

 C++ Reserved Keywords
 C++ reserves and gives predefi ned meanings to the following keywords. You may not redefi ne key-
words or use them for other purposes. Keywords that appear in color are new since C++11.

 alignas decitype namespace struct

 alignof default new switch

 and delete noexcept template

 and_eq do not this

 asm double not_eq thread_local

 auto dynamic_cast nullptr throw

 bitand else operator true

 bitor enum or try

 bool explicit or_eq typedef

 break export private typeid

 case extern protected typename

 catch false public union

 char fl oat register unsigned

 char16_t for reinterpret_cast using

 char32_t friend return virtual

 class goto short void

 compl if signed volatile

 const inline sizeof wchar_t

 const_cast int static while

 constexpr long static_assert xor

 continue mutable static_cast xor_eq

 Operator Meaning Associativity Usage
 * multiply left expr * expr
 / divide left expr / expr
 % modulo left expr % expr

 + add left expr + expr
 - subtract left expr - expr

 << bitwise shift left‡ left expr << expr
 >> bitwise shift right‡ left expr >> expr

 < less than left expr < expr
 <= less than or equal to left expr <= expr
 > greater than left expr > expr
 >= greater than or equal to left expr >= expr

 == equal left expr == expr
 != not equal left expr != expr

 & bitwise AND left expr & expr

 ̂ bitwise EXCLUSIVE OR left expr ̂ expr

 | bitwise OR left expr | expr

 && logical AND left expr && expr

 || logical OR left expr || expr

 ? : conditional left expr ? expr : expr

 = assign left lvalue = expr
 *= multiply and assign left lvalue *= expr
 /= divide and assign left lvalue /= expr
 %= modulo and assign left lvalue %= expr
 += add and assign left lvalue += expr
 -= subtract and assign left lvalue -= expr
 <<= shift left and assign left lvalue <<= expr
 >>= shift right and assign left lvalue >>= expr
 &= AND and assign left lvalue &= expr
 |= OR and assign left lvalue |= expr
 ̂ = EXCLUSIVE OR and assign left lvalue ̂ = expr

 , comma left expr , expr

 ‡ Typically overloaded for I/O

 Data Abstraction & Problem
Solving with C++

WALLS AND MIRRORS

SIXTH EDITION

Frank M. Carrano
 University of Rhode Island

 Timothy Henry
 University of Rhode Island

ISBN 10: 0-13-292372-6
ISBN 13: 978-0-13-292372-9

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Copyright © 2013, 2007, 2005 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.
Printed in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on fi le.

10 9 8 7 6 5 4 3 2 1

Vice President and Editorial Director, ECS: Marcia
J. Horton

Executive Editor: Tracy Johnson
Associate Editor: Carole Snyder
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Production: Erin Gregg
Managing Editor: Jeff Holcomb
Associate Managing Editor: Robert Engelhardt
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemmellaro

Cover Designer: Liz Harasymczuk
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Cover Art: Shutterstock/SVLuma
Media Project Manager: Renata Butera
Full-Service Project Management: Rose Kernan
Composition: Cenveo Publisher Services / Nesbitt
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown

iiiiii

W
el

co
m

eWelcome to the sixth edition of Data Abstraction & Problem Solving with C++: Walls and Mirrors . Since
the publication of the fi rst edition, we all have gained experience with teaching data abstraction in an object-
oriented way using C++. This edition refl ects that experience and the many comments and suggestions received
from faculty and students alike.

 I am happy to introduce Dr. Timothy Henry, my co-author and colleague at the University of Rhode Island.
Together, we have given this book a much needed revision and a new look. However, our goal remains to give
students a superior foundation in data abstraction, object-oriented programming, and other modern problem-
solving techniques. All C++ code has been rewritten with a focus on safe and secure programming practices. It
also adheres to the C++11 standard.

 We hope that you enjoy reading this book. Like many others before you, you can learn—or teach—data
structures in an effective and sustainable way.

 Talk to Us
Walls and Mirrors continues to evolve. Your comments, suggestions, and corrections will be greatly appreciated. Here
are a few ways to reach us:

• E-mail: carrano@acm.org
• Facebook: www.facebook.com/makingitreal
• Twitter: twitter.com/Frank_M_Carrano
• Blog: frank-m-carrano.com/makingitreal

www.facebook.com/makingitreal

iv

 A
 N

ot
e

to
 S

tu
de

nt
s The topics that we cover in this book deal with the various ways of organizing data so that a given application

can access and manipulate data in an effi cient way. These topics are fundamental to your future study of compu-
ter science, as they provide you with the foundation of knowledge required to create complex and reliable soft-
ware. Whether you are interested in designing video games or software for robotic-controlled surgery, the study
of data structures is vital to your success. Even if you do not study all of the topics in this book now, you are
likely to encounter them later. We hope that you will enjoy reading the book, and that it will serve as a useful
reference tool for your future courses.

 The walls and mirrors in the title represent two fundamental problem-solving techniques that appear
throughout the presentation. Data abstraction isolates and hides the implementation details of a module from the
rest of the program, much as a wall can isolate and hide you from your neighbor. Recursion is a repetitive tech-
nique that solves a problem by solving exactly the same but smaller problems, much as images in facing mirrors
grow smaller with each refl ection.

 Please be sure to browse the rest of this preface to see the features that will help you in your studies. To help
you learn and to review for exams, we have included such learning aids as video tutorials (VideoNotes), check-
point questions with answers, margin notes, programming tips, chapter summaries, and a glossary. As a help
during programming, you will fi nd C++ reference material in the appendices and inside the covers. You should
review the list of this book’s features given later in this preface in the section “Features to Enhance Learning.”

 The presentation makes some basic assumptions about your knowledge of C++. Some of you may need to
review this language or learn it for the fi rst time by consulting the appendices of this book. This book covers C++
classes and other relevant aspects of the language in new C++ Interludes that occur throughout the book be-
tween certain chapters. These interludes do not assume that you already know their topics. We assume no experi-
ence with recursive functions, which are included in Chapters 2 and 5 .

 All of the C++ source code that appears in this book is available for your use. Later in this preface, the de-
scription of supplementary materials tells you how to obtain these fi les, as well as the VideoNotes and other on-
line documents.

v

 B
ri

ef
 T

ab
le

 o
f C

on
te

nt
s Organization

This book’s organization, sequencing, and pace of topic coverage make learning and teaching easier by focusing
your attention on one concept at a time, by providing fl exibility in the order in which you can cover topics, and by
clearly distinguishing between the specifi cation and implementation of abstract data types, or ADTs. To accomplish
these goals, we have organized the material into 21 chapters. Most chapters focus on either the specifi cation and use of
an ADT or its various implementations. You can choose to cover the specifi cation of an ADT followed by its imple-
mentations, or you can treat the specifi cation and use of several ADTs before you consider any implementation issues.
The book’s organization makes it easy for you to choose the topic order that you prefer.

 Table of Contents at a Glance
 The following list shows the overall composition of the book. A further chapter-by-chapter description appears
later. Note that gray highlighted sections are available online.

Chapter 1 Data Abstraction: The Walls
 C++ Interlude 1 C++ Classes
 Chapter 2 Recursion: The Mirrors
 Chapter 3 Array-Based Implementations
 C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation
 Chapter 4 Link-Based Implementations
 Chapter 5 Recursion as a Problem-Solving Technique
 Chapter 6 Stacks
 C++ Interlude 3 Exceptions
 Chapter 7 Stack Implementations
 Chapter 8 Lists
 Chapter 9 List Implementations
 Chapter 10 Algorithm Effi ciency
 Chapter 11 Sorting Algorithms and Their Effi ciency
 C++ Interlude 4 Class Relationships and Reuse
 Chapter 12 Sorted Lists and Their Implementations
 Chapter 13 Queues and Priority Queues
 Chapter 14 Queue Implementations
 C++ Interlude 5 Overloaded Operators and Friend Access
 Chapter 15 Trees
 Chapter 16 Tree Implementations
 C++ Interlude 6 Iterators
 Chapter 17 Heaps
 Chapter 18 Dictionaries and Their Implementations
 Chapter 19 Balanced Search Trees
 Chapter 20 Graphs
 Chapter 21 Processing Data in External Storage
 C++ Interlude 7 The Standard Template Library
 Appendix A Review of C++ Fundamentals
 Appendix B Important Themes in Programming
 Appendix C The Unifi ed Modeling Language
 Appendix D The Software Life Cycle
 Appendix E Mathematical Induction
 Appendix F Algorithm Verifi cation
 Appendix G Files
 Appendix H C++ Header Files and Standard Functions
 Appendix I C++ Documentation Systems
 Appendix J ASCII Character Codes
 Appendix K C++ for Java Programmers
 Appendix L C++ for Python Programmers
 Index
 Glossary
 Answers to Checkpoint Questions

vi

 N
ew

 to
 th

is
 E

di
ti

on

 What’s New?

This edition of Walls and Mirrors is a signifi cant revision of the previous edition, yet remains committed to a
pedagogical approach that makes the material accessible to students at the introductory level. Although
everything looks new, you will fi nd the coverage that you enjoyed in previous editions is still here. At a glance,
the book has more—but shorter—chapters, a second color, and new C++ Interludes. Let’s examine the details.

Organization. The book begins with a shorter Chapter 1 , so that it can focus on the specifi cation of abstract data
types (ADTs). After general discussions of problem solving, good programming practices, and ADTs, we spec-
ify a simple ADT—the bag. We defi ne the bag’s operations within a C++ template interface in a non-threatening
way. We have moved some sections from the original fi rst chapter to the appendices.

 By introducing the bag as the fi rst ADT we consider, we make the diffi cult topic of linked data more acces-
sible to students. Adding or removing the fi rst node in a chain of linked nodes is the easiest task, and these simple
manipulations are the ones we need to use for a linked implementation of the bag. The next ADT that we con-
sider is the stack, a more useful data container that has the same simple chain in one of its defi nitions. Moreover,
many students are already familiar with stacks. Later, the treatment of lists looks at the more involved operations
of adding and removing a node that lies between existing nodes of a chain.

 The rest of the coverage will be familiar to previous users of Walls and Mirrors but often you will fi nd ADTs
presented in two chapters rather than one. These chapters separate the discussions of specifi cation and imple-
mentation. We will describe each chapter later in this preface. To summarize, this organization

• Replaces Chapter 1 with an introduction to ADTs and template interfaces using the ADT bag.
• Provides a more focused introduction to array-based implementations and link-based implementations

using the ADT bag.
• Makes the topic of linked data more accessible to students by discussing it progressively as we introduce

the ADTs bag, stack, and list.
• Places greater emphasis on data abstraction as a problem solving tool.
• Enhances the separation between specifi cation and implementation of basic ADTs by placing them in

successive chapters.
• Specifi es ADTs informally at fi rst, then in UML, and ultimately in C++ template interfaces.
• Demonstrates safe and secure programming practices in completely revised code that adheres to the

C++11 standard.
• Covers the ADT heap in its own chapter.
• Reorganizes the coverage of the ADT dictionary (formerly called the ADT table) into two chapters.

C++ Interludes. The introduction of C++ classes and other aspects of C++ that we need for our presentation
and were previously covered in Chapters 3 , 4 , and 8 of the previous edition are now featured in C++ Interludes.
Seven of these “mini-chapters” appear throughout the book to cover relevant C++ topics as we need them. Note
that these interludes separate the details of C++ from the discussion of data structures.

VideoNotes. Online tutorials are a Pearson feature that provides visual and audio support to the presentation
given throughout the book. They offer students another way to recap and reinforce key concepts. VideoNotes
allow for self-paced instruction with easy navigation, including the ability to select, play, rewind, fast-forward,
and stop within each video. Unique VideoNote icons appear throughout this book whenever a video is available
for a particular concept or problem. A detailed list of the 49 VideoNotes for this text and their associated loca-
tions in the book can be found on page xxiii . VideoNotes are free with the purchase of a new textbook. To pur-
chase access to VideoNotes, please go to

 www.pearsonhighered.com/carrano

www.pearsonhighered.com/carrano

vii

N
ew

 to
 th

is
 E

di
ti

on

Other features. Walls and Mirrors now has many new features that enhance its usefulness to both readers and
instructors. This edition

• Adds a second color to enhance the effectiveness of the illustrations, distinguish pseudocode from C++
code, and provide visual interest.

• Includes Notes and Programming Tips to emphasize key material and offer programming advice.
• Distinguishes major pieces of code in a new Listing element.
• Replaces the self-test exercises at the ends of chapters with Checkpoint Questions placed throughout the

chapters.
• Numbers sections and subsections for easy reference.
• Includes transition guides from Python to C++ and Java to C++.

viii

 P
ed

ag
og

ic
al

 E
le

m
en

ts

 Features to Enhance Learning

The pedagogical features and organization of this book were carefully designed to facilitate learning and to
allow instructors to tailor the material easily to a particular course. These features help students not only during
their fi rst reading of the material, but also during subsequent review.

 Notes Important ideas are presented or summarized in highlighted paragraphs and are meant to be read
in line with the surrounding text.

 Programming Tips Suggestions to improve or facilitate programming are featured as soon as they
become relevant.

 Examples Numerous examples illuminate new concepts.

 Checkpoint Questions Questions are posed throughout each chapter, integrated within the text, that
reinforce the concept just presented. These “checkpoint” questions help readers to understand the
 material, since answering them requires pause and refl ection. Solutions to these questions are provided
online.

 VideoNotes Online tutorials provide additional instruction in a more dynamic form than a static
textbook.

Margin Notes Brief phrases in the margins help you review material or locate particular content.

Chapter Summaries Each chapter ends with a list of key ideas that summarize what was presented.

Glossary of Terms A glossary of all terms introduced in this book is available online.

Exercises and Programming Projects Further practice is available by solving the exercises and pro-
gramming projects at the end of each chapter. Unfortunately, we cannot give readers the answers to
these exercises and programming projects, even if they are not enrolled in a class. Only instructors who
adopt the book can receive selected answers from the publisher. For help with these exercises and
projects, you will have to contact your instructor.

CHECK POINT

VideoNote

ix

 R
es

ou
rc

es

 Accessing Instructor and Student Resource Materials
 The following items are available on the publisher’s website at

 www.pearsonhighered.com/carrano

• C++ code as it appears in the book
• A link to any misprints that have been discovered since the book was published
• Links to additional online content, which is described next

 Instructor Resources
 The following protected material is available to instructors who adopt this book by logging onto Pearson’s In-
structor Resource Center, accessible from

 www.pearsonhighered.com/carrano

• PowerPoint lecture slides
• Test bank
• Instructor solutions manual
• Figures from the book

 Additionally, instructors can access the book’s Companion Website for the following online premium content,
also accessible from

 www.pearsonhighered.com/carrano

• Instructional VideoNotes
• Answers to the Checkpoint Questions
• A glossary of terms

 Please contact your Pearson sales representative for an instructor access code. Contact information is available
at www.pearsonhighered.com/replocator.

 Student Resources
 The following material is available to students by logging onto the book’s Companion Website accessible from
www.pearsonhighered.com/carrano :

• Instructional VideoNotes
• Answers to the Checkpoint Questions
• A glossary of terms

 Students must use the access card located in the front of the book to register for and then enter the Companion
Website. Students without an access code can purchase access from the Companion Website by following the
instructions listed there.

www.pearsonhighered.com/carrano
www.pearsonhighered.com/carrano
www.pearsonhighered.com/carrano
www.pearsonhighered.com/replocator
www.pearsonhighered.com/carrano

x

 D
et

ai
le

d
C

on
te

nt
 D

es
cr

ip
ti

on

 Chapter Overview

R eaders of this book should have completed a programming course, preferably in C++. Appendix A covers
the essentials of C++ that we assume readers will know. You can use this appendix as a review or as the basis for
making the transition to C++ from another programming language. Note that Appendices K and L offer some
help for those who are transitioning from Java or Python, respectively.

• Chapters 1 through 5 : Chapter 1 introduces object-oriented concepts and focuses on the specifi cation of ab-
stract data types (ADTs). Our ADTs now store data whose data type is chosen by the client. To accomplish this,
each specifi cation of an ADT includes a C++ template interface. As an example, Chapter 1 introduces the ADT
bag. Much of the software engineering material that was in Chapter 1 is now in the appendices.

 Next is C++ Interlude 1, which presents C++ classes. It gives more details about template interfaces—like
the one presented in Chapter 1 —and shows how to use inheritance to defi ne a class derived from an interface.

 As it did in earlier editions, Chapter 2 introduces recursion, and Chapter 5 develops it as a problem-
solving tool. Recursion is revisited often throughout the book.

 We clearly separate the specifi cation, use, and implementation of the bag by dividing the material across
several chapters. For example, Chapter 1 specifi es the bag and provides several examples of its use. Chapter
 3 covers implementations that use arrays. Just before Chapter 4 introduces chains of linked nodes and
uses one in the defi nition of a class of bags, C++ Interlude 2 covers pointers, polymorphism, and dynamic
memory allocation. Both Chapters 3 and 4 include recursion in their presentation.

 In a similar fashion, we separate specifi cation from implementation throughout most of the book
when we discuss various other ADTs. You can choose to cover the chapters that specify and use the ADTs
and then later cover the chapters that implement them. Or you can cover the chapters as they appear, im-
plementing each ADT right after studying its specifi cation and use. A list of chapter prerequisites appears
later in this preface to help you plan your path through the book.

 Chapter 3 does more than simply implement the ADT bag. It shows how to approach the implementa-
tion of a class by initially focusing on core methods. When defi ning a class, it is often useful to implement
and test these core methods fi rst and to leave defi nitions of the other methods for later. Chapter 4 follows
this approach in its development of a link-based implementation of the ADT bag.

• Chapters 6 and 7 : Chapter 6 discusses stacks, giving examples of their use, and Chapter 7 implements
the stack using an array and then again using a chain. Between these chapters is C++ Interlude 3, which
discusses C++ exceptions. Chapter 7 then shows how to use an exception in the implementation of the
ADT stack, when a client violates a method’s precondition.

• Chapters 8 and 9 : The next two chapters introduce the ADT list. We discuss this container abstractly and
then implement it by using an array and then a chain of linked nodes. Once again, we use exceptions to
enforce method preconditions.

• Chapters 10 and 11 : Chapter 10 introduces the complexity of algorithms, a topic that we integrate into
future chapters. Chapter 11 discusses various sorting techniques and their relative complexities. We con-
sider both iterative and recursive versions of these algorithms.

• Chapter 12 : Chapter 12 introduces the sorted list, looking at a linked implementation and its effi ciency.
We then talk about the relationship between a list and a sorted list and show how to use the list as a base
class for the sorted list. Note that Chapter 12 is preceded by C++ Interlude 4 that discusses class relation-
ships and the various ways a class can be reused. Chapter 12 puts that discussion into immediate use.

• Chapters 13 and 14 : Chapter 13 presents the ADTs queue and priority queue, along with some uses of
these containers. In doing so, we give an example of simulation that uses both ADTs, and fi nally summa-
rize the difference between position oriented and value oriented ADTs. Chapter 14 implements the queue,
and introduces tail pointers, circularly linked chains, and circular arrays. We offer an implementation of a
priority queue by using a sorted list, but note that a better approach will come later when we introduce the
ADT heap.

xi

D
et

ai
le

d
C

on
te

nt
 D

es
cr

ip
ti

on

• Chapters 15 through 17 : Before we begin the next chapter, C++ Interlude 5 introduces overloaded oper-
ators and friend access. We overload operators when we defi ne classes of trees in this group of chapters.
 Chapter 15 discusses trees—binary, binary search, and general—and their possible uses. Chapter 16 con-
siders implementations of these trees, and briefl y introduces the tree sort. C++ Interlude 6 presents itera-
tors in the context of a list. Chapter 17 introduces the ADT heap and shows how to implement it by using
an array. We then use a heap to implement the priority queue and to sort an array.

• Chapter 18 : This chapter covers the specifi cation and use of the ADT dictionary (formerly called the
table in the previous edition). We look at implementations of the dictionary that use an array or a binary
search tree. We then introduce hashing and use it as a dictionary implementation.

• Chapter 19 : Chapter 19 introduces balanced search trees. Included in this chapter are the 2-3, 2-4, and red-
black trees, as well as AVL trees. These trees are considered as implementations of the ADT dictionary.

• Chapter 20 : Next, we discuss graphs, suggest two ways to implement them, and look at several applications.
• Chapter 21 : This last chapter considers data storage in external direct access fi les. Merge sort is modifi ed

to sort such data, and external hashing and B-tree indexes are used to search it. These searching algorithms
are generalizations of the internal hashing schemes and 2-3 trees already developed. Finally, C++ Inter-
lude 7 ends the main presentation by discussing the containers and algorithms available in the C++
Standard Template Library (STL).

• Appendices A through L: The appendices provide supplemental information. As we mentioned earlier,
Appendix A reviews C++ up to but not including classes. Appendices B, C, D, and F contain sections that
were in Chapter 1 of the previous edition, namely important aspects of programming, the Unifi ed Mod-
eling Language (UML), the software life cycle, and algorithm verifi cation. Appendix E covers mathemat-
ical induction, and Appendix G covers input and output with external fi les. Appendix H provides a list of
C++ header fi les and standard functions, and Appendix I considers the javadoc commenting style and
defi nes the tags that we use in this book. Appendix J is simply a chart of the ASCII character codes. Final-
ly, Appendices K and L are brief transition guides to C++ for those who know Java or Python, respectively.

xii

 A
ck

no
w

le
dg

em
en

ts

 Acknowledgements

This book evolved from the original Intermediate Problem Solving and Data Structures: Walls and Mirrors by
Paul Helman and Robert Veroff (©†1986 by The Benjamin/Cummings Publishing Company, Inc.). Professors
Helman and Veroff introduced two powerful analogies, walls and mirrors, that have made it easier for us to
teach—and to learn—computer science. This work builds on their organizational framework and overall per-
spective and includes some technical and textual content, examples, fi gures, and exercises derived from the
original work.

 Our sincere appreciation and thanks go to the following reviewers for carefully reading the previous edition
and making candid comments and suggestions that greatly improved this edition:

 Andrew Danner— Swarthmore College
 Karla S. Fant— Portland State University
 Max Fomitchev-Zamilov— Penn State University
 Mark Van Gorp— Johnson County Community College
 Sarah Gothard— Wright State University
 Ranette H. Halverson— Midwestern State University
 Shih-Hsi Liu— California State University
 Jie Hu Meichsner— St. Cloud State University
 Douglas Niehaus— University of Kansas
 Daniel Nohl— Benedictine University
 Nouhad J. Rizk— University of Houston
 Garth O. Sorenson— Snow College
 Xiaohui Yuan— University of North Texas
 Chao Zhao— Cameron University

 Special thanks go to our support team at Pearson Education during the lengthy process of revising this
book: Tracy Johnson, Carole Snyder, Bob Engelhardt, and Jeff Holcomb. Our copy editor, Rebecca Pepper, en-
sured that our presentation is clear, correct, and grammatical. And Rose Kernan of Nesbitt Graphics directed the
production of the book.

 The previous edition was greatly improved by the special care taken by Steven J. Holtz, who teaches at the
University of Minnesota Duluth. Paul Nagin and Janet Prichard provided valuable material for earlier editions
of this book. Their contributions endure in this edition.

 Numerous other people provided input for the previous editions of Walls and Mirrors at various stages of its
development. All of their comments were useful and greatly appreciated. In alphabetical order, they are Karl
Abrahamson, Stephen Alberg, Ronald Alferez, Vicki Allan, Jihad Almahayni, James Ames, Claude W. Anderson,
Andrew Azzinaro, Tony Baiching, Don Bailey, N. Dwight Barnette, Jack Beidler, Wolfgang W. Bein, Sto Bell,
David Berard, Brian Bershad, John Black, Richard Botting, Wolfi n Brumley, Daryl Carr, Philip Carrigan,
Stephen Clamage, Michael Clancy, David Clayton, Michael Cleron, Chris Constantino, Shaun Cooper, Sarp
Arda Coskun, Charles Denault, Vincent J. DiPippo, Suzanne Dorney, Colleen Dunn, Carl Eckberg, Sebastian
Elbaum, Matthew Evett, Karla Steinbrugge Fant, Caroline Fell, Jean Foltz, Mike Fulford, Susan Gauch, Martin
Granier, Sr., Marguerite Hafen, Randy Hale, George Hamer, Judy Hankins, Jean Harnett, Andrew Hayden,
Michael Hayden, Sarah Hayden, Lisa Hellerstein, Lasse Hellvig, Karsten Henckell, Lesly Hershman, Mary Lou
Hines, Michael Hirsch, Jack Hodges, Larry M. Holt, Stephanie Horoschak, Lily Hou, John Hubbard, Tom Irdy,
Kris Jensen, Thomas Judson, Edwin J. Kay, Laura Kenney, Roger King, Ladislav Kohout, Jim LaBonte, Jean
Lake, Janusz Laski, Elaine Lavallee, Sally Lawrence, Cathie LeBlanc, Greg Lee, Urban LeJeune, Matt Licklider,
Adam Lindstrom, John M. Linebarger, Marilyn Lloyd, Ken Lord, Paul Luker, Ethan Mallove, Manisha Mande,
Pierre-Arnoul de Marneffe, John Marsaglia, Tim Martin, Jane Wallace Mayo, Mark McCormick, Dan
McCracken, Vivian McDougal, Shirley McGuire, Sue Medeiros, Waleed Meleis, Carol Melville, Edalin
Michael, James R. Miller, Jim Miller, Guy Mills, Rameen Mohammadi, Cleve Moler, Narayan Murthy, David

xiii

A
ck

no
w

le
dg

em
en

tsNaff, Paul Nagin, Abhaya Nayak, Rayno Niemi, Debbie Noonan, John O’Donnell, Andrew Oldroyd, Larry
Olsen, Raymond L. Paden, Roy Pargas, Brenda C. Parker, Thaddeus F. Pawlicki, Keith Pierce, Gary Pollock,
Albert Prichard, Lucasz Pruski, George B. Purdy, David Radford, Bina Ramamanthy, Steve Ratering, Hal
Records, Stuart Regis, Mateen Rizki, J. D. Robertson, Daniel Rosenkrantz, Robert A. Rossi, Jerry Roth, John
Rowe, Michael E. Rupp, Sharon Salveter, Charles Saxon, Chandra Sekharan, Linda Shapiro, Yujian Sheng,
Mary Shields, Ren-Ben Shiu, Dmitri Slobodin, Ronnie Smith, Carl Spicola, Richard Snodgrass, Neil Snyder,
Ken Sousa, Chris Spannabel, Paul Spirakis, Clinton Staley, Matt Stallman, Mark Stehlick, Benjamin Schomp,
Harriet Taylor, David Teague, Virginia Teller, David Tetreault, Hans-Joerg Tiede, Lindsey Triebel, Dwight
Tuinista, John Turner, Karen Van Houten, Robert Vincent, Susan Wallace, James E. Warren, Xiaoqiao Wei,
Joyce Wells, Jerry Weltman, Nancy Wiegand, Alicia Williams, Howard Williams, Brad Wilson, James Wirth,
Wally Wood, Kathie Yerion, Salih Yurttas, Wu Yusong, Rick Zaccone, and Alan Zaring.

 Finally, we thank our families and friends—Doug, Ted, Vandee, Nancy, Sue, Tom, Joanne, Tita, Bobby,
Lorraine, and Marge—for giving us lives away from computers.

 Thank you all.
 F. M. C.
 T. H.

xiv

 T
ab

le
 o

f C
on

te
nt

s Contents
Chapter 1 Data Abstraction: The Walls 1

 1.1 Object-Oriented Concepts 2
 1.1.1 Object-Oriented Analysis and Design 2
 1.1.2 Aspects of an Object-Oriented Solution 3
 1.2 Achieving a Better Solution 4
 1.2.1 Cohesion 4
 1.2.2 Coupling 5
 1.3 Specifi cations 6

 1.3.1 Operation Contracts 6
 1.3.2 Unusual Conditions 8
 1.3.3 Abstraction 8
 1.3.4 Information Hiding 9
 1.3.5 Minimal and Complete Interfaces 10

 1.4 Abstract Data Types 11
 1.4.1 Designing an ADT 14
 1.4.2 ADTs That Suggest Other ADTs 16

 1.5 The ADT Bag 17
 1.5.1 Identifying Behaviors 18
 1.5.2 Specifying Data and Operations 19
 1.5.3 An Interface Template for the ADT 22
 1.5.4 Using the ADT Bag 24

C++ Interlude 1 C++ Classes 31
 C1.1 A Problem to Solve 32

 C1.1.1 Private Data Fields 33
 C1.1.2 Constructors and Destructors 33
 C1.1.3 Methods 34
 C1.1.4 Preventing Compiler Errors 35

 C1.2 Implementing a Solution 36
 C1.3 Templates 37
 C1.4 Inheritance 40

 C1.4.1 Base Classes and Derived Classes 40
 C1.4.2 Overriding Base-Class Methods 42

 C1.5 Virtual Methods and Abstract Classes 44
 C1.5.1 Virtual Methods 44
 C1.5.2 Abstract Classes 45

Chapter 2 Recursion: The Mirrors 47
 2.1 Recursive Solutions 48
 2.2 Recursion That Returns a Value 50

 2.2.1 A Recursive Valued Function: The Factorial of n 50
 2.2.2 The Box Trace 54

 2.3 Recursion That Performs an Action 57
 2.3 .1 A Recursive Void Function: Writing a String Backward 57

 2.4 Recursion with Arrays 67
 2.4.1 Writing an Array’s Entries in Backward Order 67
 2.4.2 The Binary Search 68
 2.4.3 Finding the Largest Value in an Array 72
 2.4.4 Finding the kth Smallest Value of an Array 72

xvxv

 2.5 Organizing Data 76
 2.5.1 The Towers of Hanoi 76

 2.6 More Examples 79
 2.6.1 The Fibonacci Sequence (Multiplying Rabbits) 79
 2.6.2 Organizing a Parade 82
 2.6.3 Choosing k Out of n Things 83

 2.7 Recursion and Effi ciency 85

Chapter 3 Array-Based Implementations 95
 3.1 The Approach 96

 3.1.1 Core Methods 97
 3.1.2 Using Fixed-Size Arrays 98

 3.2 An Array-Based Implementation of the ADT Bag 98
 3.2.1 The Header File 99
 3.2.2 Defi ning the Core Methods 100
 3.2.3 Testing the Core Methods 103
 3.2.4 Implementing More Methods 105
 3.2.5 Methods That Remove Entries 107
 3.2.6 Testing 110

 3.3 Using Recursion in the Implementation 112
 3.3.1 The Method getIndexOf 112
 3.3.2 The Method getFrequencyOf 113

C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation 117
 C2.1 Memory Allocation for Variables and Early Binding of Methods 118
 C2.2 A Problem to Solve 118
 C2.3 Pointers and the Program’s Free Store 120

 C2.3.1 Deallocating Memory 122
 C2.3.2 Avoiding Memory Leaks 123
 C2.3.3 Avoiding Dangling Pointers 127

 C2.4 Virtual Methods and Polymorphism 128
 C2.5 Dynamic Allocation of Arrays 130

 C2.5.1 A Resizable Array-Based Bag 131

Chapter 4 Link-Based Implementations 133
 4.1 Preliminaries 134

 4.1.1 The Class Node 136
 4.2 A Link-Based Implementation of the ADT Bag 137

 4.2.1 The Header File 138
 4.2.2 Defi ning the Core Methods 139
 4.2.3 Implementing More Methods 143

 4.3 Using Recursion in Link-Based Implementations 148
 4.3.1 Recursive Defi nitions of Methods in LinkedBag 148

 4.4 Testing Multiple ADT Implementations 150
 4.5 Comparing Array-Based and Link-Based Implementations 153

Chapter 5 Recursion as a Problem-Solving Technique 159
 5.1 Defi ning Languages 160

 5.1.1 The Basics of Grammars 160
 5.1.2 Two Simple Languages 162

 5.2 Algebraic Expressions 164
 5.2.1 Kinds of Algebraic Expressions 164

T
ab

le
 o

f C
on

te
nt

s

xvi

T
ab

le
 o

f C
on

te
nt

s 5.2.2 Prefi x Expressions 166
 5.2.3 Postfi x Expressions 170
 5.2.4 Fully Parenthesized Expressions 171

 5.3 Backtracking 172
 5.3.1 Searching for an Airline Route 172
 5.3.2 The Eight Queens Problem 177

 5.4 The Relationship Between Recursion and Mathematical Induction 183
 5.4.1 The Correctness of the Recursive Factorial Function 183
 5.4.2 The Cost of Towers of Hanoi 184

Chapter 6 Stacks 193
 6.1 The Abstract Data Type Stack 194

 6.1.1 Developing an ADT During the Design of a Solution 194
 6.1.2 Specifi cations for the ADT Stack 196

 6.2 Simple Uses of a Stack 201
 6.2.1 Checking for Balanced Braces 201
 6.2.2 Recognizing Strings in a Language 203

 6.3 Using Stacks with Algebraic Expressions 205
 6.3.1 Evaluating Postfi x Expressions 205
 6.3.2 Converting Infi x Expressions to Equivalent Postfi x Expressions 206

 6.4 Using a Stack to Search a Flight Map 210
 6.5 The Relationship Between Stacks and Recursion 216

C++ Interlude 3 Exceptions 227
 C3.1 Background 228

 C3.1.1 A Problem to Solve 228
 C3.2 Assertions 229
 C3.3 Throwing Exceptions 230
 C3.4 Handling Exceptions 233

 C3.4.1 Multiple catch Blocks 235
 C3.4.2 Uncaught Exceptions 236

 C3.5 Programmer-Defi ned Exception Classes 239

Chapter 7 Stack Implementations 241
 7.1 An Array-Based Implementation 242
 7.2 A Link-Based implementation 245
 7.3 Implementations That Use Exceptions 249

Chapter 8 Lists 253
 8.1 Specifying the ADT List 254
 8.2 Using the List Operations 259
 8.3 An Interface Template for the ADT List 261

Chapter 9 List Implementations 265
 9.1 An Array-Based Implementation of the ADT List 266

 9.1.1 The Header File 266
 9.1.2 The Implementation File 268

 9.2 A Link-Based Implementation of the ADT List 272
 9.2.1 The Header File 272
 9.2.2 The Implementation File 274
 9.2.3 Using Recursion in LinkedList Methods 281

 9.3 Comparing Implementations 285

xviixvii

Chapter 10 Algorithm Effi ciency 289
 10.1 What Is a Good Solution? 290
 10.2 Measuring the Effi ciency of Algorithms 291

 10.2.1 The Execution Time of Algorithms 292
 10.2.2 Algorithm Growth Rates 293
 10.2.3 Analysis and Big O Notation 294
 10.2.4 Keeping Your Perspective 298
 10.2.5 The Effi ciency of Searching Algorithms 300

Chapter 11 Sorting Algorithms and Their Effi ciency 305
 11.1 Basic Sorting Algorithms 306

 11.1.1 The Selection Sort 306
 11.1.2 The Bubble Sort 309
 11.1.3 The Insertion Sort 311

 11.2 Faster Sorting Algorithms 313
 11.2.1 The Merge Sort 313
 11.2.2 The Quick Sort 318
 11.2.3 The Radix Sort 327

 11.3 A Comparison of Sorting Algorithms 329

C++ Interlude 4 Class Relationships and Reuse 333
 C4.1 Inheritance Revisited 333

 C4.1.1 Public, Private, and Protected Sections of a Class 338
 C4.1.2 Public, Private, and Protected Inheritance 340
 C4.1.3 Is-a and As-a Relationships 340

 C4.2 Containment: Has-a Relationships 342
 C4.3 Abstract Base Classes Revisited 343

Chapter 12 Sorted Lists and Their Implementations 347
 12.1 Specifying the ADT Sorted List 348

 12.1.1 An Interface Template for the ADT Sorted List 350
 12.1.2 Using the Sorted List Operations 351

 12.2 A Link-Based Implementation 352
 12.2.1 The Header File 353
 12.2.2 The Implementation File 354
 12.2.3 The Effi ciency of the Link-Based Implementation 357

 12.3 Implementations That Use the ADT List 357
 12.3.1 Containment 357
 12.3.2 Public Inheritance 362
 12.3.3 Private Inheritance 366

Chapter 13 Queues and Priority Queues 373
 13.1 The ADT Queue 374
 13.2 Simple Applications of the ADT Queue 377

 13.2.1 Reading a String of Characters 377
 13.2.2 Recognizing Palindromes 377

 13.3 The ADT Priority Queue 379
 13.3.1 Tracking Your Assignments 380

 13.4 Application: Simulation 381
 13.5 Position-Oriented and Value-Oriented ADTs 389

T
ab

le
 o

f C
on

te
nt

s

xviii

T
ab

le
 o

f C
on

te
nt

s Chapter 14 Queue Implementations 397
 14.1 Implementations of the ADT Queue 397

 14.1.1 An Implementation That Uses the ADT List 398
 14.1.2 A Link-Based Implementation 400
 14.1.3 An Array-Based Implementation 405
 14.1.4 Comparing Implementations 410

 14.2 An Implementation of the ADT Priority Queue 411

C++ Interlude 5 Overloaded Operators and Friend Access 415
 C5.1 Overloaded Operators 415

 C5.1.1 Overloading = for Assignment 417
 C5.1.2 Overloading + for Concatenation 419

 C5.2 Friend Access and Overloading 421

Chapter 15 Trees 425
 15.1 Terminology 426

 15.1.1 Kinds of Trees 428
 15.1.2 The Height of Trees 430
 15.1.3 Full, Complete, and Balanced Binary Trees 431
 15.1.4 The Maximum and Minimum Heights of a Binary Tree 433

 15.2 The ADT Binary Tree 435
 15.2.1 Traversals of a Binary Tree 436
 15.2.2 Binary Tree Operations 438
 15.2.3 An Interface Template for the ADT Binary Tree 441

 15.3 The ADT Binary Search Tree 442
 15.3.1 Binary Search Tree Operations 443
 15.3.2 Searching a Binary Search Tree 445
 15.3.3 Creating a Binary Search Tree 446
 15.3.4 Traversals of a Binary Search Tree 447
 15.3.5 The Effi ciency of Binary Search Tree Operations 448

Chapter 16 Tree Implementations 455
 16.1 The Nodes in a Binary Tree 456

 16.1.1 An Array-Based Representation 456
 16.1.2 A Link-Based Representation 458

 16.2 A Link-Based Implementation of the ADT Binary Tree 459
 16.2.1 The Header File 459
 16.2.2 The Implementation 462

 16.3 A Link-Based Implementation of the ADT Binary Search Tree 471
 16.3.1 Algorithms for the ADT Binary Search Tree Operations 471
 16.3.2 The Class BinarySearchTree 481

 16.4 Saving a Binary Search Tree in a File 483
 16.5 Tree Sort 486
 16.6 General Trees 487

C++ Interlude 6 Iterators 493
 C6.1 Iterators 493

 C6.1.1 Common Iterator Operations 494
 C6.1.2 Using Iterator Operations 496
 C6.1.3 Implementing an Iterator 497

 C6.2 Advanced Iterator Functionality 499

xix

T
ab

le
 o

f C
on

te
nt

s

xix

Chapter 17 Heaps 503
 17.1 The ADT Heap 503
 17.2 An Array-Based Implementation of a Heap 506

 17.2.1 Algorithms for the Array-Based Heap Operations 508
 17.2.2 The Implementation 512

 17.3 A Heap Implementation of the ADT Priority Queue 516
 17.4 Heap Sort 519

Chapter 18 Dictionaries and Their Implementations 525
 18.1 The ADT Dictionary 526

 18.1.1 An Interface for the ADT Dictionary 530
 18.2 Possible Implementations 531

 18.2.1 A Sorted Array-Based Implementation of the ADT Dictionary 534
 18.2.2 A Binary Search Tree Implementation of the ADT Dictionary 536

 18.3 Selecting an Implementation 538
 18.3.1 Four Scenarios 539

 18.4 Hashing 544
 18.4.1 Hash Functions 547
 18.4.2 Resolving Collisions 549
 18.4.3 The Effi ciency of Hashing 554
 18.4.4 What Constitutes a Good Hash Function? 557
 18.4.5 Dictionary Traversal: An Ineffi cient Operation Under Hashing 559
 18.4.6 Using Hashing and Separate Chaining to Implement the ADT Dictionary 559

Chapter 19 Balanced Search Trees 567
 19.1 Balanced Search Trees 568
 19.2 2-3 Trees 569

 19.2.1 Traversing a 2-3 Tree 572
 19.2.2 Searching a 2-3 Tree 572
 19.2.3 Inserting Data into a 2-3 Tree 575
 19.2.4 Removing Data from a 2-3 Tree 579

 19.3 2-3-4 Trees 585
 19.3.1 Searching and Traversing a 2-3-4 Tree 587
 19.3.2 Inserting Data into a 2-3-4 Tree 587
 19.3.3 Removing Data from a 2-3-4 Tree 591

 19.4 Red-Black Trees 592
 19.4.1 Searching and Traversing a Red-Black Tree 594
 19.4.2 Inserting into and Removing from a Red-Black Tree 594

 19.5 AVL Trees 597

Chapter 20 Graphs 603
 20.1 Terminology 604
 20.2 Graphs as ADTs 606

 20.2.1 Implementing Graphs 608
 20.3 Graph Traversals 611

 20.3.1 Depth-First Search 611
 20.3.2 Breadth-First Search 613

 20.4 Applications of Graphs 615
 20.4.1 Topological Sorting 615

xx

T
ab

le
 o

f C
on

te
nt

s 20.4.2 Spanning Trees 618
 20.4.3 Minimum Spanning Trees 621
 20.4.4 Shortest Paths 624
 20.4.5 Circuits 627
 20.4.6 Some Diffi cult Problems 629

Chapter 21 Processing Data in External Storage 637
 21.1 A Look at External Storage 638
 21.2 Sorting Data in an External File 640
 21.3 External Tables 646

 21.3.1 Indexing an External File 648
 21.3.2 External Hashing 651
 21.3.3 B-Trees 654
 21.3.4 Traversals 662
 21.3.5 Multiple Indexing 664

C++ Interlude 7 The Standard Template Library 671
 C7.1 STL Containers 671

 C7.1.1 Container Adaptors 673
 C7.1.2 Sequence Containers 674
 C7.1.3 Associative Containers 678

 C7.2 STL Algorithms 682

Appendix A Review of C++ Fundamentals 685

Appendix B Important Themes in Programming 721

Appendix C The Unifi ed Modeling Language 741

Appendix D The Software Life Cycle 749

Appendix E Mathematical Induction 755

Appendix F Algorithm Verifi cation 759

Appendix G Files 763

Appendix H C++ Header Files and Standard Functions 773

Appendix I C++ Documentation Systems 777

Appendix J ASCII Character Codes 779

Appendix K C++ for Java Programmers 781

Appendix L C++ for Python Programmers 789

Index 797

 Glossary Available online

 Answers to Checkpoint Questions Available online

xxi

C
ha

pt
er

 P
re

re
qu

is
it

esChapter Prerequisites

Each chapter, interlude, and appendix assumes that the reader has studied certain previous material. This list
indicates those prerequisites. Numbers represent chapter numbers, and letters reference appendices. The nota-
tion I x represents C++ Interlude x . Underlined prerequisites indicate an incidental or a partial dependence. You
can use this information to plan a path through the book.

 Prerequisites

 Chapter 1 Data Abstraction: The Walls A, B, C

C++ Interlude 1 C++ Classes A, 1

 Chapter 2 Recursion: The Mirrors A, B, C

 Chapter 3 Array-Based Implementations A, 1, I1, 2

C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation 3

 Chapter 4 Link-Based Implementations 1, I1, 2 , 3, I2

 Chapter 5 Recursion as a Problem-Solving Technique 2

 Chapter 6 Stacks 1, I1

C++ Interlude 3 Exceptions I1

 Chapter 7 Stack Implementations 3, I2, 4, 6, I3

 Chapter 8 Lists 1, I1

 Chapter 9 List Implementations 3, I2, 4, I3, 8

 Chapter 10 Algorithm Effi ciency 1, 2, 4, 9

 Chapter 11 Sorting Algorithms and Their Effi ciency 2, 5, 10

C++ Interlude 4 Class Relationships and Reuse 1, I1, I2, 6, 8

 Chapter 12 Sorted Lists and Their Implementations 8, 10, I4

 Chapter 13 Queues and Priority Queues 6, 8 , 12

 Chapter 14 Queue Implementations 13

C++ Interlude 5 Overloaded Operators and Friend Access 4, 8, 9

 Chapter 15 Trees 2, 4 , 5, 6 , 8 , 10, 13

 Chapter 16 Tree Implementations 4, 5, 6 , 9, 10, 12, I5, 15

C++ Interlude 6 Iterators 9, I5

 Chapter 17 Heaps 13, 15, 16

 Chapter 18 Dictionaries and Their Implementations 4, 10, 11, 12, 15, 16

 Chapter 19 Balanced Search Trees 15, 16, 18

 Chapter 20 Graphs 5, 6, 15

 Chapter 21 Processing Data in External Storage G, 11, 18, 19

C++ Interlude 7 The Standard Template Library N/A

Appendix A Review of C++ Fundamentals Knowledge of a program-
ming language

xxii

Appendix B Important Themes in Programming A, 1

Appendix C The Unifi ed Modeling Language I4

Appendix D The Software Life Cycle A general knowledge of
software

Appendix E Mathematical Induction Ability to prove theorems

Appendix F Algorithm Verifi cation E

Appendix G Files A

Appendix H C++ Header Files and Standard Functions N/A

Appendix I C++ Documentation Systems N/A

Appendix J ASCII Character Codes N/A

Appendix K C++ for Java Programmers Java programming

Appendix L C++ for Python Programmers Python programming

C
ha

pt
er

 P
re

re
qu

is
it

es

xxii

xxiii

 Chapter 1 Data Abstraction: The Walls
 Object-Oriented Concepts 2
 Designing an ADT 14

 C++ Interlude 1 C++ Classes
 C++ Classes 32

 Chapter 2 Recursion: The Mirrors
 Recursion: The Mirrors 50
 Recursion with Arrays 67

 Chapter 3 Array-Based Implementations
 Core ArrayBag Methods 98
 Other ArrayBag Methods 107

 C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation
 C++ Memory Allocation 120

 Chapter 4 Link-Based Implementations
 Linked Chain Concepts 134
 Core LinkedBag Methods 137

 Chapter 5 Recursion as a Problem-Solving Technique
 Processing Expressions 164
 Backtracking 172

 Chapter 6 Stacks
 The ADT Stack 194
 Using the ADT Stack 201

 C++ Interlude 3 Exceptions
 C++ Exceptions 230

 Chapter 7 Stack Implementations
 Overview of ArrayStack 242
 Overview of LinkedStack 245

 Chapter 8 Lists
 The ADT List 254
 Using the ADT List 259

 Chapter 9 List Implementations
 Overview of ArrayList 268
 Overview of LinkedList 274

 Chapter 10 Algorithm Effi ciency
 Measuring Algorithmic Effi ciency 291
 Understanding Big O Notation 294

 Chapter 11 Sorting Algorithms and Their Effi ciency
 Basic Sorting Algorithms 306
 Faster Sorting Algorithms 313

VideoNote

VideoNotes Directory

V
id

eo
N

ot
es

 D
ir

ec
to

ry

xxiii

V
id

eo
N

ot
es

 D
ir

ec
to

ry

xxiv

 C++ Interlude 4 Class Relationships and Reuse
 C++ Inheritance and Access 338

 Chapter 12 Sorted Lists and Their Implementations
 The ADT Sorted List 353
 ADT Sorted List Implementations 357

 Chapter 13 Queues and Priority Queues
 The ADT Queue 374
 Using the ADT Queue 377

 Chapter 14 Queue Implementations
 Overview of LinkedQueue 398
 Overview of ArrayQueue 405

 C++ Interlude 5 Overloaded Operators and Friend Access
 C++ Operator Overloading 415

 Chapter 15 Trees
 Tree Concepts 426
 The ADT Binary Search Tree 442

 Chapter 16 Tree Implementations
 Representing Tree Nodes 456
 Overview of BinarySearchTree 471

 C++ Interlude 6 Iterators
 C++ Iterators 493

 Chapter 17 Heaps
 The ADT Heap 504
 Overview of ArrayHeap 506

 Chapter 18 Dictionaries and Their Implementations
 The ADT Dictionary 526
 Hashing 544

 Chapter 19 Balanced Search Trees
 2-3 Trees 569
 2-3-4 Trees and Red-Black Trees 585

 Chapter 20 Graphs
 Graph Concepts 604
 Graph Operations 611

 Chapter 21 Processing Data in External Storage
 Sorting File Data 640
 Managing External Data 646

 C++ Interlude 7 The Standard Template Library
 C++ Standard Template Library 671

 Chapter

Data Abstraction:
The Walls 1

 Contents
 1.1 Object-Oriented Concepts 2

 1.1.1 Object-Oriented Analysis and Design 2
 1.1.2 Aspects of an Object-Oriented Solution 3

 1.2 Achieving a Better Solution 4
 1.2.1 Cohesion 4
 1.2.2 Coupling 5

 1.3 Specifi cations 6
 1.3.1 Operation Contracts 6
 1.3.2 Unusual Conditions 8
 1.3.3 Abstraction 8
 1.3.4 Information Hiding 9
 1.3.5 Minimal and Complete Interfaces 10

 1.4 Abstract Data Types 11
 1.4.1 Designing an ADT 14
 1.4.2 ADTs That Suggest Other ADTs 16

 1.5 The ADT Bag 17
 1.5.1 Identifying Behaviors 18
 1.5.2 Specifying Data and Operations 19
 1.5.3 An Interface Template for the ADT 22
 1.5.4 Using the ADT Bag 24

 Summary 26
 Exercises 27
 Programming Problems 28

 Prerequisites
 Appendix A Review of C++ Fundamentals
 Appendix B Important Themes in Programming
 Appendix C The Unifi ed Modeling Language

2 CHAPTER 1 Data Abstraction: The Walls

This chapter summarizes several fundamental principles that serve as the basis for dealing with the
complexities of large programs. The discussion both reinforces the basic principles of programming
and demonstrates that writing well-designed and well-documented programs is essential. The chapter
also introduces algorithms and data abstraction and indicates how these topics relate to the book’s
main theme of problem solving. Data abstraction is a technique for increasing the modularity of a
program—for building “walls” between a program and its data structures. During the design of a
solution, you will discover that you need to support several operations on the data and therefore need
to defi ne abstract data types (ADTs). Only after you have clearly specifi ed the operations of an ADT
should you consider data structures for implementing it. This chapter will introduce a simple ADT
and use it to demonstrate the advantages of ADTs in general.

 In subsequent chapters, we examine ways of organizing and using data. As we focus on these
new ideas, pay attention to how all of the solutions we look at adhere to the basic principles discussed
in this chapter.

 1.1 Object-Oriented Concepts
 Where did you begin when you wrote your last program? After reading the problem specifi cations
and going through the requisite amount of procrastination, most novice programmers simply begin to
write code. Obviously, their goal is to get their programs to execute, preferably with correct results.
Therefore, they run their programs, examine error messages, insert semicolons, change the logic,
delete semicolons, pray, and otherwise torture their programs until they work. Most of their time is
probably spent checking both syntax and program logic. Certainly, your programming skills are bet-
ter now than when you wrote your fi rst program, but are you able to write a really large program by
using the approach just described? Maybe, but there are better ways.

 Whereas a fi rst course in computer science typically emphasizes programming issues, the focus
of this book is on the broader issues of problem solving. Here the term problem solving refers to the
entire process of taking the statement of a problem and developing a computer program that solves
that problem. This process requires you to pass through many phases, from gaining an understanding
of the problem to be solved, through designing a conceptual solution, to implementing the solution as
a computer program. In a large software project, problem solving requires not only the development
of a computer program, but also the examination of user workfl ows and possible changes to how a
user performs daily tasks.

Object-oriented analysis and design (OOAD) is a process for solving problems. From an
object-oriented perspective, a solution is a computer program consisting of a system of interacting
classes of objects. An object has a set of characteristics and behaviors related to the solution. Each
object is responsible for some aspect of the solution. A set of objects having the same type is called a
class . An object of a class is also known as an instance of the class. When you create an object of a
class, you instantiate the object.

 OOAD helps us to discover and describe these objects and classes. These techniques give us a
starting place for moving from a problem statement to a solution.

 1.1.1 Object-Oriented Analysis and Design

Object-oriented analysis (OOA) is the process of understanding what the problem is and what the
requirements of a solution are. It is the initial stage in problem solving. During analysis you get an
accurate perception of what end users expect the solution to be and do. The requirements of a solu-
tion give you a description of what a solution must be and what a solution must do—without impos-
ing how to design or implement that solution.

Coding without a
solution design
increases
debugging time

A solution specifi es
a system of
interacting objects

An object is an
instance of a class

OOA explores a
problem, not a
solution

Specify what to do,
not how to do it

VideoNote

Object-oriented
concepts

 Object-Oriented Concepts 3

 During OOA , you express the problem and the requirements of a solution in terms of relevant
objects. These objects may represent real-world objects, software systems, or ideas. Using OOA, you
describe these objects and their interactions among one another. Analysis work involves the discov-
ery associated with understanding the problem . It does not involve thinking about a solution to the
problem, and instead focuses on thinking about the problem itself.

 The results of analysis act as input to the process of design. During object-oriented design
(OOD) , you describe a solution to the problem, fulfi lling the requirements you discovered during
analysis. You express the solution in terms of software objects, and you note how those objects will
collaborate . Objects collaborate when they send each other messages ; that is, objects call on one
another to perform operations. The interactions among objects are as important as the objects them-
selves and require careful planning. To solve the problem effi ciently, the collaborations among
objects should be meaningful and minimal.

 During OOD, you typically create one or more models of a solution for the problem. Some of
the models emphasize the interactions among objects; others show the relationships among the
objects. Taken together, the models create a design that can be implemented in C++ or any other
object-oriented language.

 1.1.2 Aspects of an Object-Oriented Solution

 Unless otherwise stated, a solution to a problem in this book is a computer program. A program com-
prises modules working together. A module is a self-contained unit of code and could be a single,
stand-alone function , a class method , a class itself, a group of several functions or classes that work
closely together, or other blocks of code. Exactly how a module is defi ned depends on the type and
size of the application. Functions and methods implement algorithms , which are step-by-step reci-
pes for performing a task within a fi nite period of time. One action that an algorithm often performs is
operating on a collection of data.

 When designing a solution, your challenge is to create a good set of modules. These modules
must store, move, and alter data. They also use methods to communicate with one another. When con-
structing a solution, you must organize your data collection so that you can operate on the data easily
in the manner that an algorithm requires. In fact, most of this book describes ways of organizing data.

 Object-oriented programming languages allow us to build classes of objects. A class combines
the attributes —or characteristics—of objects of a single type together with the objects’ operations—
or behaviors —into a single unit. The individual data items specifi ed in a class are called data mem-
bers . The operations specifi ed in the class are referred to as methods or member functions . Attributes
are typically data, and the behaviors, or methods, often operate on that data. In programming lan-
guages such as C++ and Java, classes specify the attributes and operations for the objects.

Encapsulation is a technique that hides inner details. Whereas functions encapsulate behavior,
objects encapsulate data as well as behavior. For example, a clock encapsulates the time—an
attribute—along with certain operations, such as setting or displaying the time. You can request that a
clock perform those operations but you cannot see how they are done (unless you have a mechanical
clock with see-through sides!).

 Classes can inherit properties and operations from other classes. For example, once you have
defi ned a base class of clocks, you can design a subclass of alarm clocks that inherits the properties of
a clock but adds operations that provide the functionality of an alarm. You can produce an alarm clock
quickly, because the clock portion is done. Thus, inheritance —another object-oriented concept—
allows you to reuse classes you defi ned earlier for a related purpose by extending that implementation
or making slight modifi cations.

 Inheritance may make it impossible for the compiler to determine which operation you require in
a particular situation. However, polymorphism —which literally means many forms —enables this

OOA explores a
problem in terms of
its objects

OOD explores a
solution to a
problem

OOD explores a
solution’s objects
and their
collaborations

Modules implement
algorithms, which
often manipulate
data

Objects encapsulate
attributes (data) and
behaviors
(operations)

Encapsulation hides
inner details

 Inheritance
supports reusing
software

4 CHAPTER 1 Data Abstraction: The Walls

determination to be made at execution time. That is, the outcome of a particular operation depends
upon the object that performs the operation. For example, you can create a pointer to a clock object,
myClock , in your program in such a way that it could reference either a clock object or an alarm clock.
When myClock is asked to display the time, the compiler cannot determine whether it should use the
clock implementation to display the time or the alarm clock implementation, since it does not know
to which class of clocks the object referenced by myClock belongs. Polymorphism allows the com-
piler to simply note that the meaning of an operation is unknown until execution time.

 Note: Three principles of object-oriented programming

1. Encapsulation: Objects combine data and operations.
2. Inheritance: Classes can inherit properties from other classes.
3. Polymorphism: Objects can determine appropriate operations at execution time.

 1.2 Achieving a Better Solution
 The last program you wrote most likely solved the given problem correctly. However, was it the best
possible solution? If you spent little—if any—time doing analysis and design, the solution probably
left something to be desired. If you were to code the same program again, you would doubtless pro-
duce a better solution than your fi rst attempt. However, if you spent some extra time analyzing the
problem and designing a solution, you would probably get your best solution.

 Suppose that you generated three correct but different solutions. Can you identify aspects of
each solution that makes it better than the other solutions? What are these aspects? What should you
focus on to create better solutions?

 Creating a good set of modules for a moderate-sized problem is more art than science. It requires
experience on the part of the programmer. A given problem likely has no “best” set of modules. Some
sets of modules—and their interactions—might be better than others in light of certain measures.
Moreover, for a suffi ciently large problem, several different sets of modules could be considered
“best,” depending upon the measure used. The “better” designs, however, do adhere to certain princi-
ples, which we examine next.

 1.2.1 Cohesion

 Each module should perform one well-defi ned task; that is, it should be highly cohesive . A highly
cohesive module brings several immediate benefi ts to a design or solution.

 First, the module, if well named, promotes self-documenting, easy-to-understand code. For
example, a highly cohesive function called sort should do nothing but sort. What this function does
is clear from its name: If this function also prints the sorted values, it is not cohesive.

 Second, a highly cohesive module is easy to reuse in other software projects. If a solution for
another problem is being developed, the highly cohesive sort function can be used without change. If
this function also prints the sorted values, it is much less likely to be the right sorting routine for the job.

 Third, a highly cohesive module is much easier to maintain. Because the highly cohesive sort
function does nothing but sort, fi xing a logical error is simpler. If this function prints the sorted val-
ues, too, the printing code will complicate the function’s maintenance. A highly cohesive module has
but one task that might need revision.

 Fourth, a highly cohesive module is more robust ; that is, it is less likely to be affected by change.
The highly cohesive sort function will require change only if the system requires a different kind of
sort. For example, you might need to sort data into descending, rather than ascending, order, or you
might need a faster sort.

Time devoted to
analysis and design
is time well spent

A highly cohesive
module performs
one well-defi ned
task

A robust module
performs well under
unusual conditions

 Achieving a Better Solution 5

 Like many object-oriented principles, cohesion can be described in human terms. A person with
low cohesion has “too many irons in the fi re.” Such people tend to get bogged down in everything that
they need to get done, and nothing they do gets done well. They could become more cohesive by del-
egating some of their responsibilities to others.

Note: A guiding principle of OOD is that each class should have a single, well-defi ned
responsibility. The methods of a class should be highly cohesive and related directly to
supporting the responsibility of the class. The responsibilities of a class are functionally
equivalent to the tasks that the class needs to perform. If a class has too many responsi-
bilities, it should be split into multiple classes, each with a single responsibility taken
from the original class.

 1.2.2 Coupling

Coupling is a measure of the dependence among modules. This dependence, for example, could
involve sharing data structures or calling each other’s methods. Ideally, the modules in a design
should be independent of one another. However, some degree of coupling is necessary to get work
done. That is, modules should be loosely coupled , and highly coupled modules should be avoided.

 Loose coupling benefi ts a system in several ways. First, a module with loose coupling tends to
create a system that is more adaptable to change. If class A depends on—that is, is highly coupled
to—a class B and class B is changed, it is very likely that these changes will affect class A and break it.

 Second, a module with loose coupling creates a system that is easier to understand. If class A
depends on a class B , understanding how class A works requires an understanding of class B . Thus,
class A is diffi cult to understand in isolation. A solution with a high degree of coupling can become
nearly impossible to understand.

 Third, a module with loose coupling increases the reusability of that module. If class A depends
on a class B , reusing class A in another program is complicated by the need to include class B in that
program as well. Reusing coupled modules requires reusing all of the modules together as a unit.
Often this is not desirable, or possible.

 Fourth, a module with loose coupling has increased cohesion. Moreover, highly cohesive mod-
ules tend to be loosely coupled. As the level of cohesion associated with a module goes down, that
module does more unrelated work, as we saw in the previous section. This has the side effect of caus-
ing the module to be coupled with many other modules from other areas in the program.

 Again, realize that some coupling is required; coupling cannot and should not be eliminated
from designs and solutions. To get work done, objects must collaborate. But collaboration requires
objects to depend on one another. Tasks that an object has delegated to other objects create coupling
between these objects. This coupling is necessary, but it should be kept to a minimum. However, other
factors may infl uence a design. Thus, some designs with more coupling are better than other designs
with less coupling because of these other factors.

A loosely coupled
module is
independent

 Note: If, in the past, you have spent little or no time on analysis and design for your
programs, you must change this habit! The end result of OOD should be a modular solu-
tion that is easy to translate into the constructs of a particular programming language. By
spending adequate time with analysis and design, you will spend less time writing and
debugging your program.

6 CHAPTER 1 Data Abstraction: The Walls

 1.3 Specifi cations
 When you design a modular solution to a problem, each module simply states what it does but not
how it does it. No one module may “know” how any other module performs its task—it may know
only what that task is. For example, if one part of a solution is to sort some data, one of the modules
may be a sorting algorithm, as Figure 1-1 illustrates. The other modules know that the sorting module
sorts, but they do not know how it sorts. In this way, the various components of a solution are kept
isolated from one another.

 Using this idea, you can write the modules in relative isolation from one another, knowing what
each one will do but not necessarily how each will eventually do it. It is essential that a module’s
specifi cations be written and understood.

 1.3.1 Operation Contracts

 An operation contract documents how a method can be used and what limitations it has. You should
begin specifying this contract during analysis, fi nish the specifi cation during design, and then docu-
ment the contract in your code, particularly within the header fi les. In this way, programmers who use
your code can understand what contract they need to honor for the method to generate correct results.

 There is certain information you need to provide for each method. A method’s interface will
specify how to call the method and the number, order, and types of arguments it expects—as already
discussed. You also need to specify what should be true before the method is called and what will be
true after the method fi nishes execution.

 During design, it is also important that you clearly specify not only the purpose of each module,
but also the data fl ow among modules. For example, you should provide answers to these questions
for each module: What data is available to the module before its execution? What does the module
assume? What actions have taken place, and what does the data look like, after the module executes?
Thus, you should specify in detail the assumptions, input, and output for each module.

 For example, if you as program designer needed to sort an array of integers, you might write the
following specifi cations for a sort function:

 The function will receive an array of num integers, where num > 0.
 The function will return the array with the integers sorted.

Write specifi cations
for each module
before implementing
it

FIGURE 1-1 The task sort is a module separate from the MyProgram module

Data sorted into
ascending order

Unorganized data

MyProgram
(does interesting things)

Sort his data for me;
I don't care how you

do it

sort function
(sorts into ascending order)

A module’s contract
specifi es the
module’s purpose,
assumptions, input,
and output

Specify the data
fl ow among
modules

 Specifi cations 7

 First-draft
specifi cations

 You can view these specifi cations as the terms of a contract between your function and the module
that calls it.

 This contract helps programmers understand what responsibilities the module will have to the
other modules in the solution. Whoever writes the sort function must live up to this contract. After the
sort function has been written and tested, the contract tells the rest of the program how to call the sort
function properly, as well as the result of doing so.

 Notice, however, that a module’s contract does not commit the module to a particular way of
performing its task. If another part of the program assumes anything about the algorithm, it does
so at its own risk. Thus, for example, if at some later date you rewrite your function to use a differ-
ent sorting algorithm, you should not need to change the rest of the program at all. As long as the
new function honors the terms of the original contract, the rest of the program should be oblivious
to the change.

 This should not be news to you. Although you might not have explicitly used the term con-
tract before, the concept should be familiar. You write a contract when you write a function’s pre-
condition , which is a statement of the conditions that must exist at the beginning of a function, as
well as when you write its postcondition , which is a statement of the conditions at the end of a
function. For example, the sort function that adheres to the previous contract could appear in
pseudocode1 as

 // Sorts an array.
// Precondition: anArray is an array of num integers; num > 0.
// Postcondition: The integers in anArray are sorted.
sort(anArray, num)

 These particular pre- and postconditions actually are defi cient, as can be the case in a fi rst-draft
contract. For example, does sorted mean ascending order or descending order? How large can num
be? While implementing this function, you might assume that sorted means ascending order and that
num will not exceed 100. Imagine the diffi culties that can arise when another person tries to use sort
to sort an array of 500 integers into descending order. This user will not know your assumptions
unless you documented them by revising the contract as follows:

 // Sorts an array into ascending order.
// Precondition: anArray is an array of num integers and 1 <= num <= MAX_ARRAY,
// where MAX_ARRAY is a global constant that specifi es the maximum size of anArray .
 // Postcondition: anArray[0]<= anArray[1]<= … <= anArray[num - 1];
// num is unchanged.
sort(anArray, num)

 When you write a precondition, begin by describing the method or function’s input arguments,
mention any global named constants that it uses, and fi nally list any assumptions that it makes. When
you write a postcondition, describe what changes the module has made. Note that in the case of a
method or function that returns a value—which is technically a part of the postcondition—the value
should be described.

 Novice programmers tend to dismiss the importance of precise documentation, particularly
when they are simultaneously designer, programmer, and user of a small program. If you design sort
but do not write down the terms of the contract, will you remember them when you later implement
the function? Will you remember how to use sort weeks after you have written it? To refresh your
memory, would you rather examine your program code or read a simple set of pre- and postcondi-
tions? As the size of a program increases, good documentation becomes even more important, regard-
less of whether you are sole author or part of a team.

Specifi cations are
the terms of a
contract

An operation
contract should not
describe how a
module will perform
its task

Operation contracts
should include
precise
preconditions and
postconditions

1 Pseudocode in this book appears in blue.

 Revised
specifi cations

 Precise
documentation is
essential

8 CHAPTER 1 Data Abstraction: The Walls

 1.3.2 Unusual Conditions

 You as a class designer need to make decisions about how to treat unusual conditions and include
these decisions in your specifi cations. The documentation for methods and functions should refl ect
these decisions.

 In general, you can address unusual situations in several ways. You can

• Assume that the invalid situations will not occur. This assumption is not as naive as it might
sound. A method could state as an assumption—that is, a precondition—restrictions to which
a client must adhere. It is then up to the client to check that the precondition is satisfi ed before
invoking the method. As long as the client obeys the restriction, the invalid situation will not
occur.

• Ignore the invalid situations. A method could simply do nothing when given invalid data.
Doing absolutely nothing, however, leaves the client without knowledge of what happened.

• Guess at the client’s intention. Like the previous option, this choice can cause problems for
the client.

• Return a value that signals a problem. For example, a method can return a boolean value
that indicates its success or failure.

• Throw an exception. Throwing an exception is often a desirable way for a C++ method to
react to unusual events that occur during its execution. The method can simply report a prob-
lem without deciding what to do about it. The exception enables each client to act as needed in
its own particular situation. For simplicity right now, we will adopt the philosophy that meth-
ods should throw exceptions only in truly unusual circumstances, when no other reasonable
solution exists. You can learn about exceptions in C++ Interlude 3.

Note: An operation contract completely specifi es a module’s purpose, assumptions,
input, and output.

Note: The program component that uses a module is the module’s client . The user is a
person who uses a program.

Note: A fi rst draft of a module’s specifi cations often overlooks or ignores situations
that you really need to consider. You might intentionally make these omissions to sim-
plify this fi rst draft. Once you have written the major portions of the specifi cations, you
can concentrate on the details that make the specifi cations complete.

 1.3.3 Abstraction

Abstraction separates the purpose of a module from its implementation. Modularity breaks a solu-
tion into modules; abstraction specifi es each module clearly before you implement it in a program-
ming language. For example, what does the module assume, and what action does it take? What task
is this module responsible for when called on? Such specifi cations clarify the design of your solution,
because you can focus on its high-level functionality without the distraction of implementation
details. In addition, they help you modify one part of a solution without signifi cantly affecting the
other parts. For example, you should be able to change the sorting algorithm in the previous example
without affecting the rest of the solution.

Specifi cations do
not indicate how to
implement a module

 Specifi cations 9

 As the problem-solving process proceeds, you gradually refi ne the modules until eventually you
implement their actions by writing code—typically, classes and their methods. Separating the pur-
pose of a module from its implementation is known as functional (or procedural) abstraction . Once
a module is written, you can use it without knowing the particulars of its algorithm as long as you
have a statement of its purpose and a description of its arguments. Assuming that the module is docu-
mented properly, you can use it knowing only its specifi cations. You do not need to look at its imple-
mentation.

 Functional abstraction is essential to team projects. After all, in a team situation, you have to use
modules written by others, frequently without knowledge of their algorithms. Can you actually use
such a module without studying its code? In fact, you do this each time you use a C++ Standard
Library function, such as sqrt in the C++ math library cmath . Because sqrt is precompiled, you do
not have access to its source statements. Furthermore, it may be that sqrt was written in a language
other than C++! There is so much about sqrt that you do not know; yet you can use it in your program
without concern, as long as you know its specifi cations. If you pass sqrt a fl oating-point expression,
it will return the fl oating-point square root of the value of that expression. You can use sqrt even
though you do not know its implementation.

 Consider now a collection of data and a set of operations on the data. The operations might
include ones that add new data to the collection, remove data from the collection, or search for some
data. Data abstraction focuses on what the operations do with the collection of data, instead of on
how you implement them. The other modules of the solution “know” what operations they can per-
form, but they do not know how the data is stored or how the operations are performed.

 For example, you have used an array, but have you ever stopped to think about what an array actu-
ally is? There are many pictures of arrays throughout this book. They might resemble the way a C++
array is implemented on a computer, and then again they might not. In either case, you can use an
array without knowing what it “looks like”—that is, how it is implemented. Although different sys-
tems may implement arrays in different ways, the differences are transparent to the programmer.

 For instance, regardless of how the array years is implemented, you can always store the value
1492 in location index of the array by using the statement

 years[index] = 1492;

 and later display the value by using the statement

 cout << years[index] << endl;

 Thus, you can use an array without knowing the details of its implementation, just as you can use the
function sqrt without knowing the details of its implementation. Let’s explore this idea in more
detail.

 1.3.4 Information Hiding

 As you have seen, abstraction tells you to write functional specifi cations for each module that describe
its outside, or public, view. However, abstraction also helps you identify details that you should hide
from public view—details that should not be in the specifi cations but rather should be private. The
principle of information hiding tells you not only to hide such details within a module, but also to
ensure that no other module can tamper with these hidden details.

 While writing a module’s specifi cations, you must identify details that you can hide within the
module. The principle of information hiding involves not only hiding these details, but also making
them inaccessible from outside a module. One way to understand information hiding is to imagine
walls around the various tasks a program performs. These walls prevent the tasks from becoming entan-
gled. The wall around each task prevents the other tasks from “seeing” how that task is performed.

 Complete
specifi cations
enable you to use a
module without
knowing its
implementation

Specify what a
module does, not
how to do it

Both functional and
data abstraction ask
you to think “what,”
not “how”

All modules and
ADTs should hide
something

10 CHAPTER 1 Data Abstraction: The Walls

 The isolation of the modules cannot be total, however. Although MyProgram does not know how
the task sort is performed, it must know what the task sort is and how to initiate it. For example, sup-
pose your program needs to operate on a sorted array of names. The program may, for instance, need
to search the array for a given name or display the names in alphabetical order. The program thus
needs a function sort that sorts an array of names. Although the rest of the program knows that sort
can sort an array, it should not care how sort accomplishes its task.

 Thus, imagine a tiny slit in the wall, as Figure 1-2 illustrates. The slit is not large enough to allow
the outside world to see the function’s inner workings, but items can pass through the slit into and out
of the function. This slit is the prototype , declaration , or header of the function. The slit comprises
the function or method’s name, parameter list, and return type. For example, you can pass the array
into the function sort , and the function can pass the sorted array out to you. What goes in and comes
out is governed by the terms of the function’s specifi cations, or contract: If you use the function in this
way, this is exactly what it will do for you .

FIGURE 1-2 Tasks communicate through a slit in the wall

Data sorted
into ascending

order

Unorganized
data

MyProgram
(does interesting things)

Sort his data for me;
I don't care how you

do it

sort function
(sorts into ascending order)

 Suppose that a faster sort algorithm is developed. Since the function sort is isolated from the
other modules in the program, the new algorithm can be implemented in the sort function without
affecting those other modules. Thus, if MyProgram uses the task sort , and if the algorithm and imple-
mentation for performing the sort changes, MyProgram will not be affected. As Figure 1-3 illustrates,
the wall prevents MyProgram ’s algorithm from depending on sort’s algorithm.

Note: Information hiding limits the ways in which you need to deal with modules and
data. As a user of a module, you do not worry about the details of its implementation. As
an implementer of a module, you do not worry about its uses.

A module’s interface
is the only way to
interact with that
module

 1.3.5 Minimal and Complete Interfaces

 The interface for a class is made up of the publicly accessible methods and data. Typically, a class
interface contains only methods, as you will see, because publicly accessible data fi elds generally

 Abstract Data Types 11

cause problems. The interface for a class describes the only way for programmers to interact with that
class. Thus, interfaces are where collaboration between objects takes place. It is through its interface
that a class is coupled to other classes. Designing good class interfaces is an important skill.

 Each class should be easy to understand. Thus, when designing a class, you should keep the
number of its methods small. However, your classes should provide programmers the power to do
what they need to do easily. These desires are at odds.

 A complete interface for a class is one that will allow programmers to accomplish any reasona-
ble task, given the responsibilities of that class. A minimal interface for a class is one that contains a
method if and only if that method is essential to that class’s responsibilities. Programmers can more
easily learn how to interact with a class that has a minimal interface, as it has fewer methods to under-
stand. Classes with minimal interfaces are also much easier to maintain. Changes to a class with an
extensive interface could affect many of its methods.

 You should evaluate classes in terms of how complete and minimal their interfaces are. It is
important that interfaces be complete. Of somewhat less importance is having a minimal interface;
sometimes a nonessential method is just too useful to omit.

 The interface to a function or method is more accurately called its signature . The signature con-
sists of a function’s name; the number, order, and types of its arguments; and any qualifi ers such as
const that might apply. A signature looks very much like the function’s prototype, but does not
include its return type. You use the interface to a function or method when you call it, sending it the
correct number, order, and type of arguments.

 1.4 Abstract Data Types
 Often the solution to a problem requires operations on data. Such operations are broadly described in
one of three ways:

• Add data to a data collection.
• Remove data from a data collection.
• Ask questions about the data in a data collection.

FIGURE 1-3 A revised implementation communicates through the same slit in the wall

Data sorted
into ascending

order

Unorganized
data

new!
improved faster, smaller

sort function
(sorts into ascending order)MyProgram

(does interesting things)

Sort his data for me;
I don't care how you

do it

Typical operations
on data

12 CHAPTER 1 Data Abstraction: The Walls

 The details of the operations, of course, vary from application to application, but the overall theme is the
management of data. Realize, however, that not every problem uses or requires all of these operations.

 Most of this book is about data abstraction. To enable you to think abstractly about data, you
should defi ne an abstract data type , or ADT . An ADT is a collection of data and a set of operations
on the data. You can use an ADT’s operations, if you know their specifi cations, without knowing how
the operations are implemented or how the data is stored.

 Ultimately, someone—perhaps you—will implement the ADT by using a data structure , which is
a construct that you can defi ne within a programming language to store a collection of data. For exam-
ple, you might store the data in a C++ array of strings or in an array of objects or in an array of arrays.

 For example, suppose that you need to store a collection of names in a manner that allows you to
search rapidly for a given name. A collection of name items providing for rapid searches is the descrip-
tion of a simple ADT. The description of an ADT’s operations must be rigorous enough to specify
completely their effect on the data, yet must specify neither how to store the data nor how to carry out
the operations. For example, the ADT operations should not specify whether to store the data in con-
secutive memory locations or in disjoint memory locations. You choose a particular data structure
when you implement an ADT.

 When a program must perform data operations that are not directly supported by the language,
you should fi rst design an ADT and carefully specify what the ADT operations are to do (the con-
tract). Then —and only then— should you implement the operations with a data structure. If you
implement the operations properly, the rest of the program will be able to assume that the operations
perform as specifi ed—that is, that the terms of the contract are honored. However, the program must
not depend on a particular technique for supporting the operations.

An ADT is not a
fancy name for a
data structure

Specifi cations
indicate what ADT
operations do, but
not how to
implement them

Carefully specify
an ADT’s
operations before
you implement
them

Note: ADTs versus data structures

• An abstract data type is a specifi cation for a group of values and the operations on
those values.

• A data structure is an implementation of an ADT within a programming language.

 To give you a better idea of the conceptual difference between an ADT and a data structure, con-
sider a refrigerator’s ice dispenser, as Figure 1-4 illustrates. It has water as input and produces as out-
put either chilled water, crushed ice, or ice cubes, according to which one of three buttons you push.

ADTs and data
structures are not
the same

FIGURE 1-4 A dispenser of chilled water, crushed ice, and ice cubes

Chilled
water

Crushed
ice

Ice
cubes

No
ice

Water input

User view from specifications Technician view

Chilled
water

maker

Crushed ice maker

No ice
indicator

Ice cube
maker

 Abstract Data Types 13

It also has an indicator that lights when no ice is available. The water is analogous to data; the opera-
tions are chill , crush , cube , and isEmpty (or noIce). At this level of design, the dispenser is analogous
to an ADT; you are not concerned with how the dispenser will perform its operations, only that it per-
forms them. If you want crushed ice, do you really care how the dispenser accomplishes its task, as
long as it does so correctly? Thus, after you have specifi ed the dispenser’s operations, you can design
many uses for crushed ice without knowing how the dispenser accomplishes its tasks and without the
distraction of engineering details.

 Eventually, however, someone must build the dispenser. Exactly how will this machine produce
crushed ice, for example? It could fi rst make ice cubes and then either crush them between two steel
rollers or smash them into small pieces by using hammers. Many other techniques are possible. The
internal structure of the dispenser corresponds to the implementation of the ADT in a programming
language, that is, to a data structure.

 Although the owner of the dispenser does not care about its inner workings, he or she does want
a design that is as effi cient in its operation as possible. Similarly, the dispenser’s manufacturer wants a
design that is as easy and inexpensive to build as possible. You should have these same concerns when
you choose a data structure to implement an ADT. Even if you do not implement the ADT yourself,
but instead use an already implemented ADT, you—like the person who buys a refrigerator—should
care about at least the ADT’s effi ciency.

 Notice that steel walls surround the dispenser. The only breaks in the walls accommodate the
input (water) to the machine and its output (chilled water, crushed ice, or ice cubes). Thus, the
machine’s interior mechanisms are not only hidden from the user, but also inaccessible. In addition,
the mechanism of one operation is hidden from and inaccessible to another operation.

 This modular design has benefi ts. For example, you can improve the operation crush by modify-
ing its implementation without affecting the other modules. You could also add an operation to the
machine without affecting the original three operations. Thus, both abstraction and information hid-
ing are at work here.

 To summarize, data abstraction results in a wall of ADT operations between data structures and
the program that accesses the data within these data structures, as Figure 1-5 illustrates. If you are on

A program should
not depend on the
details of an ADT’s
implementation

FIGURE 1-5 A wall of ADT operations isolates a data structure from the program that uses it

MyProgram
(does interesting things)

Data structure

Add

Contains

Remove

14 CHAPTER 1 Data Abstraction: The Walls

the program’s side of the wall, you will see an interface that enables you to communicate with the data
structure. That is, you ask the ADT operations to manipulate the data in the data structure, and they
pass the results of these manipulations back to you.

 This process is analogous to using a vending machine. You press buttons to communicate with
the machine and obtain something in return. The machine’s external design dictates how you use it,
much as an ADT’s specifi cations govern what its operations are and what they do. As long as you use
a vending machine according to its design, you can ignore its inner technology. As long as you agree
to access data only by using ADT operations, your program can be oblivious to any change in the data
structures that implement the ADT.

 The following pages describe several abstract data types, focusing on the specifi cations of their
operations, but not their implementations.

 1.4.1 Designing an ADT

 The design of an abstract data type should evolve naturally during the problem-solving process. As an
example of how this process might occur, suppose that you want to determine the dates of all the holi-
days in a given year. One way to do this is to examine a calendar. That is, you could consider each day
in the year and ascertain whether that day is a holiday. The following pseudocode is a possible solu-
tion to this problem:

 // Displays the dates of all holidays in a given year.
 listHolidays(year)

 date = date of fi rst day of year
while (date is before the fi rst day of year + 1)

 {
if (date is a holiday)

 write (date," is a holiday")

 date = date of next day
 }

 What data is involved here? Clearly, this problem operates on dates, where a date consists of a
month, day, and year. What operations will you need to solve the holiday problem? Your ADT must
specify and restrict the legal operations on the dates, just as the fundamental data type int restricts you
to operations such as addition and comparison. You can see from the previous pseudocode that you must

• Determine the date of the fi rst day of a given year.
• Decide whether a date is before another date.
• Decide whether a date is a holiday.
• Determine the date of the day that follows a given date.

 Thus, you could specify the following operations for an ADT date in pseudocode that uses the nota-
tion of the Unifi ed Modeling Language (UML) , as described in Appendix C:

 // Returns the date of the fi rst day of a given year.
+getFirstDay(year: integer): Date

// Returns true if this date is before the given date; otherwise returns false.
+isBefore(otherDate: Date): boolean

 // Returns true if this date is a holiday; otherwise returns false.
+isHoliday(): boolean

 // Returns the date of the day after this date.
+getNextDay(): Date

Using an ADT is like
using a vending
machine

What data does a
problem require?

What operations
does a problem
require?

VideoNote

Designing an ADT

 Abstract Data Types 15

 The listHolidays pseudocode now appears as follows:

 // Displays the dates of all holidays in a given year.
listHolidays(year: integer): void

 date = getFirstDay(year)
while (date.isBefore(getFirstDay(year + 1)))

 {
if (date.isHoliday())

 write (date," is a holiday ")

 date = date.getNextDay()
 }

 Thus, you can design an ADT by identifying data and choosing operations that are suitable to
your problem. After specifying the operations, you use them to solve your problem independently of
the implementation details of the ADT.

 An appointment book. As another example of an ADT design, imagine that you want to create a
computerized appointment book that spans a one-year period. Suppose that you make appointments
only on the hour and half hour between 8 a.m. and 5 p.m. You want your system to store a brief nota-
tion about the nature of each appointment along with the date and time.

 To solve this problem, you can defi ne an ADT appointment book. The data items in this ADT are
the appointments, where an appointment consists of a date, time, and purpose. What are the opera-
tions? Two obvious operations are

• Make an appointment for a certain date, time, and purpose. (You will want to be careful that
you do not make an appointment at an already occupied time.)

• Cancel the appointment for a certain date and time.

 In addition to these operations, it is likely that you will want to

• Ask whether you have an appointment at a given time.
• Get the purpose of your appointment at a given time.

 Finally, ADTs typically have initialization and destruction operations that we assume but do not spec-
ify at this stage.

 Thus, the ADT appointment book can have the following operations:

// Returns true if an appointment exists for the date and time specifi ed,
// false otherwise.
+isAppointment(apptDate: Date, apptTime: Time): boolean

// Inserts the appointment for the date, time, and purpose specifi ed as long as
// it does not confl ict with an existing appointment.
// Returns true if successful, false otherwise.
+makeAppointment(apptDate: Date, apptTime: Time,
 apptPurpose: string): boolean

// Deletes the appointment for the date and time specifi ed.
// Returns true if successful, false otherwise.
+cancelAppointment(apptDate: Date, apptTime: Time): boolean

// Gets the purpose of the appointment at the given date and time, if one exists.
// Otherwise returns an empty string.
+getAppointmentPurpose(apptDate: Date, apptTime: Time): string

 You can use these ADT operations to design other operations on the appointments. For example,
suppose you want to change the date or time of a particular appointment within the existing

16 CHAPTER 1 Data Abstraction: The Walls

appointment book apptBook . The following pseudocode indicates how to accomplish this task by
using the previous ADT operations:

 // Change the date or time of an appointment.

 Get the following data from the user: oldDate , oldTime , newDate , newTime

// Get purpose of appointment.
oldPurpose = apptBook.getAppointmentPurpose(oldDate, oldTime)
 if (oldPurpose is not the empty string)
{

// See whether a new date/time is available.
if (apptBook.isAppointment(newDate, newTime))

// New date/time is booked
 write("You already have an appointment at ", newTime,

" on ", newDate)
else

 {
// New date/time is available; cancel old appointment; make new one.

 apptBook.cancelAppointment(oldDate, oldTime)
if (apptBook.makeAppointment(newDate, newTime, oldPurpose))

 write("Your appointment has been rescheduled to ",
 newTime, " on ", newDate)
 }
}
 else
 write("You do not have an appointment at ", oldTime,

" on ", oldDate)

 Again notice that you can design applications that use ADT operations without knowing how the
ADT is implemented. The exercises at the end of this chapter provide examples of other tasks that you
can perform with this ADT.

 1.4.2 ADTs That Suggest Other ADTs

 Both of the previous examples require you to represent a date; the appointment book example also
requires you to represent the time. C++ has date-time objects specifi ed in ctime that you can use
to represent the date and the time. You can also design ADTs to represent these items in a more
object-oriented way. It is not unusual for the design of one ADT to suggest other ADTs. In fact, you
can use one ADT to implement another ADT.

 This fi nal example also describes an ADT that suggests other ADTs for its implementation. Sup-
pose that you want to design a database of recipes. You could think of this database as an ADT. The
recipes are the data items, and some typical operations on the recipes could include the following:

 // Inserts a recipe into the database.
+insertRecipe(aRecipe: Recipe): boolean

// Deletes a recipe from the database.
+deleteRecipe(aRecipe: Recipe): boolean

// Gets the named recipe from the database.
+getRecipe(name: string): Recipe

 This level of the design does not indicate such details as where insertRecipe will place a recipe into
the database.

 Now imagine that you want to design an operation that scales a recipe retrieved from the data-
base: If the recipe is for n people, you want to revise it so that it will serve m people. Suppose that

You can use an ADT
without knowledge
of its
implementation

You can use an ADT
to implement
another ADT

 The ADT Bag 17

the recipe contains measurements such as 2½ cups, 1 tablespoon, and ¼ teaspoon. That is, the
quantities are given as mixed numbers—integers and fractions—in units of cups, tablespoons, and
teaspoons.

 This problem suggests another ADT—measurement—with the following operations:

 // Returns this measure.
+getMeasure(): Measurement

// Sets this measure to another one.
+setMeasure(m: Measurement)

// Returns this measure multiplied by a fractional scale factor, which has no units.
+scaleMeasure(scaleFactor: float): Measurement

// Returns this measure converted from its old units to new units.
+convertMeasure(oldUnits: MeasureUnit,
 newUnits: MeasureUnit): Measurement

 Suppose that you want the ADT measurement to perform exact fractional arithmetic. Because
our planned implementation language C++ does not have a data type for fractions, and fl oating-
point arithmetic is not exact, another ADT called fraction is in order. Its operations could include
addition, subtraction, multiplication, and division of fractions. For example, you could specify
addition as

 // Returns the sum, reduced to lowest terms, of this fraction and the given fraction.
+add(other: Fraction): Fraction

 Moreover, you could include operations to convert a mixed number to a fraction and vice versa
when feasible. When you fi nally implement the ADT measurement, you can use the ADT fraction.
That is, you can use one ADT to implement another ADT.

 1.5 The ADT Bag
 Imagine a paper bag, a reusable cloth bag, or even a plastic bag. People use bags when they shop, pack
a lunch, or eat potato chips. A bag contains things; it is a container of a collection of objects. We
could consider the bag to be an abstract data type.

 Let’s specify and use the ADT bag . Knowing just its interface, you can use a bag in a program.
You do not need to know how the entries in the bag are represented or how the bag operations are
implemented. These specifi cs are hidden behind the bag’s wall of abstraction, and your program will
not depend on these specifi cs. As you will see, this important program characteristic is what data
abstraction is all about.

 What distinguishes a bag from other ADTs? A bag doesn’t do much more than contain its items.
It doesn’t order them in a particular way, nor does it prevent duplicate items. While describing the
behaviors for the ADT bag that we’ll design in this chapter, let’s keep in mind that we are specifying
an abstraction inspired by an actual physical bag. For example, a paper bag holds things of various
dimensions and shapes in no particular order and without regard for duplicates. Our abstract bag will
hold unordered and possibly duplicate objects, but let’s insist that these objects have the same or
related types.

A bag is a container

Note: A bag is a container of a fi nite number of objects having the same data type and
in no particular order. A bag can contain duplicate items.

18 CHAPTER 1 Data Abstraction: The Walls

 1.5.1 Identifying Behaviors

 Since a bag contains a fi nite number of objects, reporting how many objects it contains could be one
of a bag’s behaviors:

• Get the number of items currently in the bag.

 A related behavior detects if a bag is empty:

• See whether the bag is empty.

 We should be able to add and remove objects:

• Add a given object to the bag.
• Remove an occurrence of a specifi c object from the bag, if possible.
• Remove all objects from the bag.

 Note that the add operation does not indicate where in the bag an object should go. Remember
that a bag does not order its contents. The remove operation looks for a particular item in the bag. If it
fi nds it, it takes it out. If the bag contains several objects equal to the removed one, they remain in the
bag. If the operation can’t fi nd the specifi c object in the bag, it can’t remove it, and just says so.
Finally, the second remove operation simply empties the bag of all objects.

 What is in a particular bag? The answer to this question can be answered by the following
operations:

• Count the number of times a certain object occurs in the bag.
• Test whether the bag contains a particular object.
• Look at all objects that are in the bag.

 We have enough behaviors for now. At this point, we would have written all the behaviors on a
piece of paper or, as Appendix C suggests, on the class-responsibility-collaboration (CRC) card
pictured in Figure 1-6 .

FIGURE 1-6 A CRC card for a class Bag

Bag

 Get the number of items currently in the bag
 See whether the bag is empty
 Add a given object to the bag
 Remove an occurrence of a specific object from
 the bag, if possible
 Remove all objects from the bag
 Count the number of times a certain object occurs in the bag
 Test whether the bag contains a particular object
 Look at all objects that are in the bag

 Collaborations
 The class of objects that the bag can contain

Responsibilities

 The ADT Bag 19

 Since a bag is an abstract data type, we only describe its data and specify its operations. We do
not indicate how to store the data or how to implement its operations. Don’t think about arrays, for
example. You fi rst need to clearly know what the bag operations do: Focus on what the operations do,
not on how they do them. That is, you need a detailed set of specifi cations before you can use a bag in
a program. In fact, you should specify the bag operations before you even decide on a programming
language.

 1.5.2 Specifying Data and Operations

 Before we can implement a bag in C++, we need to describe its data and specify in detail the methods
that correspond to the bag’s behaviors. We’ll name the methods, choose their parameters, decide their
return types, and write comments to fully describe their effect on the bag’s data. Our eventual goal, of
course, is to write a C++ header fi le and comments for each method. However, we fi rst will express
the methods in pseudocode and then in UML notation.

 The fi rst behavior on our CRC card gives rise to a method that returns a count of the current
number of entries in the bag. The corresponding method has no parameters and returns an integer. In
pseudocode, we have the following specifi cation, again using UML notation:

 // Returns the current number of entries in the bag.
+getCurrentSize(): integer

 We can test whether the bag is empty by using a boolean-valued method, again without parameters.
Its specifi cation in pseudocode is

 // Returns true if the bag is empty.
+isEmpty(): boolean

 We now want to add a given object to the bag. We can name the method add and give it a param-
eter to represent the new entry. We could write the following pseudocode:

 // Adds a new entry to the bag.
 add(newEntry)

 We might be tempted to make add a void method, but if the bag is full, we cannot add a new entry to it.
What should we do in this case?

 Here are two options that we can take when add cannot complete its task:

• Do nothing. We cannot add another item, so we ignore it and leave the bag unchanged.
• Leave the bag unchanged, but signal the client that the addition is impossible.

 The fi rst option is easy, but it leaves the client wondering what happened. Of course, we could state as
a precondition of add that the bag must not already be full. Then the client has the responsibility to
avoid adding a new entry to a full bag.

 The second option is the better one, and it is not too hard to specify or implement. How can we
indicate to the client whether the addition was successful? We could throw an exception if the addi-
tion is not successful, but we will leave this approach for later and use another way. Displaying an
error message is not a good choice, as you should let the client dictate all written output. Since the
addition is either successful or not, we can simply have the method add return a boolean value.

 Thus, we can specify the method add more completely as

 +add(newEntry: ItemType): boolean

 where newEntry ’s data type is ItemType . In C++ Interlude 1, we will discuss the implementation
details of using templates and typedef statements to give us fl exibility in the type of data our ADT
can hold.

Use the UML to
describe classes at
various stages of
their development

20 CHAPTER 1 Data Abstraction: The Walls

 Two behaviors involve removing entries from a bag: remove a particular entry and remove all
entries. Suppose we name the methods and any parameters and begin to specify them in pseudocode
as follows:

 // Removes one occurrence of a particular entry from the bag, if possible.
 remove(anEntry)

// Removes all entries from the bag.
 clear()

 What return types are these methods?
 The remove method won’t be able to remove a given entry if it isn’t in the bag. We will have the

method return a boolean value, much as add does, so it can indicate success or not. Thus, the UML
specifi cation for the method is

 +remove(anEntry: ItemType): boolean

 The method clear can be a void method: We just want to empty the bag, not get any of its con-
tents. Thus, we refi ne its specifi cation as follows:

 +clear(): void

 The remaining behaviors do not change the contents of the bag. One of these behaviors counts
the number of times a given object occurs within the bag. Its specifi cation in pseudocode is

 // Counts the number of times a given entry appears in the bag.
+getFrequencyOf(anEntry: ItemType): integer

 Another method tests whether the bag contains a given object. We specify it in pseudocode as follows:

 // Tests whether the bag contains a given entry.
+contains(anEntry: ItemType): boolean

 Finally, we want to look at the contents of the bag. Rather than providing a method that displays
the entries in the bag, we will defi ne one that places these entries into a vector. The client is then free
to display any or all of them in any way desired. Here is the specifi cation for our last method:

 // Gets all entries in the bag.
 +toVector(): vector

 As we developed the previous specifi cations for the bag’s methods, we represented them using
UML notation. Figure 1-7 shows the result of doing so.

FIGURE 1-7 UML notation for the class Bag

Bag

+getCurrentSize(): integer
+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(anEntry: ItemType): boolean
+clear(): void
+getFrequencyOf(anEntry: ItemType): integer
+contains(anEntry: ItemType): boolean
+toVector(): vector

 The ADT Bag 21

 Notice that the CRC card and UML diagram do not refl ect all of the details, such as assumptions
and unusual circumstances. However, after you have identifi ed such conditions, you should specify
how your methods will behave under each one. You should write down your decisions about how you
want your methods to behave, as we have done in the following table. Later, you can incorporate these
informal descriptions into the C++ comments that document your methods.

 ABSTRACT DATA TYPE: BAG

 DATA

• A fi nite number of objects, not necessarily distinct, in no particular order, and having the same data type.
• The number of objects in this collection.

 OPERATIONS

 PSEUDOCODE DESCRIPTION

 getCurrentSize() Task: Reports the current number of objects in this bag.
 Input: None.
 Output: The number of objects currently in the bag.

 isEmpty() Task: Sees whether this bag is empty.
 Input: None.
 Output: True or false according to whether the bag is empty.

 add(newEntry) Task: Adds a given object to this bag.
 Input: newEntry is an object.
 Output: True or false according to whether the addition succeeds.

 remove(anEntry) Task: Removes an occurrence of a particular object from this bag, if possible.
 Input: anEntry is an object.
 Output: True or false according to whether the removal succeeds.

 clear() Task: Removes all objects from this bag.
 Input: None.
 Output: None.

 getFrequencyOf(anEntry) Task: Counts the number of times an object occurs in this bag.
 Input: anEntry is an object.
 Output: The integer number of times anEntry occurs in the bag.

 contains(anEntry) Task: Tests whether this bag contains a particular object.
 Input: anEntry is an object.
 Output: True or false according to whether anEntry occurs in the bag.

 toVector() Task: Gets all objects in this bag.
 Input: None.
 Output: A vector containing all entries currently in the bag.

22 CHAPTER 1 Data Abstraction: The Walls

 1.5.3 An Interface Template for the ADT

 As your specifi cations become more detailed, they increasingly should refl ect your choice of pro-
gramming language. Ultimately, you can write C++ headers for the bag’s methods and organize them
into a header fi le for the class that will implement the ADT.

 The C++ header fi le in Listing 1-1 contains the methods for an ADT bag and detailed comments
that describe their behaviors. If you are unfamiliar with C++ classes, templates, and virtual methods,
C++ Interlude 1 provides a refresher on C++ classes and discusses C++ templates, virtual methods,
and abstract base classes. By using templates and abstract base classes, we can take advantage of the
object-oriented design concepts of encapsulation, polymorphism, and inheritance beginning with our
fi rst ADT.

Note: Dealing with unusual conditions

 As mentioned earlier, you must make decisions about how to treat unusual conditions.
The documentation for the ADT bag should refl ect both these decisions and the details in
the previous discussion. For example, our specifi cation of the method remove indicates
that it will return false if a client tries to remove an entry from an empty bag. Instead,
we could have given the method the precondition that the bag not be empty. It is then up
to the client to check that the precondition is satisfi ed before invoking the method.
Notice that the client can use other methods of the ADT bag, such as isEmpty and
getCurrentSize , to help with this task.

 Note: A fi rst draft of an ADT’s specifi cations often overlooks or ignores situations that
you really need to consider. You might intentionally make these omissions to simplify this
fi rst draft. Once you have written the major portions of the specifi cations, you can con-
centrate on the details that make the specifi cations complete.

 Question 1 Write specifi cations using UML notation for a function that computes the
sum of the fi rst fi ve positive integers in an array of n arbitrary integers.

CHECK POINT

 Note: To emphasize the distinction between the design of an ADT and its implementa-
tion with a data structure, this textbook uses templates and abstract base classes in the
description of our ADTs. We will call the header fi le containing the abstract base class a
client interface .2 A programmer should not need anything more than the client interface
to use a class in your program, as it completely specifi es the methods of the ADT.

 2 If you are familiar with Java, the interfaces for our ADTs correspond to Java interfaces. Both provide a public interface
consisting of methods that the programmer of our ADT must implement.

 As you examine the interface in Listing 1-1, notice the decisions that were made to address the
unusual situations mentioned in the previous section. In particular, each of the methods add , remove ,
and contains returns a value. Note the commenting tags, which begin with @ and are described in
 Appendix I , that we use to specify the methods.

LISTING 1-1 A fi le containing a C++ interface for bags

 /** @file BagInterface.h */
#ifndef _BAG_INTERFACE
 #define _BAG_INTERFACE

#include <vector>

 template < class ItemType>
 class BagInterface
 {
 public :

/** Gets the current number of entries in this bag.
 @return The integer number of entries currently in the bag. */

virtual int getCurrentSize() const = 0;

/** Sees whether this bag is empty.
 @return True if the bag is empty, or false if not. */

virtual bool isEmpty() const = 0;

/** Adds a new entry to this bag.
 @post If successful, newEntry is stored in the bag and
 the count of items in the bag has increased by 1.
 @param newEntry The object to be added as a new entry.
 @return True if addition was successful, or false if not. */

virtual bool add(const ItemType& newEntry) = 0;

/** Removes one occurrence of a given entry from this bag,
 if possible.
 @post If successful, anEntry has been removed from the bag
 and the count of items in the bag has decreased by 1.
 @param anEntry The entry to be removed.
 @return True if removal was successful, or false if not. */

virtual bool remove(const ItemType& anEntry) = 0;

/** Removes all entries from this bag.
 @post Bag contains no items, and the count of items is 0. */

virtual void clear() = 0;

/** Counts the number of times a given entry appears in bag.
 @param anEntry The entry to be counted.
 @return The number of times anEntry appears in the bag. */

virtual int getFrequencyOf(const ItemType& anEntry) const = 0;

 The ADT Bag 23

 For now, the items in the bag will be objects of the same class. To accommodate entries of
any single class type, the bag methods use a generic type ItemType for each entry. To give meaning
to the identifi er ItemType , we must write template<class ItemType> on the line before the class
header. Once the actual data type is chosen by a client, the compiler will use that data type wherever
ItemType appears.

 The class BagInterface is a C++ abstract base class. An abstract base class , or simply an
abstract class , in C++ contains at least one method that is declared as virtual and has no implementa-
tion. An abstract class cannot be instantiated; it can only be used as a base class. The subclass must
then implement the methods specifi ed but not defi ned in the abstract class.

(continues)

24 CHAPTER 1 Data Abstraction: The Walls

/** Tests whether this bag contains a given entry.
 @param anEntry The entry to locate.
 @return True if bag contains anEntry, or false otherwise. */

virtual bool contains(const ItemType& anEntry) const = 0;

/** Empties and then f ills a given vector with all entries that
 are in this bag.
 @return A vector containing all the entries in the bag. */

virtual vector<ItemType> toVector() const = 0;
 }; // end BagInterface

 Note: Although writing an interface before implementing a class is certainly not
required, doing so enables you to document your specifi cations in a concise way. You
then can use the code in the interface as an outline for the actual class. Having an inter-
face also provides a data type for an ADT that is independent of a particular class defi nition.
 Chapters 3 and 4 will develop different implementations of a class of bags. Code
written with respect to an interface allows you to more easily replace one implementa-
tion of a bag with another.

 1.5.4 Using the ADT Bag

 Imagine that we hire a programmer to implement the ADT bag in C++, given the interface
and specifi cations that we have developed so far. If we assume that these specifi cations are clear
enough for the programmer to complete the implementation, we can use the bag’s operations in
a program without knowing the details of the implementation. That is, we do not need to know how
the programmer implemented the bag to be able to use it. We need to know only what the ADT
bag does.

 The following example demonstrates how we can use a bag and assumes that we have a C++
class, Bag , that implements the C++ abstract class BagInterface given in Listing 1-1.

 Example. Suppose you invited three friends to your home to watch your favorite soccer team on tel-
evision. To make the commercial breaks more interesting, you make up the following game. From a
deck of cards, you remove the entire suit of clubs: the cards Ace, Two, Three, …, Jack, Queen, and
King of clubs. You randomly select six of these cards and place them into a bag. Your friends then
guess which cards are in the bag. Each time they correctly guess a card, it is removed from the bag.

 The specifi cations of these operations are the sole terms of the contract for the ADT bag: If you
request that these operations be performed, this is what will happen . The specifi cations contain no
mention of how to store the bag or how to perform the operations; they tell you only what you can do
to the bag. It is of fundamental importance that the specifi cation of an ADT not include implementa-
tion issues. This restriction on the specifi cation of an ADT is what allows you to build a wall between
an implementation of an ADT and the program that uses it—that is, the client. The behavior of the
operations is the only thing on which a program should depend.

 The ADT Bag 25

When the bag is empty, the friend with the most cards wins. Listing 1-2 shows a simple program that
plays this game.

LISTING 1-2 A program for a card guessing game

 #include <iostream> // For cout and cin
#include <string> // For string objects
#include "Bag.h" // For ADT bag
 using namespace std;

 int main()
 {
 string clubs[] = { "Joker", "Ace", "Two", "Three",
 "Four", "Five", "Six", "Seven",
 "Eight", "Nine", "Ten", "Jack",
 "Queen", "King" };

// Create our bag to hold cards.
 Bag<string> grabBag;

// Place six cards in the bag.
 grabBag.add(clubs[1]);
 grabBag.add(clubs[2]);
 grabBag.add(clubs[4]);
 grabBag.add(clubs[8]);
 grabBag.add(clubs[10]);
 grabBag.add(clubs[12]);

// Get friend’s guess and check it.
int guess = 0;
while (!grabBag.isEmpty())

 {
 cout << "What is your guess?"

 << "(1 for Ace to 13 for King):";
 cin >> guess;

// Is card in the bag?
if (grabBag.contains(clubs[guess]))

 {
// Good guess – remove card from the bag.

 cout << "You get the card!\n";
 grabBag.remove(clubs[guess]);
 }

else
 {

 cout << "Sorry, card was not in the bag.\n";
 } // end if
 } // end while
 cout << "No more cards in the bag. Game over!\n";

return 0;
 }; // end main

26 CHAPTER 1 Data Abstraction: The Walls

 SUMMARY

Programming Tip: After you design a class, try writing some code that uses your
class before you implement the class. You will not only see whether your design works for
the problem at hand, but also test your understanding of your own design and check the
comments that document your specifi cations. You might discover problems with either
your class design or your specifi cations. If so change your design and specifi cations, and
try using the class again.

Question 2 What is an abstract data type?

CHECK POINT Question 3 What steps should you take when designing an ADT?

1. Object-oriented analysis (OOA) is used during the initial stage in problem solving to understand what the prob-
lem is and what the requirements of a solution are.

2. During object-oriented design (OOD), you describe a solution to a problem whose requirements are discovered
during OOA. You express the solution in terms of software objects.

3. Encapsulation is a principle of object-oriented programming whereby you hide the inner details of functions
and objects. Functions encapsulate behavior, and objects—that is, instances of a class—encapsulate data as
well as behavior.

4. Inheritance is another concept related to object-oriented programming, allowing you to reuse already defi ned
classes by extending their defi nitions or making slight modifi cations.

5. Polymorphism is the third principle of object-oriented programming, whereby objects determine appropriate
operations at execution time.

6. Each module should be highly cohesive; that is, it should perform one well-defi ned task.

7. Coupling is a measure of the dependence among modules. Module should be loosely coupled. A function or
method should be as independent as possible and perform one well-defi ned task.

8. UML is a modeling language used to express object-oriented designs. It provides a notation to specify the data
and operations and uses diagrams to show relationships among classes.

9. An operation contract documents how a module can be used and what limitations it has.

10. A function or method should always include an initial comment that states its purpose, its precondition—that
is, the conditions that must exist at the beginning of a module—and its postcondition—the conditions at the
end of a module’s execution.

11. For problems that primarily involve data management, encapsulate data with operations on that data by design-
ing classes. Practice abstraction—that is, focus on what a module does instead of how it does it.

12. Data abstraction is a technique for controlling the interaction between a program and its data structures. It
builds walls around a program’s data structures, just as other aspects of modularity build walls around a pro-
gram’s algorithms. Such walls make programs easier to design, implement, read, and modify.

 Exercises 27

 EXERCISES

13. The specifi cation of a set of data-management operations, together with the data values on which they operate,
defi nes an abstract data type (ADT).

14. Only after you have fully defi ned an ADT should you think about how to implement it. The proper choice of a
data structure to implement an ADT depends both on the details of the ADT operations and on the context in
which you will use the operations.

1. The price of an item you want to buy is given in dollars and cents. You pay for it in cash by giving the clerk
 d dollars and c cents. Write specifi cations for a function that computes the change, if any, that you should
receive. Include a statement of purpose, the preconditions and postconditions, and a description of the
arguments.

2. A date consists of a month, day, and year. Consider the class Date of such dates. Suppose that Date represents
the month, day, and year as integers. For example, July 4, 1776, is month 7, day 4, and year 1776.

a. Write specifi cations for a method within Date that advances any given date by one day. Include a
statement of purpose, the preconditions and postconditions, a description of the arguments, and a
description of any return value.

b. Write a C++ implementation of this method. Design and specify any other method that you need.
Include comments that will be helpful to someone who will maintain your implementation in the
future.

3. Write a pseudocode function in terms of the ADT appointment book, described in Section 1.4.1, for each of
the following tasks. Do you need to add operations to the ADT to perform these tasks?

a. Change the purpose of the appointment at a given date and time.
b. Display all the appointments for a given date.

4. Imagine that you have just left a store with a bag of groceries. You are concerned that the fragile items will
not survive the trip home, so when you reach your car, you place those items into their own bag. If Bag is a
class of bags, write C++ statements that remove all the items from storeBag and place them into one of two
new bags, as follows: Place all occurrences of bread and eggs into fragileBag, and all other items into
groceryBag. When you are done, storeBag should be empty. Assume that grocery items are represented by
strings.

5. Suppose that a bag contains strings that represent various grocery items. Write a C++ function that removes
and counts all occurrences of a given string from such a bag. Your function should return this number. Use
comments in javadoc style to fully specify your function. Accommodate the possibility that the given bag is
either empty or does not contain any occurrences of the given string.

6. The union of two bags is a new bag containing the combined contents of the original two bags. Design and
specify a method union for the ADT bag that returns as a new bag the union of the bag receiving the call to the
method and the bag that is the method’s one argument. Include suffi cient comments to fully specify the method.

 Note that the union of two bags might contain duplicate items. For example, if object x occurs fi ve times in
one bag and twice in another, the union of these bags contains x seven times. Specifi cally, suppose that bag1
and bag2 are bags; bag1 contains the strings a , b , and c ; and bag2 contains the strings b , b , d , and e . The expres-
sion bag1.union(bag2) returns a bag containing the strings a , b , b , b , c , d , and e . Note that union does not
affect the contents of bag1 and bag2 .

28 CHAPTER 1 Data Abstraction: The Walls

1. Add a Transaction class to the banking example in Figure C-4 of Appendix C. This class keeps track of the
date, time, amount, and type of transaction (checking or savings).

2. Consider a program that will read employee data, sort the data by employee identifi cation number, write out the
sorted data, and compute various statistics about the data, such as the average age of an employee. Design a modu-
lar solution to this problem using UML notation. What classes and methods did you identify during the design of
your solution? Write complete specifi cations, including preconditions and postconditions, for each module.

 PROGRAMMING PROBLEMS

7. The intersection of two bags is a new bag containing the entries that occur in both of the original two bags.
Design and specify a method intersection for the ADT bag that returns as a new bag the intersection of the
bag receiving the call to the method and the bag that is the method’s one argument. Include suffi cient comments
to fully specify the method.

 Note that the intersection of two bags might contain duplicate items. For example, if object x occurs fi ve
times in one bag and twice in another, the intersection of these bags contains x two times. Specifi cally, suppose
that bag1 and bag2 are bags; bag1 contains the strings a , b , and c ; and bag2 contains the strings b , b , d , and e .
The expression bag1.intersection(bag2) returns a bag containing only the string b . Note that intersection
does not affect the contents of bag1 and bag2 .

8. The difference of two bags is a new bag containing the entries that would be left in one bag after removing those
that also occur in the second. Design and specify a method difference for the ADT bag that returns as a new
bag the difference of the bag receiving the call to the method and the bag that is the method’s one argument.
Include suffi cient comments to fully specify the method.

 Note that the difference of two bags might contain duplicate items. For example, if object x occurs fi ve
times in one bag and twice in another, the difference of these bags contains x three times. Specifi cally, suppose
that bag1 and bag2 are bags; bag1 contains the strings a , b , and c ; and bag2 contains the strings b , b , d , and e .
The expression bag1.difference(bag2) returns a bag containing only the strings a and c . Note that
difference does not affect the contents of bag1 and bag2 .

9. Consider the ADT polynomial—in a single variable x —whose operations include the following:

 degree() // Returns the degree of a polynomial.
 coefficient(power) // Returns the coeffi cient of the xpower term.
 changeCoefficient(newCoefficient, power) // Replaces the coeffi cient of
 // the xpower term with newCoefficient.

 For this problem, consider only polynomials whose exponents are nonnegative integers. For example,

p = 4 x5 + 7 x 3 – x2 + 9

 The following examples demonstrate the ADT operations on this polynomial.

p.degree() is 5 (the highest power of a term with a nonzero coeffi cient)
 p.coefficient(3) is 7 (the coeffi cient of the x3 term)
 p.coefficient(4) is 0 (the coeffi cient of a missing term is implicitly 0)
p.changeCoefficient(-3, 7) changes the polynomial p to –3 x7 + 4 x5 + 7 x3 – x2 + 9

 Using these ADT operations, write statements to perform the following tasks:

a. Display the coeffi cient of the term that has the highest power.
b. Increase the coeffi cient of the x3 term by 8.
c. Compute the sum of two polynomials.

 Programming Problems 29

3. A matrix is a rectangular array of numerical values. You can add or multiply two matrices to form a third
matrix. You can multiply a matrix by a scalar, and you can transpose a matrix. Design an ADT that represents a
matrix that has these operations.

 Specify each ADT operation by stating its purpose, by describing its parameters, and by writing a pseu-
docode version of its header. Then write a C++ interface for the methods of a matrix. Include javadoc -style
comments in your code.

4. A ring is a collection of items that has a reference to a current item. An operation—let’s call it advance—moves
the reference to the next item in the collection. When the reference reaches the last item, the next advance opera-
tion moves the reference back to the fi rst item. A ring also has operations to get the current item, add an item, and
remove an item. The details of where an item is added and which item is removed are up to you.

 Design an ADT to represent a ring of objects. Specify each operation by stating its purpose, by describing
its parameters, and by writing a pseudocode version of its header. Then write a C++ interface for a ring’s meth-
ods. Include javadoc -style comments in your code.

5. A set is a special bag that does not allow duplicates. Specify each operation for a set of objects by stating its
purpose, by describing its parameters, and by writing preconditions, postconditions, and a pseudocode version
of its header. Then write a C++ interface for the set. Include javadoc -style comments in your code.

6. Imagine a pile of books on your desk. Each book is so large and heavy that you can remove only the top one
from the pile. You cannot remove a book from under another one. Likewise, you can add another book to the
pile only by placing it on the top of the pile. You cannot add a book beneath another one.

 If you represent books by their titles alone, design a class that you can use to track the books in the pile on
your desk. Specify each operation by stating its purpose, by describing its parameters, and by writing a pseu-
docode version of its header. Then write a C++ interface for the pile’s methods. Include javadoc -style com-
ments in your code.

This page intentionally left blank

 C++ Classes 1
 Contents
 C1.1 A Problem to Solve 32

 C1.1.1 Private Data Fields 33
 C1.1.2 Constructors and Destructors 33
 C1.1.3 Methods 34
 C1.1.4 Preventing Compiler Errors 35

 C1.2 Implementing a Solution 36
 C1.3 Templates 37
 C1.4 Inheritance 40

 C1.4.1 Base Classes and Derived Classes 40
 C1.4.2 Overriding Base-Class Methods 42

 C1.5 Virtual Methods and Abstract Classes 44
 C1.5.1 Virtual Methods 44
 C1.5.2 Abstract Classes 45

 Prerequisites
 Appendix A Review of C++ Fundamentals
 Chapter 1 Data Abstraction: The Walls

Throughout this book we design abstract data types and implement them as data
structures using C++. This C++ Interlude provides a refresher on C++ classes and then
introduces additional C++ tools we can use to defi ne our abstract data types in a fl exible
manner that maintains the wall between our design and the implementation.

 After reviewing classes, we will look at class templates . This C++ construct gives
us the power to specify the data type of the items contained in a data structure in a very
generic way. For example, if you had spent two weeks developing a great class to repre-
sent a bag of integers, wouldn’t it be great if you could easily use the same code for a bag
that holds strings? Class templates allow you to defi ne classes that are independent of
the type of data stored in the data structure. When a client is ready to instantiate an ob-
ject of the class, the client can specify the type of data the object holds.

C++
Interlude

32 C++ INTERLUDE 1 C++ Classes

Header (.h), or specifi cation , fi les in C++ provide a mechanism to partially separate the design
of a class from the implementation in the source , or implementation (.cpp), fi le . The header fi le
must also contain a description of both the data fi elds for the class and any private methods used by
the class. A client does not need to know about the private methods or data fi elds to use the class in a
program. To provide a public interface for an ADT, you can write an abstract base class, thereby
separating design from implementation. An abstract base class allows the client to take full advan-
tage of polymorphism when using our class.

 To introduce these concepts, let’s look at a simple problem that illustrates all three of the funda-
mental concepts of object-oriented programming: encapsulation, inheritance, and polymorphism.

 C1.1 A Problem to Solve
 Suppose that a friend who is creating a video game asked you to design and develop a group of
classes to represent three types of boxes carried by the characters in the game. Each type of box can
only hold one item. A character can put an item in the box or look at the item in the box. The three
types of boxes are:

• Plain box —a plain old box that holds only one item.
• Toy box —a box that has color and holds only one item.
• Magic box —a box that holds only one item, but magically changes it to the fi rst item that was

ever stored in the box.

 Let’s begin by designing an ADT plain box. It is the simplest of the three boxes, and we may be
able to use aspects of its implementation for the other two boxes. Since game characters can only
place items in the box or look at them, the box needs only two public methods, setItem to place an
item in the box and getItem to get the stored item. Here is the UML notation for those methods:

 +setItem(theItem: ItemType)
+getItem(): ItemType

 We can defi ne ItemType as the type of item stored in the box by using a typedef statement. For
example, to have the box hold a double , we can write

typedef double ItemType;

 To have the box hold another type of data, we need only to replace the word double with the new
data type. Listing C1-1 shows the declaration of our class PlainBox that would appear in a header
fi le. To save space here, we show only comments that describe the class element type and omit the
specifi cations, preconditions, and postconditions. We have used the object-oriented concept of
encapsulation to group together data—the item stored in the box—with the methods that operate on
that data: the two constructors, a method setItem to change the item’s value, and a method getItem
to return the item’s value.

LISTING C1-1 The header fi le for the class PlainBox

/** @file PlainBox.h */

#ifndef _PLAIN_BOX
 #define _PLAIN_BOX

// Set the type of data stored in the box
 typedef double ItemType;

VideoNote

C++ classes

 A Problem to Solve 33

 Let’s look in detail at this C++ class declaration.

 C1.1.1 Private Data Fields

 The data fi eld item is declared in a private section of the class declaration. Every data fi eld in every
class presented in this textbook is in a private section. This restricts access to the data fi eld to just the
class in which it is defi ned. Typically, we provide methods—such as setItem and getItem— to
access the data fi elds. In this way, the class controls how and whether other classes can access the
data fi elds. This design principle should lead to programs that not only are easier to debug, but also
have fewer logical errors from the beginning.

 Clients and derived classes should not have direct access to the data fi elds of a class. If a class
designer believes that a derived class might need to access or modify the data fi elds of the base class,
you should still make the data fi elds private but provide protected methods so that any derived classes
can access or modify the data. More information on access modifi ers, such as private and pro-
tected , is presented in a later C++ Interlude.

 As we build more complex data structures, we need to guarantee their integrity. This is simpler to
do if we restrict access to the data fi elds to only our class. For example, suppose we have a class that
stores items in an array and maintains a count of the number of items used in the array. Each time our
class adds or removes an item from the array, the item count needs to be modifi ed to refl ect the change.
If a client of our class had direct access to the array, the client could add and remove entries in the array
and neglect to update the item counter. This counter would not accurately refl ect the number of entries
in the array, resulting in, for example, the loss of data or an abnormal termination of the program.

 C1.1.2 Constructors and Destructors

 Classes have two types of special methods, called constructors and destructors. A constructor allo-
cates memory for new instances of a class and can initialize the object’s data to specifi ed values. A
destructor destroys an instance of a class when the object’s lifetime ends. A typical class has several

// Declaration for the class PlainBox
 class PlainBox
 {
 private :

// Data field
 ItemType item;

 public :
// Default constructor

 PlainBox();

// Parameterized constructor
 PlainBox(const ItemType& theItem);

// Method to change the value of the data field
void setItem(const ItemType& theItem);

// Method to get the value of the data field
 ItemType getItem() const ;
}; // end PlainBox

 #endif

34 C++ INTERLUDE 1 C++ Classes

constructors but only one destructor. For many classes, you can omit the destructor. In such cases, the
compiler generates a destructor for you. For the classes in this C++ Interlude, the compiler-generated
destructor is suffi cient. C++ Interlude 2 discusses how and why you would write your own destructor.

 In C++, a constructor has the same name as the class. Constructors have no return type—not even
void— and cannot use return to return a value. A class can have more than one constructor, as is the
case for the class PlainBox . One of the constructors, the default constructor , has no parameters.
Typically, a default constructor initializes data fi elds to values that the class implementation chooses.
Other constructors have parameters. These parameterized constructors initialize data fi elds to val-
ues chosen by the client but approved by the constructor. The compiler decides which constructor to
call by matching the argument list supplied by the client with the parameters of the available construc-
tors. A match occurs when the arguments and parameters correspond in number, data type, and order.

 Note: If you do not defi ne any constructors for a class, the compiler creates a default
constructor—one without parameters. Once you defi ne a constructor, the compiler does
not create any of its own. Therefore, if you defi ne a parameterized constructor but not a
default constructor, your class will not have a default constructor.

 When you declare an instance of the class, a constructor is invoked implicitly. For example, the
statement

PlainBox myBox;

 invokes the default constructor, which creates the object myBox and initializes the data fi eld item to a
value given in the constructor’s defi nition. Notice that you do not include parentheses after myBox
when invoking the default constructor. The statement

PlainBox myBox(specialValue);

 invokes the parameterized constructor, which, as you will see, initializes the data fi eld item to
specialValue . Thus, specialValue is stored in the box.

 C1.1.3 Methods

 As discussed in Chapter 1 , methods implement the algorithms that solve a problem. A method proto-
type conveys three important pieces of information to a client wishing to use our class: the method
name, the number and types of its parameters, and the method’s return type. The prototype describes
the slit in the wall of abstraction. Prototypes for methods a client can use are in the public section of
the class declaration.

 An accessor method in a class accesses, or gets, the value of a data fi eld. Its name often begins
with the word get . Accessor methods do not change the data fi elds of an object. An important part of the
PlainBox class declaration is the accessor method getItem , which is labeled with the keyword const :

ItemType getItem() const ;

 This keyword is a signal to both the compiler and other programmers that the method does not change
the data fi elds of the object. Another way to think of a const method is that the object is the same after
calling this kind of method as it was before calling the method. Using const in a method declaration
protects you as a programmer when you implement the algorithm for the method. As you write the
code for a method declared with const , the compiler can check your code to verify that you did not
modify any data fi elds.

