 4.0. You 
can specify the number of digits that appear to the right of the decimal point by using the manipulator 
function setprecision , and you can insert a new-line character and fl ush the output stream by using 
the manipulator endl.  Thus, 

  cout << showpoint; 
cout << setprecision(1) << gpa << endl; 

 displays 4.0 followed by a carriage return. 
 The effect of  setprecision  on the output stream remains until another  setprecision  is encoun-

tered. Except for setprecision , however, a manipulator affects the appearance of only the next char-
acters on which  <<  (or  >> ) operates. For example, 

  cout << right; // Right-align output 
cout << "abc" << setw(6) << "def" << "ghi"; 

 displays 

  abc  defghi 

 Although manipulator values, such as  endl , are available when you include  iostream  in your program, 
you must also include  iomanip  to use any of the manipulator functions. 

  A.3 Functions 
 As was mentioned earlier in this appendix, a C++ program is a collection of functions. Usually, each 
function should perform one well-defi ned task. For example, the following function returns the larger 
of two integers:       

   int computeMax( int x, int y) 
 { 

if (x > y) 
return x; 

else  
return y; 

} // end computeMax 

FIGURE A-4         Stream manipulators   
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 A function defi nition, like the one just given, has the following form: 

type name( parameter-declaration-list)
{

body
}

 The portion of the defi nition before the left brace specifi es a return type, the function name, and a list 
of parameters . The part of the defi nition that appears between the braces is the function’s body. 

 The return type of a  valued function —one that returns a value—is the data type of the value that 
the function will return. The body of a valued function must contain a statement of the form    

   return expression ; 

 where  expression  has the value to be returned. 
 Each parameter represents either an input to or an output from the function. You declare a param-

eter by writing a data type and a parameter name, separating it from other parameter declarations with 
a comma, as in 

   int x, int y 

 When you call, or invoke, the function  computeMax , you pass it  arguments  that correspond to the 
parameters with respect to number, order, and data type. For example, the following statements con-
tain two calls to  max :    

   int a = 0; 
  int b = 0; 
  int c = 0; 
cin >> a >> b >> c; 

  int largerAB = computeMax(a, b); 
cout << "The largest of " << a << ", " << b << ", " 

 << " and " << c << " is " << computeMax(largerAB, c) << ".\n"; 

 As written, the defi nition of  computeMax  indicates that its arguments are passed by value. That is, 
the function makes local copies of the values of the arguments— a  and  b , for example—and uses 
these copies wherever  x  and  y  appear in the function defi nition. Thus, the function cannot alter the 
arguments that you pass to it. This restriction is desirable in this example because  x  and  y  are input 
parameters, which  computeMax  does not change.   

  Alternatively, arguments can be passed by reference. The function does not copy such argu-
ments; rather, it references the argument locations whenever the parameters appear in the function’s 
defi nition. This allows a function to change the values of the arguments, thus implementing output 
parameters.

 For example, consider the following variation of the function  computeMax : 

   void computeMax( int x, int y, int& larger) 
 { 
    larger = ((x > y) ? x : y); 
} // end computeMax 

computeMax  is a  void function  instead of a valued function. That is, its return type is  void , and it does 
not return a value by using a  return  statement.  4   Instead,  computeMax  returns the larger of  x  and  y  in 
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 4   Whereas valued functions must contain a statement of the form  return expression, void functions cannot contain such a 
statement. A void function can, however, contain  return  without an expression. Such a statement causes the function to return 
to the statement that follows its call. This book does not use  return  with void functions. 
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the output parameter larger . The  &  that follows  larger ’s data type  int  indicates that  larger  is a 
reference parameter . Thus,  computeMax  will access and alter the argument that corresponds to 
larger , whereas the function will make and use copies of the values of the arguments that correspond 
to the value parameters   x  and  y .        

 The following statements demonstrate how to invoke  computeMax : 

   int a = 0; 
  int b = 0; 
  int largerAB = 0; 
cin >> a >> b; 
computeMax(a, b, largerAB); 
cout << "The larger of " << a << " and " << b 

<< " is " << largerAB << ".\n"; 

 If a function’s input argument is a large object, like the objects you will encounter in this book, 
you might not want the function to copy it. Thus, you would not pass the argument by value. Because 
it is an input argument, however, you do not want the function to be able to alter it. A  constant refer-
ence parameter  is a reference parameter that is tagged as  const . The function uses the actual argu-
ment that is passed to such a parameter, not a copy of it, yet cannot modify it.    

 For example, for the function  f  that begins 

   void f( const int& x, int y, int& z) 

x  is a constant reference parameter,  y  is a value parameter, and  z  is a reference parameter. Here  x
and y  are suitable as input parameters because  f  cannot change them, while  z  is an output parame-
ter. Note that  z  can also be an input parameter. That is, the argument corresponding to  z  can both 
provide a value to the function and return a value from the function. Such arguments must be 
passed by reference.    
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     Note:   Use reference parameters with caution, as you might inadvertently change an 
argument. On the other hand, constant reference parameters are safe to use. 

 If you write another function  f  that calls  computeMax , you must either place the defi nition of 
f  after the defi nition of  computeMax  or precede  f ’s defi nition with a  function declaration  for 
computeMax . For example, you can use either of the following statements to declare the function 
computeMax :    

   void computeMax( int x, int y, int& max); 

 or 

   void computeMax( int, int, int &); 

 A function declaration provides the data types of the function’s parameters and its return type. Param-
eter names are optional in a function declaration, although they are helpful stylistically. However, 
parameter names are required in the function’s defi nition. Although a function declaration ends with a 
semicolon, a semicolon does not appear in a function defi nition. 

 A typical C++ program contains a function declaration for every function used in the program. 
These declarations appear fi rst in the program, usually with comments that describe each function’s 
purpose, parameters, and assumptions. The program in Listing A-1 demonstrates the placement of a 
function declaration, function defi nition, and main function:    
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  A.3.1 Standard Functions 

 C++ provides many standard functions, such as the square root function  sqrt  and the input function 
get . Appendix H provides a summary of the standard functions and indicates which header fi le you 
need to include in your program to gain access to them. For example, the standard functions listed in 
Figure A-5 facilitate character processing and require the header fi le  cctype . Thus, you need to 
include the statement    

  #include <cctype> 

 in your program when you want to use functions such as  isupper  and  toupper . For the character 
variable  ch ,  isupper(ch)  is  true  if  ch  is an uppercase letter, and  toupper(ch)  returns the uppercase 
version of the letter  ch  without actually changing  ch .      

  A.4 Selection Statements 
 Selection statements allow you to choose among several courses of action according to the value of an 
expression. In this category of statements, C++ provides the  if  statement and the  switch  statement. 

  A.4.1 The if Statement 

 You can write an  if  statement in one of two ways:    

   if ( expression ) 
statement1   

Standard functions 
provide many 
common operations 
and require a 
specifi c header fi le 

An if statement 
has two basic forms 

LISTING A-1 A program that contains a function declaration 

  #include <iostream> 
  using namespace std; 

/** Returns the larger of two given integers. 
 @param x  An integer. 
 @param y  An integer. 
 @return  The larger of x and y. */ 
  int computeMax( int x, int y);          // A function declaration 

  int main() 
 { 

int a = 0; 
int b = 0; 
 cout << "Please enter two integers: "; 
 cin >> a >> b; 

int largerAB = computeMax(a, b); 
 cout << "The larger of " << a << " and " << b 

  << " is " << largerAB << ".\n"; 
} // end main 

  int computeMax( int x, int y) 
 { 

return (x > y) ? x : y; 
} // end computeMax 
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 or 

   if ( expression ) 
statement1  

  else  
statement2

 where  statement1  and  statement2  represent any C++ statement except a declaration. Such statements 
can be compound; a compound statement , or  block , is a sequence of statements enclosed in braces. 
If the value of  expression  is true,  statement1  is executed. Otherwise, the fi rst form of the  if  statement 
does nothing, whereas the second form executes  statement2 . Note that the parentheses around  expres-
sion  are required.   

  For example, the following  if  statements each compare the values of two integer variables  a  and  b : 

   if (a > b) 
    cout << a << " is larger than " << b << ".\n"; 
cout << "This statement is always executed.\n"; 

  if (a > b) 
 { 
    largerAB = a; 
    cout << a << " is larger than " << b << ".\n"; 
 } 
  else  
 { 
    largerAB = b; 
    cout << b << " is larger than " << a << ".\n"; 
} // end if 

cout << largerAB << " is the larger value.\n"; 

 You can nest  if  statements in several ways, since either  statement1  or  statement2  can itself be an 
if  statement. The following example, which determines the largest of three integer variables  a ,  b , and 
c , shows a common way to nest  if  statements:    

FIGURE A-5         A selection of (a) standard classifi cation functions; and (b) standard conversion 
functions
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   A.4.2 The switch Statement 

 When you must choose among more than two courses of action, the  if  statement can become 
unwieldy. If your choice is to be made according to the value of an integral expression, you can use a 
switch  statement.   

  For example, the following statement determines the number of days in a month. The  int  varia-
ble  month  designates the month as an integer from 1 to 12, and the boolean variable  leapYear  is true 
if the year is a leap year. 

   switch (month) 
 { 

// 30 days hath Sept., Apr., June, and Nov. 
case 9: case 4: case 6: case 11: 

 daysInMonth = 30; 
break;  

// All the rest have 31 
case 1: case 3: case 5: case 7: 
case 8: case 10: case 12: 

 daysInMonth = 31; 
break;  

// Except February 
case 2: // Assume leapYear is true if a leap year, else is false 

if (leapYear) 
daysInMonth = 29; 

else  
daysInMonth = 28; 

break;  

default : 
 cout << "Incorrect value for month.\n"; 

} // end switch 

 Parentheses must enclose the integral  switch  expression— month , in this example. The  case
labels have the form 

   case expression : 

 where  expression  is a constant integral expression. After the  switch  expression is evaluated, execution 
continues at the case  label whose expression has the same value as the  switch  expression. Subsequent 
statements execute until either a  break  or a  return  is encountered or the  switch  statement ends. 

 Unless you terminate a  case  with either a  break  or a  return , execution of the  switch  statement 
continues. Although this action can be useful, omitting the  break  statements in the previous example 
would be incorrect.   

   if ((a >= b) && (a >= c)) 
    largest = a; 
  else if (b >= c) // a is not largest at this point 
    largest = b; 
  else  
    largest = c; 

     Note:   An arithmetic expression whose value is not zero is treated as true; one having a 
value of zero is false. 

A switch  
statement provides 
a choice of  several 
actions according to 
the value of  an 
integral expression 

Without a break  
statement, 
execution of  a case 
will continue into the 
next case 
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  If no  case  label matches the current value of the  switch  expression, the statements that follow 
the default  label, if one exists, are executed. If no  default  exists, the  switch  statement exits.   

  A.5 Iteration Statements 
 C++ has three statements—the  while, for,  and  do  statements—that provide for repetition by itera-
tion, that is, loops. Each statement controls the number of times that another C++ statement—the 
body—is executed. The body cannot be a declaration and is often a compound statement. 

  A.5.1 The while Statement 

 The general form of the  while  statement is    

   while ( expression ) 
statement   

 As long as the value of  expression  is true,  statement  is executed. Because  expression  is evaluated 
before statement  is executed, it is possible that  statement  will not execute at all. Note that the paren-
theses around expression  are required. 

 Suppose that you wanted to compute the sum of positive integers that you enter at the keyboard. 
Since the integers are positive, you can use a negative value or zero to indicate the end of the list of 
integers. The following  while  statement accomplishes this task: 

   int nextValue = 0; 
  int sum = 0; 

cin >> nextValue; 
  while (nextValue > 0) 
 { 
    sum += nextValue; 
    cin >> nextValue; 
} // end while 

 If 0 was the fi rst value read, the body of the  while  statement would not execute. 
 Recall that the expression  cin >> nextValue  has the value  true  if the input operation was 

successful and  false  otherwise. Thus, you could revise the previous statements as 

   int nextValue = 0; 
  int sum = 0; 
  while ( (cin >> nextValue) && (nextValue > 0) ) 
    sum += nextValue;   

  A.5.2 The for Statement 

 The  for  statement provides for counted loops and has the general form    

   for ( initialize; test; update ) 
statement   

 where  initialize, test , and  update  are expressions. Typically,  initialize  is an assignment expression that 
initializes a counter to control the loop. This initialization occurs only once. Then if  test , which is usu-
ally a logical expression, is true,  statement  executes. The expression  update  executes next, usually 
incrementing or decrementing the counter. This sequence of events repeats, beginning with the evalu-
ation of test , until the value of  test  is false. 

A while statement 
executes as long as 
the expression is 
true 

A for statement 
lists the initialization, 
testing, and 
updating steps in 
one location 
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 For example, the following  for  statement displays the integers from 1 to  n : 

   for ( int counter = 1; counter <= n; counter++) 
   cout << counter << " "; 
cout << endl; // This statement is always executed 

 If  n  is less than 1, the  for  statement does not execute at all. Thus, the previous statements are 
equivalent to the following  while  loop: 

   int counter = 1; 
  while (counter <= n) 
 { 
    cout << counter << " "; 
    counter++; 
} // end while 
cout << endl; // This statement is always executed 

 In general, the logic of a  for  statement is equivalent to    

   initialize ; 

  while ( test ) 
 { 

statement ; 
update ; 

 } 

 Note that in a  for  statement the fi rst expression  initialize  must have either an arithmetic type or a 
pointer type.  5   Note that  char  in the following example is considered an arithmetic type:  

   for ( char ch = 'z'; ch >= 'a'; ch––) 
// ch ranges from 'z' to 'a' 

 The  initialize  and  update  portions of a  for  statement each can contain several expressions sepa-
rated by commas, thus performing more than one action. For example, the following loop raises a 
fl oating-point value to an integer power by using multiplication: 

  // Floating-point power equals floating-point x raised to int n; 
// assumes int expon 
  for (power = 1.0, expon = 1; expon <= n; expon++) 
   power *= x; 

 Both  power  and  expon  are assigned values before the body of the loop executes for the fi rst time. The 
comma here is an example of the  comma operator , which evaluates its operand expressions from left 
to right. 

 When compared to a  while  statement, the  for  statement can make it easier to understand how 
the loop is controlled because the initialization, testing, and updating steps of the loop are consoli-
dated into one statement. C++ programmers use  for  statements for loops that process collections or 
sequences of data.     

  A.5.3 The do Statement 

 Use the  do  statement when you want to execute a loop’s body at least once. Its general form is    

   do  
statement  

  while ( expression ); 

 Here,  statement  executes until the value of  expression  is false. 

A for statement is 
equivalent to a 
while statement 

 5   C++ Interlude 2 introduces pointer types. 

For counted loops, a 
for statement is 
usually favored over 
the while  
statement 

A do statement 
loops at least once 
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 For example, suppose that you execute a sequence of statements and then ask the user whether to 
execute them again. The  do  statement is appropriate, because you execute the statements before you 
decide whether to repeat them: 

   char response; 
  do  
 { 

// A sequence of statements 
    . . . 

    cout << "Do it again?"; 
    cin >> response; 
} while ( (response == 'Y') || (response == 'y') );    

  A.6 Arrays and Vectors 
 An array is a container of data items, or  entries , that have the same data type. An array’s memory 
locations, or elements , have an order: An array has a fi rst element, a second element, and so on, as 
well as a last element. That is, an array has a fi nite, limited number of elements. Therefore, you must 
know the maximum number of elements needed for a particular array when you write your program 
and before  you execute it. Because you can access the array elements directly and in any order, an 
array is a  direct access , or  random access , data structure.       

  A.6.1 One-Dimensional Arrays 

 When you decide to use an array in your program, you must declare it and, in doing so, indicate the 
data type of its entries as well as its size. The following statements declare a one-dimensional array, 
maxTemps , which contains the daily maximum temperatures for a given week: 

   const int DAYS_PER_WEEK = 7; 
  double maxTemps[DAYS_PER_WEEK]; 

 The bracket notation  []  declares  maxTemps  as an array. This array can contain at most seven fl oating-
point values.   

  You can refer to any of the fl oating-point entries in  maxTemps  directly by using an expression, 
which is called the  index , or  subscript , enclosed in square brackets. In C++, array indices must 
have integer values in the range 0 to  size  – 1, where  size  is the number of elements in the array. The 
indices for maxTemps  range from 0 to  DAYS_PER_WEEK  – 1. For example, the fi fth element in this 
array is  maxTemps[4] . If  k  is an integer variable whose value is 4,  maxTemps[k]  is the fi fth element 
in the array, and  maxTemps[k+1]  is the sixth element. Also,  maxTemps[k++]  accesses  maxTemps[k]
before adding 1 to k . Note that you use one index to refer to an element in a one-dimensional 
array.    

 Figure A-6 illustrates the array  maxTemps , which at present contains only fi ve temperatures. The 
last value in the array is in  maxTemp[4] ; the values of  maxTemps[5]  and  maxTemps[6]  are not initial-
ized and therefore are unknown.   

  You can use enumerators as indices because they have integer values. For example, consider the 
following defi nition:    

   enum Day {SUN, MON, TUE, WED, THU, FRI, SAT}; 

 Given this defi nition,  maxTemps[THU] has the same meaning as  maxTemps[4] . You can also use the 
enumerators within a loop that processes an array, as in the following  for  statement: 

   for (Day dayIndex = SUN; dayIndex <= SAT; dayIndex++) 
   cout << maxTemps[dayIndex] << endl; 

An array is a 
container of  data 
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 Clearly, before you access an element of an array, you must assign it a value. You must assign 
values to array elements one at a time by using the previously described index notation. Note that, if  a
and b  are arrays of the same type, the assignment  a   =   b  is illegal.  6

 The data type of  maxTemps  is a  derived type , which is a type that you derive from the fundamen-
tal types by using a declaration operator such as  [] . Naming a derived type by using a  typedef  is 
often useful. Thus, you can write 

   const int DAYS_PER_WEEK = 7; 
  typedef double ArrayType[DAYS_PER_WEEK]; 
ArrayType maxTemps; 

 and make  ArrayType  available for use throughout your program. 

  Initialization.   You can initialize the elements of an array when you declare it for the fi rst time. For 
example,    

   double maxTemps[DAYS_PER_WEEK] = {82.0, 71.5, 61.8, 75.0, 88.3}; 

 initializes the fi rst fi ve elements of  maxTemps  to the values listed and the last two elements to zero.  

  Passing an array to a function.   If you wanted a function that computed the average of the fi rst  n
elements in a one-dimensional array, you could declare the function as 

   double getAverageTemp( double temperatures[], int n); 

 Because the compiler does not know the number of items that the array can hold, you must also pass 
the function either the size of the array or the number of array items to process. Traditionally, the array 
is listed as the fi rst parameter and the number of items as the second. You can invoke the function by 
writing, for example, 

   double avg = getAverageTemp(maxTemps, 5); 

 where  maxTemps  is the previously defi ned array. 
 An array is never passed to a function by value, regardless of how you write its parameter.  An

array is always passed by reference . This restriction avoids the copying of perhaps many array entries. 
Thus, the function getAverageTemp  could modify the elements of  maxTemps , even though the array is 
an input to the function. To prevent such alteration, you can specify the array parameter as a constant 
reference parameter by preceding its type with  const , as follows:    

   double getAverageTemp( const double temperatures[], int n);    

FIGURE A-6         A one-dimensional array of at most seven elements   

74.1 98.6 32.0 54.3 82.4 ? ?

0 1 2 3 4 5 6 Index

Unused at present

maxTemps

maxTemps[4]

 6   C++ enables you to defi ne your own array data type and array operators so that this assignment would be valid. To do so, you 
need to use classes (C++ Interlude 1) and overloaded operators (C++ Interlude 5). 
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  A.6.2 Multidimensional Arrays 

 You can use a one-dimensional array, which has one index, for a simple collection of data. For exam-
ple, you can organize 52 temperatures linearly, one after another. A one-dimensional array of these 
temperatures can represent this organization. 

 You can also declare multidimensional arrays. You use more than one index to designate an ele-
ment in a multidimensional array. Suppose that you wanted to represent the minimum temperature 
for each day during 52 weeks. The following statements declare a two-dimensional array,  minTemps :    

   const int DAYS_PER_WEEK = 7; 
  const int WEEKS_PER_YEAR = 52; 
  double minTemps[DAYS_PER_WEEK][WEEKS_PER_YEAR]; 

 These statements specify the ranges for two indices: The fi rst index can range from 0 to 6, while the 
second index can range from 0 to 51. Most people picture a two-dimensional array as a rectangular 
arrangement, or matrix, of elements that form rows and columns, as Figure A-7 indicates. The fi rst 
dimension given in the defi nition of  ArrayType  is the number of rows. Thus,  minTemps  has 7 rows 
and 52 columns. Each column in this matrix represents the seven daily minimum temperatures for a 
particular week.    

 To reference an element in a two-dimensional array, you must indicate both the row and the col-
umn that contain the element. You make these indications of row and column by writing two indices, 
each enclosed in brackets. For example,  minTemps[1][51]  is the element in the 2 nd  row and the 52 nd

column. In the context of the temperature example, this element contains the minimum temperature 
recorded for the 2 nd  day (Monday) of the 52 nd  week. The rules for the indices of a one-dimensional 
array also apply to the indices of multidimensional arrays.   

  As an example of how to use a two-dimensional array in a program, consider the following pro-
gram segment, which determines the smallest value in the previously described array  minTemps . We 
use enumerators to reference the days of the week. 

An array can have 
more than one 
dimension

FIGURE A-7         A two-dimensional array   
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   enum Day {SUN, MON, TUES, WED, THURS, FRI, SAT}; 

// Initially, assume the lowest temperature is first in the array 
  double lowestTemp = minTemps[0][0]; 
Day dayOfWeek = SUN; 
  int weekOfYear = 1; 

// Search array for lowest temperature 
  for ( int weekIndex = 0; weekIndex < WEEKS_PER_YEAR; weekIndex++) 
 { 

for (Day dayIndex = SUN; dayIndex <= SAT; dayIndex++) 
{

if (lowestTemp > minTemps[dayIndex][weekIndex]) 
{

          lowestTemp = minTemps[dayIndex][weekIndex]; 
          dayOfWeek = dayIndex; 
          weekOfYear = weekIndex + 1; 

} // end if 
} // end for 

} // end for 

// At this point, lowestTemp is the smallest value in minTemps and 
// occurs on the day and week given by dayOfWeek and weekOfYear, 
// that is, lowestTemp == minTemps[dayOfWeek][weekOfYear - 1]. 

 Although you can declare arrays with more than two dimensions, generally more than three 
dimensions is unusual. The techniques for working with such arrays, however, are analogous to those 
for two-dimensional arrays. 

     Programming Tip:   When referencing an element of a multidimensional array, do 
not use comma-separated indices. For example,  myArray[3,6]  does not reference the 
array element  myArray[3][6] . The expression  3,6  is a comma expression whose value is 
that of the last item listed, namely 6. Thus, although  myArray[3,6]  is legal, its meaning is 
myArray[6] , which references the element  myArray[0][6] . 

  Initialization.   You can initialize the elements of a two-dimensional array just as you initialize a one-
dimensional array. You list the initial values row by row. For example, the statement 

   int x[2][3] = { {1, 2, 3}, 
              {4, 5, 6} }; // 2 rows, 3 columns 

 initializes the two-dimensional array  x  so that it appears as 

 1  2  3 
 4  5  6 

 That is, the statements initialize the elements  x[0][0] ,  x[0][1] ,  x[0][2] ,  x[1][0] ,  x[1][1] , and 
x[1][2]  in that order. In general, when you assign initial values to a multidimensional array, it is the 
last, or rightmost, index that increases the fastest.   

  A.6.3 Vectors 

 Another container that can hold data items of the same type is the  vector . A vector is similar to a 
one-dimensional array, but vectors provide additional features for the programmer not found in a 
simple array. A vector is an object of a standard C++ class named  vector . This class is a part of the 
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Standard Template Library , or  STL . The STL is a collection of data types you can use in your 
programs. These data types are not part of the offi cial C++ language, but they have been added to 
the built-in data types. Section A.9 discusses libraries such as the STL and their usefulness. 

 To use a vector in your program, you must begin it with the following statements: 

  #include <vector> 
  using namespace std; 

 You can declare a vector in one of three ways: 

•   If you know how many elements you want in the vector, you can place the type of data it will 
hold in angle brackets and the number of elements in parentheses: 

  vector< double> firstVector(10); // Vector to hold 10 doubles 
vector<string> myVector(12); // Vector to hold 12 strings 

  The size you specify when declaring the vector is only its initial size. As you will see, a vector 
can grow in size when you add entries.  

•   You can place initial values into a vector when you declare it, by writing a second argument: 

  vector< int> intVector(5, -1); // Vector to hold 5 integers, initialized to -1 

  When the elements in the vector are allocated, they are given the value of the second argument.  
•   You can also create an empty vector—a vector with no elements—by omitting its size and the 

parentheses:

  vector< char> letterVector; // An empty vector of characters    

 You can store or access items in a vector by using the  []  operator, just as you would when using 
an array. As for an array, the subscripts that identify elements in a vector start at  0  and go to  s   –   1 , 
where  s  is the current size of the vector. The following statements are examples of accessing an exist-
ing value in a vector and changing the value of an existing entry:    

   double x = firstVector[5]; // Places sixth entry in x 
myVector[3] = "This is a sample string."; // Sets fourth entry's value 

 Using  []  stores a value in an  existing  element. If you are not sure how many elements the vector has, 
you can call the method  size , as in the following example:    

  cout << intVector.size() << endl; // Displays the number of elements in intVector 

 By calling the  size  method, you can determine whether the vector is full. This is an important advan-
tage that a vector has over an array. 

 If the vector is either full or has no elements—that is, if it was created without elements, as 
letterVector  was previously—you can still add new values by using the method  push_back . The 
push_back  method accepts an argument and adds it after the last element of the vector. In other 
words, it pushes the value onto the back of the vector.    

 Earlier, we declared a ten-element vector  firstVector  that could hold data of type  double . If 
that vector was full, and we needed to add the additional values 2.3 and 3.4, we could use the  push_
back  method: 

  firstVector.push_back(2.3); // Grow vector and store value 
 firstVector.push_back(3.4); // Grow vector and store value 

 At this point, calling the  size  method would return 12, since two additional elements have been 
added to the vector. 

 You also can reduce the size of a vector by removing either its last element or all of its ele-
ments. To remove only the last element, you can use the  pop_back  method. This method shortens 
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the vector but does not give you the entry in the removed element. You must save that entry 
before calling pop_back . For example, the following statements determine the current size of the 
vector  myVector , save the value in the last element, and then remove the last element from the 
vector:    

   int length = myVector.size(); // Find the current number of elements 
string last = myVector[length - 1]; // Get the string in the last element 
                               // (subscripts start at 0) 
myVector.pop_back(); // Reduce the number of elements 

 A subsequent call to  myVector.size()  would return  length -   1 , since the last element was 
removed. 

 To remove all elements from a vector and leave the vector empty, you use the method  clear :    

  myVector.clear(); // myVector is now an empty vector 

 After a vector has been cleared, you must use the method  push_back  to add new entries. 
 C++ Interlude 7 provides more information about  vector , including these and other methods.   

  A.7 Strings 
 Earlier, you saw that C++ provides literal character strings such as 

  "This is a string." 

 You can declare and use variables that contain such strings, and then manipulate the strings as natu-
rally as you manipulate integers by using familiar operators. Our presentation includes only some of 
the possible operations on strings. 

 The C++ Standard Library provides the data type  string . To use this library, you include the 
statements

  #include <string> 
  using namespace std; 

 in your program. 
 You can declare a string variable  title  and initialize it to the empty string by writing 

  string title; 

 You can initialize a string variable to a string literal when you declare it by writing 

  string title = "Walls and Mirrors"; 

 You can subsequently assign another string to  title  by using an assignment statement such as 

  title = "J Perfect's Diary"; 

 In each of the previous examples,  title  has a length of 17. You use either of the methods  length
or size  to determine the current length of a string. Thus,  title.length()  and  title.size()  are 
each 17. 

 You can reference the individual characters in a string by using the same index notation that you 
use for an array. Thus, in the previous example,  title[0]  contains the character  J  and  title[16]
contains the character y . 

 You can compare strings by using the familiar comparison operators. Not only can you see 
whether two strings are equal, but you can also discover which of two strings comes before the other. 

  clear removes all 
elements from a 
vector so it has a 
size of  0 
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The ordering of two strings is analogous to alphabetic ordering, but you use the ASCII table instead of 
the alphabet. Thus, the following relationships are all true:   

"dig" < "dog"

"Star" < "star"    (because  'S' < 's' ) 
"start" > "star"

"d" > "abc"

 You can concatenate two strings to form another string by using the + operator. That is, you place 
one string after another to form another string. For example, if 

  string str1 = "Com"; 

 the statements 

  string str2 = str1 + "puter"; 
str1 += "puter"; 

 assign the string  "Computer"  to each of  str2  and  str1 . Similarly, you can append a single character 
to a string, as in 

  str1 += 's'; 

 You can manipulate a portion of a string by using the method    

  substr( position, length ) 

 The fi rst argument specifi es the position of the beginning of the substring (remember that 0 is the 
position of the fi rst character in the string). The second argument is the length of the substring. For 
example, 

  title.substr(2, 7) 

 is the string “ Perfect ”. 
 To perform input and output with C++ strings, you must include the library  iostream  by writing 

the statement 

  #include <iostream> 

 in your program. For example, you then can display the contents of a string variable by executing    

  title = "Walls and Mirrors"; 
cout << title << "\n"; 

 The result is  Walls and Mirrors . The operator  <<  writes the entire string, including the blanks 
 You can read a string of characters into a string variable. For example, when the statement    

  cin >> title; 

 reads the data line 

  Jamie Perfect’s Diary 

 it assigns the string  "Jamie"  to  title . Whitespace in the input line terminates the read operation for a 
string. To read the entire line of input, including its blank characters, you write 

   getline(cin, title) ;  
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  A.8 Classes 
Object-oriented programming , or  OOP , views a program not as a sequence of actions but as a col-
lection of components called objects  that interact to produce a certain result. A group of objects of 
the same kind belong to a class , which is a programming construct that defi nes the object’s data type. 
 Chapter   1    talks more about OOP; here we want to discuss how to write a class in C++.   

  An object contains data and can perform certain operations on or with that data. The class associ-
ated with a particular object describes its data and its operations. That is, a class is like a blueprint for 
creating certain objects. An object’s operations, or  behaviors , are defi ned within the class by  meth-
ods , which are simply functions within a class. These methods, together with the class’s data are 
known as the class’s  members . 

 We could use a ball as an example of an object. Because thinking of a basketball, volleyball, ten-
nis ball, or soccer ball probably suggests images of the game rather than the object itself, let’s abstract 
the notion of a ball by picturing a sphere. A sphere of a given radius has attributes such as volume and 
surface area. A sphere as an object should be able to report its radius, volume, surface area, and so on. 
That is, the sphere object has methods that return such values. 

 In C++, a class has the following form: 

   class Sphere 
 { 
  private:  

 //  Declarations of private data members and methods  
 //  Definitions of private methods  
. . . 

  public:  
//  Definitions of public methods  
. . . 

 }; 

 By default, all members in a class are  private —they are not directly accessible by any program that 
uses the class—unless you designate them as  public . However, explicitly indicating the private and 
public portions of a class is a good programming practice and one that we will follow in this book. 
You should always declare a class’s data members as private. 

 Most methods are public, but private methods—which only the class can call—can be helpful, as 
you will see. The defi nition of a class’s method can call any of the class’s other methods or use any of 
its data members, regardless of whether they are private or public. 

 Classes have special methods, called constructors and destructors, for the creation and destruc-
tion of its objects. A  constructor  creates and initializes new objects, or  instances , of a class. A 
destructor  destroys an instance of a class, when the object’s lifetime ends. A typical class has several 
constructors, but only one destructor. For many classes, you can omit the destructor. In such cases, 
the compiler will generate a destructor for you. For now, the compiler-generated destructor is suffi -
cient. C++ Interlude 2 discusses how and why you would write your own destructor.       

    In C++, a constructor has the same name as the class. Constructors have no return type—not 
even  void —and cannot use  return  to return a value. Constructors can have arguments. We discuss 
constructors in more detail shortly, after we look at an example of a class defi nition. 

  A.8.1 The Header File 

 You should place each class defi nition in its own  header fi le  or  specifi cation fi le —whose name by 
convention ends in  .h . The header fi le  Sphere.h  shown in Listing A-2 contains a class defi nition for 
sphere objects. 

A C++ class defi nes 
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instance of  a class 

A constructor 
creates and 
initializes an object 

A destructor 
destroys an object 



712 APPENDIX A Review of C++ Fundamentals

Comments in the 
header fi le specify 
the methods 

  LISTING A-2  The header fi le Sphere.h

  /** @file Sphere.h */ 
  const double PI = 3.14159; 

/** Definition of a class of Spheres. */ 
  class Sphere 
 { 
  privat  e : 

double theRadius; // The sphere's radius 

  public : 
     /** Default constructor: Creates a sphere and initializes 
     its radius to a default value. 
     Precondition:  None. 
     Postcondition:  A sphere of radius 1 exists. */ 
    Sphere(); 

    /** Constructor: Creates a sphere and initializes   
       its radius. 
     Precondition:  initialRadius is the desired radius. 
     Postcondition:  A sphere of radius initialRadius exists. */ 
    Sphere( double initialRadius); 

    /** Sets (alters) the radius of this sphere. 
     Precondition:  newRadius is the desired radius. 
     Postcondition:  The sphere's radius is newRadius. */ 

void setRadius( double newRadius); 

     /** Gets this sphere's radius. 
     Precondition:  None. 
     Postcondition:  Returns the radius. */ 

double getRadius() const;  

/** Gets this sphere's diameter. 
     Precondition:  None. 
     Postcondition:  Returns the diameter. */ 

double getDiameter() const;  

/** Gets this sphere's circumference. 
     Precondition:  PI is a named constant. 
     Postcondition:  Returns the circumference. */ 

double getCircumference() const;  

    /** Gets this sphere's surface area. 
     Precondition:  PI is a named constant. 
     Postcondition:  Returns the surface area. */ 

double getArea() const;  

     /** Gets this sphere's volume. 
     Precondition:  PI is a named constant. 
     Postcondition:  Returns the volume. */ 

double getVolume() const ; 
}; // end Sphere 
 //  End of header file. 



 Classes 713

 You should always place a class’s data members within its private section. Typically, you provide 
methods—such as setRadius  and  getRadius —to access the data members. In this way, you control 
how and whether the rest of the program can access the data members. This design principle should lead 
to programs that not only are easier to debug, but also have fewer logical errors from the beginning. 

  Some method declarations, such as    

   double getRadius() const;   

 are tagged with  const . Such methods cannot alter the data members of the class. Making  getRadius
a const  method is a fail-safe technique that ensures that it will only return the current value of the 
sphere’s radius, without changing it.  

  A.8.2 The Implementation File 

 Let’s begin implementing the class  Sphere  by examining its constructors. 

  Constructors.   A constructor allocates memory for an object and can initialize the object’s data to 
particular values. A class can have more than one constructor, as is the case for the class  Sphere . 

 The fi rst constructor in  Sphere  is the  default constructor :    

  Sphere(); 

 A default constructor by defi nition has no arguments. Typically, a default constructor initializes data 
members to values that the class implementation chooses. For example, the implementation 

  Sphere::Sphere() 
 { 
    theRadius = 1.0; 
} // end default constructor 

 sets  theRadius  to 1.0.  Chapter   3    will show you another way to initialize data members within con-
structors that is preferable to using assignment statements. 

 Notice the qualifi er  Sphere::  that precedes the constructor’s name. When you implement any 
method, you qualify its name with its class type followed by the  scope resolution operator   ::  to dis-
tinguish it from other methods that might have the same name. 

 When you declare an instance of the class, you implicitly invoke a constructor. For example, the 
statement

  Sphere unitSphere; 

 invokes the default constructor, which creates the object  unitSphere  and sets its radius to 1.0. Notice 
that you do not include parentheses after  unitSphere . 

 The next constructor in  Sphere  is 

  Sphere( double initialRadius); 

 It creates a sphere object of radius  initialRadius . This constructor needs only to initialize the pri-
vate data member  theRadius  to  initialRadius . Its implementation is 

  Sphere::Sphere( double initialRadius) 
 { 
    theRadius = initialRadius; 
} // end constructor 

 You implicitly invoke this constructor by writing a declaration such as 

  Sphere mySphere(5.1); 

A class’s data 
members should be 
private 

  const methods 
cannot change a 
class’s data 
members 

A default 
constructor has no 
arguments
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 In this case, the object  mySphere  has a radius of 5.1. 
 We can make the previous constructor ensure that the given radius is not negative by writing its 

defi nition as follows: 

  Sphere::Sphere( double initialRadius) 
 { 

if (initialRadius > 0) 
        theRadius = initialRadius; 

else  
        theRadius = 1.0; 
 }   // end constructor 

     Note:   If you omit all constructors from your class, the compiler will generate a default 
constructor—that is, one with no arguments—for you. A compiler-generated default 
constructor, however, might not initialize data members to values that you will fi nd suit-
able. If you defi ne a constructor that has arguments but you omit the default constructor, 
the compiler will not generate one for you. Thus, you will not be able to write statements 
such as 

  Sphere defaultSphere; 

 Typically, you place the implementation of a class’s constructors and other methods in an 
implementation fi le  whose name ends in  .cpp . Listing A-3 contains an implementation fi le for the 
class Sphere . Notice that within the defi nition of a method, you can reference the class’s data mem-
ber or invoke its other methods without preceding the member names with  Sphere:: . In particular, 
notice how the constructor calls the method  setRadius  to avoid duplicating the code that ensures a 
positive radius.    

The implementation 
fi le contains the 
defi nitions of  the 
class’s methods 

  LISTING A-3  The implementation fi le Sphere.cpp

  /** @file Sphere.cpp */ 
#include "Sphere.h" // Include the header file 

  using namespace std; 

 Sphere::Sphere() 
 { 

theRadius = 1.0; 
} // end default constructor 

 Sphere::Sphere(double initialRadius) 
 { 

setRadius(initialRadius); // Sphere:: not needed here 
} // end constructor 

void Sphere::setRadius(double newRadius)
 { 

if (newRadius > 0) 
       theRadius = newRadius; 

else
       theRadius = 1.0; 
 } //  end setRadius 
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A local variable 
such as 
radiusCubed  
should not be a data 
member

double Sphere::getRadius() const
 { 

return theRadius; 
} // end getRadius 

  double Sphere::getDiameter() const  
 { 

return 2.0 * theRadius; 
} // end getDiameter 

  double Sphere::getCircumference() const  
 { 

return PI * getDiameter(); 
} // end getCircumference 

  double Sphere::getArea() const  
 { 

return 4.0 * PI * theRadius * theRadius; 
 } // end getArea 

  double Sphere::getVolume() const  
 { 

double radiusCubed = theRadius * theRadius * theRadius; 
return (4.0 * PI * radiusCubed) / 3.0; 

} // end getVolume   
// End of implementation file. 

    A.8.3 Using the Class Sphere 

 The following simple program demonstrates the use of the class  Sphere : 

  #include <iostream> 
#include "Sphere.h" 

  using namespace std; 

  int main() 
 { 
    Sphere unitSphere; // Radius is 1.0 
    Sphere mySphere(5.1); // Radius is 5.1 

    unitSphere.displayStatistics(); 
    mySphere.setRadius(4.2); // Resets radius to 4.2 
    cout << mySphere.getDiameter() << endl; 

return 0; 
} // end main 

 An object such as  mySphere  can, on request, reset the value of its radius; return its radius; and 
compute its diameter, surface area, circumference, and volume. These requests to an object are called 

     Note: Local variables 

 You should distinguish between a class’s data members and any local variables that the 
implementation of a method requires. It is inappropriate for such local variables to be 
data members of the class. 
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messages  and are simply calls to methods. Thus, an object responds to a message by acting on its 
data. To invoke an object’s method, you qualify the method’s name—such as  setRadius —with the 
object variable—such as  mySphere . 

 Notice that the previous program included the header fi le  Sphere.h , but did not include the 
implementation fi le  Sphere.cpp . You compile a class’s implementation fi le separately from the pro-
gram that uses the class. The way you tell the operating system where to locate the compiled imple-
mentation depends on the particular system. Section A.9 of this appendix and C++ Interlude 1 provide 
more information about header and implementation fi les. 

 The previous program is an example of a  client  of a class. A client of a particular class is simply a 
program or module that uses the class. We will reserve the term  user  for the person who uses a program.  

  A.8.4 Inheritance 

 A brief discussion of  inheritance  is provided here, because it is a common way to create new classes 
in C++. Further discussions of inheritance occur as needed throughout the book. 

 Suppose we want to give our spheres a color, knowing that we have already developed the class 
Sphere . Instead of writing an entirely new class of spheres that have a color, we can reuse the  Sphere
implementation and add color characteristics and operations by using inheritance. Here is a declara-
tion of the class SphereInColor  that uses inheritance:    

  #include "Sphere.h" 
  enum Color {RED, BLUE, GREEN, YELLOW}; 
  class SphereInColor : public Sphere 
 { 

  private : 
    Color sphereColor; 

  public : 
    SphereInColor(Color initialColor); 
    SphereInColor(Color initialColor, double initialRadius); 

void setColor(Color newColor); 
    Color getColor() const;  
}; // end SphereInColor 

 The class  Sphere  is called the  base   class  or  superclass , and  SphereInColor  is called the  derived
class  or  subclass  of the class  Sphere . 

 Any instance of the derived class is also considered to be an instance of the base class and can be 
used in a program anywhere that an instance of the base class can be used. Also, when the keyword 
public  precedes the name of the base class in the new class’s header, any of the publicly defi ned 
methods or data members that can be used with instances of the base class can be used with instances 
of the derived class. The derived class instances also have the additional methods and data members 
that are publicly defi ned in the derived class defi nition. 

 The implementation of the methods for the class  SphereInColor  is as follows: 

  SphereInColor::SphereInColor(Color initialColor): Sphere() 
 { 
    sphereColor = initialColor; 
} // end constructor 

SphereInColor::SphereInColor(Color initialColor, double initialRadius) 
                                          : Sphere(initialRadius) 
 { 
    sphereColor = initialColor; 
} // end constructor 

A class derived from 
the class  Sphere  
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  void SphereInColor::setColor(Color newColor) 
 { 
    sphereColor = newColor; 
} // end setColor 

Color SphereInColor::getColor() const  
 { 

return sphereColor; 
} // end getColor 

 Notice how the constructors for the class  SphereInColor  invoke the base-class constructors 
Sphere()  and  Sphere(initialRadius) . The derived class needs the initialization of the data mem-
bers in the base class that the base-class constructors can provide. The derived-class constructors then 
add initializations that are specifi c to the derived class. 

 Here is a function that uses the class  SphereInColor :    

   void useSphereInColor() 
 { 
    SphereInColor ball(RED); 
    ball.setRadius(5.0); 
    cout << "The ball diameter is " << ball.getDiameter(); 
    ball.setColor(BLUE); 
    ... 

} // end useSphereInColor 

 This function uses the constructor and the method  setColor  from the derived class  SphereInColor . 
It also uses the methods setRadius  and  getDiameter  that are defi ned in the base class  Sphere .

  A.9 Libraries 
 One of the advantages of modular programming is that you can implement modules independently of 
other modules. You might also fi nd it possible for several different programs to use a particular mod-
ule. As a result, you can build a  library  of modules that you can include in future programs. 

 Any library—a C++ standard library or one that you write—has a corresponding header that 
provides information about the contents of the library. For standard libraries, the header is simply 
an abstraction that the compiler may map to a fi lename or handle in a different manner. Thus, 
when using the standard libraries, you do not see the  .h  extension that ends the names of our own 
header fi les. 

 You have already seen some standard libraries, such as the one that provides input and output 
services. To use the modules contained in a library, you use the  include  directive with the name of 
the header associated with the library. For example, you write 

  #include <iostream> 
  using namespace std; 

 Appendix H provides a list of available headers. 
 User-defi ned libraries are typically organized into two fi les. One fi le, the header fi le, contains a 

defi nition for each class in the library that is available to your program. This fi le could also contain, 
for example, function declarations, constant defi nitions,  typedef  statements, enumerations, and 
other include  statements. By convention, the name of a header fi le associated with a user-defi ned 
library ends in  .h . The other fi le—the implementation fi le—contains defi nitions of the class methods 
that the header fi le declares. Typically, the name of an implementation fi le ends in  .cpp . 

 The assumption, of course, is that the fi les are in source form—that is, they need to be compiled. 
It certainly would be more effi cient to compile the method defi nitions once, independently of any 

An instance of  a 
derived class can 
invoke public 
methods of  the base 
class 
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particular program, and then later merge the results of the compilation with any program that you 
desire. In fact, you should compile the implementation fi le and then include the header fi le in source 
form in your program by using an  include  directive such as 

  #include "MyHeader.h" 

 You use double quotes instead of angle brackets to enclose the name of a header fi le that you have 
written. The mechanics of incorporating the compiled implementation fi le into your program are sys-
tem dependent. 

 Thus, your program can use previously compiled C++ statements, which are no longer available 
to you in source form. Maybe you did not even write these statements, just as you did not write the 
standard C++ functions such as sqrt . That is, you use a library in the same spirit in which you use 
standard functions. Because the header fi le indicates what is available to you, you must think of a 
library in terms of what it can do for you and not how it is implemented. You should think of all of 
your modules in this way, even if you eventually implement them yourself.  

1.  Each comment line in C++ begins with two slashes  //  and continues until the end of the line. 

2.   A C++ identifi er is a sequence of letters, digits, and underscores that must begin with either a letter or an under-
score.

  3.   You can use a  typedef  statement to declare new names for data types. These names are simply synonyms for 
the data types; they are not new data types. 

  4.   You defi ne named constants by using a statement of the form 

   const type identifier = value ; 

  5.   Enumeration provides another way to name integer constants and to defi ne an integral data type, as in 

   enum Day {SUN, MON, TUE, WED, THU, FRI, SAT}; 

  6.   C++ uses short-circuit evaluation for expressions that contain the logical operators  &&  (and) and  ||  (or). That is, 
evaluation proceeds from left to right and stops as soon as the value of the entire expression is apparent. 

  7.   The output operator  <<  places a value into an output stream, and the input operator  >>  extracts a value from an 
input stream. You can imagine that these operators point in the direction of data fl ow. Thus, in  cout << myVar , 
the operator points away from the variable  myVar —data fl ows from  myVar  to the stream—whereas in  cin >> 
myVar , the operator points to the variable  myVar —data fl ows from the stream into  myVar . 

  8.   The general form of a function defi nition is 

   type name ( parameter-declaration-list ) 
 { 

body  
 } 

 A valued function returns a value by using the  return  statement. Although a void function does not return a 
value, it can use  return  to exit. 

  SUMMARY           
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  9.   When invoking a function, the actual arguments must correspond to the parameters in number, order, and 
type. 

  10.   A function makes local copies of the values of any arguments that are passed by value. Thus, the arguments 
remain unchanged by the function. Such arguments are, therefore, input arguments. A function does not copy 
arguments that are passed by reference. Rather, it references the actual argument locations whenever the 
parameters appear in the function’s defi nition. In this way, a function can change the values of the arguments, 
thus implementing output arguments. However, a function does not copy and cannot change a constant refer-
ence argument. If copying an input argument would be expensive, make it a constant reference argument 
instead of a value argument. 

  11.   The general form of the  if  statement is 

   if ( expression ) 
statement  1  

  else  
statement  2   

 If  expression  is true,  statement1  executes; otherwise  statement2  executes. 

  12.   The general form of the  switch  statement is 

   switch ( expression ) 
 { 
case constant  1 : 

statement  1  
break;  

  . . . 
case constantn : 

statementn  
break;  

default:  
statement  

 } 

 The appropriate  statement  executes according to the value of  expression . Typically,  break  (or sometimes 
return ) follows the statement or statements after each  case . Omitting  break  causes execution to continue to 
the statement(s) after the next  case . 

  13.   The general form of the  while  statement is 

   while ( expression ) 
statement   

 As long as  expression  is true,  statement  executes. Thus, it is possible that  statement  never executes. 

  14.   The general form of the  for  statement is 

   for ( initialize; test; update ) 
statement   

 where  initialize ,  test , and  update  are expressions. Typically,  initialize  is an assignment expression that occurs 
only once. Then if  test , which is usually a logical expression, is true,  statement  executes. The expression  update
executes next, usually incrementing or decrementing a counter. This sequence of events repeats, beginning 
with the evaluation of  test , until  test  is false. 
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  15.   The general form of the  do  statement is 

   do  
    statement  
  while ( expression ); 

 Here,  statement  executes until the value of  expression  is false. Note that  statement  always executes at least 
once. Also note the required semicolon. 

  16.   An array is a container of items that have the same data type. You can refer to these items by using an index that 
begins with zero. Arrays are always passed to functions by reference. 

  17.   A string is a sequence of characters. You can manipulate the entire string, a substring, or the individual characters. 

  18.   You must be careful that an array index does not exceed the size of the array. C++ does not check the range of 
array indices. Similar comments apply to strings. 

  19.   An object encapsulates both data and operations on that data. In C++, objects are instances of a class, which is 
a programmer-defi ned data type. 

  20.   A C++ class contains at least one constructor, which is an initialization method, and a destructor, which is a 
cleanup method that destroys an object when its lifetime ends. 

  21.   If you do not defi ne a constructor for a class, the compiler will generate a default constructor—that is, one with-
out arguments—for you. If you do not defi ne a destructor, the compiler will generate one for you.  Chapter   4    
describes when you need to write your own destructor. 

  22.   Members of a class are private unless you designate them as public. The client of the class—that is, the program 
that uses the class—cannot use members that are private. However, the implementations of methods can use 
them. You should make the data members of a class private and provide public methods to access some or all of 
the data members. 

  23.   Because certain classes have applications in many programs, you should take steps to facilitate their use. You 
can defi ne and implement a class within header and implementation fi les, which a program can include when it 
needs to use the class. 

  24.   A typical C++ program uses header fi les that you incorporate by using the  include  directive. A header fi le 
contains class defi nitions, function declarations, constant defi nitions,  typedef  statements, enumerations, and 
other include  statements. The program might also require an implementation fi le of function defi nitions that 
have been compiled previously and placed into a library. The operating system locates the required implemen-
tation fi le and combines it with the program in ways that are system dependent. 
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Prerequisites
Appendix A Review of C++ Fundamentals
Chapter 1  Data Abstraction: The Walls      

What are the specifi c characteristics of good solutions? How can you construct good solutions? 
This appendix provides some answers to these very diffi cult questions. 

 The programming themes that we will discuss should be familiar to you. However, the novice 
programmer usually does not truly appreciate their importance. After the fi rst course in program-
ming, many students still simply want to “get the thing to run.” The discussion that follows should 
help you realize just how important these themes really are.    

 One of the most widespread misconceptions held by novice programmers is that a computer pro-
gram is “read” only by a computer. As a consequence, they tend to consider only whether the compu-
ter is able to “understand” the program—that is, does the program compile, execute, and produce the 
correct output? The truth is, of course, that other people often must read and modify programs. In a 
typical programming environment, many individuals share a program. One person may write a pro-
gram, which other people use in conjunction with other programs written by other people, and a year 
later, a different person may modify the program. It is therefore essential that you take great care to 
design a program that is easy to read and understand. 

 You should always keep in mind the following seven themes of programming: modularity, style, 
modifi ability, ease of use, fail-safe programming, debugging, and testing.    

   B.1  Modularity
 As this book continually emphasizes, you should strive for modularity in all phases of the problem-solving 
process, beginning with the initial design of a solution. Many programming tasks become more diffi cult as 
the size and complexity of a program grows. Modularity slows the rate at which the level of diffi culty 
grows. More specifi cally, modularity has a favorable impact on the following aspects of programming: 

•  Constructing the program.   The primary difference between a small modular program and a 
large modular program is simply the number of modules each contains. Because the modules 
are independent, writing one large modular program is not very different from writing many 
small, independent programs, although the interrelationships among modules make the design 
much more complicated. On the other hand, working on a large nonmodular program is more 
like working on many interrelated programs simultaneously. Modularity also permits team 
programming, in which several programmers work independently on their own modules 
before combining them into one program.     

•  Debugging the program.   Debugging a large program can be a monstrous task. Imagine that you 
type a 10,000-line program and eventually get it to compile. Neither of these tasks would be much 
fun. Now imagine that you execute your program, and after a few hundred lines of output, you 
notice an incorrect number. You should anticipate spending the next day or so tracing through the 
intricacies of your program before discovering a problem such as an array index that is too large. 

 A great advantage of modularity is that the task of debugging a large program is reduced 
to one of debugging many small programs. When you begin to code a module, you should be 
almost certain that all other modules coded so far are correct. That is, before you consider a 
module fi nished, you should test it extensively, both separately and in context with the other 
modules, by calling it with actual arguments carefully chosen to induce all possible behaviors 
of the modules. If this testing is done thoroughly, you can feel fairly sure that any problem is a 
result of an error in the last module added.  Modularity isolates errors.

People read 
programs, too 

Key programming 
themes

Modularity facilitates 
programming 

Modularity isolates 
errors 
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Modular programs 
are easy to read 

 Formal theoretical techniques are available to verify the correctness of a program. Modu-
lar programs are amenable to this verifi cation process. 

•  Reading the program.    A person reading a large program may get lost in its details. Just as a 
modular design helps the programmer cope with the complexities of solving a problem, so too 
does a modular program help its reader understand how the program works. A modular pro-
gram is easy to follow because the reader can get a good idea of what is going on without read-
ing any of the code. A well-written function can be understood fairly well from only its name, 
initial comments, and the names of the other functions that it calls. Readers of a program need 
to study actual code only if they require a detailed understanding of how the program operates. 
Program readability is discussed further in the next section on style.     

•  Modifying the program.   Modifi ability is discussed in greater detail in Section B.3 of this 
appendix, but as the modularity of a program has a direct bearing on its modifi ability, a brief 
mention is appropriate here. A small change in the requirements of a program should require 
only a small change in the code. If this is not the case, it is likely that the program is poorly 
written and, in particular, that it is not modular. To accommodate a small change in the require-
ments, a modular program usually requires a change in only a few of its modules, particularly 
when the modules are independent (referred to as being loosely coupled) and each module 
performs a single well-defi ned task (referred to as being highly cohesive). This point is of par-
ticular importance with iterative development techniques, which produce changes in program 
requirements at every iteration, as  Appendix   D    will discuss.    

 When making changes to a program, it is best to make a few at a time. By maintaining a 
modular design, you can reduce a fairly large modifi cation to a set of small and relatively sim-
ple modifi cations to isolated parts of the program.  Modularity isolates modifi cations.

•  Eliminating redundant code.   Another advantage of modular design is that you can identify a 
computation that occurs in many different parts of the program and implement it as a function 
or class method. Thus, the code for the computation appears only once, resulting in an increase 
in both readability and modifi ability.       

   B.2  Style
 We now consider the following seven issues of style in programming: the use of private data mem-
bers, the proper use of reference arguments, the proper use of methods, avoidance of global variables 
in modules, error handling, readability, and documentation. Admittedly, much of the following dis-
cussion refl ects the personal taste of the authors; certainly other good programming styles are possi-
ble. Most organizations that hire programmers publish style guides, so that each programming team 
can produce code that is easily read and maintained by other teams.       

  B.2.1 Use of Private Data Members 

 Each object has a set of methods that represents the operations that the object can perform. The 
object also contains data members for storing information. You should hide the exact representation 
of these data members from modules that use the object by making all of the data members private. 
Doing so supports the principle of information hiding. The details of the object’s implementation 
are hidden from view, with methods providing the only mechanism for getting information to and 
from the object. When the only operations involved with a particular data member are  retrieve  and 
modify , the object should provide a simple method—called an  accessor —that returns the value of 
the data member and another method—called a mutator —that sets the value of the data member. 
For example, a  Person  object could provide access to the data member  theName  through the meth-
ods getName  to return the person’s name and  setName  to change the person’s name.     

Modularity isolates 
modifi cations 

 Modularity 
eliminates 
redundancies

Seven issues of  
style

Data members 
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private 
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  B.2.2 Proper Use of Reference Arguments 

 A method interacts, in a controlled fashion, with the rest of the program via its arguments. Value 
parameters, which are the default in C++ when you do not write  &  after the parameter’s data type, pass 
values into the method. The value of each argument corresponding to a value parameter is copied into 
the parameter, which is local to the method. Any change that the method makes to these parameters is 
not refl ected in the actual arguments back in the calling program. This communication between the 
calling program and the method is one-way and supports the notion of an isolated module. Thus, you 
should use value arguments when possible. However, passing large objects by value is not very effi -
cient because of the copying required.    

 How and when is it appropriate to use reference parameters? Since a reference parameter 
becomes an alias  (another name) for the corresponding argument, changes to the parameter within 
the method also occur in the argument in the calling module. The obvious situation requiring refer-
ence arguments is when a method needs to return several values to the calling module. Whenever you 
use a parameter to pass a value out of a method, the parameter must be a reference parameter. 

 Suppose that you are writing a method that requires access to a large object  x , whose value 
should not be altered. You consider passing  x  by value; however, to increase the effi ciency of your 
program, you would like to avoid the computer-time and storage requirements of making a copy of  x . 
So what about passing  x  by reference? The problem with passing  x  by reference is that it conveys mis-
information about the method’s relation to the rest of the program. Since a reference parameter is 
used to communicate a value from the method back to its calling module, the program is more diffi -
cult to read if the parameter’s value remains unchanged. The program also is more prone to errors if 
modifi cations are required. The situation is analogous to using a variable whose value never changes 
when you really should use a constant. The solution is to precede the parameter’s declaration with 
const , which prevents the method from changing the corresponding argument. Thus, we have the 
effi ciency of pass-by-reference (no copy is made) with the protection of pass-by-value (the argument 
is input only). This is called  pass-by-constant-reference . If objects are large and complex, use pass-
by-constant-reference; otherwise pass-by-value works fi ne.        

  B.2.3 Proper Use of Methods 

 To reduce coupling among modules, you should restrict the calls that a method can make. A method 
should call only other methods:    

•   Defi ned within the same class  
•   Of argument objects  
•   Of objects created within the method  
•   Of objects contained within the same class as data members   

 For example, suppose we have the following code for three classes that represent a building, an 
appliance, and a lamp, respectively: 

  // Original Solution 
  class Building 
 { 
  private : 
    Appliance appliance; 

  public : 
void turnOnLight() 

    { 
        appliance.getLamp().turnOn(); // Improper method use
    }   // end turnOnLight 
 }; // end Building

 Reference 
arguments return 
values from a 
method

When copying the 
argument is 
expensive, use 
pass-by-constant-
reference instead of  
pass-by-value 

To reduce coupling, 
restrict what a 
method can do 

  Building is 
coupled to Lamp  
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  Building and 
Lamp are not 
coupled

  class Appliance 
 { 
  private:  
    Lamp light; 

  public : 
    Lamp getLamp() 
    { 
         return light; 
    }  // end getLamp
}; // end Appliance

  class Lamp 
 { 
  public : 

void turnOn(); 
}; // end Lamp  

 Here,  Building ’s method  turnOnLight  fails to follow these rules. It calls the method  turnOn  from 
the Lamp  class, although a  Lamp  object is not part of the  Building  class and has not been passed to the 
turnOnLight  method as an argument. This code has coupled the  Building  class to the  Lamp  class. 

 A much better design would decouple the  Building  and  Lamp  classes, as follows:    

  // Revised Solution 
  class Building 
 { 
  private : 
    Appliance appliance; 

  public : 
void turnOnLight() 

    { 
        appliance.turnOnLamp(); 
    }  // end turnOnLight 
}; // end Building 

  class Appliance // Improved Appliance class
 { 
  private : 
    Lamp light; 

  public : 
     void turnOnLamp() 
    { 
        light.turnOn(); 
    }   // end turnOnLamp 
}; // end Appliance 

  class Lamp 
 { 
  public : 
     void turnOn(); 
}; // end Lamp 

 Now the building asks the appliance to turn on the lamp, and the appliance turns on its light. 
 Suppose that the lamp’s switch is replaced with a dimmer-type switch. We would need to give the 

turnOn  method in the  Lamp  class an indication of how much to dim the light. Finding the call to 
turnOn  in the original code segment might be diffi cult, because the  Building  class does not have 
explicit access to a  Lamp  object. You could search the  Building  class for instances of  Lamp , and not 
fi nd any. This type of dependency makes a solution more diffi cult to modify. 
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In case of  an error, 
methods should 
return a value or 
throw an exception, 
but not display a 
message 

 In the revised code segment, the  Appliance  class has a  Lamp  object as a data member. You can 
easily fi nd the calls to this object, if necessary.  

  B.2.4 Avoidance of Global Variables in Modules 

 One of the main advantages of the concepts of encapsulation and information hiding is the creation of 
isolated modules. This isolation is sacrifi ced when a module accesses a global variable, because the 
effects of a module’s action are no longer self-contained or limited to output arguments. That is, such 
a module has a side effect . Hence, the isolation of both errors and modifi cations is greatly compro-
mised when global variables appear in modules.   

    B.2.5 Error Handling 

 A program should check for errors in both its input and its logic and attempt to behave gracefully and 
consistently when it encounters them. A method should check for certain types of errors, such as 
invalid input or argument values. What action should a method take when it encounters an error? 
Depending on context, the appropriate action in the face of an error can range from ignoring errone-
ous data and continuing execution to terminating the program. A common technique is for a method 
to return a boolean value to the calling module to indicate that it has encountered an error. Thus, the 
method leaves error handling to the calling module. In general, methods should either return a value 
or throw an exception instead of displaying a message when an error occurs.  

  B.2.6 Readability 

 For a program to be easy to follow, it should have a good structure and design, a good choice of identi-
fi ers, good indentation and use of blank lines, and good documentation. These points are demon-
strated in the programs throughout this book. You should avoid clever programming tricks that save a 
little computer time at the expense of much human time.    

 Choose identifi ers that describe their purpose—that is, that are self-documenting. Distinguish 
between keywords, such as  int , and user-defi ned identifi ers. This book uses the following conventions:    

•   Keywords are lowercase and appear in color.  
•   Names of standard functions are lowercase.  
•   User-defi ned identifi ers use both uppercase and lowercase letters, as follows: 
�   Class names are nouns, with each word in the identifi er capitalized.  
�   Method names and function names are verbs or action phrases, with the fi rst letter lowercase 

and subsequent internal words capitalized.  
�   Variables begin with a lowercase letter, with subsequent words in the identifi er capitalized.  
�   Data types declared in a  typedef  statement and names of enumerations each begin with an 

uppercase letter.  
�   Named constants and enumerators are entirely uppercase and use underscores to separate 

words.    
•   Two other naming conventions are suggested as a learning aid: 
�   Data types declared in a  typedef  statement end in  Type .     
�   Exception names end in  Exception .     

 Use a good indentation style to enhance the readability of a program. The layout of a program 
should make it easy for a reader to identify the program’s modules. Use a blank line between method 
or function defi nitions. Also, within these defi nitions, you should indent individual blocks of code. 
These blocks are generally—but are not limited to—the actions performed within a control structure, 
such as a while  loop or an  if  statement. 

Identifi er style 

Two learning aids 

Do not use global 
variables 



 Style 727

 You can choose from among several good indentation styles. The four most important general 
requirements of an indentation style are:    

•   Blocks should be indented suffi ciently so that they stand out clearly.  
•   Indentation should be consistent: Always indent the same kind of construct in the same manner.  
•   The indentation style should provide a reasonable way to handle the problem of  rightward 

drift , the problem of nested blocks bumping against the right-hand margin of the page.  
•   In a compound statement, the open and close braces should line up, and each should appear on 

its own line: 

  { 
  statement  1  

statement  2  
      . 
      . 
      . 

statementn  
 }   

•   To prevent future errors, you should make the body of each control structure a compound 
statement, even if it consists of only one line of code. When you include open and close braces 
around the single-statement body of a control structure, you enable that control structure to 
contain multiple statements if needed in the future. A common programmer error is to include 
a second statement in the single-statement body of a control structure, thinking that it will 
execute within the body of that control structure.  Because of space restrictions, this book will 
not always follow this style.

 Within these guidelines there is room for personal taste. Here is a summary of the style you will see in 
this book: 

•   A  for  or  while  statement is written for a simple action as    

   while ( expression ) 
statement  

 and for a compound action as 

  while ( expression ) 
 { 

statements  
} // end while   

•   A  do  statement is written for a simple action as 

   do  
statement  

  while ( expression ); 

 and for a compound action as 

  do  
  { 

statements  
} while ( expression ); 

• An  if  statement is written for simple actions as 

  if ( expression ) 
statement  1  

  else  
statement  2  

Guidelines for 
indentation style 

Indentation style in 
this book 
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 and for compound actions as 

  if ( expression ) 
 { 

statements  
 } 
  else  
 { 

statements  
} // end if   

•   One special use of the  if  statement warrants another style. Nested  if  statements that choose 
among three or more different courses of action, such as 

   if ( condition  1 ) 
action  1  

  else if ( condition  2 ) 
action  2  

else if ( condition  3 ) 
                  action  3  
 are written as 

  if ( condition  1 ) 
action  1  

  else if ( condition  2 ) 
action  2  

  else if ( condition  3 ) 
action  3     

 This indentation style better refl ects the nature of the construct, which is like a generalized 
switch  statement: 

   case condition  1: action  1; break;  
  case condition  2: action  2; break;  
  case condition  3: action  3; break;   

•   Braces are used to increase readability, even when they are not a syntactic necessity. For exam-
ple, in the construct 

   while ( expression ) 
 { 

if ( condition ) 
statement  1  

else  
statement  2  

} // end while  

 the braces are syntactically unnecessary, because an  if  is a single statement. However, the 
braces highlight the scope of the while  loop.    

  B.2.7 Documentation

 A program should be well documented so that others can read, use, and modify it easily. Many accept-
able styles for documentation are in use today, and exactly what you should include often depends on 
the particular program or your individual circumstances. 

 This book will use a special form of documentation comment, called a  javadoc-style comment
because it originated with the Java™ programming language. These comments start with  /**  and end 
with */  and contain  tags  that classify different parts of your documentation. Several utility programs 
are available to read these comments and generate HTML-based documentation. One of these 

Highly formatted, 
HTML-based
documentation is 
easy to produce 
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programs is called  doxygen . When space permits, the source code in the book is commented in this 
style and can be read by doxygen. 