 A Problem to Solve 35

 A mutator method in a class changes the value of a data fi eld. Often, the name of a mutator
method begins with the word set . The method setItem is an example of a mutator method. Mutator
methods cannot be declared as const . Likewise, constructors cannot be declared const , because they
must initialize the data fi elds of an object.

Passing parameters by constant reference. The method setItem and the parameterized construc-
tor both have a parameter theItem that is passed by constant reference , as you can see from their
declarations:

 void setItem(const ItemType& theItem);

 PlainBox(const ItemType& theItem);

 Passing a parameter by constant reference provides several benefi ts to both the client of a class and the
programmer implementing the class. Passing an argument by reference to a method, especially when
the argument is a complex object, saves time and memory, since the method can access or modify the
object without copying it. The risk with this technique is that the method has access to data declared
outside of its class; the method has “broken through the wall” and can modify an item owned by the
client that invoked the method. To keep the effi ciency of passing by reference and still protect the data
of our client, we use the keyword const before the declaration of that parameter. The method treats the
parameter as a constant that cannot be modifi ed. Using const with parameters passed by reference
protects client objects and reduces the chance of side effects. Our method can still access and use an
object passed by constant reference, but the compiler fl ags any modifi cations to the object as errors.

 Programming Tip: Methods declared const can access and use data fi elds, so
labeling all accessor methods with the const declaration is appropriate and a good idea.

Note: Guidelines for safe and secure programming

• Declare all data fi elds in the private section of the class declaration.
• Declare as const any method that does not change the object (accessor methods).
• Declare any parameter passed by reference as const , unless you are certain it must

be modifi ed by the method, in which case the method should be either protected or
private.

 C1.1.4 Preventing Compiler Errors

 You can declare C++ variables only once within each program block. A second declaration, or redef-
inition, of a variable in the same block results in a compiler error. For example, suppose you have the
following loop:

 for (int index = 0; index < count; index++)
 {

int index = count / 6; // index is redefined in loop - compiler error!
 total += index;

} // end for

 Redefi ning index inside the loop results in a compile-time error, since index was already defi ned
in the for statement. The same restriction on redefi nition applies to entire classes. Let’s see how we
could accidentally redefi ne our PlainBox class.

36 C++ INTERLUDE 1 C++ Classes

 If we want to use a PlainBox object in our program, for instance in our main function, we must
include PlainBox.h in the fi le containing the main function, main.cpp , so the compiler knows about
the public interface for our class. We also need to include the header fi le for our PlainBox class in
PlainBox.cpp so the compiler knows about the data fi elds and methods of the class when it compiles
the class’s implementation.

 This creates a problem, since the compiler reads our PlainBox defi nition twice, even though the
class needs to be defi ned only once. We don’t know which fi le the compiler will try to compile fi rst, so
both fi les must include PlainBox.h . This duplication results in the class being redefi ned when the
header fi le is read again. We need a way to prevent the compiler from reading the class defi nition a
second time. The #ifndef , #define , and #endif preprocessor directives provide a solution.

 You are already familiar with the #include directive, which includes the contents of another fi le
in the current fi le. You use #ifndef to conditionally include a class defi nition. For example, the
header fi le for PlainBox in Listing C1-1 contains

 #ifndef _PLAIN _BOX
 #define _PLAIN _BOX

 as its fi rst two lines. The directive #ifndef means “If _PLAIN_BOX is not defi ned, then ...” If the com-
piler had not defi ned the name _PLAIN_BOX , it would process the code that follows until it reached the
#endif directive at the end of the fi le.

 The #define directive defi nes the name _PLAIN_BOX . If another fi le includes the class defi nition of
PlainBox , the name _PLAIN_BOX will already have been defi ned. That fi le’s #ifndef directive will
cause the preprocessor to skip any of the code that follows; that is, the code will be hidden from the
compiler, and so the compiler will not see our class defi nition more than once.

 In this textbook, all header fi les use these preprocessor directives to protect against including
class defi nitions multiple times. Though you can use any names in the directives, the name to test in
#ifndef and the name defi ned by #define must be the same. We write such names in uppercase and
begin them with an underscore character.

 C1.2 Implementing a Solution
 After we have designed our solution, the next step is to implement each of the methods we declared in
the header fi le. Listing C1-2 shows the implementation, or source code, fi le for the class PlainBox .
The method implementations are simple, but there are a few syntax items we should discuss.

LISTING C1-2 Implementation fi le for the PlainBox class

/** @file PlainBox.cpp */

#include "PlainBox.h"

 PlainBox::PlainBox()
 {
} // end default constructor

PlainBox::PlainBox(const ItemType& theItem)
 {
 item = theItem;
} // end constructor

 void PlainBox::setItem(const ItemType& theItem)

 Templates 37

 The header fi le PlainBox.h contains our class declaration. We must use the preprocessor direc-
tive #include to include the PlainBox class declaration so the compiler can validate our method
headers and provide access to class data fi elds. The method headers must match those provided in the
class declaration. Including the header fi le does not tell the compiler that the methods defi ned here are
part of the PlainBox class. To do so, you must precede the constructor and method names with the
class name followed by two colons—that is,

 PlainBox::

 The reason for this requirement is that C++ allows a source fi le to contain the implementations of
methods for several classes and stand-alone functions. The namespace indicator PlainBox:: is a
prefi x that indicates to the compiler that the method is a part of the PlainBox namespace. A C++
namespace is a syntax structure, such as a class, that allows you to group together declarations of
data and methods under a common name, such as PlainBox . Once a method has been defi ned as part
of a namespace, it has access to all the data and methods in that namespace. Thus, the constructor and
methods in Listing C1-2 have access to PlainBox ’s data fi elds and methods.

Note: To better modularize our code, the implementation fi les in this book will contain
only methods from a single class.

 C1.3 Templates
 At this point, our PlainBox class looks similar to many of the classes you probably have imple-
mented in a previous C++ course. The class works well, as long as the characters in the game want to
store a double value in a box. But what do we do if one character wants to store a double and a second
has a string or MagicWand object to store? Since our current PlainBox class can store only a double ,
we would need to create new classes— PlainBoxForStrings and PlainBoxForWands , for example—
to hold different object types. These classes would function in exactly the same way as the PlainBox
class, so we could copy the code with only a few changes. For example, we have to change the typedef
in each header fi le. For the PlainBoxForStrings class, the typedef would be

 typedef string ItemType;

 and for the PlainBoxForWands class, the typedef would be

 typedef MagicWand ItemType;

 We also would need to change the names of the constructors and the namespace indicators to
refl ect the new class names. If we had a more complex class, these changes would require a sub-
stantial amount of effort and would be an error-prone process. Later, if our friend changed the

 {
 item = theItem;
} // end setItem

ItemType PlainBox::getItem() const
 {

return item;
} // end getItem

38 C++ INTERLUDE 1 C++ Classes

requirements for PlainBox , we would need to go through each of the PlainBox class variations and
make the required changes.

 The root of the problem in this scenario is that the programmer must know what types of objects
will be stored in the box before the program is built. The programmer must then write a different class
for each type of object that is to be stored. The functionality of each box is the same, but the type of
data differs. Templates enable the programmer to separate the functionality of an implementation
from the type of data used in the class. Listing C1-3 contains the header fi le for a template version of
the class PlainBox .

LISTING C1-3 Template header fi le for the PlainBox class

/** @file PlainBox.h */

#ifndef _PLAIN_BOX
 #define _PLAIN_BOX

 template<class ItemType>; // Indicates this is a template definition

// Declaration for the class PlainBox
 class PlainBox
 {
 private :

// Data field
 ItemType item;

 public :
// Default constructor

 PlainBox();

// Parameterized constructor
 PlainBox(const ItemType& theItem);

// Mutator method that can change the value of the data field
void setItem(const ItemType& theItem);

// Accessor method to get the value of the data field
 ItemType getItem() const ;
 }; // end PlainBox

#include "PlainBox.cpp" // Include the implementation file
 #endif

 As you can see from Listing C1-3, changing our earlier defi nition of the class PlainBox in
Listing C1-1 to be a template requires the change of only one line in our header fi le: The typedef was
removed and replaced with a statement to indicate this class is a template:

 template < class ItemType>;

 However, we also must include the implementation fi le just prior to the #endif directive by writing

 #include "PlainBox.cpp"

 This addition is necessary because the compiler does not compile a template class until it sees
the client’s instantiation of the template and knows the actual data type corresponding to the
data-type parameter ItemType .

 Templates 39

Programming Tip: In your development environment, do not add the implementa-
tion fi le— PlainBox.cpp , for example—to the project. It will automatically be included
when it is needed.

 The implementation fi le PlainBox.cpp requires a few changes, but these changes all follow a
pattern. Prior to each method’s defi nition, you write the same template statement:

 template < class ItemType>;

 to indicate that the method is a template. The namespace indicator, PlainBox<ItemType>:: , must
also precede each method name to refl ect that the method’s defi nition is based on ItemType . These
changes are shown in Listing C1-4.

LISTING C1-4 Implementation fi le for the PlainBox template class

/** @file PlainBox.cpp */

 template < class ItemType>;
 PlainBox<ItemType>::PlainBox()
 {
} // end default constructor

 template < class ItemType>;
 PlainBox<ItemType>::PlainBox(const ItemType& theItem)
 {
 item = theItem;
} // end constructor

 template < class ItemType>;
 void PlainBox<ItemType>::setItem(const ItemType& theItem)
 {
 item = theItem;
} // end setItem

 template < class ItemType>;
ItemType PlainBox<ItemType>::getItem() const
 {

return item;
} // end getItem

 To instantiate an instance of PlainBox , you write the data type of the item to be placed in a box,
surrounded by angle brackets:

 PlainBox <double> numberBox; // A box to hold a double

PlainBox<string> nameBox; // A box to hold a string object

PlainBox<MagicWand> wandBox; // A box to hold a MagicWand object

 Methods of these box instances are invoked as before:

 double health = 6.5;
 numberBox.setItem(health);

40 C++ INTERLUDE 1 C++ Classes

string secretName = "Rumpelstiltskin";
 nameBox.setItem(secretName);
MagicWand elfWand;
 wandBox.setItem(elfWand);

Note: By using templates, you can defi ne a class that involves data of any type, even
data types that are created after you designed and implemented your class.

 C1.4 Inheritance
 Now that the class PlainBox has been written, we will look at the other two boxes. The toy box is very
similar to our plain box, but it has an additional characteristic, color, which we can represent with an
enumerated type Color . We set the color of our toy box when it is created. The characters in the game
can ask about the box’s color but cannot change it. Here is the UML notation for those methods:

 +getColor(): string
+setItem(ItemType theItem)
+getItem(): ItemType

 The methods setItem and getItem behave exactly the same as the similarly named methods imple-
mented for the PlainBox class. We can reuse the code in PlainBox by using inheritance. Inheritance
allows us to reuse and extend work we have already completed and tested.

 C1.4.1 Base Classes and Derived Classes

 We can use PlainBox as a base class , or superclass , for our ToyBox class. You can think of a base class
as a parent class. The ToyBox class is the derived class , or subclass , of the PlainBox class. To indicate
that ToyBox is derived from PlainBox , we use the following syntax in the class header of ToyBox :

 class ToyBox : public PlainBox<ItemType>

 Any instance of the derived class is also considered to be an instance of the base class and can be
used in a program anywhere that an instance of the base class can be used. Also, when the keyword
public is used with the base class, any of the publicly defi ned methods or data fi elds in the base class
can be used by instances of the derived class. In C++, a derived class inherits all the members of its
base class, except the constructors and destructor. That is, a derived class has the data fi elds and
methods of the base class in addition to the members it defi nes, though it can access only publicly
defi ned members. A derived class can also revise any inherited public method.

 As you can see in Listing C1-5, ToyBox defi nes only the constructors and new methods specifi c
to it, if it has not needed to revise any methods of the base class. The methods setItem and getItem
are inherited from the PlainBox class and can be used in our ToyBox class.

LISTING C1-5 Template header fi le for the class ToyBox

/** @file ToyBox.h */

#ifndef _TOY_BOX
 #define _TOY_BOX
#include "PlainBox.h"

 Inheritance 41

 enum Color {BLACK, RED, BLUE, GREEN, YELLOW, WHITE};

 template < class ItemType>
 class ToyBox : public PlainBox<ItemType>
 {
 private :
 Color boxColor;

 public :
 ToyBox();
 ToyBox(const Color& theColor);
 ToyBox(const ItemType& theItem, const Color& theColor);
 Color getColor() const ;
 }; // end ToyBox
#include "ToyBox.cpp"
 #endif

 An instance of the class ToyBox has two data fi elds— item , which is inherited, and boxColor ,
which is new. Because an instance of a derived class can invoke any public method in the base class,
an instance of ToyBox has all the methods that PlainBox defi nes; new constructors; a new, compiler-
generated destructor; and a new method getColor . Although an instance of a derived class contains
copies of inherited data fi elds, the code for inherited methods is not copied.

 A derived class cannot access the private members of the base class directly, even though they are
inherited. Inheritance does not imply access . After all, you can inherit a locked vault but be unable to
open it. In the current example, the data fi eld item of PlainBox is private, so you can reference it only
within the defi nition of the class PlainBox and not within the defi nition of ToyBox . However, the class
ToyBox can use PlainBox ’s public methods setItem and getItem to set or obtain the value of item
indirectly.

LISTING C1-6 Implementation fi le for the class ToyBox

/** @file ToyBox.cpp */

 template < class ItemType>
 ToyBox<ItemType>::ToyBox()
 {
 PlainBox<ItemType>();
 boxColor = BLACK;
} // end default constructor

 template < class ItemType>
 ToyBox<ItemType>::ToyBox(const Color& theColor)
 {
 PlainBox<ItemType>();
 boxColor = theColor;
} // end constructor

 template < class ItemType>
 ToyBox<ItemType>::ToyBox(const ItemType& theItem,

const Color& theColor)
 (continues)

42 C++ INTERLUDE 1 C++ Classes

{
 PlainBox<ItemType>();
 PlainBox<ItemType>::setItem(theItem);
 boxColor = theColor;
} // end constructor

 template < class ItemType>
Color ToyBox<ItemType>::getColor() const
 {

return boxColor;
} // end getColor

 Inheritance enables you to reuse software components when you defi ne a new class. Our ToyBox
class does not inherit the constructors from PlainBox , but it can use a PlainBox constructor or
method to initialize the private data fi eld in PlainBox . To use the default constructor of our base class,
we place the statement

 PlainBox<ItemType>();

 as the fi rst statement in each of the ToyBox constructors. This ensures that the data fi elds in the base
class are correctly initialized. Only the default constructor can be called in this way. If we need more
control over setting base-class data fi elds, a derived-class constructor must call the appropriate base-
class mutator methods, as shown in the third ToyBox constructor. In this event, the base-class name-
space indicator should precede the method name, so the compiler knows where to fi nd the method’s
code. Using the namespace indicator is necessary only within constructors, as you’ll see when we
implement the MagicBox class.

 A client of our ToyBox class can create and use a ToyBox object in much the same way that we did
for PlainBox :

 string favoriteToy = "Jack-in-the-Box";

ToyBox<string> myToyCase(favoriteToy, RED); // A red toy box

string oldToy = myToyCase.getItem(); // oldToy is a Jack-in-the-Box
favoriteToy = "Spinning Top";

myToyCase.setItem(favoriteToy); // myToyCase now holds a Spinning Top

 C1.4.2 Overriding Base-Class Methods

 You can add as many new members to a derived class as you like. Although you cannot revise a base
class’s private data fi elds and should not reuse their names, you can redefi ne inherited methods; this
is called overriding a base-class method. A method in a derived class overrides , or redefi nes, a
method in the base class if the two methods have the same name and parameter declarations—that is,
if they have the same signatures.

 To see an example of when we may need to redefi ne a base-class method, let’s consider the
implementation of the class MagicBox . This box magically changes any item placed inside to
a copy of the fi rst item it ever held. A simple way to do this is to store only the fi rst item. Future
calls to setItem will do nothing. Therefore, every call to getItem returns the fi rst item stored in
the box.

 As with the toy box, we can derive our class from the PlainBox class, but we also need a data fi eld
to indicate if an initial item has been stored in our box. We can use a boolean fi eld, firstItemStored ,
which is set to true once the fi rst item has been stored in the box. We can then check this fl ag to
see what setItem should do. If firstItemStored is false, we know that the argument passed to

 Inheritance 43

setItem is the fi rst item we are asked to store. If firstItemStored is true, we know this is not the fi rst
item, and we simply do nothing.

 Here is the UML notation for our MagicBox methods:

 +setItem(ItemType theItem)
+getItem(): ItemType

 These methods are like those in the class PlainBox , but we need a different implementation of
setItem to meet the special requirements of this box. Therefore, we need to override the PlainBox
implementation of setItem . Listing C1-7 gives the header fi le for our class MagicBox . It has the pri-
vate data fi eld firstItemStored , a default constructor, a parameterized constructor, and the special
version of setItem that we need.

LISTING C1-7 Header fi le for the class MagicBox

/** @file MagicBox.h */

#ifndef _MAGIC_BOX
 #define _MAGIC_BOX
#include "PlainBox.h"

 template < class ItemType>
 class MagicBox : public PlainBox<ItemType>
 {

 private :
bool firstItemStored;

 public :
 MagicBox();
 MagicBox(const ItemType& theItem);

void setItem(const ItemType& theItem);
 }; // end MagicBox
#include "MagicBox.cpp"
 #endif

 The implementation of the default constructor must call the base-class constructor and then
initialize the data fi eld firstItemStored to true to indicate that the fi rst item has not been stored yet.
The method setItem must check this data fi eld and, if no item has been stored, call the base-class
method setItem to store the parameter in the data fi eld item . You can see these implementations in
Listing C1-8.

LISTING C1-8 Implementation fi le for the class MagicBox

/** @file MagicBox.cpp */

 template < class ItemType>
 MagicBox<ItemType>::MagicBox()
 {
 PlainBox<ItemType>();

 (continues)

44 C++ INTERLUDE 1 C++ Classes

 firstItemStored = false; // Box has no magic initially
} // end default constructor

 template < class ItemType>
 MagicBox<ItemType>::MagicBox(const ItemType& theItem)
 {
 firstItemStored = false; // Box has no magic initially
 setItem(theItem);

// Box has magic now
} // end constructor

 template < class ItemType>
 void MagicBox<ItemType>::setItem(const ItemType& theItem)
 {

if (!firstItemStored)
 {
 PlainBox<ItemType>::setItem(theItem);
 firstItemStored = true ; // Box now has magic
 } // end if
 } // end setItem

 To simplify the parameterized constructor, we can call the setItem method to set the fi rst item
stored in the box. However, the MagicBox class has two setItem methods available, its own and the
base-class version. As discussed earlier, we would precede a method name with the base-class name-
space indicator to tell the compiler to use the base-class version of the method. To use this class’s
setItem method, we can simply invoke the method as shown in the parameterized constructor. With-
out a namespace indicator in front of the method name, the compiler assumes that the programmer is
referring to the current class and inserts code to call that version of the method.

 C1.5 Virtual Methods and Abstract Classes
 When we designed the interface for our ADT bag in Chapter 1 , we created an abstract class that
describes each of the public methods. Recall that an abstract class in C++ contains at least one method
declared as virtual that has no implementation. An abstract class can only serve as a base class; it can-
not be instantiated. The derived class must defi ne the methods specifi ed but not already implemented
by the abstract class.

 C1.5.1 Virtual Methods

 Using the keyword virtual in front of the prototype, or header, of the method tells the C++ compiler that
the code this method executes is determined at runtime, not when the program is compiled. A method
declared this way is referred to as a virtual method . Why should we declare a method as virtual?

 The rules of inheritance allow us to use a derived class anywhere that its base class is used. For
example, we could declare a variable that is a plain box:

 PlainBox<string> cardBox;

Question 1 Revise the parameterized constructor to call the base-class’s constructor
instead of MagicBox ’s constructor.

CHECK POINT

 Virtual Methods and Abstract Classes 45

 Then we could create a MagicBox object and assign it to the variable cardBox :

 cardBox = MagicBox<string>("Queen of Hearts");

 Later, the player might store a different string in the box, and so we execute

 cardBox.setItem("Jack of Spades");

 Because the compiler considers the object cardBox to be of type PlainBox<string> , the PlainBox
version of the method setItem is used in the previous statement. The PlainBox implementation of
setItem stores the value of its parameter in item . Thus, a problem arises when our client calls the
method getItem :

 string myFirstCard = cardBox.getItem();

 The method getItem returns the string "Jack of Spades" instead of "Queen of Hearts" . This is not
the behavior the client desires, because cardBox was assigned an instance of MagicBox .

 If we declare PlainBox ’s method setItem to be virtual in the PlainBox header fi le by writing

 virtual ItemType setItem() const ;

 the version of setItem invoked during execution is determined by the specifi c type of object
stored in nameBox . In our example, the MagicBox version of setItem would be called, since that is the
type of object most recently stored in cardBox . Having this decision delayed until the program exe-
cutes is an example of polymorphism and is a key benefi t of object-oriented programming.

 To fully implement our box example as a demonstration of polymorphic code, and to thor-
oughly discuss virtual methods and abstract classes, we need to use pointers. Pointers are intro-
duced in C++ Interlude 2, and so we will delay further discussion and the completion of this example
until then.

 C1.5.2 Abstract Classes

 The previous example used a virtual method so that a choice could be made during program execu-
tion between two implementations of the setItem method. We can use this same idea to assist with
our goal of designing each ADT as a public interface that describes its functionality and is implemen-
tation independent. Declaring our ADT methods as virtual allows an application using our class to
take advantage of polymorphism when the ADT’s methods are invoked.

 One signifi cant difference between such an ADT and the previous example that uses the
PlainBox class is that we do not want to provide an implementation of the ADT methods. Instead, we
want to force the classes derived from the ADT to provide the implementations. Yet if we do not pro-
vide an implementation of the ADT, the compiler or linker will issue an error message when we try to
build a program using our class.

 We can avoid this error by writing our methods as pure virtual methods . A pure virtual
method is a virtual method that has no implementation. We can now say that an abstract class is one
that has at least one pure virtual method. To tell the compiler that a virtual method is a pure virtual
method, you write = 0 before the semicolon at the end of the method prototype, as in the following
example:

 virtual void setItem(const ItemType& theItem) = 0;

 Listing C1-9 defi nes the template class BoxInterface that provides a public interface for the box
classes described earlier in this interlude. BoxInterface is an abstract class, because it contains at
least one pure virtual method. Remember that abstract classes cannot be directly instantiated.

46 C++ INTERLUDE 1 C++ Classes

LISTING C1-9 An abstract class that is an interface for the ADT box

/** @file BoxInterface.h */

#ifndef _BOX_INTERFACE
 #define _BOX_INTERFACE

 template < class ItemType>
 class BoxInterface
{
 public :

virtual void setItem(const ItemType& theItem) = 0;
virtual ItemType getItem() const = 0;

 }; // end BoxInterface
 #endif

 We can indicate that our class PlainBox is derived from BoxInterface by changing its class
header to

 class PlainBox : public BoxInterface<ItemType>

 In the future when we design the public interface for an ADT, we will express that interface as
an abstract class. When we introduce pointers in C++ Interlude 2, we will explore the importance
and use of abstract classes in depth. Until then, we will use only abstract classes as a design tool for
our ADTs.

 Recursion:
The Mirrors

 Chapter

 Contents
 2.1 Recursive Solutions 48
 2.2 Recursion That Returns a Value 50

 2.2.1 A Recursive Valued Function: The Factorial of n 50
 2.2.2 The Box Trace 54

 2.3 Recursion That Performs an Action 57
 2.3.1 A Recursive Void Function: Writing a String Backward 57

 2.4 Recursion with Arrays 67
 2.4.1 Writing an Array’s Entries in Backward Order 67
 2.4.2 The Binary Search 68
 2.4.3 Finding the Largest Value in an Array 72
 2.4.4 Finding the k th Smallest Value of an Array 72

 2.5 Organizing Data 76
 2.5.1 The Towers of Hanoi 76

 2.6 More Examples 79
 2.6.1 The Fibonacci Sequence (Multiplying Rabbits) 79
 2.6.2 Organizing a Parade 82
 2.6.3 Choosing k Out of n Things 83

 2.7 Recursion and Effi ciency 85

 Summary 88

 Exercises 88
 Programming Problems 93

 Prerequisites
 Appendix A Review of C++ Fundamentals
 Appendix B Important Themes in Programming
 Appendix C The Unifi ed Modeling Language

2

48 CHAPTER 2 Recursion: The Mirrors

The goal of this chapter is to ensure that you have a basic understanding of recursion, which is one
of the most powerful techniques available to the computer scientist. This chapter assumes that you
have had little or no previous introduction to recursion. If, however, you have already studied
recursion, you can review this chapter as necessary.

 By presenting several relatively simple problems, the chapter demonstrates the thought proc-
esses that lead to recursive solutions. These problems are diverse and include examples of counting,
searching, and organizing data. In addition to presenting recursion from a conceptual viewpoint, this
chapter discusses techniques that will help you understand the mechanics of recursion. These tech-
niques are particularly useful for tracing and debugging recursive functions.

 Some recursive solutions are far more elegant and concise than the best of their nonrecursive
counterparts. For example, the classic Towers of Hanoi problem appears to be quite diffi cult, yet it
has an extremely simple recursive solution. On the other hand, some recursive solutions are terribly
ineffi cient, as you will see, and should not be used.

 Chapter 5 continues the formal discussion of recursion by examining more diffi cult problems.
Recursion will play a major role in many of the solutions that appear throughout the remainder of
this book.

 2.1 Recursive Solutions
 Recursion is an extremely powerful problem-solving technique. Problems that at fi rst appear to
be quite diffi cult often have simple recursive solutions. Like other problem-solving techniques,
recursion breaks a problem into several smaller problems. What is striking about recursion is that
these smaller problems are of exactly the same type as the original problem—mirror images, so
to speak.

 Did you ever hold a mirror in front of another mirror so that the two mirrors face each
other? You will see many images of yourself, each behind and slightly smaller than the other.
Recursion is like these mirror images. That is, a recursive solution solves a problem by solv-
ing a smaller instance of the same problem! It then solves this new problem by solving an even
smaller instance of the same problem. Eventually, the new problem will be so small that its
solution will be either obvious or known. This solution will lead to the solution of the original
problem.

 For example, suppose that you could solve problem P
1
 if you had the solution to problem P

2
 ,

which is a smaller instance of P
1
 . Suppose further that you could solve problem P

2
 if you had the solu-

tion to problem P
3
 , which is a smaller instance of P

2
 . If you knew the solution to P

3
 because it was

small enough to be trivial, you would be able to solve P
2
 . You could then use the solution to P

2
 to

solve the original problem P
1
 .

 Recursion can seem like magic, especially at fi rst, but as you will see, it is a very real and impor-
tant problem-solving approach that is an alternative to iteration . An iterative solution involves loops.
You should know at the outset that not all recursive solutions are better than iterative solutions. In
fact, some recursive solutions are impractical because they are so ineffi cient. Recursion, however,
can provide elegantly simple solutions to problems of great complexity.

 As an illustration of the elements in a recursive solution, consider the problem of looking up a
word in a dictionary. Suppose you wanted to look up the word “vademecum.” Imagine starting at the
beginning of the dictionary and looking at every word in order until you found “vademecum.” That is
precisely what a sequential search does, and for obvious reasons, you want a faster way to perform
the search.

 One such approach is the binary search , which in spirit is similar to the way in which you actu-
ally use a dictionary. You open the dictionary—maybe to a point near its middle—and by glancing at

Recursion breaks a
problem into smaller
identical problems

Some recursive
solutions are
ineffi cient and
impractical

Complex problems
can have simple
recursive solutions

 Recursive Solutions 49

the page, determine which “half ” of the dictionary contains the desired word. The following pseu-
docode is a fi rst attempt to formalize this process:

// Search a dictionary for a word by using a recursive binary search

if (the dictionary contains only one page)
 Scan the page for the word
 else

 {
 Open the dictionary to a point near the middle
 Determine which half of the dictionary contains the word

if (the word is in the fi rst half of the dictionary)
 Search the fi rst half of the dictionary for the word

 else
 Search the second half of the dictionary for the word
 }

 Parts of this solution are intentionally vague: How do you scan a single page? How do you fi nd the
middle of the dictionary? Once the middle is found, how do you determine which half contains the word?
The answers to these questions are not diffi cult, but they would only obscure the solution strategy right now.

 The previous search strategy reduces the problem of searching the dictionary for a word to a prob-
lem of searching half of the dictionary for the word, as Figure 2-1 illustrates. Notice two important
points. First, once you have divided the dictionary in half, you already know how to search the appro-
priate half: You can use exactly the same strategy that you employed to search the original dictionary.
Second, note that there is a special case that is different from all the other cases: After you have divided
the dictionary so many times that you are left with only a single page, the halving ceases. At this point,
the problem is suffi ciently small that you can solve it directly by scanning the single page that remains
for the word. This special case is called the base case (or basis or degenerate case).

A binary search of a
dictionary

A base case is a
special case whose
solution you know

FIGURE 2-1 A recursive solution

Search first half of dictionary Search second half of dictionaryOROR

Search dictionary

 This strategy is called divide and conquer . You solve the dictionary search problem by fi rst
dividing the dictionary into two halves and then conquering the appropriate half. You solve the
smaller problem by using the same divide-and-conquer strategy. The dividing continues until you
reach the base case. As you will see, this strategy is inherent in many recursive solutions.

 To further explore the nature of the solution to the dictionary problem, consider a slightly more
rigorous formulation.

 search(aDictionary: Dictionary, word: string)

if (aDictionary is one page in size)
Scan the page for word

else
 {

Open aDictionary to a point near the middle
Determine which half of aDictionary contains word

A binary search
uses a divide-and-
conquer strategy

50 CHAPTER 2 Recursion: The Mirrors

if (word is in the fi rst half of aDictionary)
 search(fi rst half of aDictionary, word)

else
 search(second half of aDictionary, word)

 }

 Writing the solution as a function allows several important observations:

1. One of the actions of the function is to call itself; that is, the function search calls the
function search . This action is what makes the solution recursive. The solution strategy is to
split aDictionary in half, determine which half contains word , and apply the same strategy
to the appropriate half.

2. Each call to the function search made from within the function search passes a dictionary
that is one-half the size of the previous dictionary. That is, at each successive call to
search(aDictionary, word) , the size of aDictionary is cut in half. The function solves the
search problem by solving another search problem that is identical in nature but smaller in size.

3. There is one search problem that you handle differently from all of the others. When
aDictionary contains only a single page, you use another approach: You scan the page
directly. Searching a one-page dictionary is the base case of the search problem. When you
reach the base case, the recursive calls stop and you solve the problem directly.

4. The manner in which the size of the problem diminishes ensures that you will eventually
reach the base case.

 These facts describe the general form of a recursive solution. Though not all recursive solutions fi t
these criteria as nicely as this solution does, the similarities are far greater than the differences. As you
attempt to construct a new recursive solution, you should keep in mind the following four questions.

A recursive function
calls itself

Each recursive call
solves an identical,
but smaller, problem

A test for the base
case enables the
recursive calls to
stop

Eventually, one of
the smaller
problems must be
the base case

Note: Four questions for constructing recursive solutions

1. How can you defi ne the problem in terms of a smaller problem of the same type?
2. How does each recursive call diminish the size of the problem?
3. What instance of the problem can serve as the base case?
4. As the problem size diminishes, will you reach this base case?

 Now consider two relatively simple problems: computing the factorial of a number and writing a
string backward. Their recursive solutions further illustrate the points raised by the solution to the
dictionary search problem. These examples also illustrate the difference between a recursive valued
function —which returns a value—and a recursive void function .

 2.2 Recursion That Returns a Value
 The mechanics of recursion are clearer when the recursive function returns a value instead of just
performing an action, and so we examine one in detail.

 2.2.1 A Recursive Valued Function: The Factorial of n

 Computing the factorial of an integer n is a good fi rst example because its recursive solution is easy to
understand and neatly fi ts the mold described earlier. However, because the problem has a simple and
effi cient iterative solution, you should not use the recursive solution in practice.

 To begin, consider the familiar iterative defi nition of factorial (n) (more commonly written as n !):

factorial 1n 2 5 n 3 1n 2 1 2 3 1n 2 2 2 3c3 1 for an integer n . 0

factorial 10 2 5 1

Do not use
recursion if a
problem has a
simple, effi cient
iterative solution

An iterative
defi nition of factorial

VideoNote

Recursion:
The mirrors

 Recursion That Returns a Value 51

 The factorial of a negative integer is undefi ned. You should have no trouble writing an iterative facto-
rial function based on this defi nition.

 To defi ne factorial (n) recursively, you fi rst need to defi ne factorial (n) in terms of the factorial of
a smaller number. To do so, simply observe that the factorial of n is equal to the factorial of (n – 1)
multiplied by n; that is,

factorial 1n 2 5 n 3 3 1n 2 1 2 3 1n 2 2 2 3c3 1 4
5 n 3 factorial 1n 2 1 2

 The defi nition of factorial (n) in terms of factorial (n – 1), which is an example of a recurrence rela-
tion , implies that you can also defi ne factorial (n – 1) in terms of factorial (n – 2), and so on. This proc-
ess is analogous to the dictionary search solution, in which you search a dictionary by searching a
smaller dictionary in exactly the same way.

 The defi nition of factorial (n) lacks one key element: the base case. As was done in the dictionary
search solution, here you must defi ne one case differently from all the others, or else the recursion will
never stop. The base case for the factorial function is factorial (0), which you know is 1. Because n origi-
nally is greater than or equal to zero and each call to factorial decrements n by 1, you will always reach the
base case. With the addition of the base case, the complete recursive defi nition of the factorial function is

factorial 1n 2 5 e1 if n 5 0

n 3 factorial 1n 2 1 2 if n . 0

 To be sure that you understand this recursive defi nition, apply it to the computation of facto-
rial (4). Because 4 > 0, the recursive defi nition states that

factorial (4) � 4 � factorial (3)

 Similarly,

factorial (3) � 3 � factorial (2)
factorial (2) � 2 � factorial (1)
factorial (1) � 1 � factorial (0)

 You have reached the base case, and the defi nition directly states that

factorial (0) � 1

 At this point, the application of the recursive defi nition stops and you still do not know the
answer to the original question: What is factorial (4)? However, the information to answer this ques-
tion is now available:

 Because factorial (0) � 1, factorial (1) � 1 � 1 � 1
 Because factorial (1) � 1, factorial (2) � 2 � 1 � 2
 Because factorial (2) � 2, factorial (3) � 3 � 2 � 6
 Because factorial (3) � 6, factorial (4) � 4 � 6 � 24

 You can think of recursion as a process that divides a problem into a task that you can do and a task
that a friend can do for you. For example, if I ask you to compute factorial (4), you could fi rst determine
whether you know the answer immediately. You know immediately that factorial (0) is 1—that is, you
know the base case—but you do not know the value of factorial (4) immediately. However, if your friend
computes factorial (3) for you, you could compute factorial (4) by multiplying factorial (3) and 4. Thus,
your task will be to do this multiplication, and your friend’s task will be to compute factorial (3).

 Your friend now uses the same process to compute factorial (3) as you are using to compute fac-
torial (4). Thus, your friend determines that factorial (3) is not the base case, and so asks another
friend to compute factorial (2). Knowing factorial (2) enables your friend to compute factorial (3),
and when you learn the value of factorial (3) from your friend, you can compute factorial (4).

A recurrence
relation

A recursive
defi nition of factorial

52 CHAPTER 2 Recursion: The Mirrors

 Notice that the recursive defi nition of factorial (4) yields the same result as the iterative defi ni-
tion, which gives 4 � 3 � 2 � 1 � 24. To prove that the two defi nitions of factorial are equivalent for
all nonnegative integers, you would use mathematical induction. (See Appendix E.) Chapter 5 dis-
cusses the close tie between recursion and mathematical induction.

 The recursive definition of the factorial function has illustrated two points. (1) Intuitively ,
you can define factorial (n) in terms of factorial (n – 1). (2) Mechanically , you can apply the
definition to determine the value of a given factorial. Even in this simple example, applying
the recursive definition required quite a bit of work. That, of course, is where the computer
comes in.

 Once you have a recursive defi nition of factorial (n), it is easy to construct a C++ function that
implements the defi nition:

 /** Computes the factorial of the nonnegative integer n.
 @pre n must be greater than or equal to 0.
 @post None.
 @return The factorial of n; n is unchanged. */
 int fact(int n)
 {
 if (n == 0)
 return 1;
 else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
 return n * fact(n - 1); // n * (n-1)! is n!
} // end fact

 Suppose that you use the statement

 cout << fact(3);

 to call the function. Figure 2-2 depicts the sequence of computations that this call would require.

FIGURE 2-2 fact(3)

return 3*fact(2)

3*2

return 2*fact(1)

2*1

cout << fact(3);
6

return 1*fact(0)

1*1

return 1

 Recursion That Returns a Value 53

 This function fi ts the model of a recursive solution given earlier in this chapter as follows:

1. One action of fact is to call itself .
2. At each recursive call to fact , the integer whose factorial you need to compute is dimin-

ished by 1 .
3. The function handles the factorial of 0 differently from all the other factorials: It does not

generate a recursive call. Rather, you know that fact(0) is 1. Thus, the base case occurs
when n is 0.

4. Given that n is nonnegative, item 2 of this list assures you that you will always reach the base
case.

Violating fact’s
precondition causes
“infi nite” recursion

 Note: A recursive algorithm must have a base case, whose solution you know directly
without making any recursive calls. Without a base case, a recursive function will gener-
ate an infi nite sequence of calls.

 fact satisfi es the
four criteria of a
recursive solution

 The function fact requires as its precondition a nonnegative value of n . At the time of the recur-
sive call fact(n-1) , n is positive, so n – 1 is nonnegative. Because the recursive call satisfi es fact ’s
precondition, you can expect that fact(n-1) will return the factorial of n – 1. Therefore,
n * fact(n-1) is the factorial of n . Chapter 5 uses mathematical induction to prove formally that
fact(n) returns the factorial of n .

 If you ever violated fact ’s precondition, the function would not behave correctly. That is, if the
calling program ever passed a negative value to fact , an infi nite sequence of recursive calls—
terminated only by a system-defi ned limit—would occur, because the function would never reach the
base case. For example, fact(-4) would call fact(-5) , which would call fact(-6) , and so on.

 The function ideally should protect itself by testing for a negative n . If n < 0, the function could,
for example, either return 0 or set an error fl ag. Appendix B discusses error checking in Sections B.2
“Style” and B.5 “Fail-Safe Programming”; you might want to review that discussion at this time.

 At an intuitive level, it should be clear that the function fact implements the recursive defi nition of
factorial. Now consider the mechanics of executing this recursive function. The logic is straightforward,
except perhaps for the expression in the else clause. This expression can be explained as follows:

1. Each operand of the product n * fact(n-1) is evaluated.
2. The second operand— fact(n-1)— is a call to the function fact . Although this is a recursive

call (the function fact calls the function fact), there really is nothing special about it.
Imagine substituting a call to another function—the standard function abs , for example—for
the recursive call to fact . The principle is the same: Simply evaluate the function.

 In theory, evaluating a recursive function is no more diffi cult than evaluating a nonrecursive
function. In practice, however, manual bookkeeping can quickly get out of hand. The next section
introduces a systematic way to trace the actions of a recursive function. For a computer, the book-
keeping is simple but can use more memory than is allocated for such a task.

Question 1 The following function computes the sum of the fi rst n � 1 integers. Show
how this function satisfi es the properties of a recursive function.

 /** Computes the sum of the integers from 1 through n.
 @pre n > 0.
 @post None.
 @param n A positive integer.
 @return The sum 1 + 2 + . . . + n. */

CHECK POINT

54 CHAPTER 2 Recursion: The Mirrors

 int sumUpTo(int n)
 {

int sum = 0;
if (n == 1)

 sum = 1;
else // n > 1

 sum = n + sumUpTo(n - 1);

return sum;
} // end sumUpTo

 2.2.2 The Box Trace

 You can use a box trace both to help you understand recursion and to debug recursive functions.
However, such a mechanical device is no substitute for an intuitive understanding of recursion. The
box trace illustrates how compilers frequently implement recursion. As you read the following
description of the technique, realize that each box roughly corresponds to an activation record ,
which a compiler typically uses in its implementation of a function call. C++ Interlude 2 will discuss
activation records further.

 The box trace is illustrated here for the recursive function fact , which returns a value.

1. Label each recursive call in the body of the recursive function. Several recursive calls might
occur within a function, and it will be important to distinguish among them. These labels
help you keep track of the correct place to which you must return after a function call
completes. For example, mark the expression fact(n - 1) within the body of the function
with the letter A:

if (n == 0)
return 1;

else
return n * fact(n - 1);

A

 You return to point A after each recursive call, substitute the computed value for the term
fact(n - 1) , and continue execution by evaluating the expression n * fact(n - 1) .

2. Represent each call to the function during the course of execution by a new box in which
you note the local environment of the function. More specifically, each box will
contain

• The values of the arguments of the argument list.
• The function’s local variables.
• A placeholder for the value returned by each recursive call from the current box. Label this

placeholder to correspond to the labeling in step 1.
• The value of the function itself.

 When you fi rst create a box, you will know only the values of the input arguments. You fi ll in
the other values as you determine them from the function’s execution. For example, you
would create the box in Figure 2-3 for the call fact(3) . (You will see in later examples that
you must handle reference arguments somewhat differently than value arguments and local
variables.)

3. Draw an arrow from the statement that initiates the recursive process to the fi rst box. Then,
when you create a new box after a recursive call, as described in step 2, you draw an arrow
from the box that makes the call to the newly created box. Label each arrow to correspond to

An activation record
is created for each
function call

Label each
recursive call in the
function

Each time a function
is called, a new box
represents its local
environment

FIGURE 2-3 A box

n = 3
A: fact(n-1) = ?
return ?

 Recursion That Returns a Value 55

the label (from step 1) of the recursive call; this label indicates exactly where to return
after the call completes. For example, Figure 2-4 shows the fi rst two boxes generated by
the call to fact in the statement cout << fact(3) .

4. After you create the new box and arrow as described in steps 2 and 3, start executing the
body of the function. Each reference to a value in the function’s local environment references
the corresponding value in the current box, regardless of how you generated the current box.

5. On exiting the function, cross off the current box and follow its arrow back to the box that
called the function. This box now becomes the current box, and the label on the arrow
specifi es the exact location at which execution of the function should continue. Substitute the
value returned by the just-terminated function call for the appropriate placeholder in the
current box.

 Figure 2-5 is a complete box trace for the call fact(3) . In the sequence of diagrams in this fi gure,
the current box is the deepest along the path of arrows and is highlighted in blue, whereas crossed-off
boxes are dashed and shaded gray.

n = 3
A: fact(n-1) = ?
return ?

n = 2
A: fact(n-1) = ?
return ?

A
cout << fact(3);

FIGURE 2-4 The beginning of the box trace

n = 3
A: fact(n-1)=?
return ?

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

The initial call is made, and method fact begins execution:

At point A a recursive call is made, and the new invocation of the method fact begins execution:

At point A a recursive call is made, and the new invocation of the method fact begins execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

A A

A

At point A a recursive call is made, and the new invocation of the method fact begins execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return ?

A A A

FIGURE 2-5 Box trace of fact(3)

(continues)

56 CHAPTER 2 Recursion: The Mirrors

FIGURE 2-5 Box trace of fact(3) (continued)

This is the base case, so this invocation of fact completes and returns a value to the caller:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=?
return ?

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n= 1
A: fact(n-1)=1
return ?

n = 0

return 1

The current invocation of fact completes and returns a value to the caller:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=?
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A A A

A A

A A

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return ?

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes and returns a value to the caller:

n = 3
A: fact(n-1)=?
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The method value is returned to the calling box, which continues execution:

n = 3
A: fact(n-1)=2
return ?

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

The current invocation of fact completes and returns a value to the caller:

The value 6 is returned to the initial call.

n = 3
A: fact(n-1)=2
return 6

n = 2
A: fact(n-1)=1
return 2

n = 1
A: fact(n-1)=1
return 1

n = 0

return 1

A

A

1

2

6

1

 Recursion That Performs an Action 57

 2.3 Recursion That Performs an Action
 Recursive functions need not return a value; they can be void functions.

 2.3.1 A Recursive Void Function: Writing a String Backward

 Now consider a problem that is slightly more diffi cult: Given a string of characters, write it in reverse
order. For example, write the string "cat" as "tac". To construct a recursive solution, you should ask
the four questions in the Note at the end of Section 2.1 .

 You can construct a solution to the problem of writing a string of length n backward in terms of
the problem of writing a string of length n – 1 backward. That is, each recursive step of the solution
diminishes by 1 the length of the string to be written backward. The fact that the strings get shorter
and shorter suggests that the problem of writing some very short strings backward can serve as the
base case. One very short string is the empty string, the string of length zero. Thus, you can choose for
the base case the problem

 Write the empty string backward

 The solution to this problem is to do nothing at all—a very straightforward solution indeed! (Alterna-
tively, you could use the string of length 1 as the base case.)

 Exactly how can you use the solution to the problem of writing a string of length n – 1 backward
to solve the problem of writing a string of length n backward? This approach is analogous to the one
used to construct the solution to the factorial problem, where you specifi ed how to use factorial (n – 1)
in the computation of factorial (n). Unlike the factorial problem, however, the string problem does not
suggest an immediately clear way to proceed. Obviously, not any string of length n – 1 will do. For
example, there is no relation between writing the string "apple" (of length 5) backward and writing
"pear" (a string of length 4) backward. You must choose the smaller problem carefully so that you
can use its solution in the solution to the original problem.

 The string of length n – 1 that you choose must be a substring (part) of the original string.
Suppose that you strip away one character from the original string, leaving a substring of length n – 1.
For the recursive solution to be valid, the ability to write the substring backward, combined with the
ability to perform some minor task, must result in the ability to write the original string backward.
Compare this approach with the way you computed factorial recursively: The ability to compute
factorial (n – 1), combined with the ability to multiply this value by n, resulted in the ability to com-
pute factorial (n).

 You need to decide which character to strip away and which minor task to perform. Consider the
minor task fi rst. Because you are writing characters, a likely candidate for the minor task is writing a
single character. As for the character that you should strip away from the string, there are several pos-
sible alternatives. Two of the more intuitive alternatives are

Note: The box trace, in conjunction with well-placed cout statements, can be a good
aid in debugging recursive functions. Such statements should report the point in the pro-
gram from which each recursive call occurs, as well as the values of input arguments and
local variables at both entry to and exit from the function. Be sure to remove these cout
statements from the fi nal version of the function

Question 2 Write a box trace of the function given in Checkpoint Question 1.
CHECK POINT

The base case

How can you write
an n -character
string backward, if
you can write an
(n – 1)-character
string backward?

58 CHAPTER 2 Recursion: The Mirrors

 Strip away the last character

 or

 Strip away the fi rst character

 Consider the fi rst of these alternatives, stripping away the last character, as Figure 2-6 illustrates.

FIGURE 2-6 A recursive solution

writeBackward(s)

writeBackward(s minus last character)

 For the solution to be valid, you must write the last character in the string fi rst. Therefore, you
must write the last character before you write the remainder of the string backward. A high-level
recursive solution, given the string s , is

 writeBackward(s: string)

 if (the string is empty)
 Do nothing—this is the base case
 else
 {

 Write the last character of s
 writeBackward(s minus its last character)
 }

 writeBackward
writes a string
backward

Note: A recursive solution must involve one or more smaller problems that are each
closer to a base case than is the original problem. You must be sure that these smaller
problems eventually reach the base case. Failure to do so could result in an algorithm that
does not terminate.

 This solution to the problem is conceptual. To obtain a C++ function, you must resolve a few
implementation issues. Suppose that the function will receive one argument: a string s to be written
backward. All characters, including blanks, are part of the string. The C++ function writeBackward
appears as follows:

 /** Writes a character string backward.
 @pre The string s to write backward.
 @post None.

 Recursion That Performs an Action 59

 @param s The string to write backward. */
 void writeBackward(string s)
{

int length = s.size(); // Length of string
if (length > 0)
{

 // Write the last character
cout << s.substr(length - 1, 1);

// Write the rest of the string backward
writeBackward(s.substr(0, length – 1)); // Point A

} // end if

// length == 0 is the base case - do nothing
} // end writeBackward

 Notice that the recursive calls to writeBackward use successively shorter versions of the string s ,
ensuring that the base case will be reached. Because the function does nothing when it reaches the
base case, it does not deal with the base case explicitly. The base case is implicit.

 You can trace the execution of writeBackward by using the box trace. As was true for the
function fact , each box contains the local environment of the recursive call—in this case, the
input argument s and the local variable length . The trace will differ somewhat from the trace of
fact shown in Figure 2-5 because, as a void function, writeBackward does not use a return state-
ment to return a computed value. Figure 2-7 traces the call to the function writeBackward with
the string "cat".

 writeBackward
does not return a
computed value

s = "cat"
length = 3

s = "cat"
length = 3

s = "ca"
length = 2

The initial call is made, and the function begins execution:

Point A (writeBackward(s)) is reached, and the recursive call is made.

The new invocation begins execution:

Point A is reached, and the recursive call is made.

The new invocation begins execution:

A

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A

Output line: t

Output line: ta

FIGURE 2-7 Box trace of writeBackward("cat")

(continues)

60 CHAPTER 2 Recursion: The Mirrors

Point A is reached, and the recursive call is made.

The new invocation begins execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A s = ""
length = 0

A

This is the base case, so this invocation completes.

Control returns to the calling box, which continues execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

A s = ""
length = 0

This invocation completes. Control returns to the calling box, which continues execution:

s = "cat"
length = 3

s = "ca"
length = 2

A s = "c"
length = 1

s = ""
length = 0

This invocation completes. Control returns to the calling box, which continues execution:

This invocation completes. Control returns to the statement following the initial call.

s = "cat"
length = 3

s = "ca"
length = 2

s = "c"
length = 1

s = ""
length = 0

Output line: tac

FIGURE 2-7 Box trace of writeBackward("cat") (continued)

Another solution. Now consider a slightly different approach to the problem. Recall the two alterna-
tives for the character that you could strip away from the string: the last character or the fi rst character.
The solution just given strips away the last character of the string. It will now be interesting to con-
struct a solution based on the second alternative:

 Strip away the fi rst character

 To begin, consider a simple modifi cation of the previous pseudocode solution that replaces each
occurrence of last with fi rst . Thus, the function writes the fi rst character rather than the last and then
recursively writes the remainder of the string backward.

 writeBackward1(s: string)

 if (the string s is empty)
 Do nothing— this is the base case
 else
 {
 Write the fi rst character of s
 writeBackward1(s minus its fi rst character)

}

 Does this solution do what you want it to? If you think about this function, you will realize that it
writes the string in its normal left-to-right direction instead of backward. After all, the steps in the
pseudocode are

 Recursion That Performs an Action 61

 Write the fi rst character of s
 Write the rest of s

 These steps simply write the string s . Naming the function writeBackward does not guarantee
that it will actually write the string backward—recursion really is not magic!

 You can write s backward correctly by using the following recursive formulation:

 Write s minus its fi rst character backward
 Write the fi rst character of s

 In other words, you write the fi rst character of s only after you have written the rest of s backward.
This approach leads to the following pseudocode solution:

 writeBackward2(s: string)

if (the string s is empty)
Do nothing—this is the base case

else
{
 writeBackward2(s minus its fi rst character)

Write the fi rst character of s
}

 The translation of writeBackward2 into C++ is similar to that of the original writeBackward func-
tion and is left as an exercise.

 It is instructive to carefully trace the actions of the two pseudocode functions writeBackward
and writeBackward2 . First, add statements to each function to provide output that is useful to the
trace, as follows:

 writeBackward(s: string)

 cout << "Enter writeBackward with string: " << s << endl;
if (the string is empty)

Do nothing—this is the base case
else

 {
 cout << "About to write last character of string: "
 << s << endl;

Write the last character of s
 writeBackward(s minus its last character) // Point A
 }
 cout << "Leave writeBackward with string: " << s << endl;

writeBackward2(s: string)

 cout << "Enter writeBackward2 with string: "
 << s << endl;
if (the string is empty)

Do nothing—this is the base case
else

 {
 writeBackward2(s minus its fi rst character) // Point A
 cout << "About to write first character of string: "
 << s << endl;

Write the fi rst character of s
 }
 cout << "Leave writeBackward2 with string: " << s << endl;

 Figures 2-8 and 2-9 show the output of the revised pseudocode functions writeBackward and
writeBackward2 , when initially given the string "cat" .

 cout statements
can help you trace
the logic of a
recursive function

62 CHAPTER 2 Recursion: The Mirrors

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode

s = "cat"

The initial call is made, and the function begins execution:

Output stream:

Enter writeBackward with string: cat
About to write last character of string: cat
t

This invocation completes execution, and a return is made.

s = "cat" s = "ca"

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c

Output stream:

A

s = "cat" s = "ca"
A

s = "c"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

s = "cat" s = "ca"
A

s = "c"
A

s = ""
A

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:

 Recursion That Performs an Action 63

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:

Output stream:

This invocation completes execution, and a return is made.

s = "cat" s = "ca"
A

s = "c"
A

s = ""

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c

Output stream:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "ca"
A

s = "c" s = ""

Leave writeBackward with string: c

(continues)

64 CHAPTER 2 Recursion: The Mirrors

 You need to be comfortable with the differences between these two functions. The recursive
calls that the two functions make generate a different sequence of values for the argument s .
Despite this fact, both functions correctly write the string argument backward. They compensate
for the difference in the sequence of values for s by writing different characters in the string at dif-
ferent times relative to the recursive calls. In terms of the box traces in Figures 2-8 and 2-9 ,
writeBackward writes a character just before generating a new box (just before a new recursive
call), whereas writeBackward2 writes a character just after crossing off a box (just after returning
from a recursive call). When these differences are put together, the result is two functions that
employ different strategies to accomplish the same task.

 This example also illustrates the value of the box trace, combined with well-placed cout state-
ments, in debugging recursive functions. The cout statements at the beginning, interior, and end of
the recursive functions report the value of the argument s . In general, when debugging a recursive
function, you should also report both the values of local variables and the point in the function where
each recursive call occurred, as in this example:

 abc(...);

 cout << "Calling function abc from point A.\n";
 abc(...) // This is point A

 cout << "Calling function abc from point B.\n";
 abc(...); // This is point B

Well-placed but
temporary cout
statements can help
you debug a
recursive function

Enter writeBackward with string: cat
About to write last character of string: cat
t
Enter writeBackward with string: ca
About to write last character of string: ca
a
Enter writeBackward with string: c
About to write last character of string: c
c
Enter writeBackward with string:
Leave writeBackward with string:
Leave writeBackward with string: c
Leave writeBackward with string: ca

This invocation completes execution, and a return is made.

Output stream:

g
c
Enter writeBackward with string:
Leave writeBackward with string:
Leave writeBackward with string: c

s = "cat" s = "ca" s = "c" s = ""

Leave writeBackward with string: cat

Leave writeBackward with string: ca

FIGURE 2-8 Box trace of writeBackward("cat") in pseudocode (continued)

 Realize that the cout statements do not belong in the fi nal version of the function.

Remove cout
statements after you
have debugged the
function

 Recursion That Performs an Action 65

FIGURE 2-9 Box trace of writeBackward2("cat") in pseudocode

s = "cat"

s = "cat" s = "at"

The initial call is made, and the function begins execution:

Output stream:

Enter writeBackward2 with string: cat

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t

Output stream:

A

s = "cat" s = "at"
A

s = "t"
A

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Point A is reached, and the recursive call is made. The new invocation begins execution:

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t

This invocation completes execution, and a return is made.

Output stream:

Point A is reached, and the recursive call is made. The new invocation begins execution:

This invocation completes execution, and a return is made.

Output stream:

s = "cat" s = "at"
A

s = "t"
A A

s = ""

s = "cat" s = "at"
A A

s = "t" s = ""

(continues)

66 CHAPTER 2 Recursion: The Mirrors

Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t
Leave writeBackward2 with string: t

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t

Leave writeBackward2 with string: t
About to write first character of string: at
a

Leave writeBackward2, string: at

This invocation completes execution, and a return is made.

Output stream:

A
s = "cat" s = "at" s = "t" s = ""

s = "cat" s = "at" s = "t" s = ""

Enter writeBackward2 with string: cat
Enter writeBackward2 with string: at
Enter writeBackward2 with string: t
Enter writeBackward2 with string:
Leave writeBackward2 with string:
About to write first character of string: t
t
Leave writeBackward2 with string: t
About to write first character of string: at
a
Leave writeBackward2 with string: at

Output stream:

This invocation completes execution, and a return is made.

About to write first character of string: cat
c
Leave writeBackward2 with string: cat

FIGURE 2-9 Box trace of writeBackward2("cat") in pseudocode (continued)

Question 3 Given an integer n > 0, write a recursive function countDown that writes the
integers n , n – 1, . . . , 1. Hint: What task can you do and what task can you ask a friend to do
for you?

CHECK POINT

 Recursion with Arrays 67

 2.4 Recursion with Arrays
 When you are working with an array, recursion can be a practical and powerful tool. For our fi rst
example, we write the contents of an array backward. We then look at several problems that involve
searching an array.

 2.4.1 Writing an Array’s Entries in Backward Order

 The solution to this problem is much like our fi rst solution in Section 2.3.1 when we wrote a string
backward. We can write the following pseudocode:

 writeArrayBackward(anArray: char[])

if (the array is empty)
Do nothing—this is the base case

 else
 {

 Write the last character in anArray
 writeArrayBackward(anArray minus its last character)
 }

 How will we pass anArray minus its last character to writeArrayBackward ? We could pass
the number of characters left in the array. At each recursive call, we would decrease this number
by 1. Alternatively, we could pass the index of the last character. That is, if last is this index,
writeArrayBackward would act on the array anArray[0..last] ,1 that is, the portion anArray-
[0] through anArray[last] . The recursive call would then act on the subarray anArray[0..
last – 1] . A more general variation of this idea also passes the index of the fi rst array character.
So instead of assuming that this index is 0, we would pass anArray[first..last] to writeArray-
Backward .

 We can write the function writeArrayBackward as follows:

 /** Writes the characters in an array backward.
 @pre The array anArray contains size characters, where size >= 0.
 @post None.
 @param anArray The array to write backward.
 @param first The index of the first character in the array.
 @param last The index of the last character in the array. */
 void writeArrayBackward(const char anArray[], int first, int last)
 {

if (first <= last)
 {
 // Write the last character
 cout << anArray[last];

 // Write the rest of the array backward
 writeArrayBackward(anArray, first, last - 1);

 } // end if

// first > last is the base case - do nothing

} // end writeArrayBackward

 1 You will see this notation in the rest of the book to represent a portion of an array.

VideoNote

Recursion with
arrays

68 CHAPTER 2 Recursion: The Mirrors

 2.4.2 The Binary Search

 Searching is an important task that occurs frequently. Often, searches are for a particular entry in an
array. We now will examine a few searching problems that have recursive solutions. Our goal is to
develop further your understanding of recursion.

 This chapter began with an intuitive approach to a binary search algorithm by presenting—at a
high level—a way to fi nd a word in a dictionary. We now develop this algorithm fully and illustrate
some important programming issues.

 Recall the earlier solution to the dictionary problem:

 search(aDictionary: Dictionary, word: string)

if (aDictionary is one page in size)
Scan the page for word

else
{

Open aDictionary to a point near the middle
Determine which half of aDictionary contains word

 if (word is in the fi rst half of aDictionary)
search(fi rst half of aDictionary, word)

else
search(second half of aDictionary, word)

 }

 Now alter the problem slightly by searching an array anArray of integers for a given value, the
target . The array, like the dictionary, must be sorted, or else a binary search is not applicable. Hence,
assume that

 anArray[0] anArray[1] anArray[2] … anArray[size - 1]

 where size is the size of the array. A high-level binary search for the array problem is

 binarySearch(anArray: ArrayType, target: ValueType)

if (anArray is of size 1)
Determine if anArray ’s value is equal to target

else
 {

Find the midpoint of anArray
Determine which half of anArray contains target
if (target is in the fi rst half of anArray)

 binarySearch(fi rst half of anArray, target)
else

 binarySearch(second half of anArray, target)
 }

Question 4 In the previous defi nition of writeArrayBackward , why does the base case
occur when the value of first exceeds the value of last ?

Question 5 Write a recursive function that computes and returns the product of the fi rst
n ≥ 1 real numbers in an array.

Question 6 Show how the function that you wrote for the previous question satisfi es the
properties of a recursive function.

Question 7 Write a recursive function that computes and returns the product of the integers
in the array anArray[first..last] .

CHECK POINT

A binary search
conquers one of its
subproblems at
each step

 Recursion with Arrays 69

 Although the solution is conceptually sound, you must consider several details before you can
implement the algorithm:

1. How will you pass half of anArray to the recursive calls to binarySearch? You can pass
the entire array at each call but have binarySearch search only anArray[first..last] , that
is, the portion anArray[first] through anArray[last] . Thus, you would also pass the
integers first and last to binarySearch :

 binarySearch(anArray, first, last, target)

 With this convention, the new midpoint is given by

mid = (first + last) / 2

 Then binarySearch(fi rst half of anArray, target) becomes

 binarySearch(anArray, first, mid - 1, target)

 and binarySearch(second half of anArray, target) becomes

 binarySearch(anArray, mid + 1, last, target)

2. How do you determine which half of the array contains target? One possible
implementation of

 if (target is in the fi rst half of anArray)

 is

 i f (target < anArray[mid])

 However, there is no test for equality between target and anArray[mid] . This omission can
cause the algorithm to miss target . After the previous halving algorithm splits anArray into
halves, anArray[mid] is not in either half of the array. (In this case, two halves do not make
a whole!) Therefore, you must determine whether anArray[mid] is the value you seek now,
because later it will not be in the remaining half of the array. The interaction between the
halving criterion and the termination condition (the base case) is subtle and is often a source
of error. We need to rethink the base case.

3. What should the base case(s) be? As it is written, binarySearch terminates only when an
array of size 1 occurs; this is the only base case. By changing the halving process so that
anArray[mid] remains in one of the halves , it is possible to implement the binary search
correctly so that it has only this single base case. However, it can be clearer to have two
distinct base cases as follows:

• first > last . You will reach this base case when target is not in the original array.
• target == anArray[mid] . You will reach this base case when target is in the original array.

 These base cases are a bit different from any you have encountered previously. In a sense, the
algorithm determines the answer to the problem from the base case it reaches. Many search
problems have this fl avor.

4. How will binarySearch indicate the result of the search? If binarySearch successfully
locates target in the array, it could return the index of the array value that is equal to
target . Because this index would never be negative, binarySearch could return a negative
value if it does not fi nd target in the array.

 The C++ function binarySearch that follows implements these ideas. The two recursive calls to
binarySearch are labeled as X and Y for use in a later box trace of this function.

The array halves are
 anArray[first..
mid-1]
 and anArray
[mid+1..last] ;
neither half contains
anArray[mid]

Determine whether
anArray[mid] is
the target you seek

70 CHAPTER 2 Recursion: The Mirrors

 /** Searches the array anArray[first] through anArray[last]
 for a given value by using a binary search.
 @pre 0 <= first, last <= SIZE - 1, where SIZE is the
 maximum size of the array, and anArray[first] <=
 anArray[first + 1] <= ... <= anArray[last].
 @post anArray is unchanged and either anArray[index] contains

the given value or index == -1.
 @param anArray The array to search.
 @param first The low index to start searching from.
 @param last The high index to stop searching at.
 @param target The search key.
 @return Either index, such that anArray[index] == target, or -1.
 */
 int binarySearch(const int anArray[], int first, int last, int target)
{

int index;
if (first > last)

 index = -1; // target not in original array
else
{

// If target is in anArray,
// anArray[first] <= target <= anArray[last]
int mid = first + (last - first) / 2;
if (target == anArray[mid])

 index = mid; // target found at anArray[mid]
else if (target < anArray[mid])

 // Point X
index = binarySearch(anArray, first, mid - 1, target);

else
 // Point Y

 index = binarySearch(anArray, mid + 1, last, target);
} // end if

 return index;
 } // end binarySearch

 Notice that if target occurs in the array, it must be in the segment of the array delineated by first and
last . That is, the following is true:

 anArray[first] target anArray[last]

 Figure 2-10 shows box traces of binarySearch when it searches the array containing 1, 5, 9, 12, 15,
21, 29, and 31. Notice how the labels X and Y of the two recursive calls to binarySearch appear in the
diagram. Exercise 16 at the end of this chapter asks you to perform other box traces with this function.

Note: When developing a recursive solution, you must be sure that the solutions to
the smaller problems really do give you a solution to the original problem. For example,
binarySearch works because each smaller array is sorted and the value sought is between
its fi rst and last values.

 There is another implementation issue—one that deals specifi cally with C++—to consider.
Recall that an array is never passed to a function by value and is therefore not copied. This aspect of
C++ is particularly useful in a recursive function such as binarySearch . If the array anArray is large,
many recursive calls to binarySearch might be necessary. If each call copied anArray , much

 Recursion with Arrays 71

memory and time would be wasted. On the other hand, because anArray is not copied, the function
can alter the array’s values unless you specify anArray as const , as was done for binarySearch .

Because an
array argument is
always passed by
reference, a function
can alter it unless
you specify the
array as const

FIGURE 2-10 Box traces of binarySearch with anArray = <1, 5, 9, 12, 15, 21, 29, 31>: (a) a
successful search for 9; (b) an unsuccessful search for 6

target = 6

first = 0

last = 7

mid = = 3

target < anArray[3]

 2

X Y X

target = 6

first = 0

last = 2

mid = = 1

target > anArray[1]

target = 6

first = 2

last = 2

mid = = 2

target < anArray[2]

target = 6

first = 2

last = 1

first > last

return -1

0+7 ___

 2

0+2 ___

 2

2+2

X Y

target = 9

first = 0

last = 7

mid = = 3

target < anArray[3]

 2

target = 9

first = 0

last = 2

mid = = 1

target > anArray[1]

 2

target = 9

first = 2

last = 2

mid = = 2

target = anArray[2]

return 2

0+7

 2

2+2

0+2

(a)

(b)

 A box trace of a recursive function that has an array argument requires a new consideration.
Because the array anArray is neither a value argument nor a local variable, it is not a part of the func-
tion’s local environment, and so the entire array anArray should not appear within each box. There-
fore, as Figure 2-11 shows, you represent anArray outside the boxes, and all references to anArray
affect this single representation.

Represent reference
arguments outside
of the boxes in a box
trace

Note: Notice that the C++ computation of the midpoint mid is

 int mid = first + (last - first) / 2;

 instead of

 int mid = (first + last) / 2;

 as the pseudocode would suggest. If you were to search an array of at least 2 30 , or about
1 billion, elements, the sum of first and last could exceed the largest possible int value
of 2 30 � 1. Thus, the computation first + last would overfl ow to a negative integer and
result in a negative value for mid . If this negative value of mid was used as an array index,
it would be out of bounds and cause incorrect results. The computation first + (last -
first) / 2 is algebraically equivalent to (first + last) / 2 and avoids this error.

72 CHAPTER 2 Recursion: The Mirrors

 2.4.3 Finding the Largest Value in an Array

 Suppose that you have an array anArray of integers and you want to fi nd the largest value. You could
construct an iterative solution without too much diffi culty, but instead let’s consider a recursive for-
mulation:

 if (anArray has only one entry)
 maxArray(anArray) is the entry in anArray
 else if (anArray has more than one entry)
 maxArray(anArray) is the maximum of
 maxArray(left half of anArray) an d maxArray(right half of anArray)

 Notice that this strategy fi ts the divide-and-conquer model that the previous binary search algorithm
used. That is, we proceed by dividing the problem and conquering the subproblems, as Figure 2-12
illustrates. However, there is a difference between this algorithm and the binary search algorithm.
Although the binary search algorithm conquers only one of its subproblems at each step, maxArray
conquers both. Because both subproblems are solved recursively, this approach is called multipath
recursion . After maxArray conquers the subproblems, it must reconcile the two solutions—that is, it
must fi nd the maximum of the two maximums. Figure 2-13 illustrates the computations that are neces-
sary to fi nd the largest integer in the array that contains 1, 6, 8, and 3 (denoted here by <1, 6, 8, 3>).

target = 6

first = 0

last = 7

mid = 3

anArray =

target = 6

first = 0

last = 2

mid = 1

anArray =

X Y

1 5 9 12 15 21 29 31

anArray

FIGURE 2-11 Box trace with a reference argument

 maxArray
conquers both of its
subproblems at
each step

Question 7 Defi ne the recursive C++ function maxArray that returns the largest value in an
array and adheres to the pseudocode just given.

CHECK POINT

 2.4.4 Finding the k th Smallest Value of an Array

 Our discussion of searching concludes with a more diffi cult problem. Although you could skip this
example now, Chapter 11 uses aspects of it in a sorting algorithm.

 Recursion with Arrays 73

 The previous two examples presented recursive techniques for fi nding the largest value in an
arbitrary array and for fi nding an arbitrary value in a sorted array. This example describes a recursive
solution for fi nding the kth smallest value in an arbitrary array anArray . Would you ever be interested
in such a value? Statisticians often want the median value in a collection of data. The median value in
an ordered collection of data occurs in the middle of the collection. In an unordered collection of data,
the number of values that are smaller than the median value is about the same as the number of values
that are larger. Thus, if you have 49 values, the 25 th smallest value is the median value.

 Obviously, you could solve this problem by sorting the array. Then the kth smallest value would be
anArray[k-1] . Although this approach is a legitimate solution, it does more than the problem
requires; a more effi cient solution is possible. The solution outlined here fi nds the kth smallest value
without completely sorting the array.

 By now, you know that you solve a problem recursively by writing its solution in terms of one or
more smaller problems of the same type in such a way that this notion of smaller ensures that you will
always reach a base case. For all of the earlier recursive solutions, the reduction in problem size

FIGURE 2-12 Recursive solution to the largest-value problem

maxArray(left half of anArray) maxArray(right half of anArray)

maxArray(anArray)

AND

FIGURE 2-13 The recursive calls that maxArray(<1,6,8,3>) generates

maxArray(<3>)

return 3

maxArray(<8>)

return 8

maxArray(<6>)

return 6

maxArray(<1>)

return 1

maxArray(<1,6>)

return max(maxArray(<1>), maxArray(<6>))

maxArray(<1,6,8,3>)

return max(maxArray(<1,6>), maxArray(<8,3>))

maxArray(<8,3>)

return max(maxArray(<8>), maxArray(<3>))

74 CHAPTER 2 Recursion: The Mirrors

between recursive calls is predictable . For example, the factorial function always decreases the prob-
lem size by 1; the binary search always halves the problem size. In addition, the base cases for all the
previous problems except the binary search have a static, predefi ned size. Thus, by knowing only the
size of the original problem, you can determine the number of recursive calls that are necessary
before you reach the base case.

 The solution that you are about to see for fi nding the kth smallest value departs from these tech-
niques. Although you solve the problem in terms of a smaller problem, just how much smaller this
problem is depends on the values in the array and cannot be predicted in advance. Also, the size of the
base case depends on the values in the array, as it did for the binary search. (Recall that you reach one
of the base cases for a binary search when the middle value is the one sought.)

 The unpredictable nature of this solution is caused by the problem itself: The relationship
between the rankings of the values in any predetermined parts of the array and the ranking of the val-
ues in the entire array is not strong enough to determine the kth smallest value. For example, suppose
that anArray contains the values shown in Figure 2-14 . Notice that 6, which is in anArray[3] , is the
third-smallest value in the fi rst half of anArray and that 8, which is in anArray[4] , is the third-smallest
value in the second half of anArray . Can you conclude from these observations anything about the
location of the third-smallest value in all of anArray ? The answer is no; these facts about parts of the
array do not allow you to draw any useful conclusions about the entire array. You should experiment
with other fi xed splitting schemes as well.

For all previous
examples, you know
the amount of
reduction made in
the problem size by
each recursive call

You cannot predict
in advance the size
of either the smaller
problems or the
base case in the
recursive solution to
the k th -smallest-
value problem

FIGURE 2-14 A sample array

4 7 3 6 8 1 9 2

0 1 2 3 4 5 6 7

First half Second half

 The recursive solution proceeds by

1. Selecting a pivot value in the array
2. Cleverly arranging, or partitioning , the values in the array about this pivot value
3. Recursively applying the strategy to one of the partitions

 Suppose that you want to fi nd the kth smallest value in the array segment anArray[first..last] .
Let the pivot p be any value of the array segment. (For now, ignore how to choose p .) You can partition
the values of anArray[first..last] into three regions: S

1
 , which contains the values less than or equal

to p ; the pivot p itself; and S
2
 , which contains the values greater than or equal to p . This partition implies

that all of the values in S
1
 are no larger than all of the values in S

2
 . Figure 2-15 illustrates this partition.

 All values in anArray[first..pivotIndex-1] are less than or equal to p, and all values in
anArray[pivotIndex+1..last] are greater than or equal to p . Notice that the sizes of the regions S

1

and S
2
 depend on both p and the other values of anArray[first..last] .

 This partition induces three smaller problems, such that the solution to one of the problems will
solve the original problem:

1. If S
1
 contains k or more values, S

1
 contains the k smallest values of the array segment

anArray[first..last] . In this case, the kth smallest value must be in S
1
 . Since S

1
 is the array

segment anArray[first..pivotIndex-1] , this case occurs if k < pivotIndex – first + 1.

Partition anArray
into three parts:
values p, p, and
values ≥ p

 Recursion with Arrays 75

2. If S
1
 contains k – 1 values, the kth smallest value must be the pivot p . This is the base case; it

occurs if k = pivotIndex – first + 1.
3. If S

1
 contains fewer than k – 1 values, the kth smallest value in anArray[first..last] must be

in S
2
 . Because S

1
 contains pivotIndex – first values, the kth smallest value in

anArray[first..last] is the (k – (pivotIndex – first + 1))st smallest value in S
2
 . This case

occurs if k > pivotIndex – first + 1.

 A recursive defi nition can summarize this discussion. Let

kSmall(k, anArray, first, last) = kth smallest value in anArray[first..last]

 After you select the pivot value p and partition anArray[first..last] into S
1
 and S

2
 , you have that

kSmall(k, anArray, first, last) equals

• kSmall(k, anArray, first, pivotIndex – 1) if k < pivotIndex – first + 1
• p if k = pivotIndex – first + 1
• kSmall(k – (pivotIndex – first + 1), anArray, pivotIndex + 1, last)

if k > pivotIndex – first + 1

 There is always a pivot, and because it is not part of either S
1
 or S

2
 , the size of the array segment to

be searched decreases by at least 1 at each step. Thus, you will eventually reach the base case: The
desired value is a pivot. A high-level pseudocode solution is as follows.

 // Returns the kth smallest value in anArray[first..last].
kSmall(k: integer, anArray: ArrayType,
 first: integer, last: integer): ValueType

Choose a pivot value p from anArray[first..last]
Partition the values of anArray[first..last] about p

if (k < pivotIndex - first + 1)
return kSmall(k, anArray, first, pivotIndex - 1)

else if (k == pivotIndex - first + 1)
return p

else
return kSmall(k - (pivotIndex - first + 1), anArray,

 pivotIndex + 1, last)

 This pseudocode is not far from a C++ function. The only questions that remain are how to
choose the pivot value p and how to partition the array about the chosen p . The choice of p is arbitrary.
Any p in the array will work, although the sequence of choices will affect how soon you reach the
base case. Chapter 11 gives an algorithm for partitioning the values about p . There you will see how
to turn the function kSmall into a sorting algorithm.

FIGURE 2-15 A partition about a pivot

S2S1

≤ p ≥ pp

first last

pivotIndex

The k th smallest
value in anArray
[first..last]

76 CHAPTER 2 Recursion: The Mirrors

 2.5 Organizing Data
 Given some data organized in one way, you might need to organize it in another way. Thus, you will
actually change some aspect of the data and not, for example, simply search it. The problem in this
section is called the Towers of Hanoi. Although this classic problem probably has no direct real-
world application, we consider it because its solution so well illustrates the use of recursion.

 2.5.1 The Towers of Hanoi

 Many, many years ago, in a distant part of the Orient—in the Vietnamese city of Hanoi—the emper-
or’s wiseperson passed on to join his ancestors. The emperor needed a replacement wiseperson. Being
a rather wise person himself, the emperor devised a puzzle, declaring that its solver could have the job
of wiseperson.

FIGURE 2-16 (a) The initial state; (b) move n – 1 disks from A to C; (c) move 1 disk from A to
B; (d) move n – 1 disks from C to B

A B C

A B C

A B C

A B C

(a)

(b)

(c)

(d)

 The emperor’s puzzle consisted of n disks (he didn’t say exactly how many) and three poles: A (the
source), B (the destination), and C (the spare). The disks were of different sizes and had holes in the
middle so that they could fi t on the poles. Because of their great weight, the disks could be placed only
on top of disks larger than themselves. Initially, all the disks were on pole A, as shown in Figure 2-16 a.
The puzzle was to move the disks, one by one, from pole A to pole B. A person could also use pole C in
the course of the transfer, but again a disk could be placed only on top of a disk larger than itself.

 Organizing Data 77

 As the position of wiseperson was generally known to be a soft job, there were many applicants.
Scholars and peasants alike brought the emperor their solutions. Many solutions were thousands of
steps long, and many contained deeply nested loops and control structures. “I can’t understand these
solutions,” bellowed the emperor. “There must be an easy way to solve this puzzle.”

 And indeed there was. A great Buddhist monk came out of the mountains to see the emperor.
“My son,” he said, “the puzzle is so easy, it almost solves itself.” The emperor’s security chief wanted
to throw this strange person out, but the emperor let him continue.

 “If you have only one disk (that is, n = 1), move it from pole A to pole B.” So far, so good,
but even the village idiot could get that part right. “If you have more than one disk (that is, n > 1), simply

1. Ignore the bottom disk and solve the problem for n – 1 disks, with the small modifi cation that
pole C is the destination and pole B is the spare. (See Figure 2-16 b.)

2. After you have done this, n – 1 disks will be on pole C, and the largest disk will remain on
pole A. So solve the problem for n = 1 (recall that even the village idiot could do this) by
moving the large disk from A to B. (See Figure 2-16 c.)

3. Now all you have to do is move the n – 1 disks from pole C to pole B ; that is, solve the
problem with pole C as the source, pole B as the destination, and pole A as the spare.”
(See Figure 2-16 d.)

 There was silence for a few moments, and fi nally the emperor said impatiently, “Well, are you
going to tell us your solution or not?” The monk simply gave an all-knowing smile and vanished.

 The emperor obviously was not a recursive thinker, but you should realize that the monk’s solution
is perfectly correct. The key to the solution is the observation that you can solve the Towers problem of n
disks by solving three smaller—in the sense of number of disks —Towers problems. Let towers(count,
source, destination, spare) denote the problem of moving count disks from pole source to pole
destination , using pole spare as a spare. Notice that this defi nition makes sense even if there are more
than count disks on pole source ; in this case, you concern yourself with only the top count disks and
ignore the others. Similarly, the poles destination and spare might have disks on them before you
begin; you ignore these, too, except that you may place only smaller disks on top of them.

 You can restate the emperor’s problem as follows: Beginning with n disks on pole A and zero
disks on poles B and C, solve towers(n, A, B, C) . You can state the monk’s solution as follows:

Step 1. Starting in the initial state—with all the disks on pole A—solve the problem

 towers(n - 1, A, C, B)

 That is, ignore the bottom (largest) disk and move the top n – 1 disks from pole A to pole C,
using pole B as a spare. When you are fi nished, the largest disk will remain on pole A, and all
the other disks will be on pole C.

Step 2. Now, with the largest disk on pole A and all others on pole C, solve the problem

 towers(1, A, B, C)

 That is, move the largest disk from pole A to pole B. Because this disk is larger than the disks
already on the spare pole C, you really could not use the spare. However, fortunately—and
obviously—you do not need to use the spare in this base case. When you are done, the largest
disk will be on pole B, and all other disks will remain on pole C.

Step 3. Finally, with the largest disk on pole B and all the other disks on pole C, solve the problem

 towers(n - 1, C, B, A)

 That is, move the n – 1 disks from pole C to pole B, using A as a spare. Notice that the destina-
tion pole B already has the largest disk, which you ignore. When you are done, you will have
solved the original problem: All the disks will be on pole B.

The problem
statement

The solution

78 CHAPTER 2 Recursion: The Mirrors

 The problem towers(count, source, destination, spare) has the following pseudocode
solution:

 solveTowers(count, source, destination, spare)

if (count is 1)
Move a disk directly from source to destination

else
 {
 solveTowers(count - 1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count - 1, spare, destination, source)
 }

 This recursive solution follows the same basic pattern as the recursive solutions you saw earlier
in this chapter:

1. You solve a Towers problem by solving other Towers problems.
2. These other Towers problems are smaller than the original problem; they have fewer disks to

move. In particular, the number of disks decreases by 1 at each recursive call.
3. When a problem has only one disk—the base case—the solution is easy to solve directly.
4. The way that the problems become smaller ensures that you will reach a base case.

 Solving the Towers problem requires you to solve many smaller Towers problems recursively.
 Figure 2-17 illustrates the resulting recursive calls and their order when you solve the problem
for three disks.

 Now consider a C++ implementation of this algorithm. Notice that since most computers do not
have arms (at the time of this writing), the function moves a disk by giving directions to a human.
Thus, the parameters that represent the poles are of type char , and the corresponding arguments
could be 'A' , 'B' , and 'C' . The call solveTowers(3, 'A', 'B', 'C') produces this output:

 Move top disk from pole A to pole B
Move top disk from pole A to pole C
Move top disk from pole B to pole C
Move top disk from pole A to pole B
Move top disk from pole C to pole A
Move top disk from pole C to pole B

Move top disk from pole A to pole B

FIGURE 2-17 The order of recursive calls that results from solveTowers(3, A, B, C)

solveTowers(3,A,B,C)

solveTowers(2,A,C,B) solveTowers(1,A,B,C)

1

2 6 7

3 8

4 9

5 10

solveTowers(2,C,B,A)

solveTowers(1,A,B,C) solveTowers(1,C,A,B)

solveTowers(1,A,C,B) solveTowers(1,C,B,A)

solveTowers(1,B,C,A) solveTowers(1,A,B,C)

The solution to the
Towers problem
satisfi es the four
criteria of a
recursive solution

The solution for
three disks

 More Examples 79

 The C++ function follows:

 void solveTowers(int count, char source, char destination, char spare)
 {

if (count == 1)
{

cout << "Move top disk from pole " << source
<< " to pole " << destination << endl;

 }
else

 {
solveTowers(count - 1, source, spare, destination); / / X
solveTowers(1, source, destination, spare); / / Y
solveTowers(count - 1, spare, destination, source); / / Z

} // end if
} // end solveTowers

Question 8 Trace the execution of the function solveTowers to solve the Towers of Hanoi
problem for two disks.

CHECK POINT

 2.6 More Examples
 The next three problems require you to count certain events or combinations of events or things. They
are good examples of recursive solutions with more than one base case. However, these solutions are
tremendously ineffi cient, and so are not practical. Do not let this ineffi ciency discourage you. Recur-
sion can be useful and effi cient, even though it is not always so. Your goal right now is to understand
recursion by examining simple problems.

 2.6.1 The Fibonacci Sequence (Multiplying Rabbits)

 Rabbits are very prolifi c breeders. If rabbits did not die, their population would quickly get out of
hand. Suppose we assume the following “facts,” which were obtained in a recent survey of randomly
selected rabbits:

• Rabbits never die.
• A rabbit reaches sexual maturity exactly two months after birth; that is, at the beginning of its

third month of life.
• Rabbits are always born in male-female pairs. At the beginning of every month, each sexually

mature male-female pair gives birth to exactly one male-female pair.

 Suppose that you started with a single newborn male-female pair. How many pairs would there
be in month 6, counting the births that took place at the beginning of month 6? As 6 is a relatively
small number, you can fi gure out the solution easily:

 Month 1: 1 pair, the original rabbits.

 Month 2: 1 pair still, because the rabbits are not yet sexually mature.

 Month 3: 2 pairs; the original pair has reached sexual maturity and has given birth to a second pair.

 Month 4: 3 pairs; the original pair has given birth again, but the pair born at the beginning of
month 3 are not yet sexually mature.

 Month 5: 5 pairs; all rabbits alive in month 3 (2 pairs) are now sexually mature. Add their off-
spring to those pairs alive in month 4 (3 pairs) to yield 5 pairs.

 Month 6: 8 pairs; 3 newborn pairs from the pairs alive in month 4 plus 5 pairs alive in month 5.

80 CHAPTER 2 Recursion: The Mirrors

The number of pairs
in month n

 You can now construct a recursive solution for computing rabbit (n), the number of pairs alive in
month n . You must determine how you can use rabbit (n – 1) to compute rabbit (n). Observe that
rabbit (n) is the sum of the number of pairs alive just prior to the start of month n and the number of
pairs born at the start of month n . Just prior to the start of month n, there are rabbit (n – 1) pairs of rab-
bits. Not all of these rabbits are sexually mature at the start of month n . Only those that were alive in
month n – 2 are ready to reproduce at the start of month n . That is, the number of pairs born at the start
of month n is rabbit(n – 2). Therefore, you have the recurrence relation

 rabbit (n) = rabbit (n – 1) + rabbit (n – 2)

Figure 2-18 illustrates this relationship.

FIGURE 2-18 Recursive solution to the rabbit problem

rabbit(n-1) rabbit(n-2)

rabbit(n)

AND

 This recurrence relation—like some previous examples—solves a problem by solving more than
one smaller problem of the same type. This does not add much conceptual diffi culty, but you must be
very careful when selecting the base case. The temptation is simply to say that rabbit (1) should be the
base case because its value is 1 according to the problem’s statement. But what about rabbit (2)?
Applying the recursive defi nition to rabbit (2) would yield

 rabbit (2) = rabbit (1) + rabbit (0)

 Thus, the recursive defi nition would need to specify the number of pairs alive in month 0—an unde-
fi ned quantity.

 One possible solution is to defi ne rabbit (0) to be 0, but this approach seems artifi cial. A slightly
more attractive alternative is to treat rabbit (2) itself as a special case with the value of 1. Thus, the
recursive defi nition has two base cases, rabbit (2) and rabbit (1). The recursive defi nition becomes

rabbit 1n 2 5 e1 if n is 1 or 2

rabbit 1n 2 1 2 1 rabbit 1n 2 2 2 if n . 2

 Incidentally, the series of numbers rabbit (1), rabbit (2), rabbit (3), and so on is known as the Fibon-
acci sequence , which models many naturally occurring phenomena.

 A C++ function to compute rabbit (n) is easy to write from the previous defi nition:

 /** Computes a term in the Fibonacci sequence.
 @pre n is a positive integer.
 @post None.
 @param n The given integer.
 @return The nth Fibonacci number. */
 int rabbit(int n)
{

if (n <= 2)
return 1;

else // n > 2, so n - 1 > 0 and n - 2 > 0
return rabbit(n - 1) + rabbit(n - 2);

 } // end rabbit

Two base cases are
necessary because
there are two
smaller problems

 rabbit computes
the Fibonacci
sequence but does
so ineffi ciently

M

o
re Exam

p
les

81

FIGURE 2-19 The recursive calls that rabbit(7) generates

rabbit(7)

return rabbit(6) + rabbit(5)

rabbit(6)

return rabbit(5) + rabbit(4)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(3)

return rabbit(2) + rabbit(1)

rabbit(1)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(2)

return 1

rabbit(4)

return rabbit(3) + rabbit(2)

82 CHAPTER 2 Recursion: The Mirrors

 Should you actually use this function? Figure 2-19 illustrates the recursive calls that
rabbit(7) generates. Think about the number of recursive calls that rabbit(10) generates. At best,
the function rabbit is ineffi cient. Thus, its use is not feasible for large values of n . This problem is
discussed in more detail at the end of this chapter, at which time you will see some techniques for
generating a more effi cient solution from this same recursive relationship.

Note: A recursive solution that recomputes certain values frequently can be quite
ineffi cient. In such cases, iteration may be preferable to recursion.

 2.6.2 Organizing a Parade

 You have been asked to organize the Fourth of July parade, which will consist of bands and fl oats in a
single line. Last year, adjacent bands tried to outplay each other. To avoid this problem, the sponsors
have asked you never to place one band immediately after another. In how many ways can you organ-
ize a parade of length n ?

 Assume that you have at least n marching bands and n fl oats from which to choose. When count-
ing the number of ways to organize the parade, assume that the parades band-fl oat and fl oat-band , for
example, are different parades and count as two ways.

 The parade can end with either a fl oat or a band. The number of ways to organize the parade is
simply the sum of the number of parades of each type. That is, let

P (n) be the number of ways to organize a parade of length n
F (n) be the number of parades of length n that end with a fl oat
B (n) be the number of parades of length n that end with a band

 Then

P 1n 2 5 F 1n 2 1 B 1n 2
 First, consider F (n). You will have a parade of length n that ends with a fl oat simply by placing a

fl oat at the end of any acceptable parade of length n – 1. Hence, the number of acceptable parades of
length n that end with a fl oat is precisely equal to the total number of acceptable parades of length
n – 1; that is

F 1n 2 5 P 1n 2 1 2
 Next, consider B (n). The only way a parade can end with a band is if the unit just before the end is

a fl oat. (If it is a band, you will have two adjacent bands.) Thus, the only way to organize an acceptable
parade of length n that ends with a band is fi rst to organize a parade of length n – 1 that ends with a fl oat
and then add a band to the end. Therefore, the number of acceptable parades of length n that end with a
band is precisely equal to the number of acceptable parades of length n – 1 that end with a fl oat:

B 1n 2 5 F 1n 2 1 2
 You use the earlier fact that F (n) � P (n � 1) to obtain

B 1n 2 5 P 1n 2 2 2
 Thus, you have solved F (n) and B (n) in terms of the smaller problems P (n � 1) and P (n � 2),

respectively. You then use

P 1n 2 5 F 1n 2 1 B 1n 2
 to obtain

P 1n 2 5 P 1n 2 1 2 1 P 1n 2 2 2
 The form of this recurrence relation is identical to the solution for the multiplying rabbits problem.

The number of
acceptable parades
of length n that end
with a fl oat

The number of
acceptable parades
of length n that end
with a band

The number of
acceptable parades
of length n

 More Examples 83

 As you saw in the rabbit problem, two base cases are necessary, because the recurrence rela-
tion defi nes a problem in terms of two smaller problems. As you did for the rabbit problem, you
can choose n � 1 and n � 2 for the base cases. Although both problems use the same values of n
for their base cases, there is no reason to expect that they use the same values for these base
cases. That is, there is no reason to expect that rabbit (1) is equal to P (1) and that rabbit (2) is
equal to P (2).

 A little thought reveals that for the parade problem,

P (1) � 2 (The parades of length 1 are fl oat and band .)
P (2) � 3 (The parades of length 2 are fl oat - fl oat , band - fl oat , and fl oat - band .)

 In summary, the solution to this problem is

P 11 2 5 2

P 12 2 5 3

P 1n 2 5 P 1n 2 1 2 1 P 1n 2 2 2 for n . 2

 This example demonstrates the following points about recursion:

• Sometimes you can solve a problem by breaking it up into cases—for example, parades that
end with a fl oat and parades that end with a band.

• The values that you use for the base cases are extremely important. Although the recurrence
relations for P and rabbit are the same, their base cases (when n � 1 or 2) are different. This
difference causes rabbit (n) and P (n) to differ when n is greater than 2. For example,
rabbit (20) � 6,765, while P (20) � 17,711. The larger the value of n , the larger the discrep-
ancy. You should think about why this is so.

 2.6.3 Choosing k Out of n Things

 A rock band would like to tour n cities. Unfortunately, time will allow for visits to only k cities.
The band’s agent considers the different choices for visiting k cities out of the n possibilities.
Because time is short, the band members are not concerned about the order in which they visit the
same k cities.

 Let g (n, k) be the number of groups of k cities chosen from n . If we consider city C, either we visit
C or we do not. If we do visit city C, we will have to choose k � 1 other cities to visit from the n � 1
remaining cities. Thus, the number of groups of cities that include C is g (n � 1, k � 1). On the other
hand, if we do not visit city C, we will have to choose k cities to visit from the remaining n � 1 cities.
The number of groups of cities that do not include C is g (n � 1, k). Thus, we can compute g (n, k) by
solving two smaller counting problems of the same type; that is,

 g (n , k) � g(n � 1, k � 1) � g(n � 1, k)

 We still need to fi nd the base case(s) and demonstrate that each of the two smaller problems even-
tually reaches a base case. First, if the band had time to visit all n cities—that is, if k equals n— there is
only one group of all the cities. Thus, the fi rst base case is

 g (k , k) � 1

 If k < n, the second term g (n � 1, k) in the recursive defi nition will reach this base case, because at
each successive stage of the recursion, n � 1 decreases until it reaches k . However, the fi rst term, g (n � 1,
k � 1), does not reach this base case. Since n � 1 and k � 1 both decrease at the same rate, they will never
become equal. The fi rst term does, in fact, approach another trivial selection problem. Just as there is only
one group of all the cities (k � n), there is also only one group of zero cities (k � 0). Thus, the second base
case is

g (n , 0) � 1

Two base cases are
necessary because
there are two
smaller problems

A recursive solution

The number of ways
to choose k out of n
things is the sum of
the number of ways
to choose k – 1 out
of n – 1 things and
the number of ways
to choose k out of
n – 1 things

84 CHAPTER 2 Recursion: The Mirrors

 and will be reached by the fi rst term, g (n � 1, k � 1). (Alternatively, you could defi ne the second base
case to be g (n, 1) � n .)

Note: When you solve a problem by solving two (or more) smaller problems, each of
the smaller problems must be closer to a base case than the original problem.

 For completeness, we add one fi nal part to this recursive solution:

g (n , k) � 0 if k > n

 Although k could not be greater than n in the context of this problem, the addition of this case makes
the recursive solution more generally applicable.

 To summarize, the following recursive solution solves the problem of choosing k out of n
things:

g 1n, k 2 5 μ 1 if k 5 0

 1 if k 5 n

 0 if k . n

g 1n 2 1, k 2 1 2 1 g 1n 2 1, k 2 if 0 , k , n

 You can easily derive the following function from this recursive defi nition:

 /** Computes the number of groups of k out of n things.
 @pre n and k are nonnegative integers.
 @post None.
 @param n The given number of things.
 @param k The given number to choose.
 @return g(n, k). */
 int getNumberOfGroups(int n, int k)
 {

if ((k == 0) || (k == n))
return 1;

else if (k > n)
return > 0;

else
return g(n - 1, k - 1) + g(n - 1, k);

 } // end getNumberOfGroups

 Like the rabbit function, this function is ineffi cient and not practical to use. Figure 2-20 shows
the number of recursive calls that the computation of g(4, 2) requires.

The number of
groups of k things
recursively chosen
out of n things

Note: When a recursive function contains more than one recursive call, you often will
need more than one base case.

Question 9 Compute g (4, 2) .
CHECK POINT

 Recursion and Effi ciency 85

FIGURE 2-20 The recursive calls that g (4, 2) generates

g(4,2)

return g(3,1) + g(3,2)

g(3,1)

return g(2,0) + g(2,1)

g(3,2)

return g(2,1) + g(2,2)

g(2,1)

return g(1,0) + g(1,1)

g(2,1)

return g(1,0) + g(1,1)

g(1,0)

return 1

g(1,1)

return 1

g(1,0)

return 1

g(1,1)

return 1

g(2,2)

return 1

g(2,0)

return 1

 2.7 Recursion and Effi ciency
 Recursion is a powerful problem-solving technique that often produces very clean solutions to even the
most complex problems. Recursive solutions can be easier to understand and to describe than iterative
solutions. By using recursion, you can often write simple, short implementations of your solution.

 The overriding concern of this chapter has been to give you a solid understanding of recursion so
that you will be able to construct recursive solutions on your own. Most of our examples, therefore,
have been simple. Unfortunately, many of the recursive solutions in this chapter are so ineffi cient that
you should not use them. The recursive functions binarySearch and solveTowers are the notable
exceptions, as they are quite effi cient. 2

 Two factors contribute to the ineffi ciency of some recursive solutions:

• The overhead associated with function calls
• The inherent ineffi ciency of some recursive algorithms

 The fi rst of these factors does not pertain specifi cally to recursive functions but is true of func-
tions in general. In most implementations of C++ and other high-level programming languages, a
function call incurs a certain amount of bookkeeping overhead. As was mentioned earlier, each func-
tion call produces an activation record, which is analogous to a box in the box trace. Recursive func-
tions magnify this overhead because a single initial call to the function can generate a large number of
recursive calls. For example, the call factorial (n) generates n recursive calls. On the other hand, the
use of recursion, as is true of modularity in general, can greatly clarify complex programs. This clari-
fi cation frequently more than compensates for the additional overhead.

Factors that
contribute to the
ineffi ciency of some
recursive solutions

 2 Chapters 5 and 11 present other practical, effi cient applications of recursion.

Recursion can
clarify complex
solutions

86 CHAPTER 2 Recursion: The Mirrors

 However, you should not use recursion just for the sake of using recursion. For example, you
probably should not use the recursive factorial function in practice. You can easily write an iterative
factorial function, given the iterative defi nition that was stated earlier in this chapter. The iterative
function is almost as clear as the recursive one and is more effi cient. There is no reason to incur the
overhead of recursion when its use does not gain anything. Recursion is truly valuable when a prob-
lem has no simple iterative solutions.

 The second point about recursion and effi ciency is that some recursive algorithms are inherently
ineffi cient. This ineffi ciency is a very different issue than that of overhead. It has nothing to do with
how a compiler happens to implement a recursive function, but rather is related to the technique that
the algorithm employs.

 As an example, recall the recursive solution for the multiplying rabbits problem that you saw
earlier in this chapter:

rabbit 1n 2 5 e1 if n is 1 or 2

rabbit 1n 2 1 2 1 rabbit 1n 2 2 2 if n . 2

 The diagram in Figure 2-19 illustrated the computation of rabbit (7). Earlier, you were asked to think
about what the diagram would look like for rabbit (10). If you thought about this question, you may
have come to the conclusion that such a diagram would fi ll up most of this chapter. The diagram for
rabbit (100) would fi ll up most of this universe!

 The fundamental problem with rabbit is that it computes the same values over and over again.
For example, in the diagram for rabbit (7), you can see that rabbit (3) is computed fi ve times. When n
is moderately large, many of the values are recomputed literally trillions of times. This enormous
number of computations makes the solution infeasible, even if each computation requires only a
trivial amount of work.

 However, do not conclude that the recurrence relation is of no use. One way to solve the rabbit
problem is to construct an iterative solution based on this same recurrence relation. The iterative
solution goes forward instead of backward and computes each value only once. You can use the fol-
lowing iterative function to compute rabbit (n) even for very large values of n .

 /** Iterative solution to the rabbit problem. */
 int iterativeRabbit(int n)
 {

// Initialize base cases:
int previous = 1; // Initially rabbit(1)
int current = 1; // Initially rabbit(2)
int next = 1; // Result when n is 1 or 2

// Compute next rabbit values when n >= 3
 for (int i = 3; i <= n; i++)
 {

// current is rabbit(i - 1), previous is rabbit(i - 2)
next = current + previous; // rabbit(i)
previous = current; // Get ready for next iteration
current = next;

} // end for

return next;
} // end iterativeRabbit

 Thus, an iterative solution can be more effi cient than a recursive solution. In certain cases, how-
ever, it may be easier to discover a recursive solution than an iterative solution. Therefore, you may
need to convert a recursive solution to an iterative solution. This conversion process is easier if your
recursive function calls itself once, instead of several times. Be careful when deciding whether your
function calls itself more than once. Although the recursive function rabbit calls itself twice, the

Do not use a
recursive solution if
it is ineffi cient and
you have a clear,
effi cient iterative
solution

The recursive
version of rabbit
is inherently
ineffi cient

You can use
rabbit’s
recurrence relation
to construct an
effi cient iterative
solution

Convert from
recursion to iteration
if it is easier to
discover a recursive
solution but more
effi cient to use an
iterative solution

 Recursion and Effi ciency 87

function binarySearch calls itself once, even though you see two calls in the C++ code. Those two
calls appear within an if statement; only one of them will be executed.

 Converting a recursive solution to an iterative solution is even easier when the solitary recursive
call is the last action that the function takes. This situation is called tail recursion . For example, the
function writeBackward exhibits tail recursion because its recursive call is the last action that the
function takes. Before you conclude that this is obvious, consider the function fact . Although its
recursive call appears last in the function defi nition, fact ’s last action is the multiplication. Thus,
fact is not tail-recursive.

 Recall the defi nition of writeBackward :

 void writeBackward(string s)
 {

int length = s.size();
if (length > 0)
{

// Write last character
cout << s.substr(length - 1, 1);
writeBackward(s.substr(0, length – 1)); // Write rest

} // end if
} // end writeBackward

 Because this function is tail-recursive, its last recursive call simply repeats the function’s action with
altered arguments. You can perform this repetitive action by using an iteration that will be straightfor-
ward and often more effi cient. For example, the following defi nition of writeBackward is iterative:

 /** Iterative version. */
 void writeBackward(string s)
 {

int length = s.size();
while (length > 0)

 {
cout << s.substr(length - 1, 1);
length––;

} // end while
 } // end writeBackward

 Because tail-recursive functions are often less effi cient than their iterative counterparts, and
because the conversion of a tail-recursive function to an equivalent iterative function is rather
mechanical, some compilers automatically replace tail recursion with iteration. Eliminating
other forms of recursion is usually more complex and is a task that you would need to undertake, if
necessary.

 Some recursive algorithms, such as rabbit , are inherently ineffi cient, while other recursive algo-
rithms, such as the binary search, 3 are extremely effi cient. You will learn how to determine the relative
effi ciency of a recursive algorithm in more advanced courses concerned with the analysis of algo-
rithms. Chapter 10 introduces some of these techniques briefl y.

 Chapter 5 continues the discussion of recursion by examining several diffi cult problems that have
straightforward recursive solutions. Other chapters in this book use recursion as a matter of course.

A tail-recursive
function

Removing tail
recursion is often
straightforward

 3 The binary search algorithm also has an iterative formulation.

Question 10 Of the following recursive functions that you saw in this chapter, identify
those that exhibit tail recursion: fact , writeBackward , writeBackward2 , rabbit , P in the
parade problem, getNumberOfGroups , maxArray , binarySearch , and kSmall .

CHECK POINT

88 CHAPTER 2 Recursion: The Mirrors

 EXERCISES

 1. The following recursive function getNumberEqual searches the array x of n integers for occurrences of the inte-
ger desiredValue . It returns the number of integers in x that are equal to desiredValue . For example, if x con-
tains the ten integers 1, 2, 4, 4, 5, 6, 7, 8, 9, and 12, then getNumberEqual(x, 10, 4) returns the value 2, because
4 occurs twice in x .

 int getNumberEqual(const int x[], int n, int desiredValue)
 {

 int count = 0;

 if (n <= 0)
 return 0;

 else
{

 if (x[n - 1] == desiredValue)
 count = 1;

 return getNumberEqual(x, n - 1, desiredValue) + count;
} // end else

} // end getNumberEqual

 Demonstrate that this function is recursive by listing the criteria of a recursive solution and stating how the
function meets each criterion.

 2. Perform a box trace of the following calls to recursive functions that appear in this chapter. Clearly indicate
each subsequent recursive call.

a. rabbit(5)

b. countDown(5) (You wrote countDown in Checkpoint Question 3.)

 SUMMARY

 1. Recursion is a technique that solves a problem by solving a smaller problem of the same type.

 2. When constructing a recursive solution, keep the following four questions in mind:

a. How can you defi ne the problem in terms of a smaller problem of the same type?
b. How does each recursive call diminish the size of the problem?
c. What instance of the problem can serve as the base case?
d. As the problem size diminishes, will you reach this base case?

 3. When constructing a recursive solution, you should assume that a recursive call’s result is correct if its precon-
dition has been met.

 4. You can use the box trace to trace the actions of a recursive function. These boxes resemble activation records,
which many compilers use to implement recursion. Although the box trace is useful, it cannot replace an intui-
tive understanding of recursion.

 5. Recursion allows you to solve problems—such as the Towers of Hanoi—whose iterative solutions are diffi cult
to conceptualize. Even the most complex problems often have straightforward recursive solutions. Such solu-
tions can be easier to understand, describe, and implement than iterative solutions.

 6. Some recursive solutions are much less effi cient than a corresponding iterative solution due to their inherently
ineffi cient algorithms and the overhead of function calls. In such cases, the iterative solution can be preferable.
You can use the recursive solution, however, to derive the iterative solution.

 7. If you can easily, clearly, and effi ciently solve a problem by using iteration, you should do so.

 Exercises 89

 3. Write a recursive function that will compute the sum of the fi rst n integers in an array of at least n integers.
 Hint: Begin with the n th integer.

 4. Given two integers, start and end , where end is greater than start , write a recursive C++ function that returns
the sum of the integers from start through end , inclusive.

 5. a. Revise the function writeBackward, discussed in Section 2.3.1, so that its base case is a string of
length 1.

b. Write a C++ function that implements the pseudocode function writeBackward2, as given in
Section 2.3.1.

 6. Describe the problem with the following recursive function:

 void printNum(int n)
 {
 cout << n << endl;
 printNum(n - 1);
} // end printNum

 7. Given an integer n > 0, write a recursive C++ function that writes the integers 1, 2, . . ., n .

 8. Given an integer n > 0, write a recursive C++ function that returns the sum of the squares of 1 through n .

 9. Write a recursive C++ function that writes the digits of a positive decimal integer in reverse order.

 10. a. Write a recursive C++ function writeLine that writes a character repeatedly to form a line of n characters.
For example, writeLine('*', 5) produces the line ***** .

b. Now write a recursive function writeBlock that uses writeLine to write m lines of n characters each. For
example, writeBlock('*', 5, 3) produces the output

 11. What output does the following program produce?

 int getValue(int a, int b, int n);

 int main()
 {

cout << getValue(1, 7, 7) << endl;
 return 0;

} // end main

 int getValue(int a, int b, int n)
 {

 int returnValue = 0;

cout << "Enter: a = " << a << " b = " << b << endl;
 int c = (a + b)/2;
 if (c * c <= n)

 returnValue = c;
 else

 returnValue = getValue(a, c-1, n);

cout << "Leave: a = " << a << " b = " << b << endl;
 return returnValue;

} // end getValue

90 CHAPTER 2 Recursion: The Mirrors

 12. What output does the following program produce?

 int search(int first, int last, int n);
 int mystery(int n);

 int main()
 {

 cout << mystery(30) << endl;
 return 0;

} // end main

 int search(int first, int last, int n)
 {

 int returnValue = 0;
 cout << "Enter: first = " << first << " last = "

 << last << endl;

 int mid = (first + last)/2;
 if ((mid * mid <= n) && (n < (mid+1) * (mid+1)))

returnValue = mid;
else if (mid * mid > n)

returnValue = search(first, mid-1, n);
 else

returnValue = search(mid+1, last, n);

 cout << "Leave: first = " << first << " last = "
 << last << endl;

 return returnValue;
} // end search

 int mystery(int n)
 {

 return search(1, n, n);
} // end mystery

 13. Consider the following function that converts a positive decimal number to base 8 and displays the result.

 void displayOctal(int n)
 {

 if (n > 0)
{

 if (n / 8 > 0)
 displayOctal(n / 8);
 cout << n % 8;
 } // end if
} // end displayOctal

 Describe how the algorithm works. Trace the function with n = 100.

 14. Consider the following program:

 int f(int n);

 int main()
 {
 cout << "The value of f(8) is " << f(8) << endl;
 return 0;

} // end main

/** @pre n >= 0. */
 int f(int n)
 {
 cout << "Function entered with n = " << n << endl;
 switch (n)

 Exercises 91

 {
 case 0: case 1: case 2:

 return n + 1;
 default :

 return f(n-2) * f(n-4);
 } // end switch

} // end f

 Show the exact output of the program. What argument values, if any, could you pass to the function f to cause
the program to run forever?

 15. Consider the following function:

 void recurse(int x, int y)
 {

 if (y > 0)
{

 x++;
 y––;
 cout << x << " " << y << endl;
 recurse(x, y);
 cout << x << " " << y << endl;

} // end if
} // end recurse

 Execute the function with x = 5 and y = 3. How is the output affected if x is a reference argument instead of a
value argument?

 16. Perform a box trace of the recursive function binarySearch , which appears in Section 2.4.2, with the array
1, 5, 9, 12, 15, 21, 29, 31 for each of the following search values:

a. 5
b. 13
c. 16

 17. Imagine that you have 101 Dalmatians; no two Dalmatians have the same number of spots. Suppose that you
create an array of 101 integers: The fi rst integer is the number of spots on the fi rst Dalmatian, the second integer
is the number of spots on the second Dalmatian, and so on. Your friend wants to know whether you have a
Dalmatian with 99 spots. Thus, you need to determine whether the array contains the integer 99.

a. If you plan to use a binary search to look for the 99, what, if anything, would you do to the array before
searching it?

b. What is the index of the integer in the array that a binary search would examine fi rst?
c. If all of your Dalmatians have more than 99 spots, exactly how many comparisons will a binary search

require to determine that 99 is not in the array?

 18. This problem considers several ways to compute xn for some n ≥ 0.

a. Write an iterative function power1 to compute xn for n ≥ 0.
b. Write a recursive function power2 to compute xn by using the following recursive formulation:

x0 5 1

xn 5 x 3 xn21 if n . 0

c. Write a recursive function power3 to compute xn by using the following recursive formulation:

x0 5 1

xn 5 1xn/2 2 2 if n . 0 and n is even

xn 5 x 3 1xn/2 2 2 if n . 0 and n is odd

92 CHAPTER 2 Recursion: The Mirrors

d. How many multiplications will each of the functions power1 , power2 , and power3 perform when
computing 3 32 ? 3 19 ?

e. How many recursive calls will power2 and power3 make when computing 3 32? 3 19 ?

 19. Modify the recursive rabbit function so that it is visually easy to follow the fl ow of execution. Instead of just
adding “Enter” and “Leave” messages, indent the trace messages according to how “deep” the current recur-
sive call is. For example, the call rabbit(4) should produce the output

 Enter rabbit: n = 4
 Enter rabbit: n = 3
 Enter rabbit: n = 2
 Leave rabbit: n = 2 value = 1
 Enter rabbit: n = 1
 Leave rabbit: n = 1 value = 1
 Leave rabbit: n = 3 value = 2
Enter rabbit: n = 2
Leave rabbit: n = 2 value = 1

Leave rabbit: n = 4 value = 3
 Note how this output corresponds to Figure 2-19 .

 20. Consider the following recurrence relation:

f 11 2 5 1; f 12 2 5 1; f 13 2 5 1; f 14 2 5 3; f 15 2 5 5;

f 1n 2 5 f 1n 2 1 2 1 3 3 f 1n 2 5 2 for all n . 5.

a. Compute f(n) for the following values of n : 6, 7, 12, 15.
b. If you were careful, rather than computing f (15) from scratch (the way a recursive C++ function would

compute it), you would have computed f (6), then f (7), then f(8), and so on up to f(15), recording the
values as you computed them. This ordering would have saved you the effort of ever computing the
same value more than once. (Recall the iterative version of the rabbit function discussed at the end of
this chapter.)

 Note that during the computation, you never need to remember all of the previously computed val-
ues—only the last fi ve. Taking advantage of these observations, write a C++ function that computes
f (n) for arbitrary values of n .

 21. Write iterative versions of the following recursive functions: fact , writeBackward, binarySearch,

and kSmall.

 22. Prove that the function iterativeRabbit, which appears in Section 2.7, is correct by using invariants.
(See Appendix F for a discussion of invariants.)

 23. Consider the problem of fi nding the greatest common divisor (gcd) of two positive integers a and b . The algo-
rithm presented here is a variation of Euclid’s algorithm, which is based on the following theorem: 4

 Theorem. If a and b are positive integers with a > b such that b is not a divisor of a , then gcd (a , b) = gcd (b , a
mod b).

 This relationship between gcd (a , b) and gcd (b , a mod b) is the heart of the recursive solution. It specifi es how
you can solve the problem of computing gcd (a , b) in terms of another problem of the same type. Also, if b does
divide a , then b = gcd (a , b), so an appropriate choice for the base case is (a mod b) = 0.

4 This book uses mod as an abbreviation for the mathematical operation modulo. In C++, the modulo operator is %.

 Programming Problems 93

 This theorem leads to the following recursive defi nition:

gcd 1a, b 2 5 eb if 1a mod b 2 5 0

gcd 1b, a mod b 2 otherwise

 The following function implements this recursive algorithm:

 int gcd(int a, int b)
 {

 if (a % b == 0) // Base case
 return b;

 else
 return gcd(b, a % b);

} // end gcd

a. Prove the theorem.
b. What happens if b > a ?
c. How is the problem getting smaller? (That is, do you always approach a base case?) Why is the base case

 appropriate?

 24. Let c (n) be the number of different groups of integers that can be chosen from the integers 1 through n � 1 so
that the integers in each group add up to n (for example, n � 4 � [1 � 1 � 1 � 1] � [1 � 1 � 2] � [2 � 2]).
Write recursive defi nitions for c (n) under the following variations:

a. You count permutations. For example, 1, 2, 1 and 1, 1, 2 are two groups that each add up to 4.
b. You ignore permutations.

 25. Consider the following recursive defi nition:

Acker1m, n 2 5 μ n 1 1 if m 5 0

Acker1m 2 1, 1 2 if n 5 0

Acker1m 2 1, Acker1m, n 2 1 2 2 otherwise

 This function, called Ackermann’s function , is of interest because it grows rapidly with respect to the sizes of m
and n. What is Acker (1, 2)? Implement the function in C++ and do a box trace of Acker (1, 2). (Caution: Even
for modest values of m and n, Ackermann’s function requires many recursive calls.)

 PROGRAMMING PROBLEMS

 1. Implement a recursive function that computes an , where a is a real number and n is a nonnegative integer.

 2. Implement the algorithm maxArray , discussed in Section 2.4.3, as a C++ function. What other recursive defi ni-
tions of maxArray can you describe?

 3. Implement the binarySearch algorithm presented in this chapter for an array of strings.

 4. Implement the algorithm kSmall , discussed in Section 2.4.4, as a C++ function. Use the fi rst value of the array
as the pivot.

This page intentionally left blank

 Chapter

 Array-Based
Implementations 3

 Contents
 3.1 The Approach 96

 3.1.1 Core Methods 97
 3.1.2 Using Fixed-Size Arrays 98

 3.2 An Array-Based Implementation of the ADT Bag 98
 3.2.1 The Header File 99
 3.2.2 Defi ning the Core Methods 100
 3.2.3 Testing the Core Methods 103
 3.2.4 Implementing More Methods 105
 3.2.5 Methods That Remove Entries 107
 3.2.6 Testing 110

 3.3 Using Recursion in the Implementation 112
 3.3.1 The Method getIndexOf 112
 3.3.2 The Method getFrequencyOf 113

 Summary 114
 Exercises 114
 Programming Problems 115

 Prerequisites
 Appendix A Review of C++ Fundamentals
 Chapter 1 Data Abstraction: The Walls
 C++ Interlude 1 C++ Classes
 Chapter 2 Recursion: The Mirrors (for Section 3.3)

You have seen that during the design of a solution, you must support several
operations on data and therefore need to defi ne abstract data types (ADTs). Only after
you have clearly specifi ed the operations of an ADT should you consider data structures
for implementing it. This chapter explores implementation issues that involve arrays as
the underlying data structures.

96 CHAPTER 3 Array-Based Implementations

 3.1 The Approach
 We have said that a collection of data, together with a set of operations on that data, are called an
abstract data type, or ADT. For example, suppose that you want to store a collection of names that you
can search rapidly. The collection of names, together with operations that add a name, remove a
name, and search for a name, can form an ADT that solves this problem.

 Previously, we emphasized the specifi cation of an abstract data type. When you design an
ADT, you concentrate on what its operations do, but you ignore how you will implement them. That
is, the description of an ADT’s operations must be rigorous enough to specify completely their
effect on the data, yet it must not specify how to store the data nor how to carry out the operations.
For example, the operations of an ADT should not specify whether to store the data in consecutive
memory locations or in disjoint memory locations. The result should be a set of clearly specifi ed
ADT operations.

 How do you implement an ADT once its operations are clearly specifi ed? That is, how do you
store the ADT’s data and carry out its operations? You begin by choosing particular data structures to
store the data. Recall that a data structure is a construct that you can defi ne within a programming
language to store a collection of data. For example, C++ arrays are data structures.

 Your fi rst reaction to the implementation question might be to choose a data structure and then
to write functions that access it in accordance with the ADT’s operations. Although this point of
view is not incorrect, hopefully you have learned not to jump right into code. In general, you should
refi ne an ADT through successive levels of abstraction yielding successively more concrete descrip-
tions of the ADT.

 The choices that you make during the implementation process can affect the execution time of
your code. For now, our analyses will be intuitive, but Chapter 10 will introduce you to quantitative
techniques that you can use to weigh the trade-offs involved.

 Recall that the client—that is, the program that uses the ADT—should see only a wall of availa-
ble operations that act on data, as Figure 1-5 in Chapter 1 illustrates. Both the data structure that you
choose to contain the data and the implementations of the ADT’s operations are hidden behind the
wall. By now, you should realize the advantage of this wall and take steps to prevent a client’s direct
access—either intentional or accidental—to the data structure, as shown in Figure 3-1 . Why is such
access undesirable? Public data fi elds allow the client to go around the wall of abstraction and access
the ADT’s data directly. For example, suppose that you use an array items to store an ADT’s data. In a
program that uses the ADT, you might, for example, accidentally access the fi rst element in the array
by writing

 firstItem = items[0];

 instead of by invoking an ADT operation. If you changed to another implementation of the ADT, your
program would be incorrect. To correct your program, you would need to locate and change all occur-
rences of items[0] —but fi rst you would have to realize that items[0] is in error! Moreover, by vio-
lating the wall, a client could damage the ADT’s data. If the data were ordered in a certain way, for
example, the ADT’s operations would ensure that the order was maintained. But if a client could alter
the data directly, that order could be destroyed.

An ADT is a
collection of data
and a set of
operations on that
data

Specifi cations
indicate what ADT
operations do, but
not how to
implement them

Note: Implementing an ADT as a C++ class provides a way for you to enforce the wall
of an ADT, thereby preventing access of the data structure in any way other than by using
the ADT’s operations. A client then cannot damage the ADT’s data. Moreover, the client
is independent of the details of the ADT’s implementation, because it adheres only to the
ADT’s specifi cations.

 The Approach 97

 3.1.1 Core Methods

 The defi nition of a class that implements an ADT could be fairly involved. In general, you should not
defi ne the entire class and then attempt to test it. Instead, you should identify a group of core methods
to both implement and test before continuing with the rest of the class defi nition. By leaving the defi -
nitions of the other methods for later, you can focus your attention and simplify your task. But what
methods should be part of this group? In general, such methods should be central to the purpose of
the class and allow reasonable testing. We sometimes will call a group of core methods a core group .

 When dealing with a container such as a bag, for example, you cannot test most methods until
you have created the container and placed items into it. Thus, adding objects to the container is a fun-
damental operation. If the method add does not work correctly, testing other methods such as remove
would be pointless. Thus, the add method would be part of the group of core methods that we imple-
ment fi rst.

 To test whether add works correctly, we need a method that allows us to see the container’s data.
For the ADT bag, the method toVector serves this purpose, and so it is a core method. Any construc-
tors are also fundamental and are in the core group. Similarly, other methods that a core method
might call are part of the core group as well. Such methods might be public methods within the ADT
or private “helper” methods.

FIGURE 3-1 Violating the wall of ADT operations

MyProgram
(does interesting things)

Data structurecontains

add

remove

 Note: Methods such as add and remove that can alter the underlying data structure of a
container are likely to have the most involved implementations. In general, you should
defi ne such methods before the others in the class. But since you can’t test remove before
add is correct, you should delay implementing it until after add is completed and
thoroughly tested.

98 CHAPTER 3 Array-Based Implementations

 3.1.2 Using Fixed-Size Arrays

 When implementing an ADT that represents a data collection, you need to store the data items and
track their number. In an array-based implementation , you store the items in an array. How much of
the array will the items occupy? Possibly all of it, but this is not likely. That is, you need to keep track
of the array elements that you have assigned to contain the data and those that are available for use in
the future. The maximum length of the array—its physical size—is a known, fi xed value such as
MAX_SIZE . You can keep track of the current number of items in the collection—that is, the collection’s
logical size—in a variable. An obvious benefi t of this approach is that implementing an operation that
reports this value will be easy.

 When you add a fi rst entry to an array, you typically place it in the array’s fi rst element—that is,
the element whose index is 0. Doing so, however, is not a requirement, especially for arrays that
implement containers. For example, some container implementations can benefi t by ignoring the
array element whose index is 0 and using index 1 as the fi rst element in the array. Sometimes you
might want to use the elements at the end of the array before the ones at its beginning. For the ADT
bag, we have no reason to be atypical, and so the objects in a bag can begin at index 0 of the array.

 Another consideration is whether the container’s entries should occupy consecutive elements of
the array. Requiring the add method to place objects into an array consecutively is certainly reasona-
ble, but why should we care, and is this really a concern? It is a concern, because we need to establish
certain truths, or assertions , about our planned implementation so that the action of each method is
not detrimental to other methods. For example, the method toVector must “know” where add has
placed the entries. Our decision now also will affect what must happen later when we remove an entry
from the container. If we insist that the bag’s entries occupy consecutive array elements, will the
method remove ensure that they remain so?

 What happens after add places a new entry into the last available array element? A subsequent
addition will be impossible unless an entry is fi rst removed from the array. An add method that
encounters a full array should either signal its client or allocate a larger array. In this chapter, add will
return a boolean value to indicate whether it was successful. In C++ Interlude 2, which follows this
chapter, you will learn how to resize the array. Rather than returning a value, a method can signal its
client by throwing an exception. C++ Interlude 3 will discuss this approach.