 The advantage of using javadoc-style comments—and a documentation system, like doxy-
gen—is that you can edit the documentation for your source code as you make changes to that code. 
The documentation lives directly in the source code—as javadoc-style comments—making it very 
easy and convenient to keep your documentation up to date.    

 The following are the essential features of any program’s documentation—with associated 
commenting tags in parentheses:  

     Note: Essential features of program documentation
1.   An initial comment at the top of each source code fi le that includes: 

a.   File name ( @file )
b.   Statement of purpose  
c.   Author ( @author )
d.   Date ( @date )
e.   Optional fi le version number ( @version )    

2.   Initial comments for each class that includes: 
a.   Name of class and its header fi le ( @class)
b.   Statement of purpose    

  3.   Initial comments for each method or function that includes: 
a.   Statement of purpose  
b.   Description of each argument in the argument list ( @param )
c.   Preconditions ( @pre )
d.   Postconditions ( @post )
e.   Exceptions thrown ( @throw )
f.   Return value ( @return )    

4.    Standard C++ comments in the body of each method or function to explain 
important features or subtle logic   

Consider who will 
read your comments 
when you write them 

You benefi t from 
your own 
documentation by 
writing it now 
instead of  later 

 Beginning programmers tend to downplay the importance of documentation because comments 
do not affect a program’s logic. By now, you should realize that people also read programs. Your com-
ments must be clear enough for someone else to either use your module in a program or modify it. 
Thus, some of your comments are for people who want to use your module, while others are for peo-
ple who will revise its implementation. You should be conscious of different kinds of comments.    

 Beginners also have a tendency to document programs as a last step. You should, however, write 
documentation as you develop the program. Because the task of writing a large program might extend 
over a period of several weeks, you may fi nd that the module that seemed so obvious when you wrote 
it last week seems confusing when you try to revise it next week. Why not benefi t from your own 
documentation by writing it now rather than later?    

 See Appendix I for more details on the use of the javadoc-style comments and the doxygen 
documentation system.   

   B.3  Modifi ability 
 After each iteration in the development of a program, the design can change to some degree. This ten-
dency requires that your program be written in a way that makes it easy to modify. This section offers two 
examples of how you can make a program easy to modify: named constants and  typedef  statements. 



730 APPENDIX B  Important Themes in Programming

  B.3.1 Named Constants 

 The use of named constants is a way to enhance the modifi ability of a program. For example, the 
restriction that an array must have a predefi ned, fi xed size causes a bit of diffi culty. Suppose that a 
program uses an array to process the test scores of the computer science majors at your university. 
When the program was written, there were 202 computer science majors, so the array was declared by 

   int scores[202]; 

 The program processes the array in several ways. For example, it reads the scores, writes the scores, 
and averages the scores. The pseudocode for each of these tasks contains a construct such as 

   for  (index = 0 through 201) 
Process the score   

 If the number of majors should change, not only do you need to revise the declaration of  scores , but you 
also must change each loop that processes the array to refl ect the new array size. In addition, other state-
ments in the program might depend on the size of the array. A 202 here, a 201 there—which to change? 

 On the other hand, if you use a named constant such as 

   const int NUMBER_OF_MAJORS = 202; 

 you can declare the array by using 

   int scores[NUMBER_OF_MAJORS]; 

 and write the pseudocode for the processing loops in this form: 

   for  (index = 0 through NUMBER_OF_MAJORS - 1) 
Process the score   

 If you write expressions that depend on the size of the array in terms of the constant  NUMBER_OF_MAJORS
(such as NUMBER_OF_MAJORS   -   1 ), you can change the array size simply by changing the defi nition of 
the constant and compiling the program again.     

  B.3.2 The  typedef  Statement 

 Suppose that your program performs fl oating-point computations of type  float , but you discover that you 
need greater precision than  float  variables provide. To change the relevant  float  declarations to  long   
double , for example, you would have to locate all such declarations and decide whether to make the change. 

 You can simplify this change by using a  typedef  statement, which gives another name to an 
existing data type. For example, the statement 

   typedef float RealType; 

 declares  RealType  as a synonym for  float  and allows you to use  RealType  and  float  interchangea-
bly. If you declare all the relevant items in the previous program as  RealType  instead of  float , you 
can make your program easier to modify and to read. To revise the precision of the computations, you 
would simply change the  typedef  statement to 

   typedef long double RealType;    

   B.4  Ease of Use 
 Another area in which you need to keep people in mind is the design of the user interface. Humans 
often process a program’s input and output. Here are a few obvious points:   

  typedef  
statements make a 
program easier to 
modify

Named constants 
make a program 
easier to modify 

Prompt the user for 
input
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Echo the input 

•   In an interactive environment, the program should always prompt the user for input in a man-
ner that makes it quite clear what it expects. For example, the prompt “?” is not nearly as 
enlightening as the prompt “Please enter your account number.” You should never assume that 
the users of your program know what response the program requires.  

•   A program should always echo its input. Whenever a program reads data, either from a user or 
from a fi le, the program should include the values it reads in its output. This inclusion serves 
two purposes: First, it gives the user a check on the data entered—a safeguard against typos 
and errors in data transmission. This check is particularly useful in the case of interactive 
input. Second, the output is more meaningful and self-explanatory when it contains a record of 
what input generated the output.     

•   The output should be well labeled and easy to read. An output of    

  1800 6 1 
Jones, Q. 223 2234.00 1088.19 N, J Smith, T. 111 
110.23 I, Harris, V. 44 44000.00 22222.22 

  is more prone to misinterpretation than 

  CUSTOMER ACCOUNTS AS OF 1800 HOURS ON JUNE 1 

Account status codes: N=new, J=joint, I=inactive 

NAME          ACC#    CHECKING     SAVINGS      STATUS 

Jones, Q.    223     $ 2234.00    $ 1088.19    N, J 
Smith, T.    111     $   110.23    —————————    I 
Harris, V.    44     $44000.00    $22222.22    —————    

 These characteristics of a good user interface are only the basics. Several more subtle points 
separate a program that is merely usable from one that is user-friendly. Students tend to ignore a good 
user interface, but by investing a little extra time here, you can make a big difference: the difference 
between a good program and one that only solves the problem. For example, consider a program that 
requires a user to enter a line of data in some fi xed format, with exactly one blank between the items. 
A free-form input that allows any number of blanks between the items would be much more conven-
ient for the user. It takes so little time to add code that skips blanks, so why require the user to follow 
an exact format? Once you have made this small additional effort, the code is a permanent part of 
both your program and your library of techniques, and the user of your program will never have to 
think about input format.     

   B.5  Fail-Safe Programming 
 A  fail-safe program  is one that will perform reasonably no matter how anyone uses it. Unfortunately, 
this goal is usually unattainable. A more realistic goal is to anticipate the ways that people might mis-
use the program and to guard carefully against these abuses. 

 This discussion considers two types of errors. The fi rst type is an  error in input data . For exam-
ple, suppose that a program expects a nonnegative integer but reads –12. When a program encounters 
this type of problem, it should not produce incorrect results or abort with a vague error message. 
Instead, a fail-safe program provides a message such as    

  -12 is not a valid number of children. 
Please enter this number again. 

 The second type of error is an  error in the program logic . Although a discussion of this type of error 
belongs in the next section about debugging, detecting errors in program logic is also a characteristic of 

Label the output 

A good user 
interface is 
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Check for errors in 
input
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fail-safe programming. A program that appears to have been running correctly may at some point 
behave unexpectedly, even if the data that it reads is valid. For example, the program may not have 
accounted for the particular data that elicited the surprise behavior, even though you tried your best to 
test the program’s logic. Or perhaps you modifi ed the program and that modifi cation invalidated an 
assumption that you made in some other part of the program. Whatever the diffi culty, a program should 
have built-in safeguards against these kinds of errors. It should monitor itself and be able to indicate that 
something is wrong and that you should not trust the results. 

  B.5.1 Guarding Against Errors in Input Data 

 Suppose that you are computing statistics about the people in income brackets between $10,000 and 
$100,000. The brackets are rounded to the nearest thousand dollars: $10,000, $11,000, and so on to 
$100,000. The raw data is a fi le of one or more lines of the form 

  G       N  

 where  N  is the number of people with an income that falls into the  G -thousand-dollar group. If several 
people have compiled the data, several entries for the same value of  G  might occur. As the user enters 
data, the program must add up and record the number of people for each value of  G . From the prob-
lem’s context, it is clear that  G  is an integer in the range 10 to 100, inclusive, and  N  is a nonnegative 
integer. 

 As an example of how to guard against errors in input, consider an input function for this prob-
lem. The fi rst attempt at writing this function will illustrate several common ways in which a program 
can fall short of the fail-safe ideal. Eventually you will see an input function that is much closer to this 
ideal than the original solution. 

 A fi rst attempt at the function might be 

   const int LOW_END     = 10;   // 10-thousand-dollar income 
  const int HIGH_END    = 100;  // 100-thousand-dollar income 
  const int TABLE_SIZE = HIGH_END - LOW_END + 1; 
  typedef int TableType[TABLE_SIZE]; 

/** Reads and organizes income statistics. 
 @param incomeData  A TableType of income statistics. 
 @pre  The calling module gives directions to the user. 
     Input data is error-free, and each input line has the form 
     G N, where N is the number of people with an income in the 
     G-thousand-dollar group and LOW_END <= G <= HIGH_END. 
     An input line with values of zero for both G and N 
     terminates the input. 
 @post  incomeData[G - LOW_END] is the total number of people 
     with an income in the G-thousand-dollar group for each 
     G read. The values read are displayed. */ 
  void readData(TableType incomeData)    
 { 

bool terminateInput = false ; 
int group, number; // input values 

// Clear array 
for (group = LOW_END; group <= HIGH_END; group++) 

       incomeData[group - LOW_END] = 0; 
do  

    { 
       cout << "Please enter group and number of "; 
       cout << "people in group, separated by a space: "; 
       cin >> group >> number; 

Check for errors in 
logic 
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       terminateInput = (group == 0) && (number == 0); 

// Group and number are not both 0 
       cout << "Income group " << group << " contains " 
             << number << " people.\n"; 
       incomeData[group - LOW_END] += number; 
    }   while (!terminateInput); // end do-while
} // end readData 

 This function has some problems. If an input line contains unexpected data, the program will not 
behave reasonably. Consider two specifi c possibilities: 

•   The fi rst integer on the input line, which the function assigns to  group , is not in the range 
LOW_END  to  HIGH_END . The reference 

  incomeData[group - LOW_END] 

  is then incorrect, since it accesses an array element outside the array bounds. This error also 
will happen when the user tries to end the input by entering zeros for both  group  and  number .

•   The second number on the input line, which the function assigns to  number , is negative. 
Although a negative value for  number  is invalid, because you cannot have a negative number of 
people in an income group, the function will add  number  to the group’s array entry. Thus, the 
array  incomeData  will be incorrect.   

 After the function reads values for  group  and  number , it must check to see whether  group  is in the 
range LOW_END  to  HIGH_END  and whether  number  is positive. If either value is not in that range, you 
must handle the input error.    

 Suppose that instead of checking the value of  number  before you add it to the array element 
incomeData[group - LOW_END] , you perform the addition and see whether the sum is positive. This 
approach is insuffi cient, since you might add a negative value to an entry of  incomeData  without that 
entry becoming negative. For example, if  number  is –4,000 and the corresponding entry in the array 
incomeData  is 10,000, the sum is 6,000. Thus, a negative value for  number  could remain undetected 
and invalidate the results of the rest of the program. 

 One possible course of action for the function to take when it detects invalid data is to set an error 
fl ag and terminate. Another possibility is for it to set an error fl ag, ignore the bad input line, and con-
tinue. Which action is correct really depends on how the program uses the data once it is read. 

 The following  readData  function attempts to be as universally applicable as possible and to 
make the program that uses it as modifi able as possible. When the function encounters an error in 
input, it sets a fl ag, ignores the data line, and continues. By setting a fl ag, the function leaves it to the 
calling module to determine the appropriate action—such as abort or continue—when an input error 
occurs. Thus, you can use the same input function in many contexts and can easily modify the action 
taken upon encountering an error.    

  /** Reads and organizes income statistics. 
 @param incomeData  A TableType of income statistics. 
 @pre  The calling program gives directions to the user. 
     Each input line contains exactly two integers in the form G N, 
     where N is the number of people with an income in the G-thousand- 
     dollar group and LOW_END <= G <= HIGH_END. An input line with 
     values of zero for both G and N terminates the input. 
 @post  incomeData[G - LOW_END] is the total number of people with 
     an income in the G-thousand-dollar group. The values read are 
     displayed. If either G or N is erroneous (either G < LOW_END, 
     G > HIGH_END, or N < 0), the function ignores the data line and 
     continues execution. 
 @return  False if either G or N are erroneous (either G < LOW_END, 
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     G > HIGH_END, or N < 0) for any data line read. In this case, 
     the calling program should take action. The return value is 
     true if the data is error-free. */ 
  bool readData(TableType incomeData) 
 { 

int group = -1; 
int number = -1; // Input values 
bool dataCorrect = true ; // No data error found as yet 
bool userFinished = false ; 

for (group = LOW_END; group <= HIGH_END; group++) 
      incomeData[group - LOW_END] = 0; 

do  
    { 
      cout << "Please enter group and number of "; 
      cout << "people in group, separated by a space: "; 
      cin >> group >> number; 

      cout << "Input line specifies that income group " 
             << group << "\ncontains " << number 
             << " people.\n"; 

if ((group >= LOW_END) && (group <= HIGH_END) && 
           (number >= 0)) 

// Input data is valid – add it to tally 
           incomeData[group - LOW_END] += number; 

else if ((group == 0) && (number == 0)) 
          userFinished =  true ; // User signaled input is finished 

else  
       { 

// Error in input data: 
// Set error flag and ignore input line 

          dataCorrect =  false ; 
       }   // end if 
    } while( (dataCorrect && !userFinished ); // end do-while 

return dataCorrect; 
} // end readData 

 Although this input function will behave gracefully in the face of most common input errors, it is 
not completely fail-safe. What happens if an input line contains only one integer? What happens if an 
input line contains a noninteger? The function would be more fail-safe if it read its input character by 
character, converted the characters to an integer, and checked for the end of the input line. In most 
contexts, this processing would be a bit extreme. However, if the people who enter the data frequently 
err by typing nonintegers, you could alter the input function easily because the function is an isolated 
module. In any case, the function’s initial comments should include any assumptions it makes about 
the data and an indication of what might make the program abort abnormally.  

  B.5.2 Guarding Against Errors in Program Logic 

 Now consider the second type of error that a program should guard against: errors in its own logic. 
These are errors that you may not have caught when you debugged the program or that you may have 
introduced through program modifi cation.    

 Unfortunately, a program cannot reliably let you know when something is wrong with it. (Could 
you rely on a program to tell you that something is wrong with its mechanism for telling you that 
something is wrong?) You can, however, build into a program checks that ensure that certain condi-
tions always hold when the program is correctly implementing its algorithm. For example, all integers 
in the array  incomeData  of the previous example must be greater than or equal to zero. Although we 
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argued that the function  readData  should not check the validity of the entries of  incomeData  instead 
of checking number , it could do so in addition to checking  number . For example, if the function fi nds 
that an entry in the array  incomeData  is outside some range of believability, it can signal a potential 
problem to its users. 

 Another general way in which you should make a program fail-safe is to make each function 
check its precondition. For example, consider the following function,  factorial , which returns the 
factorial of an integer:    

  /** Computes the factorial of an integer. 
 @param n  The given integer. 
 @pre  n >= 0. 
 @post  None. 
 @return  n * (n - 1) * ... * 1, if n > 0, or 1, if n == 0. */ 
  int factorial ( int n) 
 { 

int fact = 1; 
for ( int i = n; i > 1; i–) 

      fact *= i; 

return fact; 
} // end factorial 

 The initial comments in this function contain a precondition—information about what assump-
tions are made—as should always be the case. The value that this function returns is valid only if the 
precondition is met. If n  is less than zero, the function will return the incorrect value of 1. 

 In the context of the program for which this function was written, it may be reasonable to make 
the assumption that n  will never be negative. That is, if the rest of the program is working correctly, it 
will call factorial  only with correct values of  n . Ironically, this last observation gives you a good 
reason for factorial  to check the value of  n : If  n  is less than zero, the warning that results from the 
check indicates that something may be wrong elsewhere in the program. 

 Another reason the function  factorial  should check whether  n  is less than zero is that the func-
tion should be correct outside the context of its program. That is, if you borrow the function for use in 
another program, the function should warn you if you use it incorrectly by passing it an  n  that is nega-
tive. A stronger check than simply the statement of the precondition in a comment is desirable.  

Functions should 
enforce their 
preconditions

     Note:   A function should state its assumptions and, when possible, check whether its 
arguments conform to these assumptions. 

 In this example,  factorial  could check the value of  n  and, if it is negative, return zero, because 
factorials are never zero. The program that uses  factorial  could then check for this unusual value.     
 Alternatively,  factorial  could abort execution if its argument is negative. Many programming lan-
guages, including C++, support a mechanism for error handling called an  exception . A module indi-
cates that an error has occurred by  throwing  an exception. A module reacts to an exception that 
another module throws by  catching  the exception and executing code to deal with the error condi-
tion. C++ Interlude 3 provides more information about exceptions. 

 C++ also provides a convenient function  assert(expression)  that both displays an informative 
message and aborts a program if  expression  is zero. You can use  assert  to check for both error condi-
tions and the validity of preconditions within your program. C++ Interlude 3 provides more informa-
tion about assert .

Functions should 
check the values of  
their arguments 
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   B.6  Debugging
 No matter how much care you take in writing a program, it will contain errors that you need to track 
down. Fortunately, programs that are modular, clear, and well documented are generally amenable to 
debugging. Fail-safe techniques, which guard against certain errors and report them when they are 
encountered, are also a great aid in debugging. 

 Without a systematic approach, fi nding a small mistake in a large program can indeed be a diffi -
cult task. Many people have diffi culty in debugging a program, perhaps because they believe that 
their program is really doing what it is supposed to do. For example, on receiving an execution-time 
error message at line 1098, a person might say, “That’s impossible. The statement at line 1098 was not 
even executed, because it is in the  else  clause, and I am positive that it was not executed.” However, 
the proper approach is either to trace the program’s execution by using available debugging facilities 
or to add cout  statements that show which part of the  if  statement was executed. By doing so, you 
verify the value of the expression in the  if  statement. If the expression is 0, for example, when you 
expect it to be 1, the next step is to determine how it became 0.    

 How can you fi nd the point in a program where something becomes other than what it should 
be? A typical  Integrated Development Environment , or  IDE , allows you to trace a program’s 
execution either by  single-stepping  through the statements in the program or by setting  break-
points  at which execution will halt. You also can examine the contents of particular variables by 
either establishing  watches  or inserting temporary  cout  statements. The key to debugging is sim-
ply to use these techniques to tell you what is going on. This may sound pretty mundane, but the 
real trick is to use these debugging aids in an effective manner. After all, you do not simply put 
breakpoints, watches, and  cout  statements at random points in the program and have them report 
random information. 

 The main idea is systematically to locate the points of the program that cause the problem. A 
program’s logic implies that certain conditions should be true at various points in the program. If the 
program’s results differ from your expectations, an error occurs. To correct the error, you must fi nd 
the fi rst point in the program at which this difference is evident. By inserting either breakpoints and 
watches or  cout  statements at strategic locations of a program—such as at the entry and departure 
points of loops and functions—you can systematically isolate the error.   

 These diagnostic techniques should inform you whether things start going wrong before or 
after a given point in the program. Thus, after you run the program with an initial set of diagnostics, 
you should be able to trap the error between two points. For example, suppose that things are fi ne 
before you call method  M1 , but that something is wrong by the time you call  M2 . This kind of infor-
mation allows you to focus your attention between these two points. You continue the process until 
eventually the search is limited to only a few statements. There is really no place in a program for an 
error to hide.  

Use breakpoints, 
single-stepping, 
watches, and 
temporary  cout  
statements to fi nd 
logic errors 

 Systematically 
check a program’s 
logic to determine 
where an error 
occurs 

 Programming Tip:   A statement of truth about some aspect of a program’s logic is 
known as an  assertion . You can express an assertion either as a comment or by using the 
assert  macro. By including assertions in your program, you facilitate the debugging 
process.

 The ability to place breakpoints, watches, and  cout  statements in appropriate locations and to 
have them report appropriate information comes in part from thinking logically about the problem 
and in part from experience. Here are a few general guidelines. 
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  B.6.1 Debugging Functions and Methods 

 You should examine the values of the arguments passed to a function or method as at its beginning 
and end by using either watches or  cout  statements. Ideally, you should debug each major function or 
method separately before using it in your program.  

  B.6.2 Debugging Loops 

 You should examine the values of key variables at the beginnings and ends of loops, as the comments 
in this example indicate: 

  // Check values of start and stop before entering loop 
  for (index = start; index <= stop; index++) 
 { 

// Check values of index and key variables 
   // at the beginning of iteration 
       ... 

// Check values of index and key variables 
   // at the end of iteration 
}  // end for 
// Check values of start and stop after exiting loop   

  B.6.3 Debugging if Statements 

 Just before an  if  statement, you should examine the values of the variables within its expression. You 
can use either breakpoints or cout  statements to determine which branch the  if  statement takes, as 
this example indicates: 

  // Check variables within expression before executing if 
  if ( expression)
 { 
    cout << "Condition is true (value of expression is 1)."; 
    ... 
 } 
  else  
 { 
   cout << "Condition is false (value of expression is 0)."; 
   ... 
} // end if   

  B.6.4 Using  cout  Statements 

 Sometimes  cout  statements can be more convenient than watches. Such  cout  statements should 
report both the values of key variables and the location in the program at which the variables have 
those values. You can use a comment to label the location, as follows: 

  // This is point A 
cout << "At point A in the method computeResults:\n" 
      << "x = " << x << ", y = " << y << endl; 

 Remember to either disable or remove these statements when your program fi nally works.  

  B.6.5 Using Special Dump Functions 

 Often the variables whose values you wish to examine are arrays or other, more complex data struc-
tures. If so, you should write dump functions to display the data structures in a highly readable man-
ner. You can easily move the single statement that calls each dump function from one point in the 
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program to another as you track down an error. The time you spend on these functions often proves to 
be worthwhile, as you can call them repeatedly while debugging different parts of the program. 

 Hopefully, this discussion has conveyed the importance of the effective use of diagnostic aids in 
debugging. Even the best programmers have to spend some time debugging. Thus, to be a truly good 
programmer, you must be a good debugger.   

   B.7  Testing 
 Programs need to be tested to make sure that they correctly solve their current requirements. Good 
testing cannot happen without a plan. Software is complex, and determining whether it works cor-
rectly is not easy. Software testing is so important that some iterative development processes argue 
that tests should be developed before writing any code.    

  B.7.1 Levels of Testing 

 Several levels of testing should take place. The fi rst level of testing is called  unit testing , and it happens 
on the individual modules. You should test individual methods fi rst, and then test the classes. The sec-
ond level of testing is called  integration testing , and it tests the interactions among modules. The next 
level of testing is called  system testing , in which the entire program is tested. Finally, a special type of 
testing called acceptance testing  shows whether the system as a whole complies with its requirements. 

 Unit testing is something that you have probably done before. It is closely related to some of the 
ideas talked about in the previous debugging section. A function is tested to make sure that it con-
forms to its requirements. Often with small programs, testing does not go beyond this level. 

 One way to perform integration tests is to make sure that the various objects within a program 
correctly implement the interactions in your design. Integration testing can be challenging, because 
there are many ways in which the objects in a program can interact. It is diffi cult to make sure they do 
what they are designed to do and nothing more.    

 System testing entails running the program in the environment in which it was designed to work. 
Here the program is tested to make sure that it interacts with external systems correctly. The external 
systems might be other programs—such as a government tax collection system—or hardware devices.     

  B.7.2 Kinds of Testing 

 Two kinds of testing can be applied to a system: 

•  Open-box testing.   With  open-box ,  white-box , or  glass-box testing , you design tests know-
ing how the modules work. You carefully choose a method’s actual arguments in a way that 
exercises all lines of code in the method. For example, you must make sure that all branches of 
if  and  switch  statements are executed.  

•  Closed-box testing.   With  closed-box ,  black-box , or  functional testing , you know the name 
of the method being tested, as well as its argument list, its return type, and its operation con-
tract. Using only this information, you develop tests across a range of valid input, and then 
check the output against hand-calculated results. Choosing some actual arguments outside of 
their valid range tests how the module handles incorrect input.    

  B.7.3 Developing Test Data 

 The test data that you use must test a wide range of conditions. It should include valid, typical input 
and values at the extreme limits of valid data—called  boundary values— as well as values that 

You can never test a 
program too much 

Unit testing checks 
individual modules 

Integration testing 
checks many parts 
of  a solution 
together 

System testing 
checks the 
integration of  the 
solution with other 
systems
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Disable, but do not 
remove, testing 
code after use 

should never occur in normal execution. For example, suppose that you are testing a simple linear 
search algorithm:    

   for ( int i = 0; i < size; i++) 
 { 

if (array[i] == target) 
        return i; 
} //  end for 

 You should use all of the following values of  target : 

•   Just less than  index[0]  (boundary at the beginning of the array)  
•   Equal to  index[0]  (boundary at the beginning of the array)     
•   Equal to some entry in the middle of the array  
•   Within the range of values stored in the array, but unequal to any  
•   Equal to  index[size – 1]  (boundary at the end of the array)  
•   Just greater than  index[size – 1]  (boundary at the end of the array)   

 You should also test this algorithm with 

•   An empty array  
•   An array with one entry in it  
•   An array with many entries   

 For each of these tests, you should manually trace the data so that the results are known ahead of time. 
In this way, test data can be the input to a module, and you can compare the output with known results.  

  B.7.4 Testing Techniques 

 As indicated in the debugging section,  assert  statements can be useful for checking assertions. 
However, the  assert  statement is not powerful enough for the full-scale testing of a system. Other 
techniques need to be utilized.    

 A common technique is to write a block of code that tests a module. When you have fi nished test-
ing the system, you can simply comment it out—rather than deleting it—as more testing will be 
required after you make modifi cations during the next iteration. Alternatively, you can turn these test-
ing blocks of code on and off globally by using one of the techniques that we discuss next. 

 The fi rst technique uses a global boolean variable to grant access to testing code contained within 
the body of if  statements. Setting the variable to false turns testing code “off,” and setting it to true 
enables testing. For example, the following test is disabled: 

   const bool TESTING = false ; // Disables testing code 
  if (TESTING) 
 { 
  ... // Testing code 
 } // end if 

 You could defi ne several different boolean variables to turn different tests “on” and “off.” All that is 
required is to change the value of the boolean variable and to recompile. 

 A second, more effi cient, technique uses the  preprocessor  to the compiler. You defi ne a  macro
that guards the testing code. Then you place the test code within preprocessor directives that test 
whether that macro has been defi ned. For example: 

  #define TESTING 

#ifdef TESTING 
 ...// Testing code in here. 
 #endif 

Always carefully test 
boundary values 

Values for testing a 
search 
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A stub is an 
incomplete method 
that acknowledges 
that it has been 
called

 To turn off testing, you comment out the defi nition of the macro ( //   #define   TESTING ) and recom-
pile. Because the macro is no longer defi ned, the test code is not included in the executable. This has 
the advantage that the test code is completely removed from the executable, making it smaller. Again, 
you can defi ne several different macros to enable you to turn different blocks of testing code “on” and 
“off.”  

  B.7.5 Use of Stubs 

 Testing a class before implementing all of its methods is often useful. Instead of simply omitting 
some methods, you partially implement them so that each one acknowledges that it has been called. 
Such methods are called stubs . Stubs allow you to see that the method has been called in the correct 
place in the overall fl ow of a program.

For example, suppose that a class has an array data of integers as a data member and a method 
sortData. You could write the following stub for sortData:

  void sortData() // Stub 
  { 
      cout << "sortData has been called\n" 
      data[0] = 1; 
      data[1] = 2;    
      data[2] = 3; 
  }   // end sortData

 The stub  sortData  not only indicates that it has been called, but also changes the data into a sorted 
form. Thus, this stub could be used for simple integration testing as well. Later, you could implement 
sortData  by using an appropriate sorting algorithm.  

  B.7.6 Use of Drivers 

 Given the previous class—let’s name it Example—the following  main  function creates an  Example
object and then calls its methods: 

   int main() 
 { 
   Example t; 
   t.dump(); 
   t.sortData(); 
   t.dump(); 

return 0; 
} // end main 

 Notice the use of Example’s method  dump , whose purpose is to display the data in an  Example
object. First,  main  dumps the object  t , then it sorts  t ’s data, and fi nally it dumps  t  again. This  main
function is known as a  driver . It does not do anything algorithmically interesting; it simply tests an 
Example  object.    

 As is evident from the preceding discussion, testing takes a lot of planning and is not easy to do. 
Like many things in programming, testing well takes some time and experience.          

  sortData is a stub 

A driver is a module 
that tests another 
module
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 The Unifi ed Modeling Language , or  UML , is a modeling language used to express 
object-oriented designs. The UML provides specifi cations for many types of diagrams and 
text-based descriptions of various aspects of a design. The diagrams are particularly useful 
in showing specifi c, interesting aspects of the elements in the domain of the problem. 

   C.1 The Use Case 
 A  use case  is a set of textual  scenarios  or stories that describe the proposed solution. A 
use case is not object-oriented, but it is an important part of the analysis of the problem. A 
single use case usually has several scenarios. The  main success scenario  (or “happy 
path”) describes how the system satisfi es the goals of the user when everything goes 
smoothly. Other  alternate scenarios  describe the interaction between the user and the 
system when specifi c things do not go well or when exceptional conditions apply. 

  For example, suppose that a customer wants to withdraw money from his or her 
checking account. A main success scenario might look like this: 

  Customer makes a request to withdraw money from a bank account. Bank identi-
fi es and authenticates the customer. Bank gets from the customer the type of 
account (savings or checking), the account number, and the amount of the with-
drawal. Bank verifi es that the account balance is greater than the amount of the 
withdrawal. Bank generates a receipt for the transaction. Bank counts out the cor-
rect amount of money for the customer. Bank gives the customer the receipt and 
money. Customer leaves the bank.    

The Unifi ed 
Modeling Language 
visually represents 
object-oriented
designs

A use case is a 
textual story; a 
scenario describes 
the system’s 
behavior under 
certain 
circumstances from 
the perspective of  
the user 

An example of  a 
main success 
scenario
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  A scenario is written from the perspective of the user of the system. In this way, the analysis will 
focus on the responsibilities  of the system to meet a user’s goals. That is, the analysis will focus on 
what  the system needs to accomplish to meet the goals of its users. 

 Notice that the scenario does not describe  how  the system works. For example, “Bank identifi es 
and authenticates the customer” does not indicate how  this will occur. The focus should be on the 
interactions between the user and the system but not on the user interface to the system, which will be 
explored during design. 

 Alternate scenarios should be written only for stories that are interesting or tricky. For example, 
one such scenario describes what happens when the customer fails authentication: 

  Customer makes request to withdraw money from a bank account. Bank identifi es but fails to 
authenticate the customer. Bank refuses to process the customer request. Customer leaves the bank. 

  Other alternate scenarios could include the denial of a withdrawal request because insuffi cient funds 
are in the account or because the bank does not have suffi cient cash on hand. 

 From the scenarios in the use case, you generate a list of objects by listing the nouns in the use 
case. (This is where the analysis becomes object oriented.) For example, bank, money, customer, 
account, account type, account number, transaction amount, and receipt are all found in the main suc-
cess scenario. The fi nal solution might not use all of the objects discovered. 

An example of  an 
alternate scenario 

Note: The use case during object-oriented analysis 

1.    Describes the problem domain in terms of scenarios involving the solution that 
satisfi es user goals  

2.   Discovers noteworthy objects, attributes, and associations within the scenarios   

    C.2 UML Sequence Diagrams 
 After you create a use case and list potential objects, you need to explore how these objects will inter-
act with one another. You accomplish this by using UML sequence diagrams that model your use case 
scenarios. A UML  sequence diagram , or  interaction diagram , shows how two or more objects will 
interact with one another over time within a single scenario. This diagram allows you to visualize the 
messages sent among the objects in a scenario and the order in which those messages happen. In addi-
tion to giving a sense of the fl ow of the logic, the diagram is important when defi ning the  responsi-
bilities  of the objects: What must the object “remember,” or keep track of, and what must the object 
do for other objects? Many of the responsibilities are described in the use case.  Figure   C-1    shows a 
UML sequence diagram for the main success scenario given previously.   

  Although the development of the use case is part of object-oriented analysis (OOA), the creation 
of sequence diagrams is part of object-oriented design (OOD). The sequence diagram shows a sce-
nario’s objects from left to right horizontally and their actions in order of occurrence vertically. The 
UML represents an object as a square-cornered box containing the name of the object—if it has 
one—followed by a colon and the type of the object, all underlined. In  Figure   C-1   , the object of type 
Bank  is named  bank , and the objects of type  Customer  and  Account  are nameless.   