 3.2 An Array-Based Implementation of the ADT Bag
 We will now make the previous discussion concrete by implementing the ADT bag as a class using an
array to store its entries. Recall from Chapter 1 that the ADT bag’s operations are

 +getCurrentSize(): integer
+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(anEntry: ItemType): boolean
+clear(): void
+getFrequencyOf(anEntry: ItemType): integer
+contains(anEntry: ItemType): boolean
+toVector(): vector

 These operations will become public methods in our class.
 Each method will require access to both the array of bag entries and the current number of entries

in the bag. Thus, we make the array and a counter data members of the class. Since the length of the

 Programming Tip: When defi ning a class, implement and test a group of core methods.
Begin with methods that add to a container of objects and/or have involved implementations.

VideoNote

Core ArrayBag
methods

 An Array-Based Implementation of the ADT Bag 99

array defi nes the bag’s capacity—that is, its maximum size—we will defi ne a constant whose value is
this size. To hide these data members from the clients of the class, we make them private. Thus, we
defi ne the following private data members within the header fi le for our class:

 static const int DEFAULT_CAPACITY = 50;
ItemType items[DEFAULT_CAPACITY]; // Array of bag items
 int itemCount; // Current count of bag items
 int maxItems; // Max capacity of the bag

 Figure 3-2 illustrates these data members, assuming a bag of integers.

FIGURE 3-2 An array-based implementation of the ADT bag

12 3

10 2 3 k – 1 maxItems – 1

itemCount items

19 100 5 10 18 ? ? ?k

Array indices

 Note: Data members should be private

 By making a class’s data members private, you control how a client can access or change
their values. Doing so also makes debugging a program’s logic easier. If the client could
manipulate this data directly because the data was public, you would not know where to
look for errors.

A client of the class
cannot access the
class’s private
members directly

 3.2.1 The Header File

 Having chosen the data members, and knowing the details of BagInterface , which we developed in
 Chapter 1 , we can write the header fi le shown in Listing 3-1 for our class of bags. We name the class
ArrayBag and give it a default constructor, which is suffi cient for this example. Notice the small value
given to the constant DEFAULT_CAPACITY . It enables us to fi ll a bag completely and easily to verify that
our class behaves gracefully in this situation. After you study C++ Interlude 2, you will be able to add
another constructor that enables the client to set the capacity of the bag during program execution. We
included the data fi eld maxItems in anticipation of this enhancement.

 Also notice that we declare a private method getIndexOf . This method returns the index of the ele-
ment within the array items that contains a given entry. As you will see later, we can use getIndexOf to
make the methods contains and remove more time effi cient. You most likely would not decide to add
getIndexOf to the header fi le until after you began work on the implementation of the public methods.

LISTING 3-1 The header fi le for the class ArrayBag

 /** Header file for an array-based implementation of the ADT bag.
 @file ArrayBag.h */

#ifndef _ARRAY_BAG
#define _ARRAY_BAG

#include "BagInterface.h"
(continues)

100 CHAPTER 3 Array-Based Implementations

 template<class ItemType>
 class ArrayBag : public BagInterface<ItemType>
{
 private :

static const int DEFAULT_CAPACITY = 6;// Small size to test for a full bag
ItemType items[DEFAULT_CAPACITY]; // Array of bag items
int itemCount; // Current count of bag items
int maxItems; // Max capacity of the bag

// Returns either the index of the element in the array items that
 // contains the given target or -1, if the array does not contain
 // the target.

int getIndexOf(const ItemType& target) const;

 public:
 ArrayBag();

int getCurrentSize() const;
bool isEmpty() const;
bool add(const ItemType& newEntry);
bool remove(const ItemType& anEntry);
void clear();
bool contains(const ItemType& anEntry) const;
int getFrequencyOf(const ItemType& anEntry) const;
vector<ItemType> toVector() const;

}; // end ArrayBag

#include "ArrayBag.cpp"
 #endif

 Programming Tip: When a method does not alter the class’s data members, make it
a const method as a safeguard against an implementation error.

 3.2.2 Defi ning the Core Methods

 Section 3.1.1 suggests that we consider the methods add and toVector as core methods and defi ne
them fi rst. Since we will want to check that add correctly increments the count of the bag’s entries, we
should also implement getCurrentSize and isEmpty . Thus, we add these two methods to our core
group, along with appropriate constructors.

 As we defi ne the methods for the class ArrayBag , we place them into the fi le ArrayBag.cpp ,
which begins as follows:

 /** Implementation file for the class ArrayBag.
 @file ArrayBag.cpp */

#include "ArrayBag.h"

The constructor. The following default constructor initializes the current number of items in the
bag to zero, as well as the bag’s capacity:

 template<class ItemType>
 ArrayBag<ItemType>::ArrayBag()

 An Array-Based Implementation of the ADT Bag 101

 {
 itemCount = 0;
 maxItems = DEFAULT_CAPACITY;
} // end default constructor

 Although you can simply use an assignment statement to assign a value to a data member, as we
have done here, it is preferable to use an initializer . Each initializer uses a functional notation that
consists of a data member name followed by its initial value enclosed in parentheses—for example,
itemCount(0) . If you write more than one initializer, you separate them with commas. A colon pre-
cedes the fi rst (or only) initializer. Thus, a better defi nition of ArrayBag ’s default constructor is

 template<class ItemType>
ArrayBag<ItemType>::ArrayBag(): itemCount(0), maxItems(DEFAULT_CAPACITY)
 {
 } // end default constructor

 Often the implementation of a constructor consists only of initializers, so its body is empty,
as is the case here. Note that you can use these initializers with constructors but not with other
methods.

 Programming Tip: When a class has several data members, the constructor initial-
izes them in the order in which they appear in the class defi nition instead of the order in
which the initializers appear in the constructor defi nition. You should use the same order in
both cases to avoid confusion, even if the initialization order does not make a difference.

The method add. To add a new item to a bag that is not full, we can place it right after the last item in
the array by writing the following statement:

 items[itemCount] = newEntry;

 If we are adding to an empty bag, itemCount will be zero, and the assignment will be to items[0] . If
the bag contains one entry, an additional entry will be assigned to items[1] , and so on. In this way, no
other items in the array need to move. After each addition to the bag, we increase the counter item-
Count . Figure 3-3 depicts this insertion. If add is successful, it returns true. Otherwise—if the bag is
full, for example— add returns false, as you can see from its defi nition:

 template<class ItemType>
 bool ArrayBag<ItemType>::add(const ItemType& newEntry)
 {

bool hasRoomToAdd = (itemCount < maxItems);
if (hasRoomToAdd)

 {
 items[itemCount] = newEntry;
 itemCount++;
 } // end if

return hasRoomToAdd;

 } // end add

 Note: The entries in a bag have no particular order. Thus, the method add can place a
new entry into any convenient element of the array items . In the previous defi nition of
add , that element is the one immediately after the last element used.

102 CHAPTER 3 Array-Based Implementations

The method toVector . The method toVector in our initial core group gets the entries that are in a
bag and returns them to the client within a vector. A simple loop within toVector adds the bag’s
entries to this vector.

 template<class ItemType>
 vector<ItemType> ArrayBag<ItemType>:: toVector() const
{
 vector<ItemType> bagContents;

for (int i = 0; i < itemCount; i++)
 bagContents.push_back(items[i]);

return bagContents;
 } // end toVector

FIGURE 3-3 Inserting a new entry into an array-based bag

New item

k

44k + 1 12 3

10 2 3 k – 1 maxItems – 1

itemCount items

19 100 5 10 18 ? ?

Array indices

Note: An array-based implementation of an ADT restricts the number of items that you
can store. Thus, the implementation should check whether the array has space available
before inserting a new item, and the client should take appropriate action if the insertion
is impossible.

 Programming Tip: Variables that are local to a method’s implementation should
not be data members of the class.

 Note: The class vector is in the Standard Template Library (STL) and is described in
 Appendix A .

The methods getCurrentSize and isEmpty. The last two methods in our core group have the
following straightforward defi nitions:

 template<class ItemType>
 int ArrayBag<ItemType>::getCurrentSize() const
{

return itemCount;
 } // end getCurrentSize

 template<class ItemType>
 bool ArrayBag<ItemType>::isEmpty() const
{

return itemCount == 0;
 } // end isEmpty

 An Array-Based Implementation of the ADT Bag 103

 3.2.3 Testing the Core Methods

 Getting ready. After defi ning the core methods, you should test them. But what about the other
methods in BagInterface ? Since ArrayBag —as given in Listing 3-1—adheres to the specifi cations
in BagInterface , the C++ compiler will look for a defi nition of each method declared in this inter-
face. Should we wait until we complete their defi nitions to begin testing? Absolutely not! Testing
methods as you write them makes fi nding logical errors easier. However, instead of writing a com-
plete implementation of each method in BagInterface , we can provide incomplete defi nitions of the
methods we choose to temporarily ignore.

 An incomplete defi nition of a method is called a stub . The stub needs only to keep the syntax
checker happy. For example, for each method that returns a value, you can avoid syntax errors by add-
ing a return statement that returns a dummy value. Methods that return a boolean value should
return false, for example. This result is reasonable, since the method does not perform its specifi ed
behavior. On the other hand, void methods can simply have an empty body.

 For instance, the method remove ultimately will return true or false, so its stub must contain a
return statement and could appear as follows:

 template<class ItemType>
 bool ArrayBag<ItemType>::remove(const ItemType& anEntry)
 {

return false; // STUB
} // end remove

 A stub for the void method clear could be

 template<class ItemType>
 void ArrayBag<ItemType>::clear()
 {

// STUB
 } // end clear

 Note that if you plan to call a stub within your test program, the stub should report that it was invoked
by displaying a message.

 Question 1 What happens to the array items when the method add cannot add another
entry to it, because it is already full?

 Question 2 If a client of ArrayBag creates a vector containing fi ve items, what happens to
those items after the vector is passed as an argument to the method toVector ?

CHECK POINT

 Programming Tip: Do not wait until you complete the implementation of an ADT
before testing it. By writing stubs, which are incomplete defi nitions of required methods,
you can begin testing early in the process.

A test program. Listing 3-2 contains a program that tests the core methods add , toVector ,
getCurrentSize , and isEmpty of the class ArrayBag at this stage of its development. The main
function creates an empty bag by using the default constructor and passes it to the function
bagTester . This function calls another function, displayBag , that tests the methods toVector
and getCurrentSize .

104 CHAPTER 3 Array-Based Implementations

 LISTING 3-2 A program that tests the core methods of the class ArrayBag

 #include <iostream>
#include <string>
#include "ArrayBag.h"

 using namespace std;

 void displayBag(ArrayBag<string>& bag)
 {
 cout << "The bag contains " << bag.getCurrentSize()
 << " items:" << endl;
 vector<string> bagItems = bag.toVector();

int numberOfEntries = (int)bagItems.size();
for (int i = 0; i < numberOfEntries; i++)

 {
 cout << bagItems[i] << " ";
 } // end for
 cout << endl << endl;
 } // end displayBag

 void bagTester(ArrayBag<string>& bag)
 {
 cout << "isEmpty: returns " << bag.isEmpty()
 << "; should be 1 (true)" << endl;
 displayBag(bag);

 string items[] = {"one", "two", "three", "four", "five", "one"};
 cout << "Add 6 items to the bag: " << endl;

for (int i = 0; i < 6; i++)
 {
 bag.add(items[i]);
 } // end for

 displayBag(bag);

 cout << "isEmpty: returns " << bag.isEmpty()
 << "; should be 0 (false)" << endl;
 cout << "getCurrentSize: returns " << bag.getCurrentSize()
 << "; should be 6" << endl;

 cout << "Try to add another entry: add(\"extra\") returns "
 << bag.add("extra") << endl;
 } // end bagTester

 int main()
 {
 ArrayBag<string> bag;
 cout << "Testing the Array-Based Bag:" << endl;
 cout << "The initial bag is empty." << endl;
 bagTester(bag);
 cout << "All done!" << endl;

return 0;
 } // end main

 An Array-Based Implementation of the ADT Bag 105

Note: If you defi ne a constructor for a class but do not also defi ne a default constructor,
the compiler will not generate one for you. In this case, a statement such as

 ArrayBag<string> aBag;

 is illegal.

Output

 Testing the Array-Based Bag:
The initial bag is empty.
isEmpty: returns 1; should be 1 (true)
The bag contains 0 items:

Add 6 items to the bag:
The bag contains 6 items:
one two three four five one

isEmpty: returns 0; should be 0 (false)
getCurrentSize: returns 6; should be 6
Try to add another entry: add("extra") returns 0
All done!

 3.2.4 Implementing More Methods

 Now that we can add items to a bag successfully, we can defi ne the other methods. Although we will
not do so here, you should test each new defi nition as you complete it.

Programming Tip: Testing each method as you defi ne it is especially important
when its logic is not obvious. However, even the simplest method is susceptible to a care-
less mistake, which can lead to hours of frustrating debugging of other methods that
depend on the supposedly correct method.

 The method getFrequencyOf. To count the number of times a given object occurs in a bag, we
count the number of times the object occurs in the array items . Using a while loop to cycle through
the array’s indices from 0 to itemCount – 1, we compare the given object to every object in the array.
Each time we fi nd a match, we increment a counter. When the loop ends, we simply return the value of
the counter.

 The method defi nition follows:

 template<class ItemType>
 int ArrayBag<ItemType>:: getFrequencyOf(const ItemType& anEntry) const

106 CHAPTER 3 Array-Based Implementations

 {
int frequency = 0;
int curIndex = 0; // Current array index
while (curIndex < itemCount)
 {

if (items[curIndex] == anEntry)
 {
 frequency++;
 } // end if

curIndex++; // Increment to next entry
} // end while

return frequency;
 } // end getFrequencyOf

The method contains. One easy way to defi ne the method contains is to have it call the method
getFrequencyOf , which we just defi ned. If the frequency of occurrence of a given entry is greater
than zero, the bag must contain that entry. If the frequency is zero, the bag does not contain the entry.
Thus, you could defi ne contains as follows:

 template<class ItemType>
 bool ArrayBag<ItemType>::contains(const ItemType& target) const
 {

return getFrequencyOf(target) > 0;
 } // end contains

 Although this method will work, it usually will do more work than necessary. After all,
getFrequencyOf must check every entry in the bag, whereas contains could quit looking at entries
as soon as it fi nds one that is the same as the given entry. That is, its logic can be described by the
following pseudocode:

 contains(anEntry)

 while (anEntry is not found and we have more array elements to check)
 {
 if (anEntry equals the next array entry)
 anEntry is found in the array

}

 This loop terminates under one of two conditions: Either anEntry has been found in the array or the
entire array has been searched without success.

 Based on this pseudocode, a defi nition of the method contains follows:

 template<class ItemType>
 bool ArrayBag<ItemType>::contains(const ItemType& anEntry) const
 {

bool found = false;
 int curIndex = 0; // Current array index
 while (!found && (curIndex < itemCount))

 {
if (anEntry == items[curIndex])

 {
 found = true;

 } // end if

curIndex++; // Increment to next entry
 } // end while

return found;
 } // end contains

 An Array-Based Implementation of the ADT Bag 107

 3.2.5 Methods That Remove Entries

 We have postponed the defi nition of the method remove until now because it involves more thought
than the other methods. The method clear , however, is relatively simple, even though we are leaving
it until last.

The method remove. We now want to remove a given entry—call it anEntry —from a bag. If the
entry occurs more than once in the bag, we will remove only one occurrence. Exactly which occur-
rence is removed is unspecifi ed. We will simply remove the fi rst occurrence of anEntry that we
encounter while searching for it. Adhering to our specifi cations in BagInterface , we will return
either true or false to indicate whether the removal was successful.

 Assuming that the bag is not empty, we search the array items until either we fi nd anEntry in the
array or we note where it occurs within the array. Figure 3-4 illustrates the array after a successful
search.

 Question 3 What is an advantage and a disadvantage of calling the method getFrequencyOf
from contains ?

CHECK POINT

 Note: Testing the additional methods

 As you defi ne additional methods for the class ArrayBag , you should test them. While
you could focus only on these additional methods, you really should form a test program
incrementally. In this way, you test all of the methods you have defi ned so far. By using a
small value for the constant DEFAULT_CAPACITY , you easily can test what happens when a
bag becomes full.

 Note: Two kinds of loops

 To count how many times an entry occurs in an array, the method getFrequencyOf uses a
loop that cycles through all of the array’s entries. In fact, the body of the loop executes
itemCount times. In contrast, to indicate whether a given entry occurs in an array, the
loop in the method contains ends as soon as the desired entry is discovered. The body of
this loop executes between one and itemCount times. You should be comfortable writing
loops that execute either a defi nitive or a variable number of times.

FIGURE 3-4 The array items after a successful search for the string "Alice"

Nancy Ted VandeeDoug Sue

items[index]

Alice

index

10 2 3Array indices 4 5 6

VideoNote

Other ArrayBag
methods

108 CHAPTER 3 Array-Based Implementations

 Now consider how to remove the located item from the array. You could blank it out, but this
strategy can lead to gaps in the array, as Figure 3-5 a illustrates. An array that is full of gaps has three
signifi cant problems:

• itemCount – 1 is no longer the index of the last item in the array. You would need another vari-
able, lastPosition , to contain this index.

• Because the items are spread out, the method contains might have to look at every element of
the array, even when only a few items are present.

• When items[maxItems - 1] is occupied, the bag could appear full, even when fewer than
maxItems items are present.

 We could get rid of that gap by copying each successive entry to the previous element in the array, beginning
with the entry after the removed item and ending with the last entry, as shown in Figure 3-5 b. The result of
shifting these entries is shown in Figure 3-5 c. This time-consuming approach is not necessary, however.

 Remember that we are not required to maintain any particular order for a bag’s entries. So instead
of shifting array entries after removing an entry, we can replace the entry being removed with the last
entry in the array, as follows. After locating anEntry in items[index] , as Figure 3-6 a indicates, we
copy the entry in items[itemCount - 1] to items[index] (Figure 3-6 b). We then ignore the entry in
items[itemCount - 1] by decrementing itemCount .

 The following pseudocode details the steps needed to remove a given entry from a bag. Note that by
decrementing itemCount before using it in an index, we compute itemCount – 1 once instead of twice.

 Search the array items for anEntry
 if (anEntry is in the bag at items[index])
{

Decrement the counter itemCount

FIGURE 3-5 (a) A gap in the array items after deleting the entry in items[index] and decrementing itemCount; (b)
shifting subsequent entries to avoid a gap; (c) the array after shifting

(a)

(c)

12 3

10 2 3 4 k maxItems – 1

itemCount items

k – 1

19 100 5 10 18 ? ?k

Array indices

Deleted entry in items[index]

12 3

10 2 3 k – 1 maxItems – 1

itemCount items

19 100 5 10 18 ? ?k

(b)

12 3

10 2 3 4 k maxItems – 1

itemCount

k – 1

19 100 5 10 18 ? ?k

items

–

 An Array-Based Implementation of the ADT Bag 109

 items[index] = items[itemCount]
return true

 }
 else

return false

 The initial search for anEntry is the same search as done in the method contains . Calling contains
here is not much help, as we want to know not only whether the bag contains anEntry but also, if it
does, where it occurs in the array. Clearly, we could modify the loop in contains slightly, but a better
way places the loop in a private method that both contains and remove can call. This method is
getIndexOf , which we declared earlier in the header fi le and whose defi nition follows:

 template<class ItemType>
 int ArrayBag<ItemType>::getIndexOf(const ItemType& target) const
{

bool found = false;
int result = -1;
int searchIndex = 0;

// If the bag is empty, itemCount is zero, so loop is skipped
while (!found && (searchIndex < itemCount))

 {
if (items[searchIndex] == target)

 {
 found = true;

 result = searchIndex;
 }

else
 {

 searchIndex++;
 } // end if
 } // end while

return result;
 } // end get IndexOf

(a)

(b)

10 2 3 maxItems – 1

itemCount items

items

Entry to delete in items[index]

12 3

10 2 3 k

itemCount

19 100 10 18 44 ? ? ?k + 1

Array indices

Array indices

12 3 44 100 10 18 44 ? ?

k – 1

k

maxItems – 1k – 1

FIGURE 3-6 Avoiding a gap in the array while removing an entry

110 CHAPTER 3 Array-Based Implementations

 The method remove now has the following defi nition:

 template<class ItemType>
 bool ArrayBag<ItemType>::remove(const ItemType& anEntry)
 {

int locatedIndex = getIndexOf(anEntry);
bool canRemoveItem = !isEmpty() && (locatedIndex > -1);
if (canRemoveItem)

 {
 itemCount–-;
 items[locatedIndex] = items[itemCount];
 } // end if

return canRemoveItem;
 } // end remove

Programming Tip: Should the method getIndexOf be public or private?

 You might think that the method getIndexOf , since it returns the index of an entry in the
array items , would be useful to a client. While that might be true, there are important
reasons why the method should be private. We declared the array items as private because
it is detail of our array-based implementation. The client cannot access the entries in this
array without invoking a public method of our class. The indices of these entries are also
implementation details that are of no use to the client because it cannot access the array
items by name. Any method that returns an index to a private array should be declared as
private.

 Question 4 Revise the defi nition of the method contains so that it calls the method
getIndexOf .

 Question 5 Should we revise the specifi cation of the method contains so that if it locates
a given entry within the bag, it returns the index of that entry?

 Question 6 Revise the defi nition of the method getIndexOf so that it does not use a
boolean variable.

CHECK POINT

The method clear. The method clear can make a bag appear empty simply by setting itemCount to
zero. Thus, we have the following defi nition for this method:

 template<class ItemType>
 void ArrayBag<ItemType>::clear()
 {
 itemCount = 0;
 } // end clear

 3.2.6 Testing

 To test our completed class, we can add the following statements to the method bagTester that
appears in Listing 3-2:

 cout << "contains(\"three\"): returns " << bag.contains("three")
 << "; should be 1 (true)" << endl;
cout << "contains(\"ten\"): returns " << bag.contains("ten")
 << "; should be 0 (false)" << endl;

 An Array-Based Implementation of the ADT Bag 111

cout << "getFrequencyOf(\"one\"): returns "
 << bag.getFrequencyOf("one") << " should be 2" << endl;
cout << "remove(\"one\"): returns " << bag.remove("one")
 << "; should be 1 (true)" << endl;
cout << "getFrequencyOf(\"one\"): returns "
 << bag.getFrequencyOf("one") << " should be 1" << endl;
cout << "remove(\"one\"): returns " << bag.remove("one")
 << "; should be 1 (true)" << endl;
cout << "remove(\"one\"): returns " << bag.remove("one")
 << "; should be 0 (false)" << endl;
cout << endl;

 displayBag(bag);

cout << "After clearing the bag, ";
 bag.clear();

cout << "isEmpty: returns " << bag.isEmpty()
 << "; should be 1 (true)" << endl;

 Note: References such as bag.itemCount and bag.items[4] would be illegal within
the client, because itemCount and items are within the private portion of the class.

Note: To implement an ADT, given implementation-independent specifi cations of the
ADT’s operations, you fi rst must choose a data structure to contain the data. Next, you
declare a class within a header fi le. The ADT’s operations are public methods within the
class, and the ADT’s data consists of class members that are typically private. You then
implement the class’s methods within an implementation fi le. The program that uses the
class will be able to access the data only by using the ADT’s operations.

 Note: In practice, when choosing among implementations of an ADT, you must ask
whether the fi xed-size restriction of an array-based implementation presents a problem in
the context of a particular application. The answer to this question depends on two fac-
tors. The obvious factor is whether, for a given application, you can predict in advance
the maximum number of items in the ADT at any one time. If you cannot, it is quite pos-
sible that an operation—and hence the entire program—will fail because the ADT in the
context of a particular application requires more storage than the array can provide.

 On the other hand, if for a given application you can predict in advance the maxi-
mum number of items in an ADT at any one time, you must explore a more subtle factor:
Would you waste storage by declaring an array to be large enough to accommodate this
maximum number of items? Consider a case in which the maximum number of items is
large, but you suspect that this number rarely will be reached. For example, suppose that
a bag could contain as many as 10,000 items, but the actual number of items in the bag
rarely exceeds 50. If you declare 10,000 array locations at compilation time, at least
9,950 array locations will be wasted most of the time.

 We can avoid both of the previous cases by allocating a larger—or smaller—
array during execution. The next C++ Interlude will show you how.

112 CHAPTER 3 Array-Based Implementations

 3.3 Using Recursion in the Implementation
 The previous chapter gave several examples of how to use recursion to process an array. If you exam-
ine the defi nition of ArrayBag that we have just developed, you will see two loops that can be replaced
by recursion: One is in the public method getFrequencyOf , and the other is in the private method
getIndexOf . Let’s look at the details.

 3.3.1 The Method getIndexOf

 We begin with the private method that searches the array for a given entry. The iterative defi nition
examines each entry in the array one at a time in sequential order until it either fi nds the desired one or
reaches the end of the array without success. Suppose that searchIndex is the index of the next array
element to examine. We have two base cases:

• If items[searchIndex] is the entry we seek, we are done.
• If searchIndex equals itemCount , we are done, because the entry is not in the array.

 The recursive step is to search the rest of the array beginning with items[searchIndex + 1] .
 To accomplish this recursion, getIndexOf needs searchIndex as a parameter. Since the method

is private, we need not defi ne yet another private method for it to call. However, we must revise its
declaration in the header fi le as follows:

 int getIndexOf(const ItemType&target, int searchIndex) const;

 We then can write the following recursive defi nition for this method:

 template<class ItemType>
 int ArrayBag<ItemType>::getIndexOf(const ItemType& target, int searchIndex) const
{

int result = -1;
if (searchIndex < itemCount)

 {
if (items[searchIndex] == target)

 {
 result = searchIndex;
 }

else
 {

 result = getIndexOf(target, searchIndex + 1);
 } // end if
 } // end if

return result;
 } // end getIndexOf

 Because we have changed the header of the method, we need to locate and change the calls to
getIndexOf within the other methods of ArrayBag . Thus, we will change the calls within the methods
remove and contains from

 getIndexOf(anEntry);

 to

 getIndexOf(anEntry, 0);

 Using Recursion in the Implementation 113

 3.3.2 The Method getFrequencyOf

 The method getFrequencyOf also searches an array, much as getIndexOf does, but unlike
getIndexOf , getFrequencyOf must examine every entry in the array. That is, the search does not end
if an array entry matches the entry we seek.

 Suppose that searchIndex is the index of the next array element to examine. A recursive defi ni-
tion for this search has only one base case: If searchIndex equals itemCount , we are done. However,
we have two recursive steps:

• If items[searchIndex] is the entry we seek, the frequency of occurrence of this entry is one
more than its frequency of occurrence in the rest of the array.

• If items[searchIndex] is not the entry we seek, the frequency of occurrence of the entry is
the same as its frequency of occurrence in the rest of the array.

 Just as we had to add another parameter to getIndexOf , the recursive method here needs
searchIndex as a parameter. However, getFrequencyOf is a public method, so we cannot change its
signature. Instead, getFrequencyOf must call a private method that accomplishes the recursive
search. Thus, let’s add the following declaration to the private portion of the header fi le:

 int countFrequency(const ItemType& target, int searchIndex) const;

 The method of getFrequencyOf simply calls this private method, so its defi nition is as follows:

 template<class ItemType>
 int ArrayBag<ItemType>::getFrequencyOf(const ItemType& anEntry) const
{

return countFrequency(anEntry, 0);
 } // end getFrequencyOf

 The recursive defi nition of the private method countFrequency is

 template<class ItemType>
 int ArrayBag<ItemType>::countFrequency(const ItemType& target,

int searchIndex) const
{

if (searchIndex < itemCount)
 {

if (items[searchIndex] == target)
 {

return 1 + countFrequency(target, searchIndex + 1);
 }

else
 {

return countFrequency(target, searchIndex + 1);
 } // end if

 }
else

return 0; // Base case
 } // end countFrequency

 Stylistically, we prefer to have only one exit from a method. To revise countFrequency so that it
has one return statement instead of three, we defi ne a local variable, frequency , to contain the return
value. The method then has the following defi nition. Note that the base case is implicit.

 template<class ItemType>
 int ArrayBag<ItemType>::countFrequency(const ItemType& target,

int searchIndex) const

114 CHAPTER 3 Array-Based Implementations

 {
int frequency = 0;
if (searchIndex < itemCount)

 {
if (items[searchIndex] == target)

 {
 frequency = 1 + countFrequency(target, searchIndex + 1);
 }

else
{

 frequency = countFrequency(target, searchIndex + 1);
 } // end if

} // end if

return frequency;
 } // end countFrequency

1. By using a class to implement an ADT, you encapsulate the ADT’s data and operations. In this way, you can
hide implementation details from the program that uses the ADT. In particular, by making the class’s data
members private, you can change the class’s implementation without affecting the client.

2. Given an interface that specifi es an ADT in an implementation-independent way, derive a class from the inter-
face and declare the class within a header fi le. Choose a data structure to contain the ADT’s data. Then imple-
ment the class’s methods within an implementation fi le.

3. You should make a class’s data members private so that you can control how a client can access or change the
data.

4. An array-based implementation of an ADT stores the ADT’s data in an array.

5. Generally, you should not defi ne an entire class and then attempt to test it. Instead, you should identify a group
of core methods to both implement and test before continuing with the rest of the class defi nition.

6. Stubs are incomplete defi nitions of a class’s methods. By using stubs for some methods, you can begin testing
before the class is completely defi ned.

7. A client must use the operations of an ADT to manipulate the ADT’s data.

 EXERCISES

1. Consider a bag of integers. Write a client function that computes the sum of the integers in the bag aBag .

2. Write a client function replace that replaces a given item in a given bag with another given item. The function
should return a boolean value to indicate whether the replacement was successful.

3. The previous exercise describes the function replace . This operation exists outside of the ADT bag; that is, it is
not an ADT bag operation. Instead, its implementation is written in terms of the ADT bag’s operations.

 a. What is an advantage and a disadvantage of the way that replace is
implemented?

b. What is an advantage and a disadvantage of adding the operation replace to the ADT bag?

 SUMMARY

 Programming Problems 115

 PROGRAMMING PROBLEMS

4. Design and implement an ADT that represents a rectangle. Include typical operations, such as setting and
retrieving the dimensions of the rectangle, and fi nding the area and the perimeter of the rectangle.

5. Design and implement an ADT that represents a triangle. The data for the ADT should include the three sides
of the triangle but could also include the triangle’s three angles. This data should be in the private section of the
class that implements the ADT.

 Include at least two initialization operations: one that provides default values for the ADT’s data, and
another that sets this data to client-supplied values. These operations are the class’s constructors. The ADT also
should include operations that look at the values of the ADT’s data; change the values of the ADT’s data; com-
pute the triangle’s area; and determine whether the triangle is a right triangle, an equilateral triangle, or an
isosceles triangle.

6. Write a recursive array-based implementation of the method toVector for the class ArrayBag .

7. Write a client function that merges two bags into a new third bag. Do not destroy the original two bags.

8. Specify and defi ne a method for ArrayBag that removes a random entry from the bag.

9. Add a constructor to the class ArrayBag that creates a bag from a given array of entries.

1. Design and implement an ADT that represents the time of day. Represent the time as hours and minutes on a
24-hour clock. The hours and minutes are the private data members of the class that implements the ADT.
Include at least two initialization operations: one that provides a default value for the time, and another that sets
the time to a client-supplied value. These operations are the class’s constructors. Also include operations that
set the time, increase the present time by a number of minutes, and display the time in 12-hour and 24-hour
notations.

2. Design and implement an ADT that represents a calendar date. You can represent a date’s month, day, and year
as integers (for example, 4/1/2014). Include operations that advance the date by one day and display the date by
using either numbers or words for the months. As an enhancement, include the name of the day.

3. Design and implement an ADT that represents a price in U.S. currency as dollars and cents. After you complete
the implementation, write a client function that computes the change due a customer who pays x for an item
whose price is y .

4. Design and implement an ADT that represents a bank account. The data of the ADT should include the cus-
tomer name, the account number, and the account balance. The initialization operation should set the data to
client-supplied values. Include operations for a deposit and a withdrawal, the addition of interest to the balance,
and the display of the statistics of the account.

5. Add the methods union , intersection , and difference to the class ArrayBag . Exercises 6, 7, and 8 of
Chapter 1 describe these operations.

6. Implement the ADT set that you specifi ed in Programming Problem 5 of Chapter 1 by using an array.

7. Implement the ADT pile that you specifi ed in Programming Problem 6 of Chapter 1 by using an array.

8. Implement the ADT polynomial that Exercise 9 in Chapter 1 describes by using an array.

116 CHAPTER 3 Array-Based Implementations

9. Implement the ADT appointment book, described in Section 1.4.1 of Chapter 1 . Write a program that demon-
strates your new class.

10. Specify and implement an ADT for fractions. Provide operations that add, subtract, multiply, and divide these
numbers. The results of all arithmetic operations should be in lowest terms, so include a private method reduc-
eToLowestTerms. Exercise 23 in Chapter 2 will help you with the details of this method. To simplify the deter-
mination of a fraction’s sign, you can assume that the denominator of the fraction is positive.

11. Specify and implement an ADT for mixed numbers, each of which contains an integer portion and a fractional
portion in lowest terms. Assume the existence of the ADT fraction, as described in the previous problem. Pro-
vide operations that add, subtract, multiply, and divide mixed numbers. The results of all arithmetic operations
should have fractional portions that are in lowest terms. Also include an operation that converts a fraction to a
mixed number.

12. Implement the ADT recipe book as described in Section 1.4.2 of Chapter 1 . In doing so, implement the ADT
measurement. Add operations as necessary. For example, you should add an operation to the recipe book to
scale a recipe.

13. You can use either a set or a bag to create a spell checker. The set or bag serves as a dictionary and contains a
collection of correctly spelled words. To see whether a word is spelled correctly, you see whether it is contained
in the dictionary. Use this scheme to create a spell checker for the words in an external fi le. To simplify your
task, restrict your dictionary to a manageable size.

14. Repeat the previous project to create a spell checker, but instead place the words whose spelling you want to
check into a bag. The difference between the dictionary (the set or bag containing the correctly spelled words)
and the bag of words to be checked is a bag of incorrectly spelled words.

 Pointers,
Polymorphism, and
Memory Allocation 2

 Contents
 C2.1 Memory Allocation for Variables and Early Binding of Methods 118
 C2.2 A Problem to Solve 118
 C2.3 Pointers and the Program’s Free Store 120

 C2.3.1 Deallocating Memory 122
 C2.3.2 Avoiding Memory Leaks 123
 C2.3.3 Avoiding Dangling Pointers 127

 C2.4 Virtual Methods and Polymorphism 128
 C2.5 Dynamic Allocation of Arrays 130

 C2.5.1 A Resizable Array-Based Bag 131

 Prerequisites
 Chapter 3 Array-Based Implementations

This C++ Interlude discusses memory allocation for variables and arrays and
introduces you to pointers to complete the discussion on polymorphism begun in the
fi rst C++ Interlude. Pointers are a powerful tool for the programmer, but you must be
careful to use them correctly. This interlude explains the need for pointers and shows
when and how to safely use them. Certain aspects of pointers are not covered in this
interlude, but those features either are unnecessary in this textbook or introduce unsafe
practices.

 We will introduce memory allocation during execution instead of compilation and
show how pointers are involved with this process. We will also discuss how to create a
new and larger array during execution, if an array becomes full. You will see examples
of this process at the end of this interlude.

 Throughout our discussion here, and throughout the book, we will stress safe and
secure programming practices. To begin our discussion, let’s consider how memory is
allocated for local variables and parameters.

 C++
Interlude

118 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 C2.1 Memory Allocation for Variables and
Early Binding of Methods

 When you declare an ordinary variable x to have the data type int , the C++ compiler allocates a
memory cell that can hold an integer. You use the identifi er x to refer to this cell. To put the value 5 in
the cell, you could write

 int x = 5;

 To display the value that is in the cell, you could write

 cout << "The value of x is " << x << endl;

 As discussed in Chapter 2 , a function’s locally declared variables such as x are placed into
an activation record with its parameters and some bookkeeping data. These activation records
are stored in an area of your application’s memory called the run-time stack . Each time a
function is called, an activation record is automatically created on the run-time stack. When
the function ends, the activation record is destroyed, freeing the memory used for the local
variables and parameters. At that point, the function’s local variables and their values are
no longer accessible to your program. Your program then returns to where the function was
invoked and executes the statement following the function call. This behavior is the same
for methods.

 When you create an object, the storage for the data members of that object are also placed into an
activation record for the currently executing function or method. The statements

 PlainBox<string> myPlainBox;
MagicBox<string> myMagicBox = MagicBox<string>();

 show two different ways of invoking default constructors to create instances of PlainBox and
MagicBox , respectively. When these objects are instantiated, their data fi elds are placed on the run-
time stack just as primitive data types are. Recall from C++ Interlude 1 that the names of those data
fi elds are item and firstItemStored .

 The compiler also knows that if you invoke the setItem method on these objects by writing

 myPlainBox.setItem("Fun Item");
myMagicBox.setItem("Secret Item");

 the PlainBox version of the setItem method should be called for myPlainBox , and the MagicBox ver-
sion of the setItem method should be called for myMagicBox . This choice, which is an example of
early binding , is made during compilation and cannot be altered during execution.

 Most of the time, this automatic memory management and early binding are all you need in your
program. However, two situations can arise when they are not:

• You want to take advantage of polymorphism.
• You must access an object outside of the function or method that creates it.

 C2.2 A Problem to Solve
 Suppose your friend was so impressed with your work on the three boxes discussed in C++ Interlude 1
that she asked you to continue helping with the video game. She would like you to write a function
that takes two arguments: an object of any of the three types of boxes and an item of type string . The
function should place the item in the box by invoking the box’s setItem method.

Two situations when
automatic memory
management and
early binding are
insuffi cient

 A Problem to Solve 119

 Since ToyBox and MagicBox are derived from PlainBox , as Figure C2-1 illustrates, you may
think that the following function defi nition would suffi ce:

 void placeInBox(PlainBox<string>& theBox, string theItem)
 {
 theBox.setItem(theItem);
} // end placeInBox

 The parameter theBox can accept as an argument any PlainBox object or an object of a
class derived from PlainBox . This function could then be used in the following sequence of
statements:

 string specialItem = "Riches beyond compare!";
string otherItem = "Hammer";

PlainBox<string> myPlainBox;
placeInBox(myPlainBox, specialItem);

MagicBox<string> myMagicBox;
placeInBox(myMagicBox, otherItem);
placeInBox(myMagicBox, specialItem); // specialItem is stored!

cout << myMagicBox.getItem() << endl; // "Riches beyond compare!"

 Although this code compiles, it does not perform as you would expect. Since otherItem has
already been stored in the magic box, specialItem should not replace that item. Unfortunately, when
the item stored in the magic box is displayed, the output is Riches beyond compare. The reason is
that, in our function, the statement

 theBox.setItem(theItem);

 invokes the PlainBox version of the setItem method instead of the MagicBox version. In this
case, the compiler determined the version of the method to invoke from the type of the parameter
theBox instead of from the type of its corresponding argument. The following set of statements has a
similar result:

 string specialItem = "Riches beyond compare!";
string otherItem = "Hammer";

An example of early
binding

FIGURE C2-1 UML class diagram for a family of classes

BoxInterface

PlainBox

ToyBox MagicBox

Another example of
early binding

120 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

PlainBox<string> mySpecialBox = MagicBox<string>();
 mySpecialBox.setItem(otherItem);
mySpecialBox.setItem(specialItem); // specialItem is stored!

cout << mySpecialBox.getItem() << endl; // "Riches beyond compare!"

 In both situations, the version of setItem that will be called is determined when the program is
compiled. In this second case, even though we instantiated a MagicBox object for mySpecialBox , the
variable mySpecialBox is of type PlainBox , so the PlainBox version of setItem is called. The same
decision logic applies to our function placeInBox .

 This code is correct from the compiler’s perspective. The compiler assumes it is our intent to
have the parameter theBox and the variable mySpecialBox behave as PlainBox objects. We need a
way to communicate to the compiler that the code to execute should not be determined until the pro-
gram is running. This is called late binding , which is an aspect of polymorphism. To solve this prob-
lem and have both our function and simple-code examples execute as we intend, we need two tools:
pointer variables and virtual methods.

 C2.3 Pointers and the Program’s Free Store
 To take advantage of late binding, we do not want our objects to be in an activation record on the run-
time stack. We need another location. When a C++ program begins execution, in addition to the run-
time stack, the operating system sets aside memory for the code—called code storage or text
storage —and for any global variables and static variables—called static storage . Your program is
also given extra memory, called the heap , or free store , which a programmer can use to store data.
 Figure C2-2 illustrates these portions of memory.

 We allocate memory for a variable on the free store by using the new operator . After allocating
memory for the variable, the new operator returns the memory address of the variable in the free store
so the program can use it. This memory address must be placed in a special type of variable called a
pointer variable , or simply a pointer . A pointer variable contains the location, or address in mem-
ory, of a memory cell.

FIGURE C2-2 Sample program memory layout

Run-time stack

Free store
(Heap)

Static storage

Code storage

The new operator
allocates memory
on the free store

VideoNote

C++ memory
allocation

 Pointers and the Program’s Free Store 121

 Unlike variables on the run-time stack, which have their memory allocated and deallocated auto-
matically, variables placed in the free store persist in memory even when the function or method that
created them ends. This means that when a programmer allocates memory from the free store for a
variable, the programmer has the responsibility to deallocate that memory when the variable is no
longer needed. Failure to do so often results in a memory leak . A memory leak is memory that has
been allocated for use but is no longer needed and cannot be accessed or deallocated.

 To indicate that a variable is a pointer, we place the character * after the type of the data the
pointer references. 1 For example, the statement

 MagicBox<string>* myBoxPtr = new MagicBox<string>();

 creates a MagicBox object in the free store and places the address of the object in the local variable
myBoxPtr . We say that myBoxPtr points to a MagicBox object. To call a method of an object that is in
the free store, we use the notation -> :

 string someItem = "Something Free";
 myBoxPtr->setItem(someItem);

 Figure C2-3 shows the state of memory and the local variables after the previous statements
execute.

 Observe that this newly created object has no programmer-defi ned name. The only way to access
its methods is indirectly via the pointer that new creates, that is, by using myBoxPtr-> as in the previ-
ous example. Usually we will simplify the diagrams so that only the object in the free store and its
pointer are drawn, as in Figure C2-4 .

If you allocate
memory on the free
store, you eventually
must deallocate it

 1 Some programmers place the * next to the name of the variable. The authors of this textbook believe placing the * next to the
data type more clearly shows that the variable is of a pointer type.

Indicate a pointer
type by writing an
asterisk after the
data type

FIGURE C2-3 Run-time stack and free store after myboxPtr points to a MagicBox object and its
data member item is set

MagicBox<string>* myBoxPtr = new MagicBox<string>();

someItem myBoxPtr

"Something"

item

"Something"

MagicBox objectActivation record

Free store (heap)Run-time stack

Creates variables on the run-time stack

string someItem = "Something";

myBoxPtr->setItem(someItem);

Creates an object in the free store

Sets the value of the field item

122 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 Pointer variables are simply another type of variable and follow the same rules as other variable
types. For example, if you declare a pointer variable that points to a ToyBox<string> object, you can
have it point only to ToyBox<string> objects, not MagicBox<string> objects or ToyBox<double>
objects, as the following statements illustrate:

 ToyBox<string>* toyPtr = new ToyBox <string>(); // OK
ToyBox<string>* boxPtr = new MagicBox<string>(); // Error!
ToyBox<string>* somePtr = new ToyBox <double>(); // Error!

 If you have two pointer variables that can point to the same type of object, you can make them
point to the same object by using the assignment operator =. For example, the statement

 somePtr = toyPtr;

 makes the variable somePtr point to the same ToyBox object to which toyPtr points. In
such cases, it is helpful to think of the assignment operator as copying the value stored within
the pointer variable on its right into the pointer variable on its left. Since pointers store addresses
of objects, the value copied is the location of an object in the free store. The object itself is
not copied. The result is that both pointer variables point to the same object, as shown in
 Figure C2-5 .

 If you declare a pointer variable but do not immediately create an object for it to reference, you
should set the pointer to nullptr . An assignment like the following one is necessary because C++
does not initialize the pointer for you:

 ToyBox<int>* myToyPtr = nullptr ;

FIGURE C2-4 myBoxPtr and the object to which it points

myBoxPtr
Object

FIGURE C2-5 Two pointer variables that point to the same object

toyPtr

Object

somePtr

 C2.3.1 Deallocating Memory

 When the memory to which a pointer variable points is no longer needed, you deallocate it by using
the delete operator. You should then set the pointer variable to nullptr as a signal that it no longer
references or points to an object:

 delete somePtr;
somePtr = nullptr ;

 Pointers and the Program’s Free Store 123

If you use the new
operator to allocate
memory, you must
use the delete
operator to
deallocate it

 If we did not set somePtr to nullptr in this example, somePtr would be an example of a dangling
pointer , because it would still contain the address of an object that was deallocated. Dangling point-
ers can be the source of serious errors.

 Always remember that if a method of a class uses new to create an object, some method of the
class must use delete eventually to free the object’s memory. It is a characteristic of safe and secure
programming that any object allocating memory from the free store also assumes responsibility to
deallocate that memory when it is no longer needed.

 Pointers give the programmer a great amount of control over how memory is used and when
binding occurs, as we will discuss shortly. They also can create severe problems and hard-to-fi nd bugs
if not properly used. The two most common errors involving pointers are the memory leak and the
dangling pointer, as presented in this section. Let’s look at how these problems can occur in a program
so that you can prevent them in your code.

 C2.3.2 Avoiding Memory Leaks

 Memory leaks occur when an object has been created in the free store, but the program no longer has
a way to access it. Because the object cannot be accessed, it cannot be deleted and so takes up mem-
ory, even though it cannot be used. A program can quickly run out of memory and crash if it has sev-
eral memory leaks. Even a single statement that is called multiple times can cause a memory leak.

 Consider the following statements:

 MagicBox<string>* myBoxPtr = new MagicBox<string>();
MagicBox<string>* yourBoxPtr = new MagicBox<string>();
yourBoxPtr = myBoxPtr; // Results in inaccessible object

 Figure C2-6 traces the execution of these statements. Eventually, yourBoxPtr points to the same
object as myBoxPtr , and so the object to which yourBoxPtr originally pointed is no longer accessible,
resulting in the memory leak shown in part c of the fi gure.

 To prevent this leak, we should not create the second object. Instead, either initialize yourBoxPtr
to nullptr or simply set it to myBoxPtr :

 MagicBox<string>* myBoxPtr = new MagicBox<string>();
MagicBox<string>* yourBoxPtr = myBoxPtr;

 A more subtle memory leak occurs when a function or method creates an object in the free store
and loses the pointer to it by either not returning that pointer to the caller or not storing it in a class
data member. That is what happens in the function given in Listing C2-1.

 LISTING C2-1 Poorly written function that allocates memory in the free store

 void myLeakyFunction(const double& someItem)
 {
 ToyBox<double>* someBoxPtr = new ToyBox< double >();

someBoxPtr->setItem(someItem);
} // end myLeakyFunction

 The parameter someItem and the pointer someBoxPtr are both stored in an activation record on
the run-time stack and so are automatically destroyed after the function ends. The object created in
the free store by new ToyBox<double>(RED) is still in the free store. Since the only reference we had
to it was someBoxPtr and that has been destroyed, we no longer have a way to get to that object, and so
we have a memory leak.

124 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 We have several options to fi x this function. The fi rst is to delete the object before the function
terminates. We can do this by adding the lines

 delete someBoxPtr;
 someBoxPtr = nullptr ;

 at the end of the function. If the ToyBox object pointed to by someBoxPtr is needed only by this func-
tion, a better implementation choice would have been to not allocate memory from the free store, but
to use a local variable such as is done in the following statements:

 ToyBox< double> someBox(); // someBox is not a pointer variable
 someBox.setItem(someItem);

 If the object created in this function is required outside the function, the function can return a
pointer to it so that the caller can access the object. To implement this option, we would change the
function’s return type from void to ToyBox<double>* and return someBoxPtr , which is a pointer to a
ToyBox<double> object. The resulting function defi nition is

 ToyBox< double>* pluggedLeakyFunction(const double& someItem)
 {
 ToyBox< double>* someBoxPtr = new ToyBox<double>();
 someBoxPtr->setItem(someItem);

return someBoxPtr;
} // end pluggedLeakyFunction

FIGURE C2-6 (a) Creating the fi rst object; (b) creating the second object; (c) assignment
causes an inaccessible object

myBoxPtr

Object

MagicBox<string>* myBoxPtr = new MagicBox<string>();(a)

(c)

yourBoxPtr

Object

MagicBox<string>* yourBoxPtr = new MagicBox<string>();(b)

yourBoxPtr = myBoxPtr;

myBoxPtr

Object

yourBoxPtr

Inaccessible object
in free store

(memory leak)

 Pointers and the Program’s Free Store 125

To prevent a
memory leak, do not
use a function to
return a pointer to a
newly created object

 You could call this function by writing statements such as

 double boxValue = 4.321;
 ToyBox< double>* toyPtr = pluggedLeakyFunction(boxValue);

 Now toyPtr points to the object created by the ToyBox constructor in pluggedLeakyFunction . When a
function returns a pointer to an object that it created in the free store, the segment of the program using
that pointer must take responsibility for deleting the object. Otherwise, a memory leak could still occur.
When documenting such a function, you should add comments to indicate this responsibility. For
example, you could precede the defi nition of pluggedLeakyFunction with these comments:

 /** Creates an object in the free store and returns a pointer
 to it. Caller must delete the object when it is no longer
 needed. */

 Of course, this comment does not prevent a memory leak, but it alerts users of your function about the
potential for a leak. The function could still be misused and called with a statement such as

 pluggedLeakyFunction(boxValue); // Misused; returned pointer is lost

 in which case the returned pointer to the object in the free store is lost and a memory leak occurs.
 The best option for preventing a memory leak is to not use a function to return a pointer to a

newly created object. Instead, you should defi ne a class that has a method for this task. The class
takes responsibility for deleting the object in the free store and ensures that there is no memory
leak. At a minimum, such a class will have three parts: a method that creates the object in the
free store, a data fi eld that points to the object, and a method—the destructor — that deletes the
object when the class instance is no longer needed. Although C++ Interlude 1 introduced class
destructors, we must say more about them now.

 Every C++ class has a destructor that has the same name as the class, but is preceded by the tilde
(~) character. For objects that are local variables, the destructor is called when the activation record
containing the object is removed from the run-time stack. If the object was created using new and is
stored in the free store, the destructor is called when the client uses the operator delete to free the
memory allocated to the object.

 Often, the compiler-generated destructor is suffi cient for a class, but if the class itself creates an
object on the free store by using the new operator, it is a safe and secure programming practice to
implement a destructor to ensure that the memory for that object is freed.

 Listing C2-2 gives the header fi le for a GoodMemory class that demonstrates how to avoid a mem-
ory leak. The pointer variable in our previous function pluggedLeakyFunction is now a data fi eld in
GoodMemory . As long as this fi eld points to an existing object in the free store, we will have access to
the object.

 LISTING C2-2 Header fi le for the class GoodMemory

 /** @file GoodMemory.h */
#include <string>
#include "ToyBox.h"
 using namespace std;

 class GoodMemory
 {

(continues)

126 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 private :
 ToyBox<string>* someBoxPtr;
 public :
 GoodMemory(); // Default constructor
 ~GoodMemory(); // Destructor

void fixedLeak(const double& someItem);
 }; // end GoodMemory

 Because the class GoodMemory has a pointer variable for a data fi eld, we should defi ne a
default constructor to initialize the pointer to nullptr . The destructor for this class simply needs
to delete the object to which the pointer points. Listing C2-3 shows the implementation fi le for
this class.

LISTING C2-3 Implementation fi le for the class GoodMemory

 /** @file GoodMemory.cpp */
#include "GoodMemory.h"

GoodMemory::GoodMemory() : someBoxPtr(nullptr)
 {
} // end default constructor

 GoodMemory::~GoodMemory()
 {
 delete someBoxPtr;
} // end destructor

 void GoodMemory::fixedLeak(const double& someItem)
 {
 someBoxPtr = new ToyBox< double >();
 someBoxPtr->setItem(someItem);
} // end fixedLeak

 Unlike the original function myLeakyFunction , as presented in Listing C2-1, the following client
function uses the class GoodMemory to guarantee that no memory leak occurs:

 void goodFunction()
 {
 double boxValue = 4.321; // Original statement
 GoodMemory gmObject; // Create a safe memory object
 gmObject.fixedLeak(boxValue); // Perform the task
} // end goodFunction

 The compiler greatly helps us here. First, the compiler can check to ensure that a GoodMemory
object has been created before calling the method fixedLeak . This guarantees a safe memory alloca-
tion and deallocation. Then, since the variable gmObject is a local variable, the compiler automati-
cally calls the GoodMemory destructor when execution of the function goodFunction ends. Thus, the
memory allocated in the free store is freed.

 Pointers and the Program’s Free Store 127

 C2.3.3 Avoiding Dangling Pointers

 As mentioned earlier, a dangling pointer is a pointer variable that no longer references a valid object.
Four situations can cause dangling pointers, but we will cover only three of them because we consider
the fourth one to be an unsafe practice. 2

• As Section C2.3.1 discusses, if you do not set a pointer variable to nullptr after using delete ,
you leave the pointer dangling.

• Similarly, if you declare a pointer variable but do not assign it a value, the result is a dangling
pointer. As with any C++ variable, when C++ creates a pointer variable, its value is unde-
fi ned. That is, C++ does not automatically initialize or clear the memory that a variable
represents. The compiler and the programmer have no way to check that the value in the
pointer variable actually points to an object in the free store. That value might simply be
whatever was in the memory when the pointer was created. For example, suppose that you
write statements such as

 MagicBox< int>* myMagicBoxPtr;
 myMagicBoxPtr->getItem();

 Here, the pointer variable myMagicBoxPtr is not assigned an object to point to. When the
method getItem is called, the program will abort—usually with a segment fault error—
because the program treats the value in myMagicBoxPtr as the address of a MagicBox<int>
object and tries to fi nd the getItem method at that address. Since it is very unlikely that a
MagicBox<int> object happens to be there, the program ends abnormally.

 If you need to create a pointer variable but do not have an object for it to point to, you
should always set it to nullptr :

MagicBox<int>* myMagicBoxPtr = nullptr ;

Then your code can compare the pointer variable to nullptr to see whether it points to a
valid object on the free store, as in the following example:

 if (myMagicBoxPtr != nullptr)
 myMagicBoxPtr->getItem();

 If the pointer is not nullptr , you can use the pointer to call a method.
• The third situation that can cause a dangling pointer is subtle, and the best way to guard against

it is careful programming. Consider the following statements that we saw earlier when dis-
cussing memory leaks:

 MagicBox<string>* myBoxPtr = new MagicBox<string>();
MagicBox<string>* yourBoxPtr = myBoxPtr;

 Executing this code results in the memory confi guration shown in Figure C2-7 , where both
yourBoxPtr and myBoxPtr point to the same object. We say that yourBoxPtr is an alias of
myBoxPtr since they both refer to the same object. There is nothing wrong with this code so
far, and it does not have any memory leaks.

 Suppose we then execute the following statements:

 delete myBoxPtr;
myBoxPtr = nullptr ;
 yourBoxPtr->getItem();

 2 We do not use & as the “address of ” operator in this textbook. As a result, pointer variables can be assigned only to variables
in the free store, so a function cannot return a pointer to a local variable that no longer exists.

Situations that can
cause a dangling
pointer

128 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 Here we try to practice safe and secure programming by setting myBoxPtr to nullptr after delet-
ing the object that it points to. But the call yourBoxPtr->getItem() results in the program
aborting. What happened? Figure C2-8 shows the state of memory just prior to this call. As you
can see, the object pointed to by myBoxPtr was deleted, as it should have been. The problem
arises because yourBoxPtr still references the object’s location in the free store, even though the
object no longer exists. Since the object no longer exists, yourBoxPtr is a dangling pointer and
the program aborts when we try to call a method on that object.

Programming Tip: How to avoid dangling pointers

 • Set pointer variables to nullptr either initially or when you no longer need them. If a
class has a pointer variable as a data fi eld, the constructor should always initialize that
data fi eld, to point either to an object or to nullptr . The class GoodMemory in Listing
C2-3 demonstrates this safeguard.

 • Test whether a pointer variable contains nullptr before using it to call a method.
 • Try to reduce the use of aliases in your program. As you will see, that is not always

possible or desirable in certain situations.
 • Do not delete an object in the free store until you are certain that no other alias needs to

use it.
 • Set all aliases that reference a deleted object to nullptr when the object is deleted.

FIGURE C2-7 Two pointers referencing (pointing to) the same object

myBoxPtr

Object

yourBoxPtr

FIGURE C2-8 Example of a dangling pointer

myBoxPtr

nullptr

yourBoxPtr

 C2.4 Virtual Methods and Polymorphism
 Now that we have some of the basics of pointers behind us, we can dive into the implementation of
polymorphism. To allow the compiler to perform the late binding necessary for polymorphism, you
must declare the methods in the base class as virtual. In C++ Interlude 1, we began a discussion of

 Virtual Methods and Polymorphism 129

An example of late
binding

virtual methods—methods that use the keyword virtual to indicate that they can be overridden.
In the example in Section C2.2, PlainBox is the base class, which we defi ned in Listing C1-3 of
C++ Interlude 1. The code that we wrote then did not behave as we desired. To correct that problem, we
must declare as virtual the methods of PlainBox that we want other classes to override, as Listing C2-4
shows. Notice that only the header fi le of the base class (PlainBox) needs to be revised. Declaring
the methods setItem and getItem as virtual makes it possible for the method code to be bound
late.

 LISTING C2-4 Revised header fi le for the class PlainBox

 /** @file PlainBox.h */
#ifndef _PLAIN_BOX
 #define _PLAIN_BOX

 template < class ItemType> ; // Indicates this is a template

// Declaration for the class PlainBox
 class PlainBox
 {
 private :

// Data field
 ItemType item;

 public :
// Default constructor

 PlainBox();

// Parameterized constructor
 PlainBox(const ItemType& theItem);

// Mutator method that can change the value of the data field
 virtual void setItem(const ItemType& theItem);

// Accessor method to get the value of the data field
 virtual ItemType getItem() const ;
 }; // end PlainBox

#include "PlainBox.cpp" // Include the implementation file
 #endif

 To fully implement late binding, we must create the variables in the free store and use pointers to
reference them. Thus, we must also change the code from our fi rst example of early binding in
Section C2.2 to

 string specialItem = "Riches beyond compare!";
string otherItem = "Hammer";

PlainBox<string>* myPlainBoxPtr = new PlainBox<string>();
placeInBox(myPlainBoxPtr, specialItem);

MagicBox<string>* myMagicBoxPtr = new MagicBox<string>();
placeInBox(myMagicBoxPtr, otherItem);
placeInBox(myMagicBoxPtr, specialItem);

cout << myMagicBoxPtr->getItem() << endl;

130 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 Next, we must change the function placeInBox to accept a pointer to a PlainBox<string> object:

 void placeInBox(PlainBox<string>* theBox, string theItem)
 {
 theBox->setItem(theItem);
 } // end placeInBox

 The last change is to free the memory used by the variables in the free store by adding the following
statements to the program:

 delete myPlainBoxPtr;
myPlainBoxPtr = nullptr ;
 delete myMagicBoxPtr;
myMagicBoxPtr = nullptr ;

 Our function placeInBox now will call the correct version of setItem according to the type of box
pointed to by its fi rst argument.

 The use of virtual methods has a signifi cant impact on the future use of a class. Imagine that you
had compiled the class PlainBox and its implementation before you wrote the derived class
MagicBox . If you then wrote MagicBox , assuming access to the compiled class PlainBox , you could
override getItem because it is virtual in PlainBox . As a result, you would change the behavior of
getItem for instances of MagicBox , even though PlainBox was already compiled. That is, classes that
defi ne virtual methods are extensible : You can add capabilities to a derived class without having
access to the ancestor’s source statements.

Note: Key points about virtual methods

• A virtual method is one that a derived class can override.
• You must implement a class’s virtual methods. (Pure virtual methods are not included

in this requirement.)
• A derived class does not need to override an existing implementation of an inherited

virtual method.
• Any of a class’s methods may be virtual. However, if you do not want a derived class to

override a particular method, the method should not be virtual.
• Constructors cannot be virtual.
• Destructors can and should be virtual. Virtual destructors ensure that future descend-

ants of the object can deallocate themselves correctly.
• A virtual method’s return type cannot be overridden.

An ordinary C++
array is statically
allocated

 C2.5 Dynamic Allocation of Arrays
 When you declare an array in C++ by using statements such as

 const int MAX_SIZE = 50;
 double myArray[MAX_SIZE];

 the compiler reserves a specifi c number— MAX_SIZE , in this case—of memory cells for the array. This
memory allocation occurs before your program executes, so it is not possible to wait until execution
to give MAX_SIZE a value. We have already discussed the problem this fi xed-size data structure causes
when your program has more than MAX_SIZE items to place into the array.

 Dynamic Allocation of Arrays 131

 You just learned how to use the new operator to allocate memory dynamically—that is, during
program execution. Although Section C2.3 showed you how to allocate memory for a single variable
or object, you actually can allocate memory for many at one time. If you write

 int arraySize = 50;
 double* anArray = new double [arraySize];

 the pointer variable anArray will point to the fi rst item in an array of 50 items. Unlike MAX_SIZE ,
arraySize can change during program execution. You can assign a value to arraySize at execution
time and thus determine how large your array is. That is good, but how do you use this array?

 Regardless of how you allocate an array—statically, as in the fi rst example, or dynamically, as in
the second—you can use an index and the familiar array notation to access its elements. For example,
anArray[0] and anArray[1] are the fi rst two items in the array anArray .

 When you allocate an array dynamically, you need to return its memory cells to the system when
you no longer need them. As described earlier, you use the delete operator to perform this task. To
deallocate the array anArray , you write

 delete [] anArray;

 Note that you include brackets when you apply delete to an array.
 Now suppose that your program uses all of the array anArray , despite having chosen its size dur-

ing execution. You can allocate a new and larger array, copy the old array into the new array, and
fi nally deallocate the old array. Doubling the size of the array each time it becomes full is a reasonable
approach. The following statements double the size of anArray :

 double* oldArray = anArray; // Copy pointer to array
anArray = new double[2 * arraySize]; // Double array size

 for (int index = 0; index < arraySize; index++) // Copy old array
 anArray[index] = oldArray[index];

 delete [] oldArray; // Deallocate old array

 Subsequent discussions in this book will refer to both statically allocated and dynamically allo-
cated arrays. Our array-based ADT implementations will use statically allocated arrays for simplic-
ity. The programming problems will ask you to create array-based implementations that use
dynamically allocated arrays. We will refer to such arrays as resizable .

 2.5.1 A Resizable Array-Based Bag

 We can use a resizable array to implement the ADT bag so that the bag never becomes full—within
the bounds of the particular computer, of course. If we look at the header fi le for the class Array-
Bag , as given in Listing 3-1 of Chapter 3 , and the implementation of the various methods, we see
that only the add method needs to be changed. When the array—and hence the bag—becomes full,
add can double the capacity of the array instead of failing to add the item and returning false. The
revised method follows. Since the bag is never full, this version of the add method can always
return true.

 template < class ItemType>
 bool ArrayBag<ItemType>::add(const ItemType& newEntry)
 {

bool hasRoomToAdd = (itemCount < maxItems);
if (!hasRoomToAdd)

 {
 ItemType* oldArray = items;

Use the new
operator to allocate
an array dynamically

 delete returns a
dynamically
allocated array to
the system for reuse

You can increase
the size of a
dynamically
allocated array

132 C++ INTERLUDE 2 Pointers, Polymorphism, and Memory Allocation

 items = new ItemType[2 * maxItems];
for (int index = 0; index < maxItems; index++)

 items[index] = oldArray[index];
delete [] oldArray;

 maxItems = 2 * maxItems;
 } // end if
 // We can always add the item

 items[itemCount] = newEntry;
 itemCount++;

return true ;
} // end ResizableArrayBag add

 Doubling the array items each time the bag is full is not as attractive as it might fi rst seem. Each
time you expand the size of an array, you must copy its contents. When the array is a small 50-element
array, you copy the 50-element array to a 100-element array before completing the addition. The next
49 additions then can be made quickly without copying the array.

 If you have a 50,000-element array that is full, you must allocate memory for 100,000 entries
before copying the 50,000 entries in the current array. This takes considerably longer to do and a sig-
nifi cantly greater amount of memory. It is possible that you needed storage for only 50,001 entries
and will have 49,999 unused array elements wasting memory. Once you realize that your array is too
large, you could reduce its size by allocating a smaller array and copying the entries to this new array.
However, there is no way to predict whether or not you should do so. The application might need the
extra array elements in the future.

 In Chapter 4 , we consider another implementation of the ADT bag that does not have this
memory-allocation problem and that never becomes full.

 Chapter

 Link-Based
Implementations 4

 Contents
 4.1 Preliminaries 134

 4.1.1 The Class Node 136
 4.2 A Link-Based Implementation of the ADT Bag 137

 4.2.1 The Header File 138
 4.2.2 Defi ning the Core Methods 139
 4.2.3 Implementing More Methods 143

 4.3 Using Recursion in Link-Based Implementations 148
 4.3.1 Recursive Defi nitions of Methods in LinkedBag 148

 4.4 Testing Multiple ADT Implementations 150
 4.5 Comparing Array-Based and Link-Based Implementations 153

 Summary 154
 Exercises 155
 Programming Problems 156

 Prerequisites
 Chapter 1 Data Abstraction: The Walls
 C++ Interlude 1 C++ Classes
 Chapter 2 Recursion: The Mirrors (for Section 4.3)
 Chapter 3 Array-Based Implementations (incidental dependence)
 C++ Interlude 2 C++ Pointers, Polymorphism, and Memory Allocation

This chapter introduces you to a link-based data structure using C++ pointers, which
were described in C++ Interlude 2. You will learn how to work with such structures and
how to use one to implement a class of bags. The material in this chapter is essential to
much of the presentation in the chapters that follow.

134 CHAPTER 4 Link-Based Implementations

 4.1 Preliminaries
 Let’s consider components that can be linked to one another. Each component—usually called a
node —contains both a data item and a “pointer” to the next item. Because each node must contain
two pieces of information—the data item and a pointer to the next node—it is natural to conclude that
each node should be an object. One member of the object is the data item and the other is a pointer.
Typically, such pointers are C++ pointer variables.

FIGURE 4-1 A node

item next

"ab"

FIGURE 4-2 Several nodes linked together

"ab" "cd" "ef" "gh" "ij"

item nextitem nextitem next item next item next

nullptr

 1 An alternative notation, (*nodePtr).getItem() , is possible, but this book will not use it. Although this notation is
analogous to the use of the dot operator to reference the members of a named structure, the -> operator is more suggestive of
pointers.

 Figure 4-1 illustrates a single node, and Figure 4-2 shows several nodes linked together. Here, the
data portion of each node contains a string. We use arrows to represent the pointers, but what type of
pointer should you use within a node, and to what will it point? You might guess that the pointer
should point to a string, but actually it must point to a node that contains the string. Because pointers
can point to any data type except fi les—and since nodes are objects—pointers can, in fact, point to
nodes. Thus, a node of type Node , for example, will have as one of its members a pointer to another
node of type Node . For example, the statement

 Node<string>* nodePtr;

 defi nes a pointer variable nodePtr that can point to a node of type Node that contains a string as its
data item. Nodes should be dynamically allocated. For example,

 nodePtr = new Node<string>();

 allocates a node to which nodePtr points. To access the members of a node, you will need the ->
notation introduced in C++ Interlude 2, because the node does not have a user-defi ned name. Suppose
our class of nodes has an accessor method, getItem , that returns the value of the data member item .
To reference item in the node to which nodePtr points, you write nodePtr->getItem() .1 Likewise,
if our class of nodes has the method getNext to access the data member next , the expression nodePtr
->getNext() represents the pointer next . For example, if nodePtr points to the second node in Figure 4-2 ,

Defi ning a pointer to
a node

 Dynamically
allocating a node

Referencing a node
member

VideoNote

Linked chain
concepts

 Preliminaries 135

nodePtr->getItem() returns the string "cd" and nodePtr->getNext() returns a pointer to the third
node. We can save this new pointer in nodePtr itself by writing

 nodePtr = nodePtr->getNext();

 If we execute the previous statement again, nodePtr will point to the fourth node in Figure 4-2 .
Executing the statement one more time makes nodePtr point to the last node shown in Figure 4-2 . What
is the value of the member next in this last node? That is, what value does nodePtr->getNext() return?
We want this value to be a signal that we have reached the last of the linked nodes. If this value is
nullptr , we easily can detect when we have reached the end of the linked nodes.

 We have one more detail to consider: Nothing so far points to the fi rst node. If you cannot get to
the fi rst node, you cannot get to the second node; and if you cannot get to the second node, you cannot
get to the third node; and so on. The solution is to have an additional pointer whose sole purpose is to
point to the fi rst of several linked nodes. Such a pointer is called the head pointer or simply the head
of the data structure.

 Figure 4-3 illustrates a linked chain of nodes with a head pointer. Observe that the head pointer
headPtr is different from the other pointers in the diagram in that it is not within one of the nodes.
The variable headPtr simply enables you to access the chain’s beginning. What value should headPtr
contain if there are no nodes for it to point to? Assigning headPtr the value nullptr is a logical
choice in this case.

The head pointer
points to the fi rst
node

 If headPtr is
nullptr, it points
to nothing

FIGURE 4-3 A head pointer to the fi rst of several linked nodes

"ab" "cd" "ef" "gh" "ij"

headPtr item nextitem nextitem next item next item next

nullptr

 Note: Although all of the pointers shown in Figure 4-3 point to nodes, the head pointer
is a simple pointer variable, whereas the next members are within nodes.

 Programming Tip: It is a common mistake to think that before you can assign
headPtr a value, you fi rst must create a new Node object. This misconception is rooted in
the belief that the variable headPtr does not exist if it does not point to a node. This is not
at all true; headPtr is a pointer variable waiting to be assigned a value. Thus, for exam-
ple, you can assign nullptr to headPtr without fi rst using new . In fact, the sequence

 headPtr = new Node; // An incorrect use of new
headPtr = nullptr ;

 destroys the content of the only pointer— headPtr —to the newly created node, as
 Figure 4-4 illustrates. Thus, you have needlessly created a new node and then made it
inaccessible. This action creates a memory leak in your program and should be avoided!

136 CHAPTER 4 Link-Based Implementations

 4.1.1 The Class Node

 Before we continue, let’s examine the C++ code for the class Node . Listing 4-1 gives the header fi le
for the class. In addition to the data members item and next that we introduced earlier, the class
declares three constructors, two accessor methods—one each for item and next —and two mutator
methods—again one each for item and next . Notice that within this class, a pointer to a node has the
data type Node<ItemType>* .

FIGURE 4-4 A lost node

headPtr

?

headPtr = new Node<string>();

headPtr

?

headPtr = nullptr;

 LISTING 4-1 The header fi le for the template class Node

 /** @file Node.h */

#ifndef _NODE
#define _NODE

 template < class ItemType>
 class Node
 {
 private :
 ItemType item; // A data item
 Node<ItemType>* next; // Pointer to next node
 public :
 Node();
 Node(const ItemType& anItem);
 Node(const ItemType& anItem, Node<ItemType>* nextNodePtr);

void setItem(const ItemType& anItem);
void setNext(Node<ItemType>* nextNodePtr);

 ItemType getItem() const ;
 Node<ItemType>* getNext() const ;
}; // end Node
#include "Node.cpp"
 #endif

LISTING 4-2 The implementation fi le for the class Node

 /** @file Node.cpp */
#include "Node.h"
#include <cstddef>

 Listing 4-2 shows the implementation fi le for Node .

 A Link-Based Implementation of the ADT Bag 137

 4.2 A Link-Based Implementation of the ADT Bag
 Now that we have a class of nodes to use when defi ning link-based data structures, we will use it
to defi ne a link-based implementation of the ADT bag. Doing so will allow us to examine some of
the basic practices for creating such implementations. Subsequent chapters will expand on these
ideas.

 Unlike array-based implementations, a link-based implementation does not impose a fi xed max-
imum size on the data structure—except, of course, as imposed by the storage limits of the system.
Additionally, data items do not move during an ADT’s insertion and removal operations.

 You need to represent the items in the ADT bag and its size. Figure 4-5 indicates one possible
way to represent this data by using pointers. Here headPtr points to a linked chain of the nodes

 template < class ItemType>
Node<ItemType>::Node() : next(nullptr)
 {
} // end default constructor

 template < class ItemType>
 Node<ItemType>::Node(const ItemType& anItem) : item(anItem), next(nullptr)
 {
} // end constructor

 template < class ItemType>
 Node<ItemType>::Node(const ItemType& anItem, Node<ItemType>* nextNodePtr) :
 item(anItem), next(nextNodePtr)
 {
} // end constructor

 template < class ItemType>
 void Node<ItemType>::setItem(const ItemType& anItem)
 {
 item = anItem;
} // end setItem

 template < class ItemType>
void Node<ItemType>::setNext(Node<ItemType>* nextNodePtr)
{
 next = nextNodePtr;
} // end setNext

 template < class ItemType>
ItemType Node<ItemType>::getItem() const
 {
 return item;
} // end getItem

 template < class ItemType>
Node<ItemType>* Node<ItemType>::getNext() const
 {
 return next;
} // end getNext

VideoNote

Core LinkedBag
methods

138 CHAPTER 4 Link-Based Implementations

containing the items in the bag. The integer itemCount is the current number of items in the bag. Both
headPtr and itemCount will be private data members of our class.

 From Chapter 1 , recall the interface BagInterface that describes the operations of the ADT bag.
Also remember that we can use this interface when developing any implementation of this ADT. The
bag operations in this interface, given in UML notation, are as follows:

 +getCurrentSize(): integer
+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(anEntry: ItemType): boolean
+clear(): void
+getFrequencyOf(anEntry: ItemType): integer
+contains(anEntry: ItemType): boolean
+toVector(): vector

 These operations correspond to the public methods in our class.

 4.2.1 The Header File

 The header fi le given in Listing 4-3 declares the class LinkedBag . The private data members are
headPtr , which points to the fi rst node in the linked chain that contains the items in the bag, and
itemCount , which counts these items. The private section of the class also declares a private method,
whose purpose will become clear shortly. The public section declares a default constructor, a copy
constructor—whose purpose is discussed near the end of Section 4.2.2—a destructor, and the public
methods of the class. The public method declarations are identical to those in the class ArrayBag as
given in Chapter 3 . As you will see, the compiler-generated copy constructor and destructor are not
suffi cient for link-based implementations.

 Recall from C++ Interlude 2 that destructors should be virtual. We have tagged LinkedBag ’s
destructor with the keyword virtual in the header fi le. Failure to do so will result in a warning from
the compiler.

FIGURE 4-5 A link-based implementation of the ADT bag

"ab" "cd" "ef" "gh" "ij"

headPtr item nextitemCount

5

LISTING 4-3 The header fi le for the class LinkedBag

 /** ADT bag: Link-based implementation.
@file LinkedBag.h */

#ifndef _LINKED_BAG
#define _LINKED_BAG

#include "BagInterface.h"
#include "Node.h"

 template < class ItemType>
 class LinkedBag : public BagInterface<ItemType>

 A Link-Based Implementation of the ADT Bag 139

 4.2.2 Defi ning the Core Methods

 Just as we did when we defi ned an array-based implementation of the ADT bag in Chapter 3 , we
begin our new implementation by defi ning the same core methods: the constructor, add , toVector ,
getCurrentSize , and isEmpty . We will write stubs for the remaining methods, including the copy
constructor and destructor.

 The constructor. The following default constructor initializes the head pointer and the current
number of items in the bag:

 template < class ItemType>
LinkedBag<ItemType>::LinkedBag() : headPtr(nullptr), itemCount(0)
 {
 } // end default constructor

 The method add. A bag does not order its entries, so the method add can insert a new item at any
convenient location within the linked chain of nodes that contains the bag’s entries. The most conven-
ient place for us to make this insertion is at the beginning of the chain, because the fi rst node is the
only one that we can access directly. Figure 4-6 illustrates how we add a new node to the beginning of
an existing chain of nodes.

 You must make headPtr point to the new node, and the new node must point to the node that had
been at the beginning of the chain. Note how the following defi nition accomplishes this:

 template < class ItemType>
 bool LinkedBag<ItemType>::add(const ItemType& newEntry)
 {

// Add to beginning of chain: new node references rest of chain;

 {
 private :
 Node<ItemType>* headPtr; // Pointer to first node

int itemCount; // Current count of bag items

 // Returns either a pointer to the node containing a given entry
// or the null pointer if the entry is not in the bag.

 Node<ItemType>* getPointerTo(const ItemType& target) const ;

 public :
 LinkedBag();
 LinkedBag(const LinkedBag<ItemType>& aBag); // Copy constructor

virtual ~LinkedBag(); // Destructor should be virtual
int getCurrentSize() const ;
bool isEmpty() const ;
bool add(const ItemType& newEntry);

 bool remove(const ItemType& anEntry);
void clear();
bool contains(const ItemType& anEntry) const ;
int getFrequencyOf(const ItemType& anEntry) const;
vector<ItemType> toVector() const ;

}; // end LinkedBag

#include "LinkedBag.cpp"
 #endif

140 CHAPTER 4 Link-Based Implementations

 // (headPtr is nullptr if chain is empty)
 Node<ItemType>* newNodePtr = new Node<ItemType>();
 newNodePtr->setItem(newEntry);
 newNodePtr->setNext(headPtr); // New node points to chain
 headPtr = newNodePtr; // New node is now first node
 itemCount++;

return true ;
} // end add

FIGURE 4-6 Inserting at the beginning of a linked chain

newNodePtr

headPtr "ab" "cd" "ij"

"nn"

 Observe that if the bag is empty before the insertion headPtr is nullptr , so the next pointer of
the new node is set to nullptr . This step is correct because the new item is the last item—as well as
the fi rst item—in the chain.

Insertion into an
empty chain is really
an insertion at the
beginning of the
chain

Inserting a node at
the beginning of a
linked chain

 Programming Tip: Our method add uses the operator new to create a new node
object and place it on the heap. Because C++ does not have garbage collection as Java
does, it is our class’s responsibility to ensure that the object is removed from the heap
using delete . As discussed in the second C++ Interlude, the class destructor is one
method where we do this. Since we created this node to store an item we are adding to
the bag, it follows that another opportunity to delete the node is when we remove the
item from the bag.

 Question 1 Consider a linked chain of three nodes, such that each node contains a string.
The fi rst node contains "A" , the second node contains "B" , and the third node contains "C" .

a. Write C++ statements that create the described linked chain. Beginning with a head
pointer headPtr that contains nullptr , create and attach a node for "C" , then create
and attach a node for "B" , and fi nally create and attach a node for "A" .

b. Repeat part a , but instead create and attach nodes in the order "A" , "B" , "C" .

CHECK POINT

 The method toVector. Recall that the method toVector retrieves the entries that are in a bag and
returns them to the client within a vector. A loop within toVector adds the bag’s entries to this vector.
In the array-based implementation, this loop simply accesses an array of these entries. Here we must
retrieve the entries from the nodes in a chain. To do that, we must move from node to node; that is, we
must traverse the chain. As we visit each node, we copy its data item into the vector.

A traverse operation
visits each node in
the linked chain

 A Link-Based Implementation of the ADT Bag 141

 Let’s write some high-level pseudocode for this loop, given the linked chain pictured in
 Figure 4-5 .

 Let a current pointer point to the first node in the chain
 while (the current pointer is not the null pointer)
 {
 Assign the data portion of the current node to the next element in a vector
 Set the current pointer to the next pointer of the current node
 }

 This solution requires that you keep track of the current position within the chain. Thus, you need a
pointer variable—let’s call it curPtr —that points to the current node.

 Note: The pointer variable curPtr is analogous to the integer variable curIndex that
we used in Section 3.2.4 of Chapter 3 to keep track of the current entry in an array.

 Initially, curPtr must point to the fi rst node. Because headPtr points to the fi rst node, simply
copy headPtr into curPtr by writing

 Node<ItemType>* curPtr = headPtr;

 Then you can use the expression curPtr->getItem() to access the data portion of the current node.
After copying the data into the vector, you advance the current pointer to the next node by writing

 curPtr = curPtr->getNext();

 Figure 4-7 illustrates this action. If the previous assignment statement is not clear, consider

 Node<ItemType>* temp = curPtr->getNext();
curPtr = temp;

 and then convince yourself that the intermediate variable temp is not necessary.

FIGURE 4-7 The effect of the assignment curPtr = curPtr->getNext()

curPtr

Before

curPtr

After

"cd" "cd" "ef""ef"

 These ideas lead to the following defi nition of toVector :

 template < class ItemType>
 vector<ItemType> LinkedBag<ItemType>::toVector() const
 {
 vector<ItemType> bagContents;
 Node<ItemType>* curPtr = headPtr;

int counter = 0;
while ((curPtr != nullptr) && (counter < itemCount))

142 CHAPTER 4 Link-Based Implementations

 {
 bagContents.push_back(curPtr->getItem());
 curPtr = curPtr->getNext();
 counter++;
 } // end while

return bagContents;
} // end toVector

 Here curPtr points to each node in a nonempty chain during the course of the loop’s execution, and
so the data portion of each node is accessed and assigned to the end of the vector. After the last node is
accessed, curPtr becomes nullptr , and the loop terminates. When the bag is empty—that is, when
headPtr is nullptr —the loop is correctly skipped. Note that the variable counter , while not neces-
sary, provides a defense against going beyond the end of the chain.

 Programming Tip: A common error in the while statement we used in toVector is
to compare curPtr->getNext() instead of curPtr with nullptr . When curPtr points to
the last node of a nonempty chain, curPtr->getNext() is nullptr , and so the loop would
terminate before accessing the data in the last node. In addition, when the chain is empty,
headPtr —and therefore— curPtr are nullptr , making the value of curPtr->getNext()
undefi ned. Such references are incorrect and should be avoided.

 The methods isEmpty and getCurrentSize. The last two methods in our core group have the fol-
lowing defi nitions, which are like the ones in the array-based implementation given in the previous
chapter.

 template < class ItemType>
 bool LinkedBag<ItemType>::isEmpty() const
 {

return itemCount== 0;
} // end isEmpty

 template < class ItemType>
 int LinkedBag<ItemType>::getCurrentSize() const
 {

return itemCount;
} // end getCurrentSize

 Note: Testing the core methods

 Just as we did in the previous chapter, you should test each method as you defi ne it. In
fact, with little change, you can revise the program given in Listing 3-2 and use it to test
the core methods that we have just defi ned. The bag in that program became full, but it
will not here. In Section 4.4 , we will examine how to change that program so that it can
test multiple bag implementations.

 Question 2 Why are only a few changes necessary to reuse the code in Listing 3-2? How
would you implement the changes using the “fi nd and replace” functionality of a text editor
or IDE?

CHECK POINT

 Question 3 Why is a LinkedBag object not concerned about becoming full?

 A Link-Based Implementation of the ADT Bag 143

 4.2.3 Implementing More Methods

 Having successfully defi ned the core methods, we will continue to defi ne the remaining ones in
our class.

 The method getFrequencyOf . To count the number of times a given object occurs in a bag, we
count the number of times the object occurs in the linked chain. To do so, we need to traverse the
chain and compare each of its data items with the given object. Each time we fi nd a match, we incre-
ment a counter. When the traversal ends, we return the value of the counter.

 The loop we will use is like the one we wrote in the method toVector . Here is the defi nition of
getFrequencyOf :

 template < class ItemType>
 int LinkedBag<ItemType>::getFrequencyOf(constItemType& anEntry) const
 {

int frequency = 0;
int counter = 0;

 Node<ItemType>* curPtr = headPtr;
while ((curPtr != nullptr) && (counter < itemCount))

 {
if (anEntry == curPtr->getItem())

 {
 frequency++;
 } // end if

 counter ++;
 curPtr = curPtr->getNext();
 } // end while

return frequency;
 } // end getFrequencyOf

 The method contains . The discussion in Chapter 3 about the method contains applies here as
well. Although the method could call the method getFrequencyOf , which we just defi ned, doing so
usually will involve more work than is necessary. Whereas getFrequencyOf must check every entry
in the bag, contains exits as soon as it fi nds an entry in the bag that is the same as the given one.

 We observed in the previous chapter that the methods contains and remove perform the same
search for a specifi c entry. Thus, to avoid duplicate code, we perform this search in a private method
that both contains and remove can call. We declared this private method in the header fi le, and its
defi nition follows.

 // Returns either a pointer to the node containing a given entry
// or the null pointer if the entry is not in the bag.
 template < class ItemType>
Node<ItemType>* LinkedBag<ItemType>::
 getPointerTo(const ItemType& target) const
 {

bool found = false ;
 Node<ItemType>* curPtr = headPtr;

 Question 4 Suppose that the ADT bag had an operation that displayed its contents. Write
a C++ defi nition for such a method for the class LinkedBag .

CHECK POINT

 Question 5 How many assignment operations does the method that you wrote for the
previous question require?

144 CHAPTER 4 Link-Based Implementations

while (!found && (curPtr != nullptr))
 {

if (target == curPtr->getItem())
 found = true ;

else
 curPtr = curPtr->getNext();
 } // end while

return curPtr;
} // end getPointerTo

The definition of the method contains is straightforward:

 template < class ItemType>
 bool LinkedBag<ItemType>::contains(const ItemType& anEntry) const
 {

return (getPointerTo(anEntry) != nullptr);
} // end contains

 The method remove. Recall that the method remove deletes one occurrence of a given entry and re-
turns either true or false to indicate whether the removal was successful. Just as adding a new node to
a linked chain is easiest at its beginning, so is removing the fi rst node. But the entry that we need to
remove is not always in the chain’s fi rst node.

 Suppose that we locate the entry to delete in node n . We can replace that entry with the entry in
the fi rst node, and then delete the fi rst node. Thus, we can describe the logic for remove with the
following pseudocode:

 remove(anEntry)

 Find the node that contains anEntry
 Replace anEntry with the entry that is in the first node
 Delete the first node

 By using the private method getPointerTo to locate the entry that we want to delete, we can
defi ne the method remove as follows:

 template < class ItemType>
 bool LinkedBag<ItemType>::remove(const ItemType& anEntry)
 {
 Node<ItemType>* entryNodePtr = getPointerTo(anEntry);

bool canRemoveItem = !isEmpty() && (entryNodePtr != nullptr);
if (canRemoveItem)

 Question 7 Trace the execution of the method contains when the bag is empty.

 Question 8 Revise the defi nition of the method getPointerTo so that the loop is control-
led by a counter and the value of itemCount .

 Question 9 What is a disadvantage of the defi nition of the method getPointerTo , as
described in the previous question, when compared to its original defi nition?

 Question 10 Why should the method getPointerTo not be made public?

 Question 6 If the pointer variable curPtr becomes nullptr in the method
getPointerTo , what value does the method contains return when the bag is not empty?

CHECK POINT

 A Link-Based Implementation of the ADT Bag 145

 {
// Copy data from first node to located node

 entryNodePtr->setItem(headPtr->getItem());

// Delete first node
 Node<ItemType>* nodeToDeletePtr = headPtr;
 headPtr = headPtr->getNext();

// Return node to the system
 nodeToDeletePtr->setNext(nullptr);

delete nodeToDeletePtr;
 nodeToDeletePtr = nullptr ;

 itemCount--;
 } // end if

return canRemoveItem;
} // end remove

 After the method remove deletes a node, the system can use this returned memory and possibly even
reallocate it to your program as a result of the new operator. Suppose that this reallocation actually occurs
when you ask for a new node for your linked chain. You can be sure that your new node does not still
point to your linked chain, because you executed the statement nodeToDeletePtr->setNext(nullptr)
before you deallocated the node. Doing this and setting the variable nodeToDeletePtr to nullptr are
examples of defensive programming that can avoid devastating, subtle errors later in the program. We
take these steps, even though nodeToDeletePtr is a local variable that we do not use again, to clarify our
intent to future programmers who revise our method.

 Programming Tip: Remember that any time you allocate memory by using new ,
you must eventually deallocate it by using delete .

 Note: For a pointer p , delete p deallocates the node to which p points; it does not deal-
locate p . The pointer p still exists, but it contains an undefi ned value. You should not ref-
erence p or any other pointer variable that still points to the deallocated node. To help you
avoid this kind of error, you can assign nullptr to p after executing delete p . However,
if variables other than p point to the deallocated node, the possibility of error still exists.

 The method clear. The method clear cannot simply set ItemCount to zero, thereby ignoring all of
the entries in the linked chain. Because the nodes in the chain were allocated dynamically, clear
must deallocate them. Thus, we have the following defi nition for this method:

 template < class ItemType>
 void LinkedBag<ItemType>::clear()

 Question 11 Given the previous defi nition of the method remove , which entry in a bag
can be deleted in the least time? Why?

CHECK POINT

 Question 12 Given the previous defi nition of the method remove , which entry in a bag
takes the most time to delete? Why?

146 CHAPTER 4 Link-Based Implementations

 {
while (headPtr != nullptr)

 {
 Node<ItemType>* nodeToDeletePtr = headPtr;
 headPtr = headPtr->getNext();

// Return node to the system
 nodeToDeletePtr->setNext(nullptr);

delete nodeToDeletePtr;
 } // end while

// headPtr is nullptr

 nodeToDeletePtr = nullptr ;
 itemCount = 0;
} // end clear

 The destructor. Each class has only one destructor. The destructor destroys an instance of the class,
that is, an object, when the object’s lifetime ends. Typically, the destructor is invoked implicitly at the
end of the block in which the object was created.

 Classes that use only statically allocated memory can depend on the compiler-generated destruc-
tor, as was the case for the class ArrayBag in Chapter 3 . However, when a class uses dynamically
allocated memory, as in the present link-based implementation, you need to write a destructor that
deallocates this memory by using delete . The destructor for LinkedBag can simply call the method
clear , as it uses delete to deallocate each node in the linked chain containing the bag’s entries. The
destructor’s defi nition follows:

 template < class ItemType>
 LinkedBag<ItemType>::~LinkedBag()
 {
 clear();
} // end destructor

 A destructor’s name is a tilde (~) followed by the class name. A destructor cannot have argu-
ments, has no return type—not even void —and cannot use return to return a value.

You must write a
destructor if your
class allocates
memory
dynamically

 Question 13 Revise the destructor in the class LinkedBag so that it does not call clear ,
but it instead directly deletes each node of the underlying linked chain.

CHECK POINT

 The copy constructor. The second constructor in LinkedBag is the copy constructor:

LinkedBag(const LinkedBag<ItemType>& aBag);

 The copy constructor makes a copy of an object. It is invoked implicitly when you either pass an
object to a function by value, return an object from a valued function, or defi ne and initialize an
object, as in

 LinkedBag bag2(bag1);

 where bag1 exists already.
 When copying an object involves only copying the values of its data members, the copy is called a

shallow copy . If a shallow copy is suffi cient, you can omit the copy constructor, in which case the com-
piler generates a copy constructor that performs a shallow copy. Such was the case in Chapter 3 for the
class ArrayBag , although we did not mention it. That array-based implementation of the ADT bag used
a compiler-generated copy constructor to copy both the array of bag items and the number of items.

Situations that
invoke the copy
constructor

A compiler-
generated copy
constructor
performs a shallow
copy

 A Link-Based Implementation of the ADT Bag 147

 For our new link-based implementation, a compiler-generated copy constructor would copy
only the data members itemCount and headPtr . For example, Figure 4-8 a pictures a linked chain
and the result of this shallow copy. Both the original pointer headPtr and its copy point to the same
linked chain. In other words, the chain’s nodes are not copied. If you need to create a copy of the
linked chain, you must write your own copy constructor. That is, a deep copy is needed, as
Figure 4-8 b illustrates.

 Thus, the copy constructor appears as follows.

 template < class ItemType>
 LinkedBag<ItemType>::LinkedBag(const LinkedBag<ItemType>& aBag)
 {
 itemCount = aBag->itemCount;
 Node<ItemType>* origChainPtr = aBag->headPtr

if (origChainPtr == nullptr)
 headPtr = nullptr ; // Original bag is empty; so is copy

else
 {
 // Copy first node
 headPtr = new Node<ItemType>();
 headPtr->setItem(origChainPtr ->getItem());

// Copy remaining nodes
 Node<ItemType>* newChainPtr = headPtr; // Last-node pointer

while (origPtr != nullptr)
{

 origChainPtr = origChainPtr ->getNext(); // Advance pointer

 // Get next item from original chain
 ItemType nextItem = origChainPtr->getItem();

 // Create a new node containing the next item
 Node<ItemType>* newNodePtr = new Node<ItemType>(nextItem);

FIGURE 4-8 (a) A linked chain and its shallow copy; (b) a linked chain and its deep copy

4

4

itemCount headPtr

Copy of
itemCount

Copy of
headPtr

(a)

4

itemCount headPtr

(b)

4

Copy of
itemCount

Copy of
headPtr

Copy of the linked chain

"ab" "cd" "ef" "gh"

"ab"

"ab"

"cd"

"cd"

"ef"

"ef"

"gh"

"gh"

148 CHAPTER 4 Link-Based Implementations

 // Link new node to end of new chain
 newChainPtr->setNext(newNodePtr);

 // Advance pointer to new last node
 newChainPtr = newChainPtr->getNext();
 } // end while

 newChainPtr->setNext(nullptr); // Flag end of new chain
 } // end if
} // end copy constructor

 As you can see, the copy constructor is an expensive operation. It requires traversing the original
linked chain and duplicating each node visited.

 4.3 Using Recursion in Link-Based Implementations
 It is possible, and sometimes desirable, to process linked chains recursively. This section examines
how to write the iterative methods given previously as recursive ones. Such recursive methods will
require the chain’s head pointer as an argument. Therefore, they should not be public, because the head
pointer is a private data member of the class and the client does not—and should not—have access to
it. Otherwise, clients could access the linked nodes directly, thereby violating the ADT’s wall.

 4.3.1 Recursive Defi nitions of Methods in LinkedBag

 As an introduction to this topic, we will revise two methods in the class LinkedBag to use recursion.
These methods simply traverse a chain of linked nodes without making any changes to it.

 The method toVector. We begin with the method toVector because it has a straightforward recur-
sive implementation. This operation requires us to traverse the linked chain of nodes as we copy data
from the nodes into a vector. Traversal of a linked chain is an operation that occurs in many situations.

 We have established that the method performing the recursion must be private and must have the
head pointer as a parameter. Since the method will copy data into a vector as it traverses the linked
chain, the vector must also be a parameter. We can declare this method in the private section of the
class LinkedBag , as follows:

 // F ills the vector bagContents with the data in the nodes of
// the linked chain to which curPtr points.
 void f illVector(vector<ItemType>& bagContents, Node<ItemType>* curPtr) const

 Given a defi nition of this method, we could implement toVector as follows:

 template < class ItemType>
 vector<ItemType> LinkedBag<ItemType>::toVector() const
 {
 vector<ItemType> bagContents;
 f illVector(bagContents, headPtr);

return bagContents;
} // end toVector

 Thus, after creating a vector, toVector f ills it—by calling fillVector—with the data in the chain
of linked nodes whose head pointer is headPtr . Finally, toVector returns the vector to the client.

 To defi ne fillVector , we need to think recursively. If the chain is empty—that is, if curPtr is
nullptr —we have nothing to do. This is the base case. In the recursive step, we fi rst add the data
curPtr->getItem() to the vector and then recursively f ill the vector with the chain that begins at
curPtr->getNext() . The method then has the following defi nition:

 template < class ItemType>
 void f illVector(vector<ItemType>& bagContents, Node<ItemType>* curPtr) const

 Using Recursion in Link-Based Implementations 149

 {
if (curPtr != nullptr)

 {
 bagContents.push_back(curPtr->getItem());
 f illVector(bagContents, curPtr->getNext());
 } // end if
} // end toVector

 Even though fillVector has a reference parameter, the method is safe because it is private. A
similar situation occurs in Chapter 16 and is discussed further in a Note in Section 16.3.1.

The private method getPointerTo . The method getPointerTo locates a given entry within the
linked chain. To do so, it traverses the linked chain, but unlike fillVector ’s traversal, this traversal
stops if it locates the node that contains the given entry. The iterative version of getPointerTo has
one parameter, which is the given entry. We could defi ne a private method to perform the recursion—
as we did for toVector —that has two parameters; the given entry and a head pointer. Then get-
PointerTo could call this new private method. However, since getPointerTo is itself a private meth-
od, we can revise it to have the necessary two parameters. That is the approach we will take here. Of
course, we also will have to revise the calls to the method that appear in the rest of the class.

 We begin by replacing the declaration of getPointerTo in the header fi le for the class LinkedBag
with the following statements:

 // Locates a given entry within this bag.
// Returns either a pointer to the node containing a given entry or
// the null pointer if the entry is not in the bag.
Node<ItemType>* getPointerTo(const ItemType& target,
 Node<ItemType>* curPtr) const ;

 Before we forget to do so, let’s revise the calls to this method that occur in the methods remove and
contains . The original calls are getPointerTo(anEntry) , but they now each need to be
getPointerTo(anEntry, headPtr) .

 The recursive defi nition of this method has two base cases. One case occurs when the chain is
empty, causing the method to return nullptr . The other base case occurs when we locate the desired
entry at curPtr->getItem() . In this case, the method returns curPtr . The recursive step searches
the chain beginning at curPtr->getNext() . Thus, the method has the following defi nition:

 template < class ItemType>
Node<ItemType>* getPointerTo(const ItemType& target,
 Node<ItemType>* curPtr) const
 {
 Node<ItemType>* result = nullptr ;

if (curPtr != nullptr)
 {

if (target== curPtr->getItem())
 result = curPtr;

else
 result = getPointerTo(target, curPtr->getNext());
 } // end if

return result;
} // end getPointerTo

 Other methods that can have a recursive defi nition are left for you as exercises.

 Question 14 Revise the method clear so that it calls a recursive method to deallocate
the nodes in the chain.

CHECK POINT

150 CHAPTER 4 Link-Based Implementations

 4.4 Testing Multiple ADT Implementations
 In Chapter 3 , we developed a short program, shown in Listing 3-2, that tested the core methods of our
array-based bag implementation. Because we used ADT bag methods when we tested our implemen-
tation, we can use the same code—with a few changes—to test our linked implementation. You need
only to change each occurrence of ArrayBag to LinkedBag and recompile the program.

 But what if later you change the array-based implementation and want to retest it? You would
need to change each occurrence of LinkedBag back to ArrayBag . Let’s examine a way we can revise
the test program to let the user decide which bag implementation needs testing. By taking advantage
of polymorphism, we can do this without needing to duplicate the test code.

 In Chapter 1 , we described our ADT bag in the abstract class BagInterface. Since both ArrayBag
and LinkedBag share public methods defi ned in that class, we made each a subclass of BagInterface .
In our test program, if we declare the variable bagPtr as a pointer to an object that implements the
methods in BagInterface , we can use an instance of either ArrayBag or LinkedBag as the object
bagPtr references. We declare bagPtr as

 BagInterface<string>* bagPtr;

 We then ask the user which implementation to test, and if we assign either ' A ' or 'L' to the char
variable userChoice , we can instantiate an instance of the requested bag type and run the test by writ-
ing the following code:

 if (userChoice == 'A')
 {
 bagPtr = new ArrayBag<string>();
 cout << "Testing the Array-Based Bag:" << endl;
 }
 else
 {
 bagPtr = new LinkedBag<string>();
 cout << "Testing the Link-Based Bag:" << endl;
} // end if

cout << "The initial bag is empty." << endl;
 bagTester(bagPtr);
 delete bagPtr;
bagPtr = nullptr ;

 To accommodate the data type of bagPtr , we need to change the parameter lists of the functions
in our test program as follows:

void displayBag(BagInterface<string>* bagPtr)

 and

void bagTester(BagInterface<string>* bagPtr)

 Finally, we must change the notation used to call methods on the instances of bagPtr , since it is a
pointer. For example,

 bag.isEmpty()

 must be changed to

 bagPtr->isEmpty()

 Listing 4-4 is a complete listing of the modifi ed test program for core methods of classes that are
implementations of the ADT bag.

 Testing Multiple ADT Implementations 151

LISTING 4-4 A program that tests the core methods of classes that are derived from the
abstract class BagInterface

 #include "BagInterface.h"
#include "ArrayBag.h"
#include "LinkedBag.h"
#include <iostream>
#include <string>
#include <cctype>

 using namespace std;

 void displayBag(BagInterface<string>* bagPtr)
 {
 cout << "The bag contains " << bagPtr->getCurrentSize()
 << " items:" << endl;
 vector<string> bagItems;
 bagPtr->toVector(bagItems);

int numberOfEntries = bagItems.size();
for (int i = 0; i < numberOfEntries; i++)

 {
 cout << bagItems[i] << " ";
 } // end for
 cout << endl << endl;
} // end displayBag

 void bagTester(BagInterface<string>* bagPtr)
 {
 cout << "isEmpty: returns " << bagPtr->isEmpty()
 << "; should be 1 (true)" << endl;

 string items[] = {"one", "two", "three", "four", "five", "one"};
 cout << "Add 6 items to the bag: " << endl;

for (int i = 0; i < 6; i++)
 {
 bagPtr->add(items[i]);
 } // end for

 displayBag(bagPtr);

 cout << "isEmpty: returns " << bagPtr->isEmpty()
 << "; should be 0 (false)" << endl;
 cout << "getCurrentSize returns : " << bagPtr->getCurrentSize()
 << "; should be 6" << endl;
 cout << "Try to add another entry: add(\"extra\") returns "
 << bagPtr->add("extra") << endl;
} // end bagTester

 int main()
 {
 BagInterface<string>* bagPtr = nullptr ;

char userChoice;
 cout << "Enter 'A' to test the array-based implementation\n";
 << " or 'L' to test the link-based implementation: ";
 cin >> userChoice;

(continues)

152 CHAPTER 4 Link-Based Implementations

 Question 15 Revise the program in Listing 4-4 so that it tests fi rst the array-based imple-
mentation and then the link-based implementation. Ensure that the program does not have a
memory leak.

CHECK POINT

if (toupper(userChoice) == 'A')

 {
 bagPtr = new ArrayBag<string>();
 cout << "Testing the Array-Based Bag:" << endl;
 }

else
 {
 bagPtr = new LinkedBag<string>();
 cout << "Testing the Link-Based Bag:" << endl;
 } // end if

 cout << "The initial bag is empty." << endl;
 bagTester(bagPtr);

delete bagPtr;
 bagPtr = nullptr ;
 cout << "All done!" << endl;

return 0;
} // end main

 Sample Output 1
 Enter 'A' to test the array-based implementation
or 'L' to test the link-based implementation: A
Testing the Array-Based Bag:
The initial bag is empty.
isEmpty: returns 1; should be 1 (true)
Add 6 items to the bag:
The bag contains 6 items:
one two three four five one

isEmpty: returns 0; should be 0 (false)
getCurrentSize returns : 6; should be 6
Try to add another entry: add("extra") returns 0
All done!

 Sample Output 2
 Enter 'A' to test the array-based implementation
or 'L' to test the link-based implementation: L
Testing the Link-Based Bag:
The initial bag is empty.
isEmpty: returns 1; should be 1 (true)
Add 6 items to the bag:
The bag contains 6 items:
one five four three two one

isEmpty: returns 0; should be 0 (false)
getCurrentSize returns : 6; should be 6
Try to add another entry: add("extra") returns 1
All done!

 Comparing Array-Based and Link-Based Implementations 153

 4.5 Comparing Array-Based
and Link-Based Implementations
 Typically, the various implementations that a programmer contemplates for a particular ADT have
advantages and disadvantages. When you must select an implementation, you should weigh these
advantages and disadvantages before you make your choice. As you will see, the decision among pos-
sible implementations of an ADT is one that you must make often. As an example of how you should
proceed in general, we compare the two implementations of the ADT bag that you have seen.

 The array-based implementation that you saw in Chapter 3 appears to be a reasonable approach.
Arrays are easy to use, but as was already mentioned, an array has a fi xed size, and it is possible for
the number of items in the bag to exceed this fi xed size. In practice, when choosing among implemen-
tations of an ADT, you must ask the question of whether the fi xed-size restriction of an array-based
implementation presents a problem in the context of a particular application. The answer to this ques-
tion depends on two factors. One obvious factor is whether, for a given application, you can predict in
advance the maximum number of items in the ADT at any one time. If you cannot, it is quite possible
that an operation—and hence the entire program—will fail because the ADT in the context of a par-
ticular application requires more storage than the array can provide.

 On the other hand, if for a given application you can predict in advance the maximum number of
items in the ADT at any one time, you must explore a more subtle factor: Would you waste storage by
declaring an array to be large enough to accommodate this maximum number of items? Consider a
case in which the maximum number of items is large, but you suspect that this number rarely will be
reached. For example, suppose that your bag could contain as many as 10,000 items, but the actual
number of items in the bag rarely exceeds 50. If you declare 10,000 array locations at compilation
time, at least 9,950 of them will be wasted most of the time. In both of the previous cases, the array-
based implementation given in Chapter 3 is not desirable.

 What if you use a dynamically allocated array? Because you would use the new operator to allo-
cate storage dynamically, you will be able to provide as much storage as the bag needs (within the
bounds of the particular computer, of course). Thus, you do not have to predict the maximum size of
the bag. However, if you double the size of the array each time you reach the end of the array—which
is a reasonable approach to enlarging the array—you still might have many unused array locations. In
the example just given, you could allocate an array of 50 locations initially. If you actually have
10,000 items in your bag, array doubling will eventually give you an array of 12,800 locations, which
is 2,800 more than you need. Remember also that you waste time by copying the array and then deal-
locating it each time you need more space.

 Now suppose that your bag will never contain more than 25 items. You could allocate enough stor-
age in the array for the bag and know that you would waste little storage when the bag contains only a
few items. With respect to its size, an array-based implementation is perfectly acceptable in this case.

 A link-based implementation can solve any diffi culties related to the fi xed size of an array-based
implementation. You use the new operator to allocate storage dynamically, so you do not need to pre-
dict the maximum size of the bag. Because you allocate memory one item at a time, the bag will be
allocated only as much storage as it needs. Thus, you will not waste storage.

 Array-based and link-based implementations have other differences, and these differences affect
both the time and memory requirements of the implementations. Any time you store a collection of
data in an array or a linked chain, the data items become ordered; that is, there is a fi rst item, a second
item, and so on. This order implies that a typical item has a predecessor and a successor. In an array
anArray , the location of the next item after the item in anArray[i] is implicit —it is in anArray[i+1] .
In a linked chain, however, you explicitly determine the location of the next item by using the pointer
in the current node. This notion of an implicit versus explicit next item is one of the primary differ-
ences between an array and a linked chain. Therefore, an advantage of an array-based implementation

Arrays are easy to
use, but they have a
fi xed size

Can you predict the
maximum number
of items in the ADT?

Will an array waste
storage?

Increasing the size
of a dynamically
allocated array can
waste storage and
time

An array-based
implementation is a
good choice for a
small bag

Linked chains do not
have a fi xed size

The item after an
array item is implied;
in a chain of linked
nodes, an item
points explicitly to
the next item

154 CHAPTER 4 Link-Based Implementations

is that it does not have to store explicit information about where to fi nd the next data item, thus
requiring less memory than a link-based implementation.

 Another, more important advantage of an array-based implementation is that it can provide
direct access to a specifi ed item. For example, if you use the array items to implement the ADT bag,
you know that accessing either items[0] or items[49] takes the same amount of time. That is, the
access time is constant for an array.

 On the other hand, if you use a link-based implementation, you have no way of immediately
accessing the node that contains the i th item. To get to the appropriate node, you use the next
pointers to traverse the linked chain from its beginning until you reach the i th node. That is, you
access the fi rst node and get the pointer to the second node, access the second node and get the
pointer to the third node, and so on until you fi nally access the i th node. Clearly, the time it takes
you to access the fi rst node is less than the time it takes to access the 50 th node. The access time for
the i th node depends on i . The type of implementation chosen will affect the effi ciency of the
ADT’s operations.

 We will continue to compare various solutions to a problem throughout this book. Chapter 10
introduces a more formal way to discuss the effi ciency of algorithms. Until then, our discussions will
be informal.

An array-based
implementation
requires less
memory than a
link-based
implementation

You can access
array items directly
with equal access
time

You must traverse a
linked chain to
access its i th node

The time to access
the i th node in a
linked chain
depends on i

 SUMMARY

1. You can link objects—called nodes—to one another to form a chain of linked data. Each node contains a data
item and a pointer to the next node in the chain. An external pointer variable—called the head pointer—points
to the fi rst node. The last node in the chain has nullptr in its pointer portion, so it points to no other node.

2. You use the new operator to dynamically allocate a new node, whereas you use the delete operator to deallo-
cate a node.

3. Inserting a new node at the beginning of a linked chain or deleting the fi rst node of a linked chain are easier to
perform than insertions and deletions anywhere else in the chain. The insertion requires a change to two point-
ers: the pointer within the new node and the head pointer. The deletion requires a change to the head pointer and
an application of the delete operator to the removed node.

4. Unlike an array, which enables you direct access to any of its elements, a linked chain requires a traversal to
access a particular node. Therefore, the access time for an array is constant, whereas the access time for a
linked chain depends on the location of the node within the chain.

5. When traversing a linked chain by using the pointer variable curPtr, you must be careful not to reference
curPtr after it has “passed” the last node in the chain, because it will have the value nullptr at that point. For
example, the loop

while (value > curPtr->getItem())
 curPtr = curPtr->getNext();

 is incorrect if value is greater than all the data values in the linked chain, because curPtr becomes nullptr .
Instead you should write

while ((curPtr != nullptr) && (value > curPtr->getItem()))
 curPtr = curPtr->getNext();

 Because C++ uses short-circuit evaluation (see Appendix A) of logical expressions, if curPtr becomes
nullptr , the expression curPtr->getItem() will not be evaluated.

 Exercises 155

 EXERCISES

1. If headPtr is a pointer variable that points to the fi rst node of a linked chain of at least two nodes, write C++
statements that delete the second node and return it to the system.

 2. Revise the public method add in the class LinkedBag so that the new node is inserted at the end of the linked
chain.

 3. Suppose that the class LinkedBag did not have the data member itemCount. Revise the method getCurrentSize
so that it counts the number of nodes in the linked chain

 a. Iteratively
 b. Recursively

 4. Revise the public method getFrequencyOf in the class LinkedBag so that it is recursive.

 5. Add a constructor to the class LinkedBag that creates a bag from a given array of entries.

 6. Specify and defi ne a method for LinkedBag that removes a random entry from the bag.

 7. Compare the number of operations required to display the data in each of the n nodes in a linked chain with the
number of operations required to display each of the n items in an array.

 8. Compare the number of operations required to display the data in the nth node in a linked chain with the
number of operations required to display the nth item in an array.

 9. Compare the array-based and link-based implementations of the ADT bag operation remove(anEntry). Con-
sider the various locations of anEntry within the array or chain.

10. In a doubly linked chain , each node can point to the previous node as well as to the next node. Figure 4-9
shows a doubly linked chain and its head pointer. Defi ne a class to represent a node in a doubly linked chain.

11. List the steps necessary to add a node to the beginning of the doubly linked chain shown in Figure 4-9 .

12. List the steps necessary to remove the fi rst node from the beginning of the doubly linked chain shown in
 Figure 4-9 .

6. A class that allocates memory dynamically needs an explicit copy constructor that copies an instance of the
class. The copy constructor is invoked implicitly when you pass an object to a function by value, return an
object from a valued function, or defi ne and initialize an object. If you do not defi ne a copy constructor, the
compiler will generate one for you. A compiler-generated copy constructor is suffi cient only for classes that
use statically allocated memory.

7. A class that allocates memory dynamically needs an explicit destructor. The destructor should use delete to
deallocate the memory associated with the object. If you do not defi ne a destructor, the compiler will generate
one for you. A compiler-generated destructor is suffi cient only for classes that use statically allocated memory.

8. Although you can use the new operator to allocate memory dynamically for either an array or a linked chain,
you can increase the size of a linked chain one node at a time more effi ciently than you can increase the size of
an array. When you increase the size of a dynamically allocated array, you must copy the original array entries
into the new array and then deallocate the original array.

156 CHAPTER 4 Link-Based Implementations

FIGURE 4-9 A doubly linked chain

WilsonSmithJonesBakerAble

headPtr

 PROGRAMMING PROBLEMS

1. Add the methods union , intersection , and difference to the class ArrayBag. Exercises 6, 7, and 8 of
 Chapter 1 describe these operations.

2. Implement the ADT set that you specifi ed in Programming Problem 5 of Chapter 1 by using a linked chain.

3. Implement the ADT pile that you specifi ed in Programming Problem 6 of Chapter 1 by using a linked chain.

4. Implement the ADT polynomial that Exercise 9 in Chapter 1 describes by using a linked chain.

5. Consider a sparse implementation of the ADT polynomial that stores only the terms with nonzero coeffi cients.
For example, you can represent the revised polynomial p in Exercise 9 of Chapter 1 with the linked chain
shown in Figure 4-10 .

 a. Complete the sparse implementation.
 b. Defi ne a traverse operation for the ADT polynomial that will allow you to add two sparse polynomials

without having to consider terms with zero coeffi cients explicitly.

6. Defi ne a class DoublyLinkedBag that implements the ADT bag by using a doubly linked chain, as shown in
 Figure 4-9 . Use the class of nodes that Exercise 10 defi nes.

7. Use the classes for a set or a bag, as defi ned in this chapter or described in the previous projects, to create a spell
checker. Consult the details given in Programming Problems 13 and 14 of Chapter 3 .

8. Specify and implement an ADT character string by using a linked chain of characters. Include typical opera-
tions such as fi nding its length, appending one string to another, fi nding the index of the leftmost occurrence of
a character in a string, and testing whether one string is a substring of another.

FIGURE 4-10 A sparse polynomial

7–37 54 37 2–1 09

degree coeff power nextheadPtr

 Programming Problems 157

9. When you play a board or card game or when you use a shared computing resource, you get a turn and then wait
until everyone else has had a turn. Although the number of players in a game remains relatively static, the
number of users of a shared computing service fl uctuates. Let’s assume that this fl uctuation will occur.

Design an ADT that keeps track of turns within a group of people. You should be able to add or delete peo-
ple and determine whose turn occurs now.

 Begin with a given group of people; assign these people an initial order. (This order can be random or
specifi ed by the user.) The fi rst new person joining the group should get a turn after all others have had an equal
number of turns. Each subsequent new person should get a turn after the person who joined the group most
recently has had a turn.

 Also design an ADT to represent a person. (You can be conservative with the amount of data that this ADT
contains.) The data that your fi rst ADT stores is made up of instances of the ADT person.

 Implement your ADTs as C++ classes. Write a program that uses—and therefore tests—your ADTs com-
pletely. Your program should process several insertion and deletion operations, and demonstrate that people are
given turns correctly.

10. Occasionally, a link-based structure that does not use pointers is useful. One such structure uses an array whose
items are “linked” by array indexes. Figure 4-11 a illustrates an array of nodes that represents the linked chain
whose fi rst node contains the string "B" , second node contains "E", and third node contains "J". Each node has
two members, item and next. The next member is an integer index to the array element that contains the next
node in the linked chain. Note that the next member of the last node contains –1. The integer variable head
contains the index of the fi rst node in the chain.

The array elements that currently are not a part of the linked chain make up a free list of available nodes.
These nodes form another linked chain, with the integer variable free containing the index of the fi rst free
node. To insert an item into the beginning of the original linked chain, you take a free node from the beginning
of the free list and insert it into the linked chain (Figure 4-11 b). When you delete an item from the linked chain,
you insert the node into the beginning of the free list (Figure 4-11 c). In this way, you can avoid shifting data
items.

 Implement the ADT bag by using this array-based linked chain.

158 CHAPTER 4 Link-Based Implementations

FIGURE 4-11 (a) An array-based implementation of a linked chain; (b) after inserting "D" at the
beginning of the chain; (c) after deleting "B"

B 1

E 2

J –1

4

5

6

7

–1

0

1

2

3

4

5

6

0 3

head free

item next

(a)

4

E 2

J –1

1

5

6

7

–1

0

1

2

3

4

5

6

3 0

head free

item next

(c)

Linked chain

Free list

B 1

E 2

J –1

0

5

6

7

–1

0

1

2

3

4

5

6

3 4

head free

item next

(b)

D D

 ChapterRecursion as a
Problem-Solving

Technique 5
 Contents
 5.1 Defi ning Languages 160

 5.1.1 The Basics of Grammars 160
 5.1.2 Two Simple Languages 162

 5.2 Algebraic Expressions 164
 5.2.1 Kinds of Algebraic Expressions 164
 5.2.2 Prefi x Expressions 166
 5.2.3 Postfi x Expressions 170
 5.2.4 Fully Parenthesized Expressions 171

 5.3 Backtracking 172
 5.3.1 Searching for an Airline Route 172
 5.3.2 The Eight Queens Problem 177

 5.4 The Relationship Between Recursion and Mathematical Induction 183
 5.4.1 The Correctness of the Recursive Factorial Function 183
 5.4.2 The Cost of Towers of Hanoi 184

 Summary 186
 Exercises 186
 Programming Problems 189

 Prerequisites
 Chapter 2 Recursion: The Mirrors

Chapter 2 presented the basic concepts of recursion, and now this chapter moves on
to some extremely useful and somewhat complex applications in computer science. The
recursive solutions to the problems you will see are far more elegant and concise than
the best of their nonrecursive counterparts.

 This chapter introduces two new concepts: formal grammars and backtracking.
Formal grammars enable you to defi ne, for example, syntactically correct algebraic

160 CHAPTER 5 Recursion as a Problem-Solving Technique

expressions, which we explore in some detail. Backtracking is a problem-solving technique that
involves guesses at a solution. The chapter concludes with a discussion of the close relationship
between recursion and mathematical induction; you will learn how to use mathematical induction to
study properties of algorithms.

 More applications of recursion appear in subsequent chapters.

 5.1 Defi ning Languages
 English and C++ are two languages with which you are familiar. A language is nothing more than a
set of strings of symbols from a fi nite alphabet. For example, if you view a C++ program as one long
string of characters, you can defi ne the set of all syntactically correct C++ programs. This set is the
language

C++Programs = {string s : s is a syntactically correct C++ program}

 Notice that whereas all programs are strings, not all strings are programs. A C++ compiler is a
program that, among other things, sees whether a given string is a member of the language
C++Programs ; that is, the compiler determines whether the string is a syntactically correct C++ pro-
gram. Of course, this defi nition of C++Programs is not descriptive enough to allow the construction
of a compiler. The defi nition specifi es a characteristic of the strings in the set C++Programs : The
strings are syntactically correct C++ programs. However, this defi nition does not give the rules for
determining whether a string is in the set; that is, the defi nition does not specify what is meant by a
syntactically correct C++ program.

 The word “language” does not necessarily mean a programming language or a communication
language. For example, the set of algebraic expressions forms a language

AlgebraicExpressions = {string s : s is an algebraic expression}

 The language AlgebraicExpressions is the set of strings that meets certain rules of syntax; however,
the set’s defi nition does not give these rules.

 In both examples, the rules for forming a string within the language are missing. A grammar
states the rules of a language. The grammars that you will see in this chapter are recursive in
nature. One of the great benefi ts of using such a grammar to defi ne a language is that you can often
write a straightforward recursive algorithm, based on the grammar, that determines whether
a given string is in the language. Such an algorithm is called a recognition algorithm for the
language.

 As it is a complex task to present a grammar for the set C++Programs , we will look instead at
grammars for some simpler languages, including several common languages of algebraic expressions.

 5.1.1 The Basics of Grammars

 A grammar uses several special symbols:

• x | y means x or y .
• x y (and sometimes x • y) means x followed by y .
• < word > means any instance of word , where word is a symbol that must be defi ned else-

where in the grammar.

 A grammar for the language

C++Identifi ers = {string s : s is a legal C++ identifi er}

A grammar states
the rules for forming
the strings in a
language

Symbols that
grammars use

 Defi ning Languages 161

 is simple, so we begin with it. As you know, a legal C++ identifi er begins with a letter and is followed
by zero or more letters and digits. In this context, the underscore (_) is a letter. One way to represent
this defi nition of an identifi er is with a syntax diagram, as shown in Figure 5-1 .

 A syntax diagram is convenient for people to use, but a grammar is a better starting point if you
want to write a function that will recognize an identifi er. A grammar for the language C++Identifi ers is

,identifier. 5 ,letter. 0 ,identifier.,letter. 0,identifier.,digit.

,letter. 5 a 0 b 0c0 z 0 A 0 B 0c0 Z 0_
,digit. 5 0 0 1 0 c0 9

 The defi nition reads as follows:

 An identifier is a letter, or an identifier followed by a letter, or an identifier followed
by a digit.

 The most striking aspect of this defi nition is that identifi er appears in its own defi nition: This gram-
mar is recursive, as are many grammars.

 Given a string s , you can determine whether it is in the language C++Identifi ers by using the
grammar to construct the following recognition algorithm: If s is of length 1, it is in the language if
the character is a letter. (This statement is the base case, so to speak.) If s is of length greater than 1, it
is in the language if the last character of s is either a letter or a digit, and s minus its last character is an
identifi er.

 The pseudocode for a recursive valued function that determines whether a string is in the
language C++Identifi ers follows:

 // Returns true if s is a legal C++ identifier;
// otherwise returns false.
isId(s: string): boolean

 if (s is of length 1) // Base case
 if (s is a letter)
 return true
 else
 return false

else if (the last character of s is a letter or a digit)
 return isId(s minus its last character) // Point X

else
 return false

 Figure 5-2 contains a trace of this function for the string "A2B" .

FIGURE 5-1 A syntax diagram for C++ identifi ers

Letter
Digit

Letter

A grammar for the
language of C++
identifi ers

Many grammars are
recursive

A recognition
algorithm for C++
identifi ers

162 CHAPTER 5 Recursion as a Problem-Solving Technique

 5.1.2 Two Simple Languages

 Now consider two more simple examples of languages, their grammars, and resulting recognition
algorithms.