  Each object in a sequence diagram has a  lifeline  denoted by a vertical dashed line below the 
object box extending forward in time. Each lifeline can have one or more  activation bars , each 
represented by an open box on the lifeline. An activation bar indicates when an object is active—
and represents a responsibility of the object’s class. The class needs a method to handle that respon-
sibility. To represent the sending of a message between objects, you draw a solid arrow from the 
activation bar of the calling object to the top of a new activation bar on the lifeline of the called 

A UML sequence 
diagram shows the 
interactions among 
objects over time 

A UML sequence 
diagram represents 
an object as a box 
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object. Such arrows are labeled with a  message expression  indicating what task the object needs to 
perform. The message expression corresponds to the name of a method for handling that task. The 
message expression may also include  parameters  necessary for performing the task. Ultimately, 
these parameters will correspond to method arguments. When an object fi nishes a task, the activa-
tion bar associated with that task ends. If the task returns something of interest to the calling object, 
a dashed arrow may be shown pointing back to the calling object’s activation bar. You can label this 
arrow with the name of the variable receiving the returned value.   

  In  Figure   C-1   , the customer asks the bank for authorization by giving its name and identifi er—
passed as arguments—to the  authorize  message. The bank then processes this message—as indi-
cated by the activation bar associated with the  bank  object’s lifeline—and then signals whether or not 
the customer has been authenticated by returning a value to the variable  OK  within the  Customer
object. Note that you should write the messages in a general, language-independent fashion. A  Bank
class could declare the authorize  message as follows: 

   class Bank 
 { 
  public:  
    ... 

bool authorize(string name, string identifier); 
...

 }; // end Bank 

FIGURE C-1         Sequence diagram for the main success scenario   

:Customer

If balance is greater than amount,
new Balance = balance – amount

authorize(name, identifier) 

OK

withdraw(accountNum, amount)

generateReceipt()

countCash()

cash, receipt

get Balance(accountNum)

balance

setBalance(newBalance)

bank:Bank :Account

An activation bar on 
an object’s lifeline 
represents a 
responsibility of  the 
object’s class 
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 An object may also send messages to itself, as is done in the  generateReceipt  and  countCash
messages in  Figure   C-1   . Notice the piggybacked activation bars, which indicate that the  Bank  class is 
calling its own member methods. 

 A sequence diagram can also show the creation of a new object. In  Figure   C-2   , a new account is 
created. This diagram can represent a part of an alternate scenario in a use case, in which a customer 
comes into the bank but does not yet have an account. In the UML, the notation  <<create>>  is what is 
known as a  stereotype . Stereotypes use left and right guillemets ( <<  and  >> ), but when drawing a 
sequence diagram by hand, you can simply label the message arrow with  create . A stereotype is used 
to identify a unique characteristic of an element in any UML diagram.    

  The UML sequence diagram is a design document that gives guidance on several levels to the 
programmer implementing a solution. It gives a view of how the objects will dynamically interact 
(collaborate) to solve a use case scenario. In particular, a sequence diagram shows 

•   Which objects  collaborate  to solve a particular use-case scenario  
•   The  synchronous  nature of the messages that are passed between the objects in the scenario, 

providing the order in which tasks are accomplished  
•   Which object is  responsible  for what task or tasks by handling a particular message   

A stereotype 
identifi es a special 
characteristic of  an 
element

FIGURE C-2         Sequence diagram showing the creation of a new object   

bank:Bank

account:Account
«create»

 Note: UML sequence diagrams

•    Provide a visual representation of the fl ow of messages sent between objects during a 
single scenario  

•   Indicate the responsibilities of an object  
•   Indicate the collaborations among objects   

A UML class 
diagram shows the 
unchanging 
relationships among 
classes of  objects 

    C.3 UML Class Diagrams 
 The last design element we will introduce is the UML  class diagram , or  static diagram . The class 
diagram shows the attributes and operations of an individual class and how multiple classes are 
related to one another. These design elements do not change after they have been created within a 
solution—that is, they are static, or unchanging.   

  The class diagram shown in  Figure   C-3    represents a class of banks. Each diagram consists of a 
square-cornered box containing the name of the class centered within its borders.  Figure   C-3   a shows 
the simplest of class diagrams: a class with a name but no attributes or operations.  Figure   C-3   b shows 
the bank’s attributes in the middle section and its operations in the bottom section. If a class has no 
attributes, as in  Figure   C-3   c, an empty middle section must be present. 
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 The class diagram represents a conceptual model of a class of objects in a language-independent 
way. That is, the diagram does not dictate how the class is implemented. It just gives you a design to 
work from. However, you can specify many qualities associated with the attributes and operations 
of the class as an option. These qualities are easily implemented in C++, and they increase the 
amount of information given in a design.  

 The UML syntax for the attributes of a class is 

   [visibility] name [:type][=defaultValue] [{property}]

 where    

•   All elements within square brackets are optional.  
• visibility   can be + for public accessibility, � for private accessibility, or # for protected acces-

sibility. (C++ Interlude 4 covers protected accessibility.) If omitted, the visibility defaults to 
private accessibility.  

•  name   is the name of the attribute.  
• type   is the data type of the attribute.  
• defaultValue   is the default value of the attribute.  
• property   indicates some property that applies to this attribute.   

 At a minimum, the  name  of an attribute should be given. The  defaultValue  is given only in situa-
tions where the design dictates that a default value is appropriate for that attribute. In certain cases it 
might be appropriate to omit the type  of an attribute, leaving this detail until the implementation 
phase.

 The UML specifi es that programming-language-independent names be used for the  type  of an 
attribute. This text will follow the UML recommendations by using  integer  for integral storage, 
float  for fl oating-point storage,  boolean  for boolean storage, and  string  for storing strings. 

 The  property  of an attribute can have one of the following values: 

•    changeable  indicates a normal, modifi able attribute and is usually omitted.  
•    frozen  indicates a constant or write-once attribute.   

 The attributes for the  Bank  class in  Figure   C-3   b could now be written as 

  –name: string 
–routingNum: integer 

 The visibility of these attributes is private and adheres to the object-oriented programming principle 
of information hiding. 

 The UML syntax for a class’s operations is more involved:   

    [visibility] name ([parameterList]) [:type] [{property}]

FIGURE C-3         Three possible class diagrams for a class of banks   
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 where 

•   All elements within square brackets are optional.  
• visibility   is the same as specifi ed for attributes, except if omitted operations default to public 

accessibility.  
• name   is the name of the operation.  
• type   is the data type of the result returned from the operation. If the operation returns nothing, 

type  can be either omitted or specifi ed as void. The same language-independent types apply 
here as for attribute types.  

• property   indicates some property that applies to this operation. The only property relevant to 
us is query , which indicates that the operation will not modify any of the data members in the 
calling object.  

• parameterList   is either empty—in which case the parentheses are still required—or contains a 
comma-delimited list of parameters to the operation. The syntax for each parameter looks like 
the following:   

   [direction] name:type [=defaultValue]

 where 

•   All elements within square brackets are optional.  
• direction   shows whether the parameter is used for input ( in ), output ( out ), or both input and 

output ( inout ).
• name   is the name of the parameter.  
• type   is the data type of the parameter. The same language-independent types apply here as for 

attribute types.  
• defaultValue   is the value of this parameter if no corresponding actual argument is provided 

when this operation is called.   

 In  Figure   C-3   b, the  Bank  class operations could be written as 

  +authorize(in name: string, in identifier: string): void {query} 
 -createAccount() 

 The  authorize  operation has public accessibility, and the  createAccount  operation is private. 
Because the design of the authorize  operation has the  query  property specifi ed, this operation will 
not change any of the data in the calling object. 

 The UML provides for several types of relationships among the classes in a class diagram. For 
example,  Figure   C-4    shows a static (class) diagram for a banking system. Because the bank has both 
checking accounts and savings accounts for its customers, the diagram shows fi ve classes of objects: 
a Bank  class, a  Customer  class, an  Account  class, a  Checking  class, and a  Savings  class. These classes 
collaborate by sending each other messages. Through these collaborations, the classes are related to 
one another in various ways. 

  For example, the  Bank  and  Customer  classes have an  association  relationship indicated by the 
solid line with no arrowheads. The numbers at the ends of the association—and other relationships—
are called multiplicities  and are optional. Each bank object is associated with zero or more custom-
ers, but each customer is associated with one bank. Each customer can have multiple accounts of any 
type, but an account can belong to only one customer.    

 The  Bank  and  Account  classes are in one kind of part/whole relationship called an  aggregation , 
or containment , relationship that is denoted by the open diamond arrowhead near the containing 
class. In an aggregation relationship, the lifetime of the containing object and the object contained are 
not necessarily the same. Banks “live” longer than the accounts that they contain. Another part/whole 
relationship, called composition , uses a fi lled-in diamond arrowhead near the containing class. This 

An association 
indicates that the 
classes know about 
each other 

 Aggregation 
indicates that one 
class contains an 
instance of  another 
class 
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relationship denotes a stronger containment, where the lifetimes of the container and the contained 
objects are the same. For example, a ballpoint pen is a pen that has a ball at the tip. When the pen 
“dies,” the ball “dies” with it. Thus, the pen and its ball are in a composition relationship. By also 
looking at the multiplicities, we can say that a bank stores—that is, contains—zero or more accounts. 
The Customer  and  Account  classes also have an aggregation relationship.     

   Each of the bank’s accounts stores its account number and current balance and allows a customer 
to ask for the current balance, withdraw funds, and deposit funds. The  Account  class specifi es these 
attributes and operations common to all accounts. The  Account  class is related to the  Checking  and 
Savings  classes through a  generalization  relationship, indicated by the open triangular arrowhead 
pointing to the general (or parent) class. The generalization relationship denotes inheritance. The 
attributes and operations of the ancestor class ,  Account , are inherited by the  descendant classes , 
Checking  and  Savings .

  Note that the  Account  class name is in italic in  Figure   C-4   . This denotes an  abstract base class . 
The getBalance  operation in the  Account  class is also in italic. This indicates that  getBalance  is not 
implemented in the Account  class but must be implemented within the descendant class. In fact, the 
Checking  and  Savings  classes each implement the inherited  getBalance  operation. This operation 
will take on polymorphic behavior when called from a  parent class  object. Many of these points, 
both in design and implementation, will be covered in detail in C++ Interlude 4. 

FIGURE C-4         A UML class diagram of a banking system   

Bank

Account

-accountNum: integer
-balance: float

+getBalance(): float {query}
+withdraw(in accountNum: integer, in amount: float): boolean
+deposit(in accountNum: integer, in amount: float): boolean

Checking

-chargePerCheck: float 
-numCheck: integer
-minBalance: float

Savings

-interestRate: float

-accrueInterest()
+getBalance(): float {query}

Customer

-name: string
-address: string

+getName(): string  {query}
+changeName(in newName: string)
+getAddress(): string {query}
+changeAddress(in newAddress: string)

1

0..*

10..*

1

0..*

-name: string
-routingNum: integer 

+getBalance(): float {query}

-createAccount()

     Note: UML Class (Static) Diagrams 

•   Show the attributes and operations of individual classes  
•   Show the unchanging relationships among the classes in the solution   

Composition is a 
stronger form of  
aggregation; the 
lifetimes of  the 
container and the 
contained objects 
are the same 
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   C.4 Keeping The UML In Perspective 
 Although the UML can be thought of as a tool for documenting a solution to a problem, this is  not
how it should be used. Rather, you should use the UML to quickly draw various aspects of the current 
problem to better understand it during OOA and to create a set of objects during OOD that can col-
laborate to solve this problem. Often small teams of programmers will draw several UML diagrams 
on a whiteboard and, after working out the kinks in the diagrams, take digital pictures of them for 
future reference. These design diagrams are considered an  artifact , or document, associated with the 
analysis and design. However, the ultimate implementation—that is, the solution—might not exactly 
match the original design. Thus, the design diagrams might not document the solution.   

  The UML is a useful tool for creating a design for a solution. It enables programmers to explore 
and understand the problem domain and to develop a design that is close to the required solution. 
Although the UML will not necessarily make better designs than other techniques, it can conceptu-
ally model a problem domain in terms of software objects, independently of a programming lan-
guage. Because the UML gives a visual representation of the proposed system, humans—as visual 
creatures—can benefi t from using it. After all, a picture is worth a thousand words. The UML enables 
the members of a programming team to communicate visually with one another, thereby gaining a 
common understanding of the system that is being built.       

UML diagrams are 
not documentation 

The UML is a tool for 
exploration and 
communication 
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Prerequisites    
A general knowledge of software

This appendix examines what a major piece of software “experiences” during its 
lifetime. The  life cycle  of software describes the phases through which software will 
progress from conception to replacement to deletion from a hard disk forever. We will 
look at the development phases, from project conception to deployment to end users. 
Beyond this development process, software will need maintenance to correct errors and 
extend it to do new tasks. Eventually the software will be retired.    

 The development of good software is a complex affair. Over the last several dec-
ades many techniques have been developed to try to control that complexity. Some of 
these techniques have been more successful than others. 

  D.1 Iterative and Evolutionary Development 
 An  iterative development  of a solution to a problem progresses through many short, 
fi xed-length  iterations , where each iteration cycles through the analysis, design, imple-
mentation, testing, and integration of a small portion of the problem domain. The early 
iterations build the core of the system. Subsequent iterations build on that core. After 
many iterations, the entire solution is developed.    

 To manage the time spent on an iteration, each one is assigned a predetermined 
duration—called a timebox —at the beginning of the project. Typical timeboxes are two 

The software life 
cycle describes the 
phases of  software 
development 

 Iterative 
development forms 
a solution after 
many iterations; 
each iteration builds 
on the previous 
iteration until a 
complete solution is 
achieved 
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to four weeks in length. The portion of the system that can be developed in less than two weeks is typi-
cally too small to be meaningful. In more than four weeks, the partial system becomes too large. At the 
end of each iteration, the partial system should be functional and completely tested. Each iteration 
makes relatively few changes to the partial system produced by the previous iteration, so it can occur 
quickly. Thus, you do not expend too much effort on something that you may have misunderstood 
about the system requirements. 

 This process creates the solution incrementally. Thus, there are many places for end users and 
developers to check that it solves the correct problem. Because each iteration produces a functional 
but partial system, developers can engage end users to generate feedback. This feedback infl uences 
the next iteration and can change the direction of development so a more correct solution is reached. 
 Figure   D-1    illustrates the progress of an iterative development. We see that early iterations may be 
way off base, refl ecting the fact that the requirements of the solution are not clearly understood. This 
is not anyone’s fault; even the people that have requested the software to be built, the  domain experts , 
may not be able to see what is required in the fi nal system. Later iterations will probably not vary so 
much, as the requirements of the fi nal system will have become more stable and in line with the cor-
rect solution. In an incremental fashion, the correct solution is created.     

A critique of  each 
iteration infl uences 
the next iteration 

FIGURE D–1         Iterative development’s progress toward the correct system   
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 Iterative, incremental development gives a programmer the ability to let the requirements analy-
sis and design evolve over time to meet a changing environment. Thus, the process is sometimes 
called evolutionary development .      

 Iterative 
development 
enables you to 
adapt a solution to a 
changing 
environment 

Note: Iterative and Evolutionary Development
•   Determines timebox lengths at the start of a project  
•   Keeps timebox lengths short (two to four weeks)  
•    Gets end-user and domain-expert feedback from iteration  n  to infl uence the direction of 

iteration n  + 1 

  D.2 Rational Unifi ed Process Development 
 This section introduces the widely used  Rational Unifi ed Process (RUP)  as a basis for examining 
the phases of the development process. The RUP will give structure to the use of the analysis and 
design tools you learned earlier. As the RUP is a large and complex process, most of its workings are 
beyond the scope of this text. Thus, we will simply introduce the process.    

The RUP gives 
structure to the 
software 
development 
process
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 The RUP organizes development into four phases: 

•  Inception  —feasibility study, project vision, rough estimates of time and cost  
•  Elaboration  —refi ned project vision, iterative development of core system, development of 

system requirements, more accurate time and cost estimates  
•  Construction  —iterative development of remaining system  
•  Transition  —testing and deployment of the system   

 We will look at the characteristics of each phase.  Figure   D-2    shows how the RUP development phases 
relate to iterations.  

FIGURE D–2         RUP development phases   
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  D.2.1 Inception Phase 

 During the inception phase, we defi ne the scope of the project and decide whether the project is feasi-
ble. If a team has already implemented solutions for similar problems, and the solution is clearly fea-
sible, the inception phase may be very brief.    

 At a minimum, the inception phase must defi ne an initial set of system requirements and choose 
the length of the iteration timebox. While defi ning the initial requirements, you generate a core set of 
use case scenarios and determine which elements of the solution involve the greatest risk. This set of 
scenarios and the highest-risk aspects of the solution are the focus of the fi rst iterations in the elabora-
tion phase. Note that the inception phase is not an iteration. You should not try to develop all—or even 
most—of the use case scenarios during inception. Usually only about 10 percent of the use case sce-
narios are written in any detail during the inception phase.     

  D.2.2 Elaboration Phase 

 During the elaboration phase, the system’s core architecture is iteratively developed, high-risk ele-
ments of the system are addressed, and most of the system requirements are defi ned. The  core archi-
tecture  is composed of those software components that are central to the system. For example, the 
objects represented in the Unifi ed Modeling Language (UML) class diagram in  Figure   C-4    of 
Appendix C would make up the core architecture of that banking system. 

 The elaboration phase extends over two or more iterations. If the elaboration phase has only one 
iteration, no feedback can come into play. Multiple iterations are necessary when developing the cor-
rect solution incrementally and adaptively. 

 The usual reason for a solution to fail is that high-risk elements were not handled adequately. 
Early in the elaboration phase, high-risk elements need to be addressed and resolved. If these 

The inception phase 
defi nes a project’s 
scope and feasibility 

The elaboration 
phase develops a 
core system and 
addresses high-risk 
elements
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elements are irresolvable, either the scope of the project must be changed to remove them or the 
project must be abandoned. In either case, little time, money, and effort will have been wasted. Leav-
ing the high-risk elements until later in the development of a project can lead to time and cost 
overruns—and poor time and cost estimates—because the resolution of the high-risk issues will 
consume considerable resources. Moreover, if these issues cause the project to fail, much is lost. 
Therefore, you should address high-risk issues early.    

 Each iteration starts with an object-oriented analysis of the system requirements and input from 
the testing of the previous iteration. This analysis leads to a set of use case scenarios to analyze, 
design, implement, and test. Those scenarios are examined for objects and attributes. UML sequence 
and class diagrams are drawn to clearly show the objects’ collaborations, responsibilities to the sys-
tem, and relationships to one another. This design is then coded and tested. If this iteration is not one 
of the fi rst, the code may need to be integrated into the existing subsystem. After fi nal testing, end 
users and domain experts use the system to produce feedback for subsequent iterations.  

  D.2.3 Construction Phase 

 The construction phase begins once most of the system requirements have been formalized. Each 
iteration in this phase still consists of analysis, design, implementation, and testing. At this point in 
the development of the system, however, the analysis and design components require less attention, 
and increased effort is focused on implementation and testing.     

  D.2.4 Transition Phase 

 The transition phase begins as the system is put into the environment in which it was designed to 
work. This may involve  beta testing  with advanced end users or one of several other techniques to 
move the system into a production environment.    

  Figure   D-3    shows an example of the relative levels of work done during each of the phases in 
analysis, design, implementation, and testing. This example simply suggests the work levels; do not 
take them literally.    

The elaboration 
phase refi nes a 
system’s 
requirements and 
cost

During the transition 
phase, beta testing 
and system 
development occur 

FIGURE D–3         Relative amounts of work done in each development phase   
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  D.3 What About the Waterfall Method of Development? 
 The RUP is probably new to you, as is another development process—the  waterfall method —in 
which the solution is developed by  sequentially  moving through phases such as requirements analy-
sis, design, implementation, testing, and deployment. We think the waterfall method is inferior to the 
RUP.  However, you doubtless will meet programmers during your career who know only the water-
fall method. For this reason, you should know what it is.    

  The waterfall method often results in the following actions: 

 Systems analysts produce a set of documents specifying the requirements of the proposed sys-
tem. The requirements documents are passed to a design team that produces a set of design docu-
ments, which are passed to programmers who code the design. The code is passed to a testing 
team, which verifi es that the code correctly implements the requirements of the system, as speci-
fi ed by the systems analysts at the beginning of the process.  

 Notice that the phases occur one after the other. If the systems analysts do not understand  every-
thing  about all aspects of the system and its environment, it is likely that they will specify the wrong 
system. Such aspects include the system’s end users and their needs, other computer systems that 
must be used, the global business environment, and so on. Incorrect requirements analysis will create 
a design that, when implemented, leads to a correct system for the wrong problem. In other words, the 
system solves the problem defi ned by the requirements analysis, but the requirements analysis 
describes the wrong problem. 

 The diffi culty with trying to specify the requirements of the proposed system up front is that sys-
tem requirements are not predictable. Most things in the world today, especially in the high-tech and 
business worlds, are highly speculative. Change is constant. This implies that the requirements of any 
system might change at any time. The development process must allow the system under develop-
ment to evolve and adapt to the changing environment. The waterfall method requires analysts to be 
omnipotent. For a system to succeed, the waterfall method should not be used for its development. 
Using iterative, incremental, evolutionary development processes, however, allows feedback to guide 
the adaptation of the system to a correct solution. 

 Be careful not to impose the waterfall method on the RUP development phases. For example, the 
RUP’s inception phase is not the same as the waterfall requirements phase. During the inception 
phase, some, but not all, system requirements are specifi ed, and programmers also make sure the sys-
tem is feasible, estimate how much the system will cost to develop, and identify the signifi cant high-
risk issues that might doom the project. Trying to develop all use case scenarios during the inception 
phase makes it the same as the waterfall method. 

 Further, the RUP’s elaboration phase is not the same as the waterfall design phase. During the 
elaboration phase, some, but not all, design is done, and programmers also do analysis, coding, and 
testing. If the elaboration phase degrades to having only one iteration, the development process effec-
tively becomes the waterfall method. Similarly, the RUP’s construction phase is not only about imple-
mentation, and it is not the same as the waterfall implementation phase.    

The waterfall 
method is outdated 
and should not be 
used
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     Appendix

Mathematical
Induction E

Many proofs of theorems or invariants in computer science use a technique called mathematical 
induction, or simply  induction . Induction is a principle of mathematics that is like a row of dominoes 
standing on end. If you push the fi rst domino, all the dominoes will fall one after another. What is it 
about the dominoes that allows us to draw this conclusion? If you know that when one domino falls 
the next domino will fall, then you know that pushing the fi rst domino will cause them all to fall in 
succession. More formally, you can show that all the dominoes will fall if you can show that the 
following two facts are true: 

•   The fi rst domino falls.  
•   For any  k � 1, if the kth  domino falls, the ( k � 1) th  domino will fall.   

 The principle of mathematical induction is an axiom that is stated as follows: 

        Axiom E-1.  The principle of mathematical induction.  A property  P ( n ) that involves an integer  n
is true for all  n � 0 if the following are true: 

1. P (0) is true.  
2.   If  P ( k ) is true for any  k � 0, then P ( k � 1) is true.   

 A  proof by induction on  n  is one that uses the principle of mathematical induction. Such a 
proof consists of the two steps given in Axiom E-1. The fi rst step is called the basis, or base case.
The second step is the inductive step. We usually break the inductive step into two parts: the induc-
tive hypothesis (“if P ( k ) is true for any  k � 0”) and the inductive conclusion  (“then  P ( k � 1) is 
true”). 

  Example 1

  The following recursive function, which is given here in pseudocode, computes  x n : 

  pow2(x: integer, n: integer) 

if (n == 0) 
return  1 

else  
return x * pow2(x, n–1) 

 You can prove that  pow2  returns  x n  for all  n � 0 by using the following proof by induction on  n .
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  Basis.  Show that the property is true when  n � 0.  That is, you must show that  pow2(x,   0)
returns  x0 , which is 1. As you can see from the defi nition of  pow2,   pow2(x,   0)  is 1, which estab-
lishes your basis. 

 Now you must establish the inductive step. By assuming that the property is true when  n � k  (the 
inductive hypothesis), you must show that the property is true when  n � k � 1 (the inductive conclusion).  

  Inductive Hypothesis.  Assume that the property is true when  n � k .  That is, assume that 

  pow2(x, k)  = xk    

  Inductive Conclusion.  Show that the property is true when  n � k � 1.  That is, you must show 
that pow2(x,   k   +   1)  returns the value  xk � 1 . By defi nition of the function  pow2 , 

   pow2(x, k + 1)  = x * pow2(x, k)   

 By the inductive hypothesis,  pow2(x,   k)  returns the value  xk , so 

   pow2(x, k + 1)  = x * xk  
 = xk   + 1   

 which is what you needed to show to establish the inductive step. 
 The inductive proof is thus complete. We demonstrated that the two steps in Axiom E-1 are true, 

so the principle of mathematical induction guarantees that pow2  returns  xn  for all  n � 0. ( End of proof. ) 

  Example 2

  Prove that 

1 1 2 1c1 n 5
n 1n 1 1 2

2
  when n $ 1

 It will be helpful to let  Sn  represent the sum 1 � 2 � … � n.

  Basis.   Sometimes the property to be proven is trivial when  n � 0, as is the case here. You can use  n � 1 
as the basis instead. (Actually, you can use any value of  n � 0 as the basis, but a value of  0 or 1 is typical.) 

 You need to show that the sum  S1 , which is simply 1, is equal to 1(1 � 1)/2. This fact is obvious.  

  Inductive Hypothesis.   Assume that the formula is true when  n � k;  that is, assume that  Sk � k ( k � 1)/2.  

  Inductive Conclusion.   Show that the formula is true when  n � k � 1. To do so, you can proceed as 
follows: 

Sk � 1 � (1 � 2 � … � k) � (k � 1) (defi nition of Sk � 1)
� Sk � (k � 1) (defi nition of Sk)
� k (k � 1)/2 � (k � 1) (inductive hypothesis)
� (k (k � 1) � 2(k � 1))/2 (common denominator)
� (k � 1)(k � 2)/2 (factorization)   

 The last expression is  n ( n � 1)/2 when  n  is  k � 1. Thus, if the formula for  Sk  is true, the formula for  Sk � 1   is 
true. Therefore, by the principle of mathematical induction, the formula is true when  n � 1. ( End of proof. ) 

  Example 3

  Prove that 2 n  >  n2  when  n � 5.   

  Basis.   Here is an example in which the base case is not  n � 0 or 1, but instead is n � 5. It is obvious 
that the relationship is true when  n � 5, because 

   25 � 32 > 52 � 25    



 Mathematical Induction 757

  Inductive Hypothesis.   Assume that the relationship is true when  n � k � 5—that is, assume 
that 2 k  >  k2  when  k � 5.  

  Inductive Conclusion.   Show that the relationship is true when  n � k � 1—that is, show that 2 k � 1

> ( k � 1) 2  when  k � 5. To do so, you can proceed as follows: 

   (k � 1)2 � k2 � (2k � 1) (square k � 1)
� k2 � k2 when k � 5 (2k � 1 � k2)
� 2k � 2k when k � 5 (inductive hypothesis)
� 2k � 1   

 Therefore, by the principle of mathematical induction, 2 n  >  n2  when  n � 5. ( End of proof. ) 
 Sometimes, the inductive hypothesis in Axiom E-1 is not suffi cient. That is, you may need to 

assume more than P ( k ). The following axiom is a stronger form of the principle of mathematical 
induction:

  Axiom E-2.  The principle of mathematical induction (strong form).  A property  P ( n ) that 
involves an integer  n  is true for all  n � 0 if the following are true: 

1. P (0) is true.  
2.   If  P (0),  P (1), . . . ,  P ( k ) are true for any  k � 0, then P ( k � 1) is true.   

 Notice that the inductive hypothesis of Axiom E-2 (“If  P (0),  P (1), . . . ,  P ( k ) are true for any  k � 0”) 
includes the inductive hypothesis of Axiom E-1 (“If  P ( k ) is true for any  k � 0”). 

  Example 4

  Prove that every integer greater than 1 can be written as a product of prime integers. 
 Recall that a prime number is one that is divisible only by 1 and itself. The inductive proof is as 

follows:   

  Basis.   The statement that you must prove involves integers greater than 1. Thus, the base case is  n � 2. 
However, 2 is a prime number, and therefore it trivially is a product of prime numbers. 

  Inductive Hypothesis.   Assume that the property is true for each of the integers 2, 3, . . . ,  k,  where  k � 2.  

  Inductive Conclusion.   Show that the property is true when  n � k � 1; that is, show that  k � 1 can be 
written as a product of prime numbers. 

 If  k � 1 is a prime number, then there is nothing more to show. However, if  k � 1 is not a prime 
number, it must be divisible by an integer  x  such that 1 � x � k � 1. Thus, 

k � 1 � x � y

 where 1 � y � k � 1. Notice that x  and  y  are each less than or equal to  k , so the inductive hypothesis 
applies. That is,  x  and  y  can each be written as a product of prime numbers. Clearly, the product  x � y , 
which is equal to  k � 1, must be a product of prime numbers. Because the formula holds for  n � k � 1, 
it holds for all n � 2 by the principle of mathematical induction. ( End of proof. ) 

  Example 5

   Chapter   2    discusses the following recursive defi nition: 

rabbit(1) � 1
rabbit(2) � 2
rabbit(n) � rabbit(n � 1) � rabbit(n � 2) when n > 2   
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 Prove that 

rabbit (n) � (an � bn)/!5

 where    a5 11 1 !5 2 /2 and b 5 11 2 !5 2 /2 5 1 2 a      .

  Basis.   Because  rabbit (0) is undefined, begin at  n � 1. Some algebra shows that  rabbit (1) �
(a1 � b1 )/!5 � 1. However, notice that  rabbit (2) is also a special case. That is, you cannot compute 
rabbit (2) from  rabbit (1) by using the recurrence relationship given here. Therefore, the basis in 
this inductive proof must include  n � 2. 

 When  n � 2, some more algebra will show that  rabbit  (2) � ( a2 � b2 )/!5 5 1   . Thus, the formula 
is true when  n  is either 1 or 2. 

  Inductive Hypothesis.   Assume that the formula is true for all  n  such that 1 ≤ n ≤ k, where  k  is at least 2.  

  Inductive Conclusion.   Show that the formula is true for  n � k � 1. To do so, you can proceed as follows: 

rabbit(k � 1) � rabbit(k) � rabbit(k � 1) (recurrence relation)

� 3 1ak 2 bk 2 1 1ak21 2 bk21 2 4/!5 (inductive hypothesis)

� 3ak21 1a1 1 2 2 bk21 1b 1 1 2 4/!5 (factorization)

� 3 1ak21 1a2 2 2 bk21 2 1b2 2 / 4!5 1a1 1 5 a2; b 1 1 5 b2 2
� 1ak11 2 bk11 2 /!5

 Because the formula holds for  n � k � 1, it holds for all n  > 2 by the principle of mathematical induc-
tion. ( End of proof. ) 

 Note that the previous proof requires that you show that  a � 1 � a2  and  b � 1 � b2 . Although 
simple algebra will demonstrate the validity of these equalities, exactly how did we discover them 
after the factorization step? Some experience with inductive proofs will give you the confi dence to 
determine and verify the auxiliary relationships—such as  a � 1 � a2 —that are necessary in a proof. 
Here, after we introduced the factors ( a � 1) and ( b � 1), we observed that if these factors were equal 
to a2  and  b2 , respectively, we could fi nish the proof. Thus, we tried to show that  a � 1 � a2  and  b � 1 �
b2 ; indeed, we were successful. Inductive proofs often require adventurous algebraic manipulations! 
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Algorithm

Verifi cation F
Formal, theoretical techniques are available for proving that an algorithm is correct. 
Although research in this area is incomplete, it is useful to mention some aspects of the 
verifi cation process. 

 An  assertion  is a statement about a particular condition at a certain point in an algo-
rithm. Preconditions and postconditions are simply assertions about conditions at the 
beginning and end of methods and functions. An  invariant  is a condition that is always 
true at a particular point in an algorithm. A  loop invariant  is a condition that is true before 
and after each execution of an algorithm’s loop. As you will see, loop invariants can help 
you write correct loops. By using invariants, you can detect errors before you begin coding 
and thereby reduce your debugging and testing time. Overall, invariants can save you time. 

 Proving that an algorithm is correct is like proving a theorem in geometry. For 
example, to prove that a method or function is correct, you would start with its precon-
ditions—which are   analogous to the axioms and assumptions in geometry—and dem-
onstrate that the steps of      the algorithm lead to the postconditions. To do so, you would 
consider each step in the algorithm and show that an assertion before the step leads to a 
particular assertion after the step. 

 By proving the validity of individual statements, you can prove that sequences of 
statements, and then methods and functions, classes, and fi nally the program are cor-
rect. For example, suppose you show that if assertion  A1  is true and statement  S1  exe-
cutes, then assertion  A2  is true. Also suppose you have shown that assertion  A2  and 
statement S2  lead to assertion  A3 . You can then conclude that if assertion  A1  is true, exe-
cuting the sequence of statements S1  and  S2  will lead to assertion  A3 . By continuing in 
this manner, you eventually will be able to show that the program is correct. 

 Clearly, if you discovered an error during the verifi cation process, you would cor-
rect your algorithm and possibly modify the analysis and/or design. Thus, when you use 
invariants, your algorithm will likely contain fewer errors  before  you begin coding. As a 
result, you will spend less time debugging your program. 