 Palindromes. A palindrome is a string that reads the same from left to right as it does from right to
left. For example, “radar” and “deed” are both palindromes. You can defi ne the language of palin-
dromes as follows:

Palindromes = {string s : s reads the same left to right as right to left}

 How can you use a grammar to defi ne the language Palindromes ? You need to devise a rule that
allows you to determine whether a given string s is a palindrome. In the spirit of recursive defi nitions,
you should state this rule in terms of determining whether a smaller string is a palindrome. Your fi rst
instinct might be to choose s minus its last (or fi rst) character for the smaller string. However, this
approach does not work, because there is no relationship between the statements

s is a palindrome
 and

s minus its last character is a palindrome

 That is, s might be a palindrome, although s minus its last character is not, as is the case for “deed.”
Similarly, s minus its last character might be a palindrome, although s is not, as is the case for
“deeds.”

FIGURE 5-2 Trace of isId("A2B")

s = "A2B"

The initial call is made and the function begins execution.

s = "A2B"

At point X, a recursive call is made and the new invocation of isId begins execution:

s = "A2"X

s = "A2B"

At point X, a recursive call is made and the new invocation of isId begins execution:

s = "A2B"

This is the base case, so this invocation of isId completes:

s = "A2B"

The value is returned to the calling function, which completes execution:

s = "A2B"
return true

s = "A2"

s = "A2"

s = "A2"
return true

s = "A2"
return true

s = "A"

s = "A"
return true

s = "A"
return true

s = "A"
return true

The value is returned to the calling function, which completes execution:

X

X

X

X

X

true

true

true

 Defi ning Languages 163

A recursive
description of a
palindrome

 A little thought reveals that you must consider characters in pairs: There is a relationship between
the statements

s is a palindrome
 and

s minus its fi rst and last characters is a palindrome

 Specifi cally, s is a palindrome if and only if

• The fi rst and last characters of s are the same
and

• s minus its fi rst and last characters is a palindrome

 You need a base case that you will reach after stripping away enough pairs of characters. If s has
an even number of characters, you will eventually be left with two characters, and then, after you strip
away another pair, you will be left with zero characters. A string of length 0 is called the empty string
and is a palindrome. If s has an odd number of characters, you will eventually be left with one charac-
ter, after which you cannot strip away another pair. Hence, you must have a second base case: A string
of length 1 is a palindrome.

 This discussion leads to the following grammar for the language of palindromes:

,pal. 5 empty string 0 ,ch. 0a ,pal. a 0b ,pal. b 0c0 Z ,pal. Z

,ch. 5 a 0 b 0c0 z 0 A 0 B 0c0 Z
 Based on this grammar, you can construct a recursive valued function for recognizing palindromes.
The pseudocode for such a function follows:

 // Returns true if the string s of letters is a palindrome; otherwise returns false.
isPalindrome(s: string): boolean

 if (s is the empty string or s is of length 1)
 return true

else if (s 's first and last characters are the same letter)
return isPalindrome(s minus its first and last characters)

else
return false

Strings of the form A n Bn . The notation A n B n represents the string that consists of n consecutive A ’s
followed by n consecutive B ’s. Another simple language consists of such strings:

AnBn = {string s : s is of the form A n B n for some n � 0}

 The grammar for this language is actually very similar to the grammar for palindromes. You must
strip away both the fi rst and last characters and check to confi rm that the fi rst character is an A and the
last character is a B . Thus, the grammar for the language AnBn is

 < legal_word > = empty string | A < legal_word > B

 The pseudocode for a recognition function for this language follows:

 // Returns true if s is of the form A n B n ; otherwise returns false.
isAnBn(s: string): boolean

 if (the length of s is zero)
 return true

else if (s begins with the character A and ends with the character B)
return isAnBn(s minus its first and last characters)

else
return false

Strings of length 0
or 1 are the base
cases

A grammar for the
language of
palindromes

A recognition
algorithm for
palindromes

A grammar for the
language of strings
An B n

A recognition
algorithm for strings
An B n

164 CHAPTER 5 Recursion as a Problem-Solving Technique

 5.2 Algebraic Expressions
 One of the tasks a compiler must perform is to recognize and evaluate algebraic expressions.
For example, consider the C++ assignment statement

 y = x + z * (w / k + z * (7 * 6));

 A C++ compiler must determine whether the right side is a syntactically legal algebraic expression; if
so, the compiler must then indicate how to compute the expression’s value.

 There are several common defi nitions for a “syntactically legal” algebraic expression. Some
defi nitions force an expression to be fully parenthesized—that is, to have parentheses around each
pair of operands together with their operator. Thus, you would have to write ((a * b) * c) rather
than a * b * c . In general, the stricter a defi nition, the easier it is to recognize a syntactically legal
expression. On the other hand, conforming to overly strict rules of syntax is an inconvenience for
programmers.

 This section presents three different languages for algebraic expressions. The expressions in
these languages are easy to recognize and evaluate but are generally inconvenient to use. However,
these languages provide us with good, nontrivial applications of grammars. We will see other lan-
guages of algebraic expressions whose members are diffi cult to recognize and evaluate but are con-
venient to use. To avoid unnecessary complications, assume that you have only the binary operators
+, –, *, and / (no unary operators or exponentiation). Also, assume that all operands in the expression
are single-letter identifi ers.

 5.2.1 Kinds of Algebraic Expressions

 The algebraic expressions you learned about in school are called infi x expressions . The term “infi x”
indicates that every binary operator appears between its operands. For example, in the expression

a 1 b

 the operator + is between its operands a and b . This convention necessitates associativity rules, prec-
edence rules, and the use of parentheses to avoid ambiguity. For example, the expression

a 1 b * c

 is ambiguous. What is the second operand of the +? Is it b or is it (b * c)? Similarly, the fi rst operand of
the * could be either b or (a + b). The rule that * has higher precedence than + removes the ambiguity
by specifying that b is the fi rst operand of the * and that (b * c) is the second operand of the +. If you
want another interpretation, you must use parentheses: 1a 1 b 2 * c

 Note: Grammars, like recursive algorithms, must have carefully chosen base cases.
You must ensure that, when a string is decomposed far enough, it will always reach the
form of one of the grammar’s base cases.

 Question 1 Consider the language of these character strings: $, cc$d, cccc$dd,
cccccc$ddd, and so on. Write a recursive grammar for this language.

CHECK POINT

VideoNote

Processing
expressions

 Algebraic Expressions 165

In a prefi x
expression, an
operator precedes
its operands

 Even with precedence rules, an expression like

a / b * c

 is ambiguous. Typically, / and * have equal precedence, so you could interpret the expression either as
(a / b) * c or as a / (b * c). The common practice is to associate from left to right , thus yielding the fi rst
interpretation.

 Two alternatives to the traditional infi x convention are prefi x and postfi x expressions . Under
these conventions, an operator appears either before its operands (prefi x) or after its operands (post-
fi x). Thus, the infi x expression

a 1 b

 is written in prefi x form as

1 a b

 and in postfi x form as

a b 1

 To further illustrate the conventions, consider the two interpretations of the infi x expression
a + b * c just considered. You write the expression

a 1 1b * c 2
 in prefi x form as

1 a * bc

 The + appears before its operands a and (* b c), and the * appears before its operands b and c . The
same expression is written in postfi x form as

a b c * 1

 The * appears after its operands b and c, and the + appears after its operands a and (b c *).
 Similarly, you write the expression 1a 1 b 2 * c

 in prefi x form as

* 1 a b c

 The * appears before its operands (+ a b) and c , and the + appears before its operands a and b . The
same expression is written in postfi x form as

a b 1 c *

 The + appears after its operands a and b , and the * appears after its operands (a b +) and c .
 If the infi x expression is fully parenthesized, converting it to either prefi x or postfi x form

is straightforward. Because each operator then corresponds to a pair of parentheses, you simply
move the operator to the position marked by either the open parenthesis “(”—if you want to
convert to prefi x form—or the close parenthesis “)”—if you want to convert to postfi x form. This
position either precedes or follows the operands of the operator. All parentheses would then
be removed.

 For example, consider the fully parenthesized infi x expression 1 1a 1 b 2 * c 2

In a postfi x
expression, an
operator follows its
operands

166 CHAPTER 5 Recursion as a Problem-Solving Technique

 To convert this expression to prefi x form, you fi rst move each operator to the position marked by its
corresponding open parenthesis:

 1 1a b 2c 2
T T
*1

 .

 Next, you remove the parentheses to get the desired prefi x expression:

* 1 a b c

 Similarly, to convert the infi x expression to postfi x form, you move each operator to the position
marked by its corresponding close parenthesis: 1 1ab 2c 2

T T
1 *

 Then you remove the parentheses:

a b 1 c *

 When an infi x expression is not fully parenthesized, these conversions are more complex.
 Chapter 6 discusses the general case of converting an infi x expression to postfi x form.

 The advantage of prefi x and postfi x expressions is that they never need precedence rules, associ-
ation rules, or parentheses. Therefore, the grammars for prefi x and postfi x expressions are quite
simple. In addition, the algorithms that recognize and evaluate these expressions are relatively
straightforward.

 5.2.2 Prefi x Expressions

 A grammar that defi nes the language of all prefi x expressions is

,prefix. 5 ,identifier. 0 ,operator. ,prefix. ,prefix.

,operator. 5 1 02 0 * 0 /
,identifier. 5 a 0 b 0c0 z

 From this grammar, you can construct a recursive algorithm that recognizes whether a string is a
prefi x expression. If the string is of length 1, it is a prefi x expression if and only if the string is a single
lowercase letter. Strings of length 1 can be the base case. If the length of the string is greater than 1,
then for it to be a legal prefi x expression, it must be of the form

,operator. ,prefix. ,prefix.

 Thus, the algorithm must check to see whether

• The fi rst character of the string is an operator

 and

• The remainder of the string consists of two consecutive prefi x expressions

 The fi rst task is trivial, but the second is a bit tricky. How can you tell whether you are looking
at two consecutive prefi x expressions? A key observation is that if you add any string of nonblank
characters to the end of a prefi x expression, you will no longer have a prefi x expression. That is, if E is

Converting to prefi x
form

Converting to postfi x
form

Prefi x and postfi x
expressions never
need precedence
rules, association
rules, or
parentheses

 Algebraic Expressions 167

If E is a prefi x
expression, E Y
cannot be

a prefi x expression and Y is any nonempty string of nonblank characters, then E Y cannot be a prefi x
expression. This is a subtle point; Exercise 17 at the end of this chapter asks you to prove it.

 Given this observation, you can begin to determine whether you have two consecutive prefi x
expressions by identifying a fi rst prefi x expression. If you fi nd one, the previous observation implies
that only one endpoint is possible for this fi rst expression.

 If you fi nd that the fi rst prefi x expression ends at position end1 , you then attempt to fi nd a second
prefi x expression beginning at position end1 + 1. If you fi nd the second expression, you must check
whether you are at the end of the string in question.

 By using these ideas, you can show, for example, that +*ab–cd is a prefi x expression. For +*ab–cd
to be a prefi x expression, it must be of the form + E

1
E

2
 , where E

1
 and E

2
 are prefi x expressions. Now

you can write

E1 5 * E3E4, where

E3 5 a

E4 5 b

 Because E
3
 and E

4
 are prefi x expressions, E

1
 is a prefi x expression. Similarly, you can write

E2 5 2E5E6, where

E5 5 c

E6 5 d

 and see that E
2
 is a prefi x expression.

 You can write a function to test whether an expression is a prefi x expression by fi rst constructing
a recursive valued function endPre(strExp, first) to examine the expression that begins at position
first of the string strExp and to locate the end of the fi rst prefi x expression it fi nds. If successful, the
function returns the index of the end of the prefi x expression. If no such prefi x expression exists,
endPre returns –1. The function appears in pseudocode as follows.

 // Finds the end of a prefix expression, if one exists.
// Precondition: The substring of strExp from the index first through the end of
// the string contains no blank characters.
// Postcondition: Returns the index of the last character in the prefix expression that
// begins at index first of strExp, or �1 if no such prefix expression exists.
endPre(strExp: string, first: integer): integer

 last = strExp.length() - 1
if (first < 0 or first > last)

return -1

 ch = character at position first of strExp
if (ch is an identifier)

return first // Index of last character in simple prefix expression
else if (ch is an operator)

 {
 // Find the end of the first prefix expression
 firstEnd = endPre(strExp, first + 1) // Point X

 // If the end of the first prefix expression was found, find the end of the second
 // prefix expression
 if (firstEnd > –1)
 return endPre(strExp, firstEnd + 1) // Point Y
 else

return -1
 }

else
return -1

 endPre determines
the end of a prefi x
expression

168 CHAPTER 5 Recursion as a Problem-Solving Technique

FIGURE 5-3 Trace of endPre("+*ab-cd", 0)

first
last
firstEnd = ?
X: endPre("+*ab-cd", 1)

= 0
= 6

first
last
firstEnd = ?
X: endPre("+*ab-cd", 1)

= 0
= 6

first
last
firstEnd = ?
X: endPre("+*ab-cd", 1)

= 0
= 6

first
last
firstEnd = ?
X: endPre("+*ab-cd", 1)

= 0
= 6

first
last

The initial call endPre("+*ab-cd", 0) is made, and endPre begins execution:

= 0
= 6

first
last
X: endPre("+*ab-cd", 1)

First character of strExp is +, so at point X, a recursive call is made and the new invocation of endPre begins execution:

= 0
= 6

first
last

= 1
= 6

Next character of strExp is *, so at point X, a recursive call is made and the new invocation of endPre begins execution:

Next character of strExp is a, which is a base case. The current invocation of endPre completes execution and returns its value:

Because firstEnd > –1, a recursive call is made from point Y and the new invocation of endPre begins execution:

Next character of strExp is b, which is a base case. The current invocation of endPre completes execution and returns its value:

X

X
first
last
firstEnd = ?
X: endPre("+*ab-cd", 2)

= 1
= 6 X

first
last

= 2
= 6

X

X

X

first
last
firstEnd

= 1
= 6
= 2

last
firstEnd
Y: endPre("+*ab-cd", 3)
return ?

= 6
= 2

first
last
firstEnd
return 3

= 1
= 6
= 2

Y

first
last
return 2

= 2
= 6

first
last

= 3
= 6

first
last
return 3

= 3
= 6

first
last
firstEnd

The current invocation of endPre completes execution and returns its value:

= 0
= 6
= 3

first
last
firstEnd
return 3

= 1
= 6
= 2

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

Because firstEnd > –1, a recursive call is made from point Y and the new invocation of endPre begins execution:

= 6
= 3

first
last

= 4
= 6Y

2

3

3

 Figure 5-3 contains a trace of endPre when the initial expression is +*ab–cd .

 Algebraic Expressions 169

Next character of strExp is -, so at point X, a recursive call is made and the new invocation of endPre begins execution:

Next character of strExp is c, which is a base case. The current invocation of endPre completes execution and returns its value:

Because firstEnd > –1, a recursive call is made from point Y and the new invocation of endPre begins execution:

Y
first
last
firstEnd = ?
X: endPre("+*ab-cd", 5)

= 4
= 6 X

first
last

= 5
= 6

Y

Y

first
last
firstEnd

= 4
= 6
= 5

last
firstEnd
Y: endPre("+*ab-cd", 6)
return ?

= 6
= 5 Y

first
last
return 5

= 5
= 6

first
last

= 6
= 6

Next character of strExp is d, which is a base case. The current invocation of endPre completes execution and returns its value:

first
last
firstEnd
return 6

The current invocation of endPre completes execution and returns its value:

= 0
= 6
= 3

first
last
firstEnd
return 6

The current invocation of endPre completes execution and returns its value to the original call to endPre:

= 0
= 6
= 3

Y
first
last
firstEnd
return 6

= 4
= 6
= 5

first
last
return 6

= 6
= 6

first
last
firstEnd
return 6

= 4
= 6
= 5

6

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

last
firstEnd
Y: endPre("+*ab-cd", 4)
return ?

= 6
= 3

5

6

6

A recognition
algorithm for prefi x
expressions

 Now you can use the function endPre to determine whether a string contains a prefi x expression
as follows:

 // Sees whether an expression is a prefix expression.
 // Precondition: strExp contains a string with no blank characters.
 // Postcondition: Returns true if the expression is in prefix form; otherwise returns false.

isPrefix(strExp: string): boolean

 lastChar = endPre(strExp, 0)
return (lastChar >= 0) and (lastChar == strExp.length() - 1)

 Having determined that a string is a prefi x expression, how can you evaluate it? Because each
operator is followed by its two operands, you can look ahead in the expression for them. However,
such operands can themselves be prefi x expressions, which you must evaluate fi rst. These prefi x
expressions are subexpressions of the original expression and must therefore be “smaller.” A recur-
sive solution to this problem seems natural.

 The following function, which appears in pseudocode, evaluates a prefi x expression. This algo-
rithm is simpler than one that evaluates infi x expressions.

170 CHAPTER 5 Recursion as a Problem-Solving Technique

 // Returns the value of a given prefix expression .
 // Precondition: strExp is a string containing a valid prefix expression with no blanks.
evaluatePrefix(strExp: string): float

 strLength = the length of strExp
if (strLength == 1)

return value of the identifier // Base case—single identifier
else

 {
 op = strExp[0] // strExp begins with an operator

// Find the end of the first prefix expression—will be the first operand
 endFirst = endPre(strExp, 1)

// Recursively evaluate this first prefix expression
 operand1 = evaluatePrefix(strExp[1..endFirst]);

// Recursively evaluate the second prefix expression—will be the second operand
 endSecond = strLength - endFirst + 1
 operand2 = evaluatePrefix(strExp[endFirst + 1, endSecond])

// Evaluate the prefix expression
return operand1 op operand2

 }

 Question 2 Write the prefi x expression that represents the following infi x expression:
(a/b) * c – (d + e) * f

 Question 3 Write the infi x expression that represents the following prefi x expression:
 – a/b + c * def

 Question 4 Is the following string a prefi x expression? +–/ abc * + def * gh

CHECK POINT

 5.2.3 Postfi x Expressions

 A grammar that defi nes the language of all postfi x expressions is

,postfix. 5 ,identifier. 0,postfix.,postfix.,operator.

,operator. 5 1 02 0* 0 /
,identifier. 5 a 0 b 0c0 z

 Some calculators require that you enter two numbers before you enter the operation that you want to
perform. Such calculators, in fact, require you to enter postfi x expressions.

 Here we shall develop an algorithm for converting a prefi x expression to a postfi x expression.
 Chapter 6 presents a nonrecursive algorithm for evaluating postfi x expressions. Together, these two
algorithms give you another technique for evaluating a prefi x expression. To simplify the conversion
algorithm, assume that, by using the prefi x recognition algorithm, you have a syntactically correct
prefi x expression.

 If you think recursively, the conversion from prefi x form to postfi x form is straightforward. If the
prefi x expression exp is a single letter, then

postfix 1exp 2 5 exp

An algorithm to
evaluate a prefi x
expression

 Algebraic Expressions 171

An algorithm that
converts a prefi x
expression to postfi x
form

 Otherwise exp must be of the form

,operator.,prefix1.,prefix2.

 The corresponding postfi x expression is then

,postfix1.,postfix2.,operator.

 where ,prefix1. converts to ,postfix1. and ,prefix2. converts to ,postfix2.. Therefore,

postfi x (exp) = postfi x (prefi x1) • postfi x (prefi x2) • < operator >

 Thus, at a high level, the conversion algorithm is

 if (exp is a single letter)
return exp

 else
return postfix(prefix1) • postfix(prefix2) • <operator>

 The following pseudocode function convert refi nes this algorithm. The string pre contains the
prefi x expression.

 // Converts a prefix expression to postfix form.
// Precondition: The string pre is a valid prefix expression with no blanks.
//Postcondition: Returns the equivalent postfix expression.
convert(preExp: string): string

 preLength = the length of preExp
 ch = first character in preExp
 postExp = an empty string

if (ch is a lowercase letter)
// Base case—single identifier

 postExp = postExp • ch // Append to end of postExp
else // ch is an operator

 {
// pre has the form <operator> <prefix1> <prefix2>

 endFirst = endPre(preExp, 1) // Find the end of prefix1

// Recursively convert prefix1 into postfix form
 postExp = postExp • convert(preExp[1..endFirst])

// Recursively convert prefix2 into postfix form
 postExp = postExp • convert(preExp[endFirst + 1..preLength - 1))

 postExp = postExp • ch // Append the operator to the end of postExp
 }

return post

A recursive
algorithm that
converts a prefi x
expression to postfi x
form

 Question 5 Write the postfi x expression that represents the following infi x expression:
(a * b–c) /d+ (e–f)

CHECK POINT

 5.2.4 Fully Parenthesized Expressions

 Most programmers would object to using prefi x or postfi x notation for their algebraic expressions, so
most programming languages use infi x notation. However, infi x notation requires precedence rules,
rules for association, and parentheses to avoid ambiguity within the expressions.

172 CHAPTER 5 Recursion as a Problem-Solving Technique

Backtracking is a
strategy for
guessing at a
solution and backing
up when an impasse
is reached

 You can make precedence and association rules unnecessary by placing parentheses around each
pair of operands together with their operator, thereby avoiding any ambiguity. A grammar for the lan-
guage of all fully parenthesized infi x expressions is

,infix. 5 ,identifier. 0 1,infix.,operator.,infix. 2
,operator. 5 1 02 0* 0 /
,identifier. 5 a 0 b 0c0z

 Although the grammar is simple, the language is rather inconvenient for programmers.
 Therefore, most programming languages support a defi nition of algebraic expressions that

includes both precedence rules for the operators and rules of association so that fully parenthesized
expressions are not required. However, the grammars for defi ning such languages are more involved
and the algorithms for recognizing and evaluating their expressions are more diffi cult than those you
have seen in this section. Programming Problem 8 at the end of this chapter describes such a grammar
without left-to-right association rules and asks you to write a recognition algorithm. Programming
Problem 8 at the end of Chapter 6 presents a nonrecursive evaluation algorithm for algebraic expres-
sions that use both precedence and left-to-right association rules.

 5.3 Backtracking
 This section considers an organized way to make successive guesses at a solution. If a particular
guess leads to a dead end, you back up to that guess and replace it with a different guess. This strategy
of retracing steps in reverse order and then trying a new sequence of steps is called backtracking .
You can combine recursion and backtracking to solve the following problem.

 5.3.1 Searching for an Airline Route

 This example will introduce you to a general type of search problem. In this particular problem, you
must fi nd a path from some point of origin to some destination point. We shall solve this problem by
using recursion. In the next chapter, we will solve it again without recursion.

 The High Planes Airline Company (HPAir) wants a program to process customer requests to fl y
from some origin city to some destination city. So that we can focus on recursion, we will simplify the
problem: For each customer request, just indicate whether a sequence of HPAir fl ights from the origin
city to the destination city exists.

 Imagine three input text fi les that specify all of the fl ight information for the airline as follows:

• The names of cities that HPAir serves
• Pairs of city names, each pair representing the origin and destination of one of HPAir’s fl ights
• Pairs of city names, each pair representing a request to fl y from some origin to some

destination

 The program should then produce output such as

 Request is to fly from Providence to San Francisco.
HPAir flies from Providence to San Francisco.

Request is to fly from Philadelphia to Albuquerque.
Sorry. HPAir does not fly from Philadelphia to Albuquerque.

Request is to fly from Salt Lake City to Paris.
Sorry. HPAir does not serve Paris.

A grammar for the
language of fully
parenthesized
algebraic
expressions

Determine whether
HPAir fl ies from one
city to another

VideoNote

Backtracking

 Backtracking 173

C
2
 is adjacent to C

1

if there is a directed
path from C

1
 to C

2

 Representing the fl ight data. The fl ight map in Figure 5-4 represents the routes that HPAir fl ies.
An arrow from city C

1
 to city C

2
 indicates a fl ight from C

1
 to C

2
 . In this case, C

2
 is adjacent to C

1
 and

the path from C
1
 to C

2
 is called a directed path . Notice that if C

2
 is adjacent to C

1
 , it does not follow

that C
1
 is adjacent to C

2
 . For example, in Figure 5-4 , there is a fl ight from city R to city X , but

not from city X to city R . As you will see in Chapter 20 , the map in Figure 5-4 is called a directed
graph .

The nature of the search. When processing a customer’s request to fl y from some origin city to
some destination city, you must determine from the fl ight map whether there is a route from the origin
to the destination. For example, by examining the fl ight map in Figure 5-4 , you can see that a cus-
tomer could fl y from city P to city Z by fl ying fi rst to city W , then to city Y, and fi nally to city Z; that is,
there is a directed path from P to Z : P → W , W → Y , Y→ Z. Thus, you must develop an algorithm that
searches the fl ight map for a directed path from the origin city to the destination city. Such a path
might involve either a single fl ight or a sequence of fl ights. The solution developed here performs an
exhaustive search . That is, beginning at the origin city, the solution will try every possible sequence
of fl ights until either it fi nds a sequence that gets to the destination city or it determines that no such
sequence exists.

 First consider how you might perform the search by hand. One approach is to start at the origin
city C

0
 and select an arbitrary fl ight that departs from the origin city. This fl ight will lead you to a new

city, C
1
 . If city C

1
 happens to be the destination city, you are done; otherwise, you must attempt to get

from C
1
 to the destination city. To do this, you select a path to travel out of C

1
 . This fl ight will lead you

to city C
2
 . If C

2
 is the destination, you are done; otherwise, you must attempt to get from C

2
 to the

destination city, and so on.

 A recursive strategy. To fl y from the origin city to the destination city by fi rst fl ying from the origin
city to a city C and then by fl ying from C to the destination has a distinct recursive fl avor. We can re-
state this strategy as follows:

 To fly from the origin to the destination:

Select a city C adjacent to the origin
Fly from the origin to city C
if (C is the destination city)

 Terminate— the destination is reached
else

 Fly from city C to the destination

FIGURE 5-4 Flight map for HPAir

Z

S

T

Y

W

PR

X Q

A recursive search
strategy

174 CHAPTER 5 Recursion as a Problem-Solving Technique

 Consider the possible outcomes of applying the previous strategy:

1. You eventually reach the destination city and can conclude that it is possible to fl y from the
origin to the destination.

2. You reach a city C from which there are no departing fl ights.
3. You go around in circles. For example, from C

1
 you go to C

2
 , from C

2
 you go to C

3
 , and from C

3

you go back to C
1
 . You might continue this tour of the three cities forever; that is, the algorithm

might not terminate.

 If you always obtained the fi rst outcome, everyone would be happy. This outcome corresponds to a
base case of the recursive algorithm. If you ever reach the destination city, no additional problems of the
form “fl y from city C to the destination” are generated, and the algorithm terminates. However, because
HPAir does not fl y between all pairs of cities, you certainly cannot expect that the algorithm will always
fi nd a path from the origin city to the destination. For example, if city P in Figure 5-4 is the origin city
and city Q is the destination city, the algorithm could not possibly fi nd a path from city P to city Q .

 Even if there were a sequence of fl ights from the origin city to the destination, it would take a bit
of luck for the previous strategy to discover it—the algorithm would have to select a “correct” fl ight at
each step. For example, even though there is a way to get from city P to city Z in Figure 5-4 , the algo-
rithm might not fi nd it and instead might reach outcome 2 or 3. That is, suppose that from city P the
algorithm chose to go to city R . From city R the algorithm would have to go to city X , from which
there are no fl ights out (outcome 2). On the other hand, suppose that the algorithm chose to go to city
W from city P . From city W , the algorithm might choose to go to city S . It would then have to go to
city T and then back to W . From W , it might once again choose to go to city S and continue to go
around in circles (outcome 3).

 You thus need to make the algorithm more sophisticated, so that it always fi nds a path from the
origin to the destination, if such a path exists, and otherwise terminates with the conclusion that there
is no such path. Suppose that the earlier strategy results in outcome 2: You reach a city C from which
there are no departing fl ights. This certainly does not imply that there is no way to get from the origin
to the destination; it implies only that there is no way to get from city C to the destination. In other
words, it was a mistake to go to city C . After discovering such a mistake, the algorithm can retrace its
steps, or backtrack , to the city C� that was visited just before city C was visited. Once back at city C�,
the algorithm can select a fl ight to some city other than C . Notice that it is possible that there are no
other fl ights out of city C�. If this were the case, it would mean that it was a mistake to visit city C�,
and thus, you would want to backtrack again—this time to the city that was visited just before city C�.

 For example, you saw that, in trying to get from city P to city Z in Figure 5-4 , the algorithm might
fi rst choose to go from city P to city R and then on to city X. As there are no departing fl ights from city
X , the algorithm must backtrack to city R , the city visited before city X . Once back at city R , the algo-
rithm would attempt to go to some city other than city X but would discover that this is not possible.
The algorithm would thus backtrack once more, this time to city P , which was visited just before city
R . From city P , the algorithm would choose to go to city W , which is a step in the right direction!

 We can resolve these problems by refi ning our strategy: We mark visited cities and never fl y to a
city that has been visited already.

 // Discovers whether a sequence of flights from originCity to destinationCity exists.
searchR(originCity: City, destinationCity: City): boolean

 Mark originCity as visited
if (originCity is destinationCity)

 Terminate—the destination is reached
else

 for (each unvisited city C adjacent to originCity)
 searchR(C, destinationCity)

Possible outcomes
of the exhaustive
search strategy

Use backtracking to
recover from a
wrong choice

A refi nement of the
recursive search
algorithm

 Backtracking 175

 Now consider what happens when the algorithm reaches a city that has no unvisited city adjacent
to it. For example, consider the piece of a fl ight map in Figure 5-5 . When searchR reaches city M —
that is, when the argument originCity has the value M— the for loop will not be entered, because no
unvisited cities are adjacent to M. Hence, the searchR algorithm returns. This return has the effect of
backtracking to city L, from which the fl ight to M originated. In terms of the previous pseudocode, the
return is made to the point from which the call searchR(M, destinationCity) occurred. This point
is within the for loop, which iterates through the unvisited cities adjacent to L; that is, the argument
originCity has the value L.

 After backtracking from M to L, the for loop will again execute. This time the loop chooses
city K, resulting in the recursive call searchR(K, destinationCity) . From this point, the algo-
rithm will either eventually reach the destination city—and terminate—or backtrack once again
to city L. If it backtracks to L, the for loop will terminate, because there are no more unvisited cit-
ies adjacent to L, and a return from searchR will occur. The effect is to backtrack to the city where
the fl ight to L originated. If the algorithm ever backtracks to the origin city and no remaining
unvisited cities are adjacent to it, the algorithm will terminate, and you can conclude that no
sequence of fl ights from the origin to the destination exists. Notice that the algorithm will always
terminate in one way or another, because it will either reach the destination city or run out of
unvisited cities to try.

FIGURE 5-5 A piece of a fl ight map

L

J
(visited)

K

M

N (visited)

O (visited)

Note: Backtracking

 When searching for a sequence of fl ights between cities, you must take into account the
possibility that the algorithm will make wrong choices. For example, the algorithm must
be able to backtrack when it hits a dead end, and you must eliminate the possibility that
the algorithm will cycle.

 Operations on the fl ight map. Now consider the operations that the search algorithm must per-
form on the fl ight map. The algorithm marks cities as it visits them, determines whether a city has
been visited, and determines which cities are adjacent to a given city. You can treat the fl ight map
as an ADT that has at least these operations in addition to the search operation itself. Other desir-
able operations include placing data into the fl ight map, inserting a city adjacent to another city,
displaying the fl ight map, displaying a list of all cities, and displaying all cities that are adjacent to

176 CHAPTER 5 Recursion as a Problem-Solving Technique

a given city. Thus, the ADT fl ight map could include the following operations, given here in UML
notation.

 // Reads flight information into the flight map.
+readFlightMap(cityFileName: string, flightFileName: string): void

 // Displays flight information.
+displayFlightMap(): void

 // Displays the names of all cities that HPAir serves.
+displayAllCities(): void

 // Displays all cities that are adjacent to a given city.
+displayAdjacentCities(aCity: City): void

 // Marks a city as visited.
+markVisited(aCity: City): void

 // Clears marks on all cities.
+unvisitAll(): void

 // Sees whether a city was visited.
+isVisited(aCity: City): boolean

 // Inserts a city adjacent to another city in a flight map.
+insertAdjacent(aCity: City, adjCity: City): void

 // Returns the next unvisited city, if any, that is adjacent to a given city.
 // Returns a sentinel value if no unvisited adjacent city was found.
+getNextCity(fromCity: City): City

 // Tests whether a sequence of flights exists between two cities.
+isPath(originCity: City, destinationCity: City): boolean

 The latter operation isPath uses the searchR algorithm to make its determination. If the class
Map is the implementation of the ADT fl ight map, its method isPath has the following C++ defi ni-
tion. Note that NO_CITY is a City object that Map defi nes as a constant for getNextCity to return in
case it cannot fi nd an unvisited adjacent city.

 /** Tests whether a sequence of flights exists between two cities.
 @pre originCity and destinationCity both exist in the flight map.
 @post Cities visited during the search are marked as visited
 in the flight map.
 @param originCity The origin city.
 @param destinationCity The destination city.
 @return True if a sequence of flights exists from originCity
 to destinationCity; otherwise returns false. */
 bool Map::isPath(City originCity, City destinationCity)
 {

bool result, done;

// Mark the current city as visited
 markVisited(originCity);

 // Base case: the destination is reached
if (originCity == destinationCity)

result = true;
else // Try a flight to each unvisited city
{

done = false;
 City nextCity = getNextCity(originCity);

ADT fl ight map
operations

C++ implementation
of searchR

 Backtracking 177

while (!done && (nextCity != NO_CITY))
 {
 done = isPath(nextCity, destinationCity);

if (!done)
nextCity = getNextCity(originCity);

 } // end while

 result = done;
} // end if

return result;
} // end isPath

Note: The subproblems that a recursive solution generates eventually must reach a base
case. Failure to do so could result in an algorithm that does not terminate. Solutions that
involve backtracking are particularly subject to this kind of error.

 5.3.2 The Eight Queens Problem

 A chessboard contains 64 squares that form eight rows and eight columns. The most powerful piece
in the game of chess is the queen, because it can attack any other piece within its row, within its col-
umn, or along its diagonal. The Eight Queens problem asks you to place eight queens on the chess-
board so that no queen can attack any other queen.

 One strategy is to guess at a solution. However, according to Section 2.6.3 of Chapter 2 , there are
g (64, 8) = 4,426,165,368 ways to arrange eight queens on a chessboard of 64 squares—so many that
it would be exhausting to check all of them for a solution to this problem. Nevertheless, a simple
observation eliminates many arrangements from consideration: No queen can reside in a row or a
column that contains another queen. Alternatively, each row and column can contain exactly one
queen. Thus, attacks along rows or columns are eliminated, leaving only 8! = 40,320 arrangements of
queens to be checked for attacks along diagonals. A solution now appears more feasible.

 Question 6 Trace the method isPath with the map in Figure 5-6 for the following
requests. Show the recursive calls and the returns from each.
• Fly from A to B .
• Fly from A to D .
• Fly from C to G .

CHECK POINT

Place eight queens
on the chessboard
so that no queen
can attack any other
queen

FIGURE 5-6 Flight map for Checkpoint Question 6

A C E

I

F

GH

D
B

178 CHAPTER 5 Recursion as a Problem-Solving Technique

 Suppose that you provide some organization for the guessing strategy by placing one queen per
column, beginning with the fi rst square of column 1. Figure 5-7 a shows this queen and its range of
attack. When you consider column 2, you eliminate its fi rst square because row 1 contains a queen,
you eliminate its second square because of a diagonal attack, and you fi nally place a queen in the third
square of column 2, as Figure 5-7 b illustrates. The black dots in the fi gure indicate squares that are
rejected because a queen in that square is subject to attack by another queen in an earlier column. The
blue dots indicate the additional squares that the new queen can attack.

 We continue to place queens in this manner until we get to column 6, as Figure 5-7 e shows.
Although the fi ve placed queens cannot attack each other, they can attack any square in column 6, and
therefore, you cannot place a queen in column 6. You must back up to column 5 and move its queen to
the next possible square in column 5, which is in the last row, as Figure 5-7 f indicates. When you con-
sider column 6 once again, there are still no choices for a queen in that column. Because you have
exhausted the possibilities in column 5, you must back up to column 4. As Figure 5-7 g shows, the
next possible square in column 4 is in row 7. You then consider column 5 again and place a queen in
row 2 (Figure 5-7 h).

 How can you use recursion in the process that was just described? Consider an algorithm that
places a queen in a column, given that you have placed queens correctly in the preceding columns.

FIGURE 5-7 Placing one queen at a time in each column, and the placed queens’ range of
attack: (a) the fi rst queen in column 1; (b) the second queen in column 2; (c) the
third queen in column 3; (d) the fourth queen in column 4; (e) the fi ve queens
can attack all of column 6; (f) backtracking to column 5 to try another square for
the queen; (g) backtracking to column 4 to try another square for the queen;
(h) considering column 5 again

1 2 3 4 5 6 7 8

(e) (f) (g)

1 2 3 4 5 6 7 8

(a)

1 2 3 4 5 6 7 8

(b)

1 2 3 4 5 6 7 8

(c)

1 2 3 4 5 6 7 8

(d)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(h)

1 2 3 4 5 6 7 8

Place queens one
column at a time

If you reach an
impasse, backtrack
to the previous
column

 Backtracking 179

First, if there are no more columns to consider, you are fi nished; this is the base case. Otherwise, after
you successfully place a queen in the current column, you need to consider the next column. That is,
you need to solve the same problem with one fewer column; this is the recursive step. Thus, you begin
with eight columns, consider smaller problems that decrease in size by one column at each recursive
step, and reach the base case when you have a problem with no columns.

 This solution appears to satisfy the criteria for a recursive solution. However, you do not know
whether you can successfully place a queen in the current column. If you can, you recursively con-
sider the next column. If you cannot place a queen in the current column, you need to backtrack, as
has already been described.

 The Eight Queens problem can be solved in a variety of ways. The solution in this chapter uses
two classes: a Board class to represent the chessboard and a Queen class to represent a queen on the
board. A Queen object keeps track of its row and column placement and contains a static pointer to the
Board . It also has operations to move to the next row and to see whether it is subject to attack. A Board
object keeps track of the Queen objects currently on the board and contains operations—such as
placeQueens —to perform the Eight Queens problem and display the solution.

 The following pseudocode describes the algorithm for placing queens in columns, given that the
previous columns contain queens that cannot attack one another:

 // Places queens in eight columns.
placeQueens(queen: Queen): void

 if (queen's column is greater than the last column)
The problem is solved

else
 {

while (unconsidered squares exist in queen's column and
 the problem is unsolved)
 {

 Find the next square in queen's column that is
 not under attack by a queen in an earlier column

if (such a square exists)
 {

Place a queen in the square

// Try next column
 placeQueens(new Queen(firstRow, queen's column + 1))

if (no queen is possible in the next column)
 {

Delete the new queen
Remove the last queen placed on the board and

 consider the next square in that column
 }
 }
 }
 }

 The Eight Queens problem is initiated by the method doEightQueens , which calls placeQueens
with a new queen in the upper-left corner of the board:

 doEightQueens()
 {
 placeQueens(new Queen(firstRow, firstColumn))
 }

 After doEightQueens has completed, the board may display the solution, if one was found.

The solution
combines recursion
with backtracking

180 CHAPTER 5 Recursion as a Problem-Solving Technique

 Figure 5-8 indicates the solution that the previous algorithm fi nds. By modifying the arguments
to placeQueens , you can discover other solutions to the Eight Queens problem. The Programming
Problems at the end of this chapter ask you to consider other solutions to this algorithm, as well as
additional modifi cations.

FIGURE 5-8 A solution to the Eight Queens problem

1 2 3 4 5 6 7 8

 Question 7 Consider a Four Queens problem, which has the same rules as the Eight
Queens problem but uses a 4 � 4 board. Find all solutions to this new problem by applying
backtracking by hand.

CHECK POINT

 Implementing eight queens using the STL class vector. The Board class in the solution
described thus far may be represented in a number of ways. The simplest representation would be
a two-dimensional array; however, such an array wastes space because only eight squares out of
64 are used. Another approach would be to use a one-dimensional array of only the squares that
contain a queen. Because the algorithm uses backtracking, a dynamic array is the optimal choice.
The vector container in the STL is often used in place of an array type, because it allows
the number of elements to vary dynamically and provides several built-in methods. Indexing is
provided with array-type subscripting or with the at method, which provides range checking
as well.

 As given in Listing 5-1, the class Board contains a vector of pointers to Queen objects, as well as
several methods to manipulate the queens on the board. The class Queen appears in Listing 5-2.

 LISTING 5-1 The header fi le for the class Board

 /** @file Board.h */
#ifndef _BOARD
#define _BOARD
#include "Queen.h"
#include <vector>
#include <cassert>

 Backtracking 181

#include <iostream>
 using namespace std;

 static const int BOARD_SIZE = 8;

 class Board
 {
 private :
 vector<Queen*> queens; // Array of pointers to queens on the board

 /** Sees whether a queen exists in position (inRow, inCol). */
 bool isQueen(int inRow, int inCol) const;

 /** Attempts to place queens on board, starting with the designated queen. */
 const placeQueens(Queen* queenPtr);

 /** Removes the last queen from the board, but does not deallocate it. */
 void removeQueen();

 /** Places a queen on the board. */
 void setQueen(const Queen* queenPtr);

 public:
 /** Supplies the Queen class with a pointer to the board. */
 Board();

 /** Clears the board and removes pointer from queens. */
 ~Board();

 /** Clears board. */
 void clear();

 /** Displays board. */
 void display() const;

 /** Initiates the Eight Queens problem. */
 void doEightQueens();

 /** @return The number of queens on the board. */
 int getNumQueens() const;

 /** @return A pointer to the queen at the designated index. */
 const Queen* getQueen(int index) const;

 }; // end Board
 #endif

 LISTING 5-2 The class Queen

 class Board; // Forward declaration of Board class

/** The Queen class. */
 class Queen
 {
 public:

/** Places a queen in upper-left corner of board. */
 Queen();

(continues)

182 CHAPTER 5 Recursion as a Problem-Solving Technique

/** Places a queen in supplied location. */
 Queen(int inRow, int inCol);

/** @return Column number. */
int getCol() const;

/** @return Row number. */
int getRow() const;

 /** Moves queen to next row. */
void nextRow();

/** Sees whether the queen is under attack by another queen.
@return True if another queen is in the same row or the same

 diagonal; otherwise, returns false. */
bool isUnderAttack() const;

/** Saves a pointer to the board for all queens. */
static void setBoard(const Board* bPtr);

 private:
int row; // Row (or prospective row) of queen if it is on the board

 int col; // Column (or prospective column) of queen if it is on
// the board

// All queens share the same board
static const Board* boardPtr;

 }; // end Queen

 An implementation of placeQueens follows:

 bool Board::placeQueens(Queen* queenPtr)
 {

// Base case: Try to place a queen in a nonexistent column.
if (queenPtr->getCol() >= BOARD_SIZE)

 {
delete queenPtr;
return true;

 } // end if

bool isQueenPlaced = false;
while (!isQueenPlaced && queenPtr->getRow() < BOARD_SIZE)

 {
 // If the queen can be attacked, try moving it
 // to the next row in the current column
 if (queenPtr->isUnderAttack())

queenPtr->nextRow();
 else
 {
 // Put this queen on the board and try putting a
 // new queen in the first row of the next column
 setQueen(queenPtr);
 Queen* newQueenPtr = new Queen(0, queenPtr->getCol() + 1);
 isQueenPlaced = placeQueens(newQueenPtr);

 The Relationship Between Recursion and Mathematical Induction 183

 // If it wasn't possible to put the new queen in the next column,
 // backtrack by deleting the new queen and moving the last
 // queen placed down one row
 if (!isQueenPlaced)
 {

delete newQueenPtr;
removeQueen();
queenPtr->nextRow();

 } // end if
} // end if

} // end while
return isQueenPlaced;

} // end placeQueens

 5.4 The Relationship Between Recursion
and Mathematical Induction

 A very strong relationship exists between recursion and mathematical induction. Recursion solves a
problem by specifying a solution to one or more base cases and then demonstrating how to derive the
solution to a problem of an arbitrary size from the solutions to smaller problems of the same type.
Similarly, mathematical induction proves a property about the natural numbers by proving the prop-
erty about a base case—usually 0 or 1—and then proving that the property must be true for an arbi-
trary natural number n if it is true for the natural numbers smaller than n .

 Given the similarities between recursion and mathematical induction, it should not be surpris-
ing that induction is often employed to prove properties about recursive algorithms. What types of
properties? You can, for example, prove that an algorithm actually performs the task that you
intended. As an illustration, we will prove that the recursive factorial algorithm of Chapter 2 does
indeed compute the factorial of its argument. Another use of mathematical induction is to prove
that a recursive algorithm performs a certain amount of work. For example, we will prove that the
solution to the Towers of Hanoi problem—also from Chapter 2 —makes exactly 2 N – 1 moves when
it starts with N disks.

 5.4.1 The Correctness of the Recursive Factorial Function

 The following pseudocode describes a recursive function that computes the factorial of a nonnegative
integer n:

 fact(n: integer): integer

if (n is 0)
return 1

else
return n * fact(n - 1)

 You can prove that the function fact returns the values

factorial (0) � 0! � 1
factorial (n) � n ! � n � (n – 1) � (n – 2) � … � 1 if n > 0

 The proof is by induction on n .

 Basis. Show that the property is true for n = 0 . That is, you must show that fact(0) returns 1. But
this result is simply the base case of the function: fact(0) returns 1 by its defi nition.

You can use
induction to prove
that a recursive
algorithm either is
correct or performs
a certain amount of
work

184 CHAPTER 5 Recursion as a Problem-Solving Technique

 You now must establish that

property is true for an arbitrary k 1 property is true for k 1 1

 Inductive hypothesis. Assume that the property is true for n = k. That is, assume that

factorial (k) = k ! = k � (k – 1) � (k – 2) � … � 1

 Inductive conclusion. Show that the property is true for n = k + 1. That is, you must show that
fact(k + 1) returns the value

 (k + 1) � k � (k – 1) � (k – 2) � … � 2 � 1

 By defi nition of the function fact , fact(k + 1) returns the value

 (k + 1) � factorial (k)

 But by the inductive hypothesis, fact(k) returns the value

k � (k – 1) � (k – 2) � … � 2 � 1

 Thus, fact(k + 1) returns the value

 (k + 1) � k � (k – 1) � (k – 2) � … � 2 � 1

 which is what you needed to show to establish that

property is true for an arbitrary k 1 property is true for k 1 1

 The inductive proof is thus complete.

 5.4.2 The Cost of Towers of Hanoi

 In Chapter 2 , you saw the following solution to the Towers of Hanoi problem:

 solveTowers(count, source, destination, spare)

if (count is 1)
 Move a disk directly from source to destination

else
 {
 solveTowers(count - 1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count - 1, spare, destination, source)
 }

 We now pose the following question: If you begin with N disks, how many moves does solveTowers
make to solve the problem?

 Let moves (N) be the number of moves made starting with N disks. When N = 1, the answer is
easy:

moves 11 2 5 1

 When N > 1, the value of moves (N) is not so apparent. An inspection of the solveTowers
algorithm, however, reveals three recursive calls. Therefore, if you knew how many moves solveTowers
made starting with N – 1 disks, you could fi gure out how many moves it made starting with N disks;
that is,

moves 1N 2 5 moves 1N21 2 1 moves 11 2 1 moves 1N21 2

 The Relationship Between Recursion and Mathematical Induction 185

 Thus, you have a recurrence relation for the number of moves required for N disks:

moves 11 2 5 1

moves 1N 2 5 2 3 moves 1N21 2 1 1 if N . 1

 For example, you can determine moves (3) as follows:

moves 13 2 5 2 3 moves 12 2 1 1

 5 2 3 12 3 moves 11 2 1 1 2 1 1

 5 2 3 12 3 1 1 1 2 1 1

 5 7

 Although the recurrence relation gives you a way to compute moves (N), a closed-form
formula —such as an algebraic expression—would be more satisfactory, because you could substi-
tute any given value for N and obtain the number of moves made. However, the recurrence relation is
useful because there are techniques for obtaining a closed-form formula from it. Because these tech-
niques are not relevant to us right now, we simply pull the formula out of the blue and use
mathematical induction to prove that it is correct.

 The solution to the previous recurrence relation is

moves 1N 2 5 2N 2 1 for all N $ 1

 Notice that 2 3 – 1 agrees with the value 7 that was just computed for moves (3).
 The proof that moves (N) = 2 N – 1 is by induction on N .

Basis. Show that the property is true for N = 1 . Here 2 1 – 1 = 1, which is consistent with the recur-
rence relation’s specifi cation that moves (1) = 1.

 You now must establish that

property is true for an arbitrary k 1 property is true for k 1 1

 Inductive hypothesis. Assume that the property is true for N = k. That is, assume

moves 1k 2 5 2k21

 Inductive conclusion. Show that the property is true for N = k + 1. That is, you must show that
moves (k + 1) = 2 k +1 – 1. Now

moves 1k 1 1 2 5 2 3 moves 1k 2 1 1 from the recurrence relation

 5 2 3 12k21 2 1 1 by the inductive hypothesis

 5 2k11 2 1

 which is what you needed to show to establish that

property is true for an arbitrary k 1 property is true for k 1 1

 The inductive proof is thus complete.
 Do not get the false impression that proving properties of programs is an easy matter. These two

proofs are about as easy as any will be. However, well-structured programs are far more amenable to
these techniques than are poorly structured programs.

 Appendix E provides more information about mathematical induction.

A recurrence
relation for the
number of moves
that solveTowers
requires for N disks

A closed-form
formula for the
number of moves
that solveTowers
requires for N disks

186 CHAPTER 5 Recursion as a Problem-Solving Technique

 SUMMARY

1. A grammar is a device for defi ning a language, which is a set of strings of symbols. By using a grammar to
defi ne a language, you often can construct a recognition algorithm that is directly based on the grammar. Gram-
mars are frequently recursive, thus allowing you to describe vast languages concisely.

2. To illustrate the use of grammars, we defi ned several different languages of algebraic expressions. These lan-
guages have their relative advantages and disadvantages. Prefi x and postfi x expressions, though diffi cult for
people to use, have simple grammars and eliminate ambiguity. On the other hand, infi x expressions are easier
for people to use but require parentheses, precedence rules, and rules of association to eliminate ambiguity.
Therefore, the grammar for infi x expressions is more involved.

3. Backtracking is a solution strategy that involves both recursion and a sequence of guesses that ultimately lead to
a solution. If a particular guess leads to an impasse, you retrace your steps in reverse order, replace that guess,
and try to complete the solution again.

4. A close relationship between mathematical induction and recursion exists. You can use induction to prove prop-
erties about a recursive algorithm. For example, you can prove that a recursive algorithm is correct, and you can
derive the amount of work it requires.

 EXERCISES

1. Trace the following recursive functions:

a. isPal with the string abcdeba
b. isAnBn with the string AABB
c. endPre with the expression –*/ abcd

2. Consider the language that the following grammar defi nes:

,S. 5 $ 0,W. 0$,S.

,W. 5 abb 0a ,W. bb

 Write all strings that are in this language and that contain seven or fewer characters.

3. Write a recursive grammar for the language of strings of one or more letters. The fi rst letter of each string must
be uppercase, and all other letters in the string must be lowercase.

4. Consider a language of character strings that contain only dots and dashes. All strings in this language contain at
least four characters and begin with either two dots or two dashes. If the fi rst two characters are dots, the last one
must be a dash; if the fi rst two characters are dashes, the last one must be a dot. Write a recursive grammar for
this language.

5. Consider a language of strings that contains only X ’s, Y ’s and Z ’s. A string in this language must begin with an X .
If a Y is present in a string, it must be the fi nal character of the string.

a. Write a recursive grammar for this language.
b. Write all the possible two-character strings of this language.

 Note: The subtleties of some of the algorithms you encountered in this chapter indicate
the need for mathematical techniques to prove their correctness. The application of these
techniques during the design of the various components of a solution can help to elimi-
nate errors in logic before they appear in the program. One such technique is mathemati-
cal induction; another is the use of loop invariants, which Appendix F discusses.

 Exercises 187

6. Consider a language of words, where each word is a string of dots and dashes. The following grammar describes
this language:

,word. 5 ,dot. 0,dash. ,word. 0,word. ,dot.

,dot. 5

,dash. 5 2

a. Write all three-character strings that are in this language.
b. Is the string • • • • – – in this language? Explain.
 c. Write a seven-character string that contains more dashes than dots and is in the language. Show how

you know that your answer is correct.
 d. Write pseudocode for a recursive recognition function isIn(str) that returns true if the string str is in

this language and returns false otherwise.

7. Consider the following grammar:

,word. 5 R 0,D. 0,D. ,word. ,S.

,D. 5 Q 0P
,S. 5 1

 Write pseudocode for a recursive function that returns true if a string is in this language and returns false
otherwise.

8. Consider the following grammar:

,G. 5 empty string 0,E. 0,V. ,E. 0 ,E. ,G. ,V.

,E. 5 & 0#
,V. 5 W 0A

 a. Write pseudocode for a recursive function that returns true if a string is in this language and returns
false otherwise.

b. Is the string &W#W in this language?

9. Let L be the language

L 5 5S:S is of the form AnB2n, for some n . 06
 Thus, a string is in L if and only if it starts with a sequence of A ’s and is followed by a sequence of twice as many
B ’s. For example, AABBBB is in L , but ABBB, ABBABB, and the empty string are not.

 a. Give a grammar for the language L .
 b. Write a recursive function that determines whether the string strExp is in L .

10. Is +* a – b / c ++ de – fg a prefi x expression? Explain in terms of the grammar for prefi x expressions.

11. Is ab /c * efg * h /+d –+ a postfi x expression? Explain in terms of the grammar for postfi x expressions.

12. Consider the language that the following grammar defi nes:

,S. 5 ,L. 0 ,D. ,S. ,S.

,L. 5 A 0B
,D. 5 1 02

 a. Write all three-character strings that are in this language.
 b. Write one string in this language that contains more than three characters.

188 CHAPTER 5 Recursion as a Problem-Solving Technique

13. Consider a language of the following character strings: The letter A , the letter B , the letter C followed by a string
that is in the language, and the letter D followed by a string in the language. For example, these strings are in this
language: A, CA, CCA, DCA, B, CB, CCB, DB, and DCCB.

 a. Write a grammar for this language.
 b. Is CAB in this language? Explain.
 c. Write a recursive recognition algorithm for this language.

14. Consider the language that the following grammar defi nes:

,word. 5 $ 0a,word.a 0b,word.b 0c0y,word.y 0z,word.z

 Equivalently,

L 5 5s $ reverse 1s 2 :s is a string of letters of length $ 06
 Note that this language is very similar to the language of palindromes, but there is a special middle character
here.

 The algorithm that this chapter gave for recognizing palindromes can be adapted easily to this language.
The algorithm, which is recursive and processes the string str from both ends toward the middle, is based on the
following facts:

• A string with no characters is not in the language.
• A string with exactly one character is in the language if the character is a $.
• A longer string is in the language if the ends are identical letters and the inner substring (from the second

character to the next-to-last character of str) is in the language.

 Describe a recursive recognition algorithm that processes the string from left to right, reading one
character at a time without saving the string for future reference. Write a C++ function that implements your
algorithm.

15. Consider the following recursive function:

 int p(int x)
 {
 if (x =< 3)
 return x;
 else
 return p(x-1) * p(x-3);
} // end p

 Let m (x) be the number of multiplication operations that the execution of p(x) performs.

 a. Write a recursive defi nition of m (x).
 b. Prove that your answer to part a is correct by using mathematical induction.

16. Consider palindromes that consist only of lowercase letters, such as “level” and “deed,” but not “RadaR,”
“ADA,” or “101.” Let c (n) be the number of palindromes of length n .

 a. Write a recursive defi nition of c (n).
b. Prove that your answer to part a is correct by using mathematical induction.

17. Prove the following for single-letter operands: If E is a prefi x expression and Y is a nonempty string of
nonblank characters, then E Y cannot be a legal prefi x expression. (Hint: Use a proof by induction on the length
of E .)

 Programming Problems 189

18. Chapter 2 gave the following defi nition for g (n , k), where n and k are assumed to be nonnegative integers:

g 1n, k 2 5 μ 1 if k 5 0

1 if k 5 n

0 if k . n

g 1n 2 1, k 2 1 2 1 g 1n 2 1, k 2 if 0 , k , n

 Prove by induction on n that the following is a closed form for g (n , k):

g 1n, k 2 5 n!1n 2 k 2 !k!

 PROGRAMMING PROBLEMS

1. Complete the classes Queen and Board for the Eight Queens problem.

2. Revise the program that you just wrote for the Eight Queens problem so that it answers the following questions:

a. How many backtracks occur? That is, how many times does the program remove a queen from the
board?

 b. How many calls to isUnderAttack are there?
 c. How many recursive calls to placeQueens are there?

 *3. You can begin the Eight Queens problem by placing a queen in the second square of the fi rst column instead of in
the fi rst square. You can then call placeQueens to begin with the second column. This revision should lead you
to a new solution. Write a program that fi nds all solutions to the Eight Queens problem. 1

4. Do you know how to fi nd your way through a maze? After you write this program, you will never be lost again!
 Assume that a maze is a rectangular array of squares, some of which are blocked to represent walls. The

maze has one entrance and one exit. For example, if x ’s represent the walls, a maze could appear as follows:

 xxxxxxxxxxxxxxxxxx x
 x x xxxx x
 x xxxxx xxxxx xx x
 x xxxxx xxxxxxx xx x
 x x xx xx x
 x xxxxxxxxxx xx x
 xxxxxxxxxxxx o xxxxxxx

 A creature, indicated in the previous diagram by o , sits just inside the maze at the entrance (bottom row).
Assume that the creature can move in only four directions: north, south, east, and west. In the diagram, north is
up, south is down, east is to the right, and west is to the left. The problem is to move the creature through the
maze from the entrance to the exit (top row), if possible. As the creature moves, it should mark its path. At the
conclusion of the trip through the maze, you should see both the correct path and incorrect attempts. Write a
program to solve this problem.

1 Especially challenging projects in this book are indicated with an asterisk.

(continues on next page)

190 CHAPTER 5 Recursion as a Problem-Solving Technique

 Squares in the maze have one of several states: CLEAR (the square is clear), WALL (the square is blocked
and represents part of the wall), PATH (the square lies on the path to the exit), and VISITED (the square was
visited, but going that way led to an impasse).

 This problem uses two ADTs that must interact. The ADT creature represents the creature’s current position
and contains operations that move the creature. The creature should be able to move north, south, east, and west
one square at a time. It should also be able to report its position and mark its trail.

 The ADT maze represents the maze itself, which is a two-dimensional rectangular arrangement of squares.
You could number the rows of squares from the top beginning with zero, and number the columns of squares
from the left beginning with zero. You could then use a row number and a column number to uniquely identify
any square within the maze. The ADT clearly needs a data structure to represent the maze. It also needs such data
as the height and width of the maze given in numbers of squares; the length of a side of a square, and the row and
column coordinates of both the entrance to and the exit from the maze.

 The ADT maze should also contain, for example, operations that create a specifi c maze given descriptive
data that we will detail to display a maze, determine whether a particular square is part of the wall, determine
whether a particular square is part of the path, and so on.

 The search algorithm and its supporting functions are outside both of the ADTs creature and maze. Thus,
the maze and the creature will be arguments that you must pass to these functions. If you are at the maze’s
entrance, you can systematically fi nd your way out of the maze by using the following search algorithm. This
involves backtracking—that is, retracing your steps when you reach an impasse.

 Step 1. First check whether you are at the exit. If you are, you’re done (a very simple maze); if you are not,
go to step 2.

 Step 2. Try to move to the square directly to the north by calling the function goNorth (step 3).
 Step 3. If goNorth was successful, you are done. If it was unsuccessful, try to move to the square directly

to the west by calling the function goWest (step 4).
 Step 4. If goWest was successful, you are done. If it was unsuccessful, try to move to the square directly to

the south by calling the function goSouth (step 5).
 Step 5. If goSouth was successful, you are done. If it was unsuccessful, try to move to the square directly

to the east by calling the function goEast (step 6).
 Step 6. If goEast was successful, you are done. If it was unsuccessful, you are still done, because no path

exists from the entrance to the exit.

 The function goNorth will examine all the paths that start at the square to the north of the present square
as follows. If the square directly to the north is clear, is inside the maze, and has not been visited before,
move into this square and mark it as part of the path. (Note that you are moving from the south.) Check
whether you are at the exit. If you are, you’re done. Otherwise, try to fi nd a path to the exit from here by try-
ing all paths leaving this square except the one going south (going south would put you back in the square
from which you just came) as follows. Call goNorth; if it is not successful, call goWest and, if it is not suc-
cessful, call goEast. If goEast is not successful, mark this square as visited, move back into the square to the
south, and return.

 The following pseudocode describes the goNorth algorithm:

goNorth(maze, creature)

 if (the square to the north is clear, inside the maze, and unvisited)
{

 Move to the north
 Mark the square as part of the path
 if (at exit)

 Programming Problems 191

 success = true
 else
{

 success = goNorth(maze, creature)
 if (!success)
 {
 success = goWest(maze, creature)
 if (!success)
 {
 success = goEast(maze, creature)
 if (!success)
 {
 Mark square visited
 Backtrack south
 }
 }
 }
 }
 }
 else

 success = false

 return success

 The goWest function will examine all the paths that start at the square to the west of the present square as
follows. If the square directly to the west is clear, is inside the maze, and has not been visited before, move into
this square and mark it as part of the path. (Note that you are moving from the east.) Check whether you are at the
exit. If you are, you’re done. Otherwise, try to fi nd a path to the exit from here by trying all paths leaving this
square except the one going east (this would put you back in the square from which you just came) as follows.
Call goNorth ; if it is not successful, call goWest ; and if it is not successful, call goSouth . If goSouth is not suc-
cessful, mark this square as visited, move back into the square to the east, and return. The functions goEast and
 goSouth are analogous to goWest and goNorth .

 The input data to represent a maze is simple. For example, the previously given maze is represented by the
following lines of input, which can be in a text fi le:

 20 7 ← width and height of the maze in squares
 0 18 ← row and column coordinate of maze exit
 6 12 ← row and column coordinate of maze entrance
 xxxxxxxxxxxxxxxxxx x
 x x xxxx x
 x xxxxx xxxxx xx x
 x xxxxx xxxxxxx xx x
 x x xx xx x
 x xxxxxxxxxx xx x
 xxxxxxxxxxxx xxxxxxx

 After the fi rst three lines of numeric data in the fi le, each of the next lines corresponds to a row in the maze, and
each character in a line corresponds to a column in the maze. An x indicates a blocked square (part of the wall),
and a blank indicates a clear square. This notation is convenient, because you can see what the maze looks like as
you design it.

5. Write a program that will recognize and evaluate prefi x expressions. First design and implement a class of prefi x
expressions. This class should contain methods to recognize and evaluate prefi x expressions. This chapter dis-
cusses the algorithms you will need to implement these methods.

6. Implement a recognition algorithm for the language in Exercise 5.

192 CHAPTER 5 Recursion as a Problem-Solving Technique

7. Implement the algorithm described in this chapter to convert a prefi x expression to postfi x form.

8. The following is a grammar that allows you to omit parentheses in infi x algebraic expressions when the prece-
dence rules remove ambiguity. For example, a + b * c means a + (b * c). However, the grammar requires paren-
theses when ambiguity would otherwise result. That is, the grammar does not permit left-to-right association
when several operators have the same precedence. For example, a / b * c is illegal. Notice that the defi nitions
introduce factors and terms.

,expression. 5 ,term. 0 ,term. 1 ,term. 0,term. 2 ,term.

,term. 5 ,factor. 0 ,factor.*,factor. 0 ,factor./,factor.

,factor. 5 ,letter. 0 1,expression. 2
,letter. 5 a 0 b 0 c 0 z

 The recognition algorithm is based on a recursive chain of subtasks: fi nd an expression → fi nd a term →
fi nd a factor . What makes this a recursive chain is that fi nd an expression uses fi nd a term , which in turn uses fi nd
a factor . Find a factor either detects a base case or uses fi nd an expression , thus forming the recursive chain. The
pseudocode for the recognition algorithm follows:

 FIND AN EXPRESSION
 // The grammar specifies that an expression is either a single term
// or a term followed by a + or a –, which then must be followed by a second term.

Find a term
 if (the next symbol is + or -)
 Find a term

 FIND A TERM
// The grammar specifies that a term is either a single factor or
 // a factor followed by a * or a /, which must then be followed by a second factor.

 Find a factor
 if (the next symbol is * or /)

Find a factor

 FIND A FACTOR
 // The grammar specifies that a factor is either a single letter (the base case) or
// an expression enclosed in parentheses.
 if (the first symbol is a letter)

 Done
 else if (the first symbol is a '(')
 {

Find an expression starting at the character after '('
Check for ')'

 }
 else

No factor exists

 Design and implement a class of infi x expressions, as described by the given grammar. Include a method to
recognize a legal infi x expression.

 Chapter

 Stacks 6
 Contents
 6.1 The Abstract Data Type Stack 194

 6.1.1 Developing an ADT During the Design of a Solution 194
 6.1.2 Specifi cations for the ADT Stack 196

 6.2 Simple Uses of a Stack 201
 6.2.1 Checking for Balanced Braces 201
 6.2.2 Recognizing Strings in a Language 203

 6.3 Using Stacks with Algebraic Expressions 205
 6.3.1 Evaluating Postfi x Expressions 205
 6.3.2 Converting Infi x Expressions to Equivalent Postfi x Expressions 206

 6.4 Using a Stack to Search a Flight Map 210
 6.5 The Relationship Between Stacks and Recursion 216

 Summary 218
 Exercises 218
 Programming Problems 221

 Prerequisites
 Chapter 1 Data Abstraction: The Walls
 C++ Interlude 1 C++ Classes

So far in this book, we have discussed data abstraction as it relates to the design of a
solution, introduced C++ classes as a way to hide a solution’s implementation,
introduced resizable arrays and linked nodes as data structures used in many ADT
implementations, and developed recursion as a problem-solving technique that is
useful in the construction of algorithms. The primary concerns of the remainder of
this book are the aspects of problem solving that involve the management of data—
that is, the identifi cation and implementation of some of the more common data-
management operations.

194 CHAPTER 6 Stacks

 Our study of data management has three goals. The fi rst is to identify useful sets of operations—
that is, to identify abstract data types. The second goal is to examine applications that use these
abstract data types. The third goal is to construct implementations for the abstract data types—that is,
to develop data structures and classes. As you will discover, the nature of the operations of an abstract
data type, along with the application in which you will use it, greatly infl uences the choice of its
implementation.

 The ADT bag discussed in Chapter 1 does not organize its data. However, you can organize data
either by position or by value. In general, these organizations are appropriate for applications of
rather different natures. For example, if an application needs to ask a question about the fi rst person in
a line, you should organize the data by position. On the other hand, if an application needs to ask a
question about the employee named Smith, you should organize the data by value. Throughout the
rest of this book, you will see several ADTs that use these two data organizations.

 This chapter introduces a well-known ADT called a stack. You will see how the operations on a
stack give it a last-in, fi rst-out behavior. Two of the several applications of a stack that the chapter
considers are evaluating algebraic expressions and searching for a path between two points. Finally,
the chapter discusses the important relationship between stacks and recursion. We leave the imple-
mentations of the stack to the next chapter.

 6.1 The Abstract Data Type Stack
 The specifi cation of an abstract data type that you can use to solve a particular problem can emerge
during the design of the problem’s solution. The ADT developed in the following example happens to
be an important one: the ADT stack.

 6.1.1 Developing an ADT During the Design of a Solution

 When you type a line of text on a keyboard, you are likely to make mistakes. If you use the Back-
space key to correct these mistakes, each backspace erases the previous character entered. Con-
secutive backspaces are applied in sequence and so erase several characters. For instance, if you
type the line

 abcc←ddde←←←eg←fg

 where ← represents the backspace character, the corrected input would be

 abcdefg

 How can a program read the original line and get the correct input? In designing a solution to this
problem, you eventually must decide how to store the input line. In accordance with the ADT
approach, you should postpone this decision until you have a better idea of what operations you will
need to perform on the data.

 A fi rst attempt at a solution leads to the following pseudocode:

 // Read the line, correcting mistakes along the way
 while (not end of line)
 {

Read a new character ch
if (ch is not a '←')

Add ch to the ADT
else

Remove from the ADT (discard) the item that was added most recently
 }

Initial draft of a
solution

VideoNote

The ADT stack

 The Abstract Data Type Stack 195

 This solution calls to attention two of the operations that the ADT will have to include:

• Add a new item to the ADT.
• Remove from the ADT the item that was added most recently.

 Notice that potential trouble lurks if you type a ← when the ADT is empty—that is, when the
ADT contains no characters. If this situation should occur, you have three options: (1) have the pro-
gram terminate and write an error message, (2) throw an exception, or (3) have the program ignore
the ← and continue. Any of these options is reasonable, so let’s suppose that you decide to ignore the
← and continue. Therefore, the algorithm becomes

 // Read the line, correcting mistakes along the way
 while (not end of line)
 {

Read a new character ch
if (ch is not a '←')

Add ch to the ADT
else if (the ADT is not empty)

Remove from the ADT the item that was added most recently
else

Ignore the '←'
 }

 From this pseudocode, you can identify a third operation required by the ADT:

• See whether the ADT is empty.

 This solution places the corrected input line in the ADT. Now suppose that you want to display
the line. At fi rst, it appears that you can accomplish this task by using the ADT operations already
identifi ed, as follows:

 // Display the line
 while (the ADT is not empty)
 {

Remove from the ADT the item that was added most recently
Display Uh-oh!

 }

 This pseudocode is incorrect for two reasons:

• When you remove an item from the ADT, the item is gone, so you cannot display it. What you
should have done was to look at the item that was added to the ADT most recently. An accessor
operation returns an item—enabling you to look at it—but does not change the ADT’s data.
Only after getting and displaying the item should you remove it from the ADT.

• The last character of the input line is the item most recently added to the ADT. You
certainly do not want to write it fi rst. The resolution of this particular diffi culty is left to
you as an exercise.

 If we address only the fi rst diffi culty, the following pseudocode displays the input line in
reverse order:

 // Display the line in reverse order
 while (the ADT is not empty)
 {

Get the item that was added to the ADT most recently and assign it to ch
Display ch
Remove from the ADT the item that was added most recently

 }

Two ADT operations
that are required

The “read and
correct” algorithm

Another required
ADT operation

A false start at
writing the line

Reasons why the
attempted solution
is incorrect

The write-backward
algorithm

196 CHAPTER 6 Stacks

 Thus, a fourth operation is required by the ADT:

• Get the item that was added to the ADT most recently.

 Although you have yet to think about an implementation of the ADT, you know that you must be
able to perform four specifi c operations. 1 These operations defi ne the required ADT, which happens
to be well known: It is usually called a stack .

 6.1.2 Specifi cations for the ADT Stack

 We have identifi ed the following operations for the ADT stack:

• See whether a stack is empty.
• Add a new item to the stack.
• Remove from the stack the item that was added most recently.
• Get the item that was added to the stack most recently.

 The term “stack” is intended to conjure up visions of things encountered in daily life, such as a
stack of plates in the school cafeteria, a stack of books on your desk, or a stack of assignments that
you need to work on. In common English usage, “stack of ” and “pile of ” are synonymous. To compu-
ter scientists, however, a stack is not just any old pile. A stack has the property that the last item placed
on the stack will be the fi rst item removed. This property is commonly referred to as last in, fi rst out
or simply LIFO .

 A stack of plates in a cafeteria makes a very good analogy of the abstract data type stack, as
 Figure 6-1 illustrates. As new plates are added, the old ones drop farther into the well beneath the
surface. At any particular time, only the plate last placed on the stack is above the surface and visi-
ble. This plate is at the top of the stack and is the one that must be removed next. In general, the
plates are removed in exactly the opposite order from that in which they were added.

 The LIFO property of stacks seems inherently unfair. Think of the poor person who fi nally
gets the last plate on the cafeteria’s stack, one that may have been placed there six years ago. Or
how would you like to be the fi rst person to arrive on the stack for a movie—as opposed to the line
for a movie. You would be the last person allowed in! These examples demonstrate the reason that
stacks are not especially prevalent in everyday life. The property that we usually desire in our daily
lives is fi rst in, fi rst out , or FIFO . A queue , which you will learn about in Chapter 13 , is the ADT
with the FIFO property. Most people would much prefer to wait in a movie queue—as a line is
called in Britain—than in a movie stack. However, while the LIFO property of stacks is not appro-
priate for very many everyday situations, it is precisely what is needed for a large number of prob-
lems that arise in computer science.

LIFO: The last item
inserted onto a
stack is the fi rst item
out

FIGURE 6-1 A stack of cafeteria plates

 1 The fi nal algorithm to write the line correctly instead of in reverse order does not require additional ADT operations.

Another required
ADT operation

 The Abstract Data Type Stack 197

 Notice how well the analogy holds between the ADT stack and the stack of cafeteria plates.
The operations that manipulate data on the ADT stack are the only such operations, and they cor-
respond to the only things that you can do to a stack of plates. You can determine whether the stack
of plates is empty but not how many plates are on the stack; you can inspect the top plate but no
other plate; you can place a plate on top of the stack but at no other position; and you can remove a
plate from the top of the stack but from no other position. If you were not permitted to perform any
of these operations, or if you were permitted to perform any other operations, the ADT would not
be a stack.

 Although the stack of cafeteria plates suggests that, as you add or remove plates, the other plates
move, do not have this expectation of the ADT stack. The stack operations involve only the top item
and imply only that the other items in the stack remain in sequence. Implementations of the ADT
stack operations might or might not move the stack’s items. The implementations given in the next
chapter do not move data items.

 Refi ning the specifi cation of the ADT stack. The following summary of the ADT stack provides
some detail about how we wish to specify its operations. The names given here for stack operations
are conventional.

ABSTRACT DATA TYPE: STACK

 DATA

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by when they were added.

 OPERATIONS

 PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this stack is empty.
Input: None.
 Output: True if the stack is empty; otherwise false.

 push(newEntry) Task: Adds newEntry to the top of this stack.
Input: newEntry .
 Output: True if the operation is successful; otherwise false.

 pop() Task: Removes the top of this stack. That is, it removes the item that was added
most recently.

 Input: None.
 Output: True if the operation is successful; otherwise false.

 peek() Task: Returns the top of this stack. That is, it gets the item that was added most recently.
The operation does not change the stack.

 Input: None.
 Output: The top of the stack.

 Figure 6-2 shows a UML diagram for a class of stacks.

 Using the ADT stack in a solution. Recall that Chapter 1 urged you to focus on the specifi ca-
tion of a module before you considered its implementation. After writing an ADT’s operations in

198 CHAPTER 6 Stacks

pseudocode, you should try to use them as a check of your design. Such a test can highlight any
defi ciencies in your specifi cations or design. For example, you can use the previous stack opera-
tions to refi ne the algorithms developed earlier in this chapter.

 // Reads an input line, recognizing the character '←' as a backspace that erases the
 // previously typed character.
 // Returns a stack of the corrected characters read.
readAndCorrect(): Stack

 aStack = a new empty stack
Read newChar
while (newChar is not the end-of-line symbol)

 {
if (newChar is not a '←')

 aStack.push(newChar)
else if (!aStack.isEmpty())

 aStack.pop()
Read newChar

 }
return aStack

 // Displays the input line in reverse order by writing the contents of the stack aStack.
displayBackward(aStack: Stack)

while (!aStack.isEmpty())
 {
 newChar = aStack.peek()
 aStack.pop()

Write newChar
 }

Advance to new line

 You should be able to use the stack operations without knowing their implementations or even
what a stack looks like. Because working with an ADT involves building a wall around the imple-
mentation, your program can use a stack independently of the stack’s implementation. As long as the
program correctly uses the ADT’s operations—that is, as long as it honors the operation contract—it
will work regardless of how you implement the ADT.

 For the program to do this, however, the operation contract must be written precisely. That
is, before you implement any operations of the ADT, you should specify in detail both their
requirements before use and their ultimate effect. Realize, however, that during program design,
the first attempt at specification is often informal and is only later made precise by the writing

FIGURE 6-2 UML diagram for the class Stack

Stack

+isEmpty(): boolean
+push(newEntry: ItemType): boolean
+pop(): boolean
+peek(): ItemType

The refi ned
algorithms

 The Abstract Data Type Stack 199

of preconditions and postconditions. For example, the previous specifications of the ADT stack
leave the following questions unanswered:

• How will pop affect an empty stack?
• What will peek do when the stack is empty?

 Note: Operations such as pop and peek must take reasonable action when the stack
is empty.

 An interface. The interface given in Listing 6-1 formalizes our specifi cation of the ADT stack and
answers the previous questions about pop and peek .

LISTING 6-1 A C++ interface for stacks

 /** @file StackInterface.h */
#ifndef _STACK_INTERFACE
#define _STACK_INTERFACE

 template<class ItemType>
 class StackInterface
 {
 public :
 /** Sees whether this stack is empty.

 @return True if the stack is empty, or false if not. */
virtual bool isEmpty() const = 0;

 /** Adds a new entry to the top of this stack.
 @post If the operation was successful, newEntry is at the top of the stack.
 @param newEntry The object to be added as a new entry.
 @return True if the addition is successful or false if not. */

virtual bool push(const ItemType& newEntry) = 0;

 /** Removes the top of this stack.
 @post If the operation was successful, the top of the stack
 has been removed.
 @return True if the removal is successful or false if not. */

virtual bool pop() = 0;

 /** Returns the top of this stack.
 @pre The stack is not empty.
 @post The top of the stack has been returned, and
 the stack is unchanged.
 @return The top of the stack. */

virtual ItemType peek() const = 0;
 }; // end StackInterface
 #endif

Questions that the
informal
specifi cations of the
stack leave
unanswered

200 CHAPTER 6 Stacks

 Axioms (optional). Most people will understand intuitive specifi cations, such as those given previ-
ously for the stack operations. However, some ADTs are much more complex and less intuitive than a
stack. For such ADTs, you should use a more rigorous approach to defi ning the behavior of their
operations: You must supply a set of mathematical rules—called axioms —that precisely specify the
behavior of each operation of an ADT.

 An axiom is a true statement for an ADT’s operation. For example, you are familiar with axioms
for algebraic operations; in particular, you know the following rules for multiplication:

 (a × b) × c = a × (b × c)
a × b = b × a
a × 1 = a
a × 0 = 0

 These rules, or axioms, are true for any numeric values of a , b , and c , and describe the behavior of the
multiplication operator ×.

 In a similar fashion, you can write a set of axioms that completely describes the behavior of the
operations for the ADT stack. For example,

 A newly created stack is empty

 is an axiom because it is true for all newly created stacks. We can state this axiom succinctly in terms
of the ADT stack operations as follows, if we represent a newly created stack by the pseudocode
expression new Stack() :

 (new Stack()).isEmpty() = true

 To formally capture the intuitive notion that the last item inserted into the stack aStack is the fi rst
item to be removed, you could write an axiom such as

 (aStack.push(newItem)).pop() = aStack

 That is, if you push newItem onto aStack and then pop it, you are left with the original stack aStack .
 The following axioms formally defi ne the ADT stack.

 Question 2 What do the initially empty stacks stack1 and stack2 “look like” after the
following sequence of operations?

 stack1.push(1)
 stack1.push(2)
 stack2.push(3)
 stack2.push(4)
 stack1.pop()
stackTop = stack2.peek()
 stack1.push(stackTop)
 stack1.push(5)
 stack2.pop()
 stack2.push(6)

 Question 1 If you push the letters A , B , C , and D in order onto a stack of characters and
then pop them, in what order will they be deleted from the stack?

CHECK POINT

An axiom is a
mathematical rule

Axioms specify the
behavior of an ADT

Axioms for
multiplication

An example of an
axiom

 Simple Uses of a Stack 201

 6.2 Simple Uses of a Stack
 Once you have satisfactorily specifi ed the behavior of an ADT, you can design applications that
access and manipulate the ADT’s data solely in terms of its operations and without regard for its
implementation. Thus, we can use the operations of the ADT stack even though we have not discussed
their implementations yet. This section presents two rather simple examples for which the LIFO
property of stacks is appropriate.

 6.2.1 Checking for Balanced Braces

 C++ uses curly braces, “{” and “}”, to delimit groups of statements. For example, braces begin and
end a method’s body. If you treat a C++ program as a string of characters, you can use a stack to verify
that a program contains balanced braces. For example, the braces in the string

 abc{defg{ijk}{l{mn}}op}qr

 are balanced, while the braces in the string

 abc{def}}{ghij{kl}m

 are not balanced. You can check whether a string contains balanced braces by traversing it from left to
right. As you move from left to right, you match each successive close brace “}” with the most
recently encountered unmatched open brace “{”; that is, the “{” must be to the left of the current “}”.
The braces are balanced if

1. Each time you encounter a “}”, it matches an already encountered “{”.
2. When you reach the end of the string, you have matched each “{”.

 The solution requires that you keep track of each unmatched “{” and discard one each time you
encounter a “}”. One way to perform this task is to push each “{” encountered onto a stack and pop
one off each time you encounter a “}”. Thus, a fi rst-draft pseudocode solution is

 for (each character in the string)
 {

if (the character is a '{')
 aStack.push('{')

else if (the character is a '}')
 aStack.pop()
 }

 Although this solution correctly keeps track of braces, missing from it are the checks that condi-
tions 1 and 2 are met—that is, that the braces are indeed balanced. To verify condition 1 when a “}” is
encountered, you must check to see whether the stack is empty before popping from it. If it is empty,

Note: Axioms for the ADT stack

 (new Stack()).isEmpty() = true
(new Stack()).pop() = false
(new Stack()).peek() = error
(aStack.push(item)).isEmpty() = false
(aStack.push(item)).peek() = item
(aStack.push(item)).pop() = true

Requirements for
balanced braces

Initial draft of a
solution

VideoNote

Using the ADT stack

202 CHAPTER 6 Stacks

you terminate the loop and report that the string is not balanced. To verify condition 2, you check that
the stack is empty when the end of the string is reached.

 Thus, the pseudocode solution to check for balanced braces in aString becomes

 // Checks the string aString to verify that braces match.
 // Returns true if aString contains matching braces, false otherwise.
checkBraces(aString: string): boolean

 aStack = a new empty stack
 balancedSoFar = true
 i = 0

while (balancedSoFar and i < length of aString)
 {
 ch = character at position i in aString
 i++

// Push an open brace
if (ch is a '{')

 aStack.push('{')

 // Close brace
else if (ch is a '}')

 {
 if (!aStack.isEmpty())
 aStack.pop() // Pop a matching open brace
 else // No matching open brace
 balancedSoFar = false
 }

// Ignore all characters other than braces
 }

if (balancedSoFar and aStack.isEmpty())
 aString has balanced braces

else
 aString does not have balanced braces

 Figure 6-3 shows the stacks that result when this algorithm is applied to several simple examples.

A detailed
pseudocode
solution to check a
string for balanced
braces

FIGURE 6-3 Traces of the algorithm that checks for balanced braces

{
{
{ {

{
{
{ {

{

Stack as algorithm executesInput string

{a{b}c}

{a{bc}

{ab}c}

1. push {
2. push {
3. pop
4. pop
Stack empty balanced

1. push {
2. push {
3. pop
Stack not empty not balanced

1. push {
2. pop
Stack empty when next "}" encountered not balanced

1. 2. 3. 4.

 Simple Uses of a Stack 203

 6.2.2 Recognizing Strings in a Language

 Consider the problem of recognizing whether a particular string is in the language

L = { s$s' : s is a possibly empty string of characters other than $, s' = reverse(s)}

 For example, the strings AA, ABCCBA, and $ are in L , but AB$AB and ABC$CB are not. (Exer-
cise 14 in Chapter 5 introduced a similar language.) This language is like the language of palindromes
that you saw in Chapter 5 , but strings in this language have a special middle character.

 A stack is useful in determining whether a given string is in L. Suppose you traverse the fi rst half
of the string and push each character onto a stack. When you reach the $ you can undo the process:
For each character in the second half of the string, you pop a character off the stack. However, you
must match the popped character with the current character in the string to ensure that the second half
of the string is the reverse of the fi rst half. The stack must be empty when—and only when—you
reach the end of the string; otherwise, one “half ” of the string is longer than the other, and so the
string is not in L.

 The following algorithm uses this strategy. To avoid unnecessary complications, assume that
aString contains exactly one $.

 // Checks the string aString to verify that it is in language L.
 // Returns true if aString is in L, false otherwise.
recognizeString(aString: string): boolean

 Question 3 For each of the following strings, trace the execution of the balanced-braces
algorithm and show the contents of the stack at each step.

a. x{{yz}}}
b. {x{y{{z}}}
c. {{{x}}}

CHECK POINT

 Note: The push operation can fail for implementation-dependent reasons. For exam-
ple, push fails if the array in an array-based implementation is full. In the spirit of fail-
safe programming, a function that implements this balanced-braces algorithm should
check push ’s return value.

 Aside: A solution without stacks

 It may have occurred to you that a simpler solution to this problem is possible. You need only
keep a count of the current number of unmatched open braces. 2 You need not actually store the
open braces in a stack. However, the stack-based solution is conceptually useful as it previews
more legitimate uses of stacks. For example, Exercise 7 at the end of this chapter asks you to
extend the algorithm given here to check for balanced parentheses and square brackets in addi-
tion to braces.

 2 Each time you encounter an open brace, you increment the count; each time you encounter a close brace, you decrement
the count. If this count ever falls below zero, or if it is greater than zero when the end of the string is reached, the string is
unbalanced.

204 CHAPTER 6 Stacks

 aStack = a new empty stack

// Push the characters that are before the $ (that is, the characters in s) onto the stack
 i = 0
 ch = character at position i in aString

while (ch is not a '$')
 {
 aStack.push(ch)
 i++
 ch = character at position i in aString
 }

// Skip the $
 i++

// Match the reverse of s
 inLanguage = true // Assume string is in language

while (inLanguage and i < length of aString)
 {

if (!aStack.isEmpty())
 {
 stackTop = aStack.peek()
 aStack.pop()
 ch = character at position i in aString

if (stackTop equals ch)
 i++ // Characters match

else
 inLanguage = false // Characters do not match (top of stack is not ch)
 }

else
 inLanguage = false // Stack is empty (first half of string is shorter

 // than second half)
 }

if (inLanguage and aStack.isEmpty())
 aString is in language

else
 aString is not in language

 Note: In both of the preceding examples, notice how you can focus on the task at
hand without the distraction of implementation details such as arrays. With less to
worry about, you are less likely to make an error in your logic when you use the ADT’s
operations in applications such as checkBraces and recognizeString . Likewise,
when you fi nally implement the ADT’s operations in C++, you will not be distracted by
these applications. In addition, because checkBraces and recognizeString do not
depend on any implementation decisions that you make, they are not altered by your
decisions. These remarks assume that you do not change the specifi cations of the
ADT’s operations when you implement them. However, developing software is not a
linear process. You may realize during implementation that you need to refi ne your
specifi cations. Clearly, changes to the specifi cation of any module affect any already-
designed uses of that module.

 To summarize, you can specify the behavior of an ADT independently of its im-
plementation. Given such a specifi cation, and without any knowledge of how the
ADT will be implemented, you can design applications that use the ADT’s operations
to access its data.

You can use an
ADT’s operations
in an application
without the
distraction of
implementation
details

 Using Stacks with Algebraic Expressions 205

 6.3 Using Stacks with Algebraic Expressions
 This section contains two more problems that you can solve neatly by using the ADT stack. Keep in
mind throughout that you are using the ADT stack to solve the problems. You can use the stack opera-
tions, but you may not assume any particular implementation. You choose a specifi c implementation
only as a last step.

 Chapter 5 presented recursive grammars that specifi ed the syntax of algebraic expressions.
Recall that prefi x and postfi x expressions avoid the ambiguity inherent in the evaluation of infi x
expressions. We will now consider stack-based solutions to the problems of evaluating infi x and post-
fi x expressions. To avoid distracting programming issues, we will allow only the binary operators *, /,
+, and –, and we will disallow exponentiation and unary operators.

 The strategy we shall adopt here is fi rst to develop an algorithm for evaluating postfi x expres-
sions and then to develop an algorithm for transforming an infi x expression into an equivalent postfi x
expression. Taken together, these two algorithms provide a way to evaluate infi x expressions. This
strategy eliminates the need for an algorithm that directly evaluates infi x expressions, which is a
somewhat more diffi cult problem that Programming Problem 8 considers.

 6.3.1 Evaluating Postfi x Expressions

 As we mentioned in Chapter 5 , some calculators require you to enter postfi x expressions. For exam-
ple, to compute the value of

 2 * (3 + 4)

 by using a postfi x calculator, you would enter the sequence 2, 3, 4, +, and *, which corresponds to the
postfi x expression

 2 3 4 + *

 Recall that an operator in a postfi x expression applies to the two operands that immediately precede it.
Thus, the calculator must be able to retrieve the operands entered most recently. The ADT stack provides
this capability. In fact, each time you enter an operand, the calculator pushes it onto a stack. When you
enter an operator, the calculator applies it to the top two operands on the stack, pops the operands from the
stack, and pushes the result of the operation onto the stack. Figure 6-4 shows the action of the calculator
for the previous sequence of operands and operators. The fi nal result, 14, is on the top of the stack.

 You can formalize the action of the calculator to obtain an algorithm that evaluates a postfi x
expression, which is entered as a string of characters. To avoid issues that cloud the algorithm with
programming details, assume that

• The string is a syntactically correct postfi x expression
• No unary operators are present
• No exponentiation operators are present
• Operands are single lowercase letters that represent integer values

 Question 4 Trace the execution of the language-recognition algorithm described in the pre-
vious section for each of the following strings, and show the contents of the stack at each step.

a. a$a
b. ab$ab
c. ab$a
d. ab$ba

CHECK POINT

Your use of an ADT’s
operations should
not depend on its
implementation

To evaluate an infi x
expression, fi rst
convert it to postfi x
form and then
evaluate the postfi x
expression

 Simplifying
assumptions

206 CHAPTER 6 Stacks

 The pseudocode algorithm is then

 for (each character ch in the string)
 {

if (ch is an operand)
Push the value of the operand ch onto the stack

else // ch is an operator named op
 {

 // Evaluate and push the result
 operand2 = top of stack

Pop the stack

 operand1 = top of stack
Pop the stack

 result = operand1 op operand2
Push result onto the stack

 }
 }

 Upon termination of the algorithm, the value of the expression will be on the top of the stack. Pro-
gramming Problem 5 at the end of this chapter asks you to implement this algorithm.

FIGURE 6-4 The effect of a postfi x calculator on a stack when evaluating the expression
2 * (3 + 4)

Key entered Calculator action

push 2
push 3
push 4

operand2 = peek (4)
pop
operand1 = peek (3)
pop
result = operand1 + operand2 (7)
push result

operand2 = peek (7)
pop
operand1 = peek (2)
pop

result = operand1 * operand2 (14)
push result

2
3
4

+

2
2 3
2 3 4

2 3 4
2 3
2 3
2

2 7

2 7
2
2

14

Stack (bottom to top):

*

A pseudocode
algorithm that
evaluates postfi x
expressions

 Question 5 Evaluate the postfi x expression a b – c +. Assume the following values for
the identifi ers: a = 7, b = 3, and c = –2. Show the status of the stack after each step.

CHECK POINT

 6.3.2 Converting Infi x Expressions to Equivalent Postfi x Expressions

 Now that you know how to evaluate a postfi x expression, you will be able to evaluate an infi x expres-
sion if you fi rst can convert it into an equivalent postfi x expression. The infi x expressions here are the

 Using Stacks with Algebraic Expressions 207

familiar ones, such as (a + b) * c / d – e. They allow parentheses, operator precedence, and left-to-
right association.

 Will you ever want to evaluate an infi x expression? Certainly—you have written such expressions
in programs. The compiler that translated your programs had to generate machine instructions to eval-
uate the expressions. To do so, the compiler fi rst transformed each infi x expression into postfi x form.
Knowing how to convert an expression from infi x to postfi x notation not only will lead to an algorithm
to evaluate infi x expressions, but also will give you some insight into the compilation process.

 If you manually convert a few infi x expressions to postfi x form, you will discover three impor-
tant facts:

• The operands always stay in the same order with respect to one another.
• An operator will move only “to the right” with respect to the operands; that is, if in the infi x

expression the operand x precedes the operator op, it is also true that in the postfi x expression
the operand x precedes the operator op .

• All parentheses are removed.

 As a consequence of these three facts, the primary task of the conversion algorithm is determining
where to place each operator.

 The following pseudocode describes a fi rst attempt at converting an infi x expression to an equiv-
alent postfi x expression postfixExp :

 Initialize postfixExp to the empty string
 for (each character ch in the infix expression)
 {

switch (ch)
 {

case ch is an operand :
Append ch to the end of postfixExp
break

case ch is an operator :
Save ch until you know where to place it
break

case ch is a '(' or a ')':
Discard ch
break

 }
 }

 You may have guessed that you really do not want simply to discard the parentheses, as they play
an important role in determining the placement of the operators. In any infi x expression, a set of
matching parentheses defi nes an isolated subexpression that consists of an operator and its two oper-
ands. Therefore, the algorithm must evaluate the subexpression independently of the rest of the expres-
sion. Regardless of what the rest of the expression looks like, the operator within the subexpression
belongs with the operands in that subexpression. The parentheses tell the rest of the expression that

 You can have the value of this subexpression after it is evaluated; simply ignore
everything inside.

 Parentheses are thus one of the factors that determine the placement of the operators in the postfi x
expression. The other factors are precedence and left-to-right association.

 In Chapter 5 , you saw a simple way to convert a fully parenthesized infi x expression to postfi x
form. Because each operator corresponded to a pair of parentheses, you simply moved each operator
to the position marked by its close parenthesis and fi nally removed the parentheses.

 The actual problem is more diffi cult, however, because the infi x expression is not always fully
parenthesized. Instead, the problem allows precedence and left-to-right association, and therefore

First draft of an
algorithm to convert
an infi x expression
to postfi x form

Facts about
converting from infi x
to postfi x

 Parentheses,
operator
precedence, and
left-to-right
association
determine where to
place operators in
the postfi x
expression

208 CHAPTER 6 Stacks

requires a more complex algorithm. The following is a high-level description of what you must do
when you encounter each character as you read the infi x string from left to right.

 1. When you encounter an operand, append it to the output string postfixExp .
 Justifi cation: The order of the operands in the postfi x expression is the same as the order in

the infi x expression, and the operands that appear to the left of an operator in the infi x
expression also appear to its left in the postfi x expression.

 2. Push each “(” onto the stack.
 3. When you encounter an operator, if the stack is empty, push the operator onto the stack.

However, if the stack is not empty, pop operators of greater or equal precedence from the
stack and append them to postfixExp . You stop when you encounter either a “(” or an
operator of lower precedence or when the stack becomes empty. You then push the current
operator in the expression onto the stack. Thus, this step orders the operators by precedence
and in accordance with left-to-right association. Notice that you continue popping from the
stack until you encounter an operator of strictly lower precedence than the current operator
in the infi x expression. You do not stop on equality, because the left-to-right association
rule says that in case of a tie in precedence, the leftmost operator is applied fi rst—and this
operator is the one that is already on the stack.

 4. When you encounter a “)”, pop operators off the stack and append them to the end of postfix-
Exp until you encounter the matching “(”.

 Justifi cation : Within a pair of parentheses, precedence and left-to-right association
determine the order of the operators, and step 3 has already ordered the operators in
accordance with these rules.

 5. When you reach the end of the string, you append the remaining contents of the stack to
postfixExp .

 For example, Figure 6-5 traces the action of the algorithm on the infi x expression a – (b + c * d) / e,
assuming that the stack aStack and the string postfixExp are initially empty. At the end of the algo-
rithm, postfixExp contains the resulting postfi x expression a b c d * + e / – .

 You can use the previous fi ve-step description of the algorithm to develop a fairly concise
pseudocode solution, which follows. The symbol • in this algorithm means concatenate (join), so

FIGURE 6-5 A trace of the algorithm that converts the infi x expression a – (b + c * d) / e to
postfi x form

ch aStack (bottom to top) postfixExp

a
–
(
b
+
c

*
d
)

/
e

–
– (
– (
– (+
– (+
– (+ *
– (+ *
– (+
– (
–
– /
– /

a
a
a
ab
ab
abc
abc
abcd
abcd*
abcd*+
abcd*+
abcd*+
abcd*+e
abcd*+e/–

Move operators from stack to
postfixExp until "("

Copy operators from
stack to postfixExp

Five steps in the
process to convert
from infi x to postfi x
form

 Using Stacks with Algebraic Expressions 209

postfixExp • x means concatenate the string currently in postfixExp and the character x —that is,
follow the string in postfixExp with the character x .

 for (each character ch in the infix expression)
 {

switch (ch)
 {

case operand: // Append operand to end of postfix expression—step 1
 postfixExp = postfixExp • ch

break
case '(': // Save '(' on stack—step 2

 aStack.push(ch)
break

case operator: // Process stack operators of greater precedence—step 3
while (!aStack.isEmpty() and aStack.peek() is not a '(' and

 precedence(ch) <= precedence(aStack.peek()))
 {

Append aStack.peek() to the end of postfixExp
 aStack.pop()
 }
 aStack.push(ch) // Save the operator

break
case ')': // Pop stack until matching '(' —step 4

while (aStack.peek() is not a '(')
 {

Append aStack.peek() to the end of postfixExp
 aStack.pop()
 }
 aStack.pop() // Remove the open parenthesis

break
 }
 }

 // Append to postfixExp the operators remaining in the stack—step 5
 while (!aStack.isEmpty())
 {

Append aStack.peek() to the end of postfixExp
 aStack.pop()
 }

 Because this algorithm assumes that the given infi x expression is syntactically correct, it can
ignore the return values of the stack operations. Programming Problem 7 at the end of this chapter
asks you to remove this assumption.

A pseudocode
algorithm that
converts an infi x
expression to postfi x
form

 Note: Algorithms that evaluate an infi x expression or transform one to postfi x form
must determine which operands apply to a given operator. Doing so allows for prece-
dence and left-to-right association so that you can omit parentheses.

 Question 7 Explain the signifi cance of the precedence tests in the infi x-to-postfi x con-
version algorithm. Why is a test used rather than a > test?

 Question 6 Convert the infi x expression a / b * c to postfi x form. Be sure to account for
left-to-right association. Show the status of the stack after each step.

CHECK POINT

210 CHAPTER 6 Stacks

 6.4 Using a Stack to Search a Flight Map
 The previous chapter described the HPAir problem, whereby we searched an airline’s flight
map to see whether we could fly from some origin city to some destination city. At that time,
we found a recursive solution to the problem. We now will solve the problem again using a
stack instead of recursion. Doing so will bring to light the close relationship between stacks and
recursion.

 Let’s recall some of the discussion about this problem from the previous chapter. Given HPAir’s
fl ight map shown in Figure 6-6 , you can fl y from city P to city Z by fl ying fi rst to city W , then to city Y,
and fi nally to city Z . We need to fi nd this path by trying every possible sequence of fl ights until we
either fi nd a sequence that gets to the destination city or determine that no such sequence exists. You
will see that the ADT stack is useful in organizing this search.

 If we were to perform the search by hand, we could start at the origin city C
0
 and select an arbi-

trary departing fl ight to a new city, C
1
 . If city C

1
 happens to be the destination city, we are done; other-

wise, we must try to fl y from C
1
 to the destination city. By repeating this strategy, we will encounter

three possible outcomes, just as you saw in the previous chapter.

 1. You eventually reach the destination city.
 2. You reach a city C from which there are no departing fl ights.
 3. You go around in circles forever.

 Even if a sequence of fl ights exists from the origin city to the destination city, we might not fi nd it
and instead reach outcome 2 or 3. Just as we did in the recursive solution, if we reached a city C from
which there are no departing fl ights—that is outcome 2—we would backtrack to the city C� that we
visited just before we visited city C . Once back at city C� , we would select a fl ight to some city other
than C . If there were no other fl ights out of city C� , we would backtrack again—this time to the city
that was visited just before city C� . To avoid outcome 3, we mark the cities as we visit them, just as we
did in Chapter 5 , and never visit a city more than once.

 For the algorithm to implement this strategy, it must maintain information about the order in
which it visits the cities. First notice that when the algorithm backtracks from a city C, it must retreat
to the city that it visited most recently before C . This observation suggests that you maintain the
sequence of visited cities in a stack. That is, each time you decide to visit a city, you push its name
onto the stack. For example, if you want to fl y from city P to city Z in Figure 6-6 , the algorithm might
fi rst choose to go from city P to city R and then on to city X. Parts a , b , and c of Figure 6-7 illustrate
the stack for these fl ights. You select the next city to visit from those adjacent to the city on the top of

Use a stack to
organize an
exhaustive search

FIGURE 6-6 A fl ight map

Z

S

T

Y

W

PR

X Q

Possible outcomes
of the exhaustive
search strategy

Use backtracking to
recover from a
wrong choice

 Using a Stack to Search a Flight Map 211

the stack. When you need to backtrack from the city at the top of the stack (for example, because there
are no fl ights out of city X), you simply pop a city from the stack, as shown in Figure 6-7 d. After the
pop, the city on the top of the stack— R —is the city on the current path that you visited most recently
before X . It is not possible to fl y out of city R to some city other than city X, so you backtrack once
more, this time to city P , by popping the stack, as Figure 6-7 e illustrates. Figure 6-7 f shows the stack
after the subsequent fl ight to city W .

 The algorithm, as developed so far, is as follows.

 aStack = a new empty stack
aStack.push(originCity) // Push origin city onto aStack

 while (a sequence of flights from the origin to the destination has not been found)
 {

if (you need to backtrack from the city on the top of the stack)
 aStack.pop()

else
 {

Select a destination city C for a flight from the city on the top of the stack
 aStack.push(C)
 }
 }

 Notice that, at any point in the algorithm, the contents of the stack correspond to the sequence of
fl ights currently under consideration. The city on the top of the stack is the city you are visiting cur-
rently, directly “below” it is the city visited previously, and so forth down to the bottom city, which is
the fi rst city visited in the sequence—that is, the origin city. In other words, within the while loop,

 The stack contains a directed path from the origin city at the bottom of the stack to the city at the
top of the stack.3

 You can, therefore, always retrace your steps as far back through the sequence as needed.
 Now consider the question of when to backtrack from the city on the top of the stack. You have

already seen one case when backtracking is necessary. You must backtrack from the city on the top of
the stack when there are no fl ights out of that city. Another time when you need to backtrack is related
to the problem of going around in circles, described previously as the third possible outcome of the
original strategy. You never want to visit a city that the search has already visited. As a consequence,
you must backtrack from a city whenever there are no more unvisited cities to fl y to. To see why, con-
sider two cases:

• If you have visited city C and it is still somewhere in the stack—that is, it is part of the sequence
of cities that you are exploring currently—you do not want to visit C again. Any sequence that

FIGURE 6-7 The stack of cities as you travel (a) from P ; (b) to R ; (c) to X ; (d) back to R ; (e)
back to P ; (f) to W

P
R
P

X
R
P

R
P P

W
P

(a) (b) (c) (d) (e) (f)

 3 A statement such as this one is called a loop invariant. It is a condition that is true before and after each execution of an algo-
rithm’s loop. Invariants are discussed further in Appendix F .

Backtrack when
there are no more
unvisited cities

212 CHAPTER 6 Stacks

goes from C through C
1
 , C

2
 , . . ., C

k
 , back to C , and then to C’ might just as well skip the inter-

mediate cities and go from C directly to C’ .
 For example, suppose that the algorithm starts at P in Figure 6-6 and, in trying to fi nd a

path to Y , visits W , S , and T . There is now no reason for the algorithm to consider the fl ight
from T to W because W is already in the stack. Any city you could fl y to by going from W to
S , from S to T , and then back to W —such as city Y —you could fl y to directly from W without
fi rst going through S and T. Because you do not allow the algorithm to visit W a second time,
it will backtrack from S and T to W and then go from W directly to Y. Figure 6-8 shows how
the stack would appear if revisits were allowed and how it looks after backtracking when
revisits are not allowed. Notice that backtracking to W is very different from visiting W for a
second time.

• If you have visited city C , but it is no longer in the stack—because you backtracked from it and
popped it from the stack—you do not want to visit C again. This situation is subtle; consider
two cases that depend on why you backtracked from the city.

 If you backtracked from C because there were no fl ights out of it, then you certainly do not
ever want to try going through C again. For example, if, starting at P in Figure 6-6 , the algo-
rithm goes to R and then to X , it will backtrack from X to R . At this point, although X is no
longer in the stack, you certainly do not want to visit it again, because you know there are no
fl ights out of X .

 Now suppose that you backtracked from city C because all cities adjacent to it had been
visited. This situation implies that you have already tried all possible fl ights from C and have
failed to fi nd a way to get to the destination city. There is thus no reason to go to C again. For
example, suppose that starting from P in Figure 6-6 , the algorithm executes the following
sequence: Visit R , visit X , backtrack to R (because there are no fl ights out of X), backtrack to P
(because there are no more unvisited cities adjacent to R), visit W , visit Y . At this point, the
stack contains P-W-Y with Y on top, as Figure 6-8 b shows. You need to choose a fl ight out of Y .
You do not want to fl y from Y to R, because you have visited R already and tried all possible
fl ights out of R .

 In both cases, visiting a city a second time does not gain you anything, and in fact, it may
cause you to go around in circles.

Two reasons for not
visiting a city more
than once

FIGURE 6-8 The stack of cities (a) allowing revisits and (b) after backtracking when revisits
are not allowed

Y

W

T

Y

W

P

S

W

P

(a) (b)

 Using a Stack to Search a Flight Map 213

 To implement the rule of not visiting a city more than once, you simply mark a city when it has
been visited. When choosing the next city to visit, you restrict consideration to unmarked cities adja-
cent to the city on the top of the stack. The algorithm thus becomes

 aStack = a new empty stack
 Clear marks on all cities

aStack.push(originCity) // Push origin city onto the stack
 Mark the origin as visited

 while (a sequence of flights from the origin to the destination has not been found)
 {

// Loop invariant: The stack contains a directed path from the origin city at
// the bottom of the stack to the city at the top of the stack
if (no flights exist from the city on the top of the stack to unvisited cities)

 aStack.pop() // Backtrack
else

 {
Select an unvisited destination city C for a flight from the city on the top of the stack

 aStack.push(C)
Mark C as visited

 }
 }

 Finally, you need to refi ne the condition in the while statement. That is, you need to refi ne the
algorithm’s fi nal determination of whether a path exists from the origin to the destination. The loop
invariant, which states that the stack contains a directed path from the origin city to the city on the top
of the stack, implies that the algorithm can reach an affi rmative conclusion if the city at the top of the
stack is the destination city. On the other hand, the algorithm can reach a negative conclusion only
after it has exhausted all possibilities—that is, after the algorithm has backtracked to the origin and
there remain no unvisited cities to fl y to from the origin. At that point, the algorithm will pop the ori-
gin city from the stack and the stack will become empty.

 With this refi nement, the algorithm appears as follows:

 // Searches for a sequence of flights from originCity to destinationCity
searchS(originCity: City, destinationCity: City): boolean

 aStack = a new empty stack
Clear marks on all cities

 aStack.push(originCity) // Push origin onto the stack
Mark the origin as visited

while (!aStack.isEmpty() and destinationCity is not at the top of the stack)
 {

 // Loop invariant: The stack contains a directed path from the origin city at
// the bottom of the stack to the city at the top of the stack
if (no flights exist from the city on the top of the stack to unvisited cities)

 aStack.pop() // Backtrack
else

 {
Select an unvisited destination city C for a flight from the city on the top of the stack

 aStack.push(C)
Mark C as visited

 }
 }

if (aStack.isEmpty())
return false // No path exists

else
return true // Path exists

Mark the visited
cities

Next draft of the
search algorithm

The fi nal version of
the search algorithm

214 CHAPTER 6 Stacks

 Notice that the algorithm does not specify the order of selection for the unvisited cities. It really
does not matter what selection criteria the algorithm uses, because the choice will not affect the fi nal
outcome: Either a sequence of fl ights exists or it does not. The choice, however, will affect the spe-
cifi c fl ights that the algorithm considers. For example, suppose that the algorithm always fl ies to the
alphabetically earliest unvisited city from the city on the top of the stack. Under this assumption,
 Figure 6-9 contains a trace of the algorithm’s action, given the map in Figure 6-6 , with P as the origin
city and Z as the destination city. The algorithm terminates with success.

 Recall from Chapter 5 the following operations that the search algorithm must perform on the
fl ight map.

 // Marks a city as visited.
markVisited(aCity: City): void

 // Clears marks on all cities.
unvisitAll(): void

 // Returns the next unvisited city, if any, that is adjacent to a given city.
 // Returns a sentinel value if no unvisited adjacent city was found.
getNextCity(fromCity: City): City

 // Tests whether a sequence of flights exists between two cities.
isPath(originCity: City, destinationCity: City): boolean

 Assuming that the class Map implements the ADT fl ight map and the class Stack implements the
stack operations, the defi nition of Map ’s method isPath is as follows and uses the searchS algorithm.
As we mentioned in Chapter 5 , NO_CITY is a City object that Map defi nes as a constant for getNextCity
to return in case it cannot fi nd an unvisited adjacent city.

 /** Tests whether a sequence of flights exists between two cities.
 Nonrecursive stack version.
 @pre originCity and destinationCity both exist in the flight map.
 @post Cities visited during the search are marked as visited
 in the flight map.
 @param originCity The origin city.
 @param destinationCity The destination city.
 @return True if a sequence of flights exists from originCity
 to destinationCity; otherwise returns false. */

FIGURE 6-9 A trace of the search algorithm, given the fl ight map in Figure 6-6

Action Reason Contents of stack (bottom to top)

Push P
Push R
Push X
Pop X
Pop R
Push W
Push S
Push T
Pop T
Pop S
Push Y
Push Z

Initialize
Next unvisited adjacent city
Next unvisited adjacent city
No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city

P
P R
P R X
P R
P
P W
P W S
P W S T
P W S
P W
P W Y
P W Y Z

No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city

ADT fl ight map
operations

C++ implementation
of searchS

 Using a Stack to Search a Flight Map 215

 bool Map::isPath(City originCity, City destinationCity)
 {

bool success;
Stack aStack;

unvisitAll(); // Clear marks on all cities

 // Push origin city onto aStack and mark it as visited
aStack.push(originCity);

 markVisited(originCity);

City topCity = aStack.peek();
 while (!aStack.isEmpty() && (topCity != destinationCity))
 {

// The stack contains a directed path from the origin city
 // at the bottom of the stack to the city at the top of
 // the stack

 // Find an unvisited city adjacent to the city on the
 // top of the stack

City nextCity = getNextCity(topCity, nextCity);

if (nextCity == NO_CITY)
aStack.pop(); // No city found; backtrack

else // Visit city
{

aStack.push(nextCity);
markVisited(nextCity);

} // end if

if (!aStack.isEmpty())
topCity = aStack.peek();

} // end while

return !aStack.isEmpty();
} // end isPath

 Programming Problem 11 at the end of this chapter provides implementation details that will enable
you to complete the solution to the HPAir problem.

 Note: The STL class stack

 The Standard Template Library (STL) contains the container stack , which is a template
class. However, some methods of this class have slightly different names than the ones
we have used here. You can use the STL stack to implement the algorithms given in this
chapter until we write our own implementations in the next chapter. Alternatively, you
can use the class OurStack , as described in Programming Problem 1 at the end of this
chapter. You can learn more about the STL in C++ Interlude 7.

 Question 8 Trace the method isPath with the map in Figure 6-10 for the following
requests. Show the state of the stack after each step.

a. Fly from A to B .
b. Fly from A to D .
c. Fly from C to G .

CHECK POINT

216 CHAPTER 6 Stacks

 6.5 The Relationship Between Stacks and Recursion
 We have solved the HPAir problem twice, once in the previous chapter by using recursion and again
in the previous section by using the ADT stack. We now want to look at the ways that these two
approaches organize the search for a sequence of fl ights. You will see that the ADT stack has a hidden
presence in the concept of recursion and, in fact, that stacks have an active role in most computer
implementations of recursion.

 Consider how the two search algorithms implement three key aspects of their common strategy.

• Visiting a new city. The recursive algorithm searchR visits a new city C by calling searchR(C,
destinationCity) . The algorithm searchS visits city C by pushing C onto a stack. Notice
that if you were to use the box trace to trace the execution of searchR , the call searchR(C,
destinationCity) would generate a box in which the city C is associated with the parameter
originCity of searchR .

 For example, Figure 6-11 shows both the state of the box trace for searchR and the stack
for searchS at corresponding points of the search for a path from city P to city Z in Figure 6-6 .

• Backtracking. Both search algorithms attempt to visit an unvisited city that is adjacent to the
current city. Notice that this current city is the value associated with the parameter originCity
in the deepest (rightmost) box of searchR ’s box trace. Similarly, the current city is on the top
of searchS ’s stack. In Figure 6-11 , this current city is X . If no unvisited cities are adjacent to
the current city, the algorithms must backtrack to the previous city. The algorithm searchR
backtracks by returning from the current recursive call. You represent this action in the box
trace by crossing off the deepest box. The algorithm searchS backtracks by explicitly popping
from its stack. For example, from the state depicted in Figure 6-11 , both algorithms backtrack
to city R and then to city P , as Figure 6-12 illustrates.

FIGURE 6-10 Flight map for Check Point Question 8

A C E

I

F

GH

D
B

A comparison of key
aspects of two
search algorithms

FIGURE 6-11 Visiting city P , then R , then X : (a) box trace versus (b) stack

originCity = P
destinationCity = Z

originCity = R
destinationCity = Z

originCity = X
destinationCity = Z

(a) Box trace of recursive search:

(b) Stack-based search:
Top

P
R
P

X
R
PTop

Top

 The Relationship Between Stacks and Recursion 217

• Termination. The search algorithms terminate either when they reach the destination city or
when they exhaust all possibilities. All possibilities are exhausted when, after backtracking to
the origin city, no unvisited adjacent cities remain. This situation occurs for searchR when all
boxes have been crossed off in the box trace and a return occurs to the point of the original call
to the algorithm. For searchS , no unvisited cities are adjacent to the origin when the stack
becomes empty.

 Thus, the two search algorithms really do perform the identical action. In fact, provided that they
use the same rule to select an unvisited city—for example, traverse the current city’s list of adjacent
cities alphabetically—they will always visit the identical cities in the identical order. The similarities
between the algorithms are far more than coincidence. In fact, it is always possible to capture the
actions of a recursive function by using a stack.

 An important context in which the close tie between stacks and recursion is explicitly utilized is
a compiler’s implementation of a recursive function. It is common for a compiler to use a stack to
implement a recursive function in a manner that greatly resembles the box trace. When a recursive
call to a function occurs, the implementation must remember certain information. This information
consists essentially of the same local environment that you place in the boxes—values of both argu-
ments and local variables and a reference to the point from which the recursive call was made.

 During execution, the compiled program must manage these boxes of information, or activation
records, just as you must manage them on paper. As the HPAir example has indicated, the operations
needed to manage the activation records are those that a stack provides. When a recursive call occurs,
a new activation record is created and pushed onto a stack. This action corresponds to the creation of
a new box at the deepest point in the sequence. When a return is made from a recursive call, the stack
is popped, bringing the activation record that contains the appropriate local environment to the top of
the stack. This action corresponds to crossing off the deepest box and following the arrow back to the
preceding box. Although we have greatly simplifi ed the process, most implementations of recursion
are based on stacks of activation records.

 You can use a similar strategy to implement a nonrecursive version of a recursive algorithm. You
might need to recast a recursive algorithm into a nonrecursive form to make it more effi cient, as men-
tioned in Chapter 2 . The previous discussion should give you a taste of the techniques for removing
recursion from a program. You will encounter recursion removal as a formal topic in more advanced
courses, such as compiler construction.

FIGURE 6-12 Backtracking from city X to R to P : (a) box trace versus (b) stack

originCity = P
destinationCity = Z

originCity = R
destinationCity = Z

originCity = X
destinationCity = Z

(a) Box trace of recursive search:

(b) Stack-based search:
Top

P
R
P

X
R
PTop

Top

Backtrack

Typically, stacks are
used to implement
recursive functions

Each recursive call
generates an
activation record
that is pushed onto
a stack

You can use stacks
when implementing
a nonrecursive
version of a
recursive algorithm

218 CHAPTER 6 Stacks

 SUMMARY

1. The ADT stack operations have a last-in, fi rst-out (LIFO) behavior.

2. Algorithms that operate on algebraic expressions are an important application of stacks. The LIFO nature of
stacks is exactly what the algorithm that evaluates postfi x expressions needs to organize the operands. Simi-
larly, the algorithm that transforms infi x expressions to postfi x form uses a stack to organize the operators in
accordance with precedence rules and left-to-right association.

3. You can use a stack to determine whether a sequence of fl ights exists between two cities. The stack keeps track
of the sequence of visited cities and enables the search algorithm to backtrack easily. However, displaying the
sequence of cities in their normal order from origin to destination is awkward, because the origin city is at the
bottom of the stack and the destination is at the top.

4. A strong relationship between recursion and stacks exists. Most implementations of recursion maintain a stack
of activation records in a manner that resembles the box trace.

5. The formal mathematical study of ADTs uses systems of axioms to specify the behavior of ADT operations.

 EXERCISES

1. Write pseudocode statements that create a stack of the strings "Jamie", "Jane", and "Jill" in that order with
"Jamie" at the top.

2. Given the stack created in Exercise 1, in what order will three pop operations remove the strings from the
stack?

3. Suppose that you have a stack aStack and an empty auxiliary stack auxStack. Show how you can do each of
the following tasks by using only the ADT stack operations.

 a. Display the contents of aStack in reverse order; that is, display the top last.
 b. Count the number of items in aStack , leaving aStack unchanged.
 c. Delete every occurrence of a specifi ed item from aStack, leaving the order of the remaining items

unchanged.

4. The diagram of a railroad switching system in Figure 6-13 is commonly used to illustrate the notion of a stack.
Identify three stacks in the fi gure and show how they relate to one another. How can you use this system to con-
struct any possible permutation of railroad cars?

5. Suppose that the ADT stack included a method remove(n) that removes the topmost n entries from a stack.
Specify this method by writing comments and a header. Consider the various ways that the method could
behave when the stack does not contain at least n entries.

6. Section 6.1.1 described an algorithm that reads a string of characters, correcting mistakes along the way.

 a. For the following input line, trace the execution of the algorithm and show the contents of the stack at
each step:

 abc←de←←fg←h

 Exercises 219

 b. The nature of the stack-based algorithm makes it simple to display the string in reverse order, but
somewhat harder to display it in its correct order. Write a pseudocode algorithm that displays the
string in its correct forward order.

 c. Implement the read-and-correct algorithm as a C++ function, but make the stack local to the function
instead of an argument. Let the function construct a string that contains the corrected input characters
in forward order, and return it.

7. Revise the solution to the balanced-braces problem so that the expression can contain three types of delimiters:
(), [], and { }. Thus, {ab(c[d])e} is valid, but {ab(c)) is not.

8. For each of the following strings, trace the execution of the language-recognition algorithm described in
Section 6.2.2, and show the contents of the stack at each step.

a. xy$xy b. y$yx c. xy$y
d. xy$x e. xx$xx

9. Write a pseudocode function that uses a stack to determine whether a string is in the language L, where

a. L = {s : s contains equal numbers of A’s and B’s}
b. L = { s : s is of the form An Bn for some n 0}

10. Write a function that uses a stack to determine whether a string is in the language L , where

L = {s s� : s is a string of characters, s� = reverse (s) }

Note: The following strings are not in the language: The empty string, a string with fewer than two characters,
and a string with an odd number of characters.

11. Evaluate the following postfi x expressions by using the algorithm given in this chapter. Show the status of the
stack after each step of the algorithm. Assume the following values for the identifi ers: a = 7, b = 3, c = 12,
d = –5, e = 1.

a. a b c + – b. a b c – d * + c. a b + c – d e * +

12. Convert the following infi x expressions to postfi x form by using the algorithm given in this chapter. Show the
status of the stack after each step of the algorithm.

 a. a – b + c b. a – (b / c * d)
 c. a / (b * c) d. a / b / c – (d + e) * f
e. (a + b) * c f. a * (b / c / d) + e
g. a – (b + c) h. a – (b + c * d) / e

FIGURE 6-13 Railroad switching system for Exercise 4

220 CHAPTER 6 Stacks

13. Execute the HPAir algorithm with the map in Figure 6-10 (see Check Point Question 8) for the following
requests. Show the state of the stack after each step.

a. Fly from A to F. b. Fly from A to G. c. Fly from F to H.
d. Fly from D to A. e. Fly from I to G.

14. Section 5.1.2 of Chapter 5 defi nes “palindrome.” Write a pseudocode algorithm that uses a stack to test whether
a given string is a palindrome.

 *15. You can use the axioms for a stack to prove that the stack defi ned by the sequence of operations

 Create an empty stack
 Push a 5
 Push a 7
 Push a 3
 Pop (the 3)
 Push a 9
 Push a 4
 Pop (the 4)

 which you can write as

 (((((((new Stack()).push(5)).push(7)).push(3)).pop()).push(9)).push(4)).pop()

 is exactly the same as the stack defi ned by the sequence

 Create an empty stack
 Push a 5
 Push a 7
 Push a 9

 which you can write as

 (((new Stack()).push(5)).push(7)).push(9)

 Similarly, you can use the axioms to show that

 (((((((new Stack()).push(1)).push(2)).pop()).push(3)).pop()).pop()).isEmpty()

 is true.

 a. The following representation of a stack as a sequence of push operations without any pop operations is
called a canonical form:

 (...(new Stack()).push()).push())...).push()

 Prove that any stack is equal to a stack that is in canonical form.

 b. Prove that the canonical form is unique. That is, a stack is equal to exactly one stack that is in canonical
form.

 c. Use the axioms to show formally that

 ((((((((((new Stack()).push(6)).push(9)).pop()).pop()).push(2)).pop()).push(3)).
 push(1)).pop()).peek()

 equals 3.

 Programming Problems 221

 PROGRAMMING PROBLEMS

1. Using the class stack in the Standard Template Library, defi ne and test the class OurStack that is derived from
StackInterface, as given in Listing 6-1. The class stack has the following methods that you can use to defi ne
the methods for OurStack.

stack(); // Default constructor
bool empty() const; // Tests whether the stack is empty
ItemType& top(); // Returns a reference to the top of the stack
void push(const ItemType& newEntry); // Adds newEntry to the top of the stack
void pop(); // Removes the top of the stack

To access stack, use the following include statement:

 #include <stack>

Whenever you need a stack for any of the following problems, use the class OurStack that Programming Prob-
lem 1 asks you to write.

2. Implement the solution to the expanded balanced-braces problem in Exercise 7.

3. Write a function that uses a stack to test whether a given string is a palindrome. Exercise 14 asked you to write
an algorithm for such a function.

4. Section 6.2.2 describes a recognition algorithm for the language

L = { s$s� : s is a possibly empty string of characters other than $, s� = reverse(s)}

 Implement this algorithm.

5. Design a class of postfi x calculators. Use the algorithm given in this chapter to evaluate postfi x expressions as
entered into the calculator. Use only the operators +, –, *, and /. Assume that the postfi x expressions are syntac-
tically correct.

6. Consider simple infi x expressions that consist of single-digit operands; the operators +, –, *, and /; and paren-
theses. Assume that unary operators are illegal and that the expression contains no embedded spaces. Design
and implement a class of infi x calculators. Use the algorithms given in this chapter to evaluate infi x expressions
as entered into the calculator. You must fi rst convert the infi x expression to postfi x form and then evaluate the
resulting postfi x expression.

7. The infi x-to-postfi x conversion algorithm described in this chapter assumes that the given infi x expression is
syntactically correct. Modify Programming Problem 6 without this assumption.

8. Repeat Programming Problem 6, but use the following algorithm to evaluate an infi x expression infixExp. The
algorithm uses two stacks: One stack opStack contains operators, and the other stack valStack contains val-
ues of operands and intermediate results. Note that the algorithm treats parentheses as operators with the low-
est precedence.

 for (each character ch in infixExp)
 {

switch (ch)
 {

case ch is an operand, that is, a digit
 valStack.push(ch)

break
case ch is a '('

 opStack.push(ch)

222 CHAPTER 6 Stacks

 break
case ch is an operator

if (opStack.isEmpty())
 opStack.push(ch)

else if (precedence(ch) > precedence(opStack.peek()))
 opStack.push(ch)

else
 {

while (!opStack.isEmpty() and
 precedence(ch) <= precedence(opStack.peek())
 Execute
 opStack.push(ch)
 }

break
case ch is a ')'

while (opStack.peek() is not a '(')
 Execute
 opStack.pop()

break
 }
 }
 while (!opStack.isEmpty())
 Execute
result = valStack.peek()

 Note that Execute means:

 operand2 = valStack.peek()
 valStack.pop()
 operand1 = valStack.peek()
 valStack.pop()
 op = opStack.peek()
 opStack.pop()
 result = operand1 op operand2
 valStack.push(result)

 Choose one of the following two approaches for your implementation:

• The operator stack opStack contains characters, but the operand stack valStack contains integers.
• The stack opStack contains integer codes that represent the operators, so both stacks contain

integers.

 9. The infi x evaluation algorithm given in Programming Problem 8 assumes that the given infi x expression is
syntactically correct. Repeat Programming Problem 8 without this assumption.

 10. Using stacks, write a nonrecursive version of the function solveTowers , as defi ned in Chapter 2 .

11. Complete the solution to the HPAir problem. The input to the program consists of three text fi les, as
follows:

 cityFile Each line contains the name of a city that HPAir serves. The names are in
alphabetical order.

 flightFile Each line contains a pair of city names that represent the origin and destina-
tion of one of HPAir’s fl ights.

 requestFile Each line contains a pair of city names that represent a request to fl y from
some origin to some destination.

 Programming Problems 223

 You can make the following assumptions:

• Each city name contains at most 15 characters. Pairs of city names are separated by a comma.
• HPAir serves at most 20 cities.
• The input data is correct.

 For example, the input fi les could appear as

 cityFile: Albuquerque

 Chicago

 San Diego

 flightFile: Chicago, San Diego

 Chicago, Albuquerque

 Albuquerque, Chicago

 requestFile: Albuquerque, San Diego

 Albuquerque, Paris

 San Diego, Chicago

 For this input, the program should produce the following output:

 Request is to fly from Albuquerque to San Diego.
 HPAir flies from Albuquerque to San Diego.

 Request is to fly from Albuquerque to Paris.
 Sorry. HPAir does not serve Paris.

 Request is to fly from San Diego to Chicago.
 Sorry. HPAir does not fly from San Diego to Chicago.

 Begin by implementing the ADT fl ight map as the C++ class Map . Use the stack version of isPath . Because
getNextCity is the primary operation that the search algorithm performs on the fl ight map, you should choose
an implementation that will effi ciently determine which cities are adjacent to a given city. If there are n cities
numbered 1, 2, . . ., n , you can use n chains of linked nodes to represent the fl ight map. You place a node on list
i for city j if and only if there is a directed path from city i to city j . Such a data structure is called an adjacency
list; Figure 6-14 illustrates an adjacency list for the fl ight map in Figure 6-6 . Chapter 20 discusses adjacency
lists further when it presents ways to represent graphs. At that time, you will learn why an adjacency list is a
good choice for the present program.

 To simplify reading the input text fi les, defi ne a class that includes the following methods:

 // Returns a name from the next line in a text file.
+getName(): string

// Returns a pair of two names from the next line in a text file.
+getNamePair(): Pair

 12. In the implementation of the HPAir problem (see the previous programming problem), the search for the next
unvisited city adjacent to a city i always starts at the beginning of the i th chain in the adjacency list. This
approach is actually a bit ineffi cient, because once the search visits a city, the city can never become unvisited.
Modify the program so that the search for the next city begins where the last search left off. That is, maintain an
array of try-next pointers into the adjacency list.

224 CHAPTER 6 Stacks

13. Implement an expanded version of the HPAir problem. In addition to the “from” and “to” cities, each line of
input contains a fl ight number (an integer) and the cost of the fl ight (an integer). Modify the HPAir program so
that it will produce a complete itinerary for each request, including the fl ight number of each fl ight, the cost of
each fl ight, and the total cost of the trip.

 For example, the input fi les could appear as

 cityFile: Albuquerque

 Chicago

 San Diego

 flightFile: Chicago, San Diego 703 325

 Chicago, Albuquerque 111 250

 Albuquerque, Chicago 178 250

 requestFile: Albuquerque, San Diego

 Albuquerque, Paris

 San Diego, Chicago

FIGURE 6-14 Adjacency list for the fl ight map in Figure 6-6 for Programming Problem 11

R W

X

X

T

P

Q

R

S

T

W

X

Y

Z

W

S Y

ZR

 Programming Problems 225

 For this input, the program should produce the following output:

 Request is to fly from Albuquerque to San Diego.

 Flight #178 from Albuquerque to Chicago Cost: $250

 Flight #703 from Chicago to San Diego Cost: $325

 Total Cost $575

 Request is to fly from Albuquerque to Paris.

 Sorry. HPAir does not serve Paris.

 Request is to fly from San Diego to Chicago.

 Sorry. HPAir does not fly from San Diego to Chicago.

 When the nonrecursive isPath method fi nds a sequence of fl ights from the origin city to the destination
city, its stack contains the corresponding path of cities. The stumbling block to reporting this path is that the
cities appear in the stack in reverse order; that is, the destination city is at the top of the stack and the origin
city is at the bottom. For example, if you use the program to fi nd a path from city P to city Z in Figure 6-6 , the
fi nal contents of the stack will be P-W-Y-Z with Z on top. You want to display the origin city P fi rst, but it is at
the bottom of the stack. If you restrict yourself to the stack operations, the only way that you can write the
path in its correct order is fi rst to reverse the stack by popping it onto a temporary stack and then to write the
cities as you pop them off the temporary stack. Note that this approach requires that you process each city on
the path twice.

 Evidently, a stack is not the appropriate ADT for the problem of writing the path of cities in the correct
order; the appropriate ADT is a traversable stack . In addition to the standard stack operations isEmpty , push ,
pop , and peek , a traversable stack includes the operation traverse . The traverse operation begins at one end
of the stack and visits each item in the stack until it reaches the other end of the stack. For this project, you want
traverse to begin at the bottom of the stack and move toward the top.

 14. What modifi cations to the previous programming problem are required to fi nd a least-cost trip for each request?
How can you incorporate time considerations into the problem?

This page intentionally left blank

Exceptions 3
 Contents
 C3.1 Background 228

 C3.1.1 A Problem to Solve 228
 C3.2 Assertions 229
 C3.3 Throwing Exceptions 230
 C3.4 Handling Exceptions 233

 C3.4.1 Multiple catch Blocks 235
 C3.4.2 Uncaught Exceptions 236

 C3.5 Programmer-Defi ned Exception Classes 239

 Prerequisites
 C++ Interlude 1 C++ Classes

Exceptions provide a mechanism in C++ and other programming languages for
interrupting program execution when errors, unusual circumstances, or other events
occur. An exception is an object that signals the rest of the program that something
unexpected has happened. Our code can react appropriately to the exception based on
its type and what the exception can tell us via its methods. We handle the exception
when we detect and react to it.

 Some exceptions indicate mistakes in your code. By correcting those mistakes,
you avoid the exceptions and no longer have to worry about them. In fact, your fi nal
code gives no indication that an exception could occur. Furthermore, if your code is
entirely correct, an exception will not occur. On the other hand, you can intentionally
cause an exception. In fact, the programmers who wrote the code for the C++ Standard
Library did so. At the very least, we need to know about exceptions so we can use the
methods in the Standard Library.

 What should we do when an exception occurs? Should we ever intentionally cause
an exception in our own programs, and if so, how would we do so? These are some of
the questions that this interlude will answer. This knowledge will be particularly impor-
tant when we implement the ADT stack in the next chapter.

 C++
Interlude

228 C++ INTERLUDE 3 Exceptions

 C3.1 Background
 It would be great if every time a method was called, its preconditions were met. As you have seen, that
does not always happen. The client could ask a method to remove an item from a container, but the
container might be empty. How do we deal with this unusual or exceptional condition? In our imple-
mentations so far, a method returns false to indicate that it is unable to perform its task. This value
tells the client that some precondition was not met, or that the method has failed for some other rea-
son. It is then the client’s responsibility to check the return value to ensure that the method completed
its task before continuing.

 Sometimes it is not possible for a method to return a boolean value when an unusual situation
prevents it from completing its task. For example, the ADT stack’s method peek returns a copy of the
top item on the stack. Its prototype is

 virtual ItemType peek() const = 0;

 What should this method do if the stack is empty? Returning a boolean value would be possible only
if the stack contained boolean values, that is, if ItemType was of type bool . Regardless of the type of
data in the stack, the return value will indicate a problem only if it is a special value not contained in
the stack. We need a consistent mechanism to let the client know that the method could not perform
its task—one that does not depend on the type of data stored in the stack. Before we get into the
details of such mechanisms, let’s look at another example.

 C3.1.1 A Problem to Solve

 Recall from the previous C++ Interludes the video game that we are working on for our friend. Our
next task is to create a function that searches for a given string in a number of boxes. The function has
three parameters: an array of PlainBox<string> objects, an integer that represents the number of
PlainBox objects in the array, and the string to be located in each box. The function will return a copy 1

of the box that contains the string. Listing C3-1 shows our fi rst attempt at this function.

 1 Recall that the return statement returns a copy of its argument.

 LISTING C3-1 First try at the function findBox

 PlainBox<string> findBox(PlainBox<string> boxes[], int size, string target)
 {

int index = 0;
bool found = false ;
while (!found && (index < size))

 {
if (target == boxes[index].getItem())

 found = true ;
else

 index++;
 } // end while

return boxes[index];
} // end findBox

 Assertions 229

 This version of findBox meets the basic requirements: It searches the array of boxes and returns
the box containing the target string. We encounter a problem if a box containing the target string is not
in the array. If the target is not found, the function’s while loop ends when index is equal to size ,
which is the number of entries in the array. The function would then return boxes[size] , which is
undefi ned. Problems will occur when the client tries to use this “box.”

 We can repair our code by testing found to make sure we found the target before returning a box
from the array. Using a simple if statement is insuffi cient, as we still would have the problem of what
to return when the target is not found. The next section gives one way to fi x our code.

 C3.2 Assertions
 Chapter 3 and Appendix B defi ne an assertion as a statement of truth about some aspect of a pro-
gram’s logic. You can express an assertion either as a comment or by using the C++ function assert .
By using assert , you can make assertions about variables and objects in a program. Such assertions
are in the form of a boolean expression that should be true at a specifi c point in the program. If the
assertion is false, the assert function halts execution of the program. Assertions can be used to vali-
date method preconditions before trying to execute the body of a function or method.

 To use assert in a program, you fi rst must include its header fi le:

 #include <cassert>

 To call the assert function, you provide a boolean condition as its argument:

 assert(someBooleanCondition);

 When program execution reaches this statement, the boolean condition—that is, the assertion—is
tested. If the assertion is true, the program continues to execute normally. If the assertion is false, the
program halts and an error message is displayed.

 The assert statement is an easy way to verify a method’s preconditions or postconditions. For
example, when implementing the stack method peek , we could execute

 assert (!isEmpty());

 before trying to return the top of the stack.
 Our findBox function can test whether the box was found before returning boxes[index] by

calling assert :

 assert(found);

 If the target is not found, the assertion is false and the program halts. This prevents the program
from trying to use a box that does not exist. Listing C3-2 shows the revised findBox function using
assertions.

Use an assert
statement to test a
precondition or
postcondition

 LISTING C3-2 Revised findBox function with assertions

 PlainBox<string> findBox(PlainBox<string> boxes[], int size, string target)
 {
 int index = 0;
 bool found = false ;

(continues)

230 C++ INTERLUDE 3 Exceptions

 Assertions are good to use when you are testing and debugging your program. They can prevent
the execution of any function or method if the preconditions have not been met. Halting your program
as soon as a problematic condition becomes evident is a good debugging technique that narrows the
focus of your search for errors.

 As useful as they are, assertions may not be the best solution for a fi nal shipping program. A vio-
lation of a function’s preconditions may be a simple mistake that the client can fi x. Such a situation
does not warrant terminating program execution. We need another way to let the client know that an
error or unusual condition has occurred and permit it to fi x or handle the situation. We should use
exceptions here.

 while (!found && (index < size))
 {

if (target == boxes[index].getItem())
found = true ;

else
 index++;
 } // end while
 assert(found); // Verify that there is a box to return

return boxes[index];
} // end findBox

 Programming Tip: A statement of truth about some aspect of a program’s logic is
known as an assertion. You can express an assertion either as a comment or by using the
assert function. By including assertions in your program, you facilitate the debugging
process.

 C3.3 Throwing Exceptions
 The examples we’ve looked at in this C++ Interlude have a common problem—how to let the client
know that an error, unusual circumstance, or event occurred during execution. The two solutions pre-
sented so far—returning a boolean value or using assert to halt the program—are vastly different
techniques.

 Returning a boolean value requires that the client check the return value of the function to see
whether the function was successful. We have no way to force the client to do so. If the client fails to
check the return value, execution could continue even though the function did not complete its task.
Even if the client checks the return value and fi nds that the function was unsuccessful, the client has
no information about why the function failed. The client knows only that the function failed.

 A function that uses assertions can alleviate the need for the client to check whether it completed
successfully. With assertions, the program halts when there is an error, and the client cannot perform
any further tasks. For an error that either is unimportant to the client’s goals or is simple for the client
to fi x, assertions are an extreme solution.

 However, an alternate way of communicating or returning information to a function’s client is to
throw an exception . A thrown exception bypasses normal execution, and control immediately
returns to the client. The exception can contain information about the error or unusual condition that
helps the client resolve the issue and possibly try the function again.

 You can throw an exception by executing a throw statement with the following form:

throw ExceptionClass (stringArgument);

VideoNote

C++ exceptions

 Throwing Exceptions 231

 Here ExceptionClass is the type of exception you want to throw, and stringArgument is an argument
to the constructor of ExceptionClass that provides a more detailed description of what may have
caused the exception. When a throw statement executes, a new object of type ExceptionClass is cre-
ated, the exception is thrown and propagated back to the point where the function was called, and the
statements in the function that follow the throw statement do not execute.

 C++ has two families of exceptions that a function can throw. You can select one of these or
derive a class of your own. Although the exception class in a throw statement does not need to be
derived from a standard C++ exception class, it is a good programming practice to do so. Figure C3-1
shows the family of exception classes provided by C++.

 Exceptions derived from runtime_error or one of its derived classes are thrown by errors that
are detectable only at runtime, such as division by zero or numeric overfl ow. If such an exception is
thrown, the program will halt, just as it will when an assertion fails. Unlike assertions, however, when
a runtime_error exception is thrown, the exception can contain a message that is displayed to the
user giving details about the error and the reason the program halted.

 Classes derived from the logic_error exception class represent errors in the logic of the pro-
gram, such as an unmet precondition or the failure to satisfy a postcondition, that you could detect
before the program executes. In our findBox example, if we wanted to throw an exception to indicate
the failure to fi nd the target string, we could write:

 if (!found)
throw logic_error("Target not found in a box!");

 When we throw exceptions, we fi rst test for an error or unusual condition using an if statement.
Then, if one occurred, we use the throw statement to throw an exception containing a message to our
client.

 To restrict the exceptions that a function or method can throw, you include a throw clause in its
header. This also lets the client know that the function might throw an exception. A throw clause con-
sists of the keyword throw followed by a list of exception types separated by commas and enclosed
within parentheses. For example, here is the prototype of our findBox function with a throw clause
added:

 PlainBox<string> findBox(PlainBox<string> boxes[], int size,
 string target) throw (logic_error);

 Listing C3-3 shows the complete findBox function that throws a logic_error exception. Later in
this interlude, we will derive an exception class to handle this specifi c error. First, however, we will
look at how a client can deal with a thrown exception.

Use a throw
statement to throw
an exception

FIGURE C3-1 Hierarchy of C++ exception classes

exception

logic_error runtime_error

invalid_argument length_error out_of_range overflow_error range_error underflow_error

232 C++ INTERLUDE 3 Exceptions

 LISTING C3-3 Revised findBox function that throws an exception

 PlainBox<string> findBox(PlainBox<string> boxes[], int size,
 string target) throw (logic_error)
 {
 int index = 0;
 bool found = false ;
 while (!found && (index < size))
 {

if (target == boxes[index].getItem())
 found = true ;

else
 index++;
 } // end while

if (!found)
throw logic_error("Target not found in a box!");

return boxes[index];
} // end findBox

 Programming Tip: Including a throw clause in a function specifi cation ensures that
the function can throw only those exceptions. An attempt by the function to throw any
other exception will result in a runtime error. Omitting a throw clause allows a function
to throw any exception.

 Note: Standard exceptions

 The header <stdexcept> defi nes several standard exceptions that can be thrown by the
functions defi ned in the C++ Standard Library. This header contains two kinds of excep-
tions: runtime exceptions and logic exceptions.

 The runtime exceptions are

overflow_error An arithmetic overfl ow has occurred
range_error A range error has occurred
underflow_error An arithmetic underfl ow has occurred

 The logic exceptions are

invalid_argument An invalid argument was used in a function call
length_error An attempt was made to create an object that was too large
out_of_range The value of an argument to a function is not in range

 Note: The javadoc tag @throws

 A javadoc comment that precedes a method’s header should contain a separate line for
each exception the method might throw. Each of these lines begins with the tag @throws ,
and they should be ordered alphabetically by the names of the exceptions.

 Handling Exceptions 233

 C3.4 Handling Exceptions
 In the previous section, we looked at how you can cause an exception when an error or unusual condi-
tion occurs. In this section, we look at exceptions from the point of view of a client and present how to
react to or handle an exception.

 Note: When to throw an exception

• If you can resolve the unusual situation in a reasonable manner, your code should do so
instead of throwing an exception.

• If several resolutions to an abnormal occurrence are possible, and you want the client
to choose one, you should throw an exception.

• If you detect that a programmer has used your method incorrectly, you can throw a
runtime exception. Recall that this action will halt program execution.

 Note: You cannot handle an exception of the standard class runtime_error or any of
its descendant classes. You can handle only exceptions of the class logic_error and its
derived classes.

 Note: You should not throw a runtime exception simply so that the client does not have
to handle it.

 To handle an exception, you write code that consists of two pieces. The fi rst piece, the try block ,
contains the statements that might cause or throw an exception. The second piece consists of one or
more catch blocks that must immediately follow the try block. Each catch block contains code to
react to or catch a particular type of exception.

 Here is the general syntax for a try block followed by one catch block:

 try
 {

 < statement(s) that might throw an exception >
 }

 catch (ExceptionClass identifier)
 {

 < statement(s) that react to an exception of type ExceptionClass >
 }

 The statements within the try block execute just as they would if the block was not there. If no excep-
tion occurs and the try block completes, execution continues with the statement after the catch
block. However, if a statement within a try block causes an exception of the type specifi ed in the
catch block, the remainder of the try block is abandoned, and execution immediately transfers to the
statements in the catch block. The exception now has been caught. The statements in the catch block
execute, and upon their completion, execution continues with the statement immediately after the last
catch block.

 Note: If an exception has no applicable catch block, the function’s execution ends and
abnormal program termination occurs.

234 C++ INTERLUDE 3 Exceptions

 The syntax for a catch block resembles that of a function defi nition. It specifi es both the type of
exception the catch block will handle and an identifi er. This identifi er—called a catch block parame-
ter —provides a name for the caught exception that can be used within the catch block. Although a
catch block is not a function, throwing an exception is like calling a catch block as if it were a function.
The catch block parameter represents the actual exception object provided by the throw statement.

 The steps taken in the catch block vary from situation to situation and can be as simple as either
doing nothing or displaying an error message, or as elaborate as tasks that update variables and retry the
function that threw the exception. Every exception class in the C++ Standard Library defi nes the acces-
sor method what , which returns a descriptive string created when the exception is thrown. The body of
the catch block can display this string to provide an indication of the nature of the exception.

 Note: If an exception occurs in the middle of a try block, the destructors of all objects
local to that block are called. This ensures that all resources allocated in that block are
released, even if the block is not completely executed. In general, you should not use the
new operator inside of a try block. An exception will complicate knowing whether mem-
ory was allocated and, if it was, whether it was deallocated.

 Programming Tip: An important implementation detail of a try block is that it
should contain as few statements as possible—ideally, only the statement that could
throw an exception. Keeping the try block small reduces the risk of either important code
not being executed or allocated memory not being deallocated if an exception is thrown.

 Note: A catch block whose parameter has the type ExceptionClass can catch excep-
tions of the class ExceptionClass and any of ExceptionClass ’s descendant classes. Speci-
fying a catch block with a parameter of type exception catches any exception that can
be thrown.

 Listing C3-4 shows sample code that calls our findBox function and catches any logic_error
exception thrown. The catch block displays a message to the user that something unusual has hap-
pened and creates a PlainBox object for foundBox so that the statement following the catch block
executes correctly.

LISTING C3-4 Trying the function findBox

 // Create and initialize an array of boxes
PlainBox<string> myBoxes[5]; // Array of PlainBox objects
myBoxes[0] = PlainBox<string>("ring");
myBoxes[1] = PlainBox<string>("hat");
myBoxes[2] = PlainBox<string>("shirt");
myBoxes[3] = PlainBox<string>("sock");
myBoxes[4] = PlainBox<string>("shoe");
PlainBox<string> foundBox;

 Handling Exceptions 235

 C3.4.1 Multiple catch Blocks

 A single statement within a try block might cause more than one type of exception. Thus, a try block
can have many catch blocks associated with it. When more than one catch block follows a try block,
the catch block that executes is the fi rst one—in order of appearance—whose parameter matches the
thrown exception in type. Thus, the catch blocks must be ordered so that the most specifi c exception
classes are caught before the more general exception classes. For example, the following catch
blocks are in the wrong order:

 string str = "Sarah";
 try
 {
 str.substr(99, 1);

 < other statements appear here . . . >
 }
 catch (exception e) // WRONG ORDER!!
 {
 cout << "Something else was caught" << endl;
 }
 catch (out_of_range e)
 {
 cout << "out_of_range exception caught" << endl;
} // end try-catch

 The compiler may issue a warning message similar to the following one:

 'class std::out_of_range' : is caught by base class ('class exception')
on line n

 This warning means that any out_of_range exception thrown in the try block will be caught by
the fi rst catch block—with the parameter of type exception —so the second catch block will
never be reached. To get the code to compile without warnings, you must interchange the two
catch blocks.

// Try to find a box containing glasses
 try
 {
 foundBox = findBox(myBoxes, 5, "glasses");
 }
 catch(logic_error logErr)
 {
 cout << logErr.what() << endl; // Display error message to user
 foundBox = PlainBox<string>("nothing"); // Fix problem
} // end try-catch
// Because we catch the exception and fix the problem, the following
// statement should work even if the target is not found
cout << foundBox.getItem();

 Output

 Target not found in a box!
 nothing

236 C++ INTERLUDE 3 Exceptions

 C3.4.2 Uncaught Exceptions

 Let’s see what happens when an exception is thrown but not caught. The program in Listing C3-5
encodes a string by doing a simple substitution. It replaces each letter in a string with the character
that appears three positions later in the alphabet. When it reaches the end of the alphabet, it wraps
around to the beginning. For example, a is replaced by d , b is replaced by e, and w is replaced by z . At
this point, it gets replacement letters by wrapping around to the beginning of the alphabet. Thus, x is
replaced by a , y is replaced by b , and z is replaced by c .

 Figure C3-2 shows the fl ow of control when an exception occurs in this code. When the func-
tion encodeChar attempts to access the 99 th character in str by the method call str.replace(99,
1, 1, newChar) , an out_of_range exception is thrown. Because encodeChar does not handle the

 Programming Tip: Arrange catch blocks in order of specifi city, catching the most
specifi c one fi rst. Since all exception classes have exception as an ancestor, try to avoid
using exception in a catch block. If you must catch exceptions of type exception , do so
in the last catch block.

 LISTING C3-5 A program with an uncaught exception

 #include <iostream>
#include <string>
 using namespace std;

// Encodes the character at index i of the string str.
void encodeChar(int i, string& str)
 {

int base = static_cast < int >('a');
if (isupper(str[i]))

base = int ('A');

char newChar = (static_cast < int>(str[i]) - base + 3) % 26 + base;
 str.replace(i, 1, 1, newChar); // Method replace can throw exception
} // end encodeChar

// Encodes numChar characters within a string.
 void encodeString(int numChar, string& str)
 {

for (int j = numChar - 1; j >= 0; j–)
 encodeChar(j, str);
} // end encodeString

 int main()
 {
 string str1 = "Sarah";
 encodeString(99, str1);
 return 0;
} // end main

 Handling Exceptions 237

exception, the function terminates, and the exception propagates back to encodeString at the
point where encodeChar was called. The function encodeString also does not handle the excep-
tion, so it too terminates and the exception propagates back to main . Because main is the main
function of the program, it does not handle the exception, and the program execution terminates
abnormally with an error message.

 This code contains no indication that the function encodeChar could throw the exception out_
of_range . However, the documentation of encodeChar should indicate any exceptions it might throw.
Thus, when documenting a function or method, you should also include any possible exceptions that
could occur.

 We can catch the exception out_of_range at any point in the sequence of function calls. For
example, we could rewrite the function encodeChar as follows to catch the exception.

 void encodeChar(int i, string& str)
 {

int base = static_cast<int >('a');
if (isupper(str[i]))

 base = int ('A');

FIGURE C3-2 Flow of control for an uncaught exception

out_of_range exception not
handled in main; causes
abnormal program termination

int main()
{
 string str1 = "Sarah";
 encodeString(99, str1);

return 0;
} // end main

void encodeString(int numChar, string& str)
{

for (int j = numChar-1; j >= 0; j--)
 encodeChar(j, str);
} // end encodeString

str numChar

99S a r a h

abnormal program termination

Output:

1

3

2

The function main

void encodeChar(int i, string& str)
{

int base = static_cast<int>('a');
if (isupper(str[i]))

 base = int('A');

char newChar = (static_cast<int>(str[i]) - base + 3) % 26 + base;
 str.replace(i, 1, 1, newChar);
} // end encodeChar

out_of_range exception occurs
here, is not handled, so propagates
back to encodeString

out_of_range exception
not handled here, so
propagates back to main

238 C++ INTERLUDE 3 Exceptions

char newChar = (static_cast < int>(str[i]) - base + 3) % 26 + base;
try

 {
 str.replace(i, 1, 1, newChar);
 }

catch (out_of_range e)
 {
 cout << "No character at position " << i << endl;
 } // end try-catch
} // end encodeChar

 The call encodeString(99, str) within main causes 99 calls to encodeChar , and hence the excep-
tion is thrown 98 � str.length() times. The following output from encodeChar is the result.

 No character at position 99
No character at position 98
No character at position 97
. . .

 When the exception was not handled, the program terminated the fi rst time the exception occurred.
Handling the exception allows the code to continue execution.

 Although the out_of_range exception is thrown in the function encodeChar , that is not neces-
sarily the best place to handle the exception. For example, if the client had made the call
encodeString(10000, str) , the message printed by encodeChar would have appeared 9999 �

str.length() times! In this case, it makes more sense for the try and catch blocks to appear in the
function encodeString and not in encodeChar , as follows:

 void encodeString(int numChar, string& str)
 {

try
 {

for (int i = numChar - 1; i >= 0; i––)
 encodeChar(i, str);
 }

catch (out_of_range e)
 {
 cout << "The string does not contain " << numChar;
 cout << " characters." << endl;
 cout << e.what() << endl;
 } // end try-catch
} // end encodeString

 Now when encodeChar throws the exception out_of_range , the exception propagates back to
the function encodeString , which ends execution of the statements in the try block and executes the
statements in the catch block. The expression e.what() invokes the method what for the exception e ,
and so it represents a string that describes the exception. For this example, the following output would
be displayed.

 The string does not contain 10 characters.
invalid string position

 The message is printed only once, since the for loop is inside the try block, which is abandoned
when the exception occurs. If the try block had been placed inside the for loop, encodeChar would
be called—and therefore the exception would be thrown and handled—at each iteration of the loop.
The result would be multiple copies of the message.

 Programmer-Defi ned Exception Classes 239

 C3.5 Programmer-Defi ned Exception Classes
 You may fi nd that the C++ Standard Library has an exception class already defi ned that suits the
exception needs of your program. You may also want to defi ne your own exception class. Usually, the
C++ exception class exception , or one of its derived classes, is the base class for programmer-
defi ned exception classes. Adhering to this practice provides a standardized interface for working
with exceptions. If you follow this practice, you will need to use the std namespace.

 An exception class typically consists of a constructor that has a string parameter. For example,
you can defi ne the class TargetNotFoundException as

 #include <stdexcept>
#include <string>
 using namespace std;
 class TargetNotFoundException: public exception
 {
 public :

TargetNotFoundException(const string& message = "")
 : exception("Target not found: " + message.c_str())
 {
 } // end constructor
 }; // end TargetNotFoundException

 The constructor provides a way for a throw statement to identify the condition that caused the
exception. For example, the statement

throw TargetNotFoundException (target + " not found in a box!");

 invokes the constructor of TargetNotFoundException . The message given to the constructor is
returned by the method what that is inherited from the class exception . Thus, a catch block, such as
the following one, can access the message:

 catch (TargetNotFoundException except)
 {
 cout << except.what() << endl;
 }

 If target has the value "glasses" when this block executes, the output is

 Target not found: glasses not found in a box!

 Programming Tip: When an exception can occur within a loop, you must decide
whether to place a try block within the body of the loop—in which case an exception
will be caught each time the loop cycles (as in the fi rst example)—or place the entire loop
within a try block—in which case the exception would be caught only once (as in the
second example) Neither choice is better than the other, but if you make the wrong
choice, the client likely will not get the necessary information.

 Note: Sometimes a catch block will intentionally terminate program execution. When
the block does not do so, but rather completes its execution, any statements that appear
after the last catch block execute next.

240 C++ INTERLUDE 3 Exceptions

 While the string message is helpful, sometimes we want to return additional information to the
client to help resolve the problem. We could add a private data fi eld to our exception class to store
additional error details. A second parameter in the constructor to receive an initial value for those
details, as well as a public accessor method so that the client can retrieve them, are also needed. When
a method throws this exception, it would call the constructor and send it the extra data and the mes-
sage as its two arguments.

 Programming Tip: Using exceptions

 To throw an exception in a function:

• Determine what errors, preconditions, postconditions, and unusual conditions you
must check and where they should be checked, so your function can correctly per-
form its task.

• Detect the error, precondition, postcondition, or unusual condition. Usually this is
done with an if statement.

• If an error condition has occurred, throw an exception using the throw statement.
As an argument to the exception class constructor, pass a string description of the
reason for the error.

• Add a throw clause to the function header indicating the exceptions thrown by the
function.

• Derive a custom exception class to better identify the conditions that caused the
error. Although doing so is optional, it is desirable.

 To handle an exception or use a function that could throw an exception

• Place the statement that might throw an exception in a try block. The fewer state-
ments in the try block the better. Do not use new to create an object in a try block.

• After the try block, place catch blocks for each type of exception that can be
thrown by the statements in the try block. Place the catch blocks in order from the
most specifi c exception classes to the more general exception classes.

 Chapter

Implementations of
the ADT Stack 7

 Contents
 7.1 An Array-Based Implementation 242
 7.2 A Link-Based implementation 245
 7.3 Implementations That Use Exceptions 249

 Summary 251
 Exercises 251
 Programming Problems 252

 Prerequisites
 Chapter 3 Array-Based Implementations
 C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation
 Chapter 4 Link-Based Implementations
 Chapter 6 Stacks
 C++ Interlude 3 Exceptions

This chapter implements the ADT stack using the techniques we described in
 Chapters 3 and 4 for the ADT bag. We fi rst will use an array and then a chain of linked
nodes to store the stack’s entries. You should be happy to discover the simplicity and
effi ciency of these implementations. We then will modify these implementations to use
exceptions as a way for a method to signal an unusual occurrence, such as an attempt to
get an entry from an empty stack.

242 CHAPTER 7 Implementations of the ADT Stack

 7.1 An Array-Based Implementation
 Figure 7-1 a shows a sketch of an array that contains the entries in a stack. Where in the array should
the top entry be? Since entries are added or removed at the top of the stack, we can avoid shifting the
current entries if we anchor the bottom of the stack at index 0 and track the location of the stack’s top
using an index top . Then if items is the array and items[top] is the top entry, items and top can be
the private data members of our class of stacks. Figure 7-1 b illustrates these details. Notice that the
top of the stack in this fi gure is at index 2. We can either add a new entry at index[3] and then incre-
ment top or remove the top entry in index[2] by decrementing top to 1.

 Our class will have a default constructor to initialize the private data members items and top .
However, since we plan to store a stack’s entries in statically allocated memory, the compiler-
generated destructor and copy constructor will be suffi cient. If, on the other hand, we were to use a
dynamically allocated array, we would have to defi ne a destructor and a copy constructor.

 Listing 7-1 shows the header fi le for an array-based implementation of the ADT stack. Com-
ments describing the methods are in Listing 6-1 of Chapter 6 .

FIGURE 7-1 Using an array to store a stack’s entries: (a) a preliminary sketch; (b)
implementation details

30

10

20

Top

Array

0

1

2

3

4
itemstop

2 10 20 30

0 1 2 MAX_STACK – 1

Array indices

(a) (b)

 LISTING 7-1 The header fi le for an array-based stack

 /** ADT stack: Array-based implementation.
 @file ArrayStack.h */

#ifndef _ARRAY_STACK
#define _ARRAY_STACK

#include "StackInterface.h"
 const int MAX_STACK = maximum-size-of-stack;

 template < class ItemType>
 class ArrayStack : public StackInterface<ItemType>
 {
 private:
 ItemType items[MAX_STACK]; // Array of stack items

int top; // Index to top of stack

VideoNote

Overview of
ArrayStack

 An Array-Based Implementation 243

 public:
 ArrayStack(); // Default constructor
 bool isEmpty() const ;
 bool push(const ItemType& newEntry);
 bool pop();
 ItemType peek() const ;
 }; // end ArrayStack

#include "ArrayStack.cpp"
 #endif

 The implementations of the methods that the previous header fi le declares are given in Listing
7-2. These defi nitions are straightforward, but notice that the method peek uses assert to enforce its
precondition that the stack contain at least one entry. Later in this chapter, we will revise peek to
throw an exception if the client calls it when the stack is empty.

 LISTING 7-2 The implementation fi le for an array-based stack

 /** @file ArrayStack.cpp */

#include <cassert> // For assert
#include "ArrayStack.h" // Header file

 template < class ItemType>
ArrayStack<ItemType>::ArrayStack() : top(-1)
 {
} // end default constructor

// Copy constructor and destructor are supplied by the compiler

 template < class ItemType>
 bool ArrayStack<ItemType>::isEmpty() const
 {

return top < 0;
} // end isEmpty

 template < class ItemType>
 bool ArrayStack<ItemType>::push(const ItemType& newEntry)
 {

bool result = false ;
if (top < MAX_STACK - 1) // Does stack have room for newEntry?
{

 top++;
 items[top] = newEntry;
 result = true ;
 } // end if

return result;
} // end push

 template < class ItemType>
 bool ArrayStack<ItemType>::pop()

(continues)

244 CHAPTER 7 Implementations of the ADT Stack

 {
bool result = false ;

 if (!isEmpty())
 {
 top--;
 result = true ;
 } // end if

return result;
} // end pop

 template < class ItemType>
ItemType ArrayStack<ItemType>::peek() const
 {
 assert (!isEmpty()); // Enforce precondition

 // Stack is not empty; return top
return items[top];

} // end peek
// end of implementation file

 A program that uses a stack could begin as follows:

 #include <iostream>
#include <string>
#include "ArrayStack.h"

 using namespace std;

 int main()
 {
 StackInterface<string>* stackPtr = new ArrayStack<string>();
 string anItem = "";
 cout << "Enter a string: ";
 cin >> anItem; // Read an item
 stackPtr->push(anItem); // Push item onto stack
 . . .

 By implementing the stack as a class, and by declaring items and top as private, you ensure that
the client cannot violate the ADT’s walls. If you did not hide your implementation within a class, or if
you made the array items public, the client could access the entries in items directly instead of by
using the ADT stack operations. Thus, the client could access any entries in the stack, not just its top
entry. You might fi nd this capability attractive, but in fact it violates the specifi cations of the ADT
stack. If you truly need to access all the items of your ADT randomly, do not use a stack!

 Finally, note that push receives newEntry as a constant reference argument. Therefore, push uses
newEntry as an alias to its actual argument, and no copy is made.

Private data
members are
hidden from the
client

 Question 2 Describe the changes to the previous stack implementation that are necessary
to replace the fi xed-size array with a resizable array.

 Question 1 In Chapter 6 , the algorithms that appear in Section 6.2 involve strings. Under what
conditions would you choose an array-based implementation for the stack in these algorithms?

CHECK POINT

 A Link-Based implementation 245

 7.2 A Link-Based implementation
 Many applications require a link-based implementation of a stack so that the stack can grow and
shrink dynamically. Figure 7-2 illustrates such an implementation, where topPtr is a pointer to the
head of the linked nodes.

 As we did for the array-based implementation, we begin with a header fi le based upon
StackInterface , as you can see in Listing 7-3. The pointer topPtr points to an instance of the
class Node that we used in the implementation of the class LinkedBag in Chapter 4 .

 Because memory is allocated dynamically for the nodes, you must write both a copy constructor
and a virtual destructor for the link-based stack implementation. As you saw in Chapter 4 , if a shallow
copy of the stack is suffi cient, you can omit the copy constructor, in which case the compiler gener-
ates a copy constructor that performs a shallow copy. Such was the case for the array-based
implementation.

 If we did not write our own copy constructor for the LinkedStack class, the compiler-generated
copy constructor would copy only the pointer topPtr . Thus, both topPtr and its copy would point to
the same linked nodes; the stack itself would not be copied. You must write a copy constructor that
explicitly makes a copy of all the nodes in a linked stack.

FIGURE 7-2 A link-based implementation of a stack

10

80

60

5

topPtr

VideoNote

Overview of
LinkedStack

246 CHAPTER 7 Implementations of the ADT Stack

 LISTING 7-3 The header fi le for the class LinkedStack

 /** ADT stack: Link-based implementation.
 @file LinkedStack.h */

#ifndef _LINKED_STACK
#define _LINKED_STACK

#include "StackInterface.h"
#include "Node.h"

 template < class ItemType>
 class LinkedStack : public StackInterface<ItemType>
 {
 private:

Node<ItemType>* topPtr; // Pointer to first node in the chain;
// this node contains the stack’s top

 public:
// Constructors and destructor:
 LinkedStack(); // Default constructor
 LinkedStack(const LinkedStack<ItemType>& aStack); // Copy constructor

virtual ~LinkedStack(); // Destructor

// Stack operations:
 bool isEmpty() const;
 bool push(const ItemType& newItem);
 bool pop();
 ItemType peek() const ;
}; // end LinkedStack

#include "LinkedStack.cpp"
 #endif

 Listing 7-4 gives the implementation fi le for LinkedStack . Note the similarity between the copy
constructors of LinkedStack and LinkedBag as given in Chapter 4 .

 LISTING 7-4 The implementation fi le for the class LinkedStack

 /** @file LinkedStack.cpp */
#include <cassert> // For assert
#include "LinkedStack.h" // Header file

 template < class ItemType>
LinkedStack<ItemType>::LinkedStack() : topPtr(nullptr)
 {
} // end default constructor

 template < class ItemType>
 LinkedStack<ItemType>::
 LinkedStack(const LinkedStack<ItemType>& aStack)
 {

You need an explicit
copy constructor
and a virtual
destructor

 A Link-Based implementation 247

// Point to nodes in original chain
 Node<ItemType>* origChainPtr = aStack->topPtr;

if (origChainPtr == nullptr)
 topPtr = nullptr; // Original bag is empty

else
 {
 // Copy first node
 topPtr = new Node<ItemType>();
 topPtr->setItem(origChainPtr->getItem());

 // Point to first node in new chain
 Node<ItemType>* newChainPtr = topPtr;

 // Copy remaining nodes
 while (origChainPtr != nullptr)
 {

// Advance original-chain pointer
 origChainPtr = origChainPtr->getNext();

// Get next item from original chain
 ItemType nextItem = origChainPtr->getItem();

// Create a new node containing the next item
 Node<ItemType>* newNodePtr = new Node<ItemType>(nextItem);

// Link new node to end of new chain
 newChainPtr->setNext(newNodePtr);

// Advance pointer to new last node
 newChainPtr = newChainPtr->getNext();
 } // end while

 newChainPtr->setNext(nullptr); // Flag end of chain
 } // end if
} // end copy constructor

 template < class ItemType>
 LinkedStack<ItemType>::~LinkedStack()
 {

// Pop until stack is empty
while (!isEmpty())

 pop();
} // end destructor

 template < class ItemType>
 bool LinkedStack<ItemType>::isEmpty() const
 {
 return topPtr == nullptr ;
} // end isEmpty

 template < class ItemType>
 bool LinkedStack<ItemType>::push(const ItemType& newItem)
 {
 Node<ItemType>* newNodePtr = new Node<ItemType>(newItem, topPtr);
 topPtr = newNodePtr;
 newNodePtr = nullptr ;

(continues)

248 CHAPTER 7 Implementations of the ADT Stack

return true ;
} // end push

 template < class ItemType>
 bool LinkedStack<ItemType>::pop()
 {

bool result = false ;
if (!isEmpty())

 {
 // Stack is not empty; delete top
 Node<ItemType>* nodeToDeletePtr = topPtr;
 topPtr = topPtr->getNext();

// Return deleted node to system
 nodeToDeletePtr->setNext(nullptr);
 delete nodeToDeletePtr;
 nodeToDeletePtr = nullptr ;

 result = true ;
 } // end if

return result;
} // end pop

 template < class ItemType>
ItemType LinkedStack<ItemType>::peek() const
 {
 assert(!isEmpty()); // Enforce precondition

// Stack is not empty; return top
return topPtr->getItem();

} // end getTop
// end of implementation file

 Question 3 In Chapter 6 , the algorithms that appear in Section 6.2 involve strings. Under
what conditions would you choose a link-based implementation?

CHECK POINT

 Note: Comparing implementations

 You have seen two implementations of the ADT stack, one that uses an array and
another that uses linked nodes to contain the items in a stack. The discussion in
 Section 4.5 of Chapter 4 applies here as well. The array-based implementation is a
reasonable choice if the number of items in the stack does not exceed the fi xed size of
the array. For example, when we read and correct an input line, if the system allows a
line length of only 80 characters, you reasonably could use a statically allocated array
to represent the stack. For stacks that might be large, but often are not, the array-based
implementation will waste storage. In that case, the link-based implementation is a
better choice.

 Implementations That Use Exceptions 249

 7.3 Implementations That Use Exceptions
 Our specifi cations of the ADT stack appear to handle all eventualities. If you try to add an item
to a full stack, the method push returns false. If you try to remove an entry from an empty
stack, the method pop returns false. What happens when you try to look at the top of an empty
stack? The method peek expects that you will not do this, as stated in its precondition. Our imple-
mentations, however, deal with the misuse of this method by beginning its defi nition with the
statement

 assert(!isEmpty());

 If the stack is empty, assert will issue an error message and halt execution.
 Instead of using assert , peek could throw an exception if its precondition is violated—that is, if

it is called when the stack is empty. Let’s defi ne the class PrecondViolatedExcep that peek can use.
Listings 7-5 and 7-6 show this class.

 LISTING 7-5 The header fi le for the class PrecondViolatedExcep

 /** @file PrecondViolatedExcep.h */
#ifndef _PRECOND_VIOLATED_EXCEP
#define _PRECOND_VIOLATED_EXCEP

#include <stdexcept>
#include <string>

 using namespace std;

 class PrecondViolatedExcep: public logic_error
 {
 public :

PrecondViolatedExcep(const string& message = "");
}; // end PrecondViolatedExcep

 #endif

Validate any
data a client
gives you

 Programming Tip: Initializers versus set methods for constructors

 Chapter 3 suggested that you use initializers instead of assignment statements in construc-
tors to initialize the values of a class’s data members. That is still good advice, and initial-
izers clearly show the initialization. However, if you write set methods to alter the values
of the data members, you have the opportunity to ensure that the values assigned are valid.
Doing so is especially important when those values are supplied by the client. In such
cases, constructors can call the set methods to initialize the data members. Thus, we have
the following advice when you initialize the values of data members in constructors:

• Use an initializer if the value of the data member has no restrictions.
• Use a set method if the value of the data member needs validation.

 Note that even if you do not want a public set method for a particular data member, you
can either defi ne a private one for the constructor to call or have the constructor perform
its own validation.

250 CHAPTER 7 Implementations of the ADT Stack

 LISTING 7-6 The implementation fi le for the class PrecondViolatedExcep

 /** @file PrecondViolatedExcep.cpp */
#include " PrecondViolatedExcep.h"

 PrecondViolatedExcep ::PrecondViolatedExcep(const string& message):
 logic_error("Precondition Violated Exception: " + message)
 {
} // end constructor

 We now revise the declarations of peek in both of the header fi les ArrayStack.h and
LinkedStack.h by adding a throw clause as follows:

 ItemType peek() const throw (PrecondViolatedExcep);

 In the implementation fi les, we add the same throw clause to the header of peek and then replace the
assert statement in both defi nitions of peek with the following if statement:

 if (isEmpty())
throw PrecondViolatedExcep("peek() called with empty stack");

 Thus, the defi nition of peek in LinkedStack , for example, is

 template < class ItemType>
ItemType LinkedStack<ItemType>::peek() const throw (PrecondViolatedExcep)
 {
 // Enforce precondition

if (isEmpty())
throw PrecondViolatedExcep("peek() called with empty stack");

// Stack is not empty; return top
return topPtr->getItem();

} // end getTop

 The previous revisions to peek are the same for both the array-based and link-based implementa-
tions of the stack.

 Note: In the link-based implementation of the stack, both the method push and the
copy constructor allocate new nodes. This allocation could fail if the system has no spare
memory available. In such a case, the standard exception bad_alloc is thrown. However,
in our simple examples, such an occurrence is unlikely to occur unless your computing
system has a severely restricted memory size. For simplicity, we will not worry about this
situation.

 Question 4 Defi ne the exception class MemoryAllocationException and then revise the
defi nition of the method push in the class LinkedStack so that it throws this exception if it
cannot allocate a new node.

CHECK POINT

 Exercises 251

 SUMMARY

 1. You can implement a stack by using an array. If the bottom of the stack is in the fi rst element of the array, no
stack entries are moved when you add or remove entries.

 2. You can implement a stack by using a chain of linked nodes that has a head pointer. The fi rst node of the chain
should contain the top of the stack to provide the easiest and fastest addition and removal operations.

 3. You should call assert or throw an exception to enforce the precondition for the method peek .

 EXERCISES

 1. Discuss the advantages and disadvantages of an array-based implementation of the ADT stack as compared to a
link-based implementation.

 2. Consider the ADT bag, as described in Chapters 1 , 3 , and 4.

a. Would you be able to implement the ADT stack by using a bag to contain its entries? Why, or why not?
 b. Would you be able to implement the ADT bag by using a stack to contain its entries? Why, or why not?

 3. An operation that displays the contents of a stack can be useful during program debugging. Add a display
method to the ADT stack such that

a. The method uses only ADT stack operations; that is, it is independent of the stack’s implementation.
b. The method assumes and uses the link-based implementation of the ADT stack.
c. The method assumes and uses the array-based implementation of the ADT stack.

 4. Repeat the previous exercise, but defi ne the method toVector instead of the method display .

 5. To the ADT stack given in this chapter, add a void method remove(n) that removes and discards the topmost n
entries from a stack. Write a link-based implementation for this method.

 6. Repeat the previous exercise, but write an array-based implementation instead.

 7. The destructor given for the link-based implementation of the ADT stack calls pop . Although easy to write, this
destructor can be ineffi cient due to repeated method calls. Write another implementation for the destructor that
deallocates the linked nodes directly without calling pop .

 8. Implement a memory-safe copy constructor for the linked stack. If a memory allocation fails, this constructor
should release all memory that was allocated prior to the failure and then throw an exception.

 9. Imagine an array-based implementation of the ADT stack that stores the stack’s entries beginning at the end of
an array. Describe how you can defi ne the stack operations so that the push and pop operations do not require
you to move existing entries in the array.

 10. Imagine a link-based implementation of the ADT stack that stores the stack’s top entry at the end of a chain of
linked nodes. Describe how you can defi ne the stack operations so that a traversal of the chain is not necessary.

 11. Although we do not usually throw our own exception when a method or constructor in LinkedStack fails to
allocate a new node, you could do so. Defi ne the exception MemoryAllocationException , and revise the copy
constructor of LinkedStack so that it throws a MemoryAllocationException when the new operator fails to
allocate memory. Throwing exceptions from constructors requires great care, since you must be sure to properly
deallocate any memory allocated by the constructor before throwing the exception.

 Test your revised version of LinkedStack.

252 CHAPTER 7 Implementations of the ADT Stack

 PROGRAMMING PROBLEMS

 1. Write an implementation of the ADT stack that uses a resizable array to represent the stack items. Anytime the
stack becomes full, double the size of the array. Maintain the stack’s bottom entry at the beginning of the array.

 2. Repeat Programming Problem 1, but maintain the stack’s bottom entry at the end of the array.

 3. Repeat Programming Problem 1, but maintain the stack’s top entry at the beginning of the array.

 4. Repeat Programming Problem 1, but maintain the stack’s top entry at the end of the array.

 5. Repeat any of the previous four programming problems, but after the fi rst doubling of the array, halve the size of
the array if fewer than half of the array’s locations are occupied by current stack entries.

 6. Suppose that instead of doubling the size of an array-based stack when it becomes full, you increase the size of
the array by some positive integer k . Implement and demonstrate such a stack that allows the client to specify k
when the stack is created.

 7. Repeat the previous programming problem, but each time the stack becomes full, increase the size of the array
by the next value in this sequence: 3 k , 5 k , 7 k , ... for a client-specifi ed positive integer k .

 8. Write the implementation of the ADT stack that Exercise 10 describes.

 9. The ADT stack lets you peek at its top entry without removing it. For some applications of a stack, you need to
also peek at the entry beneath the top entry without removing it. Let’s name such an operation peek2 . If peek2
fails because the stack contains fewer than two entries, it should throw an exception. Write a link-based imple-
mentation of the ADT stack that includes both peek and peek2 .

 10. Repeat any of the programming problems in Chapter 6 , except the fi rst one, using an implementation of the
ADT stack that this chapter describes.

 Chapter

Lists 8
 Contents
 8.1 Specifying the ADT List 254
 8.2 Using the List Operations 259
 8.3 An Interface Template for the ADT List 261

 Summary 263
 Exercises 263
 Programming Problems 264

 Prerequisites
 Chapter 1 Data Abstraction: The Walls
 C++ Interlude 1 C++ Classes

An everyday list provides a way for us to organize our thoughts, plans, or tasks. Each
list has a fi rst entry, a last entry, and often entries in between. The entries have a position
within the list, and therefore they are ordered. In computer science, an ADT list provides
a way to organize data. Like an everyday list, the entries in an ADT list have a position
and are ordered. This order is not determined by the list itself, but rather by its client.

 This chapter specifi es the ADT list and gives some examples of how to use it.

254 CHAPTER 8 Lists

 8.1 Specifying the ADT List
 Consider a list that you might encounter, such as a list of chores, a list of important dates, a list of
addresses, or the grocery list pictured in Figure 8-1 . As you write a grocery list, where do you put new
items? Assuming that you write a neat one-column list, you probably add new items to the end of the
list. You could just as well add items to the beginning of the list or add them so that your list is sorted
alphabetically. Regardless, the items on a list appear in a sequence. The list has one fi rst item and one
last item. Except for the fi rst and last items, each item has a unique predecessor and a unique succes-
sor . The fi rst item—the head or front of the list—does not have a predecessor, and the last item—the
tail or end of the list—does not have a successor.

 Although the six items on the list in Figure 8-1 have a sequential order, they are not necessarily
sorted by name. Perhaps the items appear in the order in which they occur on the grocer’s shelves, but
more likely they appear in the order in which they occurred to you as you wrote the list.

 Lists contain items of the same type: You can have a list of grocery items or a list of phone num-
bers. What can you do to the items on a list? You might count the items on the list, add an item to the
list, remove an item from the list, or look at (retrieve) an item. The items on a list, together with opera-
tions that you can perform on the items, form an ADT: the ADT list .

FIGURE 8-1 A grocery list

milk
eggs
butter
apples
bread
chicken

 Note: The ADT list is simply a container of items whose order you indicate and whose
position you reference by number.

 You must specify the behavior of the list’s operations without thinking about how you could imple-
ment them. For example, you need to decide where to add a new item and which item to retrieve or
remove. The various possible decisions lead to several kinds of lists. You might decide to add, remove,
and retrieve items only at the end of the list, only at the front, or at both the front and the end. The
specifi cations of these lists, which manipulate items at one or both ends, are left as an exercise, as they
are not really adequate for an actual grocery list. Instead we will discuss a more general list, one that
allows you to access items anywhere on the list. That is, you might look at the item at position i , remove
the item at position i, or insert an item at position i on the list. Such operations are part of the ADT list.
Other operations that see whether a list is empty or return the length of the list are also useful.

You reference list
items by their
position

VideoNote

The ADT list

 Specifying the ADT List 255

 Figure 8-2 shows the UML diagram for this ADT and provides more detail for its operations.

 Note: ADT list operations

• Test whether a list is empty.
• Get the number of entries on a list.
• Insert an entry at a given position on the list.
• Remove the entry at a given position from the list.
• Remove all entries from the list.
• Look at (get) the entry at a given position on the list.
• Replace (set) the entry at a given position on the list.

FIGURE 8-2 UML diagram for the ADT list

List

+isEmpty(): boolean

+insert(newPosition: integer, newEntry: ItemType): boolean
+remove(position: integer): boolean

+getEntry(position: integer): ItemType

+getLength(): integer

+clear(): void

+setEntry(position: integer, newEntry: ItemType): void

 To get a more precise idea of how the operations work, let’s apply them to the following grocery
items:

 milk, eggs, butter, apples, bread, chicken

 Milk will be the fi rst item on the list, and chicken will be the last item. To begin, consider how you can
construct this list by using the ADT list operations. One way is fi rst to create an empty list aList and
then use a series of insertion operations to append the items to the list one at a time, as follows:

 aList = a new empty list
aList.insert(1, milk)
aList.insert(2, eggs)
aList.insert(3, butter)
aList.insert(4, apples)
aList.insert(5, bread)
aList.insert(6, chicken)

 We assume for this simple example that the list can contain all of the items we add to it.
 In the previous example, we in effect have inserted each new item at the end of the list. Neverthe-

less, the list’s insertion operation can place new items into any position of the list, not just at its front
or end. The effect of an insertion between existing items, however, is not apparent from the previous
example. For instance, if you start with the previous grocery list and you perform the operation

 aList.insert(4, nuts)

256 CHAPTER 8 Lists

 the list aList should become

 milk, eggs, butter, nuts, apples, bread, chicken

 All items that had position numbers greater than or equal to 4 before the insertion now have their
position numbers increased by 1 after the insertion. In general, if a new item is inserted into position
i , the position of each item that was at or after position i is increased by 1.

 Similarly, the removal operation specifi es that if an item is deleted from position i , the position of
each item that was at a position greater than i is decreased by 1. Thus, for example, if aList is the list

 milk, eggs, butter, nuts, apples, bread, chicken

 and you perform the operation

 aList.remove(5)

 the list becomes

 milk, eggs, butter, nuts, bread, chicken

 All items that had position numbers greater than 5 before the removal now have their position num-
bers decreased by 1 after the deletion.

 These examples illustrate that we can specify the effects of an ADT’s operations without having
to indicate how to store the data. The following summary of the ADT list provides more details for
its operation contract. As usual, the specifi cations of these operations are the sole terms of the oper-
ation contract for the ADT list. The behavior of the operations is the only thing on which a program
should depend.

 ABSTRACT DATA TYPE: LIST

 DATA

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by their positions, as
determined by the client.

 OPERATIONS

 PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this list is empty.
 Input: None.
 Output: True if the list is empty; otherwise false.

 getLength()

 Task: Gets the current number of entries in this list.
 Input: None.
 Output: The integer number of entries currently in the list.

insert(newPosition, newEntry) Task: Inserts an entry into this list at a given position. An insertion before
existing entries causes the renumbering of entries that follow the new one.

 Input: newPosition is an integer indicating the position of the insertion, and
newEntry is the new entry.

 Output: True if 1 newPosition getLength() + 1 and the insertion is
successful; otherwise false.

 Specifying the ADT List 257

 Note that the return values of the insertion and removal operations provide the ADT with a sim-
ple mechanism to communicate operation failure to its client. For example, if you try to remove the
tenth item from a fi ve-item list, remove will return false. Likewise, insert will return false if, for
example, the list is full or position is out of range. In this way, the client can deal with error situa-
tions in an implementation-independent way.

 remove(position) Task: Removes the entry at a given position from this list. A removal before the
last entry causes the renumbering of entries that follow the deleted one.

 Input: position is the position of the entry to remove.
 Output: True if 1 newPosition getLength() and the removal is successful;

otherwise false.

 clear() Task: Removes all entries from this list.
 Input: None.
 Output: None. The list is empty.

 getEntry(position) Task: Gets the entry at the given position in this list.
 Input: position is the position of the entry to get; 1 <= position <=

getLength() .
 Output: The desired entry.

setEntry(position, newEntry) Task: Replaces the entry at the given position in this list.
 Input: position is the position of the entry to replace; 1 <= position <=

getLength() . newEntry is the replacement entry.
 Output: None. The indicated entry is replaced.

 Note: The list operations fall into the three broad categories presented earlier in this
book:

• The operation insert adds data to a data collection.
• The operation remove removes data from a data collection.
• The operations isEmpty, getLength , and getEntry ask questions about the data in a

data collection.

 The operation setEntry replaces existing data in a data collection, so you can think of it
as removing and then adding data.

 Question 1 The specifi cations of the ADT list do not mention the case in which two or
more items have the same value. Are these specifi cations suffi cient to cover this case, or
must they be revised?

CHECK POINT

 Question 2 Write specifi cations for a list whose operations insert , remove , getEntry ,
and setEntry always act at the end of the list.

 Axioms (optional). The previous specifi cations for the operations of the ADT list have been stated
rather informally. For example, they rely on your knowing the meaning of “an item is at position i ” in

258 CHAPTER 8 Lists

Use axioms to
determine the effect
of a sequence of
ADT operations

a list. However, you can write a set of axioms that completely describes the behavior of the list
operations. For example,

 A newly created list is empty

 is an axiom because it is true for all newly created lists. You can state this axiom succinctly in terms of
the ADT list operations as follows: 1

 (new List()).isEmpty() = true

 The statement

 If you insert an item x into the i th position of a list, retrieving the i th item will result in x

 is true for all lists, and so it is an axiom. You can state this axiom in terms of the ADT list
operations as follows:

(aList.insert(i, x)).getEntry(i) = x

 That is, getEntry returns the item x that insert has put at position i of aList .
 The following axioms formally defi ne the ADT list:

 1 The = notation within these axioms denotes algebraic equality.

Note: Axioms for the ADT list
1. (new List()).isEmpty() = true

 2. (new List()).getLength() = 0
3. aList.getLength() = (aList.insert(i, x)).getLength() - 1

 4. aList.getLength() = (aList.remove(i)).getLength() + 1
 5. (aList.insert(i, item)).isEmpty() = false
 6. (new List()).remove(i) = false
 7. (aList.insert(i, x)).remove(i) = aList
 8. (new List()).getEntry(i) = error
 9. (aList.insert(i, x)).getEntry(i) = x
10. aList.getEntry(i) = (aList.insert(i, x)).getEntry(i + 1)
 11. aList.getEntry(i + 1) = (aList.remove(i)).getEntry(i)
 12. (new List()).setEntry(i, x) = error
13. (aList.setEntry(i, x)).getEntry(i) = x

 A set of axioms does not make the preconditions and postconditions for an ADT’s operations
unnecessary. For example, the previous axioms do not describe insert ’s behavior when you try to
insert an item into position 50 of a list of two items. One way to handle this situation is to include the
restriction

 1 <= position <= getLength() + 1

 in insert ’s precondition. Another way—which we used in our previous specifi cations of the ADT
list—does not restrict position , but rather has the method return false if position is outside the pre-
vious range. Thus, you need both a set of axioms and a set of preconditions and postconditions to
defi ne the behavior of an ADT’s operations completely.

 Using the List Operations 259

 You can use axioms to determine the outcome of a sequence of ADT operations. For example, if
aList is a list of strings and s and t are strings, how does the sequence of operations

 aList.insert(1, t)
aList.insert(1, s)

 affect aList ? We will show that s is the fi rst item in this list and that t is the second item by using
getEntry to look at these items.

 You can write the previous sequence of operations in another way as

 (aList.insert(1, t)).insert(1, s)

 or

 tempList = aList.insert(1, t)
tempList.insert(1, s)

 Now get the fi rst and second items in the list tempList.insert(1, s) , as follows:

 (tempList.insert(1, s)).getEntry(1) = s by axiom 9

 and

 (tempList.insert(1, s)).getEntry(2)
 = tempList.getEntry(1) by axiom 10
 = (aList.insert(1, t)).getEntry(1) by definition of tempList
 = t by axiom 9

 Thus, s is the fi rst item in the list and t is the second item.

 8.2 Using the List Operations
 We now consider some simple examples of how you can use the operations of the ADT list. Recall
that exploring such uses is a way to confi rm your understanding of an ADT’s specifi cations and gives
you an opportunity to change your mind about your design choices prior to implementing the ADT.
You can write client functions in terms of the operations that defi ne the ADT list, even though you do
not know how the list’s data is stored.

 Displaying the items on a list. Suppose that you want to display the items on a list. Since this task is
not an ADT list operation, we write pseudocode for a client function displayList that uses the ADT
operations as follows:

 // Displays the items on the list aList.
 displayList(aList)

for (position = 1 through aList.getLength())
 {
 dataItem = aList.getEntry(position)
 Display dataItem
 }

 Notice that as long as the ADT list is implemented correctly, the displayList function will perform
its task. In this case, getEntry successfully retrieves each list item, because position ’s value is
always valid.

An implementation-
independent
application of the
ADT list

VideoNote

Using the ADT list

260 CHAPTER 8 Lists

 Replacing an item. Now suppose that we did not include the operation setEntry in our specifi ca-
tion of the ADT list. To replace the entry at a given position in the list with a new one, we would need
to write a client function. The following pseudocode defi nes such a function replace :

 // Replaces the i th entry in the list aList with newEntry.
 // Returns true if the replacement was successful; otherwise return false.
replace(aList, i, newEntry)

 success = aList.remove(i)
if (success)

 success = aList.insert(i, newItem)

return success

 If remove is successful, it sets success to true. By testing success, replace will attempt the
insertion only if the deletion actually occurred. Then insert sets success , which replace returns to
the function that called it. If remove is unsuccessful for any reason, including an incorrect value of i ,
it sets success to false. The replace function then ignores the insertion and returns success .

Note: Notice that the two previous algorithms depend only on the specifi cations of the
list operations and not on their implementations. The algorithms do not depend on how
you implement the list. They will work regardless of whether you use an array or some
other data structure to store the list’s data. This feature is a defi nite advantage of abstract
data types. In addition, by thinking in terms of the available ADT operations, you will not
be distracted by implementation details.

 Creating a list of names in alphabetical order. Let’s create a list of our friends’ names as we think
of them. Moreover, let’s place the names on the list in alphabetical order. It is up to us to place each
name into its correct position in the list. The ADT list does not choose the order of its entries.

 The following pseudocode statements place the names Amy, Ellen, Bob, Drew, Aaron, and Carol
in an alphabetical list. The comment at the end of each statement shows the list after the statement
executes.

 alphaList = a new empty list
alphaList.insert(1, "Amy") // Amy
alphaList.insert(2, "Ellen") // Amy Ellen
alphaList.insert(2, "Bob") // Amy Bob Ellen
alphaList.insert(3, "Drew") // Amy Bob Drew Ellen
alphaList.insert(1, "Aaron") // Aaron Amy Bob Drew Ellen
alphaList.insert(4, "Carol") // Aaron Amy Bob Carol Drew Ellen

 After initially placing Amy at the beginning of the list and Ellen at the end of the list (at position 2),
we insert

• Bob between Amy and Ellen at position 2
• Drew between Bob and Ellen at position 3
• Aaron before Amy at position 1
• Carol between Bob and Drew at position 4

 Later in Chapter 11 , you will learn that this way of inserting each name into a collection of alphabet-
ized names is called an insertion sort.

 If we now remove the entry at position 4—Carol—by writing

 alphaList.remove(4)

 An Interface Template for the ADT List 261

 Drew and Ellen will be at positions 4 and 5, respectively. Thus, alphaList.getEntry(4) would
return Drew.

 Finally, suppose that we want to replace a name in this list. We cannot replace a name with just any
name and expect that the list will remain in alphabetical order. Replacing Bob with Ben by writing

 alphaList.setEntry(3, "Ben");

 would maintain alphabetical order, but replacing Bob with Nancy would not. The list’s alphabetical
order resulted from our original decisions about where to place names on the list. The order did not
come about automatically as a result of list operations. That is, the client, not the list, maintains the
order. We could, however, design an ADT that maintains its data in alphabetical order. You will see an
example of such an ADT in Chapter 12 .

Question 4 What grocery list results from the following sequence of ADT list opera-
tions?

 aList = a new empty list
aList.insert(1, "butter")
aList.insert(1, "eggs")
aList.insert(1, "milk")

 Question 5 Suppose that myList is a list that contains the fi ve objects a b c d e .

a. What does myList contain after executing myList.insert(5, w) ?
b. Starting with the original fi ve entries, what does myList contain after executing

myList.insert(6, w) ?
c. Which of the operations in parts a and b of this question require entries in the array to

shift?

 Question 3 Write a pseudocode function swap(aList, i, j) that interchanges the items
currently in positions i and j of a list. Defi ne the function in terms of the ADT list operations,
so that it is independent of any particular implementation of the list. Assume that the list, in
fact, has items at positions i and j . What impact does this assumption have on your solution?
(See Exercise 2 at the end of this chapter.)

CHECK POINT

 8.3 An Interface Template for the ADT List
 We now will formalize our specifi cation of the ADT list by writing a C++ interface, which is given in
Listing 8-1.

 LISTING 8-1 A C++ interface for lists

 /** Interface for the ADT list
 @file ListInterface.h */

#ifndef _LIST_INTERFACE
#define _LIST_INTERFACE

 template < class ItemType>
 class ListInterface

(continues)

262 CHAPTER 8 Lists

 {
 public :
 /** Sees whether this list is empty.

 @return True if the list is empty; otherwise returns false. */
virtual bool isEmpty() const = 0;

/** Gets the current number of entries in this list.
@return The integer number of entries currently in the list. */

virtual int getLength() const = 0;

/** Inserts an entry into this list at a given position.
@pre None.
@post If 1 <= position <= getLength() + 1 and the insertion is

 successful, newEntry is at the given position in the list,
 other entries are renumbered accordingly, and the returned
 value is true.
 @param newPosition The list position at which to insert newEntry.

@param newEntry The entry to insert into the list.
@return True if insertion is successful, or false if not. */

 virtual bool insert(int newPosition, const ItemType& newEntry) = 0;

/** Removes the entry at a given position from this list.
@pre None.
@post If 1 <= position <= getLength() and the removal is successful,

 the entry at the given position in the list is removed, other
 items are renumbered accordingly, and the returned value is true.

@param position The list position of the entry to remove.
@return True if removal is successful, or false if not. */

virtual bool remove(int position) = 0;

 /** Removes all entries from this list.
@post List contains no entries and the count of items is 0. */

virtual void clear() = 0;

 /** Gets the entry at the given position in this list.
@pre 1 <= position <= getLength().
@post The desired entry has been returned.
@param position The list position of the desired entry.
@return The entry at the given position. */

virtual ItemType getEntry(int position) const = 0;

 /** Replaces the entry at the given position in this list.
@pre 1 <= position <= getLength().
@post The entry at the given position is newEntry.
@param position The list position of the entry to replace.
@param newEntry The replacement entry. */

virtual void setEntry(int position, const ItemType& newEntry) = 0;
 }; // end ListInterface
 #endif

 Exercises 263

 SUMMARY

 1. The ADT list maintains its data by position. Each entry in a list is identifi ed by its position, which is given by an
integer, beginning with 1. Thus, the data in a list has an order, but that order is determined by the list’s client, not
the list itself.

 2. You can insert a new entry into a list at a position that ranges from 1 to 1 greater than the current length of
the list. Thus, you can insert a new entry before the fi rst entry, after the last entry, or between two current
entries.

 3. Inserting a new entry into a list renumbers any existing entries that follow the new one in the list.

 4. You can remove an entry that is currently at a position that ranges from 1 to the current length of the list. Thus,
you can remove the fi rst entry, the last entry, or any interior entry.

 5. Removing an entry from a list renumbers any existing entries that follow the deleted one in the list.

 EXERCISES

 1. Consider an ADT list of integers. Write a pseudocode function that computes the sum of the integers in the list
aList . The defi nition of your function should be independent of the list’s implementation.

 2. Implement the function swap , as described in Checkpoint Question 3, but remove the assumption that the ith and
jth items on the list exist. Return a value that indicates whether the swap was successful.

 3. Use the function swap that you wrote in Exercise 2 to write a function that reverses the order of the items in a list
aList .

 4. Section 8.2 describes the functions displayList and replace . Their defi nitions are written in terms of the ADT
list operations.

a. What is an advantage and a disadvantage of the way that displayList and replace are implemented?
b. What is an advantage and a disadvantage of defi ning displayList and replace as operations of the

ADT list?

 5. Suppose that the ADT list has a method getPosition that returns the position of a given entry within the list.
Write specifi cations for such a method.

 6. Write a pseudocode function getPosition at the client level that returns the position of a given entry within a
given list.

 7. Suppose that the ADT list has a method contains that tests whether the list contains a given entry. Write speci-
fi cations for such a method.

 8. Write a pseudocode function contains at the client level that tests whether a given list contains a given entry.

 9. The ADT list method remove removes from the list the entry at a given position. Suppose that the ADT list has
another method remove that removes a given entry from the list. Write specifi cations for such a method. What
does your method do if the list contains duplicate entries?

 10. Write a pseudocode function remove at the client level that removes a given entry from a given list.

264 CHAPTER 8 Lists

 11. Use the axioms for the ADT list, as given in “Axioms” in Section 8.1 of this chapter, to prove that the sequence
of operations

 Insert A into position 2

 Insert B into position 2

 Insert C into position 2

 has the same effect on a nonempty list of characters as the sequence

Insert C into position 2

Insert B into position 3

Insert A into position 4

 12. Repeat Exercise 20 in Chapter 2 , using the ADT list to implement the function f (n).

 PROGRAMMING PROBLEMS

 1. Write pseudocode implementations of the ADT polynomial operations, as defi ned in Exercise 9 of Chapter 1 , in
terms of the ADT list operations.

 2. Santa Claus allegedly keeps lists of those who are naughty and those who are nice. On the naughty list are the
names of those who will get coal in their stockings. On the nice list are those who will receive gifts. Each object
in this list contains a name (a string) and a list of that person’s gifts (an instance of an ADT list). Design an ADT
for the objects in the nice list. Specify each ADT operation by stating its purpose, describing its parameters, and
writing preconditions, postconditions, and a pseudocode version of its header. Then write a template interface
for the ADT that includes javadoc -style comments.

 Chapter

 List
Implementations 9

 Contents
 9.1 An Array-Based Implementation of the ADT List 266

 9.1.1 The Header File 266
 9.1.2 The Implementation File 268

 9.2 A Link-Based Implementation of the ADT List 272
 9.2.1 The Header File 272
 9.2.2 The Implementation File 274
 9.2.3 Using Recursion in LinkedList Methods 281

 9.3 Comparing Implementations 285

 Summary 286
 Exercises 286
 Programming Problems 287

 Prerequisites
 Chapter 3 Array-Based Implementations
 C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation
 Chapter 4 Link-Based Implementations
 C++ Interlude 3 Exceptions
 Chapter 8 Lists

Having clearly specifi ed the operations of an ADT list in the previous chapter, we
now consider data structures for implementing it. This chapter explores two
implementations of the list and compares their advantages and disadvantages.

266 CHAPTER 9 List Implementations

 9.1 An Array-Based Implementation of the ADT List
 When you design an abstract data type, you concentrate on what its operations do, but you ignore how
you will implement them. Now that we have clearly specifi ed operations for the ADT list, we can
implement it as a C++ class. Recall that the list operations in their UML form are

 +isEmpty(): boolean
+getLength(): integer
+insert(newPosition: integer, newEntry: ItemType): boolean
+remove(position: integer): boolean
+clear(): void
+getEntry(position: integer): ItemType
+setEntry(position: integer, newEntry: ItemType): void

 You need to represent the items on a list and its length. Your fi rst thought is probably to store the list’s
items in an array items . In fact, you might believe that “list” is simply a fancy name for an array. This
belief is not quite true, however. An array-based implementation is a natural choice because both an
array and a list identify their items by number. However, the ADT list has operations such as
getLength that an array does not. Later in this chapter, you will see an implementation of the ADT
list that does not use an array.

 With an array-based implementation, you can store a list’s k th entry in items[k - 1] . How much
of the array will the list occupy? Possibly all of it, but probably not. That is, you need to keep track of
the array elements that you have assigned to the list and those that are available for use in the future.
The maximum length of the array—its physical size or capacity—is a known, fi xed value, such as
maxItems . You can keep track of the current number of entries on the list—that is, the list’s length or
logical size—in a variable itemCount . An obvious benefi t of this approach is that implementing the
operation getLength will be easy. Thus, we could use the following statements to defi ne the data
members for an array-based implementation of the ADT list:

 static const int DEFAULT_CAPACITY = 100;
ItemType items[DEFAULT_CAPACITY]; // Array of list items
 int itemCount; // Current count of list items
 int maxItems; // Maximum capacity of the list

 Figure 9-1 illustrates these data members. To hide them from the clients of the class, we will
make these data members private.

 9.1.1 The Header File

 Now that we have chosen the data members for our class ArrayList , we can write its header fi le, as
given in Listing 9-1. We derive ArrayList from the template interface ListInterface that we devel-
oped in the previous chapter. We provide a default constructor, and since we plan to use a statically

FIGURE 9-1 An array-based implementation of the ADT list

12 3items 19 100 75 10 18 ? ? ?

itemCount

k

Array indices

ADT list positions

10 2 3 k – 1 maxItems – 14 5

maxItemsk1 2 3 4 5 6

The data members

 An Array-Based Implementation of the ADT List 267

allocated array, the compiler-generated destructor and copy constructor will be suffi cient. The only
other detail that ListInterface does not specify is the behavior of the methods getEntry and setEn-
try should their caller violate their precondition. That is, what should we do if these methods are
given an out-of-bounds list position? We can throw an exception in this case, and to this end, we use
the class PrecondViolatedExcep as defi ned in Listings 7-5 and 7-6 of Chapter 7 .

 Note: By defi ning the data member maxItems for ArrayList , we enable the class imple-
menter to allocate the array items dynamically instead of statically. Thus, the programmer
could easily defi ne a constructor that allows the client to choose the size of the array.

LISTING 9-1 The header fi le for the class ArrayList

/** ADT list: Array-based implementation.
 @file ArrayList.h */

#ifndef _ARRAY_LIST
#define _ARRAY_LIST

#include "ListInterface.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class ArrayList : public ListInterface<ItemType>
 {
 private :

static const int DEFAULT_CAPACITY = 100;
 ItemType items[DEFAULT_CAPACITY]; // Array of list items

int itemCount; // Current count of list items
int maxItems; // Maximum capacity of the list

 public :
 ArrayList();
 // Copy constructor and destructor are supplied by compiler

bool isEmpty() const ;
int getLength() const ;
bool insert(int newPosition, const ItemType& newEntry);
bool remove(int position);
void clear();

 /** @throw PrecondViolatedExcep if position < 1 or
 position > getLength(). */

 ItemType getEntry(int position) const throw (PrecondViolatedExcep);

 /** @throw PrecondViolatedExcep if position < 1 or
position > getLength(). */

void setEntry(int position, const ItemType& newEntry)
throw (PrecondViolatedExcep);

 }; // end ArrayList

#include "ArrayList.cpp"
#endif

268 CHAPTER 9 List Implementations

 9.1.2 The Implementation File

 As usual, we will begin our implementation with the method or methods that add new entries to our con-
tainer and any methods that help us to verify the correctness of those additions. For ArrayList , we want
to defi ne the method insert . The methods isEmpty and getLength will be easy to defi ne and will be use-
ful while testing insert . We also will want to call the method getEntry to check the contents of the list.
And, of course, we need to defi ne the constructor. Let’s begin with these methods as our core group.

The constructor and the methods isEmpty and getLength. The default constructor initializes the
data members itemCount to zero and maxItems to DEFAULT_CAPACITY :

 template < class ItemType>
ArrayList<ItemType>::ArrayList() : itemCount(0),

 maxItems(DEFAULT_CAPACITY)
 {
} // end default constructor

 The method isEmpty tests whether itemCount is zero, and getLength simply returns the value of
itemCount :

 template < class ItemType>
 bool ArrayList<ItemType>::isEmpty() const
 {

return itemCount == 0;
} // end isEmpty

 template < class ItemType>
 int ArrayList<ItemType>::getLength() const
 {

return itemCount;
} // end getLength

 The method insert. To insert a new entry at a given position in the array items , you must create
room for the new entry by shifting the entries at and beyond this position toward the end of array.
 Figure 9-2 depicts this insertion. Part a shows the list prior to adding a new entry at position 3. Start-
ing at the end of the list, we copy the entry in items[i – 1] to items[i] for values of i ranging from
k down to 3, as Figure 9-2b illustrates. Finally, we insert the new entry into items[newPosition - 1] ,
or items[2] in this example. Figure 9-2c shows the list after this step.

 The defi nition of the method insert follows:

 template < class ItemType>
 bool ArrayList<ItemType>::insert(int newPosition,

const ItemType& newEntry)
 {

bool ableToInsert = (newPosition >= 1) &&
 (newPosition <= itemCount + 1) &&
 (itemCount < maxItems);

if (ableToInsert)
 {

// Make room for new entry by shifting all entries at
 // positions >= newPosition toward the end of the array
 // (no shift if newPosition == itemCount + 1)

for (int pos = itemCount; pos >= newPosition; pos–-)
 items[pos] = items[pos - 1];

 // Insert new entry
 items[newPosition - 1] = newEntry;
 itemCount++; // Increase count of entries
 } // end if

return ableToInsert;
} // end insert

Shift array entries to
insert an item

VideoNote

Overview of
ArrayList

 An Array-Based Implementation of the ADT List 269

 We can begin testing these methods once we write stubs for the remaining methods. To thor-
oughly test insert , however, we need the method getEntry , which we defi ne next.

FIGURE 9-2 Shifting items for insertion: (a) the list before the insertion; (b) copy items to produce room at
position 3; (c) the result

Add an entry at list position 3

12 3items 19 100 75 10 18 ? ? ?

itemCount

k

ADT list positions maxItemsk1 2 3 4 5 6

12 3items 19 100 75 10 18 ? ?

itemCount

k + 1

k + 1

19

(a)

(b)

(c)

12 3items 19 100 75 10 18 ? ?

itemCount

k + 144

New entry

Array indices 10 2 3 k – 1 maxItems – 14 5

10 2 3 k – 1 maxItems – 14 5 k

10 2 3 maxItems – 14 5 k

6

6

ADT list positions maxItems1 2 3 4 5 6 7

Array indices

 Question 2 Describe an implementation of the method insert for ArrayList that places
the entry in position 1 in the last element of the array, the entry in position 2 in the next-
to-last element, and so on.

 Question 3 How does the original version of insert given previously compare with the
one described in Question 2 with respect to the number of operations required?

 Question 1 Given a nonempty list that is an instance of ArrayList , at what position does
an insertion of a new entry require the fewest operations? Explain.

CHECK POINT

 The method getEntry. This method simply needs to return the value in items[position] , but we
decided to enforce the method’s precondition by throwing an exception if position is out of bounds.
For the purpose of testing the method insert , you could write a temporary version of getEntry that
does not throw an exception but just returns the desired list entry. You would then complete its defi ni-
tion as follows:

 template < class ItemType>
ItemType ArrayList<ItemType>::getEntry(int position) const

throw (PrecondViolatedExcep)

270 CHAPTER 9 List Implementations

 {
// Enforce precondition
bool ableToGet = (position >= 1) && (position <= itemCount);
if (ableToGet)

 return items[position - 1];
else

 {
 string message = "getEntry() called with an empty list or ";
 message = message + "invalid position.";

throw(PrecondViolatedExcep(message));
 } // end if
} // end getEntry

 A client. At this point, and after writing stubs for the remaining methods, you should test the core
group of methods. The following main function demonstrates how you can test the methods insert
and getEntry , but it assumes that you change the value of DEFAULT_CAPACITY to 5 in the class defi ni-
tion given in Listing 9-1:

 int main()
 {
 ListInterface<string>* listPtr = new ArrayList<string>();
 string data[] = {"one", "two", "three", "four", "five", "six"};
 cout << "isEmpty: returns " << listPtr->isEmpty()
 << "; should be 1 (true)" << endl;

for (int i = 0; i < 6; i++)
 {
 if (listPtr->insert(i + 1, data[i]))
 cout << "Inserted " << listPtr->getEntry(i + 1)
 << " at position " << (i + 1) << endl;
 else
 cout << "Cannot insert " << data[i] << " at position " << (i + 1)
 << endl;
 } // end for

return 0;
} // end main

 Note that you cannot write references such as listPtr->itemCount or listPtr->items[4] , because
itemCount and items are within the private portion of the class.

 The method setEntry. The defi nition of the method setEntry is similar to the one for getEntry ,
so we implement it next:

 template < class ItemType>
 void ArrayList<ItemType>::setEntry(int position, const ItemType& newEntry)

throw (PrecondViolatedExcep)
 {
 // Enforce precondition
 bool ableToSet = (position >= 1) && (position <= itemCount);
 if (ableToSet)
 items[position - 1] = newEntry;
 else
 {
 string message = "setEntry() called with an empty list or ";
 message = message + "invalid position.";
 throw(PrecondViolatedExcep(message));
 } // end if
} // end setEntry

A client of the class
cannot access the
class’s private
members directly

 An Array-Based Implementation of the ADT List 271

 The method remove. Now consider how to remove an entry from the list. You could blank it out, but
this strategy can lead to gaps in the array, as Figure 9-3 a illustrates. An array that is full of gaps has
three signifi cant problems:

• itemCount – 1 is no longer the index of the last entry in the array. You need another variable,
lastPosition , to contain this index.

• Because the items are spread out, the method getEntry might have to look at every cell of the
array even when only a few entries are present.

• When items[maxItems - 1] is occupied, the list could appear full, even when fewer than
maxItems entries are present.

 Thus, what you really need to do is shift the entries in the array so that a deletion does not leave a gap,
as shown in Figure 9-3b . This data movement is like the one done by the method insert , but it occurs
in the opposite direction.

 The defi nition of remove follows:

 template < class ItemType>
 bool ArrayList<ItemType>::remove(int position)
 {

bool ableToRemove = (position >= 1) && (position <= itemCount);
if (ableToRemove)

 {
// Remove entry by shifting all entries after the one at

 // position toward the beginning of the array
 // (no shift if position == itemCount)

for (int fromIndex = position, toIndex = fromIndex - 1;
 fromIndex < itemCount; fromIndex++, toIndex++)

 items[toIndex] = items[fromIndex];

 itemCount–-; // Decrease count of entries
 } // end if

return ableToRemove;
 } // end remove

FIGURE 9-3 (a) Deletion can cause a gap; (b) shift items to prevent a gap at position 3; (c) the result

Remove the entry at list position 3

(a)

(b)

12 3items 100 75 10 18 ? ? ?

itemCount

k

ADT list positions maxItemsk1 2 3 4 5 6

12 3items 100 75 10 18 ? ?

itemCount

k – 1

k – 1(c)

items

itemCount

k – 1

Array indices 10 2 3 k – 1 maxItems – 14 5

10 2 3 k – 1 maxItems – 14 k – 2

maxItems – 1

ADT list positions maxItems1 2 3 4 5

Array indices

18 ?

12 3 100 75 10 ? ?

10 2 3 k – 2

18 ??

19

272 CHAPTER 9 List Implementations

 The method clear. To clear all of the entries from a list, our fi nal method simply sets itemCount to
zero:

 template < class ItemType>
 void ArrayList<ItemType>::clear()
 {
 itemCount = 0;
} // end clear

 The entire implementation fi le for the class ArrayList is available online from the book’s
website.

 Question 4 Although the method remove cannot remove an entry from an empty list, it
does not explicitly check for one. How does this method avoid an attempted deletion from an
empty list?

CHECK POINT

 9.2 A Link-Based Implementation of the ADT List
 We now consider how we can use C++ pointers instead of an array to implement the ADT list. Unlike
the array-based implementation, a link-based implementation does not shift items during insertion
and deletion operations. It also does not impose a fi xed maximum length on the list—except, of
course, as imposed by the storage limits of the system.

 Once again, we need to represent the items in the list and its length. Figure 9-4 indicates one pos-
sible way to represent this data by using pointers. Here headPtr points to the linked nodes containing
the items in the list, where the fi rst node contains the entry at position 1 in the list, and so on. The inte-
ger itemCount is the current number of entries in the list. Both headPtr and itemCount will be pri-
vate data members of our class.

 9.2.1 The Header File

 Let’s name our class of lists LinkedList and write its header fi le as shown in Listing 9-2. This fi le has
similarities to the header fi le for ArrayList , as given in Listing 9-1, but let’s point out the differences.
Here we include the header fi les for the classes Node and PrecondViolatedExcep , as defi ned in List-
ing 4-1 of Chapter 4 and Listing 7-5 of Chapter 7 , respectively.

 The private section declares the two data members— headPtr and itemCount —as well as a pri-
vate method getNodeAt that we will use to locate any node within the chain of linked nodes, given its
position in the chain. Unlike an array, which provides direct access to a specifi ed element, the chain of
linked nodes requires the get, insertion, and removal operations to traverse it until the specifi ed node
is reached. While you could write the necessary loop in the method getEntry , you would soon dis-
cover that the methods insert and remove will need the same loop. At that time, you should realize

FIGURE 9-4 A link-based implementation of the ADT list

18312 25

itemCount headPtr

4

 A Link-Based Implementation of the ADT List 273

LISTING 9-2 The header fi le for the class LinkedList

 /** ADT list: Link-based implementation.
 @file LinkedList.h */

#ifndef _LINKED_LIST
#define _LINKED_LIST

#include "ListInterface.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class LinkedList : public ListInterface<ItemType>
 {
 private :
 Node<ItemType>* headPtr; // Pointer to first node in the chain
 // (contains the first entry in the list)

int itemCount; // Current count of list items

// Locates a specified node in a linked list.
// @pre position is the number of the desired node;
// position >= 1 and position <= itemCount.
// @post The node is found and a pointer to it is returned.
// @param position The number of the node to locate.
// @return A pointer to the node at the given position.

 Node<ItemType>* getNodeAt(int position) const ;

 public :
 LinkedList();
 LinkedList(const LinkedList<ItemType>& aList);

virtual ~LinkedList();

bool isEmpty() const ;
int getLength() const ;
bool insert(int newPosition, const ItemType& newEntry);
bool remove(int position);
void clear();

/** @throw PrecondViolatedExcep if position < 1 or
 position > getLength(). */
 ItemType getEntry(int position) const throw(PrecondViolatedExcep);

/** @throw PrecondViolatedExcep if position < 1 or
 position > getLength(). */

void setEntry(int position, const ItemType& newEntry)
throw (PrecondViolatedExcep);

 }; // end LinkedList

#include "LinkedList.cpp"
 #endif

274 CHAPTER 9 List Implementations

that defi ning a private method to perform the traversal would be convenient. Although we declare
getNodeAt now, adding the declarations of private methods to the header fi le after you begin the
implementation fi le is not unusual.

 The method getNodeAt is not an ADT operation, because it returns a pointer to a node; since
nodes are an implementation detail, you would not want any client to call it. Such clients should be
able to use the ADT without knowledge of the nodes that the implementation uses. It is perfectly rea-
sonable for the implementation of an ADT to defi ne variables and methods that the rest of the pro-
gram should not access. You could think of the method getNodeAt as marked “for internal use only.”
Therefore, getNodeAt is a private method that only the implementations of the ADT’s operations call.

 Because we are declaring a link-based implementation, we must provide a copy constructor and
a destructor for our class. The declarations of the public methods are the same as for the class
ArrayList .

 9.2.2 The Implementation File

 Our core methods include the same ones that we defi ned for ArrayList —namely, the constructor and
the methods insert , getEntry , isEmpty , and getLength . The latter two methods have the same bod-
ies as their ArrayList versions, since they involve only the data fi eld itemCount . However, as will
become evident when we code the methods getEntry and insert , the private method getNodeAt will
be necessary.

 The constructor. Because the compiler-generated default constructor would not necessarily ini-
tialize headPtr and itemCount to appropriate values, you must provide your own default constructor.
Initializers are suffi cient to set the values of headPtr and itemCount , since we, not the client, choose
these values. The constructor’s defi nition follows:

 template < class ItemType>
LinkedList<ItemType>::LinkedList() : headPtr(nullptr), itemCount(0)
 {
} // end default constructor

 This is the only constructor we will need.

 The method getEntry. Like getEntry in ArrayList , we will have this method enforce its precon-
dition by throwing an exception if position is out of bounds. Note the similarity of its defi nition to
the array-based version given earlier in this chapter:

 template < class ItemType>
ItemType LinkedList<ItemType>::getEntry(int position) const

throw (PrecondViolatedExcep)
 {

// Enforce precondition
bool ableToGet = (position >= 1) && (position <= itemCount);
if (ableToGet)

 {
 Node<ItemType>* nodePtr = getNodeAt(position);
 return nodePtr->getItem();
 }

else
 {
 string message = "getEntry() called with an empty list or ";
 message = message + "invalid position.";
 throw(PrecondViolatedExcep(message));
 } // end if
} // end getEntry

A copy constructor
and a destructor are
necessary for a
link-based
implementation

 getNodeAt is a
private method

VideoNote

Overview of
LinkedList

 A Link-Based Implementation of the ADT List 275

The method getNodeAt. The private method getNodeAt locates the node at a given position by
traversing the chain. It then returns a pointer to the located node. The traversal begins at the fi rst node
of the chain and moves from node to node, counting as it goes, until it reaches the desired one:

 template < class ItemType>
Node<ItemType>* LinkedList<ItemType>::getNodeAt(int position) const
 {

// Debugging check of precondition
 assert ((position >= 1) && (position <= itemCount));

// Count from the beginning of the chain
 Node<ItemType>* curPtr = headPtr;

for (int skip = 1; skip < position; skip++)
 curPtr = curPtr->getNext();

return curPtr ;
} // end getNodeAt

 Since getNodeAt is a private method and is called only by other methods within the class, those
methods are responsible for honoring its precondition. Thus, we need not throw an exception if the
precondition is violated. Rather, we simply use an assertion during debugging.

 The method insert. As you know, you can insert a new entry into a list right before its fi rst entry,
right after its last entry, or between two adjacent entries. For the link-based implementations of the
ADT bag in Chapter 4 and the ADT stack in Chapter 7 , we always inserted a new node into the chain
of linked nodes at the chain’s beginning. The ADT list requires us to manipulate the chain in addi-
tional ways. Let’s explore those ways.

 Since we know how to insert a new node at the beginning of a chain of nodes, let’s consider
inserting a node between two existing, adjacent nodes to which the pointer variables prevPtr and
curPtr point, as Figure 9-5 a illustrates. If the pointer variable newNodePtr points to the new node,
you make the new node point to the node that curPtr currently points to (Figure 9-5b). You also must
alter the value of the pointer in the node that will precede the new node so that it points to the new
node, as shown in Figure 9-5c . As the diagram suggests, you can accomplish the insertion by using
the pair of assignment statements

 newNodePtr->setNext(curPtr);
 prevPtr->setNext(newNodePtr);

 Now, how did the variables curPtr and prevPtr get appropriate values? Given newPosition , the
desired position of the new entry in the list, you traverse the chain until you fi nd the proper position
for the new item. The private method getNodeAt will perform this traversal for you. Thus,

 prevPtr = getNodeAt(newPosition - 1);
curPtr = prevPtr->getNext();

 You then use the new operator to create a new node, to which newNodePtr points. You initialize its data
portion and then insert the node into the chain, as was just described.

 Figure 9-6 shows the insertion of a new node at the end of a chain. This insertion is potentially a
special case because the intention of the pair of assignment statements

 newNodePtr->setNext(curPtr);
 prevPtr->setNext(newNodePtr);

 is to insert the new node between the nodes to which curPtr and prevPtr point. If you are to insert
the new node at the end of the chain, to what node should curPtr point? In this situation, it makes
sense to view the value of curPtr as nullptr because, as you traverse the list, curPtr becomes
nullptr as it moves past the end of the chain. Observe that if curPtr has the value nullptr and

Inserting a node
between nodes

If curPtr is
nullptr, inserting
at the end of a chain
is not a special case

276 CHAPTER 9 List Implementations

Three steps to insert
a new node into a
chain

 Question 6 In the previous method insert , the second if statement tests the value of
newPosition . Should the boolean expression it tests be isEmpty() || (newPosition ==
1) ? Explain.

 Question 7 How does the insert method enforce the precondition of getNodeAt ?

 Question 5 Given a nonempty list that is an instance of LinkedList , at what position
does an insertion of a new entry require the fewest operations? Explain.

CHECK POINT

prevPtr points to the last node in the chain, the previous pair of assignment statements will indeed
insert the new node at the end of the chain. Thus, insertion at the end of a chain is not a special case.

 To summarize, the insertion process requires three high-level steps:

 1. Create a new node and store the new data in it.
 2. Determine the point of insertion.
 3. Connect the new node to the linked chain by changing pointers.

 These steps and the previous discussion are implemented in the following defi nition of insert :

 template < class ItemType>
 bool LinkedList<ItemType>::insert(int newPosition,
 const ItemType& newEntry)
 {

bool ableToInsert = (newPosition >= 1) &&
 (newPosition <= itemCount + 1);

if (ableToInsert)
 {

// Create a new node containing the new entry
 Node<ItemType>* newNodePtr = new Node<ItemType>(newEntry);

// Attach new node to chain
if (newPosition == 1)

 {
 // Insert new node at beginning of chain
 newNodePtr->setNext(headPtr);
 headPtr = newNodePtr;
 }

else
 {
 // Find node that will be before new node
 Node<ItemType>* prevPtr = getNodeAt(newPosition - 1);

 // Insert new node after node to which prevPtr points
 newNodePtr->setNext(prevPtr->getNext());
 prevPtr->setNext(newNodePtr);
 } // end if

 itemCount++; // Increase count of entries
 } // end if

return ableToInsert;
 } // end insert

 If you have not already begun to test the methods in the core group, you should do so now.

 The method remove. To remove any entry from a list, you must be able to delete any node from a
chain of linked nodes. You already know how to delete the fi rst node in a chain, because the

 A Link-Based Implementation of the ADT List 277

FIGURE 9-6 Inserting a new node at the end of a chain of linked nodes

newNodePtrprevPtr

10296 100

Formerly nullptr

curPtr

FIGURE 9-5 Inserting a new node between existing nodes of a linked chain

prevPtr curPtr

newNodePtr

20 40

30

100

20 40 100

(a) Before the insertion of a new node

prevPtr curPtr

(b) After newNodePtr->setNext(curPtr)executes

prevPtr curPtr

newNodePtr

20 40

30

100

(c) After prevPtr->setNext(newNodePtr)executes

278 CHAPTER 9 List Implementations

FIGURE 9-7 Deleting a node from a chain

5 8

prevPtr curPtr

10 100

Node N

link-based implementations of the ADT bag in Chapter 4 and the ADT stack in Chapter 7 do this.
Let’s consider the deletion of an interior node.

 As Figure 9-7 indicates, you can remove the node N to which curPtr points by altering the value
of the pointer in the node that precedes N . You need to set this pointer so that it points to the node that
follows N , thus bypassing N on the chain. (The dashed line indicates the old pointer value.) Notice
that this pointer change does not directly affect node N. Node N remains in existence, and it points to
the same node that it pointed to before the removal. However, the node has effectively been removed
from the chain. For example, a traversal of the chain would never reach node N .

 To accomplish this pointer change, notice fi rst that if you had only the pointer curPtr pointing to
N , you would have no direct way to access the node that precedes N . After all, you cannot follow the
links in the chain backward. Thus, you must have the pointer variable prevPtr in Figure 9-7 . It points
to the node that precedes N and makes it possible for you to alter that node’s next pointer, thereby
removing node N from the chain. The following assignment statement is all that you need to remove
the node to which curPtr points:

 prevPtr->setNext(curPtr->getNext());

 Does the previous technique work for any node N , regardless of where in the linked chain it
appears? No, it does not work if the node to be deleted is the fi rst node in the chain, but it does work
for the last node in the chain. Thus, deletion of the fi rst node in a chain is a special case. Since we
already know how to delete the fi rst node, let’s consider deleting the last node.

 Figure 9-8 shows the deletion of the node to which curPtr points, which happens to be the last node.
That pointer alone is insuffi cient, as you must have the variable prevPtr point to the next-to-last node.
You set the pointer within the next-to-last node to nullptr . The same statement that we just used to
remove an interior node will make this pointer change, since the value of curPtr->getNext() is nullptr :

 prevPtr->setNext(curPtr->getNext());

Removing an
interior node

FIGURE 9-8 Removing the last node

prevPtr

10096 85

curPtr

 A Link-Based Implementation of the ADT List 279

 To remove a chain’s fi rst node, recall that you must change the value of headPtr to point to the
second node. Thus, the second node becomes the chain’s new fi rst node. You make this change to
headPtr by using the assignment statement

 headPtr = headPtr->getNext();

 As was the case for the deletion of an interior node, the pointers bypass the old fi rst node, although it
still exists. Notice also that if the node to be deleted is the only node in the chain—and thus it is both
the fi rst node and the last node—the previous assignment statement assigns the value nullptr to the
variable headPtr . Recall that the value nullptr in headPtr indicates an empty chain, and so this
assignment statement handles the removal of the only node in a chain correctly.

 The removed node still exists, however. Assuming that curPtr points to it, changing the value of
curPtr will place the removed node in a state of limbo. It will still require storage space, and the pro-
gram will no longer be able to access it. You would have a memory leak. Therefore, before you change
the value of curPtr , you should use the statements

 curPtr->setNext(nullptr);
 delete curPtr;
curPtr = nullptr ;

 to delete the node and return its memory to the system.
 To summarize, the deletion process has three high-level steps:

 1. Locate the node that you want to delete.
 2. Disconnect this node from the linked chain by changing pointers.
 3. Return the node to the system.

 You will see these steps and the previous discussion implemented in the following defi nition of
remove :

 template < class ItemType>
 bool LinkedList<ItemType>::remove(int position)
 {

bool ableToRemove = (position >= 1) && (position <= itemCount);
if (ableToRemove)

 {
 Node<ItemType>* curPtr = nullptr ;

if (position == 1)
 {
 // Remove the first node in the chain
 curPtr = headPtr; // Save pointer to node
 headPtr = headPtr->getNext();
 }

else
 {
 // Find node that is before the one to delete
 Node<ItemType>* prevPtr = getNodeAt(position - 1);

 // Point to node to delete
 curPtr = prevPtr->getNext();

// Disconnect indicated node from chain by connecting the
 // prior node with the one after
 prevPtr->setNext(curPtr->getNext());
 } // end if

// Return node to system
 curPtr->setNext(nullptr);

Removing the fi rst
node is a special
case

Return removed
nodes to the system
by using delete

Three steps to
delete a node from a
chain

280 CHAPTER 9 List Implementations

delete curPtr;
 curPtr = nullptr ;

 itemCount–-; // Decrease count of entries
 } // end if

return ableToRemove;
} // end remove

 The method clear. To remove all entries from a list, you can call the method remove . Because the
easiest entry to remove is the fi rst one, the method clear can invoke remove(1) repeatedly until the
list is empty. This action works because, after you remove the fi rst entry in the list, the remaining
entries are renumbered. Therefore, to remove all entries, you can repeatedly remove the fi rst entry.
Thus, clear has the following defi nition:

 template < class ItemType>
 void LinkedList<ItemType>::clear()
 {

while (!isEmpty())
 remove(1);
} // end clear

 Question 8 The link-based implementation of the method clear contains the following
loop:

 while (!isEmpty())
 remove(1);

a. Can you correctly replace the loop with

 for (int position = getLength(); position >= 1; position–-)
 remove(1);

b. Does your answer to part a differ if you replace remove(1) with
remove(position) ?

c. Do your answers to parts a and b differ if you replace the for statement with

 for (int position = 1; position <= getLength(); position++)

CHECK POINT

 The destructor. Because the method clear invokes remove repeatedly until the list is empty, and
remove deallocates the nodes it removes, the destructor can simply call clear :

 template < class ItemType>
 LinkedList<ItemType>::~LinkedList()
 {
 clear();
} // end destructor

Question 9 Revise the destructor in the class LinkedList so that it directly deletes each
node of the underlying linked chain without calling either clear or remove .

CHECK POINT

 The remaining methods. This link-based implementation of the ADT list cannot use a compiler-
generated copy constructor, as it would copy only the data members headPtr and itemCount . Instead, it
must also copy the nodes and their contents. The link-based implementations of the ADT bag in Chapter 4
and the ADT stack in Chapter 7 have copy constructors that are quite similar to the one we require for the
list. Thus, we leave its defi nition to you as an exercise, along with the method setEntry .

 A Link-Based Implementation of the ADT List 281

 9.2.3 Using Recursion in LinkedList Methods

 Using recursion in the implementation of some of the methods in the class LinkedList can be an
attractive alternative to an iterative approach. Section 4.3 of Chapter 4 developed the recursive meth-
ods fillVector and getPointerTo . Both methods considered a chain’s fi rst node and then recur-
sively considered the rest of the chain. In general, we can state that you can process a linked chain by
processing its fi rst node and then the rest of the chain recursively. Thus, to add a new node to a chain
of linked nodes at a given position, you use the following logic:

 if (the insertion position is 1)
Add the new node to the beginning of the chain

 else
Ignore the first node and add the new node to the rest of the chain

 Adding to the beginning of a chain—or subchain—is the base case of this recursion. Happily, the
beginning of a chain is the easiest place to make an addition.

 If position is the desired position of the new node, newNodePtr points to the new node, and
subChainPtr initially points to the chain and later points to the rest of the chain, we can add some
detail to the previous logic, as follows:

 if (position == 1)
 {

newNodePtr->setNext(subChainPtr)
subChainPtr = newNodePtr
Increment itemCount

 }
 else

Using recursion, add the new node at position position – 1 of the subchain pointed
to by subChainPtr ->getNext()

 The private method getPointerTo in Section 4.3 returned a pointer to a given entry in a chain.
Since that operation traversed the chain but did not alter it, its recursive formulation was straightfor-
ward. However, the list’s method insert does alter the chain. Getting the recursive method to make
these changes is the challenge.

 The method insert. Let’s look at the recursive implementation of the insertion operation before
we describe why it works. You learned in Section 4.3 that you write a private method to perform the
recursion and you write a public method—typically the one that implements the ADT’s operation—to
invoke this private method. Thus, we have the following method defi nitions:

 // The public method insert:
 template < class ItemType>
 bool LinkedList<ItemType>::insert(int newPosition, const ItemType& newEntry)
 {

bool ableToInsert = (newPosition >= 1) &&
 (newPosition <= itemCount + 1);

if (ableToInsert)
 {
 // Create a new node containing the new entry
 Node<ItemType>* newNodePtr = new Node<ItemType>(newEntry);
 headPtr = insertNode(newPosition, newNodePtr, headPtr);
 } // end if

return ableToInsert;
} // end insert

282 CHAPTER 9 List Implementations

// The private method insertNode:

// Adds a given node to the subchain pointed to by subChainPtr
// at a given position. Returns a pointer to the augmented subchain.
 template < class ItemType>
Node<ItemType>* LinkedList<ItemType>::insertNode(int position,
 Node<ItemType>* newNodePtr, Node<ItemType>* subChainPtr)
 {

if (position == 1)
 {
 // Insert new node at beginning of subchain
 newNodePtr->setNext(subChainPtr);
 subChainPtr = newNodePtr;
 itemCount++; // Increase count of entries
 }

else
 {
 Node<ItemType>* afterPtr =
 insertNode(position - 1, newNodePtr, subChainPtr->getNext());
 subChainPtr->setNext(afterPtr);
 } // end if

return subChainPtr;
} // end insertNode

 The private recursive method insertNode adds the new node to the subchain to which subChainPtr
points at the given position. We will trace and explain its logic next.

 Tracing an addition to the list’s beginning. Consider the list that the chain in Figure 9-9 a repre-
sents. Let’s add a new entry at the beginning of the chain by using an invocation such as

 myList->insert(1, newEntry);

 The public method insert will create a new node containing newEntry (Figure 9-9b) and then call
the private method insertNode with the invocation

 insertNode(1, newNodePtr, headPtr);

 The pointer in the argument headPtr is copied to the parameter subChainPtr , and so it also points to
the fi rst node in the chain, as Figure 9-9c illustrates.

 The new node is linked to the beginning of the original chain, as Figure 9-9d shows.
Notice that subChainPtr now points to the new node at the beginning of the chain. However,
headPtr is unchanged, even though it is the argument that corresponds to the parameter
subChainPtr . The private method now returns the value of subChainPtr , and the public
method insert assigns that value to headPtr . The chain with the completed addition appears
as in Figure 9-9e .

 Tracing an addition to the list’s interior. What happens when the addition is not at the beginning
of the original chain? Let’s trace what happens when we add a new third node to the chain given in
 Figure 9-9a . The public method insert creates a new node and calls the private method insertNode
with the invocation

 insertNode(3, newNodePtr, headPtr);

 As in the previous example, the pointer in the argument headPtr is copied to the parameter
subChainPtr , and so it also points to the fi rst node in the chain, as Figure 9-10 a illustrates. Since the
insertion is not at position 1, another recursive call occurs:

 insertNode(2, newNodePtr, subChainPtr->getNext());

 A Link-Based Implementation of the ADT List 283

 The third argument is a pointer to the chain’s second node. This pointer is copied to the parameter
subChainPtr , as Figure 9-10b depicts. We still have not reached the insertion point, so the recursive
process is repeated again:

 insertNode(1, newNodePtr, subChainPtr->getNext());

 Now subChainPtr points to the chain’s third node, as shown in Figure 9-10c , and we are at the desired
position for the insertion into the chain. No other recursive call occurs, as this is the base case.

 The given new node is inserted at the beginning of the subchain to which subChainPtr points, as
 Figure 9-10d illustrates, and then the private method insertNode returns a reference to the new node.
The statement

 Node<ItemType>* afterPtr = insertNode(1, newNodePtr, subChainPtr->getNext());

FIGURE 9-9 Recursively adding a node at the beginning of a chain

(a) The list before any additions

(c) As insertNode(1, newNodePtr, headPtr) begins execution

headPtr

subChainPtr

(d) After the new node is linked to the beginning of the chain (the base case)

The private method returns the
pointer that is in subChainPtr

(e) After the public method insert assigns to headPtr the reference returned from insertNode

18312 25headPtr

18312 25

18312 25headPtr

subChainPtr 50

18312 25headPtr

subChainPtr 50

(b) After the public method insert creates a new node and before it calls insertNode

newNodePtr 50

284 CHAPTER 9 List Implementations

FIGURE 9-10 Recursively adding a node between existing nodes in a chain

(a) As insertNode(3, newNodePtr, headPtr) begins execution

headPtr

subChainPtr

(d) After a new node is linked to the beginning of the subchain (the base case)

(e) After the returned pointer is assigned to afterPtr

18312 25

18312 25headPtr

The private method returns the
pointer that is in subChainPtr

subChainPtr 50

(b) As the recursive call insertNode(2, newNodePtr, subChainPtr->getNext()) begins execution

headPtr 18312 25

subChainPtr

(c) As the recursive call insertNode(1, newNodePtr, subChainPtr->getNext()) begins execution

headPtr 18312 25

subChainPtr

18312 25headPtr

afterPtr

50

(f) After subChainPtr->setNext(afterPtr) executes

18312 25headPtr

50

subChainPtr

subChainPtr

 Comparing Implementations 285

 in the public method insert that invoked insertNode now resumes execution. The pointer to the new
node returned by insertNode is assigned to afterPtr , as Figure 9-10e illustrates. At this time,
subChainPtr references the second node, as it did in part b of the fi gure. The next statement to exe-
cute in insertNode is

 subChainPtr->setNext(afterPtr);

 This statement changes the next pointer in the second node to reference the new node, as shown in
 Figure 9-10f . The private method insertNode now returns a reference to the second node. If we con-
tinue the trace, we will see that the method makes the fi rst node point to the second node and headPtr
point to the fi rst node, even though these pointers are already in place.

 Note: A recursive addition to a chain of nodes locates and remembers the nodes prior
to the insertion point. After the portion of the chain that follows the insertion point is
linked to the new node, the recursion links the remembered nodes back into the chain.

 Question 10 Using recursion, revise the destructor in the class LinkedList so that it
deletes each node of the underlying linked chain.

CHECK POINT

 9.3 Comparing Implementations
 The reasons for choosing an array-based implementation or a link-based implementation are the
same as discussed in earlier chapters. Although the array-based implementation given in this chapter
seems reasonable—after all, an array behaves like a list, and arrays are easy to use—it uses statically
allocated memory. As such, it prevents the insert operation from adding an entry to the list if the
array is full. If this restriction is not acceptable, you must either resize the array or use a link-based
implementation.

 The array-based and link-based implementations have other differences as well, which affect
their time and memory requirements. As we discussed in Section 4.5 of Chapter 4 , the time to access
an array element is constant, whereas you have no way of immediately accessing the ith node in a
linked chain. Thus, the array-based getEntry method, for example, is almost instantaneous regard-
less of which list item you access. A link-based getEntry , however, requires i steps to access the ith

item in the list.
 You already know that the array-based implementation of the ADT list requires you to shift the

data when you insert entries into or remove entries from the list. For example, if you remove the fi rst
entry of a 20-entry list, you must shift 19 entries. In general, removing the ith entry from a list of n
entries requires n - i shifts. Thus, remove requires n - 1 shifts to remove the fi rst entry, but zero shifts
to remove the last one. The method insert has similar requirements.

 In contrast, you do not need to shift the data when you insert entries into or remove entries from a
chain of linked nodes. Thus, if the ADT list has a link-based implementation, the methods insert and
remove require essentially the same effort—regardless of the length of the list or the position of the
operation within the list—once you know the point of insertion or removal. Finding this point, how-
ever, requires a list traversal, the time for which will vary depending on where in the list the operation
occurs. Recall that the private method getNodeAt performs this traversal. If you examine the defi nition
of getNodeAt , you will see that getNodeAt(i) requires i assignment operations. Thus, getNodeAt ’s
effort increases with i .

The time to access
the i th node in a
chain of linked
nodes depends on i

You can access
array items directly
with equal access
time

Insertions and
removals with a
link-based
implementation do
not require you to
shift data but require
a traversal

286 CHAPTER 9 List Implementations

 SUMMARY

 1. Using an array results in a straightforward implementation of the ADT list, but it is somewhat more involved
than the implementations of either the ADT bag or the ADT stack.

 2. An array provides direct access to any of its elements, so a method such as getEntry can quickly retrieve any
entry in a list.

 3. Adding an entry to or removing an entry from an array-based list typically requires that other entries shift by
one position within the array. This data movement degrades the time effi ciency of these operations, particularly
when the list is long and the position of the addition or removal is near the beginning of the list.

 4. Inserting entries into or removing entries from a chain of linked nodes does not require data to shift. Thus, the
methods insert and remove of a link-based implementation of the ADT list require essentially the same
effort—regardless of the length of the list or the position of the operation within the list—once the point of
insertion or removal is known. Finding this point, however, requires a list traversal, the time for which will vary
depending on where in the list the operation occurs.

 5. For a link-based implementation of the ADT list, adding to the beginning of the list and removing a list’s fi rst
entry are treated as special cases.

 6. Adding or removing an entry at the end of a link-based list requires a traversal of the underlying chain.

 7. Adding or removing an entry anywhere within a link-based list requires a change of at most two pointers within
the underlying chain.

 8. The array-based getEntry method is almost instantaneous regardless of which list item you access. A link-
based getEntry , however, requires i steps to access the ith item in the list.

 EXERCISES

 1. Add a constructor to each of the classes ArrayList and LinkedList that creates a list containing the entries in
a given array.

 2. Defi ne the method setEntry for the class LinkedList .

 3. Defi ne the copy constructor for the class LinkedList .

 4. Repeat the previous exercise, but use recursion in your defi nition.

 5. Implement the method getPosition , as described in Exercise 5 of Chapter 8 , for each of the classes
ArrayList and LinkedList .

 6. Repeat the previous exercise, but use recursion in your defi nitions.

 7. Implement the method contains , as described in Exercise 7 of Chapter 8 , for each of the classes ArrayList
and LinkedList .

 8. Repeat the previous exercise, but use recursion in your defi nitions.

 9. Implement the method remove , as described in Exercise 9 of Chapter 8 , for each of the classes ArrayList and
LinkedList .

 Programming Problems 287

 10. Repeat the previous exercise, but use recursion in your defi nition.

 11. Write a recursive defi nition of the private method getNodeAt for the class LinkedList .

 12. A double-ended list has operations that operate at its beginning and end, in addition to the operations of the list,
as given in Section 8.1 of Chapter 8 . For example, you can add, remove, and get the fi rst and last entries in a
double-ended list. Write a C++ interface for a double-ended list.

 PROGRAMMING PROBLEMS

 1. Write a program that thoroughly tests the classes ArrayList and LinkedList . During its execution, your pro-
gram should give the user a choice of which class to test. After the results are displayed, the user should have
the opportunity to choose the other class or quit.

 2. Write an array-based implementation of the ADT list that expands the size of the array of list entries as needed
so that the list can always accommodate a new entry.

 3. Repeat the previous programming problem, but also reduce the size of the array as needed to accommodate
several removals. When the size of the array is greater than 20 and the number of entries in the list is less than
half the size of the array, reduce the size of the array so that it is three quarters of its current size.

 4. Revise the array-based implementation of the ADT list to use recursion wherever you can.

 5. Revise the link-based implementation of the ADT list to use recursion wherever you can.

 6. Adding nodes to or removing nodes from a chain of linked nodes requires a special case when the operation is
at the beginning of the chain. To eliminate the special case, you can add a dummy node at the beginning of the
chain. The dummy node is always present but does not contain a list entry. The chain, then, is never empty, and
so the head pointer never contains nullptr , even when the list is empty. Modify the class LinkedList , as pre-
sented in this chapter, by adding a dummy node to the chain.

 7. Implement the ADT polynomial that Exercise 9 in Chapter 1 describes by using a list. Then write a program
that adequately demonstrates your new class.

 8. Implement a class of bags, as specifi ed in Chapter 1 , by using a list to contain the bag’s entries. Then write a
program that adequately demonstrates your new class.

 9. Implement a class of stacks, as specifi ed in Chapter 6 , by using a list to contain the stack’s entries. Then write a
program that adequately demonstrates your new class.

 10. Implement the ADT for the objects on Santa Claus’s nice list, as described in Programming Problem 2 of
Chapter 8 . Then write a program for Santa that maintains his two lists of those who are naughty and those who
are nice.

 11. The popular social network Facebook was founded by Mark Zuckerberg and his classmates at Harvard Univer-
sity in 2004. At the time, he was a sophomore studying computer science.

 Design and implement an application that maintains the data for a simple social network. Each person in
the network should have a profi le that contains the person’s name, optional image, current status, and a list of
friends. Your application should allow a user to join the network, leave the network, create a profi le, modify the
profi le, search for other profi les, and add friends.

288 CHAPTER 9 List Implementations

 12. A tail pointer is a pointer variable to the last node in a chain of linked nodes. Write a link-based implementa-
tion for a class of double-ended lists, as specifi ed in Exercise 12, that uses both a head pointer and a tail pointer.

 13. The solution to the HPAir problem described in Programming Problem 11 of Chapter 6 uses an adjacency list
to represent the fl ight map. Repeat the solution to this problem, but defi ne the adjacency list as a list of lists
instead of an array of linked chains. Use lists that have a link-based implementation.

 Chapter

 Algorithm
Effi ciency 10

 Contents
 10.1 What Is a Good Solution? 290
 10.2 Measuring the Effi ciency of Algorithms 291

 10.2.1 The Execution Time of Algorithms 292
 10.2.2 Algorithm Growth Rates 293
 10.2.3 Analysis and Big O Notation 294
 10.2.4 Keeping Your Perspective 298
 10.2.5 The Effi ciency of Searching Algorithms 300

 Summary 301
 Exercises 302
 Programming Problems 303

 Prerequisites
 Chapter 1 Data Abstraction: The Walls
 Chapter 2 Recursion: The Mirrors
 Chapter 4 Link-Based Implementations
 Chapter 9 List Implementations (for Section 10.2.4)

This chapter will show you how to analyze the effi ciency of algorithms. The basic
mathematical techniques for analyzing algorithms are central to more advanced topics
in computer science and give you a way to formalize the notion that one algorithm is
signifi cantly more effi cient than another. As examples, you will see analyses of some
algorithms that you have studied before, including those that search data. The next
chapter presents sorting algorithms, and they provide additional examples of analyzing
effi ciency.

290 CHAPTER 10 Algorithm Effi ciency

 10.1 What Is a Good Solution?
 In this textbook a computer program is the fi nal form your solutions take, so we should consider what
constitutes a good computer program. Presumably, you write a program to perform some task. While
performing that task, the program incurs a real and tangible cost . This cost includes such factors as
the computing time and memory that the program requires, the diffi culties encountered by those who
use the program, and the consequences of a program that does not behave correctly.

 However, the costs just mentioned do not give the whole picture. They pertain only to the life of the
solution after it has been developed. In assessing whether a solution is good, you also must consider the
effort required to develop the solution as well as any changes—bug fi xes or extensions—to the program
that are made after the program has been deployed. Each of these incurs costs, too. The total cost of a solu-
tion must take into account the value of the time of the people who analyzed, designed, coded, debugged,
and tested it. A solution’s cost must also include the cost of maintaining, modifying, and expanding it.

 Thus, when calculating the overall cost of a solution, you must include a diverse set of factors. If
you adopt such a multidimensional view of cost, it is reasonable to evaluate a solution against the fol-
lowing criterion:

 A solution is good if the total cost it incurs over all phases of its life is minimal.

 Suppose two algorithms perform the same task, such as searching. What does it mean to compare the
algorithms and conclude that one is better? The faster one is not necessarily better. Several components
contribute to the cost of a computer program, including the cost of human time—the time of the people
who develop, maintain, and use the program—and the cost of program execution—that is, its effi -
ciency—measured by the amount of computer time and memory that the program requires to execute.

 Today’s programs are larger and more complex than ever before. Typically, many people are
involved in their development. Good structure and documentation are thus of the utmost importance.
In addition, the costs associated with malfunctions are high. People should not have to entrust their
livelihoods—or their lives—to a program that only its authors can understand and maintain. Thus,
society needs both well-structured programs and techniques for formally verifying their correctness.

 At the same time, do not get the impression that a solution’s execution time is no longer important. To
the contrary, many situations occur for which effi ciency is the prime determinant of whether a solution is
even usable. However, a solution’s effi ciency is only one of many aspects that you must consider. If two
solutions have approximately the same effi ciency, other factors should dominate the comparison. How-
ever, when the effi ciencies of solutions differ signifi cantly, this difference can be the overriding concern.

 You should be most concerned about effi ciency when you develop the underlying algorithm. The
choice of a solution’s components—the objects and the design of the interactions between those
objects—rather than the code you write, has the most signifi cant impact on effi ciency. This book
advocates a problem-solving philosophy that views the cost of a solution as multidimensional. This
philosophy is reasonable in today’s world, and it likely will be reasonable in the years to come.

Effi ciency is only
one aspect of a
solution’s cost

 Note: The relative importance of the various components of a solution’s cost has
changed since the early days of computing. In the beginning, the cost of computer time
relative to human time was extremely high. In this type of environment, one cost clearly
overshadowed all others: computer resources. If two programs performed the same task,
the one that required less time and memory was better.