 You can formally prove that particular constructs such as if statements, loops, and 
assignments are correct. An important technique uses loop invariants to demonstrate 

You can prove the 
correctness of  
some algorithms 

Prerequisite
Appendix E Mathematical Induction
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the correctness of iterative algorithms. For example, we will prove that the following simple loop 
computes the sum of the fi rst n elements in the array item:

  // Computes the sum of item[0], item[1], . . ., item[n-1] 
// for any n >= 1 
  int sum = 0; 
  int j = 0; 
  while (j < n) 
 { 
   sum += item[j]; 
   j++; 
} // end while 

 Before this loop begins execution, sum is 0 and j is 0. After the loop executes once, sum is item[0]
and j is 1. In general, 

sum is the sum of the elements item[0] through item[j-1]

 This statement is the invariant for this loop. 
 The invariant for a correct loop is true at the following points: 

•   Initially, after any initialization steps, but before the loop begins execution  
•   Before every iteration of the loop  
•   After every iteration of the loop  
•   After the loop terminates   

 For the previous loop example, these points are as follows: 

   int sum = 0; 
  int j = 0; 

The invariant is true here
  while (j < n) 
 { 

The invariant is true here
  sum += item[j]; 
  j++; 

The invariant is true here
 } // end while 

The invariant is true here

 You can use these observations to prove the correctness of an iterative (loop-controlled) algo-
rithm. For the previous example, you must show that each of the following four points is true: 

1.  The invariant must be true initially,   before the loop begins execution for the fi rst time. In 
the previous example, sum is 0 and j is 0 initially. In this case, the invariant states that sum
contains the sum of the elements item[0] through item[–1]; the invariant is true because 
there are no elements in this range.  

2. An execution of the loop must preserve the invariant.    That is, if the invariant is true before 
any given iteration of the loop, you must show that it is true after the iteration. In the example, 
the loop adds item[j] to sum and then increments j by 1. Thus, after an execution of the loop, 
the most recent element added to sum is item[j–1]; that is, the invariant is true after the iteration.  

3. The invariant must capture the correctness of the algorithm.    That is, you must show that 
if the invariant is true when the loop terminates, the algorithm is correct. When the loop in 
the previous example terminates, j contains n, and the invariant is true: sum contains the sum 
of the elements item[0] through item[n–1], which is the sum that you intended to compute.  

Loop invariant 

Steps to establish 
the correctness of  
an algorithm 
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4.  The loop must terminate.   That is, you must show that the loop will terminate after a fi nite 
number of iterations. In the example, j begins at 0 and then increases by 1 at each execution 
of the loop. Thus, j eventually will equal n for any n � 1. This fact and the nature of the 
while statement guarantee that the loop will terminate.     

  Not only can you use invariants to show that your loop is correct, but you can also use them to 
show that your loop is wrong. For example, suppose that the expression in the previous while state-
ment was j <= n instead of j < n. Steps 1 and 2 of the previous demonstration would be the same, but 
step 3 would differ: When the loop terminated, j would contain n + 1 and, because the invariant would 
be true, sum would contain the sum of the elements item[0] through item[n]. Because this is not the 
desired sum, you know that something is wrong with your loop. 

 Notice the clear connection between steps 1 through 4 and  mathematical induction .1   Showing 
the invariant to be true initially, which establishes the  base case , is analogous to establishing that a 
property of the natural numbers is true for 0. Showing that each iteration of the loop preserves the 
invariant is the  inductive step . This step is analogous to showing that if a property is true for an arbi-
trary natural number  k , then the property is true for the natural number  k  + 1. After performing the 
four steps just described, you can conclude that the invariant is true after every iteration of the loop—
just as mathematical induction allows you to conclude that a property is true for every natural number.  

 Identifying loop invariants will help you write correct loops. You should state the invariant as a 
comment that either precedes or begins each loop, as appropriate. For example, in the previous exam-
ple, you might write the following:    

  // Invariant: 0 <= j <= n and 
//               sum = item[0] + ... + item[j-1] 
  while (j < n) 
   . . . 

 You should confi rm that the invariants for the following unrelated loops are correct. Remember 
that each invariant must be true both before the loop begins and after each iteration of the loop, 
including the fi nal one. Also, you might fi nd it easier to understand the invariant for a for loop if you 
temporarily convert it to an equivalent while loop:    

  // Compute n! for an integer n >= 0 
  int factorial = 1; 
// Invariant: factorial = = (j-1)! 
  for ( int j = 1; j <= n; j++) 
    factorial *= j; 

// Compute an approximation of ex for a real x 
  double   term = 1.0; 
  double   series = 1.0; 
  int       k = 1; 
// Invariant: term == xk-1/(k-1)! and 
//               series == 1+x+x2/2!+...+xk-1/(k-1)!
  while (k <= n) 
 { 
    term *= x / k; 
    series += term; 
    k++; 
} // end while    

 1   A review of mathematical induction appears in Appendix E. 
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     Appendix A   Review of C++ Fundamentals

  G.1 File Input and Output 
 You have used fi les ever since you wrote your fi rst program. In fact, your C++ source pro-
gram is in a fi le that you probably created by using a text editor. You can create and access 
such fi les outside of, and independently of, any particular program. Files can also contain 
data that is either read or written by your program. It is this type of fi le that concerns us here. 

 A fi le is a  sequence  of bytes that resides in auxiliary storage, often a disk. Files are 
useful because they can be large and can exist after program execution terminates. In 
contrast, variables, for example, represent memory that is accessible only within the 
program that creates them. When program execution terminates, the operating system 
reuses this memory and changes its contents. 

 Because fi les can exist after program execution, they not only provide a permanent 
record for human users, they also allow communication between programs. Program  A  can 
write its output into a fi le that program  B  can use later for input. However, fi les that you dis-
card after program execution are not unusual.  Chapter   16    discusses one such fi le that can 
help balance a binary search tree. You can also use such a fi le as a scratch pad during pro-
gram execution when you have too much data to retain conveniently in memory all at once. 

 Files are classifi ed as follows. A  text fi le  is a fi le of characters that are organized logi-
cally into lines. The fi les that you create—by using an editor—to contain your C++ pro-
grams are text fi les. Because text fi les consist of characters, and accessing characters by 
position number is usually not convenient, you typically process a text fi le sequentially. A 
fi le that is not a text fi le is called a  binary fi le  or, sometimes, a  general fi le  or  nontext fi le . 
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  G.2 Text Files 
 Text fi les are designed for easy communication with people. As such, these fi les are fl exible and easy 
to use, but they are not as effi cient with respect to computer time and storage as binary fi les. 

 One special aspect of text fi les is that they  appear  to be divided into lines. This illusion is often 
the source of much confusion. In reality, a text fi le—like any other fi le—is a sequence of bytes. That 
is, a text fi le is a sequence of characters. A special end-of-line character creates the illusion that a text 
fi le contains lines by making the fi le  behave  as if it were divided into lines.   

  When you create a text fi le by typing data at your keyboard, each time you press the Enter, or 
Return, key, you insert one end-of-line character into the fi le. When an output device, such as a printer 
or monitor, encounters an end-of-line character in a text fi le, the device moves to the beginning of the 
next line. In C++, this end-of-line symbol is the character  \n . 

 In addition, you can think of a special end-of-fi le character that follows the last component in a 
fi le. Such a symbol may or may not actually exist in the fi le, but C++ behaves as if one did. The prede-
fi ned constant  EOF , for “end of fi le,” represents this symbol within your program. This book assumes 
that all text fi les—including the empty fi le—end with both an end-of-line symbol and an end-of-fi le 
symbol.  Figure   G-1    depicts a text fi le with these special symbols.   

A text fi le contains 
lines of  characters 

Files end with a 
special end-of-fi le 
symbol

FIGURE G-1         A text fi le with end-of-line and end-of-fi le symbols   
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   Any program that uses fi les must access the standard C++ fi le stream library. You enable this 
access by including the following statements in your program: 

  #include <fstream> 
  using namespace std; 

 The C++ fi le stream library provides three stream types:  ifstream  for input fi le streams,  ofstream
for output fi le streams, and  fstream  for fi le streams that are for both input and output. You use a 
stream variable  of one of these types to access a fi le. Files are sometimes referred to as streams since 
you can think of a fi le as a stream of characters fl owing into or out of your program.    

 To use a fi le in your program, there are three simple steps: 

1.   Open the fi le.  
2.   Read data from the fi le or write data to the fi le.  
3.   Close the fi le.   

  G.2.1 Opening and Closing Text Files 

  Opening a fi le.   Before you can read from or write to a fi le, you need to  open  it. That is, you need to 
initialize the fi le and associate its name with a stream variable. One way to open a fi le is to provide the 
fi le’s name when you declare the stream variable. For example,    

  ifstream inFile("Ages.DAT"); // Input file 

Use a stream 
variable to access a 
fi le 

You must initialize, 
or open, a fi le before 
you can use it 
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 declares an input stream variable  inFile  and associates it with the fi le named  Ages.DAT . The fi le 
name can be a literal constant, as it is here, or a string variable. Once the fi le is open, you no longer 
need the fi le’s name; it is used only to link the fi le on the disk to the stream variable that you use in 
your program. 

 Alternatively, you can declare an input stream variable by writing 

  ifstream inFile; 

 and then later use the  open  method to associate it with the fi le’s name: 

  inFile.open("Ages.DAT"); 

 Regardless of how you open a fi le, you can check the stream variable to see if the process was 
successful by writing    

   if (!inFile) 
    processError(); // Deal with failure to open file   

  Closing a fi le.   You close a particular fi le—that is, disassociate it from a stream variable and free 
system resources—by using the  close  method:    

  myFile.close(); 

 Once a fi le is closed, it is no longer available for input or output until a program opens it again.   

  G.2.2 Reading and Writing Text Files 

 Associated with each fi le in a program is a  fi le window , which marks the current position within the 
fi le. Opening a fi le positions the fi le window over the fi rst byte in the fi le, as  Figure   G-2    illustrates. 
Because each byte in a text fi le is a character, the fi le window for a text fi le moves from character to 
character. The following sections describe the behavior of the fi le window.     

You can check 
whether a fi le was 
opened successfully 

A fi le window marks 
the current position 
within a fi le 

Opening a text fi le 
for input positions 
the fi le window 
over the fi rst 
character in the fi le 

FIGURE G-2         The fi le window after an existing text fi le is opened for input   

YX eoln

  Character input.   Suppose that you have declared an input stream variable  inFile  and associated it 
with the name of the text fi le by writing 

  ifstream inFile(fileName); 

 where  fileName  is a string variable. When you use a fi le for input, the fi le window is over the byte 
that you will read next. Thus, after you open a fi le, you are ready to read the fi rst byte, as you saw in 
 Figure   G-2   . As you read the characters from a text fi le, the fi le window advances sequentially from 
one character to another. After reading several characters, you will see the fi le window shown in 
 Figure   G-3   .  

 The input operator  >>  and methods such as  get , whose use with  cin  was described in 
Appendix A, are also used with fi les. For the character variable  ch  and the stream variable  inFile , 
either of the statements 

  inFile >> ch; // Preferred technique. 
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 or 

  inFile.get(ch); 

 means 

  ch =  the value at the file window  
  Advance the file window to the next component   

 as  Figure   G-4    illustrates. 

FIGURE G-3         A fi le window over the component to be read next   
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FIGURE G-4         The effect of  inFile >> ch  on a text fi le  inFile
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  You can detect when the fi le window has reached either the end of a line or the end of the fi le by 
using the peek  method. This method returns the character in the fi le window but does not advance the 
window to the next character. For example, the loop 

   while (inFile.peek() != '\n') // Loop until end of line. 
    cout << (inFile.get()); // Get character from inFile and display it. 

 displays a line of a text fi le, and the loop 

   while (inFile.peek() != EOF) // Loop until end of entire file. 
    cout << (inFile.get()); // Get character from inFile and display it. 

 displays the contents of an entire text fi le. 
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 To summarize, consider the text fi le  inFile  that appears in  Figure   G-4   . If  ch  is a character varia-
ble, the statements in the following sequence assign values to  ch  as indicated: 

  ifstream.inFile(fileName); 
inFile >> ch;            // ch = 'a'. 
inFile.get(ch);          // ch = 'b' — alternate technique 1. 
ch = inFile.get();        // ch = 'c' — alternate technique 2. 
inFile.ignore(10, '\n'); // Skip 'd' and end-of-file symbol. 
inFile >> ch;            // ch = 'e'. 
ch = inFile.peek();       // ch = 'f'. 
inFile >> ch;            // ch = 'f'. 
inFile >> ch;            // ch = '\n'. 
inFile.ignore(1);        // Skip end-of-file symbol. 
inFile >> ch;            // Error: attempted read beyond end of file. 

 You also can read the characters in the fi le as strings by using  getline ,  get , and  read  in the same 
way that you used them with  cin .

  Character output.   Suppose that you have declared an output stream variable  outFile  and associ-
ated it with the name of the text fi le, as in 

  ofstream outFile(fileName); 

 If you are creating a new fi le, the fi le window will be positioned at the beginning (and the end) of the 
new fi le, which is empty. If the fi le already exists, opening it erases the data in the fi le and positions 
the window at the beginning—and the end—of the now empty fi le. 

 The output operator  <<  and methods such as  put , whose use with  cout  was described in 
Appendix A, are also used with fi les. For the character variable  ch  and the stream variable  outFile , 
either of the statements 

  outFile << ch; // Preferred technique. 

 or 

  outFile.put(ch); 

 means 

   Write the value of ch  at the file-window position  
  Advance the file window   

  Figure   G-5    illustrates these steps when  ch  contains the character  X . Note that if  ch  contains  \n , either 
of the previous statements writes the end-of-line symbol to the fi le. 

FIGURE G-5         The effect of  outFile << ch  on a text fi le  outFile  when  ch  contains the 
character X

R Z W Y R Z W Y X

Before outFile << ch; After outFile << ch;

  You can also write strings to a text fi le by using either  <<  or the method  write , as described in 
Appendix A.  
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  Numeric data within text fi les.   As you know, you can read integer and fl oating-point values from 
the standard input stream into variables with arithmetic data types. You also know that the standard 
input stream is a sequence of characters. Likewise, a text fi le is a sequence of characters, so it should 
not surprise you that integer and fl oating-point values can be read from and written to a text fi le. 
Although this presentation uses int  values to illustrate the concepts, the other arithmetic data types 
follow by analogy. 

 When your program reads from a text fi le into an  int  variable, the system expects a sequence of 
characters that it can convert into an integer. For example, if the text fi le contains the character 
sequence 2 ,  3 ,  4 , and you read from the text fi le into the  int  variable  x , the system will convert these 
three characters into the computer’s internal representation for the integer 234 and assign this value to 
x . More precisely, the text fi le contains the ASCII codes for the characters  2 ,  3 , and  4 —which are, 
respectively, the decimal values 50, 51, and 52. However, these codes appear in the fi le in binary, as 
 Figure   G-6   a indicates. If you read those characters into the integer variable  x ,  x  will contain the com-
puter’s internal representation for the integer 234, which appears in binary as shown in  Figure   G-6   b. 
Thus, the representation of digits in a text fi le differs from the representation in memory of the 
number that those digits symbolize.  

FIGURE G-6         (a) The ASCII characters 2, 3, and 4 represented in binary in a text fi le; 
(b) the internal binary representation of the integer 234   
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 To summarize, if  inFile  is an input stream variable that is associated with a text fi le of valid 
integers, and  x  is an  int  variable, the statement 

  inFile >> x; 

 has the following effect: 

   Skip to the first nonblank character  
  Convert into an integer the sequence of characters that begins  

 at the current position of  inFile’s window and ends just before the next  
 character  c  that is not a digit  

  Assign this integer value to x
  Advance the file window so that it is over the character  c  

  Figure   G-7    illustrates these steps. Observe that if the sequence begins with a character other than +, –, 
or 0 through 9, reading will terminate. For example, the system cannot convert the sequence  w123  into 
an integer. It will, however, read the integer 123 from the sequence  123wrt .

 When your program writes an integer value such as 234 to a text fi le, the system fi rst converts the 
integer from the computer’s internal binary representation (0000000011101010) to the character 
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sequence 2 ,  3 ,  4  and then writes these characters to the fi le. For the output stream variable  outFile
and the integer variable  x , the statement 

  outFile << x; 

 has the following effect: 

   Convert the value of  x  into a sequence of characters  
  Append this sequence of characters to the file  
  Position the file window just past the last character written   

 The following function reads and displays the contents of an entire text fi le of integers: 

   void echoFile(string fileName) 
 { 
    ifstream inFile(fileName); 

int x = 0; 

while (inFile >> x) // Read fails at end of file. 
        cout << x << " "; 

    cout << endl; 
    inFile.close(); 
} // end echoFile 

 The function ignores the end-of-line symbols in the fi le and displays the integers all on one line. 
 Suppose that you want to display each line in the fi le regardless of the number of integers per 

line. You can use the  peek  and  ignore  methods to accomplish this. Note that you always pass a stream 
variable to a function as a reference argument. 

  // Skips blanks in a text file. 
  void skipBlanks(ifstream& inFile) 
 { 

while (inFile.peek() == ' ') // While the current character is a blank: 
        inFile.ignore(1);         // Ignore character, advance file window. 
} // end skipBlanks 

// Displays one line of a text file. 
  void echoLine(ifstream& inFile) 

FIGURE G-7         Reading an integer from a text fi le   
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 { 
int x = 0; 
while (inFile.peek() != '\n') // While the current character is not eol: 

    { 
        inFile >> x;              // Read the next integer into x. 
        cout << x << " ";          // Display the number to user. 
        skipBlanks(inFile);        // Skip blanks following number. 
    }   // end while 

    inFile.ignore(1);             // Advance beyond \n. 
    cout << "\n";                // For user display. 
} // end echoLine 

// Displays the contents of a text file. 
  void echoFile(string fileName) 
 { 
    ifstream inFile(fileName); 

    skipBlanks(inFile); 
while (inFile.peek() != EOF) 

        echoLine(inFile); 

    inFile.close(); 
} // end echoFile    

  G.2.3 Manipulating Text Files 

 Copying a text fi le. Suppose that you wanted to make a copy of the text fi le associated with the 
stream variable  originalFile . Copying a text fi le requires some work and provides a good example 
of the statements you have just studied. The approach taken by the following function copies the fi le 
one character at a time, taking into account both the end-of-line symbols and the end-of-fi le symbol: 

  /** Makes a duplicate copy of a text file. 
 @pre  The name of an existing external text file and the name of the 
    text file to be created are given as strings. 
 @post  The original text file is duplicated. 
 @param originalFileName  Name of file to copy. 
 @param copyFileName  Name of final copy. */ 
  void copyTextFile(string originalFileName, string copyFileName) 
 { 
    ifstream originalFile(originalFileName); // Input file 
    ofstream copyFile(copyFileName);      // Output file 

char ch = ''; 

     // Copy characters one at a time from given file to new file. 
while (originalFile.get(ch))        // Fails at end of file. 

        copyFile << ch;           // Write character to new file. 

// Close the files. 
    originalFile.close(); 
    copyFile.close(); 
} // end copyTextFile 

 Notice that this function copies each end-of-line symbol just as it copies any other character. To do so, 
the expression 

  originalFile.get(ch) 

 is necessary because 

  originalFile >> ch 

 skips whitespace, including the end-of-line symbol. 
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  Adding to a text fi le.   When you open a fi le, you can specify a second argument in addition to the 
fi le’s name. This second argument has the form 

  ios:: mode   

 where  mode  has values such as  in ,  out , or  app . Until now, this argument has been omitted because 
ifstream  fi les are by default opened for input, whereas  ofstream  fi les are opened for output. You 
can append a component to an ofstream  fi le  outFile  by fi rst opening it in append mode. Either the 
statement 

  ofstream outFile("Sample.DAT", ios::app); 

 or the statements 

  ofstream outFile; 
outFile.open("Sample.DAT", ios::app); 

 prepare the fi le for output and position the fi le window after the fi le’s last component. Thus, the old 
contents of the fi le are retained, and you can write additional components.  

  Searching a text fi le sequentially.   Suppose that you have a text fi le of data about a company’s 
employees. For simplicity, assume that this fi le contains two consecutive lines for each employee. The 
fi rst line contains the employee’s name, and the next line contains data such as salary. 

 Given the name of an employee, you can search the fi le for that name and then determine the 
other information about this person. A sequential search examines the names in the order in which 
they appear in the fi le until the desired name is located. The following function performs such a 
sequential search. If the person is found, it returns that worker’s salary; otherwise, it returns  -1.0 . 

   double getSalary(string fileToSearch, string desiredName) 
 { 

bool found = false;  
 string  nextName; 
double  nextSalary = -1.0; 
 ifstream inFile(fileToSearch); 

while ( !found && getline(inFile, nextName) ) 
 { 

inFile >> nextSalary; // Salary for nextName. 
       inFile.ignore();       // Ignores remaining whitespace in line. 

if (nextName == desiredName) 
            found =  true;  

 } //  end while 

 inFile.close();            // Always close file before return statement. 
return nextSalary; 

} // end getSalary 

 This function needs to look at all the names in the fi le before determining that a particular name 
does not occur. If the names were in alphabetical order, you could determine when the search passed 
the place in the fi le that should have contained the desired name, if it existed. In this way, you could 
terminate the search before you needlessly searched the rest of the fi le.  

  Accessing a text fi le directly.   Although you usually process a text fi le sequentially, you can access 
the character stored at a given position directly without fi rst reading the preceding characters. 

 The characters in a text fi le are numbered sequentially in order of appearance in the fi le, begin-
ning with zero. The  seekg  method provides access to any character in the fi le, given the character’s 
number. For example, 

  myFile.seekg(15) 
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 advances the fi le window to the character numbered 15, which is actually the 16 th  character in the fi le. 
Immediately following this operation, you can read the character. 

 You can also locate a character relative to either the beginning of the fi le, the current position in 
the fi le, or the end of the fi le by specifying—as the second argument to  seekg — 

  ios:: mode   

 where  mode  is one of  beg ,  cur , or  end . Thus, 

  myFile.seekg(2, ios::cur) 

 seeks the second character after the one at the present location of the fi le window.    

  G.3 Binary Files 
 Files that are not text fi les are called binary (or general or nontext) fi les. Like a text fi le, a binary fi le is 
a sequence of bytes grouped together into fi le components. It is important to emphasize that each  fi le 
component  is an indivisible entity. For example, each component of a binary fi le of integers is an inte-
ger in the computer’s internal representation. If you write the integer value 234 to a binary fi le, the 
system would write the computer’s internal representation of 234, which is 0000000011101010 in 
binary, to the fi le, rather than the three ASCII characters  2 ,  3 ,  4 , which are, respectively, 00110010, 
00110011, and 00110100 in binary. Similar comments are true for a binary fi le of fl oating-point num-
bers. If you could use a text editor to look at the fi le, you would see gibberish. You create a binary fi le 
not by using an editor—as you can for a text fi le—but rather by running a program. 

 The statement 

  ofstream outFile(myFileName, ios::binary); 

 associates the stream variable  outFile  with the external binary fi le whose name is in the string 
variable  myFileName . A binary fi le has an end-of-fi le symbol at its end, just as a text fi le does. However, 
the notion of lines does not exist for a binary fi le, although a binary fi le might contain data that 
coincidentally looks like an end-of-line symbol. Except for the differences noted here, C++ treats 
binary fi les in the same way that it treats text fi les.    
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Here is a list of commonly used C++ header fi les. Other header fi les are introduced in the chapters 
when needed. 

      cassert 

 This library contains only the function  assert . You use 

assert( assertion );

 to test the validity of an assertion. If  assertion  is  false ,  assert  writes an error message and terminates 
program execution. You can disable all occurrences of  assert  in your program by placing the direc-
tive  #define NDEBUG  before the  include  directive.  

   cctype  

 Most functions in this library classify a given ASCII character as a letter, a digit, and so on. Two other 
functions convert letters between uppercase and lowercase. 

 The classifi cation functions return a  true  value if  ch  belongs to the specifi ed group; otherwise 
they return  false .     

 isalnum(ch)  Returns  true  if  ch  is either a letter or a decimal digit 

 isalpha(ch)  Returns  true  if  ch  is a letter 

 iscntrl(ch)  Returns  true  if  ch  is a control character (ASCII 127 or 0 to 31) 

 isdigit(ch)  Returns  true  if  ch  is a decimal digit 

 isgraph(ch)  Returns  true  if  ch  is printable and nonblank 

 islower(ch)  Returns  true  if  ch  is a lowercase letter 

 isprint(ch)  Returns  true  if  ch  is printable (including blank) 

 ispunct(ch)  Returns  true  if  ch  is a punctuation character 

 isspace(ch)  Returns  true  if  ch  is a whitespace character: space, tab, carriage return, new line, 
or form feed 

 isupper(ch)  Returns  true  if  ch  is an uppercase letter 

 isdigit(ch)  Returns  true  if  ch  is a hexadecimal digit 

 toascii(ch)  Returns the ASCII code for  ch
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   cmath  

 The C++ functions in this library compute certain standard mathematical functions. These functions 
are overloaded to accommodate  float ,  double , and  long double . Unless otherwise indicated, each 
function has one argument, with the return type being the same as the argument type (either  float , 
double , or  long double ).     

   cstdlib      

 tolower(ch)  Returns the lowercase version of  ch  if  ch  is an uppercase letter; otherwise 
returns  ch

 toupper(ch)  Returns the uppercase version of  ch  if  ch  is a lowercase letter; otherwise 
returns  ch

 acos(x)  Returns the arc cosine 

 asin(x)  Returns the arc sine 

 atan(x)  Returns the arc tangent 

atan2(x, y)  Returns the arc tangent of   x /y

 ceil(x)  Rounds up 

 cos(x)  Returns the cosine 

 cosh(x)  Returns the hyperbolic cosine 

 exp(x)  Returns  e raised to the power x

 fabs(x)  Returns the absolute value 

 floor(x)  Rounds down 

fmod(x, y)  Returns  x  modulo  y   

 log(x)  Returns the natural log 

 log10(x)  Returns the log base 10 

modf(x, iptr)  For arguments  x  and  iptr , returns the fractional part of  x  and sets  iptr  to point 
to the integer part of  x

pow(x, y)  Returns x raised to the power y

 sin(x)  Returns the sine 

 sinh(x)  Returns the hyperbolic sine 

 sqrt(x)  Returns the square root 

 tan(x)  Returns the tangent 

 tanh(x)  Returns the hyperbolic tangent 

 abort()  Terminates program execution abnormally 

 abs(x)  Returns the absolute value of an integer 

 atof(s)  Converts a string argument to fl oating point 

 atoi(s)  Converts a string argument to an integer 
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 exit(x)  Terminates program execution, returns x to the operating system 

 rand()  Returns a pseudorandom integer 

 srand(x)  Initializes the pseudorandom number generator to x

 srand()  Initializes the pseudorandom number generator to 1  

   cstring  

 This library enables you to manipulate C strings that end in  \0 . Unless noted otherwise, these func-
tions return a pointer to the resulting string in addition to modifying an appropriate argument. The 
argument  ch  is a character,  n  is an integer, and the other arguments are strings.     

strncat(toS, fromS, n)  Copies at most  n  characters of  fromS  to the end of  toS  and appends  '\0'

strcmp(str1, str2)  Returns an integer that is negative if  str1  <  str2 , zero if  str1  == 
str2 , and positive if  str1  >  str2

stricmp(str1, str2)  Behaves like  strcmp , but ignores case 

strncmp(str1, str2, n)  Behaves like  strcmp , but compares the fi rst  n  characters of each string 

strncpy(toS, fromS, n)  Copies  n  characters of  fromS  to  toS , truncating or padding with 
'\0' as necessary 

strspn(str1, str2)  Returns the number of initial consecutive characters of  str1  that are 
not in str2

strcspn(str1, str2)  Returns the number of initial consecutive characters of  str1  that are 
in str2

 strlen(str)  Returns the length of  str , excluding  '\0'

 strlwr(str)  Converts any uppercase letters in  str  to lowercase without altering 
other characters 

 strupr(str)  Converts any lowercase letters in  str  to uppercase without altering 
other characters 

strchr(str, ch)  Returns a pointer to the fi rst occurrence of  ch  in  str ; otherwise 
returns  nullptr

strrchr(str, ch)  Returns a pointer to the last occurrence of  ch  in  str ; otherwise returns 
nullptr

strpbrk(str1, str2)  Returns a pointer to the fi rst character in  str1  that also appears in 
str2 ; othewise returns  nullptr

strstr(str1, str2)  Returns a pointer to the fi rst occurrence of  str2  in  str1 ; otherwise 
returns  nullptr

strtok(str1, str2)  Finds the next token in  str1  that is followed by  str2 , returns a pointer 
to the token, and writes  nullptr  immediately after the token in  str1

   fstream 

 Defi nes the C++ classes that support fi le I/O.  
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   iomanip 

 The manipulators in this library affect the format of stream operations. Note that  iostream  contains 
additional manipulators.     

 setbase(b)  Sets number base to  b  = 8, 10, or 16 

 setfill(f)  Sets fi ll character to  f

 setprecision(n)  Sets fl oating-point precision to integer  n

 setw(n)  Sets fi eld width to integer  n

 dec  Tells the subsequent operation to use decimal representation 

 endl  Inserts the new-line character  \n  and fl ushes the output stream 

 ends  Inserts the null character  \0  into an output stream 

 flush  Flushes an output stream 

 hex  Tells the subsequent I/O operation to use hexadecimal representation 

 oct  Tells the subsequent I/O operation to use octal representation 

 ws  Extracts whitespace characters from the input stream 

   iostream 

 The manipulators in this library affect the format of stream operations. Note that  iomanip  contains 
additional manipulators.     

   stdexcept 

 Defi nes several exception classes that can be thrown or extended for specifi c exceptional conditions.  

string

 This library enables you to manipulate C++ strings. Described here is a selection of the methods that 
this library provides. In addition, you can use the following operators with C++ strings:  = ,  + ,  == ,  != ,  < , 
<= ,  > ,  >= ,  << , and  >> . Note that positions within a string begin at 0.        

 erase()  Makes the string empty 

erase(pos, len)  Removes the substring that begins at position  pos  and contains  len
characters

 find(subString)  Returns the position of the substring subString within the string 

 length()  Returns the number of characters in the string (same as  size ) 

replace(pos, len, str)  Replaces the substring that begins at position  pos  and contains  len
characters with the string str

 size()  Returns the number of characters in the string (same as  length ) 

substr(pos, len)  Returns the substring that begins at position  pos  and contains  len
characters
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Systems I
Documenting programs has never been a very enjoyable task. With the advent of the  javadoc
documentation system, commenting Java programs is at least less tedious. Inspired by  javadoc , 
others have produced utility software to process documentation for other programming languages, 
including C++. Documentation tools like doxygen (  doxygen.org  ) and DOC++ (  docpp.source-
forge.net ) read C++ source code and generate HTML-based documentation from  javadoc -style 
comments embedded within the code. The comments in this book assume that doxygen will prepare 
the documentation. 

 The doxygen tool extracts the header for your class, the headers for all public methods, and com-
ments that are written in a certain form. No method bodies and no private items are extracted. 

 For a comment to be extracted, the comment must satisfy two conditions: 

•   The comment must occur immediately before a public class defi nition or the header of a public 
method.

•   The comment must begin with  /**  and end with  */  and is a special form of the C++ multiline 
comment /* ... */.

 Inside the comment, doxygen tags identify different aspects of the documentation, such as the pro-
grammer’s name and a method’s parameters and return value. Tags begin with the symbol @. We will 
describe only some of the available tags in this appendix. Note that some doxygen tags differ from the 
tags used by  javadoc . 

•    @author  lists the name of a class’s programmer.  
•    @file  identifi es the name of the fi le containing a class.  
•    @param  identifi es a method’s parameter by name and includes its description.  
•    @post  identifi es a method’s postcondition.  
•    @pre  identifi es a method’s precondition.  
•    @return  describes a method’s return value.  
•    @throw  lists an exception that a method can throw.   

 You write a  @param  tag for each parameter in a method. You should list these tags in the order in 
which the parameters appear in the method’s header. After the  @param  tag, you give the name and 
description of the parameter. For example, for the parameter customer, you might write 

  @param customer  The string that names the customer. 
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 You write a  @return  tag for every method that returns a value, even if you have already described 
the value in the method’s description. Try to say something more specifi c about this value here. This 
tag must come after any  @param  tags in the comment. Do not use this tag for void methods and con-
structors. 

 Next, if a method can throw an exception, you name it by using a  @throw  tag. You list multiple 
exceptions alphabetically by name. 

 Here is a sample comment for a method. We usually begin such comments with a brief descrip-
tion of the method’s purpose. This is our convention; javadoc has no tag for it. 

  /** Adds a new entry to a roster. 
 @param newEntry  The object to be added to the roster. 
 @param newPosition  The position of newEntry within the roster. 
 @pre  None. 
 @post  If the addition is successful, the roster contains the new entry; 
     otherwise, the roster is unchanged. 
 @return  True if the addition is successful, or false otherwise. */ 

 Here is the beginning of a sample class defi nition that lives in the fi le  someClass.h : 

  /** An example of a class. 
 @file  someClass.h 
 @author  Ima Student */    

     Programming Tip: Comments

•    Use  /**  ...  */  comments before the headers of classes and methods to document 
their use and specifi cations. Use tags within a comment to identify aspects of the 
documentation.  

•    Use  //  for comments within the body of a class declaration or method defi nition that 
describe the details of the implementation.  