 Computing costs have dropped dramatically since the early days of computers. Thus,
the value of the designers’ and programmers’ time is a much more signifi cant factor than
computing time in the cost of a solution. These developments have made obsolete the no-
tion that the fastest-executing solution is always the best.

 Measuring the Effi ciency of Algorithms 291

 10.2 Measuring the Effi ciency of Algorithms
 Well-designed algorithms reduce the human costs of implementing the algorithm with a program, of
maintaining the program, and of modifying the program. Developing good problem-solving skills
and programming style has been and continues to be important. However, the effi ciency of algo-
rithms is also important. Effi ciency is a criterion that you should consider when selecting an algo-
rithm and its implementation.

 The comparison of algorithms is a topic central to computer science. Measuring an algorithm’s
effi ciency is quite important because your choice of algorithm for a given application often has a
great impact. Responsive word processors, grocery checkout systems, automatic teller machines,
video games, and life support systems all depend on effi cient algorithms.

 The analysis of algorithms is the area of computer science that provides tools for contrasting
the effi ciency of different algorithms. Notice the use of the term “algorithms” rather than “pro-
grams;” it is important to emphasize that the analysis concerns itself primarily with signifi cant dif-
ferences in effi ciency—differences that you can usually obtain only through superior algorithms and
rarely through clever tricks in coding. Reductions in computing costs due to clever coding tricks are
often more than offset by reduced program readability, which increases human costs. An analysis
should focus on gross differences in the effi ciency of algorithms that are likely to dominate the over-
all cost of a solution. To do otherwise could lead you to select an algorithm that runs a small fraction
of a second faster than another algorithm yet requires many more hours of your time to implement
and maintain.

 The effi cient use of both time and memory is important. Computer scientists use similar tech-
niques to analyze an algorithm’s time and space effi ciency. As none of the algorithms covered in this
text has signifi cant space requirements, our focus is primarily on time effi ciency.

 How do you compare the time effi ciency of two algorithms that solve the same problem? One
possible approach is to implement the two algorithms and run the programs. This approach has at
least three fundamental problems:

• How are the algorithms coded? If algorithm A1 runs faster than algorithm A2 , it could be
the result of better programming. Thus, if you compare the running times of the programs,
you are really comparing implementations of the algorithms rather than the algorithms
themselves. You should not compare implementations, because they are sensitive to fac-
tors such as programming style that tend to cloud the issue of which algorithm is inher-
ently more effi cient.

• What computer should you use? The particular operations that the algorithms require
can cause A1 to run faster than A2 on one computer, while the opposite is true on another
computer. You should compare the effi ciency of the algorithms independently of a particu-
lar computer.

• What data should the programs use? Perhaps the most important diffi culty on this list is the
selection of the data for the programs to use. There is always the danger that you could select
instances of the problem for which one of the algorithms runs uncharacteristically fast. For
example, when comparing a sequential search and a binary search of a sorted array, you might
search for an item that happens to be the smallest item in the array. In such a case, the sequen-
tial search fi nds the item more quickly than the binary search because the item is fi rst in the
array and is thus the fi rst item that the sequential search examines. Any analysis of effi ciency
must be independent of specifi c data.

 To overcome these diffi culties, computer scientists employ mathematical techniques that analyze
algorithms independently of specifi c implementations, computers, or data. You begin this analysis by
counting the number of signifi cant operations in a particular solution, as the next section describes.

Consider effi ciency
when selecting an
algorithm

A comparison of
algorithms should
focus on signifi cant
differences in
effi ciency

Three diffi culties
with comparing
programs instead of
algorithms

Algorithm analysis
should be
independent of
specifi c
implementations,
computers, and data

VideoNote

Measuring
algorithmic
effi ciency

292 CHAPTER 10 Algorithm Effi ciency

 Note: In general, you should avoid analyzing an algorithm solely by studying the run-
ning times of a specifi c implementation. Running times are infl uenced by such factors as
programming style, the particular computer, and the data on which the program is run.

 1 Although omitting multiplication operators is common in algebra, we indicate them explicitly here to facilitate
counting them.

 10.2.1 The Execution Time of Algorithms

 Previous chapters have informally compared different solutions to a given problem by looking at the
number of operations that each solution required. For example, Chapter 4 compared array-based and
link-based implementations of the ADT bag. An array-based bag can access its ith item directly in one
step, because the item is stored in items[i-1] . A link-based bag, however, must traverse a chain of
linked nodes from its beginning until the ith node is reached and would therefore require i steps.

 An algorithm’s execution time is related to the number of operations it requires. This is usually
expressed in terms of the number, n, of items the algorithm must process. Counting an algorithm’s
operations—if possible—is a way to assess its effi ciency. Let’s consider a few other examples.

 Traversal of linked nodes. As an example of traversing a chain of linked nodes, consider display-
ing the data in such a chain. If headPtr points to the fi rst node in the chain, the following C++ state-
ments display its data:

 Node<ItemType>* curPtr = headPtr; ← 1 assignment
while (curPtr != nullptr) ← n 1 1 comparisons

 {
 cout << curPtr->getItem() < endl; ← n writes
 curPtr = curPtr->getNext(); ← n assignments
 } // end while

 If we have n nodes, these statements require n 1 1 assignments, n 1 1 comparisons, and n write
operations. If each assignment, comparison, and write operation requires, respectively, a , c , and w
time units, the statements require (n1 1) 3 (a1 c) 1 n3 w time units. 1 Thus, the time required to
write n nodes is proportional to n . This conclusion makes sense intuitively: It takes longer to display,
or traverse, a linked chain of 100 nodes than it does a linked chain of 10 nodes.

Displaying the data
in a linked chain of n
nodes requires time
proportional to n

Counting an
algorithm’s
operations is a way
to assess its
effi ciency

 Note: You must traverse a linked chain to access its ith node. The access time is, there-
fore, directly proportional to i . On the other hand, you can access array items directly,
with equal access time for each item.

 The Towers of Hanoi. Chapter 2 proved recursively that the solution to the Towers of Hanoi prob-
lem with n disks requires 2 n2 1 moves. If each move requires the same time m , the solution requires
(2n2 1) 3m time units. As you will soon see, this time requirement increases rapidly as the number
of disks increases.

 Nested loops. Consider an algorithm that contains nested loops of the following form:

 for (i = 1 through n)
for (j = 1 through i)

 for (k = 1 through 5)
 Task T

 Measuring the Effi ciency of Algorithms 293

 If task T requires t time units, the innermost loop on k requires 5 3 t time units. The loop on j requires
53 t3 i time units, and the outermost loop on i requires

a
n

i51

15 3 t 3 i 2 5 5 3 t 3 11 1 2 1c1 n 2 5 5 3 t 3 n 3 1n 1 1 2 /2
 time units.

 Question 1 How many comparisons of array items do the following loops contain?

 for (j = 1; j <= n-1; j++)
 {
 i = j + 1;

 do
 {

if (theArray[i] < theArray[j])
 swap(theArray[i], theArray[j]);
 i++;
 } while (i <= n);
} // end for

CHECK POINT

 Question 2 Repeat Question 1, replacing the statement i = j + 1 with i = j .

 10.2.2 Algorithm Growth Rates

 As you can see, the previous examples derive an algorithm’s time requirement as a function of the
problem size. The way to measure a problem’s size depends on the application—typical examples are
the number of nodes in a linked chain, the number of disks in the Towers of Hanoi problem, the size of
an array, or the number of items in a stack. Thus, we reached conclusions such as

Algorithm A requires n2 / 5 time units to solve a problem of size n
Algorithm B requires 5 3 n time units to solve a problem of size n

 The time units in the previous two statements must be the same before you can compare the effi ciency
of the two algorithms. If we had written

Algorithm A requires n2 / 5 seconds to solve a problem of size n

 our earlier discussion indicates the diffi culties with such a statement: On what computer does the
algorithm require n2 / 5 seconds? What implementation of the algorithm requires n2 / 5 seconds? What
data caused the algorithm to require n2 / 5 seconds?

 What specifi cally do you want to know about the time requirement of an algorithm? The most
important thing to learn is how quickly the algorithm’s time requirement grows as a function of the
problem size. Statements such as

Algorithm A requires time proportional to n2

Algorithm B requires time proportional to n

 each express an algorithm’s proportional time requirement, or growth rate, and enable you to com-
pare algorithm A with another algorithm B . Although you cannot determine the exact time require-
ment for either algorithm A or algorithm B from these statements, you can determine that for large
problems, B requires signifi cantly less time than A . That is, B ’s time requirement—as a function of the
problem size n —increases at a slower rate than A ’s time requirement, because n increases at a slower
rate than n2 . Even if B actually requires 5 3 n seconds and A actually requires n2 / 5 seconds, B even-
tually requires signifi cantly less time than A , as n increases. Figure 10-1 illustrates this fact. Thus, a

Measure an
algorithm’s time
requirement as a
function of the
problem size

Compare algorithm
effi ciencies for large
problems

294 CHAPTER 10 Algorithm Effi ciency

conclusion such as “ A requires time proportional to n2 ” is exactly the kind of statement that character-
izes the inherent effi ciency of an algorithm independently of such factors as particular computers and
implementations.

 Figure 10-1 also shows that A ’s time requirement does not exceed B ’s until n exceeds 25. Algo-
rithm effi ciency is typically a concern for large problems only. The time requirements for small prob-
lems are generally not large enough to matter. Thus, our analyses assume large values of n .

FIGURE 10-1 Time requirements as a function of the problem size n

N
um

be
r

of
 s

ec
on

ds

25
Values of n

Algorithm A requires n2 / 5 seconds

Algorithm B requires 5 × n seconds

n2 / 5 exceeds 5 × n
when n > 25

125

250

375

500

50

 Note: When comparing the effi ciency of various solutions, look only at signifi cant dif-
ferences. This rule is consistent with a multidimensional view of the cost of a computer
program.

 10.2.3 Analysis and Big O Notation

 If

Algorithm A requires time proportional to f(n)

 Algorithm A is said to be order f (n) , which is denoted as O(f (n)) . The function f (n) is called the
algorithm’s growth-rate function . Because the notation uses the capital letter O to denote order , it is
called the Big O notation . If a problem of size n requires time that is directly proportional to n , the
problem is O(n)—that is, order n . If the time requirement is directly proportional to n2 , the problem is
O(n2), and so on.

 The following defi nition formalizes these ideas:

 Note: Defi nition of the order of an algorithm

 Algorithm A is order f (n)—denoted O(f (n))—if constants k and n0 exist such that A
requires no more than k3 f (n) time units to solve a problem of size n$ n0 .

 The requirement n $ n0 in the defi nition of O(f (n)) formalizes the notion of suffi ciently large
problems. In general, many values of k and n can satisfy the defi nition.

VideoNote

Understanding Big
O notation

 Measuring the Effi ciency of Algorithms 295

 The following examples illustrate the defi nition:

• Suppose that an algorithm requires n2 2 3 3 n1 10 seconds to solve a problem of size n . If
constants k and n0 exist such that

k 3 n2 . n2 2 3 3 n 1 10 for all n $ n0

 the algorithm is O(n2). In fact, if k is 3 and n0 is 2,

3 3 n2 . n2 2 3 3 n 1 10 for all n $ 2

 as Figure 10-2 illustrates. Thus, the algorithm requires no more than k 3 n2 time units for
n$ n0 and so is O(n2).

• Previously in Section 10.2.1, we found that displaying a linked chain’s fi rst n items requires

 (n1 1) (a1 c) 1 n3w

 time units. Because 2 3 n$ n1 1 for n$ 1, 12 3 n 2 3 1a 1 c 2 1 n 3 w $ 1n 1 1 2 3 1a 1 c 2 1 n 3 w for n $ 1

 After factoring n on the left side of the inequality, we have 12 3 a1 2 3 c 1 w 2 3 n $ 1n 1 1 2 3 1a1 c 2 1 n 3 w for n $ 1

 Thus, this task is O(n). Here, k is 2 3 a1 2 3 c1w and n0 is 1.
• Similarly, the solution to the Towers of Hanoi problem requires (2 n2 1) 3m time units. Because

m3 2 n. (2 n2 1) 3m for n$ 1

the solution is O(2 n).

 The requirement n $ n0 in the defi nition of O(f (n)) means that the time estimate is correct for
suffi ciently large problems. In other words, the time estimate is too small for at most a fi nite number
of problem sizes. For example, the function log n takes on the value 0 when n is 1. Thus, the fact that
k3 log 1 is 0 for all constants k implies an unrealistic time requirement; presumably, all algorithms
require more than 0 time units, even to solve a problem of size 1. Thus, you can discount problems of
size n5 1 if f (n) is log n .

FIGURE 10-2 The graphs of 3 3 n2 and n22 3 3 n1 10

Se
co

nd
s

10 2 3
n

3 × n2 exceeds n2 – 3 × n + 10,
when n ≥ 2

3 × n2

n2 – 3 × n + 10

296 CHAPTER 10 Algorithm Effi ciency

 To dramatize further the signifi cance of an algorithm’s proportional growth rate, consider the
table and graph in Figure 10-3 . The table in part a gives, for various values of n , the approximate val-
ues of some common growth-rate functions, which are listed in order of growth:

O 11 2 , O 1 log2n 2 , O 1n 2 , O 1n 3 log2n 2 , O 1n2 2 , O 1n3 2 , O 12n 2
 The table demonstrates the relative speed at which the values of the functions grow. Figure 10-3b
represents the growth-rate functions graphically. 2

 These growth-rate functions have the following intuitive interpretations:

 1 A growth-rate function of 1 implies a problem whose time requirement is constant and,
therefore, independent of the problem’s size n .

 log 2n The time requirement for a logarithmic algorithm increases slowly as the problem size
increases. If you square the problem size, you only double its time requirement. Later
you will see that the recursive binary search algorithm that you studied in Chapter 2 has
this behavior. Recall that a binary search halves an array and then searches one of the
halves. Typical logarithmic algorithms solve a problem by solving a smaller constant
fraction of the problem.

 The base of the log does not affect a logarithmic growth rate, so you can omit it in
a growth-rate function. Exercise 8 at the end of this chapter asks you to show why this
is true.

n The time requirement for an O(n), or linear , algorithm increases directly with the
size of the problem. If you square the problem size, you also square its time
requirement.

n3 log 2n The time requirement for an O(n3 log 2n) algorithm increases more rapidly than a lin-
ear algorithm. Such algorithms usually divide a problem into smaller problems that are
each solved separately. The next chapter examines an example of this algorithm type—
the merge sort.

n2 The time requirement for an O(n2), or quadratic , algorithm increases rapidly with the
size of the problem. Algorithms that use two nested loops are often quadratic. Such
algorithms are practical only for small problems. The next chapter covers several quad-
ratic sorting algorithms.

n3 The time requirement for an O(n3), or cubic , algorithm increases more rapidly with
the size of the problem than the time requirement for a quadratic algorithm. Algo-
rithms that use three nested loops are often cubic, and are practical only for small
problems.

 2 n As the size of a problem increases, the time requirement for an exponential algorithm
usually increases too rapidly to be practical.

 If algorithm A requires time that is proportional to function f and algorithm B requires time that is
proportional to a slower-growing function g , it is apparent that B is always signifi cantly more effi cient
than A for large enough problems. For large problems, the proportional growth rate dominates all
other factors in determining an algorithm’s effi ciency.

Properties of growth-rate functions. Several mathematical properties of Big O notation help to
simplify the analysis of an algorithm. As we discuss these properties, you should keep in mind that
O(f (n)) means “is of order f (n)” or “has order f (n).” O is not a function.

 2 The graph of f(n)5 1 is omitted because the scale of the fi gure makes it diffi cult to draw. It would, however, be a straight line
parallel to the x axis through y5 1.

 Intuitive
interpretations of
growth-rate
functions

Order of growth of
some common
functions

 Measuring the Effi ciency of Algorithms 297

1. You can ignore low-order terms in an algorithm’s growth-rate function. For example, if an
algorithm is O(n31 4 3 n21 3 3 n), it is also O(n3). By examining the table in Figure 10-3a ,
you can see that the n3 term is signifi cantly larger than either 4 3 n2 or 3 3 n , particularly for
large values of n. For large n , the growth rate of n31 4 3 n21 3 3 n is the same as the growth
rate of n3 . It is the growth rate of f (n), not the value of f (n), that is important here. Thus, even if
an algorithm is O(n31 4 3 n21 3 3 n), we say that it is simply O(n3). In general, you can usu-
ally conclude that an algorithm is O(f (n)), where f is a function similar to the ones listed in
 Figure 10-3 .

FIGURE 10-3 A comparison of growth-rate functions: (a) in tabular form; (b) in graphical
form

(b)

(a)

1

log2n

n

n × log2n

n2

n3

2n

Function 10

 1

 3

10

30

102

103

103

100

 1

 6

 102

 664

 104

 106

 1030

1,000

 1

 9

 103

 9,965

 106

 109

 10301

10,000

 1

 13

 104

 105

 108

 1012

 103,010

100,000

 1

 16

 105

 106

 1010

 1015

 1030,103

1,000,000

 1

 19

 106

 107

 1012

 1018

 10301,030

n

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

V
al

ue
 o

f g
ro

w
th

-r
at

e
fu

nc
tio

n

n

2n n3 n2 n × log2n n

log2n

Some properties of
growth-rate
functions

298 CHAPTER 10 Algorithm Effi ciency

2. You can ignore a multiplicative constant in the high-order term of an algorithm’s
growth-rate function. For example, if an algorithm is O(5 3 n3), it is also O(n3). This
observation follows from the defi nition of O(f (n)), if you let k5 5.

3. O(f (n))1O(g(n))5O(f (n)1 g(n)). You can combine growth-rate functions. For
example, if an algorithm is O(n2) 1 O(n), it is also O(n21 n), which you write simply as
O(n2) by applying property 1. Analogous rules hold for multiplication.

 These properties imply that you need only an estimate of the time requirement to obtain an
algorithm’s growth rate; you do not need an exact statement of an algorithm’s time requirement,
which is fortunate because deriving the exact time requirement is often diffi cult and sometimes
impossible.

 Worst-case and average-case analyses. A particular algorithm might require different times to
solve different problems of the same size. For example, the time that an algorithm requires to search n
items might depend on the nature of the items. Usually you consider the maximum amount of time
that an algorithm can require to solve a problem of size n —that is, the worst case. A worst-case analy-
sis concludes that algorithm A is O(f (n)) if, in the worst case, A requires no more than k3 f (n) time
units to solve a problem of size n for all but a fi nite number of values of n . Although a worst-case
analysis can produce a pessimistic time estimate, such an estimate does not mean that your algorithm
is always slow. Instead, you have shown that the algorithm is never slower than your estimate. Realize,
however, that an algorithm’s worst case might happen rarely, if at all, in practice.

 An average-case analysis attempts to determine the average amount of time that an algorithm
requires to solve problems of size n . In an average-case analysis, A is O(f (n)) if the average amount
of time that A requires to solve a problem of size n is no more than k 3 f (n) time units for all but a
fi nite number of values of n . Average-case analysis is, in general, far more diffi cult to perform than
worst-case analysis. One diffi culty is determining the relative probabilities of encountering various
problems of a given size; another is determining the distributions of various data values. Worst-case
analysis is easier to calculate and is thus more common.

An algorithm can
require different
times to solve
different problems
of the same size

 Note: While manipulating the Big O notation, remember that O(f (n)) represents an
inequality. It is not a function but simply a notation that means “is of order f (n)” or “has
order f (n).”

 Question 3 What order is an algorithm that has as a growth-rate function

a. 8 3 n32 9 3 n
b. 7 3 log 2n1 20
c. 7 3 log 2n1 n

CHECK POINT

 10.2.4 Keeping Your Perspective

 Before continuing with additional analyses of specifi c algorithms, a few words about perspective are
appropriate. You know that you can access the nth item in an array directly. This access is independent
of n : accessing the 100 th item takes the same time as it does to access the fi rst item in the array. For an
ADT list of n items, the array-based implementation of the retrieval operation getEntry is O(1).
However, the link-based implementation of getEntry requires n steps to traverse a chain until it
reaches the nth item, and so is O(n).

An array-based
getEntry is O(1)

A link-based
getEntry is O(n)

 Measuring the Effi ciency of Algorithms 299

 Throughout the course of an analysis, you should always keep in mind that you are interested
only in signifi cant differences in effi ciency. Is the difference in effi ciency for the two implementa-
tions of getEntry signifi cant? As the size of the list grows, the link-based implementation might
require more time to retrieve the desired entry, because its node can be farther away from the begin-
ning of the chain. In contrast, regardless of how large the list is, the array-based implementation
always requires the same constant amount of time to retrieve any particular item. Thus, no matter
what time difference is signifi cant to you, it is reached if the list is large enough. In this example,
observe that the difference in effi ciency for the two implementations is worth considering only when
the problem is large enough. If the list never has more than 25 items, for example, the difference in the
implementations is not signifi cant at all.

 Now consider an application—such as a word processor’s spelling checker—that frequently
retrieves items from a list but rarely inserts or removes an item. Because getEntry for an array-based
list is faster than a link-based list’s getEntry , you should choose an array-based implementation of the
list for the application. On the other hand, if an application requires frequent insertions and removals
but rarely retrieves an item, you should choose a link-based implementation of the list. The most
appropriate implementation of an ADT for a given application strongly depends on how frequently the
application performs these operations. More examples of this point are presented in the next chapter.

 The response time of some ADT operations, however, can be crucial, even if you seldom use
them. For example, an air traffi c control system could include an emergency operation to resolve the
impending collision of two airplanes. Clearly, this operation must occur quickly, even if it is rarely
used. Thus, before you choose an implementation for an ADT, you should know what operations a
particular application requires, approximately how often the application performs each operation,
and the response times that the application requires of each operation.

 In the next section we compare a searching algorithm that is O(n) with one that is O(log 2n).
While it is true that an O(log 2n) searching algorithm requires signifi cantly less time on large arrays
than an O(n) algorithm requires, on small arrays—say n, 25—the time requirements might not be
signifi cantly different at all. In fact, it is entirely possible that, because of factors such as the size of
the constant k in the defi nition of Big O, the O(n) algorithm runs faster on small problems. It is only
on large problems that the slower growth rate of an algorithm necessarily gives it a signifi cant advan-
tage. Figure 10-1 illustrated this phenomenon.

 Thus, in general, if the maximum size of a given problem is small, the time requirements of any
two solutions for that problem likely will not differ signifi cantly. If you know that your problem size
will always be small, do not overanalyze; simply choose the algorithm that is easiest to understand,
verify, and code.

 Frequently, when evaluating an algorithm’s effi ciency, you have to weigh carefully the trade-offs
between a solution’s execution time requirements and its memory requirements. You are rarely able to
make a statement as strong as “This approach is the best one for performing the task.” A solution that
requires a relatively small amount of computer time often also requires a relatively large amount of
memory. It may not even be possible to say that one solution requires less time than another. Solution
A may perform some components of the task faster than solution B, while solution B performs other
components of the task faster than solution A. Often you must analyze the solutions in light of a par-
ticular application.

 In summary, it is important to examine an algorithm for both style and effi ciency. The analysis
should focus only on gross differences in effi ciency and not reward coding tricks that save millisec-
onds. Any fi ner differences in effi ciency are likely to interact with coding issues, which you should
not allow to interfere with the development of your programming style. If you fi nd an algorithm that
is signifi cantly more effi cient than others, you should select it, unless you know that the maximum
problem size is quite small. If you are solving only small problems, it is possible that a less effi cient
algorithm would be more appropriate. That is, other factors, such as the simplicity of the algorithm,

When choosing an
implementation of
an ADT, consider
how frequently
particular ADT
operations occur in
a given application

Some seldom-used
but critical operations
must be effi cient

If the problem size
is always small, you
can probably ignore
an algorithm’s
effi ciency

Weigh the trade-offs
between an
algorithm’s time
requirements and its
memory
requirements

Compare algorithms
for both style and
effi ciency

300 CHAPTER 10 Algorithm Effi ciency

could become more signifi cant than minor differences in effi ciency. In fact, analyzing the time effi -
ciency of an algorithm implicitly assumes that an algorithm is used to solve large problems. This
assumption allows you to focus on growth rates, because regardless of other factors, an algorithm
with a slow growth rate requires less time than an algorithm with a fast growth rate, provided that the
problems to be solved are suffi ciently large.

 Note: If a problem is small, do not overanalyze it. In such a situation, the primary con-
cern should be simplicity. For example, if you are searching an array that contains only a
small number of items—say, fewer than 25—a simple O(n) algorithm such as a sequen-
tial search is appropriate.

Analysis of an
algorithm’s time
effi ciency focuses
on large problems

 10.2.5 The Effi ciency of Searching Algorithms

 As another example of analyzing the time effi ciency of an algorithm, consider the effi ciency of two
search algorithms: the sequential search and the binary search of an array.

 Sequential search. In a sequential search of an array of n items, you look at each item in turn,
beginning with the fi rst one, until either you fi nd the desired item or you reach the end of the data col-
lection. In the best case, the desired item is the fi rst one that you examine, so only one comparison is
necessary. Thus, in the best case, a sequential search is O(1). In the worst case, the desired item is the
last one you examine, so n comparisons are necessary. Thus, in the worst case, the algorithm is O(n).
In the average case, you fi nd the desired item in the middle of the collection, making n / 2 compari-
sons. Thus, the algorithm is O(n) in the average case.

 What is the algorithm’s order when you do not fi nd the desired item? Does the algorithm’s order
depend on whether the initial data is sorted? These questions are left for you in Checkpoint Question
4 at the end of this section.

 Binary search. Is a binary search of an array more effi cient than a sequential search? The binary
search algorithm, which Chapter 2 presented, searches a sorted array for a particular item by repeatedly
dividing the array in half. The algorithm determines which half the item must be in—if it is indeed
present—and discards the other half. Thus, the binary search algorithm searches successively smaller
arrays: The size of a given array is approximately one-half the size of the array previously searched.

 At each division, the algorithm makes a comparison. How many comparisons does the algorithm
make when it searches an array of n items? The exact answer depends, of course, on where the sought-
for item resides in the array. However, you can compute the maximum number of comparisons that a
binary search requires—that is, the worst case. The number of comparisons is equal to the number of
times that the algorithm divides the array in half. Suppose that n5 2 k for some k . The search requires
the following steps:

1. Inspect the middle item of an array of size n .
2. Inspect the middle item of an array of size n / 2.
3. Inspect the middle item of an array of size n / 2 2 , and so on.

 To inspect the middle item of an array, you must fi rst divide the array in half. If you halve an array of
n items, then divide one of those halves in half, and continue dividing halves until only one item
remains, you have performed k divisions. This is true because n / 2 k5 1. (Remember, we assumed that
n5 2 k .) In the worst case, the algorithm performs k divisions and, therefore, k comparisons. Because
n5 2 k ,

k 5 log2n

Sequential search.
Worst case: O(n);
average case: O(n);
best case: O(1)

 Summary 301

 Thus, the algorithm is O(log 2n) in the worst case when n5 2 k .
 What if n is not a power of 2? You can easily fi nd the smallest k such that

2k21 , n , 2k

 (For example, if n is 30, then k5 5, because 2 45 16 , 30 , 32 5 2 5 .) The algorithm still requires at
most k divisions to obtain a subarray with one item. Now it follows that

k 2 1 , log2 n , k
k , 1 1 log2 n , k 1 1
k 5 1 1 log2 n rounded down

 Thus, the algorithm is still O(log 2n) in the worst case when n ? 2 k . In general, the algorithm is
O(log 2n) in the worst case for any n .

 Is a binary search faster than a sequential search? Much faster! For example log 2 1,000,000 < 19,
so a binary search of 1 million sorted items requires at most 20 comparisons, but a sequential search
of the same items can require 1 million comparisons! For large arrays, the binary search has an enor-
mous advantage over a sequential search.

Realize, however, that maintaining the array in sorted order requires an overhead cost, which
can be substantial. The next chapter examines the cost of sorting an array.

Binary search is
O(log 2 n) in the worst
case

 Note: If you are searching a very large array, an O(n) algorithm is probably too ineffi -
cient to use.

 Question 4 Consider a sequential search of n data items.

a. If the data items are sorted into ascending order, how can you determine that your
desired item is not in the data collection without always making n comparisons?

b. What is the order of the sequential search algorithm when the desired item is not in
the data collection? Do this for both sorted and unsorted data, and consider the
best, average, and worst cases.

c. Show that if the sequential search algorithm fi nds the desired item in the data col-
lection, the algorithm’s order does not depend upon whether or not the data items
are sorted.

CHECK POINT

 SUMMARY

 1. Using Big O notation, you measure an algorithm’s time requirement as a function of the problem size by using
a growth-rate function. This approach enables you to analyze the effi ciency of an algorithm without regard for
such factors as computer speed and programming skill that are beyond your control.

 2. When you compare the inherent effi ciency of algorithms, you examine their growth-rate functions when the
problems are large. Only signifi cant differences in growth-rate functions are meaningful.

 3. Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given
size, while average-case analysis considers the expected amount of work that it requires.

 4. Analyzing an algorithm’s time requirement will help you to choose an implementation for an abstract data
type. If your application frequently uses particular ADT operations, your implementation should be effi cient
for at least those operations.

302 CHAPTER 10 Algorithm Effi ciency

 EXERCISES

 1. Using Big O notation, indicate the time requirement of each of the following tasks in the worst case. Describe
any assumptions that you make.

a. After arriving at a party, you shake hands with each person there.
 b. Each person in a room shakes hands with everyone else in the room.
 c. You climb a fl ight of stairs.
 d. You slide down the banister.
 e. After entering an elevator, you press a button to choose a fl oor.
 f. You ride the elevator from the ground fl oor up to the n th fl oor.
 g. You read a book twice.

 2. Describe a way to climb from the bottom of a fl ight of stairs to the top in time that is no better than O(n2).

 3. Using Big O notation, indicate the time requirement of each of the following tasks in the worst case.

 a. Computing the sum of the fi rst n even integers by using a for loop
 b. Displaying all n integers in an array
 c. Displaying all n integers in a sorted linked chain
 d. Displaying all n names in an array of linked chains
 e. Displaying one array element
 f. Displaying the last integer in a linked chain
 g. Searching an array of n items for a particular value by using a sequential search
 h. Searching an array of n items for a particular value by using a binary search
 i. Adding an item to a stack of n items
 j. Adding an item to a bag of n items

 4. Suppose that your implementation of a particular algorithm appears in C++ as

 for (int pass = 1; pass <= n; pass++)
 {

for (int index = 0; index < n; index++)
 {

for (int count = 1; count < 10; count++)
 {
 . . .
 } // end for
 } // end for
} // end for

 The previous code shows only the repetition in the algorithm, not the computations that occur within the loops.
These computations, however, are independent of n . What is the Big O of the algorithm? Justify your answer.

 5. Consider the following C++ function f , which calls the function swap . Assume that swap exists and simply
swaps the contents of its two arguments. Do not be concerned with f ’s purpose.

 void f(int theArray[], int n)
 {

for (int j = 0; j < n; ++j)
 {

int i = 0;
 while (i <= j)
 {

if (theArray[i] < theArray[j])

 Programming Problems 303

 PROGRAMMING PROBLEMS

For the following programming problems, you need to time a section of code in C++. For example, the
following statements time the execution of the function doSomething :

 #include <ctime>
clock_t start = clock();
 doSomething();
clock_t finish = clock();
 double overallTime = static_cast < double>(finish - start) / CLOCKS_PER_SEC;3

 1. Consider the following two loops:

 // Loop A
 for (i = 1; i <= n; i++)

for (j = 1; j <= 10000; j++)
 sum = sum + j;

// Loop B
 for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
 sum = sum + j;

 What is the Big O of each loop? Design and implement an experiment to fi nd a value of n for which Loop B is
faster than Loop A.

 2. Repeat the previous project, but use the following for Loop B:

 // Loop B
 for (i = 1; i <= n; i++)
 for (j = 1; j <= n; j++)
 for (k = 1; k <= j; k++)
 sum = sum + k;

 swap(theArray[i], theArray[j]);
 i++;
 } // end while
 } // end for
} // end f

 How many comparisons does f perform?

 6. For large arrays, and in the worst case, is a sequential search faster than a binary search? Explain.

 7. Show that any polynomial f (x) 5 cn x n1 cn21x
n211 . . .1 c1x1 c0 is O(xn).

 8. Show that for all constants a, b. 1, f (n) is O(log a n) if and only if f (n) is O(log b n). Thus, you can omit the base
when you write O(log n). Hint: Use the identity log a n5 log b n / log b a for all constants a, b. 1.

 9. Show that 7 n21 5 n is not O(n).

 10. Consider an array of length n containing positive and negative integers in random order. Write C++ code that
rearranges the integers so that the negative integers appear before the positive integers. Your solution should use

 a. O(n2) operations
 b. O(n) operations

3 CLOCKS_PER_SECOND is a C++ predefi ned constant.

304 CHAPTER 10 Algorithm Effi ciency

 3. Write a C++ program that implements the following three algorithms and times them for various values of n .
The program should display a table of the run times of each algorithm for various values of n .

 // Algorithm A // Algorithm B // Algorithm C
sum = 0 sum = 0 sum = n * (n + 1) / 2
 for i = 1 to n for i = 1 to n
 sum = sum + i {

 for j = 1 to i
 sum = sum + 1
 }

For each of the following problems, you will need an implementation of the ADT bag whose method remove
removes a random entry instead of a specifi c one.

 4. Suppose that you have several numbered billiard balls on a pool table. At each step you remove a billiard ball from
the table. If the ball removed is numbered n , you replace it with n balls whose number is n / 2, where the division
is truncated to an integer. For example, if you remove the 5 ball, you replace it with fi ve 2 balls. Using Big O nota-
tion, predict the time requirement for this algorithm when initially the pool table contains only the n ball.

 Write a program that simulates this process. Use a bag of positive integers to represent the balls on the
pool table. Time the actual execution of the program for various values of n and plot its performance as a func-
tion of n . Compare your results with your predicted time requirements.

 5. Repeat the previous project, but instead replace the n ball with n balls randomly numbered less than n .

 6. In mythology, the Hydra was a monster with many heads. Every time the hero chopped off a head, two smaller
heads would grow in its place. Fortunately for the hero, if the head was small enough, he could chop it off with-
out two more growing in its place. To kill the Hydra, all our hero needed to do was to chop off all the heads.

 Write a program that simulates the Hydra. Instead of heads, we will use strings. A bag of strings, then,
represents the Hydra. Every time you remove a string from the bag, delete the fi rst letter of the string and put
two copies of the remaining string back into the bag. For example, if you remove HYDRA, you add two copies
of YDRA to the bag. If you remove a one-letter word, you add nothing to the bag. To begin, read one word from
the keyboard and place it into an empty bag. The Hydra dies when the bag becomes empty.

 Using Big O notation, predict the time requirement for this algorithm in terms of the number n of charac-
ters in the initial string. Then time the actual execution of the program for various values of n and plot its per-
formance as a function of n.

 Chapter

Sorting Algorithms
and Their Effi ciency 11

 Contents
 11.1 Basic Sorting Algorithms 306

 11.1.1 The Selection Sort 306
 11.1.2 The Bubble Sort 309
 11.1.3 The Insertion Sort 311

 11.2 Faster Sorting Algorithms 313
 11.2.1 The Merge Sort 313
 11.2.2 The Quick Sort 318
 11.2.3 The Radix Sort 327

 11.3 A Comparison of Sorting Algorithms 329

 Summary 330
 Exercises 330
 Programming Problems 331

 Prerequisites
 Chapter 2 Recursion: The Mirrors
 Chapter 5 Recursion as a Problem-Solving Technique
 Chapter 10 Algorithm Effi ciency

This chapter examines the important topic of sorting data. You will study some simple
algorithms, which you may have seen before, and some more sophisticated recursive
algorithms. Sorting algorithms provide varied and relatively easy examples of the
analysis of effi ciency.

306 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 11.1 Basic Sorting Algorithms
Sorting is a process that organizes a collection of data into either ascending 1 or descending order. The
need for sorting arises in many situations. You may simply want to sort a collection of data before
including it in a report. Often, however, you must perform a sort as an initialization step for certain
algorithms. For example, searching for data is one of the most common tasks performed by comput-
ers. When the collection of data to be searched is large, an effi cient technique for searching—such as
the binary search algorithm—is desirable. However, the binary search algorithm requires that the
data be sorted. Thus, sorting the data is a step that must precede a binary search on a collection of data
that is not already sorted. Good sorting algorithms, therefore, are quite valuable.

 You can organize sorting algorithms into two categories. An internal sort requires that the col-
lection of data fi t entirely in the computer’s main memory. The algorithms in this chapter are internal
sorting algorithms. You use an external sort when the collection of data will not fi t in the computer’s
main memory all at once but must reside in secondary storage, such as on a disk. Chapter 21 exam-
ines external sorts.

 The data items to be sorted might be integers, character strings, or even objects. It is easy to
imagine the results of sorting a collection of integers or character strings, but consider a collection of
objects. If each object contains only one data member, sorting the objects is really no different from
sorting a collection of integers. However, when each object contains several data members, you must
know which data member determines the order of the entire object within the collection of data. This
data member is called the sort key . For example, if the objects represent people, you might want to
sort on their names, their ages, or their zip codes. Regardless of your choice of sort key, the sorting
algorithm orders entire objects based on only one data member, the sort key.

 For simplicity, the examples in this chapter sort quantities such as numbers or strings. All algo-
rithms in this chapter sort the data into ascending order. Modifying these algorithms to sort data into
descending order is simple. Finally, each example assumes that the data resides in an array.

 11.1.1 The Selection Sort

 Imagine some data that you can examine all at once. To sort it, you could select the largest item and
put it in its place, select the next largest and put it in its place, and so on. For a card player, this process
is analogous to looking at an entire hand of cards and ordering it by selecting cards one at a time in
their proper order. The selection sort formalizes these intuitive notions. To sort an array into ascend-
ing order, you fi rst search it for the largest item. Because you want the largest item to be in the last
position of the array, you swap the last item with the largest item, even if these items happen to be
identical. Now, ignoring the last—and largest—item of the array, you search the rest of the array for
its largest item and swap it with its last item, which is the next-to-last item in the original array. You
continue until you have selected and swapped n – 1 of the n items in the array. The remaining item,
which is now in the fi rst position of the array, is in its proper order, so it is not considered further.

 Figure 11-1 provides an example of a selection sort. Beginning with fi ve integers, you select the
largest—37—and swap it with the last integer—13. (As the items in this fi gure are ordered, they are
shaded in blue. This convention will be used throughout this chapter.) Next you select the largest
integer—29—from among the fi rst four integers in the array and swap it with the next-to-last integer in the
array—13. Notice that the next selection—14—is already in its proper position, but the algorithm ignores
this fact and performs a swap of 14 with itself. It is more effi cient in general to occasionally perform an
unnecessary swap than it is to continually ask whether the swap is necessary. Finally, you select the 13 and
swap it with the item in the second position of the array—10. The array is now sorted into ascending order.

 1 To allow for duplicate data items, ascending is used here to mean nondecreasing and descending to mean nonincreasing.

The sorts in this
chapter are internal
sorts

Select the largest
item

VideoNote

Basic sorting
algorithms

 Basic Sorting Algorithms 307

 Listing 11-1 gives a C++ function, and the two functions it calls, that performs a selection sort on
an array theArray of n items, assuming that ItemType is the data type of the array’s entries.

FIGURE 11-1 A selection sort of an array of f ive integers

Gray elements are selected;
blue elements comprise the sorted portion of the array.

Initial array:

After 1st swap:

After 2nd swap:

After 3rd swap:

After 4th swap:

29

29

13

13

10

10

10

10

10

13

14

14

14

14

14

37

13

29

29

29

13

37

37

37

37

 Question 1 Trace the selection sort as it sorts the following array into ascending order:
20 80 40 25 60 30

 Question 2 Repeat the previous question, but instead sort the array into descending
order.

CHECK POINT

 LISTING 11-1 An implementation of the selection sort

 /** Finds the largest item in an array.
 @pre The size of the array is >= 1.
 @post The arguments are unchanged.
 @param theArray The given array.
 @param size The number of elements in theArray.
 @return The index of the largest entry in the array. */
 int findIndexofLargest(const ItemType theArray[], int size);

/** Sorts the items in an array into ascending order.
 @pre None.
 @post The array is sorted into ascending order; the size of the array

is unchanged.
 @param theArray The array to sort.
 @param n The size of theArray. */
 void selectionSort(ItemType theArray[], int n)
 {

// last = index of the last item in the subarray of items yet
 // to be sorted;
 // largest = index of the largest item found

(continues)

308 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 Analysis. As you can see from the previous algorithm, sorting in general compares, exchanges, or
moves items. As a fi rst step in analyzing such algorithms, you should count these operations. Gener-
ally, such operations are more expensive than ones that control loops or manipulate array indexes,
particularly when the data to be sorted is more complex than integers or characters. Thus, our
approach ignores these incidental operations. You should convince yourself that by ignoring such
operations we do not affect our fi nal result. (See Exercise 1.)

 Clearly, the for loop in the function selectionSort executes n – 1 times. Thus, selectionSort
calls each of the functions findIndexofLargest and swap n – 1 times. Each call to findIndexofLarg-
est causes its loop to execute last times (that is, size – 1 times when size is last + 1). Thus, the
n – 1 calls to findIndexofLargest , for values of last that range from n – 1 down to 1, cause the loop
in findIndexofLargest to execute a total of

(n 2 1) 1 (n 2 2) 1 c 1 1 5 n 3 (n 2 1) /2

 times. Because each execution of findIndexofLargest ’s loop performs one comparison, the calls to
findIndexofLargest require

n � (n � 1) / 2

 comparisons.
 The n – 1 calls to swap result in n – 1 exchanges. Each exchange requires three assignments, or

data moves. Thus, the calls to swap require

3 3 (n 2 1)

 moves.

for (int last = n - 1; last >= 1; last––)
 {
 // At this point, theArray[last+1..n-1] is sorted, and its
 // entries are greater than those in theArray[0..last].
 // Select the largest entry in theArray[0..last]
 int largest = findIndexofLargest(theArray, last+1);

 // Swap the largest entry, theArray[largest], with
 // theArray[last]
 std::swap(theArray[largest], theArray[last]);
 } // end for
 } // end selectionSort

 int findIndexofLargest(const ItemType theArray[], int size)
 {

int indexSoFar = 0; // Index of largest entry found so far
for (int currentIndex = 1; currentIndex < size; currentIndex++)

 {
 // At this point, theArray[indexSoFar] >= all entries in
 // theArray[0..currentIndex - 1]
 if (theArray[currentIndex] > theArray[indexSoFar])
 indexSoFar = currentIndex;
 } // end for

return indexSoFar; // Index of largest entry
} // end findIndexofLargest

 Basic Sorting Algorithms 309

 Together, a selection sort of n items requires

n 3 (n 2 1) /2 1 3 3 (n 2 1) 5 n2 /2 1 5 3 n / 2 2 3

 major operations. By applying the properties of the growth-rate functions given in Chapter 10 , you
can ignore low-order terms to get O(n2 / 2) and then ignore the multiplier 1/2 to get O(n2). Thus, the
selection sort is O(n2).

 Although a selection sort does not depend on the initial arrangement of the data, which is an
advantage of this algorithm, it is appropriate only for small n because O(n2) grows rapidly. While the
algorithm requires O(n2) comparisons, it requires only O(n) data moves. A selection sort could be a
good choice over other approaches when data moves are costly but comparisons are not. Such might
be the case if each data item is lengthy but the sort key is short.

 Note: If you are sorting a very large array, an O(n2) algorithm is probably too ineffi -
cient to use.

Selection sort is
O(n 2)

 11.1.2 The Bubble Sort

 The next sorting algorithm is one that you may have seen already. The bubble sort compares adjacent
items and exchanges them if they are out of order. This sort usually requires several passes over the
data. During the fi rst pass, you compare the fi rst two items in the array. If they are out of order, you
exchange them. You then compare the items in the next pair—that is, in positions 2 and 3 of the array.
If they are out of order, you exchange them. You proceed in the same manner, comparing and exchang-
ing items two at a time, until you reach the end of the array.

 Figure 11-2a illustrates the fi rst pass of a bubble sort of an array of fi ve integers. You compare the
items in the fi rst pair—29 and 10—and exchange them because they are out of order. Next you con-
sider the second pair—29 and 14—and exchange these items because they are out of order. The items
in the third pair—29 and 37—are in order, and so you do not exchange them. Finally, you exchange
the items in the last pair—37 and 13.

 Although the array is not sorted after the fi rst pass, the largest item has “bubbled” to its proper
position at the end of the array. During the second pass of the bubble sort, you return to the begin-
ning of the array and consider pairs of items in exactly the same manner as the fi rst pass. You do

When you order
successive pairs of
items, the largest
item bubbles to the
top (end) of the
array

FIGURE 11-2 The fi rst two passes of a bubble sort of an array of fi ve integers

Initial array: 29

10

10

10

10

(a) Pass 1

10

29

14

14

14

14

14

29

29

29

37

37

37

37

13

13

13

13

13

37

10

10

10

10

14

14

14

14

29

29

29

13

13

13

13

29

37

37

37

37

(b) Pass 2

310 CHAPTER 11 Sorting Algorithms and Their Effi ciency

not, however, include the last—and largest—item of the array. That is, the second pass considers
the fi rst n – 1 items of the array. After the second pass, the second-largest item in the array will
be in its proper place in the next-to-last position of the array, as Figure 11-2b illustrates. Now,
ignoring the last two items, which are in order, you continue with subsequent passes until the array
is sorted.

 Although a bubble sort requires at most n – 1 passes to sort the array, fewer passes might be pos-
sible to sort a particular array. Thus, you could terminate the process if no exchanges occur during any
pass. The following C++ function bubbleSort uses a boolean variable to signal when an exchange
occurs during a particular pass. The function uses the previous swap function.

 LISTING 11-2 An implementation of the bubble sort

 /** Sorts the items in an array into ascending order.
 @pre None.
 @post theArray is sorted into ascending order; n is unchanged.
 @param theArray The given array.
 @param n The size of theArray. */
 void bubbleSort(ItemType theArray[], int n)
 {

bool sorted = false; // False when swaps occur
int pass = 1;
while (!sorted && (pass < n))

 {
// At this point, theArray[n+1-pass..n-1] is sorted
// and all of its entries are > the entries in theArray[0..n-pass]

 sorted = true; // Assume sorted
for (int index = 0; index < n - pass; index++)

 {
 // At this point, all entries in theArray[0..index-1]
 // are <= theArray[index]
 int nextIndex = index + 1;
 if (theArray[index] > theArray[nextIndex])
 {
 // Exchange entries
 std::swap(theArray[index], theArray[nextIndex]);
 sorted = false; // Signal exchange
 } // end if
 } // end for
 // Assertion: theArray[0..n-pass-1] < theArray[n-pass]

 pass++;
 } // end while
} // end bubbleSort

The bubble sort
usually requires
several passes
through the array

 Question 3 Trace the bubble sort as it sorts the following array into ascending order:
25 30 20 80 40 60.

 Question 4 Repeat the previous question, but instead sort the array into descending
order.

CHECK POINT

 Basic Sorting Algorithms 311

 Analysis. As was noted earlier, the bubble sort requires at most n – 1 passes through the array. Pass 1
requires n – 1 comparisons and at most n – 1 exchanges; pass 2 requires n – 2 comparisons and at most
n – 2 exchanges. In general, pass i requires n – i comparisons and at most n – i exchanges. Therefore, in
the worst case, a bubble sort will require a total of

(n 2 1) 1 (n 2 2) 1 c 1 1 5 n 3 (n 2 1) /2

 comparisons and the same number of exchanges. Recall that each exchange requires three data
moves. Thus, altogether there are

2 3 n 3 (n 2 1) 5 2 3 n2 2 2 3 n

 major operations in the worst case. Therefore, the bubble sort algorithm is O(n2) in the worst case.
 The best case occurs when the original data is already sorted: bubbleSort uses one pass, during

which n – 1 comparisons and no exchanges occur. Thus, the bubble sort is O(n) in the best case.

 11.1.3 The Insertion Sort

 Imagine once again arranging a hand of cards, but now you pick up one card at a time and insert it into
its proper position; in this case, you are performing an insertion sort . Chapter 8 introduced the inser-
tion sort algorithm in the context of a list of alphabetical names. In that example, we repeatedly called
the method insert to add a string into its proper sorted order in a list.

 You can use the insertion sort strategy to sort items that reside in an array. This version of the
insertion sort partitions the array into two regions: sorted and unsorted, as Figure 11-3 depicts.
Initially, the entire array is the unsorted region, just as the cards dealt to you sit in an unsorted pile on
the table. At each step, the insertion sort takes the fi rst item of the unsorted region and places it into its
correct position in the sorted region. This step is analogous to taking a card from the table and insert-
ing it into its proper position in your hand. The fi rst step, however, is trivial: Moving theArray[0]
from the unsorted region to the sorted region really does not require moving data. Therefore, you
can omit this fi rst step by considering the initial sorted region to be theArray[0] and the initial
unsorted region to be theArray[1..n-1] . The fact that the items in the sorted region are sorted
among themselves is an assertion 2 of the algorithm. Because at each step the size of the sorted region
grows by 1 and the size of the unsorted region shrinks by 1, the entire array will be sorted when the
algorithm terminates.

 Figure 11-4 illustrates an insertion sort of an array of fi ve integers. Initially, the sorted region is
theArray[0] , which is 29, and the unsorted region is the rest of the array. You take the fi rst item in the
unsorted region—the 10—and insert it into its proper position in the sorted region. This insertion

Bubble sort:
Worst case: O(n 2)
Best case: O(n)

Take each item from
the unsorted region
and insert it into its
correct order in the
sorted region

FIGURE 11-3 An insertion sort partitions the array into two regions

Sorted Unsorted

0 n – 1i
After i iterations

 2 As Appendix F discusses, this particular assertion is an invariant.

312 CHAPTER 11 Sorting Algorithms and Their Effi ciency

requires you to shift array entries to make room for the inserted item. You then take the fi rst item in the
new unsorted region—the 14—and insert it into its proper position in the sorted region, and so on.

FIGURE 11-4 An insertion sort of an array of fi ve integers

Initial array:

Sorted array:

10

29

29

29

14

14

14

13

14

14

14

29

29

29

14

14

37

37

37

37

37

37

29

29

13

13

13

13

13

13

37

37

29

29

10

10

10

10

10

10

Copy 10

Shift 29

Insert 10; copy 14

Shift 29

Insert 14; copy 37, insert 37 on top of itself

Copy 13

Shift 37, 29, 14

Insert 13

 Question 5 Trace the insertion sort as it sorts the array in Check point Question 3 into
ascending order.

 Question 6 Repeat the previous question, but instead sort the array into descending
order.

CHECK POINT

 LISTING 11-3 An implementation of the insertion sort

 /** Sorts the items in an array into ascending order.
 @pre None.
 @post theArray is sorted into ascending order; n is unchanged.
 @param theArray The given array.
 @param n The size of theArray. */
 void insertionSort(ItemType theArray[], int n)
 {

// unsorted = first index of the unsorted region,
// loc = index of insertion in the sorted region,
// nextItem = next item in the unsorted region.
// Initially, sorted region is theArray[0],
// unsorted region is theArray[1..n-1].
// In general, sorted region is theArray[0..unsorted-1],
// unsorted region theArray[unsorted..n-1]

 Listing 11-3 contains a C++ function that performs an insertion sort on an array of n items.

 Faster Sorting Algorithms 313

 Analysis. The outer while loop in the function insertionSort executes n – 1 times. This loop con-
tains an inner for loop that executes at most unsorted times for values of unsorted that range from 1
to n – 1. Thus, in the worst case, the algorithm’s comparison occurs

1 1 2 1 c 1 (n 2 1) 5 n 3 (n 2 1) /2

 times. In addition, the inner loop moves data items at most the same number of times.
 The outer loop moves data items twice per iteration, or 2 � (n � 1) times. Together, there are

n 3 (n 2 1) 1 2 3 (n 2 1) 5 n2 1 n 2 2

 major operations in the worst case.
 Therefore, the insertion sort algorithm is O(n2) in the worst case. For small arrays—say, fewer

than 25 items—the simplicity of the insertion sort makes it an appropriate choice. For large arrays,
however, an insertion sort can be prohibitively ineffi cient—unless the array is already sorted. In that
case, the inner for loop exits immediately, making the sort O(n) in its best case.

 11.2 Faster Sorting Algorithms
 The previous sorting algorithms are all you really need if you have to sort small arrays or if you need
to sort a large array once. For extremely large arrays—particularly ones that must be updated
and sorted again—you need faster algorithms. We now examine a few of these more sophisticated
techniques.

 11.2.1 The Merge Sort

 Two important divide-and-conquer sorting algorithms, merge sort and quick sort , have elegant
recursive formulations and are highly effi cient. The presentations here are in the context of sorting

for (int unsorted = 1; unsorted < n; unsorted++)
 {
 // At this point, theArray[0..unsorted-1] is sorted.
 // Find the right position (loc) in theArray[0..unsorted]
 // for theArray[unsorted], which is the first entry in the
 // unsorted region; shift, if necessary, to make room
 ItemType nextItem = theArray[unsorted];
 int loc = unsorted;
 while ((loc > 0) && (theArray[loc - 1] > nextItem))
 {
 // Shift theArray[loc - 1] to the right
 theArray[loc] = theArray[loc - 1];
 } // end for
 // At this point, theArray[loc] is where nextItem belongs
 theArray[loc] = nextItem; // Insert nextItem into sorted region
 loc--;
 } // end while
} // end insertionSort

The insertion sort is
O(n 2) in the worst
case

The insertion sort is
O(n) in the best case

Divide and conquer

VideoNote

Faster sorting
algorithms

314 CHAPTER 11 Sorting Algorithms and Their Effi ciency

arrays, but—as you will see in Chapter 21 —the merge sort generalizes to external fi les. It will be
convenient to express the algorithms in terms of the array theArray[first..last] .

 The merge sort is a recursive sorting algorithm that always gives the same performance, regard-
less of the initial order of the array items. Suppose that you divide the array into halves, sort each half,
and then merge the sorted halves into one sorted array, as Figure 11-5 illustrates. In the fi gure, the
halves <1, 4, 8> and <2, 3> are merged to form the array <1, 2, 3, 4, 8>. This merge step compares an
item in one half of the array with an item in the other half and moves the smaller item to a temporary
array. This process continues until there are no more items to consider in one half. At that time, you
simply move the remaining items to the temporary array. Finally, you copy the temporary array back
into the original array.

 Although the merge step of the merge sort produces a sorted array, how do you sort the array
halves prior to the merge step? The merge sort sorts the array halves by using a merge sort—that is, by
calling itself recursively. Thus, the pseudocode for the merge sort is

 // Sorts theArray[first..last] by
// 1. Sorting the first half of the array
// 2. Sorting the second half of the array
// 3. Merging the two sorted halves
mergeSort(theArray: ItemArray, first: integer, last: integer)

if (first < last)
 {
 mid = (first + last) / 2 // Get midpoint

// Sort theArray[first..mid]
 mergeSort(theArray, first, mid)

// Sort theArray[mid+1..last]
 mergeSort(theArray, mid + 1, last)

The merge sort
requires a second
array as large as the
original array

FIGURE 11-5 A merge sort with an auxiliary temporary array

8 1 4 3 2

1 4 8 2 3

1 2 3 4 8

1 2 3 4 8

dcba

theArray:

Temporary array
tempArray:

theArray:

Divide the array in half

Sort the halves

Merge the halves:
a. 1 < 2, so move 1 from left half to tempArray
b. 4 > 2, so move 2 from right half to tempArray
c. 4 > 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
 half to tempArray

Copy temporary array back into
original array

Halve the array,
recursively sort its
halves, and then
merge the halves

 Faster Sorting Algorithms 315

// Merge sorted halves theArray[first..mid] and theArray[mid+1..last]
 merge(theArray, first, mid, last)

}
 // If first >= last, there is nothing to do

 Clearly, most of the effort in the merge sort algorithm is in the merge step, but does this algorithm
actually sort? The recursive calls continue dividing the array into pieces until each piece contains
only one item; obviously an array of one item is sorted. The algorithm then merges these small pieces
into larger sorted pieces until one sorted array results. Figure 11-6 illustrates both the recursive calls
and the merge steps in a merge sort of an array of six integers.

 The C++ functions in Listing 11-4 implement the merge sort algorithm. To sort an array
theArray of n items, you would invoke the function mergeSort by writing

mergeSort(theArray, 0, n - 1) ;

FIGURE 11-6 A merge sort of an array of six integers

38 16 27 39 12 27

38 16 27 39 12 27

38 16 39 12

16 38

16 27 38

12 39

12 27 39

12 16 27 27 38 39

Recursive calls to mergesort

Merge steps

38 16 27 39 12 27

 LISTING 11-4 An implementation of the merge sort

 const int MAX_SIZE = maximum-number-of-items-in-array;

/** Merges two sorted array segments theArray[first..mid] and
theArray[mid+1..last] into one sorted array.

 @pre first <= mid <= last. The subarrays theArray[first..mid] and
 theArray[mid+1..last] are each sorted in increasing order.
 @post theArray[first..last] is sorted.
 @param theArray The given array.
 @param first The index of the beginning of the first segment in
 theArray.
 @param mid The index of the end of the first segment in theArray;
 mid + 1 marks the beginning of the second segment.
 @param last The index of the last element in the second segment in
 theArray.

(continues)

316 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 @note This function merges the two subarrays into a temporary
 array and copies the result into the original array theArray. */
 void merge(ItemType theArray[], int first, int mid, int last)
 {
 ItemType tempArray[MAX_SIZE]; // Temporary array

// Initialize the local indices to indicate the subarrays
int first1 = first; // Beginning of first subarray
int last1 = mid; // End of first subarray
int first2 = mid + 1; // Beginning of second subarray
int last2 = last; // End of second subarray

// While both subarrays are not empty, copy the
// smaller item into the temporary array
int index = first1; // Next available location in tempArray
while ((first1 <= last1) && (first2 <= last2))

 {
// At this point, tempArray[first..index-1] is in order
if (theArray[first1] <= theArray[first2])

 {
 tempArray[index] = theArray[first1];
 first1++;
 }

else
 {
 tempArray[index] = theArray[first2];
 first2++;
 } // end if
 index++;
 } // end while

// Finish off the first subarray, if necessary
while (first1 <= last1)

 {
// At this point, tempArray[first..index-1] is in order

 tempArray[index] = theArray[first1];
 first1++;
 index++;
 } // end while

// Finish off the second subarray, if necessary
while (first2 <= last2)

 {
// At this point, tempArray[first..index-1] is in order

 tempArray[index] = theArray[first2];
 first2++;
 index++;
 } // end for

// Copy the result back into the original array
for (index = first; index <= last; index++)

 theArray[index] = tempArray[index];
} // end merge

 Faster Sorting Algorithms 317

/** Sorts the items in an array into ascending order.
 @pre theArray[first..last] is an array.
 @post theArray[first..last] is sorted in ascending order.
 @param theArray The given array.
 @param first The index of the first element to consider in theArray.
 @param last The index of the last element to consider in theArray.*/
 void mergeSort(ItemType theArray[], int first, int last)
 {

if (first < last)
 {

// Sort each half
int mid = first + (last - first) / 2; // Index of midpoint

// Sort left half theArray[first..mid]
 mergeSort(theArray, first, mid);

// Sort right half theArray[mid+1..last]
 mergeSort(theArray, mid + 1, last);

// Merge the two halves
 merge(theArray, first, mid, last);
 } // end if
} // end mergeSort

 Question 7 By drawing a diagram like the one shown in Figure 11-6 , trace the merge sort
as it sorts the following array into ascending order: 25 30 20 80 40 60.

 Question 8 Show that the merge sort algorithm satisfi es the four criteria of recursion that
 Chapter 2 describes.

CHECK POINT

 Analysis. Because the merge step of the algorithm requires the most effort, let’s begin the analysis
there. Each merge step merges theArray[first..mid] and theArray[mid+1..last] . Figure 11-7
provides an example of a merge step that requires the maximum number of comparisons. If the total
number of items in the two array segments to be merged is n , then merging the segments requires at
most n – 1 comparisons. (For example, in Figure 11-7 six items are in the segments and fi ve comparisons

FIGURE 11-7 A worst-case instance of the merge step in a merge sort

1 2 8 4 5theArray:
Merge the halves:

a. 1 < 4, so move 1 from theArray[first..mid] to tempArray
b. 2 < 4, so move 2 from theArray[first..mid] to tempArray
c. 8 > 4, so move 4 from theArray[mid+1..last] to tempArray
d. 8 > 5, so move 5 from theArray[mid+1..last] to tempArray
e. 8 > 6, so move 6 from theArray[mid+1..last] to tempArray
f. theArray[mid+1..last] is finished, so move 8 to tempArray

6

1 2 4 5 6 8tempArray:

first mid last

a b c d e f

318 CHAPTER 11 Sorting Algorithms and Their Effi ciency

are required.) In addition, there are n moves from the original array to the temporary array, and n
moves from the temporary array back to the original array. Thus, each merge step requires 3 × n – 1
major operations.

 Each call to mergeSort recursively calls itself twice. As Figure 11-8 illustrates, if the original
call to mergeSort is at level 0, two calls to mergeSort occur at level 1 of the recursion. Each of these
calls then calls mergeSort twice, so four calls to mergeSort occur at level 2 of the recursion, and so
on. How many levels of recursion are there? We can count them, as follows.

 Each call to mergeSort halves the array. Halving the array the fi rst time produces two pieces. The
next recursive calls to mergeSort halve each of these two pieces to produce four pieces of the original
array; the next recursive calls halve each of these four pieces to produce eight pieces, and so on. The recur-
sive calls continue until the array pieces each contain one item—that is, until there are n pieces, where n is
the number of items in the original array. If n is a power of 2 (n = 2 k), the recursion goes k = log 2n levels
deep. For example, in Figure 11-8 , there are three levels of recursive calls to mergeSort because the origi-
nal array contains eight items and 8 = 2 3 . If n is not a power of 2, there are 1 + log 2n (rounded down) levels
of recursive calls to mergeSort .

 The original call to mergeSort (at level 0) calls merge once. Then merge merges all n items and
requires 3 × n – 1 operations, as was shown earlier. At level 1 of the recursion, two calls to mergeSort ,
and hence to merge , occur. Each of these two calls to merge merges n / 2 items and requires 3 × (n / 2) – 1
operations. Together these two calls to merge require 2 × (3 × (n / 2) – 1) or 3 × n – 2 operations. At level
m of the recursion, 2 m calls to merge occur; each of these calls merges n / 2 m items and so requires 3 ×
(n / 2 m) – 1 operations. Together the 2 m calls to merge require 3 × n – 2 m operations. Thus, each level of
the recursion requires O(n) operations. Because there are either log 2n or 1 + log 2n levels, the merge sort
is O(n × log n) in both the worst and average cases. You should look at Figure 10-3 in the previous chap-
ter to convince yourself that O(n × log n) is signifi cantly faster than O(n2).

 Although the merge sort is an extremely effi cient algorithm with respect to time, it does have one
drawback: The merge step requires an auxiliary array. This extra storage and the necessary copying of
entries are disadvantages.

 11.2.2 The Quick Sort

 Consider the fi rst two steps of the pseudocode function kSmall that solves the problem of fi nding
the kth smallest item of the array theArray[first..last] and was discussed in Section 2.4.4 of
Chapter 2 :

The merge sort is
O(n × log n)

FIGURE 11-8 Levels of recursive calls to mergeSort , given an array of eight items

8

4

2

1 1 1 1

2 2 2

1 1 1 1

4

Level 0: mergesort 8 items

Level 1: 2 calls to mergesort with 4
 items each

Level 2: 4 calls to mergesort with 2
 items each

Level 3: 8 calls to mergesort with 1
 item each

Another divide-and-
conquer algorithm

 Faster Sorting Algorithms 319

 Choose a pivot value p from anArray[first..last]
 Partition the values of anArray[first..last] about p

 Recall that this partition, which is pictured again in Figure 11-9 , has the property that all items in S1 =
theArray[first..pivotIndex - 1] are less than or equal to the pivot p , and all items in S2 =
theArray[pivotIndex + 1..last] are greater than or equal to p. Though this property does not
imply that the array is sorted, it does imply an extremely useful fact: The items within S1 remain
within S1 when the array is properly sorted, although their positions relative to one another may
change. Similarly, the items within S2 will remain within S2 when the array is sorted, although their
relative positions may change. Finally, the pivot item remains in its position in the fi nal, sorted array.

 The partition induces relationships among the array items that are the ingredients of a recursive
solution. Arranging the array items around the pivot p generates two smaller sorting problems—sort
the left section of the array (S1), and sort the right section of the array (S2). The relationships between
the pivot and the array items imply that once you solve the left and right sorting problems, you will
have solved the original sorting problem. That is, partitioning the array before making the recursive
calls places the pivot in its correct position and ensures that when the smaller array segments are
sorted their items will be in the proper relation to the rest of the array. Also, the quick sort algorithm
will eventually terminate: The left and right sorting problems are indeed smaller problems and are
each closer than the original sorting problem to the base case—which is an array containing one
item—because the pivot is not part of either S1 or S2 .

 A fi rst draft of pseudocode for the quick sort algorithm follows:

 // Sorts theArray[first..last].
quickSort(theArray: ItemArray, first: integer, last: integer): void

if (first < last)
{

Choose a pivot item p from theArray[first..last]
Partition the items of theArray[first..last] about p

 // The partition is theArray[first..pivotIndex..last]

quickSort(theArray, first, pivotIndex - 1) // Sort S 1

quickSort(theArray, pivotIndex + 1, last) // Sort S 2
}

 // If first >= last, there is nothing to do

 Partitioning the array. Now consider the partition function that both kSmall and quickSort must
call. Partitioning an array section about a pivot item is actually the most diffi cult part of these two
problems.

The quick sort
partitions an array
into items that are
less than or equal to
the pivot and those
that are greater than
or equal to the pivot

Partitioning places
the pivot in its
correct position
within the array

FIGURE 11-9 A partition about a pivot

S2S1

p

pivotIndex lastfirst

The pivot p is in its final position

p p

320 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 The partition function will receive an array segment theArray[first..last] as an argument.
The function must arrange the items of the array segment into two regions: S1 contains the items less
than or equal to the pivot and S2 contains the items greater than or equal to the pivot. Thus, as you saw
in Figure 11-9 , S1 is the segment theArray[first..pivotIndex - 1] , and S2 is the segment
theArray[pivotIndex + 1..last] .

 What pivot should you use? Various strategies exist for making this choice, as you will see later,
so let’s assume for now that we have chosen a pivot and go on to develop the partition. Regardless of
which pivot you choose, let’s swap it with the last entry theArray[last] to get it out of the way while
we partition the array. Figure 11-10a shows an array after this step. Starting at the beginning of the
array and moving toward the end (left to right in the fi gure), look for the fi rst entry that is greater than or
equal to the pivot. In Figure 11-10b , that entry is 5 and occurs at the index indexFromLeft . In a similar
fashion, starting at the next-to-last entry and moving toward the beginning of the array (right to left in
the fi gure), look for the fi rst entry that is less than or equal to the pivot. In Figure 11-10b , that entry is 2
and occurs at the index indexFromRight . Now, if indexFromLeft is less than indexFromRight , swap
the two entries at those indices. Figure 11-10c shows the result of this step. The 2, which is less than

FIGURE 11-10 A partitioning of an array during a quick sort

(a) 3 5 0 4 6 1 2 4

0 1 2 3 4 5 6 7
Pivot

(b)

indexFromLeft 1 3 5 0 4 6 1 2 4 6 indexFromRight

0 1 2 3 4 5 6 7

(c)

indexFromLeft 1 3 2 0 4 6 1 5 4 6 indexFromRight
0 1 2 3 4 5 6 7

(d)

indexFromLeft 3 3 2 0 4 6 1 5 4 5 indexFromRight
0 1 2 3 4 5 6 7

(e)

indexFromLeft 3 3 2 0 1 6 4 5 4 5 indexFromRight
0 1 2 3 4 5 6 7

(f)

indexFromLeft 4 3 2 0 1 6 4 5 4 3 indexFromRight
0 1 2 3 4 5 6 7

(g) 3 2 0 1 6 4 5 4
0 1 2 3 4 5 6 7

(h) 3 2 0 1 4 4 5 6
0 1 2 3 4 5 6 7

S1 Pivot S2

Place your
chosen pivot in
theArray[last]
before partitioning

 Faster Sorting Algorithms 321

the pivot, has moved toward the beginning of the array, while the 5, which is greater than the pivot,
has moved in the opposite direction.

 Continue the searches from the left and from the right. Figure 11-10d shows that the search
from the left stops at 4 and the search from the right stops at 1. Since indexFromLeft is less than
indexFromRight , swap 4 and 1. The array now appears as in Figure 11-10e . Entries equal to the pivot
are allowed in either piece of the partition.

 Continue the searches again. Figure 11-10f shows that the search from the left stops at 6, while
the search from the right goes beyond the 6 to stop at 1. Since indexFromLeft is not less than
indexFromRight , no swap is necessary and the searches end. The only remaining step is to place the
pivot between the subarrays S1 and S2 by swapping a[indexFromLeft] and a[last] , as Figure 11-10g
shows. The completed partition appears in Figure 11-10 h.

 Note that the previous searches must not go beyond the ends of the array. Soon you will see a
convenient way to implement this requirement.

 Entries equal to the pivot. Notice that both of the subarrays S1 and S2 can contain entries equal to
the pivot. This might seem a bit strange to you. Why not always place any entries that equal the pivot
into the same subarray? Such a strategy would tend to make one subarray larger than the other.
However, to enhance the quick sort’s performance, we want the subarrays to be as nearly equal in size
as possible.

 Notice that both the search from the left and the search from the right stop when they encounter
an entry that equals the pivot. This means that rather than leaving such entries in place, they are
swapped. It also means that such an entry has a chance of landing in each of the subarrays.

Selecting a pivot. Ideally, the pivot should be the median value in the array, so that the subarrays S1
and S2 each have the same—or nearly the same—number of entries. One way to fi nd the median value
is to sort the array and then get the value in the middle. But sorting the array is the original problem,
so this circular logic is doomed. So instead of getting the best pivot by fi nding the median of all values
in the array, we will at least try to avoid a bad pivot.

 We will take as our pivot the median of three entries in the array: the fi rst entry, the middle entry,
and the last entry. One way to accomplish this task is to sort only those three entries and use the mid-
dle entry of the three as the pivot. Figure 11-11 shows an array both before and after its fi rst, middle,
and last entries are sorted. The pivot is the 5. This pivot selection strategy is called median-of-three
pivot selection.

 This pivot selection scheme assumes that the array has at least three entries. If you have only
three entries, the pivot selection sorts them, so there is no need for the partition method or for a quick
sort. Thus, we now assume that the array contains at least four entries.

 The following pseudocode describes how to sort the fi rst, middle, and last entries in an array of at
least four entries. For example, it will transform the array in Figure 11-11a to the one in Figure 11-11b .

FIGURE 11-11 Median-of-three pivot selection: (a) The original array; (b) the array with its
fi rst, middle, and last entries sorted

(a) 5 8 6 4 9 3 7 1 2

(b) 2 8 6 4 5 3 7 1 9

Pivot

322 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 // Arranges the first, middle, and last entries in an array into ascending order.
sortFirstMiddleLast(theArray: ItemArray, first: integer, mid: integer,
 last: integer): void

if (theArray[first] > theArray[mid])
Interchange theArray[first] and theArray[mid]

if (theArray[mid] > theArray[last])
Interchange theArray[mid] and theArray[last]

if (theArray[first] > theArray[mid])
Interchange theArray[first] and theArray[mid]

 Adjusting the partition algorithm. Median-of-three pivot selection suggests some minor adjust-
ments to our partitioning scheme. Previously, we swapped the pivot with the last entry in the array
prior to partitioning. But here the fi rst, middle, and last entries in the array are sorted, so we know that
the last entry is at least as large as the pivot. Thus, the last entry belongs in the subarray S2 . We can
simply leave the last entry in place. To get the pivot out of the way, we can swap it with the next-to-last
entry, a[last - 1] , as Figure 11-12 shows. Therefore, the partition algorithm can begin its search
from the right at index last - 2 .

 Also notice that the fi rst entry is at least as small as the pivot, and so it belongs in the subarray S1 .
Thus, we can leave the fi rst entry in place and have the partition algorithm begin its search from the left
at index first + 1 . Figure 11-12b shows the status of the array at this point, just prior to partitioning.

 This scheme provides a side benefi t that simplifi es the loops for the two searches. The search from
the left looks for an entry that is greater than or equal to the pivot. That search will terminate because,
at worst, it will stop at the pivot. The search from the right looks for an entry that is less than or equal to
the pivot. That search will terminate because, at worst, it will stop at the fi rst entry. Thus, the loops
need not do anything special to prevent the searches from going beyond the ends of the array.

 After the search loops end, we need to position the pivot between the subarrays S1 and S2 . We do
this by swapping the entries a[indexFromLeft] and a[last - 1] .

FIGURE 11-12 (a) The array with its fi rst, middle, and last entries sorted; (b) the array after
positioning the pivot and just before partitioning

(a) 2 8 6 4 5 3 7 1 9

Pivot

(b) 2 8 6 4 1 3 7 5 9

indexFromLeft

Pivot

indexFromRight

 Note: The quick sort rearranges the entries in an array during the partitioning process.
Each partition places one entry—the pivot—in its correct sorted position. The entries in
each of the two subarrays that are before and after the pivot will remain in their respective
subarrays.

 Faster Sorting Algorithms 323

 The following pseudocode describes the partitioning algorithm for an array of at least four entries:

 // Partitions theArray[first..last].
partition(theArray: ItemArray, first: integer, last: integer): integer

 // Choose pivot and reposition it
mid = first + (last - first) / 2

 sortFirstMiddleLast(theArray, first, mid, last)
Interchange theArray[mid] and theArray[last – 1]
pivotIndex = last - 1

 pivot = theArray[pivotIndex]

 // Determine the regions S 1 and S 2
indexFromLeft = first + 1

 indexFromRight = last - 2

done = false
while (not done)
{

 // Locate first entry on left that is ≥ pivot
while (theArray[indexFromLeft] < pivot)

indexFromLeft = indexFromLeft + 1

 // Locate first entry on right that is ≤ pivot
while (theArray[indexFromRight] > pivot)

indexFromRight = indexFromRight - 1

if (indexFromLeft < indexFromRight)
{

Move theArray[firstUnknown] into S1
Interchange theArray[indexFromLeft] and theArray[indexFromRight]
indexFromLeft = indexFromLeft + 1
indexFromRight = indexFromRight - 1

}
else

done = true
}

 // Place pivot in proper position between S 1 and S 2 , and mark its new location
Interchange theArray[pivotIndex] and theArray[indexFromLeft]
pivotIndex = indexFromLeft

return pivotIndex

The partition
algorithm

 Question 9 Trace the quick sort’s partitioning algorithm as it partitions the following
array: 38 16 40 39 12 27

CHECK POINT

 A function for the quick sort. Before completing the C++ code for the quick sort, we need to
think about small arrays. You have seen that the array should contain at least four entries before
you call the partition method. But simply agreeing to use the quick sort only on large arrays is not
enough. The pseudocode just given for the quick sort shows that partitioning even a large array
will eventually lead to a recursive call that involves an array as small as two entries. The code for
the quick sort needs to screen out these small arrays and use another way to sort them. An insertion
sort is a good choice for small arrays. In fact, using it instead of the quick sort on arrays of as many
as ten entries is reasonable. The function in Listing 11-5 implements the quick sort with these

324 CHAPTER 11 Sorting Algorithms and Their Effi ciency

observations in mind. It assumes a constant MIN_SIZE that specifi es the size of the smallest array
on which we will use a quick sort.

Quick sort: Worst
case: O(n 2); average
case: O(n log n)

 LISTING 11-5 A function that performs a quick sort

 /** Sorts an array into ascending order. Uses the quick sort with
 median-of-three pivot selection for arrays of at least MIN_SIZE
 entries, and uses the insertion sort for other arrays.
 @pre theArray[first..last] is an array.
 @post theArray[first..last] is sorted.
 @param theArray The given array.
 @param first The first element to consider in theArray.
 @param last The last element to consider in theArray. */
 void quickSort(ItemType theArray[], int first, int last)
 {

if (last - first + 1 < MIN_SIZE)
 {
 insertionSort(theArray, first, last);
 }

else
 {

// Create the partition: S1 | Pivot | S2
int pivotIndex = partition(theArray, first, last);

// Sort subarrays S1 and S2
 quickSort(theArray, first, pivotIndex - 1);
 quickSort(theArray, pivotIndex + 1, last);
 } // end if
} // end quickSort

 Analysis. The major effort in the quickSort function occurs during the partitioning step. Parti-
tioning will require no more than n comparisons, and so, like merging, it will be an O(n) task. The
ideal situation occurs when the pivot moves to the center of the array, so the two subarrays that
the partition forms are the same size. If every recursive call to quickSort forms a partition with
equal-sized subarrays, the quick sort will be like a merge sort in that the recursive calls halve the
array. Thus, fewer recursive calls to quickSort occur. As in the previous analysis of the merge sort,
you can conclude that there are either log 2 n or 1 + log 2 n levels of recursive calls to quickSort .
Each call to quickSort involves m comparisons and at most m exchanges, where m is the number of
items in the subarray to be sorted. Clearly m ≤ n – 1. Thus, a quick sort would be O(n log n), and this
would be its best case.

 This ideal situation might not always occur, however. It is possible that each partition has one
empty subarray. Although one recursive call will have nothing to do, the other call must sort n – 1
entries instead of n / 2. This occurrence is the worst case because the nonempty subarray decreases in
size by only 1 at each recursive call to quickSort , and so the maximum number of recursive calls to
quickSort will occur. The result is n levels of recursive calls instead of log n . Thus, in the worst case,
quick sort is O(n2).

 A formal analysis of the average-case behavior of a quick sort would show that it is O(n log n).
While the merge sort is always O(n log n), the quick sort can be faster in practice and does not require

 Faster Sorting Algorithms 325

the additional memory that merge sort needs for merging. Moreover, on large arrays, you can expect
a quick sort to run signifi cantly faster than an insertion sort. However, in its worst case, a quick sort
will require roughly the same amount of time as an insertion sort.

 The fact that the quick sort’s average-case behavior is far better than its worst-case behavior dis-
tinguishes it from the other sorting algorithms considered in this chapter. If the original arrangement
of data in the array is “random,” the quick sort performs at least as well as any known sorting algo-
rithm that involves comparisons.

 The effi ciency of a merge sort is somewhere between the possibilities for a quick sort: Some-
times the quick sort is faster, and sometimes the merge sort is faster. While the worst-case behavior of
a merge sort is of the same order of magnitude as a quick sort’s average-case behavior, in most situa-
tions a quick sort will run somewhat faster than a merge sort. However, in its worst case, the quick
sort will be signifi cantly slower than the merge sort.

 Note: The choice of pivots affects the quick sort’s effi ciency. Some pivot-selection
schemes can lead to worst-case behavior if the array is already sorted or nearly sorted.
In practice, nearly sorted arrays can occur more frequently than you might imagine.
Fortunately, median-of-three pivot selection avoids worst-case behavior for sorted
arrays.

 Note: The quick sort is often used to sort large arrays, as it is usually extremely fast in
practice, despite its unimpressive theoretical worst-case behavior. Although a worst-case
situation is not typical, even if the worst case occurs, the quick sort’s performance is
acceptable for moderately large arrays.

 Note: The quick sort is appropriate when you are confi dent that the data in the array to
be sorted is arranged randomly. Although the quick sort’s worst-case behavior is O(n2),
the worst case rarely occurs in practice.

 ASIDE: Quick sort versus merge sort and kSmall

 The quickSort and mergeSort algorithms are similar in spirit, but whereas quickSort does its
work before its recursive calls, mergeSort does its work after its recursive calls. That is, while
quickSort has the form

 quickSort(theArray, first, last)

if (first < last)
{

Prepare array for recursive calls
quickSort(S1 region of theArray)

(continues)

326 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 Question 10 Suppose that you sort a large array of integers by using a merge sort. Next
you use a binary search to determine whether a given integer occurs in the array. Finally, you
display all of the integers in the sorted array.

a. Which algorithm is faster, in general: the merge sort or the binary search? Explain
in terms of Big O notation.

b. Which algorithm is faster, in general: the binary search or displaying the integers?
Explain in terms of Big O notation.

CHECK POINT

quickSort(S2 region of theArray)
}

 mergeSort has the general form

mergeSort(theArray, first, last)

 if (first < last)
{

mergeSort(Left half of theArray)
mergeSort(Right half of theArray)
Tidy up array after the recursive calls

}

 The preparation in quickSort is to partition the array into regions S1 and S2 . The algorithm
then sorts S1 and S2 independently, because every item in S1 belongs to the left of every item in S2 .
In mergeSort , on the other hand, no work is done before the recursive calls: The algorithm sorts
each half of the array with respect to itself. However, the algorithm must still deal with the interac-
tion between the items in the two halves. That is, the algorithm must merge the two halves of the
array after the recursive calls.

 Now recall the pseudocode function kSmall , described in Chapter 2 , that returns the kth

smallest value in an array:

 kSmall(k, theArray, first, last): ItemType

Choose a pivot value p from anArray[first..last]
Partition the values of anArray[first..last] about p

if (k < pivotIndex - first + 1)
return kSmall(k, anArray, first, pivotIndex - 1)

else if (k == pivotIndex - first + 1)
return p

else
return kSmall(k - (pivotIndex - first + 1), anArray,

pivotIndex + 1, last)

 The recursive calls to kSmall act only on the section of the array that contains the desired
item, and it is not called at all if the desired item is the pivot. On the other hand, quickSort
is called recursively on both unsorted sections of the array. Figure 11-13 illustrates this
difference.

 Faster Sorting Algorithms 327

FIGURE 11-13 kSmall versus quickSort

quicksort(theArray,first,last)

OR

AND

kSmall(k,theArray,first,last)

kSmall(k,theArray,first,pivotIndex–1)
kSmall(k–(pivotIndex–first+1),
theArray,pivotIndex+1,last)

quicksort(theArray,first,pivotIndex–1) quicksort(theArray,pivotIndex+1,last)

Group strings by
their rightmost letter

 11.2.3 The Radix Sort

 The radix sort is included here because it is quite different from the other sorts we’ve described, as it
does not compare the array’s entries.

 Imagine again that you are sorting a hand of cards. This time you pick up the cards one at a time and
arrange them by rank into 13 possible groups in this order: 2, 3, . . . , 10, J, Q, K, A. Combine these groups
and place the cards face down on the table so that the 2s are on top and the aces are on the bottom. Now
pick up the cards one at a time and arrange them by suit into four possible groups in this order: clubs,
diamonds, hearts, and spades. When taken together, the groups result in a sorted hand of cards.

 A radix sort uses this idea of forming groups and then combining them to sort a collection of
data. The sort treats each data item as a character string. As a fi rst simple example of a radix sort, con-
sider this collection of three-letter strings:

 ABC, XYZ, BWZ, AAC, RLT, JBX, RDT, KLT, AEO, TLJ

 The sort begins by organizing the data according to the rightmost (least signifi cant) letters. Although
none of the strings ends in A or B , two strings end in C . Place those two strings into a group. Continu-
ing through the alphabet, you form the following groups:

 (ABC, AAC) (TLJ) (AEO) (RLT, RDT, KLT) (JBX) (XYZ, BWZ)

 The strings in each group end with the same letter, and the groups are ordered by that letter. In addi-
tion, the strings within each group retain their relative order from the original list of strings.

 Now combine the groups into one as follows. Take the items in the fi rst group in their present
order, follow them with the items in the second group in their present order, and so on. The following
group results:

 ABC, AAC, TLJ, AEO, RLT, RDT, KLT, JBX, XYZ, BWZ

 Next, form new groups as you did before, but this time use the middle letter of each string instead of
the last letter:

Combine the groups

328 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 (AAC) (A B C, J B X) (R D T) (A E O) (T L J, R L T, K L T) (B W Z) (X Y Z)

 Now the strings in each group have the same middle letter, and the groups are ordered by that letter. As
before, the strings within each group retain their relative order from the previous group of all strings.

 Combine these groups into one group, again preserving the relative order of the items within
each group:

 AAC, ABC, JBX, RDT, AEO, TLJ, RLT, KLT, BWZ, XYZ

 Now form new groups according to the fi rst letter of each string:

 (A AC, A BC, A EO) (B WZ) (J BX) (K LT) (R DT, R LT) (T LJ) (X YZ)

 Finally, combine the groups, again maintaining the relative order within each group:

 AAC, ABC, AEO, BWZ, JBX, KLT, RDT, RLT, TLJ, XYZ

 The strings are now in sorted order.
 In the previous example, all character strings had the same length. If the character strings have

varying lengths, you can treat them as if they were the same length by padding them on the right with
blanks as necessary.

 To sort numeric data, the radix sort treats a number as a character string. You can treat numbers as
if they were padded on the left with zeros, making them all appear to be the same length. You then
form groups according to the right-most digits, combine the groups, form groups according to the
next-to-last digits, combine them, and so on, just as you did in the previous example. Figure 11-14
shows a radix sort of eight integers.

Combine the groups

Group the strings by
their fi rst letter

Sorted strings

FIGURE 11-14 A radix sort of eight integers

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004)

1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004

(0004) (0222, 0123) (2150, 2154) (1560, 1061) (0283)

0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560)

0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154)

0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Original integers

Grouped by fourth digit

Combined

Grouped by third digit

Combined

Grouped by second digit

Combined

Grouped by first digit

Combined (sorted)

 The following pseudocode describes the algorithm for a radix sort of n decimal integers of d dig-
its each:

 // Sorts n d-digit integers in the array theArray.
radixSort(theArray: ItemArray, n: integer, d: integer): void

for (j = d down to 1)
{

Initialize 10 groups to empty
Initialize a counter for each group to 0
for (i = 0 through n - 1)

Group the strings by
their middle letter

 A Comparison of Sorting Algorithms 329

 Question 11 Trace the radix sort as it sorts the following array into ascending order:
3812 1600 4012 3934 1234 2724 3333 5432

CHECK POINT

FIGURE 11-15 Approximate growth rates of time required for eight sorting algorithms

Selection sort
Bubble sort
Insertion sort
Merge sort
Quick sort
Radix sort
Tree sort
Heap sort

n2

n2

n2

n × log n
n2

n
n2

n × log n

n2

n2

n2

n × log n
n × log n
n
n × log n
n × log n

Worst case Average case

Even though the
radix sort is O(n), it
is not appropriate as
a general-purpose
sorting algorithm

 Note: The Standard Template Library (STL) provides several sort functions in the
library header <algorithm>. Consult C++ Interlude 7 for more information about the
STL and these functions.

{
k = jth digit of theArray[i]
Place theArray[i] at the end of group k
Increase kth counter by 1

}
Replace the items in theArray with all the items in group 0,
 followed by all the items in group 1, and so on.

}

 Analysis. From the pseudocode for the radix sort, you can see that this algorithm requires n moves
each time it forms groups and n moves to combine them again into one group. The algorithm per-
forms these 2 × n moves d times. Therefore, the radix sort requires 2 × n × d moves to sort n strings of
d characters each. However, notice that no comparisons are necessary. Thus, radix sort is O(n).

 Despite its effi ciency, the radix sort has some diffi culties that make it inappropriate as a general-
purpose sorting algorithm. For example, to perform a radix sort of strings of uppercase letters, you
need to accommodate 27 groups—one group for blanks and one for each letter. If the original data
collection contains n strings, each group must be able to hold n strings. For large n , this requirement
demands substantial memory if you use arrays for both the original data and the resulting groups.
However, you can save memory by using a chain of linked nodes for each of the 27 groups. Thus, a
radix sort is more appropriate for a chain than for an array.

 11.3 A Comparison of Sorting Algorithms
 Figure 11-15 summarizes the time required in the worst case and average case for the sorting algo-
rithms that appear in this chapter. For reference purposes, two other algorithms—the tree sort and heap
sort—are included here, even though you will not study them until Chapters 15 and 17 , respectively.

330 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 SUMMARY

 1. The selection sort, bubble sort, and insertion sort are all O(n2) algorithms. Although in a particular case one
might be faster than another, for large problems they all are slow. For small arrays, however, the insertion sort is
a good choice.

 2. The quick sort and merge sort are two very effi cient recursive sorting algorithms. In the average case, the quick
sort is among the fastest known sorting algorithms. However, the quick sort’s worst-case behavior is signifi -
cantly slower than the merge sort’s. Fortunately, the quick sort’s worst case rarely occurs in practice. The merge
sort is not quite as fast as the quick sort in the average case, but its performance is consistently good in all cases.
The merge sort has the disadvantage of requiring extra storage equal to the size of the array to be sorted.

 3. The radix sort is unusual in that it does not sort the array entries by comparing them. Thus, it is not always
applicable, making it inappropriate as a general-purpose sorting algorithm. However, when the radix sort is
applicable, it is an O(n) algorithm.

 EXERCISES

 1. This chapter’s analysis of the selection sort ignored operations that control loops or manipulate array indices.
Revise this analysis by counting all operations, and show that the algorithm is still O(n2).

 2. Trace the insertion sort as it sorts the following array into ascending order:

 20 80 40 25 60 40

 3. Trace the selection sort as it sorts the following array into ascending order:

 7 12 24 4 19 32

 4. Trace the bubble sort as it sorts the following array into descending order:

 12 23 5 10 34

 5. Apply the selection sort, bubble sort, and insertion sort to

 a. An array sorted into descending order: 8 6 4 2
 b. An array sorted into ascending order: 2 4 6 8

 6. How many comparisons would be needed to sort an array containing 25 entries using the bubble sort in

 a. The worst case?
 b. The best case?

 7. Find an array that makes the bubble sort exhibit its worst behavior.

 8. Revise the function selectionSort so that it sorts an array of instances of a class according to one int data
member, which is the sort key. Assume that the class contains a member method getSortKey that returns the
integer sort key.

 9. Write recursive versions of selectionSort , bubbleSort , and insertionSort .

 10. Trace the merge sort algorithm as it sorts the following array into ascending order. List the calls to mergeSort
and to merge in the order in which they occur.

 20 80 40 25 60 30

 Programming Problems 331

 11. When sorting an array by using a merge sort,

 a. Do the recursive calls to mergeSort depend on the values in the array, the number of items in the array,
or both? Explain.

 b. In what step of mergeSort are the items in the array actually swapped (that is, sorted)? Explain.

 12. Trace the quick sort algorithm as it sorts the following array into ascending order. List the calls to quicksort
and to partition in the order in which they occur.

 20 80 40 25 60 10 15

 13. Suppose that you remove the call to merge from the merge sort algorithm to obtain

 // Mystery algorithm for theArray[0..n-1].
mystery(theArray: ItemArray, n: integer): void

if (n > 1)
{

mystery(lefthalf(theArray))
 mystery(righthalf(theArray))
 }

 What does this new algorithm do?

 14. How many recursive calls are necessary when quickSort sorts an array of size n if you use median-of-three
pivot selection?

 15. Describe an iterative version of mergeSort .

 16. One criterion used to evaluate sorting algorithms is stability. A sorting algorithm is stable if it does not
exchange items that have the same sort key. Thus, items with the same sort key (possibly differing in other
ways) will maintain their positions relative to one another. For example, you might want to take an array of
students sorted by name and re-sort it by year of graduation. Using a stable sorting algorithm to sort the array
by year will ensure that within each year the students will remain sorted by name. Some applications mandate
a stable sorting algorithm. Others do not. Which of the sorting algorithms described in this chapter are stable?

 17. When we discussed the radix sort, we sorted a hand of cards by fi rst ordering the cards by rank and then by suit.
To implement a radix sort for this example, you could use two characters to represent a card, if you used the
letter T to represent a 10. For example, S2 is the 2 of spades and HT is the 10 of hearts.

 a. Trace the radix sort for this example.
 b. Suppose that you did not use T to represent a 10—that is, suppose that H10 is the 10 of hearts—and

that you padded the two-character strings on the right with a blank to form three-character strings.
How would a radix sort order the entire deck of cards in this case?

 PROGRAMMING PROBLEMS

 1. Add a counter to the functions insertionSort and mergeSort that counts the number of comparisons that are
made. Run the two functions with arrays of various sizes. At what size does the difference in the number of com-
parisons become signifi cant? How does this size compare with the size that the orders of these algorithms predict?

 2. Revise the function quickSort so that it always chooses the fi rst item in the array as the pivot. Add a counter to
the function partition that counts the number of comparisons that are made. Compare the behavior of the
revised function with the original one, using arrays of various sizes. At what size array does the difference in
the number of comparisons become signifi cant? For which pivot selection strategy does the difference in the
number of comparisons become signifi cant?

332 CHAPTER 11 Sorting Algorithms and Their Effi ciency

 3. Various partitioning strategies are possible for quick sort. What other strategies can you think of ? How do they
compare to the two studied in the previous programming problem?

 4. Consider the ADT list, as described in Chapters 8 and 9 . Add a method sort to the list.

 5. Repeat Programming problem 4, but assume a link-based implementation of the ADT list. Use a merge sort in
the defi nition of the method sort . Implement any other sorting algorithms that are appropriate for this imple-
mentation of a list.

 6. Repeat Programming Problem 4, but assume a link-based implementation of a list of strings. Use a radix sort in
the defi nition of the method sort .

 7. You can sort a large array of integers that are in the range 1 to 100 by using an array count of 100 items to count
the number of occurrences of each integer in the array. Fill in the details of this sorting algorithm, which is
called a bucket sort , and write a C++ function that implements it. What is the order of the bucket sort? Why is
the bucket sort not useful as a general sorting algorithm?

 8. The Shell sort (named for its inventor, Donald Shell) is an improved insertion sort. Rather than always exchang-
ing adjacent items—as in an insertion sort—the Shell sort can exchange items that are far apart in the array. The
Shell sort arranges the array so that every hth item forms a sorted subarray in a decreasing sequence of values. For
example, if h is 5, every fi fth item forms a sorted subarray. Ultimately, if h is 1, the entire array will be sorted.

 One possible sequence of h ’s begins at n / 2 and halves n until it becomes 1. By using this sequence, and by
replacing 1 with h and 0 with h – 1 in insertionSort , we get the following function for the Shell sort:

 void shellSort(ItemType theArray[], int n)
 {

for (int h = n / 2; h > 0; h = h / 2)
 {

for (int unsorted = h; unsorted < n; unsorted++)
 {
 DataItem nextItem = theArray[unsorted];

int loc = unsorted;
while ((loc >= h) && (theArray[loc - h] > nextItem))

 {
 theArray[loc] = theArray[loc - h];
 loc = loc – h;
 } // end while
 theArray[loc] = nextItem;
 } // end for
 } // end for
} // end shellSort

 Add a counter to the functions insertionSort and shellSort that counts the number of comparisons that are
made. Run the two functions with arrays of various sizes. At what size does the difference in the number of
comparisons become signifi cant?

 9. Write a program to display the running time of the sorts described in this chapter. Test the sorts on arrays of vari-
ous sizes. Arrays of the same size should contain identical entries. Use the function clock from <ctime> to time
each sort. See the beginning of the programming problems in Chapter 10 for an example of how to time code.

Class Relationships
and Reuse 4

 Contents
C4.1 Inheritance Revisited 333

 C4.1.1 Public, Private, and Protected Sections of a Class 338
 C4.1.2 Public, Private, and Protected Inheritance 340
 C4.1.3 Is-a and As-a Relationships 340

 C4.2 Containment: Has-a Relationships 342
 C4.3 Abstract Base Classes Revisited 343

Prerequisites
Chapter 1 Data Abstraction: The Walls
C++ Interlude 1 C++ Classes
C++ Interlude 2 Pointers, Polymorphism, and Memory Allocation
Chapter 6 Stacks
Chapter 8 Lists

C++ classes provide a way to enforce the walls of data abstraction by encapsulating
an abstract data type’s data and operations. An object-oriented approach, however, goes
well beyond encapsulation. Inheritance, polymorphism, and containment allow you to
defi ne new classes from existing classes. This interlude describes techniques that make
collections of reusable software components possible. Realize that much more can and
should be said about these techniques. Consider this interlude to be a refi nement and
expansion of the introduction to this material begun in C++ Interlude 1.

 C4.1 Inheritance Revisited
 When you think of inheritance, you might imagine a bequest of one million dollars
from some long-lost wealthy relative. In the object-oriented world, however, inherit-
ance describes the ability of a class to derive properties from a previously defi ned class.
These properties are like the genetic characteristics you received from your parents:
Some traits are the same, some are similar but different, and some are new.

 C++
Interlude

334 C++ INTERLUDE 4 Class Relationships and Reuse

 Inheritance, in fact, is a relationship among classes. One class can derive the behavior and struc-
ture of another class. For example, Figure C4-1 illustrates some relationships among various time-
pieces. Digital clocks, for example, include the clock in the dashboard of your car, the clock on the
sign of the downtown bank, and the clock on your microwave oven. All digital clocks have the same
underlying structure and perform operations such as

 Set the time
 Advance the time
 Display the time

 A digital alarm clock is a digital clock that also has alarm methods, such as

 Set the alarm
 Enable the alarm
 Sound the alarm
 Silence the alarm

 That is, a digital alarm clock has the structure and operations of a digital clock and, in addition, has an
alarm and operations to manipulate the alarm.

 You can think of the group of digital clocks and the group of digital alarm clocks as classes. The
class of digital alarm clocks is a derived class, or subclass, of the class of digital clocks. The class of
digital clocks is a base class, or superclass, of the class of digital alarm clocks. Inheritance enables
you to reuse software components when you defi ne a new class. For example, you can reuse your
design and implementation of an analog clock when you design a cuckoo clock.

 In C++, a derived class inherits all of the members of its base class, except the constructors and
destructor. That is, a derived class has the data members and methods of the base class in addition to
the members it defi nes. A derived class can also revise any inherited method. For example, according
to Figure C4-1 , a cuckoo clock is a descendant of an analog clock, like the one on a classroom wall.

FIGURE C4-1 Inheritance: Relationships among timepieces

Timepiece

Analog
Timepiece

Analog Clock

Analog
Alarm Clock

Cuckoo Clock

Sundial

Grandfather
Clock

Watch

Pocket
Watch

Digital
Timepiece

Digital
Wristwatch

Digital Clock

Analog
Wristwatch

Digital
Alarm Clock

A digital alarm clock
is a digital clock

Inheritance enables
the reuse of existing
classes

A derived class
inherits the
members of its base

A class can derive
the behavior and
structure of another

 Inheritance Revisited 335

The cuckoo clock inherits the structure and behavior of the analog clock, but revises the way it reports
the time each hour by adding a cuckoo.

 Sometimes a derived class has more than one base class. For example, as Figure C4-2 illustrates,
you can derive a class of clock radios from the class of digital clocks and the class of radios. This type
of relationship is known as multiple inheritance . Multiple inheritance must be used with care, since
it is possible for the base classes to have similarly named methods. For example, suppose that both
digital clocks and radios implemented a method turnOn . When the client calls the turnOn method in
the digital clock radio, you have no way to know which turnOn method is called. In this textbook, if
multiple inheritance is used, the derived class inherits code from only one base class; any other bases
classes should be abstract base classes.

 In C++ Interlude 1, we used plain boxes, toy boxes, and magic boxes as objects. While designing
the class of toy boxes, ToyBox , we decided that a toy box is simply a plain box with a color. This reali-
zation is signifi cant in that PlainBox —the class of plain boxes—already existed. Thus, we could let
PlainBox be a base class of ToyBox , and we implemented ToyBox without reinventing the basic box.
Toward that end, Listing C4-1 recalls the defi nition of the class PlainBox from Listing C1-3.

FIGURE C4-2 Multiple inheritance

Digital Clock

Digital Radio

Radio

Inheritance reduces
the effort necessary
to add features to an
existing object

LISTING C4-1 The class PlainBox , originally given in Listing C1-3

 template < class ItemType> ;
 class PlainBox
 {
 private :
 ItemType item;

 public :
 PlainBox();
 PlainBox(const ItemType& theItem);

void setItem(const ItemType& theItem);
 ItemType getItem() const ;
 }; // end PlainBox

A derived class can
add new members
to those it inherits

A derived class can
redefi ne an inherited
method of its base
class

 Our derived class ToyBox inherited all the members of the class PlainBox —except the construc-
tors and destructor—and made some changes. We added both a data member that held the box’s color
and methods to access and set the color.

 You can add as many new members to a derived class as you like. Although you cannot revise an
ancestor’s private data members and should not reuse their names, you can redefi ne other inherited
methods. A method in a derived class redefi nes a nonvirtual method in the base class if the two meth-
ods have the same name and parameter declarations.

 When the derived class MagicBox was implemented in C++ Interlude 1, we redefi ned the method
getItem so that it always returns the fi rst item stored in the box. Figure C4-3 illustrates the relation-
ship between PlainBox and MagicBox .

336 C++ INTERLUDE 4 Class Relationships and Reuse

 LISTING C4-2 The class MagicBox , originally given in Listing C1-7

 template < class ItemType> ;
 class MagicBox : public PlainBox<ItemType>
 {
 private :

bool firstItemStored;

 public :
 MagicBox();
 MagicBox(const ItemType& theItem);

void setItem(const ItemType& theItem);
 }; // end MagicBox

 Listing C4-2 shows the declaration of the class MagicBox , which was originally given in Listing
C1-7 of C++ Interlude 1.

An instance of a
derived class has all
the behaviors of its
base class

A derived class
inherits private
members from the
base class, but
cannot access them
directly

A derived class’s
methods can call the
base class’s public
methods

FIGURE C4-3 The derived class MagicBox inherits members of the base class PlainBox and
redefi nes and adds members

MagicBoxPlainBox

firstItemStored New

Redefined

item
PlainBox()
~PlainBox()
setItem()
getItem()

setItem()

 Adding a colon and public PlainBox after class MagicBox indicates that PlainBox is a base class
of MagicBox or, equivalently, that MagicBox is a derived class of PlainBox .

 An instance of the class MagicBox has two data members— item , which is inherited, and
firstItemStored , which is new. Because an instance of a derived class can invoke any public method in
the base class, an instance of MagicBox has all of the methods that PlainBox defi nes; new constructors;
a new, compiler-generated destructor; and a redefi ned method setItem . Although an instance of a
derived class contains copies of inherited data members, the code for inherited methods is not copied.

 A derived class cannot access the private members of the base class directly by name, even
though they are inherited. Inheritance does not imply access. After all, you can inherit a locked vault
but be unable to open it. In the current example, the data member item of Plain Bo x is private, so you
can reference it only within the defi nition of the class PlainBox and not within the defi nition of
ToyBox or MagicBox . However, the class ToyBox or MagicBox can use PlainBox ’s public methods
setItem and getItem to set or obtain the value of item indirectly.

 Within the implementation of MagicBox , you can use the public methods that MagicBox inherits
from PlainBox . For example, the redefi ned method setItem calls the inherited version of the method
setItem , which you indicate by writing PlainBox<ItemType>::setItem . This notation is necessary
to differentiate between the two versions of the method. Thus, you can access a base member, even
though it has been redefi ned, by using the scope resolution operator :: . The implementation of
MagicBox ’s setItem method is then

 template < class ItemType>
 void MagicBox<ItemType>::setItem(const ItemType& theItem)

 Inheritance Revisited 337

 {
if (!firstItemStored)

 {
 PlainBox<ItemType>::setItem(theItem);
 firstItemStored = true; // Box now has magic
 } // end if
} // end setItem

 Clients of a derived class also can invoke the public members of the base class. For example, if
you write

 MagicBox<string> myMagicBox("Volleyball");
string magicBoxItem = myMagicBox.getItem();

myMagicBox ’s item, " Volleyball ", is returned by the method getItem that MagicBox inherits from
PlainBox . If a new method has the same name as an ancestor method— setItem , for example—
instances of the new class will use the new method, while instances of the ancestor class will use the
original method. Therefore, if myPlainBox is a PlainBox object , the call myPlainBox.setItem(...)
will invoke PlainBox ’s setItem , whereas myMagicBox.setItem(...) will invoke MagicBox ’s
setItem , as Figure C4-4 illustrates. Because the compiler can determine which form of setItem to
use at compilation time—as opposed to at execution time—this situation is called early binding, as
introduced in C++ Interlude 2. Another term for early binding is static binding .

Clients of a derived
class can invoke the
base class’s public
methods

FIGURE C4-4 Early, or static, binding: The compiler determines which version of a method to
invoke

MagicBoxPlainBox

firstItemStoreditem

PlainBox()
~PlainBox()
setItem()
getItem()

setItem()

myPlainBox.setItem(...);
myMagicBox.setItem(...);

 Note: Inheritance and the execution order of constructors and destructors

 A derived class’s constructor executes after the base class’s constructor. For example, if
you defi ne an instance of MagicBox , its constructor executes after PlainBox ’s construc-
tor. The destructor of a derived class executes before the destructor of the base class. For
example, MagicBox ’s destructor executes before PlainBox ’s destructor. This is true for
constructors and destructors that you write as well as those generated by the compiler.

Early binding can
cause problems

 Early binding can lead to problems. For example, the statements

 PlainBox<string>* cardBoxPtr = new PlainBox<string>("Queen of Hearts");
cardBoxPtr->setItem("Jack of Spades");

 invoke PlainBox ’s version of setItem . Unfortunately, if cardBoxPtr points to an instance of Magic-
Box —for example, if you wrote

 PlainBox<string>* cardBoxPtr = new MagicBox<string>("Queen of Hearts");

338 C++ INTERLUDE 4 Class Relationships and Reuse

 the statement

 cardBoxPtr->setItem("Jack of Spades");

 still invokes PlainBox ’s version of setItem , instead of MagicBox ’s version. In this case, the compiler
determined the version of the method to invoke from the type of the pointer cardBoxPtr instead of
from the type of object to which cardBoxPtr points.

 Simply redefi ning setItem in MagicBox —as we did earlier—is insuffi cient. As was briefl y dis-
cussed in Section C1.5 of C++ Interlude 1 and Section C2.4 of C++ Interlude 2, you also need to tell the
compiler that derived classes of PlainBox might revise setItem so that the compiler can make accom-
modations for such an occurrence. You do this by making setItem a virtual method in PlainBox . Recall
that to make a particular method virtual, you simply write the keyword virtual before the method’s
declaration within the defi nition of the base class. For example, the class PlainBox appears as

 class PlainBox
 {
 public :

// Everything as before, except setItem
 · · ·

virtual ItemType setItem() const ;
 · · ·
 }; // end PlainBox

 The implementation of setItem is the same as given earlier.
 Now, when cardBoxPtr points to an instance of MagicBox , the statement

 cardBoxPtr->setItem("Jack of Spades");

 invokes MagicBox ’s version of setItem . Thus, the appropriate version of a method is decided at exe-
cution time, instead of at compilation time, based on the type of object to which cardBoxPtr points.
Recall from C++ Interlude 2 that this situation is called late binding. Another term for late binding is
dynamic binding . A method such as setItem is called polymorphic . That is, the outcome of a par-
ticular operation depends upon the objects on which the operation acts. We also say that MagicBox ’s
version of setItem overrides PlainBox ’s version.

 A virtual method in a derived class can override a virtual method in the base class if they have the
same declarations. Overriding a method is similar to redefi ning a method. However, you can override
only virtual methods. Note that you can omit virtual in the derived class. Any method in a derived
class that has the same declaration as an ancestor’s virtual method—such as setItem —is also virtual
without explicit identifi cation, although tagging it with virtual is desirable stylistically.

 Every class has a virtual method table (VMT) , which remains invisible to the programmer. For
each method in the class, the VMT contains a pointer to the actual instructions that implement the
method. For a method that is not virtual, the compiler can establish this pointer, since it knows the
method’s defi nition. For a virtual method, the compiler can not complete the VMT. Instead, a call to a
constructor during program execution sets the pointer, as Figure C4-5 illustrates. That is, the con-
structor establishes within the VMT pointers to the versions of the virtual methods that are appropri-
ate for the object. Thus, the VMT is the mechanism that enables late binding.

 C4.1.1 Public, Private, and Protected Sections of a Class

 In addition to its public and private sections, a class can have a protected section . By creating a pro-
tected section, a class designer can hide members from a class’s clients but make them available to a
derived class. That is, a derived class can reference the protected members of its base class directly,
but clients of the base class or derived class cannot.

Late binding means
that the appropriate
version of a method
is decided at
execution time

A polymorphic
method has multiple
meanings

A virtual method is
one that you can
override

A method that is
virtual in a base
class is virtual in any
derived class

VideoNote

C++ inheritance
and access

 Inheritance Revisited 339

 For example, PlainBox has a private member item , which the derived class MagicBox cannot
reference directly. If instead you declared item as protected, MagicBox would be able to access item
directly by name. Clients of MagicBox or PlainBox , however, would not have direct access to item .
We could then revise our implementation of MagicBox ’s setItem method as follows:

 template < class ItemType>
 void MagicBox<ItemType>::setItem(const ItemType& theItem)
 {

if (!firstItemStored)
 {
 item = theItem; // item has protected access
 firstItemStored = true; // Box now has magic
 } // end if
} // end setItem

 The following summary distinguishes among the public, private, and protected sections of a
class, and Figure C4-6 illustrates their access.

FIGURE C4-5 Virtual method tables when cardBoxPtr points to (a) an instance of PlainBox ;
(b) an instance of MagicBox

(a) PlainBox<string>* cardBoxPtr = new PlainBox<string>("Queen of Hearts");

cardBoxPtr

A PlainBox object

VMT for PlainBoxVMT pointer

item setItem Code for setItem in PlainBox

VMT for MagicBox

setItem Code for setItem in MagicBox

VMT pointer

item

firstItemStored

A MagicBox object

cardBoxPtr

(b) PlainBox<string>* cardBoxPtr = new MagicBox<string>("Queen of Hearts");

getItem Code for getItem in PlainBox

Code for setItem in PlainBoxgetItem

FIGURE C4-6 Access to public, private, and protected sections of a class by a client and a
derived class

Client

Base class

Private section

Protected section

Public section

Derived class

340 C++ INTERLUDE 4 Class Relationships and Reuse

 C4.1.2 Public, Private, and Protected Inheritance

 Several kinds of inheritance are possible. Regardless of the kind of inheritance, a derived class can
access all of the base class’s public and protected members, but not its private members. You can con-
trol how a class’s inherited members are passed to subsequent derived classes by specifying one of
three kinds of inheritance. You begin the defi nition of the derived class as

class DerivedClass : kindOfInheritance BaseClass

 where kindOfInheritance is one of public , private , or protected . The inheritance that you saw earlier
in this interlude is public inheritance. The following summary describes the three kinds of inheritance.

 Note: Stylistic guideline

 As a general stylistic guideline to maintain information hiding and to keep derived
classes from coupling directly to base class data members, you should make all data
members of a class private and, if required, provide indirect access to them by defi ning
accessor or mutator methods that are either public or protected. Although a class’s public
members are available to anyone, its protected members are available exclusively to
either its own methods or the methods of a derived class.

In general, a class’s
data members
should be private

 Note: Kinds of inheritance

• Public inheritance: Public and protected members of the base class remain, respec-
tively, public and protected members of the derived class.

• Protected inheritance: Public and protected members of the base class are protected
members of the derived class.

• Private inheritance: Public and protected members of the base class are private mem-
bers of the derived class.

 In all cases, private members of a base class remain private to the base class and cannot
be accessed by a derived class.

 Of the three types of inheritance, public inheritance is the most important and the one that we
will use most often in subsequent chapters. You use public inheritance to extend the defi nition of a
class. You use private inheritance to implement one class in terms of another class. Protected inherit-
ance is not often used, so we will not cover it.

 The following section describes when it is appropriate to use public and private inheritance.

 C4.1.3 Is-a and As-a Relationships

 As you just saw, inheritance provides for ancestor/descendant relationships among classes. Other
relationships are also possible. When designing new classes from existing ones, it is important to

 Note: Access categories of a class

• Public members can be used by anyone.
• Private members can be used only by methods of the class.
• Protected members can be used only by methods of the class or any derived class.

 Inheritance Revisited 341

identify their relationship so that you can determine whether to use inheritance and, if so, the kind of
inheritance that best refl ects the relationship. Three basic kinds of relationships are possible. In this
section we discuss is-a and as-a relationships, which involve inheritance. We discuss an important
third relationship, has-a , in Section C4.2.

 Is-a relationships. Earlier in this interlude, we used public inheritance to derive the class MagicBox
from PlainBox . You should use public inheritance only when an is-a relationship exists between two
classes of objects. In this example, a magic box is a plain box, as Figure C4-7 illustrates. That is, whatever
is true of the base class PlainBox is also true of the derived class MagicBox . Wherever you can use an
object of type PlainBox , you can also use an object of type MagicBox . This feature is called object type
compatibility . In general, a derived class is type-compatible with all of its ancestor classes. Thus, you
can use an instance of a derived class instead of an instance of its base class, but not the other way around.

 In particular, the object type of an argument in a call to a method can be a descendant of the object
type of the corresponding parameter. For example, suppose your program uses the classes PlainBox
and MagicBox and contains the following ordinary function, which is not a member of any class:

 void displayBoxItem(PlainBox<string> thing)
 {
 cout << "The item stored in the box is "
 << thing.getItem() << ".\n";
} // end displayBoxItem

 If you defi ne myPlainBox and myMagicBox as

 PlainBox<string> myPlainBox("Basketball");
MagicBox<string> myMagicBox("Volleyball");

 the following calls to displayBoxItem are legal:

 displayBoxItem(myPlainBox); // myPlainBox's item is displayed
displayBoxItem(myMagicBox); // myMagicBox's item is displayed

 The fi rst call is unremarkable because both the argument myPlainBox and the parameter thing have
the same data type. The second call is more interesting: The data type of the argument myMagicBox is
a descendant of the data type of the parameter thing . Because a magic box is a plain box, it can
behave like a plain box. That is, myMagicBox can perform plain box behaviors, so you can use myMag-
icBox anywhere you can use myPlainBox . Note that object type compatibility applies to both value
and reference arguments.

 As-a relationships. Consider the relationship between the class Stack , which implements the ADT
stack, and the class List , which implements the ADT list. Because a Stack object should not be able
to have List behaviors, public inheritance is inappropriate in this case. A stack is not a list. When
public inheritance is inappropriate, if your class needs access to the protected members of another

Public inheritance
implements an is-a
relationship

FIGURE C4-7 A magic box is a plain box

PlainBox

MagicBox

You can use an
instance of a
derived class
anywhere you can
use an instance of
the base class

Because a magic
box is a plain box,
you can use it
anywhere you can
use a plain box

If the relationship
between two
classes is not is-a ,
you should not use
public inheritance

342 C++ INTERLUDE 4 Class Relationships and Reuse

class or if you need to redefi ne methods in that class, you can form an as-a relationship between your
classes; that is, you can use private inheritance.

 To derive Stack from List using private inheritance, you begin the defi nition of the class Stack
with the header

class Stack : private List

List ’s public members—and protected members, if List has any—would be private members of
Stack . Thus, within the implementation of Stack , you would be able to use a list to store the stack’s
entries and manipulate them by using List ’s methods. We say that Stack implements the ADT stack
as a list. Both the descendants and clients of Stack are unable to access any members of List . Thus,
the underlying list is hidden from the clients of the stack.

 If public inheritance is inappropriate and your class does not need access to the protected mem-
bers of another class, or if you do not need to redefi ne methods in that class, a has-a relationship is
preferable and simpler to use. We consider that next.

 C4.2 Containment: Has-a Relationships
 A ball-point pen has a ball as its point, as Figure C4-8 illustrates. Although you would want to use
Ball in your defi nition of a class Pen , you should not use public inheritance, because a pen is not a
ball. In fact, you do not use inheritance at all to implement a has-a relationship . Instead, you can
defi ne a data member point —whose type is Ball —within the class Pen as

 class Pen
 {
 private:
 Ball point;

...
 }; // end Pen

 Recall that a data member can be an instance of any class other than the one currently being defi ned—
Pen , in this example. An instance of Pen has, or contains , an instance of Ball . Thus, another name for
the has-a relationship is containment .

 As you continue to examine the ball’s relationship to the pen, you may realize that if the pen is
destroyed, the ball should also be destroyed, since it no longer has a purpose. When an instance of
an object cannot exist independently of the containing class, this type of containment is called

 Has-a, or
containment, means
a class has an
object as a data
member

FIGURE C4-8 A pen has a or contains a ball

class Ball

class Pen

 Abstract Base Classes Revisited 343

composition . We have seen this in our link-based implementations of an ADT. For example, when
an instance of LinkedBag , LinkedStack , or LinkedList is destroyed, the nodes used to store the
container’s objects are no longer needed and are destroyed also. In the array-based implementa-
tions of our ADTs, the array containing the items is destroyed.

 Another form of containment is aggregation . In an aggregate relationship the contained item
can exist independently of the containing class. Our PlainBox class has an instance of ItemType
named item . If our plain box is destroyed, the program can continue to use item . Another example of
aggregation can be found in the implementations of our ADT bag, ADT stack, and ADT list: The
items stored in a bag, stack, or list continue to exist even after we are fi nished using the container and
it has been destroyed.

 Programming Tip: Favor containment over inheritance. Use public inheritance
when an is-a relationship exists, that is, when an instance of a derived class can substitute
for an instance of the base class. Use private inheritance when you want to reuse a part of
another class’s implementation.

 Note: Containment and the execution order of constructors and destructors

 The constructors for a class’s member objects execute in the order listed in the class defi -
nition before the class’s constructor. For example, Ball ’s constructor executes before
Pen ’s constructor. The destructors of a class’s member objects execute after the class’s
destructor. For example, Ball ’s destructor executes after Pen ’s.

Note: Execution order of constructors and destructors

 Considering both inheritance and containment, a class’s constructors execute in the
following order:

 1. Its base class constructor executes.
 2. Constructors of its member objects execute in the declaration order.
 3. The body of its constructor executes.

 A class’s destructors execute in the opposite order:

 1. The body of its destructor executes.
 2. Destructors of its member objects execute in the declaration order.
 3. Its base class destructor executes.

 C4.3 Abstract Base Classes Revisited
 Imagine a CD player (CDP) and a DVD player (DVDP). Both devices share several characteristics.
Each involves a compact disc. You can insert, remove, play, and stop such discs. You can also skip for-
ward or skip backward from the current position on the disc. Some of these operations are essentially
the same for both devices, while others—in particular, the play operation—are different but similar.

 If you were specifying both devices, you might begin by describing the common operations.

 // Inserts a disc into the player.
 +insert()

Disc transport
operations

344 C++ INTERLUDE 4 Class Relationships and Reuse

 // Removes a disc from the player.
 +remove()

 // Plays the disc.
 +play()

 // Stops playing the disc.
 +stop()

 // Skips ahead to another section of the disc.
 +skipForward()

 // Skips back to an earlier section of the disc.
 +skipBackward()

 These operations could constitute a generic disc player (GDP).
 If GDP, CDP, and DVDP were classes, GDP could be the base class of CDP and DVDP, as

 Figure C4-9 illustrates. While GDP could implement operations such as insert and remove that
would be suitable for both a CDP and a DVDP, it could only indicate that these devices have a play
operation. So CDP, for example, inherits the operations provided by GDP but overrides the play
operation to suit CDs, as Figure C4-10 illustrates. If necessary, CDP could override any of GDP’s
operations or defi ne additional ones. We can make similar comments about DVDP. Thus,

• A CDP is a GDP that plays sound.
• A DVDP is a GDP that plays sound and video.

 Because GDP cannot implement its play operation, we would not want instances of it. So GDP is
simply a class without instances that forms the basis of other classes. If a class never has instances, its
methods need not be implemented. Such methods, however, must be virtual so that derived classes
can supply their own implementations. A virtual method with an undefi ned body is called a pure vir-
tual method and is written as

virtual prototype = 0;

 within a class defi nition. The implementation of a pure virtual method is deferred to a derived class.

FIGURE C4-9 CDP and DVDP have an abstract base class

GDP

CDP DVDP Inherits structure
and operations
of GDP; overrides
play

Specifies basic structure
and operations

+insert()
+remove()
+stop()
+skipForward()
+skipBackward()
+play()

+play() +play()

A pure virtual
method has an
undefi ned body

 Abstract Base Classes Revisited 345

FIGURE C4-10 CDP and DVDP are derived from GDP

insert
remove
stop
skipForward
skipBackward
play play

Inherits

GDP CDP or DVDP

Overrides

 Chapter 1 defi ned an abstract base class as a class that contains at least one virtual method that
has no implementation. We can now restate that defi nition as a class that contains at least one pure
virtual method. An abstract base class has no instances and is used only as the basis of other classes.
Thus, the GDP class is an abstract base class, because it does not implement all of its methods. Any
derived class that fails to implement all of the pure virtual methods is also an abstract base class and
cannot have instances.

 An abstract base class can provide a constructor, which cannot be pure because constructors can-
not be virtual. A destructor in an abstract base class should not be pure, because derived classes will
call it, and thus, it should be implemented even if it simply has an empty body. Generally, virtual
destructors are recommended.

 As you have seen, an abstract base class is a great place to specify an ADT. By defi ning the methods
that make up the ADT’s public interface as pure virtual methods, we force any derived class to imple-
ment these methods, ensuring a common interface across implementations. For example, Listing C4-3
contains the abstract base class for boxes from C++ Interlude 1 with the addition of a virtual destructor.

A class that contains
at least one pure
virtual method is an
abstract base class

An abstract base
class has
descendants
but no instances

 LISTING C4-3 An abstract class that is an interface for the ADT box

 template < class ItemType>
 class BoxInterface
{
 public :
 virtual ~BoxInterface() { } // Empty implementation

virtual void setItem(const ItemType& theItem) = 0;
virtual ItemType getItem() const = 0;

 }; // end BoxInterface

 We can indicate that our class PlainBox is derived from BoxInterface by changing its class header to

class PlainBox : public BoxInterface<ItemType>

 We can also defi ne a new class, JewelryBox , that provides an alternate implementation of the meth-
ods in BoxInterface . Its class header would be

 class JewelryBox : public BoxInterface<ItemType>

 Figure C4-11 shows the family of box classes.