• Use    /*  ...  */  during debugging to temporarily disable a portion of your code.   
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ASCII

Character Codes J
   Code      Character      Code      Character      Code      Character      Code      Character   
0   NUL   32    (blank)   64   @   96   ̀ (reverse quote) 
1   STX   33   !   65   A   97   a 
2   SOT   34   "   66   B   98   b 
3   ETX   35   #   67   C   99   c 
4   EOT   36   $   68   D   100   d 
5   ENQ   37   %   69   E   101   e 
6   ACK   38   &   70   F   102   f 
7   BEL   39   ' (apostrophe)   71   G   103   g 
8   BS   40   (   72   H   104   h 
9   HT   41   )   73   I   105   i 
10   LF   42   *   74   J   106   j 
11   VT   43   +   75   K   107   k 
12   FF   44   , (comma)   76   L   108   l 
13   CR   45   –   77   M   109   m 
14   SO   46   .   78   N   110   n 
15   SI   47   /   79   O   111   o 
16   DLE   48   0   80   P   112   p 
17   DC1   49   1   81   Q   113   q 
18   DC2   50   2   82   R   114   r 
19   DC3   51   3   83   S   115   s 
20   DC4   52   4   84   T   116   t 
21   NAK   53   5   85   U   117   u 
22   SYN   54   6   86   V   118   v 
23   ETB   55   7   87   W   119   w 
24   CAN   56   8   88   X   120   x 
25   EM   57   9   89   Y   121   y 
26   SUB   58   :   90   Z   122   z 
27   ESC   59   ;   91   [   123   { 
28   FS   60   <   92   \   124   | 
29   GS   61   =   93   ]   125   } 
30   RS   62   >   94   ̂    126   ~ 
31   US   63   ?   95   _ (underscore)   127   DEL 

     Note: The codes 0 through 31 and 127 are for control characters that do not print.   
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This appendix covers some of the differences between Java and C++ that a beginning 
programmer may encounter. While there are many additional differences, they either 
are not applicable to the code and examples used in this text or are explained when 
needed. This appendix should be used in conjunction with Appendix A to fully under-
stand the features provided in C++. 

  K.1 General Concepts 
 Transitioning from Java to C++ is not too diffi cult, since most of the syntax and many of 
the concepts are the same. C++ gives you much greater control of how and where you 
create variables and objects. Thus, a C++ programmer can create programs that are 
fl exible and effi cient in speed and use of storage. This fl exibility and greater control 
require you to take great care in managing data and memory, because C++ does not 
provide garbage collection. 

 Both Java and C++ are compiled languages. While Java programs are compiled 
into byte-code for the Java Virtual Machine (JVM), C++ programs are compiled into 
object code that is specifi c to an operating system. This means that you need to recom-
pile your C++ code for each operating system that you want your program to run on. 
The code in this book follows the recent ANSII C11 Standard, so you should be able to 
compile and run your programs on whichever operating system you choose if your 
compiler supports that standard. 

 Java classes and interfaces can be grouped into packages that are stored in the same 
directory hierarchy. When your Java code is compiled, the compiler searches this hier-
archy for classes that you use. Any class or method in the package is automatically 
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found by the compiler and later the JVM during program execution. If you need a class outside of the 
package, you must import it using the Java  import  statement. 

 The C++ compiler is stricter and requires the programmer to declare all functions, classes, and 
variables in a fi le before they are used. Because classes and constants are often used in multiple pro-
grams and multiple locations in a program, C++ provides a mechanism called the  pre-processor  that 
lets you specify classes and data in a separate  header fi le  and then include that fi le in your program. 
Commands, or directives , to the pre-processor are lines that begin with the character #, such as 

  #include <iostream>  // Include the declaration of the iostream classes
#include "MyClass.h" // Include the declaration of MyClass  

 Notice that system fi les use < > , while user-defi ned fi les use " " , to delimit the fi le name.  Section 
  A.8.1    of Appendix A, C++ Interlude 1, and  Section   K.4    of this appendix show how to develop C++ 
class declarations. 

 Although both Java and C++ are object-oriented languages, C++ has many elements that refl ect 
its roots in the imperative language C. An imperative programming language does not use classes to 
group data and operations on that data. Instead, it is a sequence of statements and functions—meth-
ods that are not part of a class. As such, variables, constants, and functions in a C++ program can be 
declared anywhere in a fi le; you are not forced to declare them within a class, as you are in Java. The 
only restriction to this capability is that a function cannot declare them inside another function. 

     Comments.   Comments are an important part of any program, and C++ supports the same comment-
ing standards as Java: 

  // This is a comment that appears on its own line. 
  int sum = 0; // This is a comment that appears within a C++ statement 
// The following multiline comments end in */.
/** This is a special multiline comment used for documentation systems 
     such as doxygen. It begins with /**. See Appendix I for details. */ 
/* This is a multiline comment that begins with /*. 
   This style is often used to temporarily disable a group of 
   statements during debugging. */     

  K.2 Data Types, Variables, Constants, and Arrays 
 C++ uses primitive data types and variable declarations that are similar to those in Java. The Java types 
char ,  int ,  float , and  double  are used in C++ and behave the same as in Java. In C++,  int  can be 
modifi ed with  short ,  long ,  signed , and  unsigned . All Java variables are initialized to either zero, if a 
primitive data type, or  null , if an object reference. In contrast, you must initialize all C++ variables. If 
you do not, and an uninitialized variable is used, the result of the equation or statement is unpredictable. 

     Boolean types.   One very important difference between Java and C++ data types occurs with boolean 
variables. In Java,  boolean  is a distinct type that has the value  true  or  false . In C++, the analogous data 
type is bool . It also has a value of  true  or  false , but in C++,  true  and  false  are special integers. That 
is, variables of type  bool  are actually integers. This affects the type of statement that is used as the 
predicate or test clause in an if  statement,  for  loop, or  while  loop, as you will see in the next section. 
The C++ value of  false  is 0, and an integer value of 0 can be considered  false  in a boolean test. The 
value of  true  is 1, and any non-zero integer is considered  true .

  String types.   Java has a special class  String  to represent character strings. C++ also provides a spe-
cial class string  (note the lower case  s ) that implements many of the same features. To use this class, 
you must write 

  #include <string> 
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 as one of the fi rst lines in your program. More information on the C++ class  string  is in  Section   A.7    
of Appendix A.  

  Constants.   Constants in Java are declared within a class or method using the syntax 

   public static final int MAX_SIZE = 20; 

 which creates a publicly accessible constant  MAX_SIZE  with the value  20 . A similar statement in C++ 
uses the keyword  const  to indicate a constant value: 

   const int MAX_SIZE = 20; 

 Constants in C++ are available anywhere within the scope of their declaration. If a constant is 
declared outside of a class or fi le, that constant is available to any function or class defi ned after it in 
the fi le and is said to be  global , even though it is restricted to that fi le. 

 Java has a constant  null  that is used to indicate that an object has not been assigned to a variable. 
C++ uses nullptr  for this purpose.  

  Arrays.   Although you declare and reference arrays in Java and C++ using similar statements, their 
implementations are very different. Arrays in Java are objects and have a public data fi eld  length  that 
contains the number of locations in the array. If a program attempts to access a position beyond the 
end of the array, an exception is thrown. 

 C++ arrays are not objects, but are sequences of memory locations of the data type declared for 
the array. Entries in a C++ array are accessed using  [ ] , just as they are in Java. C++ arrays have no 
data fi eld that tracks the number of positions in the array, and most importantly, C++ permits the 
programmer to access positions in the array that do not exist. This is a very common source of errors 
in a C++ program and is one of the areas where you must take great care. The STL class vector,
which is discussed in Section A.6.3 of Appendix A, is an alternative to C++ arrays that provides 
some of the features of the Java array. 

 The following statement declares an array of 20 integers in Java: 

   int[] myArray = new int [MAX_SIZE]; 

 This statement does the same thing in C++: 

   int myArray[MAX_SIZE]; 

 You can also declare a C++ array by using syntax similar to that of Java: 

   int myArray[] = new int [MAX_SIZE]; 

 One difference is the location of the square brackets, but you must also take responsibility for delet-
ing the array when you are fi nished using it. You do so with the  delete  statement: 

   delete[] myArray;  

 Notice the  [ ]  following the  delete  operator to indicate that  myArray  is an array. In C++ Interlude 2, 
we discuss the use of the operators  new  and  delete  in C++.    

  K.3 Flow Control and Functions 
     Flow control.   Since the syntax of Java is derived from C++, the structure of fl ow-control 
statements in C++ is the same as those you are familiar with in Java. This is true for the selection 
statements if ,  if-else , and  switch . It is also true for loop statements  while ,  do-while , and  for . 
The signifi cant differences in C++ are related to the  test   expression  that controls the selection or 
repetition. 
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 Consider the following Java  if-else  statement that compares the integer  x  to 6 and increments  y
by 10 if  x  is 6, and by 20 otherwise: 

   if (x == 6) 
   y += 10; 
  else  
   y += 20; 

 Because the syntax for an  if-else  statement is the same in C++, we could place this statement in a 
C++ program and it would behave in the same way. 

 The test  x == 6  is a  predicate expression  that returns  true  if the variable  x  is equal to  6  and  false  
otherwise. In Java, a predicate expression such as this returns a value of type  boolean . A Java fl ow-
control statement requires its test expression to have a  boolean  value, so you must use a predicate 
expression as the test expression. 

 A C++ fl ow-control statement does not restrict the data type of its test expression. Flow-control 
decisions are made based on whether the expression returns zero or nonzero. If the test expression 
returns zero, the test is  false . Any nonzero value is considered  true . The equality operator in the exam-
ple above returns  true , which is 1, if  x  has the value of  6 . Otherwise, it returns  false , which is 0. The 
if-else  statement determines its course of action based on these values. 

 This behavior of the C++  if-else  statement gives you great fl exibility in constructing tests for 
fl ow-control statements. It also can create confusion and subtle logic errors. For example, consider 
the following  if-else  statement: 

   if (x = 6) 
   y += 10; 
  else  
   y += 20; 

 At fi rst glance, this may appear to be the same as the earlier example, but upon closer inspection you 
can see that the test expression is the assignment statement  x = 6 . The Java compiler will reject this as 
an error, since it is not a predicate expression. The C++ compiler will accept this statement, and when 
the program runs, the  if-else  statement will be evaluated as follows: 

   if (x = 6)  // The variable x is assigned the value of 6. 
   y += 10; // 6 is non-zero, so it is "true"; increment y by 10. 

 Every time this code executes,  x  will be assigned the value 6, and  y  will be incremented by 10. The 
original value of  x  is overwritten by the  if  clause’s test expression and is never used! Tracking down 
subtle errors, such as this one, has caused this author many sleepless nights. When performing equal-
ity tests in C++ fl ow-control statements, always check that the test uses == and not =.  

  Functions.   As mentioned earlier, C++ functions do not need to be part of a class. Thus, you do not 
need to precede C++ functions with access modifi ers, as you would for Java methods. Otherwise, the 
syntax for the declaration and invocation of a C++ function is similar to that of a Java method. Func-
tions can be defi ned anywhere inside a C++ fi le, except inside another function. 

 Here is an example of a C++ function,  realCube , that has a parameter of type  double  and returns 
the cube of a number: 

   double realCube( double x) 
 { 

return x * x * x; 
} // end realCube 

 Any function defi ned after  realCube  in the fi le can invoke  realCube . But what if a function is defi ned 
before realCube  and needs to call it? In this case, the compiler would issue an error stating that 
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realCube  was not defi ned. C++ requires that each function, constant, variable, or class be defi ned 
before it can be called. 

 In a simple program with a few functions, it is easy to defi ne the functions in the reverse of the 
order in which they are needed so the compiler sees each function defi nition before it is needed. In 
more complex programs, this order is more diffi cult or even impossible to achieve. 

 The part of a function defi nition that the compiler needs is the header of the function and C++ 
provides a mechanism that allows the programmer to provide the compiler a function’s header sepa-
rate from the actual defi nition of the function. This mechanism is the function prototype and consists 
of the function’s header followed by a semicolon. For example, the function prototype of the function 
realCube  is 

   double realCube( double x); 

 To eliminate the chance that a function will be needed prior to its defi nition within a C++ fi le, a 
common practice is to list the functions’ prototypes at the beginning of the fi le. In larger programs, 
function prototypes are placed in header fi les, as described in  Section   K.1   . You then include the 
header fi les in your program. Prototypes are also important in the creation of classes, as you will see 
in the next section. 

 Note that you can pass a function as an argument to another function or method. This is discussed 
in  Section   15.2.1    of  Chapter   15   .    

  K.4 Classes 
 Many object-oriented concepts implemented in Java classes also apply to C++ classes. This appendix 
covers only some of the syntax differences that you may encounter in a simple class. Additional infor-
mation about C++ classes appears in  Section   A.8    of Appendix A and in C++ Interludes 1 and 2. 

 Consider the following Java class: 

   public class PlainBox 
 { 

private String item; 

public PlainBox() 
   { 
   } // end default constructor 

public PlainBox(String theItem) 
   { 
      item = theItem; 
   }  // end constructor 

public void setItem(String theItem) 
   { 
      item = theItem; 
   }  // end setItem 

public String getItem() 
   { 

       return item; 
   }  // end getItem 
} // end PlainBox class 

 Though is it possible to defi ne a class in C++ in a single fi le, we will use two fi les, since this is a 
more common and fl exible approach. The fi rst fi le, is the class header fi le; it contains the data fi elds 
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for the class and the prototypes of all methods defi ned in the class. It is a description of the class and 
does not normally contain executable code. For example, here is the header fi le for the C++ class 
PlainBox : 

  /** @file PlainBox.h */ 

#include <string>    // Needed because we use string objects. 
  using namespace std; // Strings are part of the system std library. 

  class PlainBox // This is a class declaration for PlainBox. 
 { 
  private:               // Items defined below have private access. 
    string item; 

  public:                 // Items defined below have public access. 
// Prototypes for constructors and methods. 

    PlainBox(); 
    PlainBox(string theItem); 

void setItem(string theItem); 
    string getItem(); 
 }; // end PlainBox – Note semicolon after declaration. 

 Notice that each data member and method does not need to have an access modifi er. Private data 
members and methods are grouped together, and public methods are grouped with each other. A 
colon follows each access modifi er. It is possible to have more than one private, protected, or public 
section, but it is not common. The class declaration must end with a semicolon after the closing brace, 
as shown above. 

 The  implementation fi le , or  source fi le , for the class typically has the same name as the header 
fi le, but ends in  .cpp  to indicate that it is a C++ fi le. The implementation fi le contains the defi nitions 
for the methods declared in the accompanying header fi le. Here is the implementation fi le for the C++ 
class PlainBox : 

  /** @file PlainBox.cpp */ 
#include "PlainBox.h" // We need to tell the compiler about our data 

// fields and methods. 
 PlainBox::PlainBox() 
 { 
} // end default constructor 

PlainBox::PlainBox(string theItem) 
 { 
    item = theItem; 
} // end constructor 

  void PlainBox::setItem(string theItem) 
 { 
    item = theItem; 
} // end setItem 

string PlainBox::getItem() 
 { 

return item; 
} // end getItem 

 This implementation fi le begins by including the header fi le, so that the compiler has the class 
declaration and knows the data fi elds and methods of this class. We then defi ne each method. In the 
implementation fi le there is no “master” set of braces enclosing all of the methods. Each method is 
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individually defi ned. To let the compiler know that a method belongs to the  PlainBox  class, we added 
the prefi x  PlainBox::  to the method name. Observe that the prefi x comes after the method’s return 
type. The prefi x is an extension of the method name only. 

 To create a  PlainBox  object in Java, you could use the following statement: 

  PlainBox myBox = new PlainBox("Jewelry"); 

 C++ provides several forms for creating objects also: 

  PlainBox myBox = PlainBox("Jewelry"); 
PlainBox myBox("Jewelry"); 

 These statements are equivalent in C++ and create a  PlainBox  object that is local to the function or 
method in which it is created. In these examples the C++ keyword  new  is not used. 

 The following example does use the keyword  new  to create a  PlainBox  object that exists until the 
programmer specifi cally deletes it: 

  PlainBox* someBoxPtr = new PlainBox("Jewelry"); 

 The syntax is very similar to Java’s, except that  PlainBox  is followed by the  *  character. The  *  indi-
cates that someBoxPtr  is a pointer to a  PlainBox  object and is not the object itself. Pointers are dis-
cussed in more detail in C++ Interlude 2. 

 If an object in C++ is instantiated using the  new  operator, as in the example above, it is the 
responsibility of the programmer to delete that object from memory when it is no longer needed, 
because C++ does not provide garbage collection. To delete the object pointed to by  someBoxPtr , use 
the statements 

   delete someBox; // Frees memory used by the object. 
someBox = nullptr ; // A safety precaution. 

 Each time you use the  new  operator to create an object, you must write a corresponding  delete
operator to free the object’s memory. Otherwise, your application will have a memory leak.  

  K.5 Basic Input and Output 
 Although at the system level, Java and C++ treat keyboard input and console-display output similarly, 
the high-level constructs used to accomplish these tasks differ greatly. 

 For a Java application to accept input from the keyboard, you create a  Scanner  object with 
System.in  and use it to accept input from the user. Output to the display is accomplished by calling 
either the print  or  println  method of the  System.out  object. The following code creates a  Scanner
object, displays a prompt for the user, accepts a response from the user, and echoes the response back 
to the user: 

  Scanner keyboard = new Scanner(System.in); 
System.out.print("How many apples are in a box? "); 
  int applesPerBox = keyboard.nextInt(); 
System.out.print("You entered " + applesPerBox + " apples per box. "); 

 C++ does not have a  System.in  or  System.out  object; instead you use  cin  and  cout  objects for 
keyboard input and console-display output, respectively. To use  cin  and  cout , you include the follow-
ing statements at the start of your program: 

  #include <iostream> 
  using namespace std; 
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 The following C++ statements are equivalent to the previous Java statements: 

  cout << "How many apples are in a box? "; 
  int applesPerBox = 0; 
cin >> applesPerBox; 
cout << "You entered " << applesPerBox << " apples per box. " << endl; 

 Notice the use of the output stream operator  <<   to send string literals and variables to the output 
object cout . Similarly, the input stream operator  >>  sends input from the input object  cin  to a varia-
ble. It is easy to remember which operator to use if you imagine them as arrows pointing in the direc-
tion of the data fl ow. 

 The constant  endl  is defi ned in  iostream  and represents the new-line character. Additional infor-
mation about the iostream  library, and about basic input and output in C++, is in  Section   A.2    of 
Appendix A. 
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This appendix covers some of the differences between Python and C++ that a begin-
ning programmer may encounter. While there are many additional differences, they 
either are not applicable to the code and examples used in this text or are explained 
when needed. This appendix should be used in conjunction with Appendix A to fully 
understand the features provided in C++. 

  L.1 General Concepts 
 Transitioning from the Python programming language to C++ is similar to graduating 
from high school and going through basic training in the military. Python is a weakly 
typed, interpreted language with a readable syntax. C++, on the other hand, is a strongly 
typed, compiled language that follows strict punctuation rules for its syntax. The good 
news is that after completing boot camp, you have the chance to become an Army 
Ranger or Navy Seal. This text can help you be all you can as a computer scientist and 
C++ programmer. 

 Python programs are interpreted and can execute on any computer that has a 
Python interpreter. Python interpreters have even been written in JavaScript, so that you 
can run Python code inside a window in your web browser! C++ programs, on the other 
hand, are compiled into object code that is specifi c to an operating system. This means 
that you need to recompile your C++ code for each operating system that you want your 
program to run on. The code in this book follows the recent ANSII C11 Standard, so you 
should be able to compile and run your programs on whichever operating system you 
choose if your compiler supports that standard. 
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L.2 Comparison of Language Elements
 When it comes to writing a C++ program, there are several important differences you need to keep in 
mind.

     Comments.   Comments are an important part of any program, and C++ supports single and multi-
line comments with different delimiters: 

  // This is a comment that appears on its own line. 
  int  sum = 0; // This is a comment that appears within a C++ statement. 
// The following comment begins with /** and ends with */.
/** This is a special multiline comment used for documentation systems 
     such as doxygen. See Appendix I for details. */ 
// The following comment begins with /* and ends with */.
/* This is a multiline comment that is often used to temporarily
     disable a group of  statements during debugging. */        

     Statements.   White space and indentation in C++ have no signifi cance. C++ statements end with a 
semicolon. Statements in a block, known as a compound statement, are analogous to a suite in Python 
and are grouped together by braces  { } .

Variables.   In Python, a variable can be used as soon as it is assigned a value. Variables in C++ must 
be declared and given a type before they can be used. Though the C++ compiler does not require it, 
variables should also be given an initial value before being used. Once a variable has been declared 
with a given a type, it maintains that type throughout the scope in which it was declared.  

  Relational operators.   Variables in C++ can be used only with one relational operator at a time. 
Python expressions such as  5 < x < 10  must be written as  (5 < x) && (x < 10)  in C++. The operator 
&&  is used for a logical AND, and  ||  is used for a logical OR.  

  Predicate expressions.   Predicate expressions in conditional and iteration fl ow-control statements 
must be in parentheses.  

Assignment statements.   Multiple assignment is not allowed in C++. Python statements such as  x,y
= 5,6  cannot be used.  

  Iteration statements.   C++ has a  while  statement that behaves like the Python  while  statement. The 
C++ for  statement is a special case of the  while  statement. To use a C++  for  statement as you would 
use a Python form  statement, you must use iterators, which are explained in C++ Interlude 6. C++ has 
a do-while  statement, which is a post-test loop. Python has no equivalent statement.  

  Basic input and output.   In a Python application, you use the  raw_input  function to accept input 
from the keyboard. This function returns a string. If you need an integer or a value of some other 
data type, you must use another function to transform the string into the desired input. Output to 
the display is accomplished by calling the  print  function. For example, the following Python code 
displays a prompt for the user, accepts a response as an integer, and echoes the response back to the 
user: 

  userNumber = int ( raw_input ("How many apples are in a box? ")) 
print "You entered %d apples per box."%( userNumber) 

 C++ uses two objects,  cin  and  cout , for keyboard input and console display output, respectively. 
To use  cin  and  cout , you should include the following statements at the start of your program: 

  #include <iostream> 
  using namespace  std; 
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 The following C++ statements that are equivalent to the previous Python statements: 

  cout << "How many apples are in a box? "; 
  int  applesPerBox = 0; 
cin >> applesPerBox; 
cout << "You entered " << applesPerBox << " apples per box." << endl; 

 Notice the use of the output stream operator  <<  to send string literals and variables to the output 
object cout . Similarly, the input stream operator  >>  sends input from the input object  cin  to a varia-
ble. It is easy to remember which operator to use if you imagine them as arrows pointing in the direc-
tion of the data fl ow. 

 The constant  endl  is defi ned in  iostream  and represents the new-line character. Additional 
information about the  iostream  library and basic input and output in C++ is in  Section   A.2    of 
Appendix A.  

  Example.   Listing L-1 gives a short interactive Python program using the statements and expressions 
just discussed. Listing L-2 shows the equivalent program in C++. C++ programs begin execution at the 
main  function. You can see some of the differences in user input and output in this example also. 

  LISTING L-1 Short Python program to test and modify a user-entered value

  small, large = 1, 1000 
  print  "Your number was between %d and %d large." %(small, large) 
userNumber = int ( raw_input ("Enter something: ")) 

  if  small < userNumber < large : 
print  "Your number was between %d and %d large."%(small, large) 

  elif  userNumber < small : 
while  userNumber <= small : 

        userNumber = userNumber + 1 

  else : 
while True  : 

        userNumber = userNumber - 1 
         if  userNumber < 1000 : 
             break
         print  "I fixed your number to be between %d and %d!" %(small, large) 

  LISTING L-2  Short C++ program equivalent to the Python program in Listing L-1. 

  #include <iostream> 
  using namespace  std; 
  int  main() 
 { 

int  small = 1; 
int  large = 1000; 
int  userNumber = 0; 

   cout << "Enter something: "; 
   cin >> userNumber; 

(continues)
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if ( (small < userNumber) && (userNumber < large) ) 
   { 
        cout << "Your number was between " << small << " and "; 
        cout << large << endl; 
   } 

else if (userNumber < 1) 
   { 

while (userNumber <= 1) 
       { 
           userNumber++; 
       } 
   } 

else
   { 

do
       { 
           userNumber–-; 
       }  while  (userNumber >= 1000); 
       cout << "I fixed your number to be between " << small << " and "; 
       cout << large << endl; 
   }
}    

  L.3 Functions 
 As with its variables, C++ functions are strongly typed. When a C++ function is defi ned, the parame-
ters are given a type. If the function returns a value, the function must indicate the type of the return 
value. This information is given in the header, that is, the fi rst line, of the function. If a function does 
not return a value, its return type is  void . The defi nition of the function follows the header and is 
enclosed in { } , as in other C++ blocks. 

 Here is a short Python function that computes the cube of its single parameter: 

   def  realCube(x) : 
       return  x * x * x 

 Here is the equivalent C++ function: 

   double realCube( double  x) 
 { 

return  x * x * x; 
 } 

 Notice that the function and its parameter are each given a type. C++ functions are discussed in 
greater detail in  Section   A.2    of Appendix A. 

 Any function defi ned after  realCube  in the fi le can invoke  realCube . But what if a function is 
defi ned before  realCube  and needs to call it? In this case, the compiler would issue an error stating 
that realCube  was not defi ned. C++ requires that each function, constant, variable, or class be defi ned 
before it can be called. 

 In a simple program with a few functions, it is easy to order the function defi nitions so that the 
compiler sees each one before it encounters the function call. In more complex programs, this is more 
diffi cult, or even impossible, to achieve. However, the compiler needs only the header of a function 
before processing a call to it, and C++ provides a way for you to satisfy the compiler. You simply write 
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the function’s header followed by a semicolon—that is, its prototype—at the beginning of the pro-
gram that calls it. For example, the prototype of the function  realCube  is 

   double realCube( double  x); 

 Then you can place the function’s defi nition anywhere within your program. 
 In larger programs, function prototypes are placed into one or more header fi les, as described 

in  Section   K.1    of Appendix K. You then include the header fi les in your program. Prototypes are 
also important in the creation of classes, as you will see in the next section.  Section   A.8.1    of 
Appendix A also discusses header fi les. 

 Note that you can pass a function as an argument to another function or method. This is discussed 
in  Section   15.2.1    of  Chapter   15   .  

  L.4 Classes 
 Python classes permit clients of the classes to access all data fi elds and methods. In C++, this is called 
public    access   and is recommended only for methods. In Python, when you create a class member that 
should be used only by class methods, you typically begin the member’s name with two underscores,  __ . 
This convention is only a signal to the programmer; the Python interpreter does not enforce it. C++ per-
mits the class designer to restrict access to certain data fi elds and methods by labeling them as  private , 
and the compiler enforces this restriction by permitting only class methods to access private members. 

 Classes in C++ have constructors that are similar to the  __init__  method in a Python class. 
When writing a method in a Python class, you precede the names of data fi elds by  self  to indicate 
that they are instance variables of the class. Instance variables in a C++ class do not need a special 
prefi x, if they are referenced from within a method of the class. 

 Here is a simple Python class,  PlainBox : 

  class PlainBox 

      def __init__(self, theItem): 
           self.item = theItem 

      def setItem(self, theItem): 
           self.item = theItem 

      def getItem(self) : 
           return self.item 

 You also can defi ne the same class in a form that is closer to that of a C++ class: 

  class PlainBox 

      __item = " " 

   def __init__(self, theItem): 
          self.__item = theItem 

   def setItem(self, theItem): 
          self.__item = theItem 

   def getItem(self) : 
          return self.__item 

 Though is it possible to defi ne a class in C++ in a single fi le, we will use two fi les, since this is a 
more common and fl exible approach. The fi rst fi le is the class header fi le; it contains the data fi elds for 
the class and prototypes for all methods defi ned in the class. It is a description of the class and does 
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not normally contain executable code. For example, here is the header fi le for the C++ version of the 
previous Python class: 

  /** @ file PlainBox.h */ 
#include <string>     // Needed because we use string objects. 
  using namespace std; // Strings are part of the system std library. 

  class PlainBox // This is a class declaration for PlainBox. 
 { 

private:            // Items defined below have private access. 
       string item; 

public:             // Items defined below have public access. 
       // Prototypes for constructors and methods: 
       PlainBox(); 
       PlainBox(string theItem); 
        void  setItem(string theItem); 
       string getItem(); 
 }; // end PlainBox – Note semi-colon after declaration. 

 Notice that each data member and method does not need to have an access modifi er. Private data 
members and methods are grouped together, and public methods are grouped with each other. A 
colon follows each access modifi er. It is possible to have more than one private, protected, or public 
section, but it is not common. The class declaration must end with a semi-colon after the closing 
brace, as shown above. 

 The  implementation fi le , or  source fi le , for the class typically has the same name as the header 
fi le, but ends in  .cpp  to indicate that it is a C++ fi le. The implementation fi le contains the defi nition 
for the methods declared in the accompanying header fi le. Here is the implementation fi le for the C++ 
class PlainBox : 

  /** @ file PlainBox.cpp */ 

#include "PlainBox.h" // We need to tell the compiler about our data 
// fields and methods. 

 PlainBox::PlainBox() 
 { 
} // end default constructor 

PlainBox::PlainBox(string theItem) 
 { 
    item = theItem; 
} // end constructor 

  void  PlainBox::setItem(string theItem) 
 { 
   item = theItem; 
} // end setItem 

string PlainBox::getItem() 
 { 
     return  item; 
} // end getItem 

 This implementation fi le begins by including the header fi le, so that the compiler has the class 
declaration and knows the data fi elds and methods of this class. We then defi ne each method. In the 
implementation fi le there is no “master” set of braces enclosing all of the methods. Each method is 
individually defi ned. To let the compiler know that a method belongs to the  PlainBox  class, we add 
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the prefi x  PlainBox::  to the method name. Observe that the prefi x comes after the method’s return 
type. The prefi x is an extension of the method name only. 

 To create a  PlainBox  object in Python, you could use the following statement: 

  myBox = PlainBox("Jewelry"); 

 C++ provides several forms for creating objects: 

  PlainBox myBox = PlainBox("Jewelry"); 
PlainBox myBox("Jewelry"); 

 These statements are equivalent in C++ and create a  PlainBox  object that is local to the function or 
method in which it is created. In these examples, the C++ keyword  new  is not used. 

 The following example uses the keyword  new  to create a  PlainBox  object that exists until the 
programmer specifi cally deletes it: 

  PlainBox* someBoxPtr = new  PlainBox("Jewelry"); 

 Notice that  PlainBox  is followed by the  *  character to indicate that  someBoxPtr  is a pointer to a 
PlainBox  object and is not the object itself. Pointers are discussed in more detail in C++ Interlude 2. 

 If an object in C++ is instantiated using the  new  operator, as in the example above, it is the 
responsibility of the programmer to delete that object from memory when it is no longer needed. In 
Python, garbage collection deletes unused objects and frees the memory that was used by those 
objects. C++ does not provide garbage collection, so you must free unused memory. To delete the 
object pointed to by  someBoxPtr , use the statements 

   delete  someBox; // Frees memory used by the object. 
someBox = nullptr ; // A safety precaution. 

 Each time you use the  new  operator to create an object, you must write a corresponding  delete  state-
ment to free the object’s memory. Otherwise, your application will have a memory leak. 

 Additional information about C++ classes appears in  Section   A.8    of Appendix A, Chapter 1, and 
in C++ Interludes 1 and 4.    
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  Assertions,  98 ,  229 – 230 ,  759   
  Assignment,  380 – 381 ,  417 – 419 ,  691 – 693  

 C++,  691 – 693  
 operator =, overloading,  417 – 419  

 tracking using priority queues,  380 – 381   
  Associative containers,  678 – 681   
  AVL trees,  597 – 599   
  Axioms,  200 – 201 ,  257 – 259    

B
  Backtracking,  172 – 183 ,  211 – 212 ,  216  

 airline route search,  172 – 177 ,  211 – 212  
 directed path (graph),  173  
 eight queens problem,  177 – 183  
 exhaustive search,  173 – 177 ,  211 – 212  
 fl ight map operations,  175 – 176  
 implementation and,  180 – 183  
 recursion and,  172 – 183  
 stacks,  211 – 212 ,  216   

  Backward order,  57 – 66   
  Bag, ADT container,  17   
BagInterface class,  23 – 24 ,  151   
  Balanced binary tree,  432 ,  597   
  Balanced search trees,  567 – 602 ,  654 – 662  

 2-3 trees,  569 – 585  
 2-3-4 trees,  585 – 592  
 AVL trees,  597 – 599  
 B-trees,  654 – 662  
 dictionaries and,  654 – 662  
 external organization using,  654 – 662  
 inserting data into,  575 – 579 ,  587 – 591 , 

 594 – 596 ,  597 – 599 ,  659 – 660  
 red-black trees,  592 – 596  
 removing data from,  579 – 585 ,  591 , 

 594 – 596 ,  597 – 599 ,  660 – 662  
 rotation of,  597 – 599  
 searching,  572 – 574 ,  587 ,  594  
 splitting nodes,  589 – 591 ,  594 – 596  
 traversing,  572 ,  587 ,  594  
 tree height and balance of,  567 – 568 , 

 597 – 599   
balancedAdd method,  464 – 465   
  Base (degenerative) case,  49   
  Base class (superclass),  40 – 44   
  Big O notation, algorithm effi ciency and, 

 294 – 298   
  Binary fi le,  763 ,  772   
  Binary search,  48 – 49 ,  68 – 72 ,  300 – 301 , 

 486 – 487  
 arrays,  68 – 72 ,  486 – 487  
 algorithms,  300 – 301  
 recursive solutions using,  48 – 49   

  Binary search trees,  429 ,  442 – 449 , 
 471 – 487 ,  518 ,  533 – 534 ,  536 – 538  

 abstract data type (ADT),  442 – 449  
 adding a new entry,  471 – 473  
 algorithms for,  471 – 481  
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BinarySearchTree class,  481 – 483  
 creating,  446 – 447  
 dictionary implementation by,  533 – 534 , 

 536 – 538  
 effi ciency of,  448 – 449  
 header (.h) fi les,  482 – 483 ,  537  
 heaps compared to,  518  
 inorder successor,  476 – 477  
 link-based implementation,  471 – 483  
 operations,  443 – 445  
 parent-child relationships of,  429 , 

 471 – 480  
 pointers for,  471 – 473  
 removing and retrieving an entry, 

 474 – 481  
 saving in a fi le,  483 – 486  
 searching,  445 – 446  
 sorting an array,  486 – 487  
 traversals of,  447 – 448   

  Binary trees,  428 – 429 ,  431 – 442 , 
 456 – 471  

 abstract data type (ADT),  435 – 442  
 algebraic expressions and,  428 – 429  
 array-based implementation,  456 – 458  
 balanced,  432  
 complete,  431 – 432  
 constructors,  462  
 copy constructors,  463  
 destructors,  463  
 full,  431  
 header (.h) fi les,  458 – 462  
 implementation,  456 – 471  
 interface template for,  441 – 442  
 level of a node and,  431 – 432  
 link-based implementation,  458 – 471  
 methods for,  464 – 465  
 nodes in,  431 – 435 ,  438 ,  456 – 459 , 

 465 – 467  
 operations,  438 – 441  
 parent-child relationships of,  428  
 traversals of,  436 – 438 ,  465 – 471  
 tree height,  431 – 435   

BinarySearchTree class,  481 – 483   
  Blocks, record organization and,

 638 – 640   
  Block access,  639   
  Boolean data types,  782   
  Box trace,  54 – 57 ,  71 – 72   
  Breadth-fi rst search (BFS) strategy, 

 613 – 615 ,  620 – 621   
  Breakpoints,  736   
  Bubble sort algorithm,  309 – 311   
  Buckets,  554   
  Buffers,  639    

C
  C++,  31 – 46 ,  117 – 132 ,  160 – 161 , 

 333 – 346 ,  415 – 423 ,  493 – 501 , 
 685 – 720 ,  763 – 772 ,  773 – 776 , 
 777 – 778 ,  781 – 788 ,  789 – 796  

 abstract classes,  44 – 46 ,  343 – 346  
 arrays,  130 – 132 ,  704 – 707  
 classes,  31 – 46 ,  711 – 717  
 class relationships,  333 – 346  
 compile error prevention,  35 – 36  
 constructors,  33 – 34 ,  711  
 containment,  342 – 343  
 data fi elds,  33  
 destructors,  33 – 34  
 documentation systems,  777 – 778  
 dynamic allocation,  130 – 132  
 fi les,  763 – 772  
 free store (heap),  120 – 128  
 friend access,  421 – 423  
 functions,  696 – 699  
 header (.h) fi les,  32 ,  711 – 713 ,  773 – 776  
 identifi ers,  160 – 161  
 implementation (.cpp) fi les,  32 , 

 713 – 716  
 inheritance,  40 – 46 ,  333 – 342 ,  716 – 717  
 input/output using iostream,  693 – 696  
 iteration statements,  702 – 704  
 iterators,  493 – 501  
 Java programming,  781 – 788  
 language,  160 – 161 ,  686 – 693  
 libraries,  717 – 718  
 manipulators,  696 – 697  
 memory allocation,  118 – 120  
 methods,  34 – 35 ,  44 – 46 ,  118 – 120  
 namespace,  37  
 overloaded operators,  415 – 423  
 polymorphism,  3 – 4 ,  128 – 130  
 pointers,  120 – 128  
 protection,  338 – 340  
 Python programming and,  789 – 796  
 reuse,  333 – 346  
 selection statements,  699 – 702  
 solution implementation,  36 – 37  
 specifi cation fi les,  32  
 standard functions,  773 – 776  
 static allocation,  130  
 strings,  709 – 710  
 templates,  31 ,  37 – 40  
 vectors,  707 – 709  
 virtual methods,  44 – 46 ,  128 – 130   

catch blocks,  233 – 236   
  Catching exceptions,  233 – 236   
  Category tags, iterators,  495   

  Child, tree relationships,  426   
  Choosing  k  out of  n  things,  83 – 85   
  Circuits,  627 – 630  

 graph applications,  627 – 630  
 Euler,  627 – 629  
 Hamilton,  629  
 planar graphs for,  630   

  Circular array strategies,  405 – 407   
  Circular chain,  400   
  Class diagrams,  744 – 747   
  Class relationships,  333 – 346  

 abstract base classes,  343 – 346  
as-a  relationships,  340 ,  341 – 342  
 containment,  342 – 343  
has-a  relationships,  342 – 343  
 inheritance,  333 – 338 ,  340  
is-a  relationships,  340 – 341  
 private data members,  338 – 340  
 protected sections,  338 – 340  
 public class sections,  338 – 339  
 virtual method table (VMT),  338 – 339   

  Class-responsibility-collaboration 
(CRC),  18   

  Classes,  2 – 3 ,  31 – 46 ,  215 ,  239 – 240 ,  422 , 
 711 – 727 ,  785 – 787 ,  793 – 795  

 abstract,  44 – 46  
 base (superclass),  40 – 42  
 C++,  31 – 46 ,  711 – 717  
 constructors,  33 – 34 ,  711 ,  713 – 714  
 data members,  3  
 derived (subclass),  40 – 42  
 friend,  422  
 header (.h) fi le,  32 ,  711 – 713  
 implementation fi le,  713 – 716  
 inheritance,  3 ,  40 – 46 ,  716 – 717  
 instance,  2 ,  711  
 Java programming,  785 – 787  
 member functions,  3 ,  711  
 methods,  3 ,  711  
 object orientation,  2 ,  711  
 private,  711  
 programmer-defi ned exception, 

 239 – 240  
 public,  711  
 Python,  793 – 795  
 Standard Template Library (STL),  215  
 templates,  31   

clear method,  110 ,  145 – 146 ,  257 ,  272 , 
 280 ,  440 ,  505 ,  528   

  Closed-form formula,  185   
  Cluster,  551   
  Code (text) storage,  120   
  Collisions, resolving,  549 – 554   
  Comments,  686 – 687 ,  778 ,  790   
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  Compile error prevention, C++,  35 – 36   
  Composition,  342 – 343   
  Compound statements { }, 700,  790   
  Computer science modeling,    see

Simulations
  Concatenation operator +, overloading, 

 419 – 420   
  Conditional expressions,  692   
  Connected component,  611   
  Connected graphs,  605 ,  618 – 619   
const declaration,  34 – 35 ,  71   
  Constants,  688 – 689 ,  783   
  Constructors,  33 – 34 ,  100 – 101 ,  139 , 

 146 – 148 ,  245 – 246 ,  274 ,  343 ,  359 , 
 462 – 463 ,  711 ,  713 – 714  

 array-based implementation,  100 – 101  
 binary tree implementation,  462 – 463  
 C++ class,  33 – 34 ,  711 ,  713 – 714  
 copy,  146 – 148 ,  245 – 249 ,  463  
 core methods using,  100 – 101 ,  139  
 containment and,  343 ,  359  
 execution order of,  343  
 link-based implementation,  139 , 

 146 – 148 ,  245 – 246 ,  274 ,  359 , 
 462 – 463  

 lists,  274  
 sorted list implementation,  359   
 stacks,  245 – 246  

  Containers,  671 – 681  
 adapters,  673 – 674  
 associative  678 – 681  
 sequence,  674 – 678   

  Containment,  342 – 343 ,  357 – 362  
 aggregation,  343  
 composition,  342 – 343  
 constructors/destructors and,  343 ,  359  
 effi ciency and,  360 – 362  
 execution order and,  343  
has-a  relationships,  342 – 343  
 header (.h) fi le,  358 – 359  
 link-based implementation and, 

 357 – 362  
 methods for,  359 – 362  
 sorted lists,  357 – 362   

contains method,  106 ,  143 – 144 ,
 440 ,  528   

  Converting a character string to an 
integer,  548 – 549   

  Copy constructor,  146 – 148 ,  245 – 249 ,  463   
copyChain method,  354 – 355   
  Core group,  97   
  Core methods,  97 – 98 ,  100 – 105 ,  139 – 142  
add,  101 – 102 ,  139 – 140  
 ADT approach,  97 – 98  

 array-based implementation,  97 – 98 , 
 100 – 105  

 bag implementation,  100 – 105 , 139 – 142  
 constructors,  100 – 101 ,  139  
getCurrentSize,  102 ,  142  
 initializers for,  101  
isEmpty,  102 ,  142  
 link-based implementation,  139 – 142  
 testing,  103 – 105 ,  142  
toVector,  102 ,  140 – 142   

count function,  500   
  Coupled modules,  5   
cout statements,  64 ,  737   
  Cubic algorithm,  296   
  Cycle, graph path,  605    

D
  Dangling pointers,  123 ,  127 – 130   
  Data abstraction,  1 – 29  

 abstract data types (ADT),  11 – 26  
 object-oriented concepts,  2 – 4  
 solutions,  2 – 5  
 specifi cations,  6 – 11   

  Data fi elds, C++,  33   
  Data fl ow,  6   
  Data members,  3   
  Data organization, recursion for,  76 – 85   
  Data processing,    see  External storage  
  Data records,  638   
  Data specifi cations, ADT,  19 – 22   
  Data structure, ADT,  12 – 14   
  Data-type parameter,  38   
  Debugging,  722 ,  736 – 738   
  Deep copy,  147 – 148   
  Default constructor,  34   
  Degenerative (base) case,  49   
delete operator,  122 – 123 ,  131   
  Depth-fi rst search (DFS) strategy, 

 611 – 613 ,  619 – 620   
  Deque STL operations,  677   
dequeue method,  374 – 375 ,  403 – 404   
  Derived class (subclass),  40 – 42 , 

 334 – 336   
  Descendant, tree relationships,  427   
  Design, ADT,  14 – 16   
  Destructors (~),  33 – 34 ,  146 ,  245 – 246 , 

 280 ,  343 ,  359 ,  463  
 binary tree implementation,  463  
 C++,  33 – 34  
 containment of,  343 ,  359  
 execution order of,  343  
 link-based implementation,  146 , 

 245 – 246 ,  280 ,  359 ,  463  

 sorted list implementation,  359  
 stacks,  245 – 246  
 virtual,  245 – 246   

  Dictionaries,  525 – 566 ,  646 – 665  
 abstract data type (ADT),  526 – 531  
 array-based implementation, 

 534 – 536  
 balanced search (B-trees),  654 – 662  
 binary search tree implementation, 

 533 – 534 ,  536 – 538  
 external fi le organization,  646 – 665  
 hashing,  544 – 562 ,  651 – 654  
 header (.h) fi les,  533 ,  535 ,  537  
 implementations of,  531 – 544 ,

  559 – 562  
 indexing fi les,  648 – 651 ,  664 – 665  
 ineffi ciency of traversal and hashing,  559 
 interface for,  530 – 531  
 linear implementations,  531 – 534  
 multiple indexing,  664 – 665  
 operations,  527 – 529  
 order of insertion, retrieval, removal, 

and traversal,  539 – 534  
 perspective and,  538 – 539 ,  544  
 search key for,  526 – 527 ,  529  
 traversal operations,  529 ,  539 – 544 ,  559 , 

 662 – 664   
  Dijkstra’s shortest path algorithm,  624 – 625   
  Direct access fi les,  638   
  Directed edge,  605 – 606   
  Directed graph (digraph),  173 ,  605 – 606   
  Directed path,  173 ,  211   
  Disconnected graph,  605   
displayList function,  259   
  Distance between iterators,  495   
distance function,  500   
  Divide-and conquer-strategy,  49 – 50 ,  314   
do statements,  703 – 704   
  Documentation, programming and, 

 728 – 729 ,  777 – 778   
  Double-ended queue (deque),  391   
  Double hashing,  552 – 553 ,  555   
  Drivers,  740   
  Dump functions,  737 – 738   
  Dynamic allocation of arrays,  130 – 132   
  Dynamic (late) binding,  338    

E
  Early binding,  118 – 120   
  Edges,  426 ,  604 – 609, 611, 616,

618–624, 627–628   
  Effi ciency,  85 – 87 ,  360 – 362 ,  448 – 449 , 

 554 – 557  
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 algorithms,  289 – 304 ,  305 – 332  
 big O notation for,  294 – 298  
 binary search trees,  448 – 449  
 containment and,  360 – 362  
 execution time,  292 – 293  
 factorial of  n ,  50 – 54 ,  85 – 86  
 growth rates,  293 – 294  
 hashing,  554 – 557  
 load factor  ,  554 – 555  
 measurement of,  291 – 300  
 perspective and,  298 – 300  
 recursion and,  85 – 87  
 searching algorithms,  300 – 301  
 solution cost and,  290  
 sorted list implementation,  360 – 362  
 sorting algorithms,  305 – 332  
 tail recursion,  87   

  Encapsulation, object-oriented 
programming and,  3 – 4   

enqueue method,  374 – 375 ,  402 – 403   
Entry class,  533   
  Enumeration, C++,  690   
equal function,  500 – 501   
  Equality operator ==,  495   
  Error handling,  726   
  Error prevention,  35 – 36 ,  732 – 735  

 compile errors,  35 – 36  
 input data errors,  732 – 734  
 logic errors,  734 – 735   

  Euler circuit,  627 – 628   
  Event-driven simulation,  384 – 388   
  Event list,  385   
  Event loops,  384 – 385   
  Evolutionary development,  750   
  Exceptions,  227 – 240 ,  249 – 250  

 ADT stack implementation using, 
 249 – 250  

 assertions,  229 – 230  
 catching,  233 – 236  
 handling,  227 ,  233 – 239  
javadoc tag @throws,  232  
 methods and,  228  
out_of_range,  236 – 238  
 programmer-defi ned classes,  239 – 240  
 runtime error,  232  
 throwing,  230 – 233  
 uncaught,  236 – 239   

  Execution order, constructors and 
destructors,  343   

  Execution time, algorithm effi ciency and, 
 292 – 293   

  Exhaustive search,  173 – 177 ,  210 – 215   
  Explicit type conversions,  692   
  Exponential algorithm,  296   

  Expressions, C++,  691 – 693   
  Extensible methods,  130   
  External sort algorithm,  306   
  External storage,  637 – 669  

 balanced search trees (B-trees) for, 
 654 – 662  

 data processing in,  637 – 699  
 dictionaries,  646 – 665  
 fi les,  638 – 646  
 hashing,  651 – 654  
 indexing fi les,  648 – 651 ,  664 – 665  
 merge sort algorithm,  640 – 646  
 multiple indexing,  649 ,  664 – 665  
 sorting data in,  640 – 646  
 traversals,  662 – 664    

F
  Factorial of  n ,  50 – 54 ,  85 – 86 ,  183 – 184   
  Fail-safe programming,  731 – 735   
  Fibonacci sequence problem,  79 – 82   
  Files,  483 – 486 ,  638 – 646 ,  648 – 654 , 

 664 – 665 ,  763 – 772  
 accessing,  771 – 772  
 adding to,  771  
 binary,  763 ,  772  
 blocks,  638 – 640  
 buffers,  639  
 C++,  763 – 772  
 data,  638 ,  640 – 646  
 direct access fi les,  638  
 external storage,  638 – 646 ,  648 – 654 , 

 664 – 665  
 hashing,  651 – 654  
 indexing,  648 – 651 ,  664 – 665  
 input/output,  763  
 manipulating,  770 – 772  
 multiple indexing,  649 ,  664 – 665  
 opening and closing,  764 – 765  
 reading and writing,  765 – 770  
 saving a binary search tree in,  483 – 486  
 searching,  771  
 sequential access fi les,  638  
 sorting data in,  640 – 646  
 text,  763 – 772   

find function,  500   
findBox class,  229 – 230 ,  232   
findSuccessorNode method,  477 – 478   
  Fixed-sized arrays,  98   
  Flight maps,  175 – 176 ,  210 – 216 ,  624 – 627  

 backtracking,  175 – 176  
 shortest path,  624 – 627  
 stacks used for search of,  210 – 216   

  Flow control,  783 – 784   

  Folding,  547 – 548   
for statements,  702 – 703   
for_each function,  499 – 500   
  Free list,  456 – 458   
  Free store (heap),  120 – 128   
  Friend access, overloading operator<< 

and,  421 – 423   
  Friend class,  422   
  Friend method,  422   
  Full binary tree,  431   
  Functional (procedural) abstraction,  9   
  Functions,  3 ,  7 ,  9 – 10 ,  324 ,  499 – 501 , 

 545 – 549 ,  696 – 699 ,  705 ,  784 – 785 , 
 792 – 793  

 arguments,  697 – 698  
 C++,  696 – 699  
 hash,  545 – 549  
 information hiding,  9 – 10  
 iterators,  499 – 501  
 Java programming,  784 – 785  
 modules and,  3 ,  7 ,  9 – 10  
 parameters,  697 – 698  
 passing arrays to,  705  
 postcondition and precondition,  7  
 Python,  792 – 793  
 quick sort algorithm,  324  
 semicolon (;) for,  698  
 standard,  699  
 valued,  697 – 698  
 void,  697   

  Fundamental data types,  687 – 688    

G
  General trees,  428 ,  487 – 488   
getCurrentSize method,  102 ,  142   
getEntry method,  257 ,  269 – 270 ,  274 , 

 298 – 299 ,  440 ,  481   
getFrequencyOf method,  105 – 106 , 

 113 – 114 ,  143   
getHeight method,  439 ,  464 ,  505   
getIndexOf method,  109 – 110 ,  112   
getItem method,  33 ,  34 ,  134 ,  528   
getLeftChildIndex method,  513 – 514   
getLength method,  256   
getNext method,  134 – 135   
getNodeAt method,  275   
getNodeBefore method,  356 ,  357   
getNumberOfItems method,  528   
getNumberOfNodes method,  440 ,  505   
getParentIndex method,  514   
getPointerTo method,  149   
getPosition method,  349 – 350 ,  364   
getRightChildIndex method,  514   
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getRootData method,  440   
  Global variable avoidance,  726   
GoodMemory class,  125 – 128   
  Grammar,  160 – 162   
  Graphs,  603 – 635  

 abstract data type (ADT),  606 – 611  
 adjacency list and matrix for,  608 – 611  
 breadth-fi rst search (BFS) strategy, 

 613 – 615 ,  620 – 621  
 circuits,  627 – 630  
 connected,  605 ,  618 – 619  
 depth-fi rst search (DFS) strategy, 

 611 – 613 ,  619 – 620  
 directed (digraph),  605 – 606  
 disconnected,  605  
 edges,  604 – 606  
 implementation of,  608 – 611  
 interface for,  607 – 608  
 minimum spanning trees,  621 – 624  
 multigraph,  605  
 operations,  607  
 paths,  604 – 605 ,  624 – 627  
 planar,  630  
 shortest path,  624 – 627  
 spanning trees,  618 – 624  
 subgraph,  604  
 topological sorting,  615 – 618  
 traversals,  611 – 615  
 undirected,  605  
 weighted,  605   

  Growth rate function  f ( n ),  294 ,  297   
  Growth rates, algorithm effi ciency and, 

 293 – 294    

H
  Hamilton circuit,  629   
  Handling exceptions,  227 ,  233 – 239   
has-a  relationships,  342 – 343   
  Hash tables,  545 ,  553 – 554 ,  559   
  Hashing,  544 – 562 ,  651 – 654 ,  680 – 681  

 collision–resolution schemes,  547 – 549  
 comparison of techniques,  556 – 557  
 converting a character string to an 

integer,  548 – 549  
 dictionaries and,  544 – 562 ,  651 – 654  
 dictionary implementation using, 

 559 – 562  
 double,  552 – 553 ,  555  
 effi ciency of,  554 – 557  
 external fi le organization using, 

 651 – 654  
 folding,  547 – 548  
 hash functions for,  545 – 549 ,  557 – 59  

 hash table for,  545 ,  553 – 554  
 ineffi ciency of dictionary traversal and, 

 559  
 linear probing,  550 ,  555  
 load factor  ,  554 – 555  
 modulo arithmetic for,  548  
 open addressing,  550 – 553  
 probe sequence,  550 – 552 ,  555  
 quadratic probing,  551 – 552 ,  555  
 rehashing,  553  
 resolving collisions,  549 – 554  
 separate chaining,  554 ,  555 – 556 , 

 559 – 562  
 STL functions,  680 – 681   

  Head (front) of a list,  254   
  Head pointer,  135   
  Header (.h) fi les,  32 ,  99 – 100 ,  138 – 139 , 

 242 – 243 ,  266 – 267 ,  272 – 274 , 
 353 – 354 ,  358 – 359 ,  362 – 363 ,  366 , 
 401 – 402 ,  407 – 408 ,  458 – 462 , 
 482 – 483 ,  711 – 713 ,  773 – 776  

 abstract data types (ADT),  99 – 100 , 
 242 – 243  

 array-based implementation,  99 – 100 , 
 242 – 243 ,  266 – 267 ,  407 – 408 , 
 512 – 513 ,  535  

 bag implementation,  99 – 100  
 binary search tree implementation, 

 482 – 483 ,  537  
 binary tree implementation,  458 – 462  
 containment and,  358 – 359  
 C++ class,  32 ,  711 – 713 ,  773 – 776  
 dictionaries,  533 ,  535 ,  537  
 linear implementation,  533  
 link-based implementation,  138 – 139 , 

 272 – 274 ,  353 – 354 ,  358 – 359 , 
 401 – 402 ,  458 – 462 ,  482 – 483  

 list implementation,  266 – 267 , 272 – 274  
 private inheritance and,  366  
 public inheritance and,  362 – 363  
 queue implementation,  401 – 402 , 

 407 – 408  
 sorted list implementation,  353 – 354 , 

 358 – 359 ,  362 – 363 ,  366  
 stack implementation,  242 – 243  
 standard functions and,  773 – 776   

headptr operator,  135 – 136   
heapCreate method,  514 ,  516   
heapRebuild method,  514 – 515   
  Heaps,  503 – 524 ,  683 – 684  

 abstract data type (ADT),  503 – 506  
 adding a new item,  511 – 512  
 algorithms for,  508 – 512 ,  683 – 684  
 array transformation into,  515 – 516  

 array-based implementation,  506 – 516  
 binary search trees compared to,  518  
 fi nite, distinct priority values,  518  
 header (.h) fi le,  512 – 513
heap sort, 519–521  
 implementation of,  506 – 516  
 interface for,  505 – 506  
 maxheap and minheap,  504  
 methods,  513 – 516  
 operations,  504 – 505  
 priority queue implementation by, 

 516 – 518  
 queues and,  518  
 removing and retrieving items,  508 – 511  
 sort,  519 – 521    

I
  Identifi ers, C++,  160 – 161 ,  687   
if statements,  699 – 701 ,  737   
  Implementation,  12 ,  16 – 17 ,  36 – 37 , 

 95 – 116 ,  133 – 158 ,  241 – 252 , 
 265 – 288 ,  347 – 371 ,  397 – 413 , 
 455 – 492 ,  497 – 499 ,  506 – 518 ,  
 531 – 544 ,  559 – 562 ,  608 – 611 , 
 713 – 716 ,  794 – 795  

 abstract data types (ADT),  12 ,  16 – 17 , 
 241 – 252  

 adjacency matrix for,  608 – 611  
 adjacency list for,  608 – 611  
 array-based,  95 – 116 ,  242 – 244 , 

 266 – 272 ,  405 – 410 ,  456 – 458 , 
 506 – 516 ,  534 – 536  

 backtracking and,  180 – 183  
 binary search trees,  471 – 483 ,  533 – 534 , 

 536 – 538  
 binary trees,  456 – 471  
 C++ (.cpp) fi les,  32 ,  713 – 716  
 C++ solution,  36 – 37  
 comparison of,  153 – 154 ,  285 ,  410  
 dictionaries,  531 – 544 ,  559 – 562  
 exceptions and,  249 – 250  
 graphs,  608 – 611  
 hashing used for,  559 – 562  
 heaps,  506 – 518   
 iterators,  497 – 499  
 linear,  531 – 534  
 link-based,  133 – 158 ,  245 – 249 , 

 272 – 285 ,  400 – 405 ,  410 ,  458 – 483  
 lists,  265 – 288 ,  347 – 371 ,  398 – 400  
 priority queues,  411 – 412 ,  516 – 518  
 private/public data members,  99 ,  110 , 

 149 ,  244  
 Python programming,  794 – 795  
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 queues,  397 – 413  
 selection of,  538 – 544  
 separate chaining used for,  559 – 562  
 sorted lists,  347 – 371  
 stacks,  241 – 252  
 traversals and,  465 – 471  
 trees,  455 – 492   

  Implicit type conversions,  692   
  Indexing external fi les,  648 – 651 ,  664 – 665 
  Inductive hypothesis and conclusion,  184 , 

 185   
  Inequality operator !=,  495   
  Infi nite recursion,  53   
  Infi x expressions,  164 – 166 ,  205 – 209   
  Information hiding,  9 – 10   
  Inheritance,  3 – 4 ,  40 – 46 ,  333 – 342 , 

 362 – 367 ,  716 – 717  
 base class (superclass),  40 – 44  
 C++ class,  40 – 46 ,  716 – 717  
 class relationships,  333 – 342  
 derived class (subclass),  40 – 42 , 

 334 – 336  
 dynamic (late) binding,  338  
 multiple,  335  
 object-oriented programming 

and,  3 – 4  
 overriding methods,  42 – 44 ,  365  
 private,  340 ,  366 – 367  
 protected,  340  
 public,  340 ,  362 – 365  
 redefi ning methods,  335 – 337  
 relationships with,  333 – 342  
 sorted list implementation,  362 – 367  
 static (early) binding,  337 – 338   

  Initializers,  101   
  Inorder successor,  476 – 477   
  Inorder traversals,  437 ,  448   
inorderTraverse method,  440   
  Input data error prevention,  732 – 734   
  Input iterator,  494   
  Input line storage,  194   
  Input/output,  693 – 696 ,  787 – 788 , 

 790 – 791  
iostream used for,  693 – 696  
 Java programming,  787 – 788  
 Python programming,  790 – 791   

insert method,  256 ,  268 – 269 ,  275 – 277 , 
 281 – 282   

  Inserting data/items,  311 –314, 471– 473 , 
 575 – 579 ,  587 – 591 ,  594 – 596 , 
 597 – 660  

 algorithms,  471 – 473 ,  577 – 579  
 balanced search trees,  575 – 579 , 

 587 – 591 ,  594 – 596 ,  597 – 660  

 external B-trees,  599 – 660  
 rotation of tree for,  597 – 599  
 splitting nodes,  589 – 591 ,  594 – 596  
 sort algorithm,  311 – 314   

  Insertion sort algorithm,  311 – 314   
insertSorted method,  349 ,  355 – 356 , 

 357 ,  363 – 365   
  Instance of a class,  2 ,  711   
  Instantiation,  2   
  Integrated Development Environment 

(IDE),  736 – 738   
  Interfaces,  6 ,  10 – 11 ,  22 – 24 ,  199 , 

 261 – 262 ,  350 – 351 ,  376 ,  441 – 442 , 
 505 – 506 ,  530 – 531 ,  607 – 608  

 bags,  22 – 24  
 binary trees,  441 – 442  
 complete,  11  
 dictionaries,  530 – 531  
 graphs,  607 – 608  
 heaps,  505 – 506  
 lists,  261 – 262 ,  350 – 351  
 methods,  6  
 minimal,  11  
 module specifi cations,  6 ,  10 – 11  
 queues,  376  
 signature,  11  
 sorted lists,  350 – 351  
 stacks,  199  
 template,  22 – 24 ,  261 – 262 ,  350 – 351 , 

 376 ,  441 – 442   
  Internal sort algorithm,  306   
  Invariant,  759   
iostream, input/output using,  693 – 696   
is-a  relationships,  340 – 341   
isEmpty method,  102 ,  142 ,  197 , 

 256 ,  268 ,  374 – 375 ,  380 ,  439 ,  504 , 
 528   

itemCount method,  514 – 515   
  Iteration, recursion compared to,  48   
  Iteration statements,  702 – 704 ,  790   
  Iterative development,  749 – 750   
  Iterators,  493 – 501  

 category tags,  495  
 distance between,  495  
 equality operator = =,  495  
 functions for,  499 – 501  
 implementation of,  497 – 499  
 inequality operator !=,  495  
 input,  494  
 move to next item (postfi x) operator ++, 

 495 ,  496  
 move to previous item (prefi x) 

operator ––,  495 ,  496  
 operations,  494 – 497  

 program components as,  493 – 494  
 return item operator *,  495    

J
  Java programming,  781 – 788  

 arrays,  783  
 boolean data types,  782  
 classes,  785 – 787  
 comments,  782  
 constants,  783  
 fl ow control,  783 – 784  
 functions,  784 – 785  
 input/output,  787 – 788  
 string data types,  782 – 783    

K
  Key words,  687    

L
  Language,  160 – 164 ,  203 – 205 ,  686 – 693  

 assignment,  691 – 693  
 C++,  160 – 161 ,  686 – 693  
 comments,  686 – 687  
 constants,  688 – 689  
 enumeration,  690  
 expressions,  691 – 693  
 fundamental data types,  687 – 688  
 grammar and,  160 – 162  
 identifi ers,  160 – 161 ,  687  
 key words,  687  
 literal constants,  688 – 689  
 named constants,  689  
 palindromes,  162 – 163  
 recognition algorithms,  160 – 163  
 stacks,  203 – 205  
 strings of A  n  B  n   formation,  163  
 strings, recognition in,  203 – 205  
typedef statement,  690  
 variables,  688   

  Last in, fi rst out (LIFO) property,  196 – 197 
  Late binding,  120   
  Leaf, tree relationships,  427 ,  428   
leftChildPtr operator,  472 – 473   
  Libraries, C++, 717–718.    See also

Standard Template Library (STL)  
  Linear algorithm,  296   
  Linear chain,  400   
  Linear implementations,  531 – 534   
  Linear probing,  550 ,  555   
  Link–based implementation,  133 – 158 , 

 245 – 249 ,  272 – 285 ,  352 – 357 , 
 400 – 405 ,  410 ,  458 – 483  
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 Link–based implementation (cont’d)
abstract data types (ADT),  245 – 249  
 array-based implementation compared 

to,  153 – 154 ,  285 ,  410  
 bags,  137 – 148  
 binary search trees,  471 – 783  
 binary trees,  458 – 471  
 constructors for,  139 ,  146 – 148 ,  274 , 

 462  
 copy constructors,  146 – 148 ,  245 – 246 , 

 354 – 355 ,  463  
 core methods for,  139 – 142  
 destructors (~) for,  146 ,  280 ,  463  
 header (.h) fi les,  138 – 139 ,  272 – 274 , 

 353 – 354 ,  401 – 402 ,  458 – 462  
 lists,  272 – 285  
 methods for,  139 – 148 ,  274 – 285 , 

 354 – 357 ,  402 – 405 ,  464  
 multiple ADT,  150 – 152  
Node class,  136 – 137  
 nodes and,  134 – 136 ,  458 – 459  
 pointers for,  134 – 136 ,  400 – 401  
 queues,  400 – 405 ,  410  
 recursion and,  148 – 149 ,  281 – 285  
 removal of queue items,  404 – 405  
 sorted lists,  352 – 357  
 stacks,  245 – 249  
 testing,  142 ,  150 – 152  
 traversal operations,  465 – 471  
 virtual destructors (~) for,  245 – 246   

  Link-based lists, overloaded operators 
and,  416 – 420   

  Linked chain of nodes,  135   
LinkedBag class,  138 – 140 ,  146 – 149   
LinkedIterator class,  496 – 500   
LinkedList class,  272 – 285 ,  416 – 422   
LinkedQueue class,  401 – 404   
LinkedSortedList class,  353 – 356   
ListQueue class,  398 – 400   
  Lists,  253 – 264 ,  265 – 288 ,  347 – 371 , 

 398 – 400 ,  608 – 611 ,  677 – 678  
 abstract data type (ADT) specifi cations, 

 254 – 259 , 
 adjacency,  608 – 611  
 alphabetical order of,  260 – 261  
 array-based implementation,  266 – 272  
 axioms,  257 – 259  
 displaying items on,  259  
 graph implementation,  608 – 611  
 head (front),  254  
 implementation of,  265 – 288 ,  347 – 371  
 interface template for,  261 – 262  
 link-based implementation,  272 – 285  
 operations,  255 – 257 ,  259 – 261  

 predecessor and successor,  254  
 queue implementation using,  398 – 400  
 recursion and,  281 – 285  
 replacing items,  260  
 sorted,  347 – 371  
 STL operations,  677 – 678  
 tracing additions to,  282 – 285   

  Literal constants,  688 – 689   
  Load factor  ,  554 – 555   
  Local environment,  54   
  Logic error prevention,  734 – 735   
  Logical expressions,  691 – 692   
  Loop invariants,  759 – 760   
  Loops,  107 ,  292 – 293 ,  737    