346 C++ INTERLUDE 4 Class Relationships and Reuse

 If we defi ne several pointer variables of type BoxInterface , we can have them point to instances
of any of the derived classes:

 BoxInterface<string>* someBoxPtr = new PlainBox<string>("Ace");
BoxInterface<string>* anotherBoxPtr = new JewelryBox<string>("Emerald");
BoxInterface<string>* funBoxPtr = new MagicBox<string>("Stone");

 For each of the objects created, we can call the setItem or getItem method, and the implementation
specifi c to the instantiated class will execute, even though the pointers are of type BoxInterface :

 cout << someBoxPtr->getItem() << endl; // Uses PlainBox getItem
cout << anotherBoxPtr->getItem() << endl; // Uses JewelryBox getItem
cout << funBoxPtr->getItem() << endl; // Uses MagicBox getItem, which

// is PlainBox getItem

 The key points about abstract base classes are summarized next.

FIGURE C4-11 UML class diagram of the family of box classes

BoxInterface

PlainBox
JewelryBox

ToyBox MagicBox

 Note: Abstract base classes

 An abstract base class:

• By defi nition is a class that contains at least one pure virtual method.
• Is used only as the basis for derived classes and thus defi nes a minimum interface

for its descendants.
• Has no instances.
• Should, in general, omit implementations except for the destructor and methods

that provide access to private data members. That is, virtual methods in an abstract
base class usually should be pure.

• Must implement any virtual method that is not pure, thereby providing a default
implementation if a derived class chooses not to supply its own.

 ChapterSorted Lists
and Their

Implementations 12
 Contents
 12.1 Specifying the ADT Sorted List 348

 12.1.1 An Interface Template for the ADT Sorted List 350
 12.1.2 Using the Sorted List Operations 351

 12.2 A Link-Based Implementation 352
 12.2.1 The Header File 353
 12.2.2 The Implementation File 354
 12.2.3 The Effi ciency of the Link-Based Implementation 357

 12.3 Implementations That Use the ADT List 357
 12.3.1 Containment 357
 12.3.2 Public Inheritance 362
 12.3.3 Private Inheritance 366

 Summary 367
 Exercises 368
 Programming Problems 371

 Prerequisites
 Chapter 8 Lists
 Chapter 10 Algorithm Effi ciency
 C++ Interlude 4 Class Relationships and Reuse

One of the most frequently performed computing tasks is the maintenance of a
collection of data in some specifi ed order. Many examples immediately come to mind,
such as students placed in order by their names, baseball players listed in order by their
batting averages, and corporations listed in order by their assets. The items in these
examples are in sorted order . In contrast, the items on a grocery list might occur in the
order in which they appear on the grocer’s shelves, but they are probably not sorted by
name. These items are ordered simply by their positions within the list.

348 CHAPTER 12 Sorted Lists and Their Implementations

 The ADT sorted list maintains its entries in sorted order. The problem of maintaining sorted data
involves more than simply sorting the data. Often you need to insert some new data item into its
proper, sorted place. Similarly, you often need to remove some data item. For example, suppose your
university maintains an alphabetical list of the students who are currently enrolled. The registrar must
add names to and remove names from this list because students constantly enroll in and leave school.
These operations should preserve the sorted order of the data.

 This chapter specifi es the ADT sorted list and then implements it in several ways. A major goal
of this chapter is to show you how we can develop a class of sorted lists from an existing class of lists.

 12.1 Specifying the ADT Sorted List
 The ADT list leaves it up to the client to arrange the entries in a given collection. The client can main-
tain the entries in any order that meets its needs. Recall that to use the insert operation of the ADT
list, you must specify both the new entry and its desired position within the list. The ADT sorted list
differs from the ADT list in that a sorted list inserts and removes items by their values and not by their
positions. For example, the sorted list insertion operation determines the proper position for the new
entry according to its value. Since a sorted list is responsible for organizing its entries, it has no opera-
tion that inserts a new entry by position. If you were allowed to specify a new entry’s position, you
might destroy the order of the sorted list’s entries.

The ADT sorted list
maintains items in
sorted order

 Note: The ADT sorted list is a container of items that determines and maintains the
order of its entries by their values. For simplicity, we will allow the sorted list to contain
duplicate items. Insisting that the sorted list contain only unique items is somewhat more
complicated, and we will leave this variation as an exercise.

 What other operations do we want for this ADT? We’ve already mentioned that you can add an
entry to the sorted list. Since the sorted list determines the position of a new entry, you could ask the
ADT for this position. That is, you could ask for the position of an existing entry or for the position in
which a proposed entry would occur if you added it to the list. You could also ask the ADT for the
entry at a particular position. And clearly you should be able to remove an entry. We could remove a
particular entry given its value, but we could also remove an entry given its position in the sorted list.
We will include both of these removal operations.

 Let’s itemize the sorted list’s operations—including common ones like getting the current
number of entries—and specify them more carefully. Note that none of the operations on a sorted list
that involve the position of an entry destroys the list’s sorted order.

 Note: ADT sorted list operations

• Test whether a sorted list is empty.
• Get the number of entries in a sorted list.
• Insert an entry into a sorted list.
• Remove a given entry from a sorted list.
• Remove the entry at a given position from a sorted list.
• Remove all entries from the sorted list.
• Look at (get) the entry at a given position in the list.
• Get the position in a sorted list of a given entry.

 Specifying the ADT Sorted List 349

 Figure 12-1 shows the UML diagram for this ADT, and the following summary of its operations
provides even more details for its operation contract:

 ABSTRACT DATA TYPE: SORTED LIST

 DATA

 • A fi nite number of objects, not necessarily distinct, having the same data type and ordered by their values.

 OPERATIONS

 PSEUDOCODE DESCRIPTION

 insertSorted(newEntry) Task: Inserts an entry into this sorted list in its proper order so that the list remains
sorted.

 Input: newEntry is the new entry.
 Output: None.

 removeSorted(anEntry) Task: Removes the fi rst or only occurrence of anEntry from this sorted list.
 Input: anEntry is the entry to remove.
 Output: Returns true if anEntry was located and removed, or false if not. In the latter

case, the list remains unchanged.

 getPosition(anEntry) Task: Gets the position of the fi rst or only occurrence of anEntry in this sorted list.
 Input: anEntry is the entry to be located.
 Output: Returns the position of anEntry if it occurs in the sorted list. Otherwise, returns

the position where anEntry would occur in the list, but as a negative integer.

 The following operations behave as they do for the ADT list and are described in Chapter 8 :
isEmpty()

 getLength()

 remove(position)

 clear()

 getEntry(position)

FIGURE 12-1 UML diagram for the ADT sorted list

SortedList

+isEmpty(): boolean
+getLength(): integer
+insertSorted(newEntry: ItemType): void
+removeSorted(newEntry: ItemType): boolean
+remove(position: integer): boolean
+clear(): void
+getEntry(position: integer): ItemType
+getPosition(newEntry: ItemType): integer

350 CHAPTER 12 Sorted Lists and Their Implementations

 The fi rst two methods are straightforward, but let’s look more closely at getPosition . Given an
entry in the sorted list, the method getPosition returns the entry’s position number within the list, as
you would expect. We number the entries beginning with 1, just as we do for the ADT list. But what if
the given entry is not in the sorted list? In this case, getPosition returns the position number where
the entry belongs in the list. The returned number is negative, however, to signal that the entry is not in
the list. For example, if missingObject is not in the sorted list but would belong at position 3,
getPosition(missingObject) will return –3.

 The sorted list also has some, but not all, of the operations of an ADT list. We have already men-
tioned that adding an entry at a given position is not possible, because otherwise the client could
destroy the order of the sorted list. For the same reason, the list’s setEntry method is not available to
a sorted list. The other operations of the ADT list, however, are useful for a sorted list as well, includ-
ing the ones that retrieve or remove the entry at a given position. The methods getEntry and remove
each have a position number as a parameter, but they will not alter the relative order of the entries in
the sorted list.

 Question 1 The specifi cations of the ADT sorted list do not mention the case in which
two or more items have the same value. Are these specifi cations suffi cient to cover this case,
or must they be revised?

CHECK POINT

 Question 2 Write specifi cations for the operation insertSorted when the sorted list
must not contain duplicate entries.

 12.1.1 An Interface Template for the ADT Sorted List

 The C++ interface given in Listing 12-1 formalizes our initial specifi cations of the ADT sorted list.

LISTING 12-1 A C++ interface for sorted lists

 /** Interface for the ADT sorted list
 @file SortedListInterface.h */

#ifndef _SORTED_LIST_INTERFACE
#define SORTED_LIST_INTERFACE

 template < class ItemType>
 class SortedListInterface
 {
 public :

/** Inserts an entry into this sorted list in its proper order
so that the list remains sorted.

 @pre None.
 @post newEntry is in the list, and the list is sorted.
 @param newEntry The entry to insert into the sorted list. */
 virtual void insertSorted(const ItemType& newEntry) = 0;

 /** Removes the first or only occurrence of the given entry from this
 sorted list.
 @pre None.

 Specifying the ADT Sorted List 351

 12.1.2 Using the Sorted List Operations

Example. To demonstrate the operations of the ADT sorted list that the previous section specifi es,
we fi rst create a sorted list of strings. We begin by declaring and allocating a sorted list, where
we assume that SortedList is an implementation of the operations specifi ed by the interface
SortedListInterface :

SortedListInterface<string>* nameListPtr = new SortedList<string>();

 Next, we add names in an arbitrary order, realizing that the ADT will organize them alphabetically:

 nameListPtr->insertSorted("Jamie");
 nameListPtr->insertSorted("Brenda");

 @post If the removal is successful, the first occurrence of the
 given entry is no longer in the sorted list, and the returned
 value is true. Otherwise, the sorted list is unchanged and the
 returned value is false.
 @param anEntry The entry to remove.
 @return True if removal is successful, or false if not. */
 virtual bool removeSorted(const ItemType& anEntry) = 0;

 /** Gets the position of the first or only occurrence of the given
 entry in this sorted list. In case the entry is not in the list,
 determines where it should be if it were added to the list.
 @pre None.
 @post The position where the given entry is or belongs is returned.
 The sorted list is unchanged.
 @param anEntry The entry to locate.
 @return Either the position of the given entry, if it occurs in the
 sorted list, or the position where the entry would occur, but as a
 negative integer. */

virtual int getPosition(const ItemType& anEntry) = 0;

// The following methods are the same as those given in ListInterface
// in Listing 8-1 of Chapter 8 and are completely specified there.

 /** Sees whether this list is empty. */
 virtual bool isEmpty() const = 0;

 /** Gets the current number of entries in this list. */
virtual int getLength() const = 0;

 /** Removes the entry at a given position from this list. */
virtual bool remove(int position) = 0;

 /** Removes all entries from this list. */
virtual void clear() = 0;

 /** Gets the entry at the given position in this list. */
virtual ItemType getEntry(int position) const = 0;

 }; // end SortedListInterface
 #endif

352 CHAPTER 12 Sorted Lists and Their Implementations

 nameListPtr->insertSorted("Sarah");
 nameListPtr->insertSorted("Tom");
 nameListPtr->insertSorted("Carlos");

 The sorted list now contains the following entries:

 Brenda
 Carlos
 Jamie
 Sarah
 Tom

 Assuming the list just given, here are some examples of the operations on the sorted list:

nameListPtr->getPosition("Jamie") returns 3, the position of Jamie in the list
nameListPtr->getPosition("Jill") returns –4, because Jill belongs at position 4 in the list
nameListPtr->getEntry(2) returns Carlos, because he is at position 2 in the list

 Now remove Tom and the fi rst name in the list by writing

 nameList.remove("Tom");
 nameList.remove(1);

 The list now contains

 Carlos
 Jamie
 Sarah

 Removing the last entry, Tom, did not change the positions of the other entries in the list, but remov-
ing the fi rst entry did. Carlos is now at position 1, instead of 2.

 Note: The ADT sorted list can add, remove, or locate an entry, given the entry as an
argument. The sorted list has several operations that are the same as ADT list operations,
namely getEntry (by position), removeSorted (by position), clear , getLength , and
isEmpty . However, a sorted list will not let you add or replace an entry by position.

 Question 3 Suppose that wordListPtr points to an unsorted list of words. Using the
operations of the ADT list and the ADT sorted list, create a sorted list of these words.

CHECK POINT

 Question 4 Assuming that the sorted list you created in the previous question is not
empty, write C++ statements that

a. Display the last entry in the sorted list.
b. Add the sorted list’s fi rst entry to the sorted list again.

 12.2 A Link-Based Implementation
 As with all ADTs, you have a choice of several ways in which to implement the sorted list. You could
store a sorted list’s entries in, for example, an array, a chain of linked nodes, an instance of a vector, or
an instance of an ADT list. We fi rst will consider a chain of linked nodes and then an instance of an
ADT list. Finally, we will use inheritance to develop a completely different implementation.

 A Link-Based Implementation 353

 12.2.1 The Header File

 An implementation that uses a chain of linked nodes to store the entries in a sorted list has
several details in common with the link-based implementation of the ADT list that you studied in
 Chapter 9 . In particular, it has the same data fi elds, similar constructors, several methods that
are the same, and the same defi nition of the class Node . Let’s begin with the header fi le, which is
given in Listing 12-2. The class LinkedSortedList declares three new public methods for
the sorted list— insertSorted , removeSorted , and getPosition —each of which takes a list
entry as its argument. As you will see, to implement these methods, you will need the private
method getNodeBefore . It accepts an entry as its argument and returns a pointer to the node
just prior to the one that contains—or should contain—the entry. Since the defi nitions of the
remaining methods are the same as those in LinkedList , as given in Chapter 9 , and two of them
involve the position of an entry, you will also need the private method getNodeAt as defi ned in
 Chapter 9 . As you will see, we will use the private method copyChain to provide a recursive
implementation for the copy constructor.

 LISTING 12-2 The header fi le for the class LinkedSortedList .

 /** ADT sorted list: Link-based implementation.
 @file LinkedSortedList.h */

#ifndef _LINKED_SORTED_LIST
#define _LINKED_SORTED_LIST

#include "SortedListInterface.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class LinkedSortedList : public SortedListInterface<ItemType>
 {
 private :
 Node<ItemType>* headPtr; // Pointer to first node in the chain

int itemCount; // Current count of list items

 // Locates the node that is before the node that should or does
 // contain the given entry.
 // @param anEntry The entry to find.
 // @return Either a pointer to the node before the node that contains
 // or should contain the given entry, or nullptr if no prior node exists.

Node<ItemType>* getNodeBefore(const ItemType& anEntry) const ;

 // Locates the node at a given position within the chain.
Node<ItemType>* getNodeAt(int position) const ;

 // Returns a pointer to a copy of the chain to which origChainPtr points.
Node<ItemType>* copyChain(const Node<ItemType>* origChainPtr);

 public :
LinkedSortedList();
LinkedSortedList(const LinkedSortedList<ItemType>& aList);
virtual ~LinkedSortedList();

(continues)

VideoNote

The ADT sorted list

354 CHAPTER 12 Sorted Lists and Their Implementations

 12.2.2 The Implementation File

 The default constructor and destructor for our class LinkedSortedList have practically the same
defi nitions as they do in the class LinkedList . We will, therefore, leave them to you to implement.
You could also model the copy constructor after the one in LinkedList , but we will use recursion in
our defi nition here. We begin by having the copy constructor call the private method copyChain ,
which will have a recursive defi nition:

 template < class ItemType>
 LinkedSortedList<ItemType>::
 LinkedSortedList(const LinkedSortedList<ItemType>& aList)
 {
 headPtr = copyChain(aList.headPtr);
} // end copy constructor

 The private method copyChain begins by testing its pointer argument. If it contains nullptr ,
the pointer to the copy of the chain is set to nullptr and itemCount is set to zero. Otherwise, the
method creates a new node containing the data from the fi rst node of the given chain. The method
then recursively inserts the new node into the copy of the chain. After each insertion, the method
increments itemCount and returns a pointer to the new chain. The defi nition of copyChain is

 template < class ItemType>
Node<ItemType>* LinkedSortedList<ItemType>::
 copyChain(const Node<ItemType>* origChainPtr)
 {
 Node<ItemType>* copiedChainPtr;

if (origChainPtr == nullptr)
 {
 copiedChainPtr = nullptr ;
 itemCount = 0;
 }

else
 {

// Build new chain from given one
 Node<ItemType>* copiedChainPtr =
 new Node<ItemType>(origChainPtr->getItem());
 copiedChainPtr->setNext(copyChain(origChainPtr->getNext()));
 itemCount++;
 } // end if

return copiedChainPtr;
} // end copyChain

void insertSorted(const ItemType& newEntry);
bool removeSorted(const ItemType& anEntry);
int getPosition(const ItemType& newEntry) const ;

 // The following methods are the same as given in ListInterface:
bool isEmpty() const ;
int getLength() const ;
bool remove(int position);
void clear();
ItemType getEntry(int position) const throw (PrecondViolatedExcep);

 }; // end LinkedSortedList
#include "LinkedSortedList.cpp"
#endif

 A Link-Based Implementation 355

The method insertSorted. Adding an entry to a sorted list requires that you fi nd where in the list
the new entry belongs. Since the entries are sorted, you compare the new entry with the entries in the
sorted list until you reach an entry that is not smaller than the new entry. Figure 12-2 depicts a chain of
linked nodes, each containing a string that is sorted alphabetically. The fi gure shows where the addi-
tional strings "Ally" , "Cathy" , "Luke" , "Sue" , and "Tom" would be inserted into the chain and the
comparisons that would have to occur to arrive at those locations.

 You can see from the fi gure that, in a string comparison, Ally is less than Bob, and so it would be
inserted at the beginning of the chain. To see where to insert Luke, you would fi nd that Luke is
greater than both Bob and Jill but less than Mike. Thus, Luke belongs before Mike in the chain. Sue,
on the other hand, is already in one of the nodes. You would discover that Sue is greater than Bob, Jill,
and Mike but not greater than Sue. So you would insert the new entry Sue just before the existing
entry Sue. Finally, Tom is greater than all the current names in the list, so you would add it to the end
of the chain.

FIGURE 12-2 Places to insert strings into a sorted chain of linked nodes

headPtr

Bob Jill Mike Sue

Ally < Bob Cathy < Jill Luke < Mike Sue = = Sue Tom > Sue

 Note: Given a sorted list with entries in ascending order, you insert a new entry just
before the fi rst entry that is not smaller than the new entry.

 Recall from earlier chapters that you add a new node to the beginning of a chain differently
than at other points in the chain. Adding to the beginning is easy, since headPtr references
the fi rst node in the chain. To add anywhere else, you need a pointer to the node that will
ultimately occur before the new node. Thus, while you traverse the chain of linked nodes to dis-
cover where the new entry belongs, you must retain a reference to the node prior to the one under
consideration.

 The following high-level algorithm describes our strategy:

 // Adds a new entry to the sorted list.
add(newEntry)

Allocate a new node containing newEntry
Search the chain until either you find a node containing newEntry or you pass

the point where it should be
Let prevPtr point to the node before the insertion point
if (the chain is empty or the new node belongs at the beginning of the chain)

Add the new node to the beginning of the chain
else

Insert the new node after the node referenced by prevPtr

Increment the length of the sorted list

356 CHAPTER 12 Sorted Lists and Their Implementations

 Assuming the private method getNodeBefore that we specifi ed in the header fi le, we can use the
previous algorithm to defi ne the insertSorted method, as follows:

 template < class ItemType>
 void LinkedSortedList<ItemType>::insertSorted(const ItemType& newEntry)
 {
 Node<ItemType>* newNodePtr = new Node<ItemType>(newEntry);
 Node<ItemType>* prevPtr = getNodeBefore(newEntry);

if (isEmpty() || (prevPtr == nullptr)) // Add at beginning
 {
 newNodePtr->setNext(headPtr);
 headPtr = newNodePtr;
 }

else // Add after node before
 {
 Node<ItemType>* aftPtr = prevPtr->getNext();
 newNodePtr->setNext(aftPtr);
 prevPtr->setNext(newNodePtr);

 } // end if

 itemCount++;
} // end insertSorted

The private method getNodeBefore. We still need to implement the private method getNodeBefore
to locate the node that is before the node that should or does contain the given entry. We will need two
pointers as we traverse the list. Clearly, we need a pointer to the current node so we can compare its entry to
the desired entry. But we also must retain a pointer to the previous node, because it is this pointer that the
method returns. In the following implementation, these pointers are curPtr and prevPtr .

 template < class ItemType>
Node<ItemType>* LinkedSortedList<ItemType>::

 getNodeBefore(const ItemType& anEntry) const
 {
 Node<ItemType>* curPtr = headPtr;
 Node<ItemType>* prevPtr = nullptr;

while ((curPtr != nullptr) && (anEntry > curPtr->getItem()))
 {
 prevPtr = curPtr;
 curPtr = curPtr->getNext();
 } // end while

return prevPtr;
} // end getNodeBefore

 The programming problems at the end of this chapter ask you to complete this implementation of
the sorted list.

 Note: Since the ADTs sorted list and list share many of the same operations, portions
of their implementations are identical.

 Question 6 What does getNodeBefore return if the sorted list is empty? How can you
use this fact to simplify the implementation of the method insertSorted given previously?

 Question 5 In the while statement of the method getNodeBefore , how important is the
order of the two boolean expressions that the operator && joins? Explain.

CHECK POINT

 Implementations That Use the ADT List 357

 12.2.3 The Effi ciency of the Link-Based Implementation

 The performance of insertSorted depends on the effi ciency of the method getNodeBefore . The lat-
ter method locates the insertion point by traversing the chain of nodes. This traversal is O(n), making
the addition to a sorted list an O(n) operation. With the exception of isEmpty and getLength , which
are O(1) operations, the sorted-list methods are O(n). We leave these observations for you to show as
Exercise 11.

 12.3 Implementations That Use the ADT List
 As we noted earlier in this chapter, the link-based implementation of the ADT sorted list repeats much
of the corresponding implementation of the ADT list. Can we avoid this duplication of effort and reuse
portions of the list’s implementation? The answer to this question is yes, as you will soon see.

 You can certainly use the ADT list to create and maintain an alphabetical list of strings. It is natu-
ral, then, to consider using the ADT list when implementing the ADT sorted list. Basically, you can
do this using one of three techniques:

• Containment
• Public inheritance
• Private inheritance

 In most cases, one or more of these three approaches will not be applicable to a particular problem; usually,
one of the approaches will be best. However, we will use the sorted list to demonstrate all three techniques.

 12.3.1 Containment

 A sorted list can maintain its entries within a list, as Figure 12-3 illustrates. You use a list as a data
fi eld within the class that implements the sorted list. As noted in C++ Interlude 4, this approach uses a

 Question 7 Suppose that you use the previous method insertSorted to add an entry to a
sorted list. If the entry is already in the list, where in the list will the method insert it? Before
the fi rst occurrence of the entry, after the fi rst occurrence of the entry, after the last occur-
rence of the entry, or somewhere else?

 Question 8 What would be the answer to the previous question if you changed > to >= in
the while statement of the method getNodeBefore ?

FIGURE 12-3 An instance of a sorted list that contains a list of its entries

An instance of a list

An instance of a sorted list

Bob
Jill
Mike
Sue

VideoNote

ADT sorted list
implementations

358 CHAPTER 12 Sorted Lists and Their Implementations

type of containment called composition and illustrates the has-a relationship between the class of
sorted lists and the class of lists. If we name our new class SortedListHasA and use an instance of
LinkedList , as given in Listing 9-2 of Chapter 9 , Figure 12-4 illustrates the relationship between
these two classes using UML notation.

The header fi le. Listing 12-3 declares the class SortedListHasA so that it has a private data
member that is an instance of LinkedList containing the items in the sorted list. Our class will derive
from the interface SortedListInterface , as given earlier in Listing 12-1.

FIGURE 12-4 SortedListHasA is composed of an instance of the class LinkedList

SortedListHasA

LinkedList

 LISTING 12-3 The header fi le for the class SortedListHasA

 /** ADT sorted list using the ADT list.
 @file SortedListHasA.h */
#ifndef _SORTED_LIST_HAS_A
#define _SORTED_LIST_HAS_A

#include "SortedListInterface.h"
#include "ListInterface.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class SortedListHasA : public SortedListInterface<ItemType>
 {
 private :

ListInterface<ItemType>* listPtr;

 public :
SortedListHasA();
SortedListHasA(const SortedListHasA<ItemType>& sList);
virtual ~SortedListHasA();

void insertSorted(const ItemType& newEntry);
bool removeSorted(const ItemType& anEntry);
int getPosition(const ItemType& newEntry) const;

 // The following methods have the same specifications
 // as given in ListInterface in Chapter 8 :

 Implementations That Use the ADT List 359

The constructors and destructor. The constructor creates an instance of LinkedList and assigns
a reference to it to the pointer variable listPtr :

 template < class ItemType>
 SortedListHasA<ItemType>::SortedListHasA()
 {
 listPtr = new LinkedList<ItemType>();
} // end default constructor

 The copy constructor creates a new list and then copies the entries in the given sorted list to the new
list:

 template < class ItemType>
 SortedListHasA<ItemType>::
 SortedListHasA(const SortedListHasA<ItemType>& sList)
 {
 listPtr = new LinkedList<ItemType>();

for (int position = 1; position <= sList.getLength(); position++)
 listPtr->insert(position, sList.getEntry(position));
} // end copy constructor

 Note that we call LinkedList ’s method insert . While this particular defi nition is not very effi cient, a
recursive O(n) implementation is possible. Exercise 7 at the end of this chapter asks you to investigate
this possibility.

 The destructor simply calls the method clear , which will deallocate the list:

 template < class ItemType>
 SortedListHasA<ItemType>::~SortedListHasA()
 {
 clear();
} // end destructor

The method insertSorted. The implementations of the remaining methods of the ADT sorted
list are brief, as the list does most of the work. To add a new entry to the sorted list, we fi rst use the
method getPosition , which is an operation of the sorted list. We assume that it is already imple-
mented, even though we have not written it yet. Recall that getPosition fi nds the position of an exist-
ing entry within a sorted list, or the position at which we should insert a new entry that does not occur
in the sorted list. The method sets the sign of the integer it returns to indicate whether the entry exists
in the list already. Since we allow duplicate entries in our sorted list, we can ignore this sign. Notice
that the following implementation uses the standard method fabs to discard this sign. It also uses the
insert method of the ADT list.

 template < class ItemType>
 void SortedListHasA<ItemType>::insertSorted(const ItemType& newEntry)

bool isEmpty() const ;
int getLength() const ;
bool remove(int position);
void clear();
ItemType getEntry(int position) const throw(PrecondViolatedExcep);

 }; // end SortedListHasA
#include "SortedListHasA.cpp"
 #endif

360 CHAPTER 12 Sorted Lists and Their Implementations

 {
int newPosition = fabs(getPosition(newEntry));

 listPtr->insert(newPosition, newEntry);
} // end insertSorted

The method removeSorted. The method removeSorted can call getPosition to determine where
in the sorted list the given entry exists or belongs. This time, however, we do need to know whether
the entry exists in the list. If it does not exist, we cannot remove it, so removeSorted will return false
when this is the case. Otherwise, the returned position will be positive, and removeSorted can call the
list’s method remove to delete the entry. We leave the implementation of removeSorted to you in
Checkpoint Question 11.

 The method getPosition. Implementing getPosition is somewhat harder than implementing
the previous two methods. To decide where in a sorted list an entry is or belongs, we need to compare
it to the entries already in the list, beginning with the fi rst one. If the given entry is in the list, we obvi-
ously compare entries until we fi nd a match. However, if it is not in the list, we want to stop the search
at the point where it belongs in the sorted list. We take advantage of the sorted order of the objects by
using logic similar to that described in Section 12.2.2

 Checkpoint Question 12 asks you to defi ne getPosition . You can do so by using the methods
getLength and getEntry .

 Question 12 Defi ne the method getPosition for the class SortedListHasA .

 Question 9 Repeat Checkpoint Question 7 using the method insertSorted of the class
SortedListHasA .

CHECK POINT

 Question 10 Can a client of SortedListHasA invoke the method insert of the ADT list?
Explain.

 Question 11 Defi ne the method removeSorted for the class SortedListHasA .

 The remaining methods. Each of the methods isEmpty , getLength , remove , clear , and
getEntry of the ADT sorted list has the same specifi cations as in the ADT list. Each can simply
invoke the corresponding list method. For example, the method remove has the following implemen-
tation in SortedListHasA :

 template < class ItemType>
 bool SortedListHasA<ItemType>::remove(int position)
 {

return listPtr->remove(position);
} // end remove

 Effi ciency issues. Except perhaps for some subtle logic in getPosition , you can write the previ-
ous implementation quickly and with few, if any, errors. Saving human time is an attractive feature of
using an existing class to build another. But does the implementation use computer time effi ciently?
In this particular implementation, several methods invoke getPosition , so their effi ciency depends
on getPosition ’s effi ciency.

 The method getPosition calls the list method getLength , which is an O(1) operation. There-
fore, we need not be concerned with it. On the other hand, a loop examines the entries in the list one at
a time by invoking getEntry until the desired entry is located. Thus, the effi ciency of getPosition
depends in part on the effi ciency of getEntry . However, the effi ciency of getEntry depends upon
which implementation of the ADT list you use. For the link-based implementation, getEntry is O(n).
Since getPosition invokes getEntry within a loop, getPosition is O(n2) in the worst case. Note
that each time getEntry retrieves the next entry in the list, it starts its search at the beginning of the
chain. This is the cause of getPosition ’s ineffi ciency.

 Implementations That Use the ADT List 361

 Question 14 Give an advantage and a disadvantage of using containment in the imple-
mentation of the class SortedListHasA .

 Question 13 Suppose that instead of using LinkedList in the implementation of
SortedListHasA , you used ArrayList . What Big O would describe the performance of the
method getPosition ?

CHECK POINT

 Figures 12-5 and 12-6 summarize the effi ciencies of the operations for array-based and
link-based implementations of the ADTs list and sorted list. Confi rmation of these results is left as an
exercise. As you can see, the implementation of the sorted list using containment is easy to write but
is not very effi cient if the underlying list uses a chain of linked nodes.

FIGURE 12-5 The worst-case effi ciencies of ADT list operations for array-based and link-
based implementations

ADT List Operation Link-based

insert(newPosition, newEntry) O(n)
remove(position) O(n)
getEntry(position) O(n)
setEntry(position, newEntry) O(n)
clear() O(n)
getLength(), isEmpty()

Array-based

O(n)
O(n)
O(1)
O(1)
O(1)
O(1) O(1)

FIGURE 12-6 The worst-case effi ciencies of the ADT sorted list operations when
implemented using an instance of the ADT list

ADT Sorted List Operation

Array-based Link-based
 List Implementation

O(n)
O(n)
O(n)
O(1)
O(n)
O(1)
O(1)

O(n2)
O(n2)
O(n2)
O(n)
O(n)
O(n)
O(1)

insertSorted(newEntry)
removeSorted(anEntry)
getPosition(anEntry)
getEntry(position)
remove(givenPosition)
clear()
getLength(), isEmpty()

Note: Using containment to implement the ADT sorted list

 When you use an instance of the ADT list to contain the entries in the ADT sorted list,
you must use the list’s operations to access the sorted list’s entries, instead of accessing
them directly. Such an implementation of the sorted list is easy to write but is ineffi cient
when the underlying list uses a chain of linked nodes to store its entries.

362 CHAPTER 12 Sorted Lists and Their Implementations

 12.3.2 Public Inheritance

 A list is a container of items that you reference by position number. If you maintained those items in
sorted order, would you have a sorted list? Ignoring name differences, most operations for the ADT
list are almost the same as the corresponding operations for the ADT sorted list. The insertion and
removal operations differ, however, and the ADT sorted list has an additional operation, getPosition .

 You can insert an item into a sorted list by fi rst using getPosition to determine the position in
the sorted list where the new item belongs. You then use the list’s insert operation to insert the item
into that position in the list. You use a similar approach to remove an item from a sorted list.

 Thus it appears that a sorted list is a list, so let’s see whether we can use public inheritance.
 Figure 12-7 shows the class SortedListIsA as a descendant of the class LinkedList . This diagram
represents an implementation in C++ using public inheritance. SortedListIsA inherits LinkedList ’s
members, adds the method getPosition , and revises the insertion and removal operations.

 The class SortedListIsA now has useful operations of the ADT list, such as getEntry , remove ,
clear , isEmpty , and getLength —which it inherits from the class List —in addition to the methods
insertSorted , removeSorted , and getPosition . However, it also inherits insert and setEntry
from LinkedList . By using either of these two position-oriented methods, a client could destroy the
order of a sorted list. To prevent this from occurring, SortedListIsA must override them.

An is-a relationship
implies public
inheritance

FIGURE 12-7 SortedListIsA as a descendant of LinkedList

LinkedList

SortedListIsA

 LISTING 12-4 A header fi le for the class SortedListIsA

 /** ADT sorted list using ADT list.
 @file SortedListIsA.h */
#ifndef _SORTED_LIST_IS_A
#define _SORTED_LIST_IS_A

#include "LinkedList.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class SortedListIsA : public LinkedList<ItemType>

The header fi le. Listing 12-4 shows a header fi le for the class SortedListIsA . Note again that we
are using public inheritance. You might wonder why we are not using SortedListInterface . Doing
so would require us to use multiple inheritance, which, while possible, is beyond our present scope.
Since LinkedList is derived from ListInterface , you can think of SortedListIsA as a grandchild
of ListInterface .

 Implementations That Use the ADT List 363

Method defi nitions. Let’s examine the implementations of the sorted list methods. The default con-
structor and destructor are straightforward; the copy constructor invokes LinkedList ’s copy con-
structor by using an initializer:

 template < class ItemType>
 SortedListIsA<ItemType>::SortedListIsA()
 {
} // end default constructor

 template < class ItemType>
 SortedListIsA<ItemType>::
 SortedListIsA(const SortedListIsA<ItemType>& sList):
 LinkedList<ItemType>(sList)

 {
} // end copy constructor

 template < class ItemType>

 SortedListIsA<ItemType>::~SortedListIsA()
 {
} // end destructor

 The method insertSorted fi rst calls getPosition to get the intended position of the new entry,
ignores the sign of this position, and uses the result and LinkedList ’s insert method to complete its
task. Note that since we will override insert in SortedListIsA , we must be careful not to call that
implementation, but to call the base class implementation instead.

 template < class ItemType>
 void SortedListIsA<ItemType>::insertSorted(const ItemType& newEntry)
 {

int newPosition = fabs(getPosition(newEntry));

 {
 public :

SortedListIsA();
SortedListIsA(const SortedListIsA<ItemType>& sList);
virtual ~SortedListIsA();

void insertSorted(const ItemType& newEntry);
bool removeSorted(const ItemType& anEntry);
int getPosition(const ItemType& anEntry) const;

 // The inherited methods remove, clear, getEntry, isEmpty, and
 // getLength have the same specifications as given in ListInterface.

 // The following methods must be overridden to disable their
 // effect on a sorted list:

bool insert(int newPosition, const ItemType& newEntry);
void setEntry(int position, const ItemType& newEntry)

 throw (PrecondViolatedExcep);
 }; // end SortedListIsA
#include "SortedListIsA.cpp"
 #endif

364 CHAPTER 12 Sorted Lists and Their Implementations

// We need to call the LinkedList version of insert, since the
 // SortedListIsA version does nothing but return false

LinkedList<ItemType>::insert(newPosition, newEntry);
} // end insertSorted

 The method removeSorted uses an approach similar to that of insertSorted , but it does not
ignore the sign of the position returned by getPosition . Insertion happens regardless of whether the
new entry is a duplicate of another one already in the sorted list. However, you cannot remove an
entry that is not in the list!

 template < class ItemType>
 bool SortedListIsA<ItemType>::removeSorted(const ItemType& anEntry)
 {

bool ableToRemove = false ;
if (!LinkedList<ItemType>::isEmpty())

 {
int position = getPosition(anEntry);

 ableToRemove = position > 0;
if (ableToRemove)

 ableToRemove = LinkedList<ItemType>::remove(position);
 } // end if

return ableToRemove;
} // end removeSorted

 The method getPosition uses the list’s method getEntry to access each entry in the list sequen-
tially until it either fi nds a match or reaches the point where the entry being sought would belong if it
were in the list.

 template < class ItemType>
 int SortedListIsA<ItemType>::getPosition(const ItemType& anEntry) const
 {

int position = 1;
int length = LinkedList<ItemType>::getLength();

while ((position <= length) &&
 (anEntry > LinkedList<ItemType>::getEntry(position)))

 {
 position++;
 } // end while

if ((position > length) ||
(anEntry != LinkedList<ItemType>::getEntry(position)))

 {
 position = -position;
 } // end if

return position;
 } // end getPosition

Call LinkedList’s
version of insert

 Programming Tip: Notice that we have preceded the calls to methods inherited
from LinkedList with the LinkedList<Item>:: namespace reference. When we called
insert from insertSorted , we had to ensure that we called LinkedList ’s version of
insert and not the overriding version in SortedListIsA . After all, the latter method does
nothing but return false. Notice, however, that we do not override the methods remove ,
clear , getEntry , isEmpty , and getLength . Because these methods do not appear

 Implementations That Use the ADT List 365

 Overridden methods. Recall that we have inherited two methods— insert and setEntry —from
LinkedList that we do not want as public methods of the ADT sorted list. Although we called insert
in our defi nition of insertSorted , we do not want clients to be able to destroy the sorted order of our
entries by inserting an item at any specifi c position within a sorted list. To this end, we override
insert so that it always returns false:

 template < class ItemType>
 bool SortedListIsA<ItemType>::
 insert(int newPosition, const ItemType& newEntry)
 {

return false ;
} // end insert

 This approach ensures that a client of SortedListIsA can never use insert to add items by position
to an object of SortedListIsA . We override setEntry in a similar manner.

explicitly in the header fi le for SortedListIsA , if you were to call them without the
qualifi er LinkedList<Item>:: , the C++ compiler would assume that they were client
functions instead of class methods. You would get a syntax error.

 An alternate way of calling these methods is to precede their calls by this-> instead
of LinkedList<Item>:: . For example, you could write

if (!this->isEmpty())

 instead of

if (!LinkedList<ItemType>::isEmpty())

Overriding insert
prevents insertions
into a sorted list by
position

A sorted list is not a
list; do not use
public inheritance

 Note: Recall that public inheritance enables you to use a derived-class object any-
where that you can use a base-class object. But you cannot use a sorted list in the same
way that you can use a list and expect to maintain the values stored in the sorted list in
sorted order. Moreover, the value-oriented nature of a sorted list does not support all of
a list’s operations. Therefore, a sorted list is not really a list, and hence public inherit-
ance is not appropriate.

 Programming Tip: You should use public inheritance only when two classes have
an is-a relationship.

 Question 15 What would have happened if you preceded the call to insert in the method
insertSorted by this-> instead of LinkedList<ItemType>:: ? Explain.

CHECK POINT

 Effi ciency issues. If you compare the implementation of SortedListIsA with the one for
SortedListHasA , you will notice slight differences in the syntax, but the basic logic of the methods is
the same. Both classes use methods of the ADT list to defi ne their operations. The performance of
corresponding methods is virtually the same.

366 CHAPTER 12 Sorted Lists and Their Implementations

 12.3.3 Private Inheritance

 If you do not have an is-a relationship between your new class and an existing class, you should not
use public inheritance. Instead, if you want to inherit members from the existing class, you can use
private inheritance. Private inheritance enables you to use the methods of a base class without giving
a client access to them.

 The header fi le in Listing 12-5 declares the class SortedListAsA . Note that it is derived from the
class LinkedList using private inheritance. Except for this addition and the name of the class, this
header fi le is identical to the one in Listing 12-3 for SortedListHasA .

 LISTING 12-5 The header fi le for the class SortedListAsA

/** ADT sorted list using ADT list.
 @file SortedListAsA.h */
#ifndef _SORTED_LIST_AS_A
#define _SORTED_LIST_AS_A

#include "SortedListInterface.h"
#include "ListInterface.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class SortedListAsA : public SortedListInterface<ItemType>,
 private LinkedList<ItemType>
 {
 public :

SortedListAsA();
SortedListAsA(const SortedListAsA<ItemType>& sList);
virtual ~SortedListAsA();

 < The rest of the public section is the same as in SortedListHasA in Listing 12-3. >
. . .

 }; // end SortedListAsA
#include "SortedListAsA.cpp"
 #endif

 Because clients of SortedListAsA do not have access to the methods of the base class
LinkedList , you need to provide a complete set of sorted list operations. This was not necessary for
public inheritance. However, this lack of access also means that we do not have to override inherited
methods such as setEntry that we do not want clients to have.

 The implementation of SortedListAsA can use the public 1 members of LinkedList . In fact, the
methods insertSorted , removeSorted , and getPosition have the same implementations as they
did with public inheritance. The remaining methods simply call the corresponding methods in
LinkedList . For example, the method getEntry has the following defi nition:

 template < class ItemType>
ItemType SortedListAsA<ItemType>::getEntry(int position) const

throw (PrecondViolatedExcep)

 1 If LinkedList had protected methods, SortedListAsA could call those, too.

 Summary 367

 {
return LinkedList<ItemType>::getEntry(position);

} // end getEntry

 With both private inheritance (as-a) and containment (has-a), LinkedList is hidden from the
clients of the sorted list. That is, you can use either private inheritance or containment to hide the
underlying list in the implementation of the sorted list. Realize, however, that unlike public inherit-
ance, private inheritance does not allow you to use an instance of SortedListAsA wherever you can
use an instance of LinkedList ; that is, SortedListAsA and LinkedList are not object-type compati-
ble. The UML diagram in Figure 12-8 shows the inheritance relationship between the two classes.
The notation <<implementation>> is a stereotype and is used to indicate that the SortedListAsA
class is implemented in terms of the LinkedList class. You can use a stereotype to identify a unique
characteristic of an element in any UML diagram.

FIGURE 12-8 The SortedListAsA class implemented in terms of the LinkedList class

LinkedList

SortedListAsA

«implementation»

 SUMMARY

 1. The ADT sorted list maintains its entries in sorted order. It, not the client, determines where to place an entry.

 2. The ADT sorted list can add, remove, or locate an entry, given the entry as an argument.

 3. The ADT sorted list has several operations that are the same as the corresponding operations of the ADT list.
However, a sorted list will not let you add or replace an entry by position.

 4. A chain of linked nodes provides a reasonably effi cient implementation of the sorted list.

 5. A class of sorted lists that has a list as a data fi eld is said to use containment. Although such a class is easy to
write, its effi ciency can suffer if the implementation of the ADT list is ineffi cient.

 6. Although it seems like a sorted list is a list, deriving a class of sorted lists from a class of lists using public
inheritance is not appropriate. Doing so requires you to override some methods of the ADT list that a client of
the sorted list class should not be able to use. Additionally, public inheritance would make the two classes
object-type compatible, but you cannot use a sorted list anywhere that a list is used.

 7. Private inheritance provides a reasonable alternative to containment as an approach to using the ADT list in the
implementation of the ADT sorted list. Usually, however, containment is preferable.

368 CHAPTER 12 Sorted Lists and Their Implementations

 EXERCISES

 1. Consider the classes Sphere and Ball , as outlined here:

 class Sphere
 {
 public:
 . . .

double getArea() const; // Surface area
void displayStatistics() const;

 . . .
 }; // end Sphere

 class Ball : public Sphere
 {
 public:
 . . .

double getArea() const; // Cross-sectional area
void displayStatistics() const;

 . . .
 }; // end Ball

 Suppose that the implementation of each version of displayStatistics invokes the method getArea .

 a. If mySphere is an instance of Sphere and myBall is an instance of Ball , which version of getArea
does each of the following calls to displayStatistics invoke? Explain your answer.

 mySphere.displayStatistics();
 myBall.displayStatistics();

 b. If the statements

 Sphere* spherePtr;
Ball* ballPtr;

 declare spherePtr and ballPtr , which version of getArea does each of the following calls to
displayStatistics invoke? Explain your answer.

 spherePtr->displayStatistics();
spherePtr = ballPtr;
 spherePtr->displayStatistics();
 ballPtr->displayStatistics();

 2. Defi ne and implement a class Pen that has an instance of Ball as one of its members. Provide several members
for the class Pen , such as the data member color and methods isEmpty and write .

 3. Consider the following classes:

• LandVehicle represents a vehicle that travels on land. Its public methods include wheelCount and
speed .

• MotorizedLandVehicle represents a land vehicle that has a motor. Its public methods include
engineCapacity and fuelType .

 a. Which of the methods mentioned previously can the implementation of speed invoke?
 b. Which of the methods mentioned previously can the implementation of engineCapacity

invoke?

 Exercises 369

 4. Assume the classes described in Exercise 3 and consider a main method that contains the following statements:

 LandVehicle landVeh;
MotorizedLandVehicle motorVeh;

 a. Which of these objects can invoke the method wheelCount ?

 b. Which of these objects can invoke the method fuelType ?

 5. Consider the following classes:

 class Expr
 {
 private:

char Array[MAX_STRING+1];
 public:
 . . .

int getLength() const;
virtual void display() const;

 . . .
 }; // end Expr

 class AlgExpr : public Expr
 {
 public:
 . . .

bool isExpression() const;
bool isBlank(int first, int last) const;

 }; // end AlgExpr

 class InfixExpr : public AlgExpr
 {
 public:
 . . .

bool isExpression() const;
int valueOf() const;
void display() const;

 . . .
 protected:

int endFactor(int first, int last) const;
int endTerm(int first, int last) const;
int endExpression(int first, int last) const;

 private:
 Stack< int> values;
 Stack< char> operators;
 }; // end InfixExpr

 The class AlgExpr represents algebraic expressions, including prefi x, postfi x, and infi x expressions. Its method
isExpression simply examines the expression for valid characters but does not consider the order of the
characters.

 The class InfixExpr represents infi x expressions. Its isExpression calls isBlank , and its display calls
valueOf .

 a. Should isBlank be public, protected, or private? Explain.
 b. If inExp is an instance of InfixExpr in the main method, can inExp invoke endExpression ? Explain.
 c. What small change(s) would you make to the classes to ensure that the correct version of

isExpression is called?

370 CHAPTER 12 Sorted Lists and Their Implementations

 6. Assume the classes described in Exercise 5 and consider a main method that contains the statements

 Expr exp;
AlgExpr aExp;
InfixExpr inExp;

 a. Which of these objects can correctly invoke the method getLength ?
 b. Which of these objects can correctly invoke the method isExpression ?
 c. Which of these objects can correctly invoke the method valueOf ?
 d. Give an example of object-type compatibility by writing a method declaration and a call to it that

could appear in this main method.

 7. Recall from Section 12.3.1 the copy constructor for the class SortedListHasA . Its defi nition uses a loop.
Replace that defi nition with a recursive one, and show that it is O(n).

 8. Consider an ADT front list , which restricts insertions, removals, and retrievals to the fi rst item in the list. Defi ne
and implement a class for the ADT stack that is a descendant of FrontList .

 9. Defi ne an abstract base class Person that describes a typical person. Next, defi ne a derived class Student that
describes a typical student. Finally, derive from Student a class GradStudent for a typical graduate student.

 10. Design and implement the following classes:

 a. An abstract base class Employee that represents a generic employee. Include methods to retrieve
information about an employee.

 b. A subclass of Employee called HourlyEmployee that describes an employee who gets paid by the hour.
Include a public method called getPay that returns the pay of the employee for that month and any
other relevant methods.

 c. A subclass of Employee called NonHourlyEmployee that describes an employee who gets paid a fi xed
salary every month. Include a public method called getPay that returns the pay of the employee for
that month. Include any other relevant methods.

 11. Confi rm the results in Figures 12-5 and 12-6 .

 12. Imagine an unknown implementation of an ADT sorted list of integers. This ADT organizes its items into
ascending order. Suppose that you have just read n integers into a one-dimensional array of integers called
data . Write some C++ statements that use the ADT sorted list operations to sort the array into ascending order.

 13. Write pseudocode that merges two sorted lists into a new third sorted list by using only ADT sorted list operations.

 14. Defi ne a set of axioms for the ADT sorted list and use them to prove that the sorted list of characters, which is
defi ned by the sequence of operations

 sList = an empty sorted list
 sList.insertSorted('S')
 sList.insertSorted('T')
 sList.insertSorted('R')
 sList.removeSorted('T')

 is exactly the same as the sorted list defi ned by the sequence

 sList = an empty sorted list
 sList.insertSorted('T')
 sList.insertSorted('R')
 sList.removeSorted('T')
 sList.insertSorted('S')

 Programming Problems 371

 PROGRAMMING PROBLEMS

 1. Complete the implementation of the class LinkedSortedList .

 2. Defi ne a class for an array-based implementation of the ADT sorted list. Consider a recursive implementation
for getPosition . Should i nsertSorted and removeSorted call getPosition ?

 3. Complete the implementation of the class SortedListHasA .

 4. Complete the implementation of the class SortedListAsA .

 5. Consider the class FrontList that Exercise 8 describes. Implement FrontList in each of the following ways:

 a. Store the list’s entries in an instance of LinkedList .
 b. Derive FrontList from LinkedList using public inheritance.
 c. Derive FrontList from LinkedList using private inheritance.

 6. The class LinkedList , as described in Sections 9.2.1 and 9.2.2 of Chapter 9 , does not contain a method
getPosition that returns the position number of a given entry. Defi ne a descendant of LinkedList that has a
method getPosition as well as methods that insert and remove items by their values instead of their
positions. This new insertion method should always insert the new entry at the beginning of the list. Although
the items in this list are not sorted, the new ADT is analogous to the ADT sorted list, which contains the method
getPosition .

 7. Consider an ADT circular list , which is like the ADT list but treats its fi rst entry as if it were immediately after
its last entry. For example, if a circular list contains six items, retrieval or removal of the eighth item actually
involves the list’s second item. Let insertion into a circular list, however, behave exactly like insertion into a
list. Defi ne and implement the ADT circular list as a derived class of LinkedList .

 8. Programming Problem 13 in Chapter 6 describes the ADT traversable stack. In addition to the standard stack
operations—isEmpty , push , pop , and peek —a traversable stack includes the operation traverse . This opera-
tion begins at the bottom of the stack and displays each item in the stack until it reaches the top of the stack.

 Defi ne and implement the ADT traversable stack as a derived class of ArrayStack , as given in Section 7.1
of Chapter 7 .

 9. Defi ne a template interface for the ADT sorted list that is derived from ListInterface . Then defi ne the class
SortedListHasA that is derived from your new interface.

 10. Because algebraic expressions are character strings, you can derive a class of algebraic expressions from a class
of strings. Defi ne such a class. Include an isExpression operation that uses the recognition algorithm given in
Programming Problem 8 of Chapter 5 and a valueOf operation that uses the evaluation algorithm given in Pro-
gramming Problem 8 of Chapter 6 .

This page intentionally left blank

 Chapter

Queues and
Priority Queues 13

 Contents
 13.1 The ADT Queue 374
 13.2 Simple Applications of the ADT Queue 377

 13.2.1 Reading a String of Characters 377
 13.2.2 Recognizing Palindromes 377

 13.3 The ADT Priority Queue 379
 13.3.1 Tracking Your Assignments 380

 13.4 Application: Simulation 381
 13.5 Position-Oriented and Value-Oriented ADTs 389

 Summary 390
 Exercises 390
 Programming Problems 392

 Prerequisites
 Chapter 6 Stacks
 Chapter 8 Lists (incidental)
 Chapter 12 Sorted Lists and Their Implementations (incidental)

Whereas a stack’s behavior is characterized as last in, fi rst out, a queue’s behavior is
characterized as fi rst in, fi rst out. This chapter defi nes the queue’s operations and
discusses several uses of them. As you will see, queues are common in everyday life.
Their fi rst-in, fi rst-out behavior makes them appropriate ADTs for situations that
involve waiting. Queues are also important in simulation, a technique for analyzing the
behavior of complex systems. This chapter uses a queue to model the behavior of people
in a line.

 Sometimes the importance of an object depends on criteria other than when it is
placed into a container. In such cases, you can assign each object a priority and organize
them according to their priorities instead of chronologically. The priority queue will do
this for you.

374 CHAPTER 13 Queues and Priority Queues

 This chapter explores the two ADTs queue and priority queue. We will consider their implemen-
tations in the next chapter.

 13.1 The ADT Queue
 A queue is like a line of people. The fi rst person to join a line is the fi rst person served, that is, the fi rst
to leave the line. New items enter a queue at its back , or rear , and items leave a queue from its front .
Operations on a queue occur only at its two ends. This characteristic gives a queue its fi rst-in, fi rst-out
(FIFO) behavior. In contrast, you can think of a stack as having only one end, because all operations
are performed at the top of the stack. This characteristic gives a stack its last-in, fi rst-out behavior.

 As an abstract data type, the queue has the following operations:

FIFO: The fi rst item
inserted into a
queue is the fi rst
item out

Queues occur in
everyday life

Queues have
applications in
computer science

 Note: ADT queue operations

• Test whether a queue is empty.
• Add a new entry to the back of the queue.
• Remove the entry at the front of the queue (the entry that was added earliest).
• Get the entry that was added earliest to the queue.

 Queues are appropriate for many real-world situations. You wait in a queue—that is, a line—to
buy a movie ticket, to check out at the bookstore, or to use an automatic teller machine. The person at
the front of the queue is served, while new people join the queue at its back. Even when you call an
airline to check your fl ight’s status, your call actually enters a queue while you wait for the next avail-
able agent.

 Queues also have applications in computer science. When you print an essay, the computer sends
lines faster than the printer can print them. The lines are held in a queue for the printer, which removes
them in FIFO order. If you share the printer with other computers, your request to print enters a queue
to wait its turn.

 Since all of these applications involve waiting, people study them to see how to reduce the wait.
Such studies are called simulations , and they typically use queues. Later, this chapter examines a
simulation of a line of customers at a bank.

 The following operation contract specifi es the ADT queue in more detail, and Figure 13-1
shows a UML diagram for the class Queue . Note that the conventional names of the operations that
add or remove an entry are, respectively, enqueue (pronounced “N-Q”) and dequeue (pronounced
“D-Q”).

FIGURE 13-1 UML diagram for the class Queue

Queue

+isEmpty(): boolean
+enqueue(newEntry: ItemType): boolean
+dequeue(): boolean
+peekFront(): ItemType

VideoNote

The ADT queue

 The ADT Queue 375

 Figure 13-2 illustrates the effect of these operations on a queue of integers. Notice that enqueue
adds an item at the back of the queue and that peekFront looks at the item at the front of the queue,
whereas dequeue removes the item at the front of the queue.

 ABSTRACT DATA TYPE: QUEUE

DATA

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by when they were added.

OPERATIONS

 PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this queue is empty.
 Input: None.
 Output: True if the queue is empty; otherwise false.

 enqueue(newEntry) Task: Adds newEntry at the back of this queue.
 Input: newEntry .
 Output: True if the operation is successful; otherwise false.

 dequeue() Task: Removes the front of this queue. That is, removes the item that was added
earliest.

 Input: None.
 Output: True if the operation is successful; otherwise false.

 peekFront() Task: Returns the front of this queue. That is, gets the item that was added earliest. The
operation does not change the queue.

 Input: None.
 Output: The front of the queue.

 Question 1 If you add the letters A , B , C , and D in sequence to a queue of characters and
then remove them, in what order will they leave the queue?

CHECK POINT

FIGURE 13-2 Some queue operations

Operation

aQueue = an empty queue
aQueue.enqueue(5)
aQueue.enqueue(2)
aQueue.enqueue(7)
aQueue.peekFront()
aQueue.dequeue()
aQueue.dequeue()

Queue after operation

5
5 2
5 2 7
5 2 7 (Returns 5)
2 7
7

Front

376 CHAPTER 13 Queues and Priority Queues

 An interface. Listing 13-1 contains a C++ template that completes our specifi cation of the ADT
queue.

 LISTING 13-1 A C++ interface for queues

 /** @file QueueInterface.h */
#ifndef _QUEUE_INTERFACE
#define _QUEUE_INTERFACE

 template < class ItemType>
 class QueueInterface
 {
 public :
 /** Sees whether this queue is empty.

@return True if the queue is empty, or false if not. */
virtual bool isEmpty() const = 0;

 /** Adds a new entry to the back of this queue.
@post If the operation was successful, newEntry is at the

 back of the queue.
@param newEntry The object to be added as a new entry.
@return True if the addition is successful or false if not. */

virtual bool enqueue(const ItemType& newEntry) = 0;

 /** Removes the front of this queue.
@post If the operation was successful, the front of the queue

 has been removed.
@return True if the removal is successful or false if not. */

virtual bool dequeue() = 0;

 /** Returns the front of this queue.
@pre The queue is not empty.
@post The front of the queue has been returned, and the

 queue is unchanged.
@return The front of the queue. */

virtual ItemType peekFront() const = 0;
 }; // end QueueInterface
 #endif

 Question 2 What do the initially empty queues queue1 and queue2 “look like” after the
following sequence of operations?

 queue1.enqueue(1)
 queue1.enqueue(2)
 queue2.enqueue(3)
 queue2.enqueue(4)
 queue1.dequeue()
queueFront = queue2.peekFront()
 queue1.enqueue(queueFront)
 queue1.enqueue(5)
 queue2.dequeue()
 queue2.enqueue(6)

 Compare these results with Checkpoint Question 2 in Chapter 6 .

 Simple Applications of the ADT Queue 377

 13.2 Simple Applications of the ADT Queue
 This section presents two simple applications of the ADT queue. The applications use the ADT queue
operations independently of their implementations.

 13.2.1 Reading a String of Characters

 When you enter characters at a keyboard, the system must retain them in the order in which you typed
them. It could use a queue for this purpose, as the following pseudocode indicates:

 // Read a string of characters from a single line of input into a queue
aQueue = a new empty queue
 while (not end of line)
 {

Read a new character into ch
 aQueue.enqueue(ch)
 }

 Once the characters are in a queue, the system can process them as necessary. For example, if you
had typed the integer 247—without any mistakes, but possibly preceded or followed by blanks—the
queue would contain digits and possibly blanks. The system could convert the digits 2, 4, and 7 into
the decimal value 247 by computing 10 × (10 × 2 + 4) + 7.

 The following pseudocode function performs this conversion in general:

 // Converts digits in a queue aQueue into a decimal integer
getInteger(aQueue: Queue): integer

// Get first digit, ignoring any leading blanks
do

 {
 aQueue.dequeue(ch)
 } while (ch is blank)

// Assertion: ch contains first digit

 // Compute the integer n from digits in queue
 n = 0
 done = false

do
 {
 n = 10 * n + (integer that ch represents)
 done = aQueue.isEmpty()

if (!done)
 aQueue.dequeue(ch)

 } while (!done and ch is a digit)
return n

 13.2.2 Recognizing Palindromes

 Recall from Section 5.1.2 in Chapter 5 that a palindrome is a string of characters that reads the
same from left to right as it does from right to left. In Chapter 6 , you learned that you could use a
stack to reverse the order of occurrences. You should realize by now that you can use a queue to
preserve the order of occurrences. Thus, you can use both a queue and a stack to see whether a
string is a palindrome.

 As you traverse a string from left to right, you can add each character to both a queue and
a stack. Figure 13-3 illustrates the result of this action for the string "abcbd" , which is not a

A queue can retain
characters in the
order in which you
type them

You can use a
queue in
conjunction with a
stack to recognize
palindromes

VideoNote

Using the ADT
queue

378 CHAPTER 13 Queues and Priority Queues

palindrome. You can see that the fi rst character in the string is at the front of the queue and the last
character in the string is at the top of the stack. Thus, characters removed from the queue will occur
in the order in which they appear in the string, and characters removed from the stack will occur in
the opposite order.

 Knowing this, you can compare the characters at the front of the queue and the top of the stack. If
the characters are the same, you can remove them. You repeat this process until the stack and the
queue become empty, in which case the original string is a palindrome, or the two characters are not
the same, in which case the string is not a palindrome.

 The following is a pseudocode version of a nonrecursive recognition algorithm for the language
of palindromes:

 // Tests whether a given string is a palindrome .
isPalindrome(someString: string): boolean

 // Create an empty queue and an empty stack
 aQueue = a new empty queue
 aStack = a new empty stack

 // Add each character of the string to both the queue and the stack
 length = length of someString

for (i = 1 through length)
 {
 nextChar = ith character of someString
 aQueue.enqueue(nextChar)
 aStack.push(nextChar)
 }

 // Compare the queue characters with the stack characters
 charactersAreEqual = true

while (aQueue is not empty and charactersAreEqual)
 {
 queueFront = aQueue.peekFront()
 stackTop = aStack.peek()
 if (queueFront equals stackTop)
 {
 aQueue.dequeue()
 aStack.pop()
 }
 else
 charactersAreEqual = false
 }

return charactersAreEqual

FIGURE 13-3 The results of inserting the characters a, b, c, b, d into both a queue
and a stack

a b c b d d
b
c
b
a

Queue: Stack:

Top

String:

abcbd

Front Back

 The ADT Priority Queue 379

 13.3 The ADT Priority Queue
 Imagine a person who visits a hospital’s emergency room (ER). When any patient enters the hospital,
the staff creates a record about that person in a database for later retrieval by nurses, doctors, and the
billing department. In addition, the staff must keep track of the ER patients and decide when each
person will receive care.

 What ADT should the ER staff use for their patients? The ADT sorted list would facilitate the
treatment of ER patients in alphabetical order by name or in numerical order by ID number. A queue
would enable treatment of patients in the order of arrival. In either case, Ms. Zither, who was just
rushed to the ER with acute appendicitis, would have to wait for Mr. Able to have a splinter removed.
Clearly, the ER staff should assign some measure of urgency, or priority, to the patients waiting for
treatment. The next available doctor should treat the patient with the highest priority. The ADT that
the ER staff needs should produce this patient on request.

 Another example of the use of priorities is your list of daily or weekly tasks. Suppose that your
“to do” list for this week contains the following items:

 Send a birthday card to Aunt Mabel.
 Start the research paper for world history.
 Finish reading Chapter 13 of Walls and Mirrors.
 Make plans for Saturday night.

 When you consult your list, you most likely will attend to the task that, for you, has the highest
priority.

 A priority value indicates, for example, a patient’s priority for treatment or a task’s priority for
completion. What quantity should you use for this priority value? Many reasonable possibilities exist,
including a simple ranking from 1 to 10. Let’s arbitrarily decide that the largest priority value indi-
cates the highest priority. The priority value becomes a part of the item that you insert into an ADT.
You then ask the ADT for the item that has the highest priority.

 Such an ADT is known as a priority queue . More formally, a priority queue is an ADT that
provides the following operations:

 Question 4 Improve the palindrome-recognition algorithm described in this section
by adding the fi rst length / 2 characters to the queue and then pushing the remaining charac-
ters onto the stack.

 Question 3 Trace the palindrome-recognition algorithm described in this section for each
of the following strings of characters:
 a. abcda
 b. radar

CHECK POINT

You can organize
data by priorities

You usually prioritize
your list of tasks

 Note: ADT priority queue operations

• Test whether a priority queue is empty.
• Add a new entry to the priority queue in its sorted position based on priority value.
• Remove from the priority queue the entry with the highest priority value.
• Get the entry in the priority queue with the highest priority value.

380 CHAPTER 13 Queues and Priority Queues

 The following operation contract specifi es the ADT priority queue in more detail, and
 Figure 13-4 shows a UML diagram for the class PriorityQueue .

A priority queue
orders by priority
values

 ABSTRACT DATA TYPE: PRIORITY QUEUE

DATA

• A fi nite number of objects, not necessarily distinct, having the same data type and ordered by priority.

OPERATIONS

PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this priority queue is empty.
 Input: None.
 Output: True if the priority queue is empty; otherwise false.

 add(newEntry) Task: Adds newEntry to this priority queue.
 Input: newEntry .
 Output: True if the operation is successful; otherwise false.

 remove() Task: Removes the entry with the highest priority from this priority queue.
 Input: None.
 Output: True if the operation is successful; otherwise false.

 peek() Task: Returns the entry in this priority queue with the highest priority. The operation
does not change the priority queue.

 Input: None.
 Output: The entry with the highest priority.

FIGURE 13-4 UML diagram for the class PriorityQueue

PriorityQueue

+isEmpty(): boolean
+add(newEntry: ItemType): boolean
+remove(): boolean
+peek(): ItemType

 13.3.1 Tracking Your Assignments

 Professors and bosses like to assign tasks for us to do by certain dates. Using a priority queue, we can
organize these assignments in the order in which we should complete them. Suppose that we order the
assignments by their due dates. A task with the earliest due date will have the highest priority. We can
defi ne a class Assignment of tasks that includes a data fi eld date representing a task’s due date.
 Figure 13-5 shows a diagram of such a class.

 Application: Simulation 381

 The following pseudocode shows how you could use a priority queue to organize your assign-
ments and other responsibilities so that you know which one to complete fi rst:

 assignmentLog = a new priority queue using due date as the priority value
project = a new instance of Assignment
essay = a new instance of Assignment
task = a new instance of Assignment
errand = a new instance of Assignment
 assignmentLog.add(project)
 assignmentLog.add(essay)
 assignmentLog.add(task)
 assignmentLog.add(errand)
cout << "I should do the following first: "
cout << assignmentLog.peek()

 13.4 Application: Simulation
Simulation —a major application area for computers—is a technique for modeling the behavior of
both natural and human-made systems. Generally, the goal of a simulation is to generate statistics
that summarize the performance of an existing system or to predict the performance of a proposed
system. In this section we will consider a simple example that illustrates one important type of
simulation.

 A problem to solve. Ms. Simpson, president of the First City Bank of Springfi eld, has heard her cus-
tomers complain about how long they have to wait for service at the branch located in a downtown
grocery store. Because she fears losing those customers to another bank, she is considering whether
to hire a second teller for that branch.

 Before Ms. Simpson hires another teller, she would like an approximation of the average time
a customer has to wait for service from that branch’s only teller. Ms. Simpson heard you were great
at solving problems and has come to you for help. How can you obtain this information for
Ms. Simpson?

 Considerations. You could stand with a stopwatch in the bank’s lobby all day, but that task is not
particularly exciting. Besides, you should use an approach that also allows Ms. Simpson to predict
how much improvement she could expect if the bank hired a given number of additional tellers. She
certainly does not want to hire the tellers on a trial basis and then monitor the bank’s performance
before making her fi nal decision.

Simulation models
the behavior of
systems

FIGURE 13-5 UML diagram for the class Assignment

Assignment

course—the course code
task—a description of the assignment
date—the due date

+getCourseCode(): string
+getTask(): string
+getDueDate(): string

382 CHAPTER 13 Queues and Priority Queues

 You conclude that the best way to obtain the information needed is to use a computer model to
simulate the behavior of the bank. The fi rst step in simulating a system such as a bank is to construct
a mathematical model that captures the relevant information about the system. For example, how
many tellers does the bank employ? How often do customers arrive? How long do the customers’
transactions take?

 If the model accurately describes the real-world system, a simulation can derive accurate predic-
tions about the system’s overall performance. For example, a simulation could predict the average time
a customer has to wait before receiving service. A simulation can also evaluate proposed changes to the
real-world system, such as predicting the effect of hiring more tellers at the bank. A large decrease in
the time predicted for the average wait of a customer might justify the cost of hiring additional tellers.

 After discussing the problem with Ms. Simpson, you decide that you want the simulation to
determine

• The average time a customer waits to begin service from the current single teller
• The decrease in customer wait time with each new teller added

 Simulation time and events. Central to a simulation is the concept of simulated time. Envision a
stopwatch that measures time elapsed during a simulation. For example, suppose that the model of
the bank specifi es only one teller. At time 0, which is the start of the banking day, the simulated sys-
tem would be in its initial state with no customers. As the simulation runs, the stopwatch ticks away
units of time—perhaps minutes—and certain events occur. At time 20, the bank’s fi rst customer ar-
rives. Because there is no line, the customer goes directly to the teller and begins her transaction,
which will take about 6 minutes to complete. At time 22, a second customer arrives. Because the fi rst
customer has not yet completed her transaction, the second customer must wait in line. At time 26, the
fi rst customer completes her transaction and the second customer can begin his. Figure 13-6 illus-
trates these four times in the simulation.

 To gather the information you need, you run this simulation for a specifi ed period of simulated
time. During the course of the run, you need to keep track of certain statistics, such as the average
time a customer has to wait for service. Notice that in the small example of Figure 13-6 , the fi rst cus-
tomer had to wait 0 minutes to begin a transaction and the second customer had to wait 4 minutes to
begin a transaction—an average wait of 2 minutes.

 One point not addressed in the previous discussion is how to determine when certain events
occur. For example, why did we say that the fi rst customer arrived at time 20 and the second at
time 22? After studying real-world systems like our bank, mathematicians learned to model events
such as the arrival of people by using techniques from probability theory. This statistical informa-
tion is incorporated into the mathematical model of the system and is used to generate events in a
way that refl ects the real world. The simulation uses these events and is thus called an event-
driven simulation . Note that the goal is to refl ect the long-term average behavior of the system
rather than to predict occurrences of specifi c events. This goal is suffi cient for the needs of our
simulation.

 Although the techniques for generating events to refl ect the real world are interesting and impor-
tant, they require a good deal of mathematical sophistication. Therefore, we simply assume that we
already have a list of events available for our use. In particular, for the bank problem, we assume that
a fi le contains the time of each customer’s arrival—an arrival event —and the duration of that cus-
tomer’s transaction once the customer reaches the teller. For example, the data

 Arrival time Transaction length
 20 6
 22 4
 23 2
 30 3

Simulated time

Sample arrival and
transaction times

 Application: Simulation 383

FIGURE 13-6 A bank line at time (a) 0; (b) 20; (c) 22; (d) 26

(a)

(b)

(c)

(d)

time = 26

time = 22

time = 20

time = 0

Bank Line

Bank Line

Bank Line

Bank Line

Teller

TellerCustomer1

Customer2 TellerCustomer1

Customer1

TellerCustomer2

 indicates that the first customer arrives 20 minutes into the simulation and her transaction—
once begun—requires 6 minutes; the second customer arrives 22 minutes into the simulation,
and his transaction requires 4 minutes; and so on. Assume that the input file is ordered by arrival
time.

 The use of a data fi le with predetermined event information is common in simulations. It allows
us to try many different scenarios or bank teller confi gurations with the same set of events to ensure a
fair comparison.

 Notice that the fi le does not contain departure events ; the data does not specify when a customer
will complete the transaction and leave. In fact, the departure time of a customer cannot be deter-
mined until the simulation is run, so the simulation must determine when departures occur. By using
the arrival time and the transaction length, the simulation can easily determine the time at which a

384 CHAPTER 13 Queues and Priority Queues

customer departs. To compute the departure time, we add the length of the transaction to the time
when the customer begins the transaction.

 For example, if we run the simulation by hand with the previous data, we would compute the
departure times as follows:

Time Event
 20 Customer 1 enters bank and begins transaction

Determine customer 1 departure event is at time 26
 22 Customer 2 enters bank and stands at end of line
 23 Customer 3 enters bank and stands at end of line
 26 Customer 1 departs; customer 2 begins transaction

Determine customer 2 departure event is at time 30
 30 Customer 2 departs; customer 3 begins transaction

Determine customer 3 departure event is at time 32
 30 Customer 4 enters bank and stands at end of line
 32 Customer 3 departs; customer 4 begins transaction

Determine customer 4 departure event is at time 35
 35 Customer 4 departs

 A customer’s wait time is the elapsed time between arrival in the bank and the start of the transac-
tion, that is, the amount of time the customer spends in line. The average of this wait time over all the
customers is the statistic that you want to obtain.

 To summarize, this simulation is concerned with two kinds of events:

The results of a
simulation

Note: Kinds of events in an event-driven simulation

• Arrival events indicate the arrival at the bank of a new customer. The input fi le speci-
fi es the times at which the arrival events occur. As such, they are externally generated
events . When a customer arrives at the bank, one of two things happens. If the teller is
idle when the customer arrives, the customer goes to the teller and begins the transac-
tion immediately. If the teller is busy, the new customer must stand at the end of the
line and wait for service.

• Departure events indicate the departure from the bank of a customer who has com-
pleted a transaction. The simulation determines the times at which the departure
events occur. Thus, they are internally generated events . When a customer completes
the transaction, he or she departs and the next person in line—if there is one—begins
a transaction.

A fi rst attempt at a
simulation algorithm

 Event loop. The main tasks of an algorithm that performs a simulation are to repeatedly determine
the times at which events occur and to process the events when they do occur. In simulation and
gaming applications, this process is referred to as the event loop . The algorithm is stated at a high
level as follows:

 // Initialize
currentTime = 0
 Initialize the line to “no customers”

 while (currentTime <= time of the final event)
 {

 Application: Simulation 385

if (an arrival event occurs at time currentTime)
Process the arrival event

if (a departure event occurs at time currentTime)
Process the departure event

// When an arrival event and departure event occur at the same time,
// arbitrarily process the arrival event first

 currentTime++
 }

 But do you really want to increment currentTime by 1? You would for a time-driven simulation ,
where you would determine arrival and departure times at random and compare those times to
currentTime . Video games use this approach, since events can occur or need to be processed in
almost every unit of time, which is typically a frame. In such a case, you would increment
currentTime by 1 to simulate the ticking of a clock.

 Recall, however, that this simulation is event driven, so you have a fi le of predetermined arrival
times and transaction times. Because you are interested only in those times at which arrival
and departure events occur, and because no action is required between events, you can advance
currentTime from the time of one event directly to the time of the next.

 Thus, you can revise the pseudocode solution as follows:

 Initialize the line to “no customers”
 while (events remain to be processed)
 {
 currentTime = time of next event

if (event is an arrival event)
Process the arrival event

else
Process the departure event

// When an arrival event and a departure event occur at the same time,
// arbitrarily process the arrival event first

}

 You must determine the time of the next arrival or departure so that you can implement the state-
ment

 currentTime = time of next event

 To make this determination, you must maintain an event list . An event list contains all arrival
and departure events that will occur but have not occurred yet. The times of the events in the
event list are in ascending order, and thus the next event to be processed is always at the beginning
of the list. The algorithm simply gets the event from the beginning of the list, advances to the
time specifi ed, and processes the event. The diffi culty, then, lies in successfully managing the
event list.

 Managing and processing customers and events. As customers arrive, they go to the back of the
line. The current customer, who was at the front of the line, is being served, and it is this customer that
you remove from the system next. It is thus natural to use a queue, bankQueue , to represent the line of
customers in the bank. For this problem, the only information that you must store in the queue about
each customer is the time of arrival and the length of the transaction.

 Arrival events and departure events are ordered by time, and we always want to remove and
process the next event that should occur—the highest-priority event. The ADT priority queue is
used in this way. Our events can be stored in the priority queue eventListPQueue . We can initialize
eventListPQueue with the arrival events in the simulation data fi le and later add the departure
events as they are generated.

A time-driven
simulation simulates
the ticking of a clock

An event-driven
simulation considers
only the times of
certain events, in
this case, arrivals
and departures

First revision of the
simulation algorithm

An event list
contains all future
arrival events and
departure events

386 CHAPTER 13 Queues and Priority Queues

 But how can you determine the times for the departure events? Observe that the next departure
event always corresponds to the customer that the teller is currently serving. As soon as a customer
begins service, the time of his or her departure is simply

 time of departure = time service begins + length of transaction

 Recall that the length of the customer’s transaction is in the event list, along with the arrival time.
Thus, as soon as a customer begins service, you place a departure event corresponding to this cus-
tomer in the event list. Figure 13-7 illustrates a typical instance of an arrival event and a departure
event used in this simulation.

Two tasks are
required to process
each event

The algorithm for
arrival events

A new customer
always enters the
queue and is
served while at the
queue’s front

The algorithm for
departure events

FIGURE 13-7 A typical instance of (a) an arrival event; (b) a departure event

A(a) Arrival event (b) Departure event

Type Time Length Type Time Length

620 D 26 –

 Now consider how you can process an event when it is time for the event to occur. You must
perform two general types of actions:

• Update the bank line: Add or remove customers.
• Update the event list: Add or remove events.

 To summarize, you process an arrival event as follows:

 // TO PROCESS AN ARRIVAL EVENT

// Update the event list
 Remove the arrival event for customer C from the event list

// Update the bank line
 if (bank line is empty and teller is available)
 {

Departure time of customer C is current time + transaction length
 Add a departure event for customer C to the event list
 Mark the teller as unavailable

 }
 else

Add customer C to the bank line

 When customer C arrives at the bank, if the line is empty and the teller is not serving another cus-
tomer, customer C can go directly to the teller. The wait time is 0 and you insert a departure event into
the event list. If other customers are in line, or if the teller is assisting another customer, customer C
must go to the end of the line.

 You process a departure event as follows:

 // TO PROCESS A DEPARTURE EVENT

 // Update the event list
 Remove the departure event from the event list

// Update the bank line
 if (bank line is not empty)

 Application: Simulation 387

 {
Remove customer C from the front of the bank line
 Customer C begins transaction
 Departure time of customer C is current time + transaction length
 Add a departure event for customer C to the event list

 }
 else

Mark the teller as available.

 When a customer fi nishes a transaction and leaves the bank, if the bank line is not empty, the next customer
C leaves the line and goes to the teller. You insert a departure event for customer C into the event list.

 You can now combine and refi ne the pieces of the solution into an algorithm that performs the
simulation by using the ADTs queue and priority queue:

 // Performs the simulation.
simulate(): void

Create an empty queue bankQueue to represent the bank line
Create an empty priority queue eventListPQueue for the event list

 tellerAvailable = true

// Create and add arrival events to event list
while (data file is not empty)

 {
Get next arrival time a and transaction time t from file

 newArrivalEvent = a new arrival event containing a and t
 eventListPQueue.add(newArrivalEvent)
 }

// Event loop
while (eventListPQueue is not empty)

 {
 newEvent = eventListPQueue.peek()

// Get current time
 currentTime = time of newEvent

if (newEvent is an arrival event)
 processArrival(newEvent, eventListPQueue, bankQueue)

else
 processDeparture(newEvent, eventListPQueue, bankQueue)
 }

// Processes an arrival event.
processArrival(arrivalEvent: Event, eventListPQueue: PriorityQueue,
 bankQueue: Queue)

// Remove this event from the event list
 eventListPQueue.remove()

 customer = customer referenced in arrivalEvent
if (bankQueue.isEmpty() && tellerAvailable)

 {
 departureTime = currentTime + transaction time in arrivalEvent
 newDepartureEvent = a new departure event with departureTime
 eventListPQueue.add(newDepartureEvent)
 tellerAvailable = false
 }

else
 bankQueue.enqueue(customer)

The fi nal
pseudocode for the
event-driven
simulation

388 CHAPTER 13 Queues and Priority Queues

// Processes a departure event .
+processDeparture(departureEvent: Event, eventListPQueue: PriorityQueue,
 bankQueue: Queue)

 // Remove this event from the event list
 eventListPQueue.remove()

if (!bankQueue.isEmpty())
 {

// Customer at front of line begins transaction
 customer = bankQueue.peek()
 bankQueue.dequeue()
 departureTime = currentTime + transaction time in customer
 newDepartureEvent = a new departure event with departureTime
 eventListPQueue.add(newDepartureEvent)
 }

else
 tellerAvailable = true

 Figure 13-8 begins a trace of this algorithm for the data given earlier and shows the changes to
the queue and priority queue. Checkpoint Question 6 asks you to complete the trace. There are several
more implementation details that must be decided, such as how to represent customers and events.
Programming Problem 6 at the end of this chapter asks you to complete the implementation of this
simulation.

FIGURE 13-8 A trace of the bank simulation algorithm for the data
 20 6
 22 4
 23 2
 30 3

Time

bankQueue eventListPQueueFront BackFront Back

A 22 4

A 20 6

A 22 4

A 23 2

D 26 -

D 35 -

A 30 3

A 22 4

A 23 2

D 26 -

A 23 2

D 26 -

A 30 3

A 30 3

A 30 3

A 30 3

D 30 -

D 32 -

A 22 4

A 23 2

A 30 3

A 23 2

0

20

22

23

26

30

32

 Question 5 In the bank simulation problem, why is it impractical to read the entire input
fi le and create a list of all the arrival and departure events before the simulation begins?

CHECK POINT

 Position-Oriented and Value-Oriented ADTs 389

 13.5 Position-Oriented and Value-Oriented ADTs
 Of the abstract data types that we have seen so far, the stack, the list, and the queue have operations
defi ned in terms of the positions of their data items. We call them position-oriented ADTs . Stacks
and queues greatly restrict the positions that their operations can affect; only their end positions can
be accessed. The list removes this restriction.

 The ADT sorted list is an example of a value-oriented ADT . When a new item is added to a
sorted list, the sorted list determines the item’s placement according to its value. Unlike a list, a sorted
list cannot be told where to place its items. The same is true of a priority queue, since it orders its
entries according to their priorities, which are values that are a part of each entry.

 Although stacks and queues order their entries, and you do not specify where a stack or a queue
should place its items, the entries’ positions are not determined according to their values. Thus, we do
not classify stacks and queues as value oriented.

 Question 6 Complete the hand trace of the bank-line simulation that Figure 13-8 began.
Show the state of the queue and the event list at each step.

Operations for the
ADTs list, stack, and
queue involve the
position of items

A comparison of
stack and queue
operations

 Note: The ADTs stack, queue, list, sorted list, and priority queue all order their entries.
The stack, queue, and list are position oriented; the sorted list and priority queue are
value oriented. The ADT bag does not order its entries; it is neither position oriented nor
value oriented.

 Stacks are really quite similar to queues. This similarity becomes apparent if you pair off their
operations, as follows:

• Stack isEmpty and queue isEmpty see whether any items exist in the ADT.
• push and enqueue insert a new item into one end (the top and back, respectively) of the

ADT.
• pop and dequeue : The pop operation removes the most recent item, which is at the top of the

stack, and dequeue removes the fi rst item, which is at the front of the queue.
• Stack peek and queue peekFront : The peek operation retrieves the most recent item, which is

at the top of the stack, and peekFront retrieves the fi rst item at the front of the queue.

 The ADT list allows you to insert into, remove from, and inspect an item at any position of the
list. Thus, it has the most fl exible operations of the three position-oriented ADTs. You can view the list
operations as general versions of the stack and queue operations as follows:

• getLength : If you ignore the restriction that the stack and queue versions of isEmpty can tell
only when an item is present, you obtain an operation that can count the number of items that
are present.

• insert : If you ignore the restriction that push and enqueue can insert new items into only one
position, you obtain an operation that can insert a new item into any position of the list.

• remove : If you ignore the restriction that pop and dequeue can remove items from only one
position, you obtain an operation that can remove an item from any position of the list.

• getEntry : If you ignore the restriction that peek and peekFront can retrieve items from
only one position, you obtain an operation that can retrieve the item from any position of the
list.

ADT list operations
generalize stack
and queue
operations

390 CHAPTER 13 Queues and Priority Queues

 SUMMARY

 Question 7 For each of the following situations, which of these ADTs (1 through 6)
would be most appropriate? (1) a queue; (2) a stack; (3) a list; (4) a sorted list; (5) a priority
queue; (6) none of these

a. The customers at a6deli counter who take numbers to mark their turn
b. An alphabetic list of names
c. Integers that need to be sorted
d. The boxes in a box trace of a recursive function
e. A grocery list ordered by the occurrence of the items in the store
f. The items on a cash register tape
g. A word processor that allows you to correct typing errors by using the Backspace key
h. A program that uses backtracking
i. A list of ideas in chronological order
j. Airplanes that stack above a busy airport, waiting to land
k. People who are put on hold when they call for customer service
l. An employer who fi res the most recently hired person

CHECK POINT

1. The defi nition of the queue operations gives the ADT queue fi rst-in, fi rst-out (FIFO) behavior.

2. Models of real-world systems often use queues. The event-driven simulation in this chapter used a queue to
model a line of customers in a bank.

3. Central to a simulation is the notion of simulated time. In a time-driven simulation, simulated time is advanced
by a single time unit, whereas in an event-driven simulation, simulated time is advanced to the time of the next
event. To implement an event-driven simulation, you maintain an event list that contains events that have not yet
occurred. The event list is ordered by the time of the events, so that the next event to occur is always at the head
of the list.

4. A priority queue has operations to retrieve or remove the item with the highest priority.

5. ADTs are classifi ed as either position oriented or value oriented. A position-oriented ADT organizes its items
according to their positions, whereas a value-oriented ADT organizes items by their values.

 EXERCISES

1. Consider the palindrome-recognition algorithm described in Section 13.2.2 . Is it necessary for the
algorithm to look at the entire queue and stack? That is, can you reduce the number of times that the loop
must execute?

2. Consider the language

 L = { s$s' : s is a possibly empty string of characters other than $, s' = reverse(s)}

as defi ned in Chapter 6 . Write a recognition algorithm for this language that uses both a queue and a stack. Thus,
as you traverse the input string, you insert each character of s into a queue and each character of s' into a stack.
Assume that each input string contains exactly one $.

 Exercises 391

3. What is the output of the following pseudocode, where num1 , num2 , and num3 are integer variables?

 num1 = 5
num2 = 1
num3 = 4
 aQueue.enqueue(num2)
 aQueue.enqueue(num3)
 aQueue.dequeue()
aQueue.enqueue(num1 - num2)
num1 = aQueue.peek()
 aQueue.dequeue()
num2 = aQueue.peek()
 aQueue.dequeue()
cout << num2 << " " << num1 << " " << num3 << endl

 4. Revise the infi x-to-postfi x conversion algorithm of Chapter 6 so that it uses a queue to represent the postfi x
expression.

 5. Write a client function that returns the back of a queue while leaving the queue unchanged. This function can
call any of the methods of the ADT queue. It can also declare new Queue objects. The return type is
ItemType , and it accepts a Queue object as a parameter.

 6. Consider a queue implementation that uses the ADT list to represent the items in the queue. Discuss the
effi ciency of the queue’s insertion and removal operations when the ADT list’s implementation is

 a. Array based
 b. Link based

 7. An operation that displays the contents of a queue can be useful during program debugging. Add a display
operation to the ADT queue such that display uses only ADT queue operations, so it is independent of the
queue’s implementation.

 8. Write a C++ template interface PriorityQueueInterface for the ADT priority queue.

 9. Consider a slight variation of the ADT queue. In this variation, new items can be added to and removed from
either end. This ADT is commonly called a double-ended queue , or deque . Specify each method of the deque
by stating the method’s purpose; by describing its parameters; and by writing preconditions, postconditions, and
a pseudocode version of its header. Then write a C++ template interface for these methods that includes
javadoc -style comments.

 10. Use a deque, as described in the previous exercise, to solve the read-and-correct problem given in
 Section 6.1.1 of Chapter 6 . In that problem, you enter text at a keyboard and correct typing mistakes by
using the Backspace key. Each backspace erases the most recently entered character. Your pseudocode
solution should provide a corrected string of characters in the order in which they were entered at the
keyboard.

11. With the following data, hand-trace the execution of the bank-line simulation that this chapter describes. Each
line of data contains an arrival time and a transaction time. Show the state of the queue and the event list at each
step.

 5 9
 7 5
 14 5
 30 5
 32 5
 34 5

 Note that at time 14, there is a tie between the execution of an arrival event and a departure event.

392 CHAPTER 13 Queues and Priority Queues

 12. In the solution to the bank simulation problem, can the event list be a queue? Can the event list be a list or sorted
list?

 13. Consider the stack-based search of the fl ight map in the HPAir problem of Chapter 6 . You can replace the
stack that searchS uses with a queue. That is, you can replace every call to push with a call to enqueue , every
call to pop with a call to dequeue , and every call to peek with a call to peekFront . Trace the resulting algo-
rithm when you fl y from P to Z in the fl ight map in Figure 6-6 . Indicate the contents of the queue after every
operation on it.

 14. As Chapter 6 pointed out, you can defi ne ADT operations in a mathematically formal way by using axioms.
Consider the following axioms for the ADT queue, where aQueue is an arbitrary queue and item is an arbitrary
queue item:

 (new Queue()).isEmpty() = true
(new Queue()).dequeue() = false
(new Queue()).peekFront() = error
((new Queue()).enqueue(item)).dequeue() = new Queue()
((new Queue()).enqueue(item)).peekFront() = item
(aQueue.enqueue(item)).isEmpty() = false
(aQueue.enqueue(item)).dequeue() = true

 If aQueue is not empty,

 (aQueue.enqueue(item)).dequeue() = (aQueue.dequeue()).enqueue(item)

 and

 (aQueue.enqueue(item)).peekFront() = aQueue.peekFront()

a. Note the recursive nature of the defi nition of peekFront . What is the base case? What is the recursive
step? What is the signifi cance of the isEmpty test? Why is the queue operation peekFront recursive in
nature while the stack operation peek for the ADT stack is not?

b. The representation of a stack as a sequence of push operations without any pop operations is called a
canonical form. (See Exercise 15 in Chapter 6 .) Is there a canonical form for the ADT queue? That is,
can you represent a queue as a sequence of enqueue operations without any dequeue operations? Prove
your answer.

 PROGRAMMING PROBLEMS

 1. Using the class queue in the Standard Template Library, defi ne and test the class OurQueue that is derived from
QueueInterface , as given in Listing 13-1. The class queue has the following methods that you can use to defi ne
the methods for OurQueue :

queue(); // Default constructor
bool empty() const ; // Tests whether the queue is empty
void push(const ItemType& newEntry); // Adds newEntry to the back of the queue
void pop(); // Removes the front of the queue
ItemType& front(); // Returns a reference to the front of the queue

 To access queue , use the following include statement:

 #include <queue>;

 Programming Problems 393

 Input fi le Output from processing fi le on left

1 5 Simulation Begins
2 5 Processing an arrival event at time: 1
4 5 Processing an arrival event at time: 2
20 5 Processing an arrival event at time: 4
22 5 Processing a departure event at time: 6
24 5 Processing a departure event at time: 11
26 5 Processing a departure event at time: 16
28 5 Processing an arrival event at time: 20
30 5 Processing an arrival event at time: 22
88 3 Processing an arrival event at time: 24

 Processing a departure event at time: 25
 Processing an arrival event at time: 26
 Processing an arrival event at time: 28
 Processing an arrival event at time: 30

 2. Using the class priority_queue in the Standard Template Library, defi ne and test the class OurPriorityQueue
that is derived from PriorityQueueInterface , as developed in Exercise 8. The class priority_queue has the
following methods that you can use to defi ne the methods for OurPriorityQueue :

priority_queue(); // Default constructor
 bool empty() const ; // Tests whether the priority queue is empty
 void push(const ItemType& newEntry); // Adds newEntry to the priority queue
 void pop(); // Removes the entry having the highest priority
ItemType& top(); // Returns a reference to the entry having the
 // highest priority

 To access priority_queue , use the following include statement:

 #include < priority_queue>;

Whenever you need a queue or a priority queue for any of the following problems, use the classes OurQueue and
OurPriorityQueue that Programming Problems 1 and 2 ask you to write .

 3. Implement the palindrome-recognition algorithm described in Section 13.2.2 .

 4. Implement the recognition algorithm that you wrote to solve Exercise 2 using the classes OurQueue , as described
in Programming Problem 1, and OurStack , as described in Programming Problem 1 of Chapter 6 .

 5. Implement the radix sort of an array by using a queue for each group. The radix sort is discussed in Section
 11.2.3 of Chapter 11 .

 6. Implement the event-driven simulation of a bank that this chapter described. A queue of arrival events will rep-
resent the line of customers in the bank. Maintain the arrival events and departure events in a priority queue,
sorted by the time of the event. Use a link-based implementation for the event list.

 The input is a text fi le of arrival and transaction times. Each line of the fi le contains the arrival time and
required transaction time for a customer. The arrival times are ordered by increasing time.

 Your program must count customers and keep track of their cumulative waiting time. These statistics are
suffi cient to compute the average waiting time after the last event has been processed. Display a trace of the
events executed and a summary of the computed statistics (the total number of arrivals and average time spent
waiting in line). For example, the input fi le shown in the left columns of the following table should produce the
output shown in the right column.

394 CHAPTER 13 Queues and Priority Queues

 7. Modify and expand the event-driven simulation program that you wrote in Programming Problem 6.

 a. Add an operation that displays the event list, and use it to check your hand trace in Exercise 11.
 b. Add some statistics to the simulation. For example, compute the maximum wait in line, the average

length of the line, and the maximum length of the line.
 c. Modify the simulation so that it accounts for three tellers, each with a distinct line. You should keep in

mind that there should be

• Three queues, one for each teller
• A rule that chooses a line when processing an arrival event (for example, enter the shortest line)
• Three distinct departure events, one for each line
• Rules for breaking ties in the event list

 Run both this simulation and the original simulation on several sets of input data. How do the statistics
compare?

 d. The bank is considering the following change: Instead of having three distinct lines (one for each
teller), there will be a single line for the three tellers. The person at the front of the line will go to the
fi rst available teller. Modify the simulation of part c to account for this variation. Run both simulations
on several sets of input data. How do the various statistics compare (averages and maximums)? What
can you conclude about having a single line as opposed to having distinct lines?

 8. The people who run the Motor Vehicle Department (MVD) have a problem. They are concerned that people do
not spend enough time waiting in lines to appreciate the privilege of owning and driving an automobile. The
current arrangement is as follows:

• When people walk in the door, they must wait in a line to sign in.
• Once they have signed in, they are told either to stand in line for registration renewal or to wait until they

are called for license renewal.
• Once they have completed their desired transaction, they must go and wait in line for the cashier.
• When they fi nally get to the front of the cashier’s line, if they expect to pay by check, they are told that all

checks must get approved. To do this, it is necessary to go to the check-approver’s table and then reenter
the cashier’s line at the end.

 Processing a departure event at time: 30
 Processing a departure event at time: 35
 Processing a departure event at time: 40
 Processing a departure event at time: 45
 Processing a departure event at time: 50
 Processing an arrival event at time: 88
 Processing a departure event at time: 91
 Simulation Ends

 Final Statistics:

 Total number of people processed: 10
 Average amount of time spent waiting: 5.6

 Programming Problems 395

 Write an event-driven simulation to help the MVD gather statistics. Each line of input will contain

• A desired transaction code (L for license renewal, R for registration renewal)
• A method-of-payment code ($ for cash, C for check)
• An arrival time (integer)
• A name

 Write out the specifi cs of each event (when, who, what, and so on). Then display these fi nal statistics:

• The total number of license renewals and the average time spent in MVD (arrival until completion of
payment) to renew a license

• The total number of registration renewals and the average time spent in MVD (arrival until completion of
payment) to renew a registration

 Incorporate the following details into your program:

• Defi ne the following events: arrive, sign in, renew license, renew registration, and cope with the cashier
(make a payment or fi nd out about check approval).

• In the case of a tie, let the order of events be determined by the list of events just given—that is, arrivals
have the highest priority.

• Assume that the various transactions take the following amounts of time:

 Sign in 10 seconds
 Renew license 90 seconds
 Register automobile 60 seconds
 See cashier (payment) 30 seconds
 See cashier (check not approved) 10 seconds

• As ridiculous as it may seem, the people waiting for license renewal are called in alphabetical order.
Note, however, that people are not pushed back once their transactions have started.

• For the sake of this simulation, you can assume that checks are approved instantly. Therefore, the rule for
arriving at the front of the cashier’s line with a check that has not been approved is to go to the back of the
cashier’s line with a check that has been approved.

This page intentionally left blank

 ChapterQueue and
Priority Queue

Implementations 14
 Contents
 14.1 Implementations of the ADT Queue 397

 14.1.1 An Implementation That Uses the ADT List 398
 14.1.2 A Link-Based Implementation 400
 14.1.3 An Array-Based Implementation 405
 14.1.4 Comparing Implementations 410

 14.2 An Implementation of the ADT Priority Queue 411

 Summary 412
 Exercises 412
 Programming Problems 413

 Prerequisites
 Chapter 13 Queues and Priority Queues

The previous chapter discussed the ADT queue at length and introduced the ADT
priority queue. This chapter will present several implementations of the queue and
compare their advantages and disadvantages.

 We will consider an implementation of the priority queue, but we can write a much
more effi cient implementation later, after we explore the ADT heap in Chapter 17 .

 14.1 Implementations of the ADT Queue
 Like stacks, queues can have an array-based or a link-based implementation. However,
we also can use an implementation of the ADT list to defi ne a class of queues. Such a
class is easy to write, as most of the work is done by the class of lists. If you needed a
class of queues right away, you could use this approach. The result would not be as time
effi cient as possible, however.

398 CHAPTER 14 Queue and Priority Queue Implementations

 We will begin by using an instance of the class LinkedList , as given in Listing 9-2 of Chapter 9 ,
to store the queue’s entries. We will then write a link-based implementation, as it is a bit more straight-
forward than the array-based one, which we will investigate last.

 14.1.1 An Implementation That Uses the ADT List

 You can use the ADT list to contain the items in a queue. This approach is especially useful if you
need to defi ne a class of queues quickly and already have a class of lists. Figure 14-1 illustrates such a
queue. If the item in position 1 of a list represents the front of the queue, you can implement the
method dequeue as the list operation remove(1) and the method peekFront as the list operation
getEntry(1) . Similarly, if you let the item at the end of the list represent the back of the queue, you
can implement the operation enqueue(newEntry) as the list operation insert(getLength() + 1,
newEntry) .

 The header fi le containing such a class defi nition for the ADT queue appears in Listing 14-1, and
the implementation fi le is in Listing 14-2.

 LISTING 14-1 The header fi le for the class ListQueue

/** ADT queue: ADT list implementation.
 @file ListQueue.h */

#ifndef _LIST_QUEUE
#define _LIST_QUEUE

#include "QueueInterface.h"
#include "LinkedList.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class ListQueue : public QueueInterface<ItemType>
 {
 private :
 LinkedList<ItemType>* listPtr; // Pointer to list of queue items

 public :
 ListQueue();
 ListQueue(const ListQueue& aQueue);
 ~ListQueue();

FIGURE 14-1 An implementation of the ADT queue that stores its entries in a list

2 4 1 7

1 2 3 4

Front of queue

Position in list

Back of queue

VideoNote

Overview of
LinkedQueue

 Implementations of the ADT Queue 399

bool isEmpty() const ;
bool enqueue(const ItemType& newEntry);
bool dequeue();

/** @throw PrecondViolatedExcep if queue is empty. */
 ItemType peekFront() const throw (PrecondViolatedExcep);
 }; // end ListQueue
#include "ListQueue.cpp"
 #endif

 LISTING 14-2 The implementation fi le for the class ListQueue

/** ADT queue: ADT list implementation.
 @file ListQueue.cpp */
#include "ListQueue.h" // Header file

 template < class ItemType>
 ListQueue<ItemType>::ListQueue()
 {
 listPtr = new LinkedList<ItemType>();
} // end default constructor

 template < class ItemType>
 ListQueue<ItemType>::ListQueue(const ListQueue& aQueue) :
 listPtr(aQueue.listPtr)
 {
} // end copy constructor

 template < class ItemType>
 ListQueue<ItemType>::~ListQueue()
 {
} // end destructor

 template < class ItemType>
 bool ListQueue<ItemType>::isEmpty() const
 {

return listPtr->isEmpty();
} // end isEmpty

 template < class ItemType>
 bool ListQueue<ItemType>::enqueue(const ItemType& newEntry)
 {

return listPtr->insert(listPtr->getLength() + 1, newEntry);
} // end enqueue

 template < class ItemType>
 bool ListQueue<ItemType>::dequeue()
 {

return listPtr->remove(1);
} // end dequeue

 template < class ItemType>
ItemType ListQueue<ItemType>::peekFront() const

throw (PrecondViolatedExcep)

(continues)

400 CHAPTER 14 Queue and Priority Queue Implementations

 {
if (isEmpty())

 throw PrecondViolatedExcep("peekFront() called with empty queue.");

// Queue is not empty; return front
return listPtr->getEntry(1);

} // end peekFront
// end of implementation file

 Of particular note in the implementation fi le are the defi nitions of the constructor, copy construc-
tor, and destructor. The constructor creates a new instance of a list. Omitting this step is an easy over-
sight to make, leading to incorrect execution instead of a syntax error. The copy constructor uses an
initializer, listPtr(aQueue.listPtr) , to invoke the list’s copy constructor. Finally, even though the
destructor has an empty body, the list’s destructor will be invoked.

 Exercise 8 at the end of this chapter asks you to consider the effi ciency of this implementation.

 14.1.2 A Link-Based Implementation

 A link-based implementation of a queue uses a chain of linked nodes, much like the other link-based
implementations that you have seen. However, the queue presents a challenge, since we must be able
to not only remove entries from its front but also add them to its back. Removing a node from the
beginning of a linked chain is easy, but to add a new node to the chain’s end, we need a pointer to the
chain’s last node. One way to accomplish this is to begin at the fi rst node and traverse the chain until
we reach the last one. A much more effi cient approach uses a tail pointer to reference the end of the
chain—just as the head pointer references the beginning of the chain. Figure 14-2 illustrates a chain
of linked nodes that has both head and tail pointers. Like the head pointer frontPtr , backPtr is exter-
nal to the chain.

A linear linked chain
or a circular linked
chain can represent
a queue

 Figure 14-3 shows that you can actually get by with one external pointer—to the back—if you
make the last node point to the fi rst one. This data structure is a circular chain of linked nodes.
Notice that the nodes in a circular chain have next pointers that never contain nullptr . We will refer
to a chain like the one in Figure 14-2 as a linear chain , regardless of how many external pointers it
has. Such a chain does have a node whose next pointer is nullptr .

 Programming Problem 1 at the end of the chapter asks you to consider the details of the circular
chain implementation. Here we will develop an implementation of the ADT queue using a chain that
has both head and tail pointers, as illustrated in Figure 14-2 .

FIGURE 14-2 A chain of linked nodes with head and tail pointers

backPtr

2 4 6 8

frontPtr

 Implementations of the ADT Queue 401

 Listing 14-3 shows the header fi le for our class defi nition.

 LISTING 14-3 The header fi le for the class LinkedQueue

/** ADT queue: Link-based implementation.
 @file LinkedQueue.h */

#ifndef _LINKED_QUEUE
#define _LINKED_QUEUE

#include "QueueInterface.h"
#include "Node.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class LinkedQueue : public QueueInterface<ItemType>
 {
 private :

// The queue is implemented as a chain of linked nodes that has
// two external pointers, a head pointer for the front of the queue
// and a tail pointer for the back of the queue.

 Node<ItemType>* backPtr;
 Node<ItemType>* frontPtr;

 public :
 LinkedQueue();
 LinkedQueue(const LinkedQueue& aQueue);
 ~LinkedQueue();

bool isEmpty() const ;
bool enqueue(const ItemType& newEntry);
bool dequeue();

 Note: If you use a linear chain with only a head pointer to implement a queue, the
enqueue operation will be ineffi cient. Each addition to the queue requires a traversal to
the end of the chain. As the queue increases in length, the traversal time—and hence
enqueue ’s time requirement—will increase.

FIGURE 14-3 A circular chain of linked nodes with one external pointer

2 4 1 7

backPtr

(continues)

402 CHAPTER 14 Queue and Priority Queue Implementations

/** @throw PrecondViolatedExcep if the queue is empty */
 ItemType peekFront() const throw (PrecondViolatedExcep);
 }; // end LinkedQueue
#include "LinkedQueue.cpp"
 #endif

 The method enqueue. Inserting a new node, to which newNodePtr points, at the back of the chain
that represents the queue requires three pointer changes: the next pointer in the new node, the next
pointer in the current back node, and the external pointer backPtr . Figure 14-4 illustrates these
changes during the addition of an item to a nonempty queue and indicates the order in which they can
occur. The statements to perform this addition are

 newNodePtr->setNext(nullptr);
 backPtr->setNext(newNodePtr);
backPtr = newNodePtr;

 The addition of an item to an empty queue is a special case, as Figure 14-5 illustrates. If
newNodePtr points to the new node, the following statements add the node to the empty chain:

 frontPtr = newNodePtr;
backPtr = newNodePtr

 These statements easily follow from the realization that the chain has only one node, which is both the
fi rst and last node in the chain.

FIGURE 14-4 Adding an item to a nonempty queue

3. backPtr = newNodePtr;

2 4 1 7 3

backPtr newNodePtrfrontPtr

2 4 1 7 3

backPtr newNodePtrfrontPtr

2. backPtr->setNext(newNodePtr);

2 4 1 7 3

backPtr newNodePtrfrontPtr

1. newNodePtr->setNext(nullptr);

 Implementations of the ADT Queue 403

 Thus, we have the following defi nition for the method enqueue :

 template < class ItemType>
 bool LinkedQueue<ItemType>::enqueue(const ItemType& newEntry)
 {
 Node<ItemType>* newNodePtr = new Node<ItemType>(newEntry);

// Insert the new node
if (isEmpty())

 frontPtr = newNodePtr; // The queue was empty
else

 backPtr->setNext(newNodePtr); // The queue was not empty

 backPtr = newNodePtr; // New node is at back
return true ;

} // end enqueue

 The method dequeue. Removing the front of the queue involves deleting the fi rst node of the chain.
This is an easier operation than removing the last node, which, fortunately, we do not have to do.
Figure 14-6 illustrates the removal of the front item from a queue that contains more than one item.
Notice that you need to change only the external pointer frontPtr . Removal from a queue of one
item is a special case that sets the external pointers backPtr and frontPtr to nullptr .

 The following defi nition of the method dequeue shows how to implement these two cases:

 template < class ItemType>
 bool LinkedQueue<ItemType>::dequeue()
 {

bool result = false ;
if (!isEmpty())

 {
 // Queue is not empty; remove front
 Node<ItemType>* nodeToDeletePtr = frontPtr;
 if (frontPtr == backPtr)
 { // Special case: one node in queue
 frontPtr = nullptr ;
 backPtr = nullptr ;
 }
 else
 frontPtr = frontPtr->getNext();

 // Return deleted node to system
 nodeToDeletePtr->setNext(nullptr);
 delete nodeToDeletePtr;

 nodeToDeletePtr = nullptr ;

 result = true ;
 } // end if

return result;
} // end dequeue

FIGURE 14-5 Adding an item to an empty queue: (a) before enqueue ; (b) after enqueue

3 3

newNodePtr

backPtr

(b)(a)

backPtr

frontPtr = newNodePtr;
backPtr = newNodePtr;

frontPtr frontPtr

newNodePtr

404 CHAPTER 14 Queue and Priority Queue Implementations

Retrieval. The method peekFront simply returns the value frontPtr->getItem() after checking
that the queue is not empty. We leave the rest of this implementation to you as an exercise. (See Exer-
cises 1 through 3 at the end of this chapter.)

 Question 1 Why is a tail pointer desirable when you use a chain of linked nodes to
implement a queue?

CHECK POINT

 Question 2 If you use a circular chain that has only a tail pointer, as Figure 14-3
illustrates, how do you access the data in the fi rst node?

 Question 3 If the ADT queue had a method clear that removed all entries from a queue,
what would its defi nition be in the previous link-based implementation?

FIGURE 14-6 Removing an item from a queue of more than one item

4. delete nodeToDeletePtr;

2 4 1 7

backPtrfrontPtr

nodeToDeletePtr

1. nodeToDeletePtr = frontPtr;

2 4 1 7

backPtr

3. nodeToDeletePtr->setNext(nullptr);

2. frontPtr = frontPtr->getNext();2 4 1 7

backPtr

frontPtr

nodeToDeletePtr

frontPtr

nodeToDeletePtr

2 4 1 7

backPtrfrontPtr

nodeToDeletePtr

 Implementations of the ADT Queue 405

 14.1.3 An Array-Based Implementation

 For applications in which a fi xed-sized queue does not present a problem, you can use an array to rep-
resent a queue. A naive array-based implementation of a queue might include the following defi ni-
tions, as Figure 14-7 a illustrates:

 const int MAX_QUEUE = maximum size of queue ;
. . .
ItemType items[MAX_QUEUE]; // Array of queue items
 int front; // Index to front of queue

 int back; // Index to back of queue

A naive array-based
implementation of a
queue

 Here front and back are the indices of the front and back entries, respectively, in the queue. Ini-
tially, front is 0 and back is –1. To add a new item to the queue, you increment back and place the
item in items[back] . To remove an item, you simply increment front . The queue is empty whenever
back is less than front . The queue is full when back equals MAX_QUEUE – 1.

 The problem with this strategy is rightward drift —that is, after a sequence of additions and
removals, the items in the queue will drift toward the end of the array, making it appear full. In
other words, back could equal MAX_QUEUE – 1 even when the queue contains only a few items.
 Figure 14-7 b illustrates this situation.

 One possible solution to this problem is to shift array entries to the left, either after each removal
from the queue or whenever back equals MAX_QUEUE – 1. This solution guarantees that the queue can
always contain up to MAX_QUEUE items. Shifting is not really satisfactory, however, as it would domi-
nate the cost of the implementation.

Rightward drift can
cause a queue-full
condition even
though the queue
contains few entries

Shifting entries to
compensate for
rightward drift is
expensive

 Question 4 Suppose that we change the naive array-based implementation of a queue
pictured in Figure 14-7 so that the back of the queue is in items[0] . Although repeated
removals from the front would no longer cause rightward drift, what other problem would
this implementation cause?

CHECK POINT

FIGURE 14-7 (a) A naive array-based implementation of a queue; (b) rightward drift can
cause the queue to appear full

front back

(a)

(b)

items

0 1 2 3

items

0 1

0 3

47 49

front back

Array indices

2 4 1 7

10 26

49 (MAX_QUEUE – 1)

494847

 A much more elegant solution is possible by viewing the array as circular, as Figure 14-8 illus-
trates. To remove an item, you increment the queue index front , and to insert an item, you increment

A circular array
eliminates rightward
drift

VideoNote

Overview of
ArrayQueue

406 CHAPTER 14 Queue and Priority Queue Implementations

back . Figure 14-9 illustrates the effect of a sequence of three queue operations on front , back , and
the array. Notice that front and back “advance” clockwise around the array.

 When either front or back advances past MAX_QUEUE – 1, it should wrap around to 0. This wrap-
around eliminates the problem of rightward drift, which occurred in the previous naive implementa-
tion, because here the circular array has no end. You obtain the wraparound effect of a circular queue
by using modulo arithmetic (that is, the C++ % operator) when incrementing front and back . For
example, you can add newEntry to the queue by using the statements

 back = (back + 1) % MAX_QUEUE;
items[back] = newEntry;

 Notice that if back equaled MAX_QUEUE – 1 before the addition of newItem , the fi rst statement,
back = (back + 1) % MAX_QUEUE , would have the effect of wrapping back around to index 0. Similarly,
you can remove the entry at the front of the queue by using the statement

 front = (front + 1) % MAX_QUEUE;

 To initialize the queue, you set front to 0 and back to MAX_QUEUE – 1.

FIGURE 14-9 The effect of three consecutive operations on the queue in Figure 14-8

front

MAX_QUEUE – 1

4

1

7

3

2

1

0 MAX_QUEUE – 1

1

7

3

2

1

0

back

MAX_QUEUE – 1

1

7

3

2

1

0

9

4

dequeue();

back

front front

back

dequeue(); enqueue(9);

Adding to a queue

Deleting from a
queue

FIGURE 14-8 A circular array as an implementation of a queue

front

back

MAX_QUEUE – 1

2

4

1

7

3

2

1

0

 Implementations of the ADT Queue 407

 The only diffi culty with this scheme is detecting when the queue is empty or full. It seems rea-
sonable to select as the queue-empty condition

 front is one slot ahead of back

 as this appears to indicate that front “passes” back when the queue becomes empty, as Figure 14-10 a
depicts. However, it is also possible that this condition signals a full queue: Because the queue is cir-
cular, back might in fact “catch up” with front as the queue becomes full. Figure 14-10 b illustrates this
situation.

 Obviously, you need a way to distinguish between the two situations. One way is to keep a count
of the number of items in the queue. Before adding an item to the queue, you check whether the count
is equal to MAX_QUEUE; if it is, the queue is full. Before removing an item from the queue, you check
whether the count is equal to zero; if it is, the queue is empty.

 The header fi le. Listing 14-4 contains the header fi le for an array-based implementation of the ADT
queue that uses a circular array as just described. Because the data is stored in statically allocated
memory, the compiler-generated destructor and copy constructor are suffi cient. 1

 front and back
cannot be used to
distinguish between
queue-full and
queue-empty
conditions

By counting queue
items, you can
detect queue-full
and queue-empty
conditions

 1 If you use a dynamically allocated array, you must provide a destructor and copy constructor.

FIGURE 14-10 (a) front passes back when the queue becomes empty; (b) back catches up to
front when the queue becomes full

MAX_QUEUE – 1

1

7

3

2

1

0

4

95

3

2

1

0

4

5

3

2

1

0

4

5

3

2

1

0

4

5

(a)

(b)

6
1 7

6

3

8

2

4

1 7

6

3

8

2

4

9

6

Queue with single item

Queue with single empty slot enqueue(9)—queue becomes full

dequeue()—queue becomes empty

MAX_QUEUE – 1

MAX_QUEUE – 1 MAX_QUEUE – 1

back
front

back

front

back

front

back

front

408 CHAPTER 14 Queue and Priority Queue Implementations

 LISTING 14-4 The header fi le for the class ArrayQueue

/** ADT queue: Circular array-based implementation.
 @file ArrayQueue.h */
#ifndef _ARRAY_QUEUE
#define _ARRAY_QUEUE
#include "QueueInterface.h"
#include "PrecondViolatedExcep.h"

 const int MAX_QUEUE = 50;

 template < class ItemType>
 class ArrayQueue : public QueueInterface<ItemType>
 {
 private :
 ItemType items[MAX_QUEUE]; // Array of queue items

int front; // Index to front of queue
int back; // Index to back of queue
int count; // Number of items currently in the queue

 public :
 ArrayQueue();

// Copy constructor and destructor supplied by compiler
bool isEmpty() const ;
bool enqueue(const ItemType& newEntry);
bool dequeue();

/** @throw PrecondViolatedExcep if queue is empty. */
 ItemType peekFront() const throw (PrecondViolatedExcep);
 }; // end ArrayQueue
#include "ArrayQueue.cpp"
 #endif

 The implementation fi le. Listing 14-5 contains the defi nitions of ArrayQueue ’s methods as they
appear in the implementation fi le.

 LISTING 14-5 The implementation fi le for the class ArrayQueue

/** ADT queue: Circular array-based implementation.
 @file ArrayQueue.cpp */
#include "ArrayQueue.h" // Header file

 template < class ItemType>
ArrayQueue<ItemType>::ArrayQueue() : front(0), back(MAX_QUEUE - 1), count(0)
 {
} // end default constructor

 template < class ItemType>
 bool ArrayQueue<ItemType>::isEmpty() const
 {

return count == 0;
} // end isEmpty

 Implementations of the ADT Queue 409

 template < class ItemType>
 bool ArrayQueue<ItemType>::enqueue(const ItemType& newEntry)
 {

bool result = false ;
if (count < MAX_QUEUE)

 {
// Queue has room for another item

 back = (back + 1) % MAX_QUEUE;
 items[back] = newEntry;
 count++;
 result = true ;
 } // end if

return result;
} // end enqueue

 template < class ItemType>
 bool ArrayQueue<ItemType>::dequeue()
 {

bool result = false ;
if (!isEmpty())

 {
 front = (front + 1) % MAX_QUEUE;
 count–-;
 result = true ;
 } // end if

return result;
} // end dequeue

 template < class ItemType>
ItemType ArrayQueue<ItemType>::peekFront() const

throw (PrecondViolatedExcep)
 {

// Enforce precondition
if (isEmpty())

throw PrecondViolatedExcep("peekFront() called with empty queue");

// Queue is not empty; return front
return items[front];

} // end peekFront

 Question 5 If the ADT queue had a method clear that removed all entries from a queue,
what would its defi nition be in the previous array-based implementation?

CHECK POINT

 Variations. Several commonly used variations of the previous circular-array approach do not require
a count of the number of entries in the queue. One approach uses a boolean variable isFull to distin-
guish between the full and empty conditions. The expense of maintaining this variable is about the
same as that of maintaining a counter, however. A faster implementation declares MAX_QUEUE + 1
locations for the array items , but uses only MAX_QUEUE of them for queue items. You sacrifi ce one

An isFull fl ag can
replace the counter

410 CHAPTER 14 Queue and Priority Queue Implementations

array location and let front be the index of the location before the front of the queue. As Figure 14-11
illustrates, the queue is full if

front equals (back + 1) % (MAX_QUEUE + 1)

 but the queue is empty if

front equals back

 This approach does not have the overhead of maintaining a counter or boolean variable, and so is
more effi cient of time. Programming Problems 3 and 4 discuss these two alternate implementations
further.

 14.1.4 Comparing Implementations

 We have suggested implementations of the ADT queue that store the queue’s entries in either an
instance of the ADT list, a chain of linked nodes that has both a head pointer and a tail pointer, a circu-
lar chain that has only one external pointer, an array, or a circular array. You have seen the details of
three of these implementations. All of our implementations of the ADT queue are ultimately either
array based or link based.

 The reasons for making the choice between array-based and link-based implementations are the
same as those discussed in earlier chapters. The discussion here is similar to the one in Section 4.5 of
 Chapter 4 . We repeat the highlights here in the context of queues.

 An implementation based on a statically allocated array prevents the enqueue operation from
adding an item to the queue if the array is full. Such a queue is appropriate for many data structures,
such as buffers, within an operating system. If this restriction is not acceptable, you must use either a
dynamically allocated array or a link-based implementation.

 Suppose that you decide to use a link-based implementation. Should you choose the implementa-
tion that uses a linked chain or the one that uses a link-based implementation of the ADT list? Because a
linked chain actually represents the items in the ADT list, using the ADT list to represent a queue is not
as effi cient as using a linked chain directly. However, the ADT list approach is much simpler to write.

 If you decide to use a linked chain instead of the ADT list to represent the queue, should you use a
linear chain or a circular chain? We leave this question for you to answer in Programming Problem 1.

Using an extra array
location is more time
effi cient

Reuse of an already
implemented class
saves you time

Fixed size versus
dynamic size

FIGURE 14-11 A more time-effi cient circular implementation: (a) a full queue; (b) an empty
queue

front
back

3

2

1

0

4

5

front

MAX_QUEUE

3

2

1

0

4

5

6

back

1 7

6

3

8

2

4

7

(a) (b)

6

7

MAX_QUEUE

 An Implementation of the ADT Priority Queue 411

 14.2 An Implementation of the ADT Priority Queue
 While we could place the entries of a priority queue into either an array or a chain of linked nodes,
doing so would be like implementing the ADT sorted list, which we did in Chapter 12 . Rather than
repeating those implementations, we can use a sorted list to contain the entries of a priority queue.
The header fi le in Listing 14-6 defi nes a class of priority queues that has as a private data member an
instance of the class LinkedSortedList , as given in Listing 12-2 of Chapter 12 .

 LISTING 14-6 A header fi le for the class SL_PriorityQueue .

/** ADT priority queue: ADT sorted list implementation.
 @file SL_PriorityQueue.h */
#ifndef _PRIORITY_QUEUE
#define _PRIORITY_QUEUE

#include "PriorityQueueInterface.h"
#include "LinkedSortedList.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class SL_PriorityQueue : public PriorityQueueInterface<ItemType>
 {
 private :
 LinkedSortedList<ItemType>* slistPtr; // Pointer to sorted list of
 // items in the priority queue

 public :
 SL_PriorityQueue();
 SL_PriorityQueue(const SL_PriorityQueue& pq);
 ~SL_PriorityQueue();

bool isEmpty() const ;
bool add(const ItemType& newEntry);
bool remove();

/** @throw PrecondViolatedExcep if priority queue is empty. */
 ItemType peek() const throw (PrecondViolatedExcep);
 }; // end SL_PriorityQueue
#include "SL_PriorityQueue.cpp"
 #endif

 Before we can implement the class SL_PriorityQueue , we need to consider how the sorted list
behaves. LinkedSortedList maintains the entries in a sorted list in sorted order. It does so by com-
paring the entries with each other. For a priority queue, we want these comparisons to be based on the
priorities of the entries. Let’s assume that each entry is an object that has its priority as a data member.
You will learn in C++ Interlude 5 how to make a comparison operator, such as >, base its comparison
on specifi c aspects of its two operands. For now, let’s assume that the comparisons are made accord-
ing to priority. Note that the highest-priority value can be either the largest value or the smallest value,
according to the application at hand.

 To give you an idea of how to implement this class, let’s look at the defi nitions of the add and
remove operations:

 template < class ItemType>
 bool SL_PriorityQueue<ItemType>::add(const ItemType& newEntry)

412 CHAPTER 14 Queue and Priority Queue Implementations

 {
 slistPtr->insertSorted(newEntry);

return true ;
} // end add

 template < class ItemType>
 bool SL_PriorityQueue<ItemType>::remove()
 {

// The highest-priority item is at the end of the sorted list
return slistPtr->remove(slistPtr->getLength());

} // end remove

 We will leave the remainder of this implementation to you as an exercise. Note, however, that we will
discuss a more time-effi cient implementation in Chapter 17 , when we introduce the ADT heap.

 Question 6 Defi ne the method peek for the sorted list implementation of the ADT
priority queue.

CHECK POINT

 SUMMARY

 1. The enqueue and dequeue operations for a queue require effi cient access to both ends of the queue. Therefore, a
link-based implementation of a queue uses a linear linked chain that has both a head pointer and a tail pointer.
Alternatively, you can use a circular linked chain.

 2. An array-based implementation of a queue is prone to rightward drift. This phenomenon can make a queue look
full when it really is not. Shifting the items in the array is one way to compensate for rightward drift. A more
effi cient solution uses a circular array.

 3. If you use a circular array to implement a queue, you must be able to distinguish between the queue-full and
queue-empty conditions. You can make this distinction by counting the number of items in the queue, using a
boolean variable isFull , or leaving one array location empty.

 4. You can use an array, a chain of linked nodes, or a sorted list to contain the entries in a priority queue. A more
time-effi cient implementation is possible by using the ADT heap, which we will consider later in this book.

 1. Implement the copy constructor for the class LinkedQueue that is declared in Listing 14-3. Hint: Look at the
copy constructor for the ADT stack in Listing 7-4 of Chapter 7 .

 2. Repeat the previous exercise, but implement a memory-safe copy constructor instead. If a memory allocation
fails, this constructor should release all memory that was allocated prior to the failure and then throw an
exception.

 3. The destructor for the class LinkedQueue that is declared in Listing 14-3 could repeatedly call dequeue .
Although easy to write, this destructor can be ineffi cient due to repeated method calls. Write another implemen-
tation for the destructor that deallocates the linked chain directly without calling dequeue .

 4. An operation that displays the contents of a queue can be useful during program debugging. Add a display
operation to the ADT queue such that display assumes and uses the link-based implementation of the ADT
queue.