M
MagicBox class,  32 ,  43 – 44   
  Manipulators, C++,  696 – 697   
  Map and multimap STL operations, 

 680 – 681   
  Mathematical induction,  183 – 186 , 

 755 – 758   
MAX_QUEUE declaration,  405 – 407 ,  409 – 410 
  Maxheap,  504   
  Median-of-three pivot selection,  321 – 322   
  Member functions,  3 ,  711   
  Memory leak,  121 ,  123 – 126 ,  136   
  Memory, 118–128.    See also  External 

storage
 allocation,  118 – 120  
 code (text) storage,  120  
 deallocating,  122 – 123  
 early binding,  118 – 120  
 free store (heap),  120 – 128  
 pointers for,  120 – 128  
 run-time stack,  118  
 static storage,  120  
 variables,  118 – 122   

  Merge sort algorithm,  314 – 319 ,  640 – 646   
  Messages, object collaboration as,  3   
  Methods,  3 ,  34 – 35 ,  100 – 114 ,  118 – 120 , 

 128 – 130 ,  139 – 149 ,  228 ,  243 – 244 , 
 268 – 272 ,  274 – 285 ,  328 ,  333 – 348 , 
 354 – 357 ,  359 – 362 ,  363 – 365 , 
 402 – 405 ,  422 ,  513 – 516 ,  711 , 
 724 – 726  

 accessor,  34  
 ADT bag implementation,  100 – 110 , 

 139 – 148  
 ADT stack implementation,  243 – 244  
 array-based implementation,  100 – 114 , 

 243 – 244 ,  268 – 272 ,  513 – 516  
 C++ class,  34 – 35 ,  44 – 46 ,  118 – 120 ,  711  

 containment and,  359 – 362  
 core,  100 – 105 ,  139 – 142  
 dynamic (late) binding,  338  
 exceptions and,  228  
 friend,  422  
 heaps,  513 – 516  
 inheritance and,  333 – 348  
 interface,  6  
 link-based implementation,  139 – 149 , 

 274 – 285 ,  354 – 357 ,  359 – 362 , 
 402 – 405  

 list implementation,  268 – 272 ,  274 – 285  
 mutator,  35  
 overriding,  328 ,  365  
 passing a parameter by constant 

reference,  35  
 polymorphism and,  128 – 130 ,  328  
 public inheritance and,  363 – 365  
 programming use of,  724 – 726  
 pure virtual,  45  
 queues,  402 – 405  
 recursion and,  112 – 114 ,  148 – 149 , 

 281 – 285  
 redefi ning,  335 – 337  
 removing entries/items,  107 – 110 , 

 404 – 405  
 sorted lists,  354 – 357 ,  359 – 362 , 

 363 – 365  
 static (early) binding,  337 – 338  
 testing,  103 – 105 ,  110 – 111 ,  142  
 virtual,  44 – 46 ,  128 – 130   

  Minheap,  504   
  Minimum spanning trees,  621 – 624   
  Modifi ability of programming,  729 – 730   
  Modularity, programming and,  722 – 723   
  Modules,  3 – 4 ,  6 – 11  

 abstraction,  8 – 9  
 cohesion of,  4  
 coupling of,  5  
 data abstractions,  9  
 data fl ow,  6  
 functional (procedural) abstraction,  9  
 information hiding,  9 – 10  
 interfaces,  6 ,  10 – 11  
 operation contracts,  6 – 8  
 postconditions and preconditions,  7  
 solution results and,  4 – 5  
 specifi cations,  6 – 11  
 functions and,  3 ,  7 ,  9 – 10   

  Modulo arithmetic for hashing,  548   
  Move to next item (postfi x) operator ++, 

 495 ,  496   
  Move to previous item (prefi x) 

operator ––,  495 ,  496   
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  Multigraph,  605   
  Multipath recursion,  72   
  Multiple inheritance,  335   
  Mutator methods,  35    

N
n -ary tree,  428   
  Named constants,  689 ,  730   
  Namespace, C++,  37   
  Nested loops,  292 – 294   
new operator,  120 – 123   
Node class,  136 – 137   
nodeptr operator,  134 – 135   
  Nodes,  134 – 136 ,  292 ,  426 – 427 ,  430 – 435 , 

 438 ,  456 – 459 ,  465 – 467 ,  589 – 591 , 
 594 – 596 ,  597 – 599  

 array-based implementation using, 
 456 – 458  

 balanced search trees,  589 – 591 , 
 594 – 596 ,  597 – 599  

 binary trees and,  431 – 435 ,  438 , 
 456 – 459 ,  465 – 467  

 execution time and,  292  
 free list,  456 – 458  
 level of,  430  
 link-based implementation using, 

 134 – 136 ,  458 – 459 ,  465 – 467  
 linked chain of,  135 ,  292  
 number of,  433 – 435  
 parent-child relationships,  426 – 427  
 rotation of tree and,  597 – 599  
 splitting for data insertion,  589 – 591 , 

 594 – 596  
 subtree of,  427  
 traversal of linked,  292 ,  465 – 467  
 tree height and,  430 – 435  
 trees,  426 – 427 ,  430 – 435 ,  456 – 459  
 visiting,  438 ,  465 – 467   

  Nonrecursive traversal,  467 – 471   
nullptr operator,  122 – 123 ,  127 – 128 , 

 134 – 135 ,  472 – 473    

O
  Object type compatibility,  341   
  Object-orientation,  2 – 4   
  Object-oriented analysis (OOA),  2 – 4   
  Object-oriented analysis and design 

(OOAD),  2   
  Object-oriented design (OOD),  3   
  Object-oriented programming (OOP), 

 711   
  Objects,  2 ,  227   

  Open addressing,  550 – 553   
  Opening and closing text fi les,  764 – 765   
  Operations, 15–16, 21, 175–176, 

197–200, 255–257, 259–261, 
348–350, 351–352, 374–375, 
379–380, 438–441, 443–445, 
494–497, 504–505, 527–529, 607, 
672–673.    See also  Traversal 
operations

 abstract data types (ADT),  15 – 16 ,  21 , 
 197 – 200 , 

 arrays,  675  
 bags,  21  
 binary search trees,  443 – 445  
 binary trees,  438 – 441  
 deque operations,  677  
 dictionaries,  527 – 529  
 fl ight maps,  175 – 176  
 graphs,  607  
 heaps,  504 – 505  
 iterators,  494 – 497  
 lists,  255 – 257 ,  259 – 261 ,  677 – 678  
 map and multimap,  680 – 681  
 priority queues,  379 – 380 ,  674  
 queues,  374 – 375 ,  673  
 set and multiset,  679 – 680  
 sorted lists,  348 – 350 ,  351 – 352  
 stacks,  197 – 200 ,  673  
 standard template library (STL), 

 672 – 673  
 vectors,  676   

  Order of an algorithm,  294   
out_of_range exception,  236 – 238   
  Overloaded operators,  415 – 423  

 assignment operator =,  417 – 419  
 concatenation operator +,  419 – 420  
 equality comparison operator = =, 

 416 – 417  
 friend access and,  421 – 423  
 linked-based lists and,  417 – 420  
 method for,  416 – 417  
 output stream operator <<,  421 – 423   

  Overriding base class,  42 – 44   
  Overriding methods,  338 ,  365    

P
  Palindromes,  162 – 163 ,  377 – 378   
  Parade organization problem,  82 – 83   
  Parameterized constructor,  34   
  Parameters,  35 ,  697 – 698   
  Parent, tree relationships,  426   
  Parent-child relationships,  426 – 429 , 

 471 – 480   

  Partitioning,  74 – 75 ,  319 – 320 ,  322 – 324  
 adjustment of algorithm,  322 – 324  
 arrays,  74 – 75 ,  320  
 pivot, about the,  319 – 320   

  Passing a parameter by constant 
reference,  35   

  Passing arrays to functions,  705   
  Paths,  448 ,  604 – 606 ,  624 – 627  

 cycle,  605  
 directed,  606  
 edges and,  604 – 606  
 graphs,  604 – 606 ,  624 – 627  
 shortest,  624 – 627  
 trees,  448  
 vertices and,  604 – 605   

peek operation,  197 – 198 ,  243 – 244 , 
 249 – 250 ,  380   

peekFront method,  374 – 375 ,  404   
peekTop method,  505 ,  516   
  Perfect hash function,  546   
  Pivot selection,  321 – 322   
  Pivot value,  74 – 75 ,  319 – 320   
PlainBox class,  32 – 33 ,  36 – 37 ,  38 , 

 129 – 130 ,  335 ,  793 – 795   
  Planar graphs,  630   
  Pointers,  120 – 128 ,  400 – 401 ,  

471 – 473
 asterisk (*) symbol for variables,  121  
 binary search tree implementation, 

 471 – 473  
 dangling,  123 ,  127 – 130  
 deallocating memory for,  122 – 123  
delete operator,  122 – 123  
 head,  135  
headptr operator,  135 – 136  
 free store (heap) and,  120 – 128  
 link-based implementation and, 

 134 – 136 ,  400 – 401 ,  471 – 473  
 memory leaks and,  121 ,  123 – 126 ,  135  
new operator and,  120 – 122  
nodePtr,  134 – 135  
nullptr,  122 – 123 ,  127 – 128  
 queue implementation,  400 – 401  
 tail,  400   

  Polymorphic methods,  338   
  Polymorphism, object-oriented 

programming and,  3 – 4   
pop operation,  197 – 198   
  Position-oriented ADTs,  389   
  Postcondition,  7   
  Postfi x expressions,  165 – 166 ,  170 – 171 , 

 205 – 209   
  Postfi x operator ++,  495 ,  496   
  Postorder traversals,  436 ,  437 – 438   
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postorderTraverse method,  440   
  Precondition,  7   
  Predecessor, lists,  254   
  Predicate expressions ( ), Python,  790   
  Prefi x expressions,  165 – 170   
  Prefi x operator ––,  495 ,  496   
  Preorder traversals,  436 – 437   
preorderTraverse method,  440   
  Preprocessor directives,  36   
  Prim’s algorithm,  622 – 623   
  Priority queues,  379 – 388 ,  411 – 412 , 

 516 – 518 ,  674  
 abstract data types (ADT),  379 – 381  
 event loops using,  384 – 385  
 heap implementation of,  516 – 518  
 implementation of,  411 – 412  
 operations,  379 – 380  
 simulations using,  381 – 388  
 sorted lists and,  411 – 412  
 STL operations,  674  
 tracking assignments,  380 – 381   

  Priority value,  379   
PriorityQueue class,  380   
  Private inheritance,  340 ,  366 – 367   
  Private/public designation,  40 – 41 ,  99 , 

 110 ,  149 ,  244 ,  338 – 340 ,  711 ,  723 , 
 793  

 array-based implementation,  99 ,  110  
 classes,  40 – 41 ,  711  
 inheritance and,  338 – 340  
 implementation and,  99 ,  110 ,  149 ,  244  
 link-based implementation,  149  
 programming and,  723 ,  793   
 stacks,  244  

  Probe sequence,  550 – 552 ,  555   
  Problem-solving,  2 ,  159 – 192  

 algebraic expressions,  164 – 172  
 backtracking,  172 – 183  
 grammar,  160 – 162  
 language,  160 – 164  
 mathematical induction,  183 – 186  
 palindromes,  162 – 163  
 recognition algorithms,  160 – 163  
 recursion as,  159 – 192  
 strings of A  n  B  n   formation,  163   

  Program modules,  3   
  Programmer-defi ned exception classes, 

 239 – 240   
  Programming,  4 ,  685 – 740 ,  781 – 788 , 

 789 – 796  
 C++,  685 – 740  
 C++ elements compared to Python, 

 790 – 792  
 debugging,  736 – 738  

 documentation,  728 – 729  
 drivers used for,  740  
 ease of use and,  730 – 731  
 error handling,  726  
 fail-safe,  731 – 735  
 global variable avoidance,  726  
 input data error prevention,  732 – 734  
 Integrated Development Environment 

(IDE),  736 – 738  
 Java,  781 – 788  
 methods, proper use of,  724 – 726  
 modifi ability,  729 – 730  
 modularity,  722 – 723  
 named constants,  730  
 object-oriented (OOP),  4 ,  711  
 private data members used for,  723  
 program logic error prevention,  734 – 735 
 Python,  789 – 796  
 readability,  726 – 728  
 reference arguments used for,  734  
 statements,  691 – 693 ,  699 – 701 ,  790  
 stubs used for,  740  
 style,  723 – 729  
 testing,  738 – 740   

  Protected class sections,  338 – 340   
  Public class sections,  338 – 339   
public declaration,  40   
  Public inheritance,  340 ,  362 – 365   
  Pure virtual methods,  45 ,  344 – 345   
push operation,  197 – 198   
  Python programming,  789 – 796  

 C++ elements compared to,  790 – 792  
 classes,  793 – 795  
 comments,  790  
 compound statements { },  790  
 functions,  792 – 793  
 implementation fi le,  794 – 795  
 input/output,  790 – 791  
 iteration statements,  790  
 predicate expressions ( ),  790  
 relational operators,  790    

Q
  Quadratic algorithm,  296   
  Quadratic probing,  551 – 552 ,  555   
Queue class,  374 ,  376 – 378   
  Queues,  373 – 395 ,  397 – 413 ,  516 – 518 ,  673 

 abstract data types (ADT),  373 – 395  
 array-based implementation,  405 – 410  
 circular array strategies,  405 – 407  
 comparison of implementations,  410  
 double-ended (deque),  391  
 heaps and,  516 – 518  

 implementation of,  397 – 413  
 interface template for,  376  
 link-based implementation,  400 – 405  
 lists for implementation of,  398 – 400  
 operations,  374 – 375  
 palindromes recognized from,  377 – 378  
 position-oriented ADTs,  389  
 priority,  379 – 388 ,  411 – 412 ,  516 – 518  
 reading strings of characters,  377  
 rightward drift strategy,  405  
 simulations using,  374 ,  381 – 388  
 STL operations,  673  
 value-oriented ADTs,  389   

Quick sort algorithm,  319 – 327  
 analysis of,  324 – 325  
 functions for,  324  
 merge sort compared to,  326  
 partitioning,  319 – 320 ,  322 – 324  
 pivot value and selection,  319 – 322    

R
  Radix sort algorithm,  327 – 329   
  Rational unifi ed process (RUP),  750 – 752   
  Readability of programming,  726 – 728   
  Reading and writing text fi les,  765 – 770   
  Reading strings of characters,  377   
  Recognition algorithms,  160 – 163   
  Recursion,  47 – 93 ,  112 – 114 ,  148 – 149 , 

 159 – 192 ,  216 – 217 ,  281 – 285  
 airline route search,  172 – 177  
 array-based implementation using, 

 112 – 114  
 arrays and,  67 – 75  
 backtracking and,  172 – 183 ,  216  
 choosing  k  out of  n  things,  83 – 85  
 divide and conquer strategy,  49 – 50  
 effi ciency and,  85 – 87  
 eight queens problem,  177 – 183  
 factorial of  n ,  50 – 54 ,  85 – 86 ,  183 – 184  
 Fibonacci sequence problem,  79 – 82  
 infi nite,  53  
 iteration compared to,  48  
 link-based implementation and, 

 148 – 149 ,  281 – 285  
 list methods and,  281 – 285  
 mathematical induction and,  183 – 186  
 methods for,  112 – 114 ,  148 – 149  
 multipath,  72  
 organizing data,  76 – 85  
 parade organization problem,  82 – 83  
 performing an action,  57 – 66  
 problem-solving techniques using, 

 159 – 192  
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 returning a value,  50 – 57  
 searches,  48 – 49 ,  172 – 177 ,  216 – 217  
 solutions,  48 – 50  
 stack relationships,  216 – 217  
 tail,  87  
 termination,  217  
 Towers of Hanoi problem,  76 – 79 , 

 184 – 185  
 tracing list additions,  282 – 285  
 void functions,  57 – 66   

  Red-black trees,  592 – 596  
 2-3-4 tree representation,  592 – 593  
 inserting data into,  594 – 596  
 removing data from,  594 – 596  
 searching,  594  
 splitting nodes,  594 – 596  
 traversing,  594   

  Reference arguments,  734   
  Rehashing,  553   
  Relational operators,  691 – 692 ,  790   
remove method,  107 – 110 ,  144 – 145 ,  260 , 

 271 ,  276 ,  278 – 280 ,  380 ,  440 ,  444 , 
 505   

removeNode method,  477 – 480   
removeSorted method,  349 ,  364   
removeValue method,  477 – 480   
  Removing entries/items,  107 – 110 , 

 404 – 405 ,  474 – 481 ,  508 – 511 , 
 579 – 585 ,  591 ,  594 – 596 ,  597 – 599 , 
 660 – 662  

 algorithms,  474 – 481 ,  508 – 511 , 
 583 – 585  

 bags,  107 – 110  
 balanced search trees,  579 – 585 ,  591 , 

 594 – 596 ,  597 – 599 ,  660 – 662  
 binary search trees,  474 – 481  
 external B-trees,  660 – 662  
 heaps,  508 – 511  
 queues,  404 – 405  
 rotation of tree for,  597 – 599   

replace function,  260   
  Resizable arrays,  131 – 132   
  Retrieving an entry/item,  481 ,  508   
  Return item operator *,  495   
  Returning a value,  50 – 57  

 box trace,  54 – 57  
 factorial of  n ,  50 – 54  
 infi nite recursion and,  53   

  Reuse, 333–346.    See also  Class 
relationships

rightChildPtr operator,  472 – 473   
  Rightward drift queue implementation 

strategy,  405   
  Root, tree relationships,  427   

  Rotation of AVL trees,  597 – 599   
  Runtime error,  232   
  Runtime stack,  118    

S
  Search and compare STL algorithms, 

 682 – 683   
  Search key,  526 – 527 ,  529   
  Searching,  48 – 49 ,  68 – 72 ,  172 – 177 , 

 210 – 217 ,   300 – 301 ,  445 – 446 , 
 486 – 487 ,  572 – 574 ,  587 ,  594 , 
 611 – 615  

 algorithms,  300 – 301  
 arrays,  68 – 72 ,  486 – 487  
 backtracking and,  172 – 177  
 balanced search trees,  572 – 574 ,  587 , 

 594  
 binary,  48 – 49 ,  68 – 72 ,  300 – 301  
 binary search trees,  445 – 446  
 breadth-fi rst (BFS) strategy,  613 – 615  
 depth-fi rst (DFS) strategy,  611 – 613  
 effi ciency of,  300 – 301  
 exhaustive,  173 – 177 ,  210 – 215  
 graph traversals,  611 – 615  
 recursive solutions from,  48 – 49  
 sequential,  48 ,  300  
 stacks,  210 – 217   

searchS algorithm,  214 – 215   
  Secondary clustering,  551   
  Selecting digits,  547   
  Selection sort algorithm,  306 – 309   
  Selection statements,  699 – 702   
  Separate chaining,  554 – 556 ,  559 – 562   
  Sequence containers,  674 – 678   
  Sequence diagrams,  742 – 744   
  Sequence modifi cation algorithms,  683   
  Sequential access fi les,  638   
  Sequential search,  48 ,  300   
  Set and multiset STL operations,

 679 – 680   
setEntry method,  257 ,  270   
setItem method,  33 ,  35 ,  118 – 120   
setRootData method,  440   
  Shallow copy,  146 – 147   
  Shortest path, fi nding with graphs, 

 624 – 627   
  Siblings, tree relationships,  426   
  Signature,  11   
  Simulations,  374 ,  381 – 388  

 algorithms for,  385 – 388  
 bank problem for,  381 – 382  
 event list,  385  
 event loops,  384 – 385  

 event-driven,  384 – 388  
 priority queues for,  381 – 388  
 processing customers and events, 

 385 – 386  
 time and events,  382 – 384  
 time-driven,  385   

SLPriorityQueue class,  411 – 412   
  Software,  749 – 753  

 evolutionary development,  750  
 iterative development,  749 – 750  
 lifecycle of,  749 – 753  
 rational unifi ed process (RUP),  750 – 752  
 waterfall method of development,  753   

  Solutions,  2 – 5 ,  36 – 37 ,  48 – 50 ,  194 – 196 , 
 290  

 ADT stack design for,  194 – 196  
 algorithm effi ciency and,  290  
 C++ implementation,  36 – 37  
 cohesion and,  4 – 5  
 coupling and,  5  
 divide and conquer strategy,  49 – 50  
 input line storage,  194  
 modules and,  4 – 5  
 object orientation requirements,  2 – 4  
 recursive,  48 – 50  
 searches for,  48 – 49   

  Sort functions, STL,  329   
  Sort key,  306   
  Sorted lists,  347 – 371 ,  411 – 412  

 abstract data types (ADT),  357 – 367  
 ADT specifi cations,  348 – 352  
 constructors/destructors and,  359  
 containment,  357 – 362  
 effi ciency and,  360 – 362  
 header (.h) fi le,  353 – 354 ,  358 – 359 ,  366  
 implementation of,  347 – 371  
 inheritance,  362 – 367  
 interface template for,  350 – 351  
 link-based implementation,  352 – 362  
 methods for,  354 – 357 ,  359 – 362  
 operations,  348 – 350 ,  351 – 352  
 priority queue implementation using, 

 411 – 412  
 private inheritance,  366 – 367  
 public inheritance,  362 – 365   

SortedList class,  350 – 352   
SortedListAsA class,  362 – 365   
SortedListHasA class,  358 – 360   
SortedListIsA class,  362 – 365   
  Sorting,  305 – 332 ,  519 – 521 ,  615 – 618 , 

 640 – 646 ,  683 – 684  
 algorithms,  305 – 332 ,  519 – 521 , 

 683 – 684  
 bubble,  309 – 311  
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 Sorting (cont’d)
comparison of methods,  326 ,  329  
 data fi les,  640 – 646  
 external,  306 ,  640 – 646  
 faster algorithms,  314 – 329  
 graph applications,  615 – 618  
 heap sort,  519 – 521  
 implementation of,  307 – 308 ,  310 – 311 , 

 313 ,  316 – 317  
 insertion,  311 – 314  
 internal,  306  
 merge,  314 – 319  
 quick,  319 – 327  
 radix,  327 – 329  
 selection,  306 – 309  
 topological,  615 – 618   

  Spanning trees,  618 – 624  
 breadth-fi rst search (BFS),  620 – 621  
 connected graphs,  605 ,  618 – 619  
 depth-fi rst search (DFS),  619 – 620  
 minimum,  621 – 624  
 Prim’s algorithm for,  622 – 623   

  Specifi cation fi les, C++,  32   
Sphere class,  714 – 716   
stack STL class,  215   
  Stacks,  193 – 225 ,  241 – 252 ,  673  

 abstract data type (ADT),  194 – 201 , 
 241 – 252  

 ADT operations for,  197 – 200  
 algebraic expressions and,  205 – 209  
 array-based implementation,  242 – 244  
 axioms,  200 – 201  
 backtracking,  211 – 212 ,  216  
 balanced braces { } in,  201 – 203  
 exceptions and,  249 – 250  
 exhaustive search using,  210 – 215  
 fl ight map search using,  210 – 216  
 implementation of,  241 – 252  
 interface,  199  
 language recognition,  203 – 205  
 last in, fi rst out (LIFO) property,  196 – 197  
 link–based implementation,  245 – 249  
 recursion relationships,  216 – 217  
 searches,  210 – 217  
 Standard Template Library (STL) 

class,  215  
 STL operations,  673  
 strings and,  201 – 205   

  Standard functions,  699 ,  773 – 776   
  Standard Template Library (STL),  215 , 

 329 ,  671 – 684  
 algorithms,  682 – 684  
 array operations,  675  
 associative containers,  678 – 681  

 class,  215  
 container operations,  672 – 673  
 containers,  671 – 681  
 deque operations,  677  
 hashing functions,  680 – 681  
 heap algorithms,  683 – 684  
 list operations,  677 – 678  
 map and multimap operations,

  680 – 681  
 priority queue operations,  674  
 queue operations,  673  
 search and compare algorithms, 

 682 – 683  
 sequence containers,  674 – 678  
 sequence modifi cation algorithms,

  683  
 set and multiset operations,

  679 – 680  
 sort functions,  329  
 sorting algorithms,  683 – 684  
 stack operations,  673  
 vector operations,  676   

  Statements,  417 – 419 ,  691 – 693 ,  699 – 701 , 
 790  

 assignment,  417 – 419 ,  691 – 693  
 iteration,  702 – 704 ,  790  
 overloading,  417 – 419  
 selection,  699 – 702   

  Static (early) binding,  337 – 338   
  Static allocation of arrays,  130   
  Static storage,  120   
  Stereotypes,  367   
  String data types,  782 – 783   
  Strings,  57 – 66 ,  163 ,  201 – 205 ,  377 – 378 , 

 709 – 710  
 A  n  B  n   formation,  163  
 balanced braces { } in,  201 – 203  
 C++,  709 – 710  
 language recognition,  203 – 205  
 palindromes,  162 – 163 ,  377 – 378  
 queues and,  377 – 378  
 reading characters of,  377  
 recursive void functions,  57 – 66  
 stacks and,  201 – 205  
 writing backwards,  57 – 66   

  Stubs,  103 ,  740   
  Subclass (derived class),  40 – 42   
  Subgraph,  604   
  Substrings, void functions using,  57   
subTreePtr,  473   
  Subtrees,  427 ,  428   
  Successor, lists,  254   
  Superclass (base class),  40 – 42   
switch statements,  701 – 702    

T
  Tail pointer,  400   
  Tail recursion,  87   
  Target value,  68   
  Templates,  31 ,  37 – 40 ,  261 – 262 ,  350 – 351 , 

 376 ,  441 – 442  
 angle brackets < > for,  39  
 binary tree interface,  441 – 442  
 C++ class,  31 ,  37 – 40  
 data-type parameter,  38  
 list interface,  261 – 262  
 queue interface,  376  
 sorted list interface,  350 – 351   

  Testing methods,  103 – 105 ,  110 – 111 ,  142 , 
 150 – 152 ,  270 ,  738 – 740  

 array-based implementation,  103 – 105 , 
 110 – 111 ,  270  

 bag methods,  110 – 111 ,  142  
 developing data for,  738 – 739  
 drivers used for,  740  
 link-based implementation,  142 , 

 150 – 152  
 list implementations,  270  
 multiple ADT implementation,  150 – 152  
 programming,  738 – 740  
 stubs used for,  740   

  Text fi les,  763 – 772   
  Throw an exception,  8 ,  230 – 233   
throw statement,  231   
  Time and events, simulations for, 

 382 – 384   
  Time-driven simulation,  385   
  Timebox,  749 – 750   
  Topological sorting,  615 – 618   
toVector method,  102 ,  140 – 142 ,  148 – 149 
  Towers of Hanoi problem,  76 – 79 , 

 184 – 185   
ToyBox class,  32 ,  40 – 42   
  Tracing additions to lists,  282 – 285   
  Tracking assignments,  380 – 381   
  Traversals,  292 ,  436 – 438 ,  447 – 448 , 

 465 – 471 ,  529 ,  539 – 544 ,  559 ,  572 , 
 587 ,  594 ,  611 – 615 ,  662 – 664  

 balanced search trees,  572 ,  587 ,  594  
 binary search trees,  447 – 448  
 binary trees,  436 – 438 ,  465 – 471  
 breadth-fi rst search (BFS) strategy, 

 613 – 615  
 connected components,  611  
 depth-fi rst search (DFS) strategy, 

 611 – 613  
 dictionaries,  529 ,  539 – 544 ,  559 , 

 662 – 664  
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 external organization using,  662 – 664  
 graph-traversal algorithm,  611  
 graphs,  611 – 615  
 ineffi ciency of with hashing,  559  
 inorder,  437 ,  448 ,  572  
 link-based implementation and,  465 – 471 
 linked nodes,  292 ,  465 – 467  
 nonrecursive,  467 – 471  
 order of with insertion, retrieval, and 

removal,  539 – 544  
 postorder,  436 ,  437 – 438  
 preorder,  436 – 437  
 visiting a node,  438 ,  465 – 467   

traverse method,  470, 528, 529, 531, 535   
TreeDictionary class,  537 – 538   
  Tree height,  430 – 435 ,  448 ,  567 – 568  

 AVL trees,  597 – 599  
 balance and,  567 – 568 ,  597 – 599  
 binary trees,  431 – 435  
 level of a node and,  430 – 432  
 maximum and minimum,  433 – 434  
 number of nodes in,  433 – 435  
 rotation and,  597 – 599   

  Trees,  425 – 453 ,  455 – 492 ,  567 – 602 , 
 618 – 624  

 abstract data type (ADT),  435 – 449  
 algebraic expressions and,  428 – 429  
 array-based implementation,  456 – 458  
 balanced search,  567 – 602  
 binary search,  429 ,  442 – 449 ,  471 – 486  
 binary,  428 ,  431 – 442 ,  456 – 471  
 breadth-fi rst search (BFS) spanning, 

 620 – 621  
 depth-fi rst search (DFS) spanning, 

 619 – 620  
 general,  428 ,  487 – 488  
 graph applications,  618 – 624  
height, 430–435, 448, 567–568
 hierarchical relationships of,  426 – 427  
 implementation,  455 – 492  
 link-based implementation,  458 – 483  
 minimum spanning,  621 – 624  

n -ary,  428  
 nodes (vertex),  426 – 427 ,  430 ,  456 – 459  
 parent-child relationships,  426 – 428  
 saving in a fi le,  483 – 486  
 sorting an array,  486 – 487  
 spanning,  618 – 624  
 subtrees,  427 ,  428  
 traversals of,  436 – 438 ,  447 – 448   

try block,  233 – 234   
  2-3 trees,  569 – 585  

 algorithms for,  577 – 579 ,  583 – 585  
 inserting data into,  575 – 579  
 removing data from,  579 – 585  
 searching,  572 – 574  
 traversing,  572   

  2-3-4 trees,  585 – 593  
 inserting data into,  587 – 591  
 red-black tree representation,  592 – 593  
 removing data from,  591  
 searching,  587  
 splitting 4-nodes,  589 – 591  
 traversing,  587   

typedef statements,  690 ,  730    

U
  Uncaught exceptions,  236 – 239   
  Undirected graph,  605   
  Unifi ed modeling language (UML), 

 14 – 15 ,  741 – 748  
 ADT design and,  14 – 15  
 class diagrams,  744 – 747  
 perspective and,  748  
 sequence diagrams,  742 – 744  
 use case (scenarios),  741 – 742    

V
  Value-oriented ADTs,  389   
  Valued function,  697   
  Values,  68 ,  72 – 76 ,  379 ,  518  

 arrays,  68 ,  72 – 76  

 fi nite, distinct priority,  518  
 heaps,  518  
 largest,  72 – 73  
 partitioning,  74 – 75  
 pivot,  74 – 75  
 priority,  379  
 smallest,  72 – 75  
 target,  68   

  Variables,  118 – 128 ,  688  
 asterisk (*) symbol for,  121  
 C++,  688  
 deallocating memory,  122 – 123  
 memory allocation,  118 – 120  
new operator for,  120 – 123  
 pointers,  120 – 128   

vector class,  180 – 181   
  Vectors,  676 ,  707 – 709   
  Vertex, 426.    See also  Nodes  
  Vertices, graphs,  604 – 605 ,

 615 – 618   
  Virtual destructors (~),  245 – 246   
  Virtual method table (VMT),  

338 – 339   
  Virtual methods,  44 – 46 ,  128 – 130   
  Visiting a node,  438 ,  465 – 467   
  Void functions,  57 – 66 ,  697 – 698  

 C++,  697 – 698  
cout statement,  64  
 recursive actions using,  57 – 66  
 strip away the fi rst character,

  60 – 61  
 substrings for,  57  
writeBackward function,  59 – 66  
 writing a string backwards,  57 – 66    

W
  Waterfall method of development,  753   
  Weighted graph,  605   
while statements,  702   
writeArrayBackward function,  67   
writeBackward function,  59 – 66      
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              C++ Operators 

 Operators within the same box have the same precedence, which is higher than operators in lower 
boxes.              

 Operator  Meaning  Associativity  Usage 

::   global  right   ::   name
::   scope resolution  left   class_name::member_name

            

->   member selection  left   pointer->member
.   member selection  left   object.member
[]   array index  left   array_name[expr]
()   function call  left   function_name(expr_list)
()   type construction  left   type   (expr_list)
++   post-increment  right   lvalue++
––   post-decrement  right   lvalue––
typeid   type identifi cation  right   typeid (type)

 typeid (expr)
dynamic_cast   checked conversion  right   dynamic_cast<type>(expr)
static_cast   checked conversion  right   static_cast<type>(expr)
reinterpret_cast   unchecked conversion  right   reinterpret_cast<type>(expr)
const_cast   const conversion  right   const_cast<type>(expr)

            

sizeof   size of type  right  sizeof (type)
sizeof   size of object  right  sizeof expr
++   pre-increment  right   ++lvalue
––   pre-decrement  right   ––lvalue
~   bitwise complement  right   ~expr
!   logical NOT  right   !expr
+   unary plus  right   +expr
-   unary minus  right   -expr
*   dereference  right   *expr
&   address of  right   &lvalue
()   cast  right   (type)   expr
new   allocate  right   new   type

new   type(expr_list)
new   (expr_list)   type
new   (expr_list)   type(expr_list)

delete   deallocate  right   delete   pointer
delete[]   pointer
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