 EXERCISES

 Programming Problems 413

5. Consider a method called getNumberOfElements that returns the number of elements in a queue without chang-
ing the queue. The return type is int, and it does not accept any parameters.

a. Add getNumberOfElements to the array-based ADT queue given in this chapter.
b. Add getNumberOfElements to the link-based ADT queue given in this chapter.

 6. Show that the implementation of a queue that uses an extra array element as described in Section 14.1.3 is more
effi cient than the counter variation, even though it appears to perform two extra additions in the test:

 front equals (back + 1) % (MAX_QUEUE + 1)

 7. Consider the class ListQueue that implements the ADT queue by using the ADT list to represent the items in
the queue. Discuss the effi ciency of the queue’s enqueue and dequeue operations when the ADT list’s
implementation is

 a. Array based
 b. Link based

 8. The class ListQueue , as given in Listing 14-1, maintains the queue’s front at the end of a list of the queue’s
entries and has the back of the queue at the beginning of that list. Note that the list is an object of the class
LinkedList . What is the impact on the effi ciency of the operations enqueue and dequeue if we were to maintain
the queue’s front at the beginning of the list and the queue’s back at the list’s end?

 9. Complete the implementation of the class SL_PriorityQueue , as described in Section 14.2 .

 10. Implement the class SL_PriorityQueue , assuming that low values indicate a higher priority. Such a priority
queue is useful within operating systems and other similar applications. When the underlying sorted list has a
link-based implementation, using the lowest value for the highest priority makes the priority queue operations
more effi cient. Describe why this benefi t is true.

 PROGRAMMING PROBLEMS

 1. Write a link-based implementation of a queue that uses a circular linked chain to represent the items in the
queue. You will need a single tail pointer. When you are done, compare your implementation to the one given in
this chapter that uses a linear linked chain with two external pointers. Which implementation is easier to write?
Which is easier to understand? Which is more effi cient?

 2. Write an array-based implementation of a queue that uses a resizable, circular array to represent the items in the
queue.

 3. Revise the array-based implementation of a queue given in this chapter. Instead of counting the number of items
in the queue, use a boolean variable isFull to distinguish between the full and empty conditions.

 4. This chapter described another array-based implementation of a queue that uses no special data member—such
as count or isFull (see the previous programming problem)—to distinguish between the full and empty condi-
tions. In this implementation, you declare MAX_QUEUE + 1 locations for the array items , but use only MAX_QUEUE
of them for queue items. You sacrifi ce one array location by making front the index of the location before the
front of the queue. The queue is full if front equals (back + 1) % (MAX_QUEUE + 1) , but the queue is empty if
front equals back . Implement this array-based approach.

 5. Exercise 9 in the previous chapter defi ned the double-ended queue, or deque. Implement the ADT deque by
using a circular array to contain the items in the deque.

 6. Repeat the previous programming problem, but maintain the deque’s entries in a linked chain.

 7. Implement the ADT deque, as described in Exercise 9 of the previous chapter, as a derived class of ArrayQueue ,
as given in Listings 14-4 and 14-5.

This page intentionally left blank

 Overloaded
Operators and
Friend Access 5

 Contents
 C5.1 Overloaded Operators 415

 C5.1.1 Overloading = for Assignment 417
 C5.1.2 Overloading + for Concatenation 419

 C5.2 Friend Access and Overloading << 421

Prerequisites
Chapter 4 Link-Based Implementations
Chapter 8 Lists
Chapter 9 List Implementations

C++ provides many operators, such as +, –, =, = =, >, <, and <<, that are defi ned for
primitive data types. For instance, when working with integers, the symbol + represents
the addition operation, = is used for the assignment operation, and = = is used for
equality comparisons. When we defi ne new C++ data types using classes, these symbols
do not have a defi nition that addresses how to add or compare two objects of the class.
This C++ Interlude describes the tools that C++ provides you for extending the current
operator defi nitions so that they can be applied to classes you have created.

 C5.1 Overloaded Operators
 The standard arithmetic operators in C++ actually have multiple meanings. Although
the addition operators in the expressions 2 + 3 and 2.0 + 3.0 appear to be the same,
they in fact are not. Because integers such as 2 and 3 have internal representations
that differ from fl oating-point numbers such as 2.0 and 3.0, the algorithm to add two
integers must differ from the algorithm to add two fl oating-point numbers. C++ could
use two different symbols to designate integer addition and fl oating-point addition,
but instead it uses only one symbol, +. The actual meaning of the + operator—that is,
the type of addition it designates—is implied by the data type of its operands. An
operator with more than one meaning is overloaded and is an example of a simple
form of polymorphism.

 C++
Interlude

VideoNote

C++ operator
overloading

416 C++ INTERLUDE 5 Overloaded Operators and Friend Access

 You saw earlier that you defi ne new data types within C++ by using classes. Clients of such data
types should be able to use them as naturally as the standard data types of the language. In particular,
a client should be able to combine instances of a class with C++ operators in meaningful ways. To
enable a particular operator to operate correctly on instances of a class, you typically must defi ne a
new meaning for the operator; that is, you must overload it.

 Suppose that myList and yourList are two instances of LinkedList , as given in Listing 9-2 of
 Chapter 9 , and you write

 if (myList = = yourList)
 cout << "The lists are equal.\n";

 You must provide LinkedList with a defi nition of == , since the compiler will not provide a default
interpretation. To this end, let us state that the list myList is equal to the list yourList if

• myList and yourList have the same size, and
• Every item on myList is the same as the corresponding item on yourList

 To overload an operator, you defi ne an operator method whose name has the form

operatorsymbol

 where symbol is the operator that you want to overload. For the == operator, you name the method
operator== and declare one argument: the object that will appear on the right-hand side of the opera-
tor. The current object represents the object on the left-hand side of the operator. For LinkedList , you
would add the declaration

bool operator = =(const LinkedList<ItemType>& rightHandSide) const;

 to the class defi nition in the header fi le.
 To understand this notation, realize that we may also have declared a client function isEqualTo

that compares a parameter of type LinkedList with the current object to determine equality. The dec-
laration for such a function would look like this:

bool isEqualTo(const LinkedList<ItemType>& rightHandSide) const;

 To use isEqualTo to compare the lists myList and yourList , you would write

 if (myList.isEqualTo(yourList))
 cout << "The lists are equal.\n";

 You can treat operator== exactly as you do isEqualTo ; that is, you can write

 if (myList.operator==(yourList))
 cout << "The lists are equal.\n";

 because operator== is simply a method name. However, you can also use the more natural shorthand
notation myList = = yourList , and the compiler will understand that you mean the operator== method.

 The LinkedList implementation of this method is

 template < class ItemType>
 bool LinkedList<ItemType>:: operator = =(const

 LinkedList<ItemType>& rightHandSide) const

 {
bool isEqual = true ; // Assume equal

// First check whether the number of items is the same
if (itemCount != rightHandSide.getLength())

 isEqual = false ;

Two lists are equal if
they have identical
lengths and items

An overloaded
operator has more
than one meaning

 Overloaded Operators 417

else
{ // Then compare items

 Node<ItemType>* leftSidePtr = headPtr;
 Node<ItemType>* rightSidePtr = rightHandSide.headPtr;

while ((leftSidePtr != nullptr) && (rightSidePtr != nullptr) && isEqual)
 {
 ItemType leftItem = leftSidePtr->getItem();
 ItemType rightItem = rightSidePtr->getItem();
 isEqual = (leftItem = = rightItem);

 leftSidePtr = leftSidePtr->getNext();
 rightSidePtr = rightSidePtr->getNext();
 } // end while
 } // end if

return isEqual;
} // end operator= =

 Note that this method depends on the == operator for items in the list. If these items are themselves
instances of a class, that class must overload == . You can overload the relational operators (< , <= , > ,
>=) in a similar manner.

 Now suppose that you want all implementations of ListInterface , as given in Listing 8-1 of
 Chapter 8 , to provide an implementation of the operator = =. You would need to add the declaration

 virtual bool operator==(const ListInterface<ItemType>& rightHandSide) const = 0 ;

 to the interface ListInterface . Each implementation of ListInterface would then provide a defi -
nition of = =, allowing you to compare any two ListInterface objects. The challenge of making this
comparison is that only ListInterface methods can be used for the list on the right-hand side,
thereby affecting the effi ciency of the equality check when comparing lists having two different
implementations. For example, if we had an array-based list that we wished to compare to a link-
based list, we could not take advantage of the node structure of the underlying linked chain when we
accessed the entries. Instead, we would need to use getEntry to access entries, but each call to
getEntry would iterate through the list from its beginning until it reaches the desired entry.

 The implementation of other relational operators is completed in a similar way.

 C5.1.1 Overloading = for Assignment

 Overloading the assignment operator (=) is similar to overloading the equality operator, but it presents
additional concerns. Once again, suppose that myList and yourList are two instances of LinkedList .
If you place several items in the list yourList and then write

myList = yourList;

 you would expect myList to be an exact copy of yourList . Without an overloaded assignment opera-
tor, however, you would get a shallow copy of yourList instead of a deep copy, as Figure 4-8 in
 Chapter 4 illustrates. Although a shallow copy might be suffi cient for a statically allocated data struc-
ture, a deep copy is necessary for a dynamically allocated one such as the chain of linked nodes in the
link-based implementation LinkedList . A shallow copy of a LinkedList object— yourList —
would copy only the data members itemCount (the length of the list yourList) and headPtr (the
pointer to yourList ’s fi rst item). The items in the list would not be copied.

 To provide an assignment operator for the class LinkedList , you would add the declaration

 LinkedList<ItemType>& operator =(const LinkedList<ItemType>& rightHandSide);

Without an
overloaded
assignment
operator, you get a
shallow copy

The operator ==
must be defi ned
for ItemType

418 C++ INTERLUDE 5 Overloaded Operators and Friend Access

The assignment
operator must fi rst
deallocate myList ,
the object on the
left-hand side

 to the class defi nition in LinkedList ’s header fi le. The argument rightHandSide represents the object
to be copied—that is, the object that will appear on the right-hand side of the assignment operator.
The method is not void, but instead returns a value to accommodate assignments such as

myList = yourList = theirList

As you will see, the method returns a reference to the invoking object.
 In implementing this method, you must deal with a few subtleties. Suppose that myList and

yourList each contain several items. If you write

 myList = yourList;

 what happens to the items that were in myList ? You might not care, as long as myList ultimately con-
tains a copy of the items in yourList . You should care, however, if you have a link-based list. Before
you can copy the items in yourList to myList, you need to deallocate the nodes in myList . Failure to
do so results in a memory leak—that is, memory that was allocated to myList is not returned to the
system and is inaccessible. Thus, the assignment of yourList to myList must take these steps:

 Deallocate memory assigned to myList
 for (each item in yourList)
{

 Allocate a new node for myList
Set the node’s data portion to a copy of the item in yourList

}

 The tasks here are like those that you implemented when you wrote the destructor and copy con-
structor for LinkedList . To deallocate memory currently used by LinkedList nodes, you can call
clear . When copying the underlying linked chain of nodes, you can avoid redundancy with the copy
constructor by defi ning a private or protected method, copyListNodes , that both the copy constructor
and the assignment operator can call.

 Now suppose you write

 myList = myList;

 Notice what our previous pseudocode tells you to do here: Deallocate myList and then make a copy
of myList . After you have deallocated myList , there is nothing left to copy! Your implementation
should test for this special case by asking whether the invoking object on the left side of the = operator
is the same as the object on the right. If it is, your assignment operator should do nothing—it should
be fail-safe.

 You can make this test by comparing the addresses of the two list objects rather than by compar-
ing the items on the lists. In C++, this is a pointer to the invoking object. Thus, you write

if (this != &rightHandSide)

 to compare the addresses of the objects on the left and right side of the = . Notice the placement of the
& symbol; when used in this manner, it means “the address of.” We would then read the above state-
ment as “if the address of this object is not equal to the address of rightHandSide , then ...”. In this
textbook, this is the only time when it is necessary to use the & symbol as the “address of ” operator.

 The link-based implementation of the overloaded assignment operator for LinkedList follows:

 template < class ItemType>
LinkedList<ItemType>& LinkedList<ItemType>:: operator =(const

 LinkedList<ItemType>& rightHandSide)
 {

// Check for assignment to self
if (this != &rightHandSide)

Make the
assignment
operator fail-safe by
checking for a
special case

 Overloaded Operators 419

 {
this->clear(); // Deallocate left-hand side

 copyListNodes(rightHandSide); // Copy list nodes
 itemCount = rightHandSide.itemCount; // Copy size of list
 } // end if

return * this ;
} // end operator=

 The assignment operator = requires that we return an object of the same type as rightHandSide , so we
must return a LinkedList object. The returned object is placed into the left-hand side of the assignment
statement. Since our implementation of the operator = places a copy of rightHandSide into the current, or
invoking, object on the left-hand side, we should return the current object, which is represented by *this .

Note: In C++, this is a pointer to the invoking object. Therefore, *this is the invoking
object.

 If you declare and initialize an object in the same statement, the compiler will invoke the copy
constructor and not the = operator. For example, the declaration of myList in

 LinkedList<string> myList = yourList;

 constructs the object myList . This statement is equivalent to:

 LinkedList<string> myList(yourList);

 C5.1.2 Overloading + for Concatenation

 As we discussed in the previous section, the + operator is used for both integer and fl oating-point
addition. In C++, the + operator is also used as a concatenation operator to append strings. This abil-
ity illustrates one of the concerns some programmers have about overloading operators—a symbol
can represent several different operations. These operations not need be closely related to each other,
so reading code that uses overloaded operators can be diffi cult.

 Suppose you were asked to maintain code someone else wrote and found the following statement
in a method:

 theThing = myThing + yourThing;

 Can you quickly determine whether the + performs scalar addition—adding two integers or fl oating-
point numbers—or concatenates two strings? Without knowing the data type of the variables
myThing and yourThing , you cannot determine what operation + performs. In a well-written pro-
gram, most variables are declared close to their use, thus helping to clarify the statement, but this is
not always the case.

 When you choose to overload an operator, you should not change the meaning of the symbol.
Your defi nition should extend the symbol’s current operation only for use with a new data type—your
class. When working with lists, the concatenation defi nition of the + symbol applies better than scalar
addition, so let’s see what is involved in appending one list onto another. Let’s assume that theThing ,
myThing , and yourThing in the previous statement are list objects.

 Link-based lists. If we choose to overload the + operator for the list-based implementation of the
ADT list, we would add the following declaration to the class defi nition:

 LinkedList<ItemType>&
operator +(const LinkedList<ItemType>& rightHandSide) const ;

420 C++ INTERLUDE 5 Overloaded Operators and Friend Access

 The implementation of this concatenation operator has the following logic:

 concatList = a new, empty instance of LinkedList
concatList.itemCount = itemCount + rightHandSide.itemCount
leftChain = a copy of the chain of nodes in this list
rightChain = a copy of the chain of nodes in the list rightHandSide
 Set the last node of leftChain to point to the first node of rightChain
concatList.headPtr = leftChain.headPtr
 return concatList

 Now, the statement

 theThing = myThing + yourThing;

 assigns the returned list concatList to theThing using the assignment operator defi ned in the previ-
ous section.

 After implementing the + operator, we should also implement the += operator, since it provides a
shorthand for self-assignment using the + operator. This can be a more effi cient method, as we do not
need to make a copy of our list before appending the copy of rightHandSide .

 Array-based lists. An implementation of the + operator for array-based lists has different challeng-
es. For example, which of the following should the capacity of the resulting list be?

• The sum of the capacities of the two lists that are operands
• The capacity of the fi rst (left-hand) list
• The number of actual items in the combined lists
• Twice the number of actual items in the combined lists to allow for growth

 After the new ArrayList object has been created, we can copy the entries from the fi rst list into the
fi rst array elements and then place the entries in the second list into the elements that follow.

Note: Some guidelines for overloading operators

• Overloading an operator is the same as writing a method whose name is

 operator symbol

where symbol is the operator that you want to overload.
• Overloaded operators are typically placed in the public section of the class

declaration.
• When you decide to overload an operator, be sure that the new operation closely

matches how the operator is already used. If that is not possible, consider creating a
method whose name is not operatorsymbol to perform the operation.

• Commonly overloaded operators are the assignment (=), equality (= = and !=), and
relational (<, <=, >, >=) operators.

• You can overload any C++ operator except
 . .* :: ?: sizeof
• You cannot defi ne new operators by overloading symbols that are not already C++

operators.
• You cannot change the standard precedence of a C++ operator.
• You cannot change the number of arguments for an overloaded operator, since they

represent the operator’s operands.
• At least one operand of an overloaded operator must be an instance of a class.

Functions and
classes can be
friends of a class

 Friend Access and Overloading 421

 C5.2 Friend Access and Overloading <<
 In C++, a class can provide additional access to its private and protected parts by declaring other
functions and classes as friends . Declaring a nonmember function as a friend to a class allows that
function to access all of the private and protected members of the class. Let’s look at an example in
which we need to declare a function as a friend of our class.

 The output stream operator << is used to output a stream of data to either the display or a fi le. We
commonly stream integers, fl oating-point numbers, and strings to the display or a fi le, using <<. Occa-
sionally, you may even have streamed a pointer to the display to help with troubleshooting or just to
see what happened. C++ has defi ned the stream operator’s action for each of those data types.

 Trying to stream a list to the display using statements such as

 LinkedList<string> myList;
cout << myList;

 results in a syntax error because there is no << operation defi ned for the LinkedList class. Notice
that the syntax of the previous cout statement differs from the syntax of previous binary operators we
have overloaded. The expression cout << myList is shorthand for

 cout.operator<<(myList)

 Thus, when we defi ne << for our LinkedList class, we are actually overloading the operator<<
method in the ostream class of which cout is an instance. Therefore, we need to defi ne an operation
for << in a different manner than the way we overloaded previous operators.

 Before discussing how to overload the output stream operator, let’s consider what our list should
look like if it is displayed or written to a fi le. If our list contained the four items Ace, Jack, Queen, and
King, we could display them on a single line

 Ace Jack Queen King

 or on multiple lines with a position label:

 1 Ace
2 Jack
3 Queen
4 King

 For our example, let’s choose the second form of output. We could use public methods to display
the list in this form, but we would need to call getEntry—which iterates through the list from the
beginning—to display each item. It is more effi cient to access the data directly. Thus, in defi ning
<< for our LinkedList class, we should grant the operator<< method in the ostream class access
to the private and protected data of LinkedList.

 We grant this access by making the operator<< method a friend of LinkedList by placing the
following two statements in its declaration in the header fi le:

 template < class friendItemType>
 friend ostream& operator<<(ostream& outputStream,

const LinkedList< friendItemType >& outputList);

 The keyword friend indicates that this method has access to private and protected data members and
methods of our class as well as to those that are public. Notice that the method returns an ostream
object and that the fi rst parameter is also an ostream object. This is because we are overloading an
operator method from the ostream class. Also, since the operator is not part of the LinkedList class,
we cannot use the same template type ItemType in the declaration; we must declare another template
type—friendItemType in our example.

422 C++ INTERLUDE 5 Overloaded Operators and Friend Access

A friend method

 We again must use the different template type when we implement the method:

 template < class friendItemType>
ostream& operator<<(ostream& outStream,

const LinkedList<friendItemType>& outputList)
 {

int position = 1;
 Node<friendItemType>* curPtr = outputList.headPtr;

while (curPtr != nullptr)
 {
 outStream << position << "\t" << curPtr->getItem() << endl;
 curPtr = curPtr->getNext();
 position++;
 } // end while

return outStream;
} // end operator<<

 Because the operator<< method is already part of the ostream class, we don’t need to include it in
our namespace by writing LinkedList < ItemType >:: before the method name.

 Note that the method accesses the private data member headPtr of the class LinkedList .
Although this access violates the principle of information hiding, it is done in a controlled fashion:
The class LinkedList explicitly grants this access by declaring the method as a friend.

 We can extend the concept of friend methods to create friend classes. Granting a class access as a
friend of another class allows all of the methods contained in the friend class to have access to the
private and protected parts of the granting class. This feature is particularly useful when one class is
used in the implementation of another class. For example, we have seen link-based implementations
of ADTs that have a node declared as a separate class. For example, the LinkedList class uses the
class Node . An alternative is to implement the node as a class whose data members and methods are
private and to declare the LinkedList class as a friend class. For example, you could defi ne a node for
the ADT list as follows:

 template < class ItemType>
 class ListNode // A node on the list
 {
 private :
 ItemType item; // A data item on the list
 Node<ItemType> *next; // Pointer to next node

 Node();
 Node(const ItemType& nodeItem, Node<ItemType>* nextNode);

// Friend class - can access private parts
friend class LinkedList<ItemType>;

 }; // end ListNode

 The class LinkedList has the same access privileges to the node’s data members item and
next as ListNode does. Friends of a base class do not have access to the private and protected
parts added by a derived class—only to the private and protected members that appear in the base
class.

Friend classes

The class
LinkedList is a
friend of ListNode

A friend of a base
class is not a friend
of a derived class

 Friend Access and Overloading 423

Note: Some key points about friends

• Friend methods can access the private and protected parts of the class.
• Friend methods are not members of the class.
• When a class is declared as a friend of a class C , all of its methods have access to the

private and protected parts of the class C .
• Friendship is not inherited. The private and protected members declared in a derived

class are not accessible by friends of the base class.

This page intentionally left blank

 Chapter

Trees 15
 Contents
 15.1 Terminology 426

 15.1.1 Kinds of Trees 428
 15.1.2 The Height of Trees 430
 15.1.3 Full, Complete, and Balanced Binary Trees 431
 15.1.4 The Maximum and Minimum Heights of a Binary Tree 433

 15.2 The ADT Binary Tree 435
 15.2.1 Traversals of a Binary Tree 436
 15.2.2 Binary Tree Operations 438
 15.2.3 An Interface Template for the ADT Binary Tree 441

 15.3 The ADT Binary Search Tree 442
 15.3.1 Binary Search Tree Operations 443
 15.3.2 Searching a Binary Search Tree 445
 15.3.3 Creating a Binary Search Tree 446
 15.3.4 Traversals of a Binary Search Tree 447
 15.3.5 The Effi ciency of Binary Search Tree Operations 448

 Summary 449
 Exercises 450
 Programming Problems 453

 Prerequisites
 Chapter 2 Recursion: The Mirrors
Chapter 4 Link-Based Implementations (incidental)
 Chapter 5 Recursion as a Problem-Solving Technique
Chapter 6 Stacks (incidental)
Chapter 8 Lists (incidental)
 Chapter 10 Algorithm Effi ciency
 Chapter 13 Queues and Priority Queues (incidental)

426 CHAPTER 15 Trees

Trees are
hierarchical

The previous chapters discussed ADTs whose operations fi t into at least one of these general
categories:

• Operations that insert data into a data collection
• Operations that remove data from a data collection
• Operations that ask questions about the data in a data collection

 The ADTs list, stack, and queue are all position oriented, and their operations have the form

• Insert a data item into the ith position of a data collection.
• Remove a data item from the ith position of a data collection.
• Ask a question about the data item in the ith position of a data collection.

 As you have seen, the ADT list allows the value of i to range from 1 to the number of items in the
list, while the ADTs stack and queue are more restrictive. For example, the operations of the ADT
stack are limited to inserting into, removing from, and asking a question about one end—the top—of
the stack. Thus, although they differ with respect to the fl exibility of their operations, lists, stacks, and
queues manage an association between data items and positions.

 As Section 13.5 of Chapter 13 discussed, the ADT sorted list is value oriented. Its operations are
of the form

• Insert a data item containing the value x .
• Remove a data item containing the value x.
• Ask a question about a data item containing the value x .

 Although these operations, like position-oriented operations, fi t into the three general categories of
operations listed earlier—they insert data, remove data, and ask questions about data—they are based
on the values of data items instead of their positions.

 Lists, stacks, and queues are linear in their organization of data, in that items are one after
another. In this chapter, we organize data in a nonlinear, hierarchical form, whereby an item can have
more than one immediate successor. We present two major ADTs: the binary tree and the binary
search tree. As you will see, the binary tree is a position-oriented ADT, but it is not linear. Thus, you
will not reference items in a binary tree by using a position number. Our discussion of the ADT
binary tree provides an important background for the more useful binary search tree, which is a
value-oriented ADT. Although a binary search tree is also not linear, it has operations similar to those
of a sorted list, which is linear.

 15.1 Terminology
 You use trees to represent relationships. Previous chapters informally used tree diagrams to represent
the relationships between the calls of a recursive algorithm. For example, the diagram of the rabbit
algorithm’s recursive calls in Figure 2-19 of Chapter 2 is actually a tree. Each call to rabbit is repre-
sented by a box, or node, or vertex , in the tree. The lines between the nodes (boxes) are called edges .
For this tree, the edges indicate recursive calls. For example, the edges from rabbit (7) to rabbit (6) and
rabbit (5) indicate that subproblem rabbit (7) makes calls to rabbit (6) and rabbit (5).

 All trees are hierarchical in nature. Intuitively, “hierarchical” means that a “parent-child” rela-
tionship exists between the nodes in the tree. If an edge is between node n and node m , and node n is
above node m in the tree, then n is the parent of m , and m is a child of n . In the tree in Figure 15-1 a,
nodes B and C are children of node A . Children of the same parent—for example, B and C —are called
siblings . The three children D, E, and F of node B , for example, are siblings. The leftmost child D is
called the oldest child , or fi rst child , of B .

VideoNote

Tree concepts

 Terminology 427

 Each node in a tree has at most one parent, and exactly one node—called the root of the tree—
has no parent. Node A is the root of the tree in Figure 15-1a. A node that has no children is called a
leaf of the tree. The leaves of the tree are C , D , E , and F .

 The parent-child relationship between the nodes is generalized to the relationships ancestor and
descendant . In Figure 15-1 a, A is an ancestor of D, and thus D is a descendant of A. Not all nodes are
related by the ancestor or descendant relationship: B and C, for instance, are not so related. However,
the root of any tree is an ancestor of every node in that tree. A subtree in a tree is any node in the tree
together with all of its descendants. A subtree of a node n is a subtree rooted at a child of n . For exam-
ple, Figure 15-1 b shows a subtree of the tree in Figure 15-1 a. This subtree has B as its root and is a
subtree of the node A .

 Because trees are hierarchical in nature, you can use them to represent information that itself is
hierarchical in nature—for example, organization charts and family trees, as Figure 15-2 depicts. It may
be disconcerting to discover, however, that the nodes in the family tree in Figure 15-2 b that represent
Bart’s parents (Homer and Marge) are the children of the node that represents Bart. That is, the nodes
that represent Bart’s ancestors in a family tree are the descendants of Bart’s node in one of our trees!

A subtree is any
node and its
descendants

FIGURE 15-1 (a) A tree; (b) a subtree of the tree in part a

A

D E F

B C

D E F

B

(a) (b)

FIGURE 15-2 (a) An organization chart; (b) a family tree

(a) President

VP
Manufacturing

VP
Personnel

VP
Marketing

Director
Sales

Director
Media Relations

MargeHomer

Bart

Abe Mona

(b)

428 CHAPTER 15 Trees

Formal defi nition of
a binary tree

 15.1.1 Kinds of Trees

 Formally, a general tree is a set T of one or more nodes such that T is partitioned into disjoint subsets:

• A single node r , the root
• Sets that are general trees, called subtrees of r

 Thus, the trees in Figures 15-1 and 15-2 a are general trees.
 An n -ary tree is a set T of nodes that is either empty or partitioned into disjoint subsets:

• A single node r , the root
• n possibly empty sets that are n -ary subtrees of r

 Each node can have no more than n children. The tree in Figure 15-1 is an n -ary tree with n = 3. An
n -ary tree is not a special kind of general tree, because an n -ary tree can be empty, whereas a general
tree cannot.

 If an n -ary tree has the restriction that every node has at most two children, it is a binary tree .
The primary focus of this chapter will be on binary trees. Formally, a binary tree is a set T of nodes
that is either empty or partitioned into disjoint subsets:

• A single node r , the root
• Two possibly empty sets that are binary trees, called left and right subtrees of r

 The trees in Figures 2-19 and 15-2 b are binary trees. Notice that each node in a binary tree has no
more than two children.

 The following intuitive restatement of the defi nition of a binary tree is useful:

T is a binary tree if either

• T has no nodes, or
• T is of the form

Intuitive defi nition of
a binary tree

r

TL TR

 where r is a node and TL and TR are both binary trees.

 Notice that the formal defi nition agrees with this intuitive one: If r is the root of T , then the binary
tree TL is the left subtree of node r and TR is the right subtree of node r . If TL is not empty, its root is the
left child of r , and if TR is not empty, its root is the right child of r . Notice that if both subtrees of a
node are empty, that node is a leaf .

Example: Algebraic expressions. As an example of how you can use a binary tree to represent data in
a hierarchical form, consider Figure 15-3 . The binary trees in this fi gure represent algebraic expressions
that involve the binary operators +, –, ×, and /. To represent an expression such as a – b , you place the
operator in the root node and the operands a and b into left and right children, respectively, of the root.
(See Figure 15-3 a.) Figure 15-3 b represents the expression a – b / c ; a subtree represents the subexpres-
sion b / c . A similar situation exists in Figure 15-3 c, which represents (a – b) × c . The leaves of these
trees contain the expression’s operands, while other tree nodes contain the operators. Parentheses do not
appear in these trees. The binary tree provides a hierarchy for the operations—that is, the tree specifi es
an unambiguous order for evaluating an expression. Operators lower in the tree are evaluated fi rst.

 Note: Although various kinds of trees are possible, they are either general trees or
n -ary trees.

Properties of a
binary search tree

 Terminology 429

 The nodes of a tree typically contain values. A binary search tree is a binary tree that is, in a
sense, sorted according to the values in its nodes. For each node n , a binary search tree satisfi es the
following three properties:

• n ’s value is greater than all values in its left subtree TL .
• n ’s value is less than all values in its right subtree TR .
• Both TL and TR are binary search trees.

 Figure 15-4 is an example of a binary search tree. As its name suggests, a binary search tree organ-
izes data in a way that facilitates searching it for a particular data item. Chapter 16 will discuss binary
search trees in detail, and Chapter 19 will present several other trees that improve searching data.

FIGURE 15-3 Binary trees that represent algebraic expressions

b

–

/a

c

–

ba

a – b

(a)

a – b / c

(b)

c–

a

(a – b) c

b

(c)

×

×

FIGURE 15-4 A binary search tree of names

Jane

TomBob

EllenAlan Nancy Wendy

 Question 1 What kind of tree is the tree in Figure 15-1a ?

CHECK POINT Question 2 Repeat the previous question, but use the tree in Figure 15-3 c instead.

 Question 3 Given the tree in Figure 15-3 c, what node or nodes are

a. Ancestors of b ?
b. Descendants of �?
c. Leaves?

430 CHAPTER 15 Trees

Level of a node

 15.1.2 The Height of Trees

 Trees come in many shapes. For example, although the binary trees in Figure 15-5 all contain the
same nodes, their structures are quite different. Although each of these trees has seven nodes, some
are “taller” than others. The height of a tree is the number of nodes on the longest path from the
root to a leaf. For example, the trees in Figure 15-5 have respective heights of 3, 5, 7, and 7. Many
people’s intuitive notion of height would lead them to say that these trees have heights of 2, 4, 6, and
6. Indeed, many authors defi ne height to agree with this intuition. However, the defi nition of height
used in this book leads to a cleaner statement of many algorithms and properties of trees.

 There are other equivalent ways to defi ne the height of a tree T . One way uses the following defi -
nition of the level of a node n :

• If n is the root of T , it is at level 1.
• If n is not the root of T , its level is 1 greater than the level of its parent.

 For example, in Figure 15-5 a, node A is at level 1, node B is at level 2, and node D is at level 3.
 The height of a tree T in terms of the levels of its nodes is defi ned as follows:

• If T is empty, its height is 0.
• If T is not empty, its height is equal to the maximum level of its nodes.

 By applying this defi nition to the trees in Figure 15-5 , you will fi nd that their heights are, respectively,
3, 5, and 7, as was stated earlier.

FIGURE 15-5 Binary trees with the same nodes but different heights

A

D E F G

CB

A

B

D

F

G

C

E

A

C

E

G

B

D

F

(a) (b) (c)

A

B

C

D

E

F

G

(d)

Height of a tree in
terms of levels

Recursive defi nition
of height

 Question 4 Given the tree in Figure 15-4 , what node or nodes are

a. The tree’s root?
b. Parents?
c. Children of the parents in part b of this question?
d. Siblings?

r

TL TR

 For binary trees, it is often convenient to use an equivalent recursive defi nition of height:

• If T is empty, its height is 0.
• If T is a nonempty binary tree, then because T is of the form

A full binary tree

 Terminology 431

 the height of T is 1 greater than the height of its root’s taller subtree; that is,
 height (T) = 1 + max { height (TL), height (TR)}

 Question 5 What are the levels of all nodes in the trees in parts b , c , and d of Figure 15-5 ?

Question 6 What is the height of the tree in Figure 15-4 ? CHECK POINT

 15.1.3 Full, Complete, and Balanced Binary Trees

 In a full binary tree of height h , all nodes that are at a level less than h have two children each.
 Figure 15-6 depicts a full binary tree of height 3. Each node in a full binary tree has left and right
subtrees of the same height. Among binary trees of height h , a full binary tree has as many leaves
as possible, and they all are at level h . Intuitively, a full binary tree has no missing nodes.

FIGURE 15-6 A full binary tree of height 3

 When proving properties about full binary trees—such as how many nodes they have—the
following recursive defi nition of a full binary tree is convenient:

• If T is empty, T is a full binary tree of height 0.
• If T is not empty and has height h > 0, T is a full binary tree if its root’s subtrees are both full

binary trees of height h – 1.

 This defi nition closely refl ects the recursive nature of a binary tree.
 A complete binary tree of height h is a binary tree that is full down to level h – 1, with level h fi lled

in from left to right, as Figure 15-7 illustrates. More formally, a binary tree T of height h is complete if

FIGURE 15-7 A complete binary tree

432 CHAPTER 15 Trees

Full binary trees are
complete

1. All nodes at level h – 2 and above have two children each, and
2. When a node at level h – 1 has children, all nodes to its left at the same level have two

children each, and
3. When a node at level h – 1 has one child, it is a left child

 Parts 2 and 3 of this defi nition formalize the requirement that level h be fi lled in from left to right.
Note that a full binary tree is complete.

 Finally, a binary tree is height balanced , or simply balanced , if the height of any node’s right sub-
tree differs from the height of the node’s left subtree by no more than 1. The binary trees in Figures 15-7
and 15-5 a are balanced, but the other trees in Figure 15-5 are not balanced. A complete binary tree is
balanced.

Complete binary
trees are balanced

Note: Summary of tree terminology

General tree A set of one or more nodes, partitioned into a root node
and subsets that are general subtrees of the root.

 Parent of node n The node directly above node n in the tree.

 Child of node n A node directly below node n in the tree.

 Root The only node in the tree with no parent.

 Leaf A node with no children.

 Height The number of nodes on the longest path from the root
to a leaf.

 Siblings Nodes with a common parent.

 Ancestor of node n A node on the path from the root to n .

 Descendant of node n A node on a path from n to a leaf.

 Subtree of node n A tree that consists of a child (if any) of n and the
child’s descendants.

 Left (right) child of node n A node directly below and to the left (right) of node n
in a binary tree.

 Left (right) subtree of node n In a binary tree, the left (right) child (if any) of node n
plus its descendants.

n -ary tree A set of nodes that is either empty or partitioned
into a root node and at most n subsets that are n -ary
subtrees of the root. Each node has at most n chil-
dren.

 Binary tree A set of nodes that is either empty or partitioned into a
root node and one or two subsets that are binary sub-
trees of the root. Each node has at most two children,
the left child and the right child.

 Binary search tree A binary tree in which the value in any node n is
greater than the value in every node in n ’s left sub-
tree but less than the value in every node in n ’s right
subtree.

A complete binary
tree

 Terminology 433

 n is the maximum
height of a binary
tree with n nodes

 15.1.4 The Maximum and Minimum Heights of a Binary Tree

 You can maximize the height of a binary tree with n nodes simply by giving each internal node (non-
leaf) exactly one child, as shown earlier in parts c and d of Figure 15-5 . This process will result in a
tree of height n . The n -node tree with height n in Figure 15-5 d strikingly resembles a chain of linked
nodes.

 Full binary tree A binary tree of height h with no missing nodes. All
leaves are at level h , and all other nodes each have
two children.

 Complete binary tree A binary tree of height h that is full to level h – 1 and
has level h fi lled in from left to right.

 Balanced binary tree A binary tree in which the left and right subtrees of
any node have heights that differ by at most 1.

Note: The maximum height of an n -node binary tree is n .

 A minimum-height binary tree with n nodes is a bit more diffi cult to obtain. As a fi rst step, con-
sider the number of nodes that a binary tree with a given height h can have. For example, if h = 3, the
possible binary trees include those in Figure 15-8 . Thus, binary trees of height 3 can have between
three and seven nodes. In addition, Figure 15-8 shows that 3 is the minimum height for a binary tree
with four, fi ve, six, or seven nodes. Similarly, binary trees with more than seven nodes require a
height greater than 3.

 Intuitively, to minimize the height of a binary tree given n nodes, you must fill each level
of the tree as completely as possible. A complete tree meets this requirement, although it does
not matter whether the nodes on the last level are filled from left to right. In fact, except for the
tree in part a , the trees in Figure 15-8 are complete trees. If a complete binary tree of a given
height h is to have the maximum possible number of nodes, it should be full, as in part e of the
figure.

FIGURE 15-8 Binary trees of height 3

(a) (b) (c) (d) (e)

Except for the last
level, each level of a
minimum-height
binary tree must
contain as many
nodes as possible

434 CHAPTER 15 Trees

 We now can determine the minimum height of an n -node binary tree.

 Note: Facts about full binary trees

• A full binary tree of height h � 0 has 2 h – 1 nodes.
• You cannot add nodes to a full binary tree without increasing its height.
• The maximum number of nodes that a binary tree of height h can have is 2 h – 1.

FIGURE 15-9 Counting the nodes in a full binary tree of height h

1

2

3

4

Level

Number of nodes
at this level

1 = 2

2 = 2

4 = 2

8 = 2

2h – 1h 2h – 1

 0

 1

 2

 3

Total number of nodes at this
level and all previous levels

1 = 2 – 1

3 = 2 – 1

7 = 2 – 1

15 = 2 – 1

 1

 2

 3

 4

Note: The minimum height of a binary tree with n nodes is < log 2 (n + 1) = .1

 1 The ceiling of x , which < x = denotes, is x rounded up. For example, <6 = = 6, <6.1 = = 7, and <6.8 = = 7.

 To prove the previous fact, we let h be the smallest integer such that n � 2 h – 1 and establish the fol-
lowing assertions:

1. A binary tree whose height is � h – 1 has < n nodes .
 We know that a binary tree of height h – 1 has at most 2 h –1 – 1 nodes. If it is possible that
n � 2 h –1 – 1, then h is not the smallest integer such that n � 2 h – 1. Therefore, n must be
greater than 2 h– 1 – 1 or, equivalently, 2 h –1 – 1 < n . Because a binary tree of height h – 1
has at most 2 h –1 – 1 nodes, it must have fewer than n nodes.

2. An n-node complete binary tree whose height is h exists .
 Consider a full binary tree of height h – 1. It must have 2 h –1 – 1 nodes. As you just saw,
n > 2 h –1 – 1 because h was selected so that n � 2 h –1. You can thus add nodes to the full tree

 Figure 15-9 counts the nodes of a full tree by level and demonstrates the following facts, whose
proof is left as an exercise:

 The ADT Binary Tree 435

Complete trees and
full trees have
minimum height

from left to right until you have n nodes, as Figure 15-10 illustrates. Because n � 2 h – 1 and
a binary tree of height h cannot have more than 2 h – 1 nodes, you will reach n nodes by the
time level h is fi lled up.

3. The minimum height of a binary tree with n nodes is the smallest integer h such that
n � 2h – 1 .
 If h is the smallest integer such that n � 2 h – 1, and if a binary tree has height � h – 1, then by
fact 1 it has fewer than n nodes. Because by fact 2 there is a binary tree of height h that has
exactly n nodes, h must be as small as possible.

 The previous discussion implies that

 2h � 1 � 1� n � 2h–1
2h�1 � n � 1 � 2h

h � 1 � log2(n � 1) � h

 Now h is either log 2 (n + 1) or satisfi es the inequality h – 1 < log 2 (n + 1) < h . In the latter case, log 2 (n + 1)
cannot be an integer, so we round it up to get h . In either case, we have that h is < log 2 (n + 1) = . Thus, we
have established that < log 2 (n + 1) = is the minimum height of a binary tree with n nodes.

FIGURE 15-10 Filling in the last level of a tree

Note: Complete trees and full trees with n nodes have heights of < log 2 (n + 1) = , which,
as you just saw, is the theoretical minimum.

Question 7 Consider the binary trees in Figure 15-8 .

a. Which are complete?
b. Which are full?
c. Which are balanced?
d. Which have minimum height?
e. Which have maximum height?

CHECK POINT

 15.2 The ADT Binary Tree
 As an abstract data type, the binary tree has operations that add and remove nodes, set or retrieve the
data in the root of the tree, and test whether the tree is empty. By using these basic operations, you can
build a binary tree.

 Traversal operations that visit every node in a binary tree are typical. Visiting a node means
“doing something with or to” the node. Chapter 4 introduced the concept of traversal for a linear

436 CHAPTER 15 Trees

The general form of
a recursive traversal
algorithm

chain of linked nodes: Beginning with the chain’s fi rst node, you visit each node sequentially until
you reach the end of the chain. Traversal of a binary tree, however, can visit the tree’s nodes in one of
several different orders. We examine the details of the traversal operations next.

 15.2.1 Traversals of a Binary Tree

 A traversal algorithm for a binary tree visits each node in the tree. While visiting a node, you do
something with or to the node, such as display or modify the contents of the node. For the pur-
pose of this discussion, assume that visiting a node simply means displaying the data portion of
the node.

 With the recursive defi nition of a binary tree in mind, you can construct a recursive traversal
algorithm as follows. According to the defi nition, the binary tree T is either empty or is of the
form

r

TL TR

 If T is empty, the traversal algorithm takes no action—an empty tree is the base case. If T is not empty,
the traversal algorithm must perform three tasks: It must display the data in the root r , and it must
traverse the two subtrees TL and TR , each of which is a binary tree smaller than T . We can summarize
this logic using the following pseudocode:

 if (T is not empty)
{

Display the data in T’s root
Traverse T’s left subtree
Traverse T’s right subtree

 }

 Although we arbitrarily visited the tree’s root before traversing its subtrees, the algorithm actually has
three choices of when to visit r : It can visit r

• Before it traverses both of r ’s subtrees—as we just did
• After it has traversed r ’s left subtree TL but before it traverses r ’s right subtree TR
• After it has traversed both of r ’s subtrees

 These choices result in preorder , inorder , and postorder traversals , respectively. Figure 15-11
shows the results of these traversals for a given binary tree.

 Each of these traversals visits every node in a binary tree exactly once. Thus, n visits occur for a
tree of n nodes. Each visit performs the same operations on each node, independently of n , so it must
be O(1). Thus, each traversal is O(n).

 Preorder traversal. The recursive preorder traversal algorithm is as follows:

 // Traverses the given binary tree in preorder .
// Assumes that “visit a node” means to process the node’s data item .
preorder(binTree: BinaryTree): void

if (binTree is not empty)
{

 Visit the root of binTree
 preorder(Left subtree of binTree’s root)
 preorder(Right subtree of binTree’s root)

}

Three choices for
when to visit the root

Preorder traversal

Traversal is O(n)

 The ADT Binary Tree 437

 The preorder traversal of the tree in Figure 15-11 a visits the nodes in this order: 60, 20, 10, 40,
30, 50, 70. If you apply preorder traversal to a binary tree that represents an algebraic expression,
such as any tree in Figure 15-3 , and display the nodes as you visit them, you will obtain the prefi x
form of the expression. 2

 Inorder traversal. The recursive inorder traversal algorithm is as follows:

 // Traverses the given binary tree in inorder.
// Assumes that “visit a node” means to process the node’s data item .
inorder(binTree: BinaryTree): void

if (binTree is not empty)
{

 inorder(Left subtree of binTree’s root)
 Visit the root of binTree
 inorder(Right subtree of binTree’s root)

}

 The result of the inorder traversal of the tree in Figure 15-11 b is 10, 20, 30, 40, 50, 60, 70. If you apply
inorder traversal to a binary search tree, you will visit the nodes in order according to their data val-
ues. Such is the case for the tree in Figure 15-11 b.

 Postorder traversal. Finally, the recursive postorder traversal algorithm is as follows:

 // Traverses the given binary tree in postorder .
// Assumes that “visit a node” means to process the node’s data item .
postorder(binTree: BinaryTree): void

if (binTree is not empty)
{

 postorder(Left subtree of binTree’s root)
 postorder(Right subtree of binTree’s root)
 Visit the root of binTree

}

FIGURE 15-11 Three traversals of a binary tree

60

20 70

10 40

30 5050

60

20 70

10 40

30 5050

(c) Postorder: 10, 30, 50, 40, 20, 70, 60(b) Inorder: 10, 20, 30, 40, 50, 60, 70(a) Preorder: 60, 20, 10, 40, 30, 50, 70

1

2

3

5

7

6

4

2

1

3

7

5

4

6
60

20 70

10 40

505030

5

1

2 3

4

6

7

(Numbers beside nodes indicate traversal order.)

 2 The prefi x expressions are (a) – ab ; (b) – a / bc ; (c) ×– abc .

Inorder traversal

Postorder traversal

438 CHAPTER 15 Trees

A client-defi ned
function, which the
traversal methods
call, defi nes the
meaning of “visit”

 The result of the postorder traversal of the tree in Figure 15-11 c is 10, 30, 50, 40, 20, 70, 60. If you apply
postorder traversal to a binary tree that represents an algebraic expression, such as any tree in Figure 15-3 ,
and display the nodes as you visit them, you will obtain the postfi x form of the expression. 3

 3 The postfi x expressions are (a) ab –; (b) abc /–; (c) ab – c ×.

Note: Although traversal means to visit each item in the ADT, traversal can be more
diffi cult than you might imagine if you do more than simply display each item when you
visit it. For example, you might copy the item into another data structure or even alter it.
The details of traversal are thus quite application dependent, which makes traversal a dif-
fi cult operation to defi ne within the framework of an ADT.

 Visiting a node. You could have a different traversal operation for each desired task during a visit to a
node, such as preorderTraverseAndDisplay, preorderTraverseAndCopy, and so on. Or the traver-
sal methods for the ADT binary tree could call a function, which the client defi nes and passes as an
argument, when it visits a node. We will take this latter approach, as it is more general.

 For example, if the ADT binary tree has the operation preorderTraverse , you can invoke it for
the binary tree binTree as follows:

 bintree.preorderTraverse(display);

 where display is a client function that displays the data passed to it as an argument. Suppose the
binary tree binTree stores string objects. You would defi ne the function display to display data of
type string :

 void display(string someItem)
 {
 cout << someItem << endl;
} // end display

 Now the call bintree.preorderTraverse(display) will call display each time it visits a node in
the tree.

 Despite the fact that the ADT operation preorderTraverse calls a client-supplied function, the
wall between the program and the implementation of the ADT has not been violated. Because display
is on the client’s side of the wall, the function can access the data only by using the ADT operations.

 The next chapter will discuss the implementation details of the traversal operations.

Question 8 What are the preorder, inorder, and postorder traversals of the binary trees in
parts a , b , and c of Figure 15-5 ?

CHECK POINT

 15.2.2 Binary Tree Operations

 The ADT binary tree has the following operations:

Note: ADT binary tree operations
• Test whether a binary tree is empty.
• Get the height of a binary tree.

 The ADT Binary Tree 439

• Get the number of nodes in a binary tree.
• Get the data in a binary tree’s root.
• Set the data in a binary tree’s root.
• Add a new node containing a given data item to a binary tree.
• Remove the node containing a given data item from a binary tree.
• Remove all nodes from a binary tree.
• Retrieve a specifi c entry in a binary tree.
• Test whether a binary tree contains a specifi c entry.
• Traverse the nodes in a binary tree in preorder, inorder, or postorder.

 The following contract specifi es these operations in more detail, and a UML diagram for a class
of binary trees appears in Figure 15-12 .

 ABSTRACT DATA TYPE: BINARY TREE

 DATA

• A fi nite number of objects in hierarchical order.

 OPERATIONS

PSEUDOCODE DESCRIPTION

 isEmpty() Task: Tests whether this binary tree is empty.
 Input: None.
 Output: True if the binary tree is empty; otherwise false.

 getHeight() Task: Gets the height of this binary tree.
 Input: None.
 Output: The height of the binary tree.

 getNumberOfNodes() Task: Gets the number of nodes in this binary tree.
 Input: None.
 Output: The number of nodes in the binary tree.

 getRootData() Task: Gets the data that is in the root of this binary tree.
 Input: None. Assumes the tree is not empty.
 Output: The root’s data.

 setRootData(newData) Task: Replaces the data item in the root of this binary tree with newData, if the tree is
not empty. However, if the tree is empty, inserts a new root node whose data item
is newData into the tree.

Input: newData is the data item.
Output: None.

 add(newData) Task: Adds a new node containing a given data item to this binary tree.
 Input: newData is the data item.
 Output: True if the addition is successful, or false if not.

 remove(data) Task: Removes the node containing the given data item from this binary tree.
 Input: data is the data item.
 Output: True if the removal is successful, or false if not.

440 CHAPTER 15 Trees

 clear() Task: Removes all nodes from this binary tree.
 Input: None.
 Output: None. (The binary tree is empty.)

 getEntry(anEntry) Task: Gets a specifi c entry in this binary tree.
 Input: anEntry is the desired data item.
Output: The entry in the binary tree that matches anEntry . Throws an exception if the

entry is not found.

 contains(data) Task: Tests whether the given data item occurs in this binary tree.
 Input: data is the data item.
 Output: True if the binary tree contains the given data item, or false if not.

 preorderTraverse(visit) Task: Traverses this binary tree in preorder and calls the function visit once for each
node.

 Input: visit is a client-defi ned function that performs an operation on or with the data
in each visited node.

Output: None.

 inorderTraverse(visit) Task: Traverses this binary tree in inorder and calls the function visit once for each
node.

 Input: visit is a client-defi ned function that performs an operation on or with the data
in each visited node.

Output: None.

 postorderTraverse(visit) Task: Traverses this binary tree in postorder and calls the function visit once for each
node.

 Input: visit is a client-defi ned function that performs an operation on or with the data
in each visited node.

 Output: None.

FIGURE 15-12 UML diagram for the class BinaryTree

BinaryTree

+isEmpty(): boolean
+getHeight(): integer
+getNumberOfNodes(): integer
+getRootData(): ItemType
+setRootData(newData: ItemType): void
+add(newData: ItemType): boolean
+remove(data: ItemType): boolean
+clear(): void
+getEntry(anEntry: ItemType): ItemType
+contains(data: ItemType): boolean
+preorderTraverse(visit(item: ItemType): void): void
+inorderTraverse(visit(item: ItemType): void): void
+postorderTraverse(visit(item: ItemType): void): void

 The ADT Binary Tree 441

Using ADT binary
tree operations to
build a binary tree

 Example. You can use the add operation to build the binary tree in Figure 15-5 a, where the node
labels represent character data:

 tree = a new empty binary tree
tree.add('A')
 tree.add('B')
 tree.add('C')
 tree.add('D')
 tree.add('E')
 tree.add('F')
 tree.add('G')

 Given the specifi cation of the add method, you have no reason to expect that the previous state-
ments, in fact, produce the binary tree in the fi gure. Assuming that the operations are successful, you
will know only that the binary tree has seven nodes containing the given data. Our specifi cation of add
is intentionally vague and gives the programmer who implements the class BinaryTree fl exibility. It
also makes BinaryTree more useful as a base class, as you will see in the next chapter.

 15.2.3 An Interface Template for the ADT Binary Tree

 We formalize our specifi cations for the ADT binary tree by writing the interface template given in
Listing 15-1.

 LISTING 15-1 An interface template for the ADT binary tree

/** Interface for the ADT binary tree.
 @file BinaryTreeInterface.h */

#ifndef _BINARY_TREE_INTERFACE
#define _BINARY_TREE_INTERFACE

 template < class ItemType>
 class BinaryTreeInterface
 {

 public :
 /** Tests whether this binary tree is empty.
 @return True if the binary tree is empty, or false if not. */

virtual bool isEmpty() const = 0;

 /** Gets the height of this binary tree.
 @return The height of the binary tree. */

virtual int getHeight() const = 0;

 /** Gets the number of nodes in this binary tree.
 @return The number of nodes in the binary tree. */

virtual int getNumberOfNodes() const = 0;

 /** Gets the data that is in the root of this binary tree.
 @pre The binary tree is not empty.
 @post The root’s data has been returned, and the binary tree is unchanged.
 @return The data in the root of the binary tree. */

virtual ItemType getRootData() const = 0;

 /** Replaces the data item in the root of this binary tree
 with the given data, if the tree is not empty. However, if

(continues)

442 CHAPTER 15 Trees

A recursive
defi nition of a binary
search tree

 the tree is empty, inserts a new root node containing the
 given data into the tree.
 @pre None.
 @post The data in the root of the binary tree is as given.
 @param newData The data for the root. */

virtual void setRootData(const ItemType& newData) = 0;

 /** Adds a new node containing the given data to this binary tree.
 @param newData The data for the new node. */
 @post The binary tree contains a new node.
 @return True if the addition is successful, or false not. */

virtual bool add(const ItemType& newData) = 0;

 /** Removes the node containing the given data item from this binary tree.
 @param data The data value to remove from the binary tree. */
 @return True if the removal is successful, or false not. */

virtual bool remove(const ItemType& data) = 0;

 /** Removes all nodes from this binary tree. */
 virtual void clear() = 0;

 /** Gets a specific entry in this binary tree.
 @post The desired entry has been returned, and the binary tree
 is unchanged. If no such entry was found, an exception is thrown.
 @param anEntry The entry to locate.
 @return The entry in the binary tree that matches the given entry.
 @throw NotFoundException if the given entry is not in the tree. */

virtual ItemType getEntry(const ItemType& anEntry) const
 throw(NotFoundException) = 0;

 /** Tests whether a given entry occurs in this binary tree.
 @post The binary search tree is unchanged.
 @param anEntry The entry to find.
 @return True if the entry occurs in the tree, or false if not. */

virtual bool contains(const ItemType& anEntry) const = 0;

 /** Traverses this binary tree in preorder (inorder, postorder) and
 calls the function visit once for each node.

 @param visit A client-defined function that performs an operation on
 or with the data in each visited node. */

virtual void preorderTraverse(void visit(ItemType&)) const = 0;
virtual void inorderTraverse(void visit(ItemType&)) const = 0;
virtual void postorderTraverse(void visit(ItemType&)) const = 0;

 }; // end BinaryTreeInterface
 #endif

 15.3 The ADT Binary Search Tree
 Searching for a particular item is one operation for which the ADT binary tree is ill suited. The binary
search tree is a binary tree that corrects this defi ciency by organizing its data by value. Recall that
each node n in a binary search tree satisfi es the following three properties:

• n ’s value is greater than all values in its left subtree TL .
• n ’s value is less than all values in its right subtree TR .
• Both TL and TR are binary search trees.

VideoNote

The ADT binary
search tree

Several different
binary search trees
are possible for the
same data

 The ADT Binary Search Tree 443

 This organization of data enables you to search a binary search tree for a particular data item, given its
value instead of its position.

Example. Let’s consider a binary search tree whose nodes contain people’s names. Suppose that
these objects are Alan, Bob, Elisa, Jane, Nancy, Tom, and Wendy. Figure 15-13 illustrates one binary
search tree that we can form with these names.

FIGURE 15-13 A binary search tree of names

Jane

TomBob

ElisaAlan Nancy Wendy

FIGURE 15-14 Binary search trees with the same data as in Figure 15-13

Jane

Tom

Bob

ElisaAlan

Nancy

Wendy

Jane

Bob Nancy

ElisaAlan Tom

Wendy

Alan

Bob

Elisa

Jane

Nancy

Tom

Wendy

(a) (c)(b)

 15.3.1 Binary Search Tree Operations

 As an ADT, the binary search tree has operations that are like the operations for the ADTs you studied
in previous chapters, in that they involve inserting, removing, and retrieving data. Unlike the
position-oriented ADTs stack, list, and queue, but like the ADT sorted list, the insertion, removal, and
retrieval operations are by value, not by position. On the other hand, the other operations—including

 Many different binary search trees can contain the same data, however. For example, in addition
to the tree in Figure 15-13 , each tree in Figure 15-14 is a valid binary search tree for the names Alan,
Bob, Elisa, Jane, Nancy, Tom, and Wendy. Although these trees have different shapes, each one satis-
fi es the requirements of a binary search tree.

444 CHAPTER 15 Trees

the traversal operations—that you just saw for a binary tree apply to a binary search tree without
change, because a binary search tree is a binary tree.

 The operations that defi ne the ADT binary search tree are as follows:

 Note: ADT binary search tree operations
• Test whether a binary search tree is empty.
• Get the height of a binary search tree.
• Get the number of nodes in a binary search tree.
• Get the data in a binary search tree’s root.
• Insert a new item into a binary search tree.
• Remove the given item from a binary search tree.
• Remove all entries from a binary search tree.
• Retrieve the given item from a binary search tree.
• Test whether a binary search tree contains a specifi c entry.
• Traverse the items in a binary search tree in preorder, inorder, or postorder.

 For simplicity, we will insist that a binary search tree contain unique data. The following contract
specifi es the insertion and removal operations in more detail. The UML diagram for a class of binary
search trees will be almost the same as the one for a class of binary trees, so we do not write one here.

 ABSTRACT DATA TYPE: BINARY SEARCH TREE

DATA

• A fi nite number of objects in hierarchical order.

 OPERATIONS

PSEUDOCODE DESCRIPTION

 add(newEntry) Task: Inserts newEntry into this binary search tree such that the properties of a binary
search tree are maintained.

Input: newEntry is the data item to be inserted. Assumes the entries in the tree are
distinct and differ from newEntry .

Output: True if the insertion is successful, or false if not.

 remove(anEntry) Task: Removes the given entry from this binary search tree such that the properties of a
binary search tree are maintained.

 Input: anEntry is the entry to remove.
 Output: True if the removal is successful, or false if not.

 The methods isEmpty , getHeight , getNumberOfNodes , getRootData , clear , getEntry , contains , preorderTraverse ,
inorderTraverse , and postorderTraverse have the same specifi cations as for a binary tree.

 Example. If nameTree is any one of the binary search trees in Figures 15-13 and 15-14 , and if their
nodes contain strings, the statement

string name = nameTree.getEntry(nancy);

 where nancy is a string variable containing "Nancy" , locates the node containing "Nancy" and assigns
its data to name . It doesn’t matter which one of the four trees getEntry searches; the result will be the

 The ADT Binary Search Tree 445

same. The time it takes for getEntry to fi nd nancy , however, does depend on the shape of the tree, as
you will see.

 If the string variable hal contains "Hal" and you insert it into nameTree by invoking

 nameTree.add(hal)

 you will be able to retrieve hal later and still be able to retrieve nancy . If you remove jane by using

 nameTree.remove(jane)

 you will still be able to retrieve the objects nancy and hal . Finally, if displayName is a client function
that displays its string argument,

 nameTree.inorderTraverse(displayName)

 will display in alphabetical order the names of the people that nameTree represents. Again, it does not
matter which one of the four trees you traverse.

 Question 9 Show that each tree in Figures 15-13 and 15-14 is a binary search tree.

CHECK POINT Question 10 Show that the inorder traversals of each binary search tree in Figures 15-13
and 15-14 are the same.

Question 11 What are the preorder and postorder traversals of each binary search tree in
 Figures 15-13 and 15-14 ? Are the preorder traversals the same? Are the postorder traversals
the same?

 15.3.2 Searching a Binary Search Tree

 Consider again the binary search tree in Figure 15-13 . Each node in the tree contains a person’s name.
Suppose that you want to locate Elisa in the binary search tree. The root node of the tree contains Jane,
so if Elisa is present in the tree, it must be in Jane’s left subtree, because the string "Elisa" is before
the string "Jane" alphabetically. Because a binary search tree is recursive by nature, it is natural to
formulate recursive algorithms for operations on the tree. Thus, you know that Jane’s left subtree is
also a binary search tree, so you use exactly the same strategy to search this subtree for Elisa. The root
of this binary search tree contains Bob, and, because the string "Elisa" is greater than the string
"Bob" , Elisa must be in Bob’s right subtree. That right subtree is also a binary search tree, and it hap-
pens that Elisa is in the root node of this tree. Thus, the search has located Elisa.

 The following pseudocode summarizes this search strategy:

 // Searches the binary search tree for a given target value .
search(bstTree: BinarySearchTree, target: ItemType)

if (bstTree is empty)
 The desired item is not found

else if (target == data item in the root of bstTree)
 The desired item is found

else if (target < data item in the root of bstTree)
 search(Left subtree of bstTree, target)

else
 search(Right subtree of bstTree, target)

 As you will see, this search algorithm is the basis of the other operations on a binary search tree.
 The shape of the tree in no way affects the validity of the search algorithm. The algorithm requires

only that a tree be a binary search tree. However, the search algorithm works more effi ciently on some

A search algorithm
for a binary search
tree

446 CHAPTER 15 Trees

Use search to
determine the
insertion point

trees than on others. For example, with the tree in Figure 15-14 b, search inspects every node before
locating Wendy. In fact, this binary search tree really has the same structure as a link-based representa-
tion of a sorted list and offers no advantage in effi ciency. In contrast, with the full tree in Figure 15-13 ,
the search algorithm inspects only the nodes that contain the names Jane, Tom, and Wendy. These
names are exactly the names that a binary search of the sorted array in Figure 15-15 would inspect.

FIGURE 15-15 An array of names in sorted order

Alan

0

Bob

1

Elisa

2

Jane

3

Nancy

4

Tom

5

Wendy

6

The shape of a binary search tree affects the effi ciency of its operations. The more balanced a
binary search tree is, the farther it is from a linear structure and the closer the behavior of the search
algorithm will be to a binary search of an array (and the farther it will be from the behavior of a linear
search). Later in this chapter, you will learn more about how the shape of a binary search tree affects
search ’s effi ciency and how the insertion and removal operations affect this shape.

 Question 12 Using the tree in Figure 15-14 c, trace the algorithm that searches a binary
search tree for

a. Elisa
b. Kyle

 In each case, list the nodes in the order in which the search visits them.

CHECK POINT

 15.3.3 Creating a Binary Search Tree

 Suppose that you want to insert a record for Frank into the binary search tree of Figure 15-13 . As a
fi rst step, imagine that you instead want to search for the string "Frank" . The search algorithm fi rst
searches the tree rooted at Jane, then the tree rooted at Bob, and then the tree rooted at Elisa. It then
searches the tree rooted at the right child of Elisa. Because this tree is empty, as Figure 15-16 illus-
trates, the search algorithm has reached a base case and will terminate with the report that Frank is not
present. What does it mean that search looked for Frank in the right subtree of Elisa? For one thing, it
means that if Frank were the right child of Elisa, search would have found Frank there.

 This observation indicates that a good place to insert Frank is as the right child of Elisa. Because
Elisa has no right child, the insertion is simple, requiring only the addition of a new leaf node. More
important, Frank belongs in this location— search will look for Frank here. Specifi cally, inserting
Frank as the right child of Elisa will preserve the tree’s binary search tree property. Because search ,
when searching for Frank, would follow a path that leads to the right child of Elisa, you are assured
that Frank is in the proper relation to the names above it in the tree.

 Note: Using search to determine where in the tree to insert a new name always leads to
an easy insertion. No matter what new item you insert into the tree, search will always
terminate at an empty subtree. Thus, search always tells you to insert the item as a new
leaf.

 The ADT Binary Search Tree 447

Example. Let’s create the binary search tree shown in Figure 15-13 . The following pseudocode
statements begin with an empty binary search tree and add entries one at time until we get the desired
tree:

 nameTree = a new, empty binary search tree
 nameTree .insert("Jane")
 nameTree .insert("Bob")
 nameTree .insert("Alan")
 nameTree .insert("Elisa")
 nameTree .insert("Tom")
 nameTree .insert("Nancy")
 nameTree .insert("Wendy")

 Once we insert Jane into the empty tree, Jane becomes the tree’s root. Inserting Bob into the tree
leaves the root untouched, and so the only binary search tree that is possible places Bob as the left
child of the root. Why? Because "Bob" is less than "Jane" . When we insert the next name, Alan, it
becomes the left child of Bob. Note that each insertion creates a new leaf of the tree at that point in
time. However, it might not remain a leaf in the fi nal tree.

FIGURE 15-16 Empty subtree where the search algorithm terminates when looking for Frank

Jane

TomBob

ElisaAlan Nancy Wendy

Empty
tree

Question 13 Beginning with an empty binary search tree, what binary search tree is
formed when you insert the following letters in the order given? J, N, B, A, W, E, T

CHECK POINT

Question 14 Arrange nodes that contain the letters A, C, E, F, L, V, and Z into two binary
search trees: one that has maximum height and one that has minimum height.

 15.3.4 Traversals of a Binary Search Tree

 The traversals of a binary search tree are the same as the traversals of a binary tree. The inorder traver-
sal of a binary search tree, however, is of special note. Recall its algorithm from earlier in this chapter:

 // Traverses the given binary tree in inorder .
// Assumes that “visit a node” means to process the node’s data item .
inorder(binTree: BinaryTree): void

448 CHAPTER 15 Trees

Use inorder
traversal to visit
nodes of a binary
search tree in
search-key order

if (binTree is not empty)
{

 inorder(Left subtree of binTree’s root)
Visit the root of binTree
inorder(Right subtree of binTree’s root)

}

Note: The inorder traversal of a binary search tree visits the tree’s nodes in sorted
search-key order.

 The proof of the previous fact is by induction on h , the height of the tree. Let T represent the tree.
Basis: h = 0. When T is empty, the algorithm does not visit any nodes. This is the proper sorted order
for the zero names that are in the tree!
Inductive hypothesis: Assume that the theorem is true for all k , 0 < k < h . That is, assume for all k (0 <
k < h) that the inorder traversal visits the nodes in sorted search-key order.
Inductive conclusion: You must show that the theorem is true for k = h > 0. T has the form

r

TL TR

 Because T is a binary search tree, all the entries in the left subtree TL are less than the entry in the root
r , and all the entries in the right subtree TR are greater than the entries in r . The inorder algorithm will
visit all the nodes in TL , then visit r , and then visit all the nodes in TR . Thus, the only concern is that
inorder visit the nodes within each of the subtrees TL and TR in the correct sorted order. But because
T is a binary search tree of height h , each subtree is a binary search tree of height less than h . There-
fore, by the inductive hypothesis, inorder visits the nodes in each subtree TL and TR in the correct
sorted search-key order. The proof is now complete.

 15.3.5 The Effi ciency of Binary Search Tree Operations

 You have seen binary search trees in many shapes. For example, even though the binary search trees
in Figures 15-13 and 15-14 have seven nodes each, they have different shapes and heights. You saw
that to locate Wendy in Figure 15-14 b, you would have to inspect all seven nodes, but you can locate
Wendy in Figure 15-13 by inspecting only three nodes (Jane, Tom, and Wendy). Consider now the
relationship between the height of a binary search tree and the effi ciency of the retrieval, insertion,
and removal operations.

 Each of these operations compares a specifi ed value v to the entries in the nodes along a path
through the tree. This path always starts at the root of the tree and, at each node n , follows the left or
right branch, depending on the comparison of v to the value in n . The path terminates at the node that
contains v or, if v is not present, at an empty subtree. Thus, each retrieval, insertion, or removal opera-
tion requires a number of comparisons equal to the number of nodes along this path. This means that
the maximum number of comparisons that each operation can require is the number of nodes on the
longest path through the tree. In other words, the maximum number of comparisons that these opera-
tions can require is equal to the height of the binary search tree.

The maximum
number of
comparisons for a
retrieval, insertion,
or removal is the
height of the tree

Note: The height of a binary tree
 Recall that the height of an n -node binary tree ranges from < log 2 (n + 1) = to n .

 Summary 449

Insertion in sorted
order produces a
maximum-height
binary search tree

 If the height of the binary search tree is log 2 (n + 1) , the effi ciency of its operations is O(log n).
However, what will the height of a binary search tree actually be? The factor that determines the
height of a binary search tree is the order in which you perform insertion and removal operations on
the tree. Recall that, starting with an empty tree, if you insert names in the order Alan, Bob, Elisa,
Jane, Nancy, Tom, Wendy, you would obtain a binary search tree of maximum height, as shown in
 Figure 15-14 b. On the other hand, if you insert names in the order Jane, Bob, Tom, Alan, Elisa, Nancy,
Wendy, you would obtain a binary search tree of minimum height, as shown in Figure 15-13 .

 Which of these situations should you expect to encounter in the course of a real application? It
can be proven mathematically that if the insertion and removal operations occur in a random order,
the height of the binary search tree will be quite close to log 2n . Thus, in this sense, the previous analy-
sis is not unduly optimistic. However, in a real-world application, is it realistic to expect the insertion
and removal operations to occur in random order? In many applications, the answer is yes. There are,
however, applications in which this assumption would be dubious. For example, the person preparing
the previous sequence of names for the insertion operations might well decide to “help you out” by
arranging the names to be inserted into sorted order. This arrangement, as has been mentioned, would
lead to a tree of maximum height. Thus, while in many applications you can expect the behavior of a
binary search tree to be excellent, you should be wary of the possibility of poor performance due to
some characteristic of a given application.

 Is there anything you can do if you suspect that the operations might not occur in a random
order? Similarly, is there anything you can do if you have an enormous number of items and need to
ensure that the height of the tree is close to log 2n ? Chapter 19 presents variations of the basic binary
search tree that are guaranteed always to remain balanced and therefore be of minimum height.

 Figure 15-17 summarizes the order of the retrieval, insertion, removal, and traversal operations
for the ADT binary search tree.

Insertion in random
order produces a
near-minimum-
height binary search
tree

FIGURE 15-17 The Big O for the retrieval, insertion, removal, and traversal operations of the
ADT binary search tree

Operation

Retrieval

Insertion

Removal

Traversal

Average case

O(log n)

O(log n)

O(log n)

O(n)

Worst case

O(n)

O(n)

O(n)

O(n)

 SUMMARY

 1. Binary trees provide a hierarchical organization of data, which is important in many applications.

 2. Traversing a tree is a useful operation. Intuitively, traversing a tree means to visit every node in the tree. Because
the meaning of “visit” is application dependent, you can pass a client-defi ned visit function to the traversal
operation.

 3. The binary search tree allows you to use a binary search-like algorithm to search for an item with a specifi ed
value.

 4. Binary search trees come in many shapes. The height of a binary search tree with n nodes can range from a minimum
of < log 2 (n + 1) = to a maximum of n . The shape of a binary search tree determines the effi ciency of its operations. The
closer a binary search tree is to a balanced tree (and the farther it is from a linear structure), the closer the behavior of
the search algorithm will be to a binary search (and the farther it will be from the behavior of a linear search).

 5. An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-key order.

450 CHAPTER 15 Trees

 EXERCISES

 1. Consider the tree in Figure 15-18 . What node or nodes are

 a. The tree’s root?
 b. Parents?
 c. Children of the parents in part b ?
 d. Siblings?
 e. Ancestors of 50?
 f. Descendants of 20?
 g. Leaves?

 2. What is the height of the tree in Figure 15-18 ?

 3. Write preconditions and postconditions for the ADT binary search tree operations.

FIGURE 15-18 A tree for Exercises 1, 2, 6, 7, 11, and 23

7020

40

60

50

10

30

 4. What are the preorder, inorder, and postorder traversals of the binary tree in Figure 15-19 ?

 5. Consider a method isLeaf that returns true if a binary tree is a one-node tree—that is, if it consists of only a
leaf—and returns false otherwise.

 a. Specify the method isLeaf .
 b. If isLeaf were not a method of a class of binary trees, would a client of the class be able to implement

isLeaf ? Explain.

 6. Starting with an empty binary search tree, in what order should you insert items to get the binary search tree in
 Figure 15-18 ?

 7. Using the binary search tree in Figure 15-18 , trace the search algorithm when it searches for

 a. 30
 b. 15

 In each case, list the nodes in the order in which the search visits them.

 8. Is the tree in Figure 15-19 a binary search tree? Explain.

 Exercises 451

 9. Beginning with an empty binary search tree, what binary search tree is formed when you insert the following
values in the order given?

 a. W, T, N, J, E, B, A
 b. W, T, N, A, B, E, J
c. A, B, W, J, N, T, E
d. B, T, E, A, N, W, J

 10. Consider the binary search tree in Figure 15-20 . The numbers simply label the nodes so that you can reference
them; they do not indicate the contents of the nodes.

 a. Without performing an inorder traversal, which node must contain the value that comes immediately
after the value in the root? Explain.

 b. In what order will an inorder traversal visit the nodes of this tree? Indicate this order by listing the labels
of the nodes in the order that they are visited.

 11. Consider the binary search tree in Figure 15-18 . What tree results after you insert the nodes 80, 65, 75, 45, 35,
and 25, in that order?

FIGURE 15-19 A tree for Exercises 4 and 8

G

M

H

D

A L

K

T

R

V

U

W

FIGURE 15-20 A binary search tree for Exercise 10

2

1

3

754

8 9

6

452 CHAPTER 15 Trees

 12. If duplicates are allowed in a binary search tree, it is important to have a convention that determines the relation-
ship between the duplicates. Items that duplicate the root of a tree should either all be in the left subtree or all be
in the right subtree, and, of course, this property must hold for every subtree. Why is this convention critical to
the effective use of the binary search tree?

 13. Consider a nonempty binary tree with two types of nodes: min nodes and max nodes . Each node has an integer
value initially associated with it. This tree is a minimax tree and has a value, which we defi ne as follows:

• If the root is a min node, the value of the tree is equal to the minimum of
• The integer stored in the root
• The value of the left subtree, but only if it is nonempty
• The value of the right subtree, but only if it is nonempty

• If the root is a max node, the value of the tree is equal to the maximum of the above three values.

a. Compute the value of the minimax tree in Figure 15-21 . Each node is labeled with its initial value.
b. Design a general solution for representing and evaluating these trees.

 *14. A binary search tree with a given set of data items can have several different structures that conform to the defi -
nition of a binary search tree. If you are given a list of data items, does at least one binary search tree whose
preorder traversal matches the order of the items on your list always exist? Is there ever more than one binary
search tree that has the given preorder traversal?

 *15. How many differently shaped n -node binary trees are possible? How many differently shaped n -node binary
search trees are possible? (Write recursive defi nitions.)

 16. Write pseudocode for a binary search tree method that visits all nodes whose data lies within a given range of
values (such as all values between 100 and 1,000).

 17. By using mathematical induction, prove that a full binary tree of height h � 0 has 2 h – 1 nodes.

 18. By using mathematical induction, prove that the maximum number of nodes in a binary tree of height h is 2 h – 1.

FIGURE 15-21 A minimax tree for Exercise 13

1 23

0 0

98 53

0

21 0

0

100 100

0 Max nodes

Min nodes

17 99

 Programming Problems 453

 19. What is the maximum number of nodes that a binary tree can have at level n ? Prove your answer by using
mathematical induction. Use this fact to do the following:

 a. Rewrite the formal defi nition of a complete tree of height h .
 b. Derive a closed form for the formula

a
h

i51
2i21

 What is the signifi cance of this sum?

 20. Prove by mathematical induction that a binary tree with n nodes has exactly n + 1 empty subtrees.

 21. A binary tree is strictly binary if every nonleaf node has exactly two children. Prove by mathematical induction
on the number of leaves that a strictly binary tree with n leaves has exactly 2 n – 1 nodes.

 22. Consider two algorithms for traversing a binary tree. Both are nonrecursive algorithms that use an extra con-
tainer C for bookkeeping. Both algorithms have the following basic form:

 Put the root of the tree in C
 while (C is not empty)
{

Remove a node from C and name it N
Visit N
if (N has a left child)

 Put the child in C
if (N has a right child)

 Put the child in C
}

 The difference between the two algorithms is the approach for choosing a node N to remove from the container
C :

• Algorithm 1: Remove the newest (most recently added) node from C .
• Algorithm 2: Remove the oldest (earliest added) node from C .

 a. In what order would each algorithm visit the nodes of the tree in Figure 15-13 ?
 b. For each algorithm, describe an appropriate ADT for the bookkeeping container C . What data should

the ADT have? Be conservative with the amount of memory needed for the ADT. Also, note that the
traversal of a tree should not alter the tree in any way.

 23. Suppose that you traverse the binary search tree in Figure 15-18 and write the data item in each node visited to a
fi le. You plan to read this fi le later and create a new binary search tree by using the ADT binary search tree
operation add . In creating the fi le, in what order should you traverse the tree so that the new tree will have exactly
the same shape and nodes as the original tree?

 PROGRAMMING PROBLEMS

 1. Develop a program that can be used to test an implementation of BinaryTreeInterface .

 2. Repeat the previous problem, but assume that the implementation represents a binary search tree.

 3. Develop an interface template for a general tree. What methods are reasonable for a general tree?

 4. Repeat the previous problem, but consider an n -ary tree instead.

This page intentionally left blank

 Chapter

 Tree
Implementations 16

 Contents
 16.1 The Nodes in a Binary Tree 456

 16.1.1 An Array-Based Representation 456
 16.1.2 A Link-Based Representation 458

 16.2 A Link-Based Implementation of the ADT Binary Tree 459
 16.2.1 The Header File 459
 16.2.2 The Implementation 462

 16.3 A Link-Based Implementation of the ADT Binary Search Tree 471
 16.3.1 Algorithms for the ADT Binary Search Tree Operations 471
 16.3.2 The Class BinarySearchTree 481

 16.4 Saving a Binary Search Tree in a File 483
 16.5 Tree Sort 486
 16.6 General Trees 487

 Summary 488
 Exercises 489
 Programming Problems 491

 Prerequisites
 Chapter 4 Link-Based Implementations
 Chapter 5 Recursion as a Problem-Solving Technique
Chapter 6 Stacks (for optional nonrecursive traversal)
 Chapter 9 List Implementations
 Chapter 10 Algorithm Effi ciency
 Chapter 12 Sorted Lists and Their Implementations
 C++ Interlude 5 Overloaded Operators and Friend Access
 Chapter 15 Trees

456 CHAPTER 16 Tree Implementations

T he previous chapter discussed various kinds of trees, but it focused on the ADTs binary tree and
binary search tree. This chapter will show you how to implement these two ADTs by using the
constructs of C++. In each case, the data structures will be private data members of a class of trees.

 16.1 The Nodes in a Binary Tree
 The fi rst step in implementing a tree is to choose a data structure to represent its nodes. Since each
node must contain both data and “pointers” to the node’s children—which are other nodes in the
tree—it is natural to make each node an object. Thus, we will use a C++ class to defi ne the nodes in
the tree. If we place these nodes in an array, the “pointers” in the nodes are array indices. However, if
the nodes are a part of a linked chain, we use C++ pointers to link them together.

 16.1.1 An Array-Based Representation

 Let’s name our class of nodes TreeNode . An array-based implementation of a tree uses an array of
nodes, so a class of such trees could have the following data members:

 TreeNode<ItemType> tree[MAX_NODES]; // Array of tree nodes
 int root; // Index of root
 int free; // Index of free list

 The variable root is an index to the tree’s root node within the array tree . If the tree is empty, root
is –1.

 As the tree changes due to insertions and removals, its nodes may not be in contiguous elements
of the array. Therefore, this implementation requires you to establish a collection of available nodes,
which is called a free list . To insert a new node into the tree, you fi rst obtain an available node from
the free list. If you remove a node from the tree, you place it into the free list so that you can reuse the
node at a later time. The data member free is the index to the fi rst node in the free list. We will talk
about the free list in a moment.

 Although these data members are appropriate for any tree, we want to restrict our conversation
to binary trees and consider a class of its nodes. The class TreeNode , as given in Listing 16-1,
is such a class.

A free list keeps
track of available
nodes

LISTING 16-1 The class TreeNode for an array-based implementation
of the ADT binary tree

 template < class ItemType>
 class TreeNode
 {
 private:
 ItemType item; // Data portion

int leftChild; // Index to left child
int rightChild; // Index to right child

 public:
 TreeNode();
 TreeNode(const ItemType& nodeItem, int left, int right);

// Declarations of the methods setItem, getItem, setLeft, getLeft,
// setRight, and getRight are here.

 . . .

 }; // end TreeNode

VideoNote

Representing
tree nodes

 The Nodes in a Binary Tree 457

 Each node in the array-based binary tree has a data item and two array indices, one to each
child. Both leftChild and rightChild within a node are indices to the children of that node. If a
node has no left child, leftChild is –1; if a node has no right child, rightChild is –1. Since root is
the index of the root r of a binary tree, tree[root].getLeft() is leftChild , the index of the root
of the left subtree of r ; tree[root].getRight() is rightChild , the index of the root of the right
subtree of r .

 The free list. Even though the data member free is the index of the fi rst node in the free list, the next
available node is not necessarily at index free + 1 . When a node is removed from a tree and returned
to the free list, it could be anywhere in the array. Thus, we “link” the available nodes together by arbi-
trarily making the rightChild member of each node be the index of the next node in the free list.
Thus, both the free list and the tree itself are array-based, but the nodes are linked by array indices
instead of C++ pointers. While the free list is a linear data structure, the tree is not.

 Figure 16-1 contains a binary tree and its data members for this array-based implementation.
Note how the nodes in the tree are linked. For example, Bob in tree[1] has Elisa as its right child.
Elisa is in tree[4] , and tree[1].rightChild is 4. Since Elisa is in a leaf of the tree, its links in
tree[4].leftChild and tree[4].rightChild are each –1. Likewise, Alan and Nancy are in leaf
nodes. The nodes in the free list are linked, but since this tree has not undergone removals, the free list
happens to be in contiguous array elements.

 An array-based implementation of a binary tree is much more attractive when the tree is com-
plete. In such cases, indices that link parents and their children are not stored, so the data structure is

FIGURE 16-1 (a) A binary tree of names; (b) its implementation using the array tree

Jane

Bob

Tom

Alan

Elisa

Nancy

 ?

 ?

 ?

 1

 3

 5

–1

–1

–1

–1

–1

–1

 2

 4

–1

–1

–1

–1

 7

 8

 9

item leftChild rightChild

tree

free

6

root

0

Free list

0

1

2

3

4

5

6

7

8

Jane

TomBob

ElisaAlan Nancy

(a) (b)

458 CHAPTER 16 Tree Implementations

simpler than if the tree is not complete. In Chapter 17 , you will see that an array-based representation
of a complete binary tree is useful in the implementation of the ADT priority queue. We will not use
any other array-based implementation of a tree.

 Note: If you use an array-based implementation of a complete binary tree, you must be
sure that the tree remains complete as a result of insertions or removals.

 16.1.2 A Link-Based Representation

 You can use C++ pointers to link the nodes in the tree. Doing so is the most common way of imple-
menting a tree. Listing 16-2 shows the class BinaryNode for a link-based implementation of the ADT
binary tree.

 Question 1 Represent the binary tree in Figure 15-18 of Chapter 15 with an array.
CHECK POINT

LISTING 16-2 The header fi le containing the class BinaryNode for a link-based
implementation of the ADT binary tree

 /** A class of nodes for a link-based binary tree.
 @file BinaryNode.h */

#ifndef _BINARY_NODE
#define _BINARY_NODE

 template < class ItemType>
 class BinaryNode
 {
 private :

ItemType item; // Data portion
BinaryNode<ItemType>* leftChildPtr; // Pointer to left child
BinaryNode<ItemType>* rightChildPtr; // Pointer to right child

 public :
 BinaryNode();
 BinaryNode(const ItemType& anItem);
 BinaryNode(const ItemType& anItem,
 BinaryNode<ItemType>* leftPtr,
 BinaryNode<ItemType>* rightPtr);

 void setItem(const ItemType& anItem);
ItemType getItem() const ;

 bool isLeaf() const ;

BinaryNode<ItemType>* getLeftChildPtr() const ;
BinaryNode<ItemType>* getRightChildPtr() const ;

 void setLeftChildPtr(BinaryNode<ItemType>* leftPtr);
 void setRightChildPtr(BinaryNode<ItemType>* rightPtr);

 }; // end BinaryNode

#include "BinaryNode.cpp"
 #endif

 A Link-Based Implementation of the ADT Binary Tree 459

 Given the class BinaryNode in Listing 16-2, a class of link-based binary trees will declare one
data member—a pointer rootPtr —to point to the tree’s root node. If the tree is empty, rootPtr con-
tains nullptr . For a binary tree that is not empty, rootPtr->getLeftChildPtr() points to the root’s
left subtree, and rootPtr->getRightChildPtr() points to the root’s right subtree. If either of these
subtrees is empty, the pointer to it would be nullptr . Figure 16-2 illustrates the root of a binary tree
and its two children.

 16.2 A Link-Based Implementation of the ADT Binary Tree
 We will derive our class of link-based binary trees from BinaryTreeInterface , which specifi es the
public methods for the ADT binary tree and appears in Listing 15-1 of Chapter 15 . The nodes in the
tree will be instances of the class BinaryNode as given previously in Listing 16-2.

 16.2.1 The Header File

 The header fi le in Listing 16-3 declares the class BinaryNodeTree in anticipation of its link-based
implementation. Note the protected methods that the public methods will call to perform their opera-
tions recursively. These methods require pointers as arguments. As such, they should not be public
and available to clients of the class. After all, clients should not have access to node pointers. Although
these methods could be private, they are protected so that a derived class can use them.

 The public section declares more constructors than we have in the past, allowing a client to
defi ne binary trees in a variety of circumstances. For example, you can construct a binary tree

• That is empty
• From data for its root, which is its only node
• From data for its root and from its two subtrees

 For example, the following statements invoke these three constructors:

 BinaryNodeTree<string> tree1;
BinaryNodeTree<string>* tree2Ptr = new BinaryNodeTree<string>("A");
BinaryNodeTree<string>* tree3Ptr = new BinaryNodeTree<string>("B");
BinaryNodeTree<string>* tree4Ptr =
 new BinaryNodeTree<string>("C", tree2Ptr, tree3Ptr);

FIGURE 16-2 A link-based implementation of a binary tree

rootPtr

item

leftChildPtr rightChildPtr

Some methods
should not be public

Sample uses of
public constructors

460 CHAPTER 16 Tree Implementations

 Here tree1 is an empty binary tree; tree2Ptr and tree3Ptr each point to binary trees that have only
a root node. These two roots contain the strings "A" and "B" , respectively; and tree4Ptr points to a
binary tree whose root contains "C" and has subtrees pointed to by tree2Ptr and tree3Ptr .

 Programming Tip: In the previous example, if you were to use BinaryTreeInterface
instead of BinaryNodeTree in the data type of either tree2Ptr or tree3Ptr, you would
have to cast the variable to BinaryNodeTree before you could call the third constructor.
For example, suppose you defi ned treePtr2 as follows:

 BinaryTreeInterface<string>* tree2Ptr = new BinaryNodeTree<string>("A");

 You would then defi ne treePtr4 as follows:

 BinaryNodeTree<string>* tree4Ptr = new BinaryNodeTree<string>("C",
 static_cast<BinaryNodeTree<string>*>(tree2Ptr), tree3Ptr);

BinaryNodeTree also declares an overloaded assignment operator. You could also, of course,
overload other operators.

LISTING 16-3 A header fi le for the link-based implementation of the class BinaryNodeTree

 /** ADT binary tree: Link-based implementation.
 @file BinaryNodeTree.h */

#ifndef _BINARY_NODE_TREE
#define _BINARY_NODE_TREE

#include "BinaryTreeInterface.h"
#include "BinaryNode.h"
#include "PrecondViolatedExcep.h"
#include "NotFoundException.h"

 template < class ItemType>
 void BinaryNodeTree : public BinaryTreeInterface<ItemType>
 {
 private :
 BinaryNode<ItemType>* rootPtr;

 protected :
 //--
// Protected Utility Methods Section:
// Recursive helper methods for the public methods.
 //--

int getHeightHelper(BinaryNode<ItemType>* subTreePtr) const ;
int getNumberOfNodesHelper(BinaryNode<ItemType>* subTreePtr) const ;

// Recursively deletes all nodes from the tree.
void destroyTree(BinaryNode<ItemType>* subTreePtr);

// Recursively adds a new node to the tree in a left/right fashion to
// keep the tree balanced.

 A Link-Based Implementation of the ADT Binary Tree 461

(continues)

 BinaryNode<ItemType>* balancedAdd(BinaryNode<ItemType>* subTreePtr,
 BinaryNode<ItemType>* newNodePtr);

// Removes the target value from the tree by calling moveValuesUpTree
// to overwrite value with value from child.

 BinaryNode<ItemType>* removeValue(BinaryNode<ItemType>* subTreePtr,
const ItemType target, bool& success);

// Copies values up the tree to overwrite value in current node until
// a leaf is reached; the leaf is then removed, since its value is
// stored in the parent.

 BinaryNode<ItemType>* moveValuesUpTree(BinaryNode<ItemType>* subTreePtr);

// Recursively searches for target value in the tree by using a
// preorder traversal.

 BinaryNode<ItemType>* findNode(BinaryNode<ItemType>* treePtr,
const ItemType& target,
bool& success) const ;

// Copies the tree rooted at treePtr and returns a pointer to
// the copy.

 BinaryNode<ItemType>*
 copyTree(const BinaryNode<ItemType>* treePtr) const ;

// Recursive traversal helper methods:
void preorder(void visit(ItemType&),

 BinaryNode<ItemType>* treePtr) const ;
void inorder(void visit(ItemType&),

 BinaryNode<ItemType>* treePtr) const ;
void postorder(void visit(ItemType&),

 BinaryNode<ItemType>* treePtr) const ;

 public :
 //--
// Constructor and Destructor Section.
 //--
 BinaryNodeTree();
 BinaryNodeTree(const ItemType& rootItem);
 BinaryNodeTree(const ItemType& rootItem,
 const BinaryNodeTree<ItemType>* leftTreePtr,
 const BinaryNodeTree<ItemType>* rightTreePtr);
 BinaryNodeTree(const BinaryNodeTree<ItemType>& tree);

virtual ~BinaryNodeTree();

 //--
// Public BinaryTreeInterface Methods Section.
 //--

bool isEmpty() const ;
int getHeight() const ;
int getNumberOfNodes() const ;

 ItemType getRootData() const throw (PrecondViolatedExcep);
void setRootData(const ItemType& newData);
bool add(const ItemType& newData); // Adds a node
bool remove(const ItemType& data); // Removes a node
void clear();

462 CHAPTER 16 Tree Implementations

An overloaded
assignment
operator

 16.2.2 The Implementation

 Although we will not provide a complete implementation fi le here, we will examine its most signifi cant
portions.

 The constructors. The public constructors have the following defi nitions in the implementation
fi le:

 template < class ItemType>
BinaryNodeTree<ItemType>::BinaryNodeTree() : rootPtr(nullptr)
 {
 } // end default constructor

 template < class ItemType>
 BinaryNodeTree<ItemType>::BinaryNodeTree(const ItemType& rootItem)
 {
 rootPtr = new BinaryNode<ItemType>(rootItem, nullptr, nullptr);
 } // end constructor

 template < class ItemType>
 BinaryNodeTree<ItemType>::BinaryNodeTree(const ItemType& rootItem,
 const BinaryNodeTree<ItemType>* leftTreePtr,
 const BinaryNodeTree<ItemType>* rightTreePtr)
 {
 rootPtr = new BinaryNode<ItemType>(rootItem,
 copyTree(leftTreePtr->rootPtr),
 copyTree(rightTreePtr->rootPtr));
} // end constructor

 The default constructor uses an initializer to set the value of rootPtr to nullptr . The second
constructor sets rootPtr to point to a new node containing the given data item. The third constructor
also makes rootPtr point to a new node, but the node contains the given data item and pointers to
copies of the given subtrees. We talk about the method copyTree next during our discussion of the
copy constructor.

 ItemType getEntry(const ItemType& anEntry) const
 throw (NotFoundException);

bool contains(const ItemType& anEntry) const ;

 //--
// Public Traversals Section.
 //--

void preorderTraverse(void visit(ItemType&)) const ;
void inorderTraverse(void visit(ItemType&)) const ;
void postorderTraverse(void visit(ItemType&)) const ;

 //--
// Overloaded Operator Section.
 //--
 BinaryNodeTree& operator=(const BinaryNodeTree& rightHandSide);
 }; // end BinaryNodeTree

#include "BinaryNodeTree.cpp"
 #endif

 A Link-Based Implementation of the ADT Binary Tree 463

The copy constructor and destructor. The copy constructor and the destructor implicitly use
traversal. Since traversal is a recursive operation, the copy constructor and destructor each call a
recursive method. As we have mentioned before, public ADT methods usually are not themselves
recursive, but rather call a recursive method that is either private or protected. We do this to hide the
underlying data structure from the client.

 The protected method copyTree , which the copy constructor calls, uses a recursive preorder
traversal to copy each node in the tree. By copying each node as soon as the traversal visits it, copyTree
can make an exact copy of the original tree. To make the copy distinct from the original tree, the new
nodes must be linked together by using new pointers. That is, you cannot simply copy the pointers in
the nodes of the original tree. The result is a deep copy of the tree.

 Thus, copyTree has the following defi nition:

 template < class ItemType>
BinaryNode<ItemType>* BinaryNodeTree<ItemType>::
 copyTree(const BinaryNode<ItemType>* treePtr) const
 {
 BinaryNode<ItemType>* newTreePtr = nullptr ;

// Copy tree nodes during a preorder traversal
if (treePtr != nullptr)

 {
 // Copy node
 newTreePtr = new BinaryNode<ItemType>(treePtr->getItem(),
 nullptr, nullptr);
 newTreePtr->setLeftChildPtr(copyTree(treePtr->getLeftChildPtr()));
 newTreePtr->setRightChildPtr(copyTree(treePtr->getRightChildPtr()));
 } // end if

// Else tree is empty (newTreePtr is nullptr)

return newTreePtr;
} // end copyTree

 The copy constructor then looks like this:

 template < class ItemType>
 BinaryNodeTree<ItemType>::
 BinaryNodeTree(const BinaryNodeTree<ItemType>& treePtr)
 {
 rootPtr = copyTree(treePtr.rootPtr);
} // end copy constructor

 Similarly, the protected method destroyTree , which the destructor calls, uses a recursive postorder
traversal to delete each node in the tree. A postorder traversal is appropriate here because you can delete
a node only after you have fi rst traversed and deleted both of its subtrees. Thus, destroyTree has the
following defi nition:

 template < class ItemType>
 void BinaryNodeTree<ItemType>::
 destroyTree(BinaryNode<ItemType>* subTreePtr)
 {

if (subTreePtr != nullptr)
 {
 destroyTree(subTreePtr->getLeftChildPtr());
 destroyTree(subTreePtr->getRightChildPtr());
 delete subTreePtr;
 } // end if
} // end destroyTree

 The destructor then only needs to make the call destroyTree(rootPtr) .

To copy a tree,
traverse it in
preorder and insert
each item visited
into a new node

464 CHAPTER 16 Tree Implementations

The method getHeight. The public method getHeight calls the protected, recursive method
getHeightHelper . The height of a subtree rooted at a particular node is 1—for the node itself—plus
the height of the node’s tallest subtree. Thus, we defi ne the protected method getHeightHelper as
follows:

 template < class ItemType>
 int BinaryNodeTree<ItemType>::
 getHeightHelper(BinaryNode<ItemType>* subTreePtr) const
 {

if (subTreePtr == nullptr)
 return 0;

else
 return 1 + max(getHeightHelper(subTreePtr->getLeftChildPtr()),
 getHeightHelper(subTreePtr->getRightChildPtr()));
} // end getHeightHelper

 The public method getHeight contains just the statement

 return getHeightHelper(rootPtr);

 The method getNumberOfNodes has a similar defi nition.

 Question 2 What are the defi nitions of the public method getNumberOfNodes and the
protected helper method getNumberOfNodesHelper ?

CHECK POINT

 Question 3 What is the defi nition of the public method setRootData ?

 Question 4 What is the defi nition of the public method getRootData ? Recall that this
method has a precondition.

 The method add. The specifi cation of the public method add says to add a new node containing
given data to a binary tree. It does not indicate where that new node should be in the tree. Thus, we
have fl exibility in how we defi ne the method. Moreover, derived classes of BinaryNodeTree can both
override add to change its behavior and adhere to its specifi cation.

 Let’s add the new node so that the resulting tree is balanced. Once again, we can use recur-
sion to achieve our goal. The public method add can create a new node containing the data passed
to it as an argument. Then the method can pass this node to a protected, recursive method that
adds it in an appropriate place in the tree. The protected method must then return a pointer to
the tree’s root. If we name the protected method balancedAdd , the public add method has the
following defi nition:

 template < class ItemType>
 bool BinaryNodeTree<ItemType>::add(const ItemType& newData)
 {
 BinaryNode<ItemType>* newNodePtr = new BinaryNode<ItemType>(newData);
 rootPtr = balancedAdd(rootPtr, newNodePtr);

return true ;
} // end add

 Now we need to defi ne the protected method balancedAdd . Notice that the add method passes
two arguments to balancedAdd : a pointer to the root of the tree—or subtree—to which we will add a
node and a pointer to the new node. To add a node to the tree, we add the node to the root’s shorter

 A Link-Based Implementation of the ADT Binary Tree 465

subtree. This is the recursive step, since the subtree is a binary tree. The base case occurs when a
subtree is empty.

 Here is the defi nition of balancedAdd :

 template < class ItemType>
BinaryNode<ItemType>* BinaryNodeTree<ItemType>::
 balancedAdd(BinaryNode<ItemType>* subTreePtr,
 BinaryNode<ItemType>* newNodePtr)
 {

if (subTreePtr == nullptr)
 return newNodePtr;

else
 {
 BinaryNode<ItemType>* leftPtr = subTreePtr->getLeftChildPtr();
 BinaryNode<ItemType>* rightPtr = subTreePtr->getRightChildPtr();

if (getHeightHelper(leftPtr) > getHeightHelper(rightPtr))
 {
 rightPtr = balancedAdd(rightPtr, newNodePtr);
 subTreePtr->setRightChildPtr(rightPtr);
 }

else
 {
 leftPtr = balancedAdd(leftPtr, newNodePtr);
 subTreePtr->setLeftChildPtr(leftPtr);
 } // end if

return subTreePtr;
 } // end if
} // end balancedAdd

 For example, the following statements in balancedAdd add a new node to a right subtree:

 rightPtr = balancedAdd(rightPtr, newNodePtr);
 subTreePtr->setRightChildPtr(rightPtr);

 The recursive call to balancedAdd adds the new node and returns a pointer to the revised subtree.
However, we need to link this subtree to the rest of the tree. The call to setRightChildPtr accom-
plishes this. The addition of a new node to a left subtree is performed in a similar manner. Note that
such insertions are analogous to the recursive addition of a new node to a linear chain of linked
nodes, as discussed in Section 9.2.3 of Chapter 9 . Reviewing that section will give you insight into
the process here.

 Figure 16-3 shows the effect of a sequence of add operations on an initially empty binary tree.

 The traversals. Since the traversals are recursive, the public traversal methods each call a pro-
tected method that performs the actual recursion. For example, the public method inorder-
Traverse calls the protected method inorder . Like inorderTraverse , inorder has the function
visit as a parameter. This function specifi es the tree item as a reference parameter, which enables
the client not only to examine the item but also to modify it. The second parameter of inorder is

 Implement
traversals so that
visit remains on
the client’s side of
the wall

 Question 5 Where would a new node be placed next in the binary tree shown in
 Figure 16-3 ?

CHECK POINT

466 CHAPTER 16 Tree Implementations

FIGURE 16-3 Adding nodes to an initially empty binary tree

Protected methods
that enable
recursive traversals

the pointer treePtr , which, due to the recursive calls, eventually points to every node in the tree.
The defi nition of inorder follows:

 template < class ItemType>
 void BinaryNodeTree<ItemType>::
 inorder(void visit(ItemType&), BinaryNode<ItemType>* treePtr) const

 A Link-Based Implementation of the ADT Binary Tree 467

 {
if (treePtr != nullptr)

 {
 inorder(visit, treePtr->getLeftChildPtr());
 ItemType theItem = treePtr->getItem();
 visit(theItem);
 inorder(visit, treePtr->getRightChildPtr());
 } // end if
} // end inorder

 Now the defi nition of the public method inorderTraverse contains only the call

 inorder(visit, rootPtr);

 The other traversals have similar defi nitions.

 Programming Tip: Why did we write

 ItemType theItem = treePtr->getItem();
 visit(theItem);

 instead of

 visit(treePtr->getItem());

 in the defi nition of inorder ? Because visit has a reference parameter, we need an
lvalue to reference. The variable theItem serves this purpose.

Nonrecursive traversal (optional). Before leaving the topic of traversals, let’s develop a nonrecur-
sive traversal algorithm to illustrate further the relationship between stacks and recursion that was
discussed in Chapter 6 . In particular, we will develop a nonrecursive inorder traversal for the link-
based implementation of a binary tree.

 The conceptually diffi cult part of a nonrecursive traversal is determining where to go next after a
particular node has been visited. To gain some insight into this problem, consider how the recursive
inorder method works:

 if (treePtr != nullptr)
 {
 inorder(visit, treePtr->getLeftChildPtr()); // Point 1
 ItemType theItem = treePtr->getItem();
 visit(theItem);
 inorder(visit, treePtr->getRightChildPtr()); // Point 2
} // end if

 The method has its recursive calls marked as points 1 and 2.
 During the course of the method’s execution, the value of the pointer treePtr actually marks the

current position in the tree. Each time inorder makes a recursive call, the traversal moves to another
node. In terms of the stack that is implicit to recursive methods, a call to inorder pushes the new

 Question 6 Defi ne the protected method postorder .
CHECK POINT

Recursive calls from
points 1 and 2

468 CHAPTER 16 Tree Implementations

value of treePtr —that is, a pointer to the new current node—onto the stack. At any given time, the
stack contains pointers to the nodes along the path from the tree’s root to the current node n , with the
pointer to n at the top of the stack and the pointer to the root at the bottom. Note that n is possibly
“empty”—that is, it may be indicated by a nullptr value for treePtr at the top of the stack. Such an
occurrence corresponds to the base case of the recursion.

 Figure 16-4 partially traces the execution of inorder and shows the contents of the implicit
stack. The fi rst four steps of the trace show the stack as treePtr points fi rst to 60, then to 20, then to
10, and then becomes nullptr . The recursive calls for these four steps are from point 1 in inorder .

 Now consider what happens when inorder returns from a recursive call. The traversal retraces
its steps by backing up the tree from a node n to its parent p , from which the recursive call to n was
made. Thus, the pointer to n is popped from the stack and the pointer to p comes to the top of the
stack, as occurs in step 5 of the trace in Figure 16-4 . In this case, n happens to be empty, so nullptr is
popped from the stack.

 What happens next depends on which subtree of p has just been traversed. If you have just
finished traversing p ’s left subtree—that is, if n is the left child of p and thus the return is made
to point 1 in inorder —control is returned to the statement that visits node p . Such is the case
for steps 6 and 10 of the trace in Figure 16-4 . Figure 16-5 a illustrates steps 9 and 10 in more
detail.

 After node p has been visited, a recursive call is made from point 2 and the right subtree of p is
traversed. However, if, as Figure 16-5 b illustrates, you have just traversed p ’s right subtree—that is, if
n is the right child of p and thus the return is made to point 2—control is returned to the end of the
method. As a consequence another return is made, the pointer to p is popped off the stack, and you go
back up the tree to p ’s parent, from which the recursive call to p was made. In this latter case, node p is
not visited—it was visited before the recursive call to n was made from point 2.

 Recursive
inorder’s implicit
stack gives insight
into a nonrecursive
traversal

FIGURE 16-4 Contents of the implicit stack as treePtr progresses through a given tree during
a recursive inorder traversal

60
20
60

10
20
60

nullptr

60

20 70

10 40

30 5050

Stack:

Visit 20
Visit 10

1 2 3 4 5 6 7 8 9 10Step:

(The notation 60 means "a pointer to the node containing 60.")

treePtr at step 1

treePtr at steps 2, 9, and 10

treePtr at steps 3, 5, 6, and 8

treePtr is nullptr at steps 4 and 7

10
20
60

10
20
60

nullptr
10
20
60

10
20
60

20
60

 A Link-Based Implementation of the ADT Binary Tree 469

 Thus, two facts emerge from the recursive version of inorder when a return is made from a
recursive call:

• The implicit recursive stack of pointers is used to fi nd the node p that the traversal must go
back to.

• Once the traversal backs up to node p , it either visits p (for example, displays its data) or backs
farther up the tree. It visits p if p ’s left subtree has just been traversed; it backs up if its right
subtree has just been traversed. The appropriate action is taken simply as a consequence of the
point—1 or 2—to which control is returned.

 You could directly mimic this action by using an iterative method and an explicit stack, as long as
some bookkeeping device kept track of which subtree of a node had just been traversed. However,
you can use the following observation both to eliminate the need for the bookkeeping device and to
speed up the traversal somewhat. Consider the tree in Figure 16-6 . After you have fi nished traversing
the subtree rooted at node R , there is no need to return to nodes C and B, because the right subtrees of
these nodes have already been traversed. You can instead return directly to node A , which is the near-
est ancestor of R whose right subtree has not yet been traversed.

 This strategy of not returning to a node after its right subtree has been traversed is simple to
implement: You place a pointer to a node in the stack only before the node’s left subtree is traversed,
but not before its right subtree is traversed. Thus, in Figure 16-6 , when you are at node R , the stack
contains A and R , with R on top. Nodes B and C are not in the stack, because you have visited them
already and are currently traversing their right subtrees. On the other hand, A is in the stack because
you are currently traversing its left subtree. When you return from node R , nodes B and C are thus
bypassed because you have fi nished with their right subtrees and do not need to return to these nodes.
Thus, you pop R ’s pointer from the stack and go directly to node A, whose left subtree has just been
traversed. You then visit A , pop its pointer from the stack, and traverse A ’s right subtree.

FIGURE 16-5 Traversing (a) the left subtree (steps 9 and 10 in Figure 16-4) and (b) the right
subtree of 20

60

20 70

10 40

30 5050

60

20 70

10 40

30 5050

20

60

20

60

(a) (b)

Stack

pp

nn

Stack

Left subtree of 20 has been
traversed. Pop the reference
to 10 from the stack, visit 20.

Right subtree of 20 has been
traversed. Pop the reference
to 40 from stack.

10 40

treePtr treePtr

Actions upon a
return from a
recursive call to
inorder

470 CHAPTER 16 Tree Implementations

 This nonrecursive traversal strategy is captured by the following pseudocode, assuming a link-
based implementation. Exercise 9 at the end of this chapter asks you to trace this algorithm for the
tree in Figure 16-4 .

 // Nonrecursively traverses a binary tree in inorder.
traverse(visit(item: ItemType): void): void

// Initialize
nodeStack = A new, empty stack
curPtr = rootPtr() // Start at root
done = false

while (!done)
{

if (curPtr != nullptr)
{

// Place pointer to node on stack before traversing the node’s left subtree
nodeStack.push(curPtr)

 // Traverse the left subtree
curPtr = curPtr->getLeftChildPtr()

}
else // Backtrack from the empty subtree and visit the node at the top of

// the stack; however, if the stack is empty, you are done
{

if (!nodeStack.isEmpty())
{

nodeStack.peek(curPtr)

FIGURE 16-6 Avoiding returns to nodes B and C

A

B

C

R

R

nodeStack

A

Subtree
rooted at R

 Nonrecursive
inorder traversal

 A Link-Based Implementation of the ADT Binary Search Tree 471

visit(curPtr->getItem())
nodeStack.pop()

// Traverse the right subtree of the node just visited
curPtr = curPtr ->getRightChildPtr()

}
else

done = true
 }

 }

 Eliminating recursion can be more complicated than the example given here. However, the
general case is beyond the scope of this book.

 16.3 A Link-Based Implementation of the ADT
Binary Search Tree

 Since a binary search tree is a binary tree, its implementation can use the same node objects as for a
binary-tree implementation. As we plan a link-based implementation, we will use the class BinaryNode ,
as given earlier in Listing 16-2.

 The recursive search algorithm that we presented in Section 15.3.2 of Chapter 15 is the basis of
the insertion, removal, and retrieval operations on a binary search tree. The algorithms that follow for
the binary search tree operations assume the link-based implementation of a binary tree that was dis-
cussed earlier in this chapter. Also keep in mind the assumption that the data items in the binary
search tree are unique.

 16.3.1 Algorithms for the ADT Binary Search Tree Operations

 Adding a new entry. As Section 15.3.3 of Chapter 15 demonstrated, you insert a new entry into a
binary search tree in the same place that the search algorithm would look for it. For example, if you
want to insert Kody into the binary search tree shown in Figure 16-7 a, you would fi rst search the tree

Use search to
determine the
insertion point

FIGURE 16-7 (a) A binary search tree; (b) empty subtree where the search algorithm terminates
when looking for Kody; (c) the tree after Kody is inserted as a new leaf

Jane

TomBob

ElisaAlan Nancy Wendy

Jane

TomBob

ElisaAlan Nancy Wendy

Kody

(a) (b) (c)

Jane

TomBob

ElisaAlan Nancy Wendy

Empty
tree

VideoNote

Overview of
BinarySearchTree

472 CHAPTER 16 Tree Implementations

for Kody. The search algorithm would terminate at Nancy’s empty left subtree, as Figure 16-7 b illus-
trates. You would then insert Kody as Nancy’s left child, as Figure 16-7 c shows.

 Because Nancy has no left child, the insertion is simple, requiring only that Nancy’s left-child
pointer point to Kody. Because searching for an entry that is not in the binary search tree always ends
at an empty subtree, you always insert a new item as a new leaf. Because adding a leaf requires only a
change of the appropriate pointer in the parent, the work required for an insertion is virtually the same
as that for the corresponding search.

 We begin by defi ning the public method add as follows:

 template < class ItemType>
 bool BinarySearchTree<ItemType>::add(const ItemType& newData)
 {
 BinaryNode<ItemType>* newNodePtr = new BinaryNode<ItemType>(newData);
 rootPtr = insertInorder(rootPtr, newNodePtr);

 return true ;
} // end add

 The method creates a new node and passes pointers to the tree and the new node to a recursive method
that actually performs the insertion. The following high-level pseudocode describes this insertion
process:

 // Inserts a new node into a binary search tree.
insertInorder(subTreePtr: BinaryNodePointer,
 newNodePtr: BinaryNodePointer): BinaryNodePointer

Search the tree pointed to by subTreePtr for the item in the node pointed
to by newNodePtr

if (the search terminates at parentNode’s left subtree)
 Set leftChildPtr of parentNode to newNodePtr

else
 Set rightChildPtr of parentNode to newNodePtr

 The appropriate pointer— leftChildPtr or rightChildPtr —of node parentNode must be set
to point to the new node. The recursive nature of the search algorithm provides an elegant means of
setting the pointer, provided that you return this possibly changed pointer. The situation is quite simi-
lar to the recursive insertion method for the ADT list that you saw in Chapter 9 . If the tree was empty
before the insertion, the external pointer to the root of the tree would be nullptr and the method
would not make a recursive call. Thus, you would return a pointer to the new node. Our pseudocode is
refi ned as follows:

// Inserts a new item into the binary search tree to which subTreePtr points.
insertInorder(subTreePtr: BinaryNodePointer,
 newNodePtr: BinaryNodePointer): BinaryNodePointer

if (subTreePtr is nullptr)
return newNodePtr

else if (subTreePtr->getItem() > newNodePtr->getItem())
{

tempPtr = insertInorder(subTreePtr->getLeftChildPtr(), newNodePtr)
 subTreePtr->setLeftChildPtr(tempPtr)

}
else
{

First draft of the
insertion algorithm

Refi nement of the
insertion algorithm

 A Link-Based Implementation of the ADT Binary Search Tree 473

 tempPtr = insertInorder(subTreePtr->getRightChildPtr(), newNodePtr)
 subTreePtr->setRightChildPtr(tempPtr)

}
return subTreePtr

 When subTreePtr is nullptr , insertInorder returns a pointer to the new node. For an initially
empty tree, add assigns the returned pointer to rootPtr , as Figure 16-8 a illustrates. For a tree that is
not empty, add assigns the returned pointer to the pointer leftChildPtr or rightChildPtr —whose
current value is nullptr—in the parent of the empty subtree. Thus, the appropriate pointer within
the parent is set to point to the new node. Parts b and c of Figure 16-8 illustrate the general case of
insertion.

 You can use the public method add to create a binary search tree . For example, beginning
with an empty tree, if you insert the names Jane, Bob, Alan, Elisa, Tom, Nancy, and Wendy in
order, you will get the binary search tree in Figure 15-13 of Chapter 15 . It is interesting to note
that the names Jane, Bob, Alan, Elisa, Tom, Nancy, and Wendy constitute the preorder traversal of
the tree in Figure 15-13 . Thus, if you take the output of a preorder traversal of a binary search tree
and use it with insertInorder to create a binary search tree, you will obtain a duplicate tree. This
result should not surprise you, as the copy constructor for the ADT binary tree used a preorder
traversal to copy the tree.

 By inserting the previous names in a different order, you will get a different binary search tree.
For example, by inserting the previous names in alphabetical order, you will get the binary search tree
in Figure 15-14 b of Chapter 15 .

FIGURE 16-8 (a) Insertion into an empty tree; (b) search for Frank terminates at a leaf;
(c) insertion at a leaf

rootPtr

(a)

Elisa ElisaAlan Alan

Tim

Frank

BobBob
subTreePtr is nullptr

(b) (c)

 Question 7 Starting with an empty binary search tree, in what order should you insert
items to get the binary search tree in Figure 15-18 of Chapter 15 ?

CHECK POINT

474 CHAPTER 16 Tree Implementations

 Removing an entry. Removing an entry from a binary search tree is a bit more involved than adding
one. First, you use the search algorithm to locate the specifi ed item and then, if it is found, you must
remove it from the tree. A fi rst draft of the algorithm follows:

// Removes the given target from a binary search tree.
// Returns true if the removal is successful or false otherwise.
removeValue(target: ItemType): boolean

 Locate the target by using the search algorithm
if (target is found)
{
 Remove target from the tree

 return true
}
else

return false

 The essential task here is to remove the target from the tree. Assuming that removeValue locates
the target in a particular node N , there are three cases to consider:

• N is a leaf
• N has only one child
• N has two children

 Case 1. The fi rst case is the easiest. To remove the leaf containing the target, you need only set the
pointer in its parent to nullptr .

 Case 2. The second case is a bit more involved. If N has only one child, you have two possibilities:

• N has only a left child
• N has only a right child

 The two possibilities are symmetrical, so it is suffi cient to illustrate the solution for a left child. In
 Figure 16-9 a, L is the left child of N and P is the parent of N . N can be either the left or right child of P .
If you deleted N from the tree, L would be without a parent and P would be without one of its children.
Suppose you let L take the place of N as one of P ’s children, as in Figure 16-9 b. Does this adoption
preserve the binary search tree property?

 If N is the left child of P , for example, all data items in the subtree rooted at N are less than the
item in P . Thus, all data items in the subtree rooted at L are less than the item in P . Therefore, after N
is removed and L is adopted by P , all items in P ’s left subtree are still less than the item in P . This strat-
egy thus preserves the binary search tree property. A parallel argument holds if N is a right child of P ,
and therefore the binary search tree property is preserved in either case.

 Case 3. The most diffi cult of the three cases occurs when the item to be removed is in a node N that has
two children, as in Figure 16-10 . As you just saw, when N has only one child, the child replaces N .
However, when N has two children, these children cannot both replace N : N ’s parent has room for only
one of N ’s children as a replacement for N . A different strategy is necessary.

 In fact, you will not delete N at all. You can fi nd another node that is easier to delete and delete it
instead of N . This strategy may sound like cheating, but remember that the client expects only a cer-
tain entry to be removed from the ADT. It has no right, because of the wall between the program and
the ADT implementation, to expect a particular node in the tree to be deleted.

 Consider, then, an alternate strategy. To remove from a binary search tree an item that resides in a
node N that has two children, take the following steps:

 1. Locate another node M that is easier to remove from the tree than the node N .
 2. Copy the item that is in M to N , thus effectively removing from the tree the item originally in N .
 3. Remove the node M from the tree.

First draft of the
removal algorithm

Three cases for the
node N containing
the item to be
removed

Case 1: Set the
pointer in a leaf’s
parent to nullptr

Case 2: Two
possibilities for a
node with one child

Let N’s parent adopt
N’s child

Case 3: N has two
children

Removing an item
whose node has two
children

 A Link-Based Implementation of the ADT Binary Search Tree 475

 What kind of node M is easier to remove than the node N ? Because you know how to delete a
node that has either no children or one child, M could be such a node. You have to be careful, though.
Can you choose any node and copy its data into N ? No, because you must preserve the tree’s status as
a binary search tree. For example, if in the tree of Figure 16-11 a, you copied the data from M to N , the
result in Figure 16-11 b would no longer be a binary search tree.

 What data item, when copied into the node N, will preserve the tree’s status as a binary search
tree? All of the entries in the left subtree of N are less than the entry in N, and all of the entries in the
right subtree of N are greater than the entry in N . You must retain this property when you replace the

FIGURE 16-9 (a) N with only a left child— N can be either the left child or right child of P ;
(b) after removing node N

L

N

P

L

(a) Jane

TomBob

Alan or

Jane

TomBob

Nancy

P

N

L

P

L

(b) Jane

Alan

or

Jane

NancyBob

P

FIGURE 16-10 N with two children

Jane

Bob

ElisaAlan

P

N

L R

476 CHAPTER 16 Tree Implementations

entry x in node N with the entry y . There are two suitable possibilities for the value y : It can come
immediately after or immediately before x in the sorted order of entries. If y comes immediately after
x, clearly all entries in the left subtree of N are smaller than y , because they are all smaller than x , as
 Figure 16-12 illustrates. Further, all entries in the right subtree of N are greater than or equal to y ,
because they are greater than x and, by assumption, there are no entries in the tree between x and y. A
similar argument illustrates that if y comes immediately before x in the sorted order, it is greater than
or equal to all entries in the left subtree of N and smaller than all entries in the right subtree of N .

 You can thus copy into N either the item that is immediately after N ’s entry or the item that is
immediately before it. Suppose that, arbitrarily, you decide to use the node whose entry y comes
immediately after N ’s entry x. This entry is called x ’s inorder successor .1 How can you locate this
node? Because N has two children, the inorder successor of its data item is in the leftmost node of N ’s
right subtree. That is, to fi nd the node that contains y , you follow N ’s right-child pointer to its right
child C, which must be present because N has two children. You then descend the tree rooted at C by
taking left branches at each node until you encounter a node S with no left child. You copy the item in

FIGURE 16-11 (a) Not any node will do; (b) no longer a binary search tree

Jane

Tom

ElisaAlan Nancy Wendy

Bob

N

M

Alan

Tom

Elisa Nancy Wendy

Bob

N

(a) (b)

FIGURE 16-12 Search key x can be replaced by y

x (< y)

N

N's
left subtree

N's
right subtree

Data items are < y Data items are ≥ y

The inorder
successor of N ’s
entry is in the
leftmost node in N’s
right subtree

 1 We also will use the term N’s inorder successor to mean the inorder successor of N’s entry.

 A Link-Based Implementation of the ADT Binary Search Tree 477

this node S into node N and then, because S has no left child, you can remove S from the tree as one of
the two easy cases, as Figure 16-13 illustrates.

 A more detailed high-level description of the removal algorithm follows:

// Removes the given target from a binary search tree.
 // Returns true if the removal is successful, or false otherwise.
removeValue(subTreePtr: BinaryNodePointer, target: ItemType): boolean

Locate the target by using the search algorithm; it occurs in node N
if (target is found in node N)
{

removeNode(N) // Defined next
return true

}
else

return false

 // Removes the item in a given node of a binary search tree.
removeNode(N: BinaryNode)

if (N is a leaf)
 Remove N from the tree

else if (N has only one child C)
{

if (N was a left child of its parent P)
 Make C the left child of P

else
 Make C the right child of P

}
else // Node has two children
{

Find S, the node that contains N’s inorder successor
Copy the item from node S into node N
Remove S from the tree by using the previous technique for a leaf or a node

with one child
}

 In the following refi nement, search ’s algorithm is adapted and inserted directly into removeValue.
Also, the methodremoveNode uses the method findSuccesorNode to fi nd the node, S , that contains the inor-
der successor of node N. The method findSuccesorNode returns the item in S and then deletes node S from
the tree. The returned item then replaces the item in node N , thus removing it from the binary search tree.

Second draft of the
removal algorithm

FIGURE 16-13 Copying the item whose search key is the inorder successor of N ’s search key

Tom

ElisaAlan Nancy Wendy

Bob

Nancy
Jane

N

S

C

478 CHAPTER 16 Tree Implementations

 // Removes the given target from the binary search tree to which subTreePtr points.
 // Returns a pointer to the node at this tree location after the value is removed.
 // Sets success to true if the removal is successful, or false otherwise.
removeValue(subTreePtr: BinaryNodePointer, target: ItemType,
 success: boolean&): BinaryNodePointer

if (subTreePtr == nullptr)
{

 success = false
return nullptr

}
else if (subTreePtr->getItem() == target)

 {
 // Item is in the root of some subtree

subTreePtr = removeNode(subTreePtr) // Remove the item
success = true
return subTreePtr

 }
else if (subTreePtr->getItem() > target)

 {
// Search the left subtree
tempPtr = removeValue(subTreePtr->getLeftChildPtr(), target, success)

 subTreePtr->setLeftChildPtr(tempPtr)
return subTreePtr

 }
else
{

 // Search the right subtree
tempPtr = removeValue(subTreePtr->getRightChildPtr(), target, success)

 subTreePtr->setRightChildPtr(tempPtr)
return subTreePtr

 }

 // Removes the item in the node, N, to which nodePtr points.
 // Returns a pointer to the node at this tree location after node N is deleted.
removeNode(nodePtr: BinaryNodePointer): BinaryNodePointer

if (N is a leaf)
{

 // Remove leaf from the tree
delete nodePtr
nodePtr = nullptr
return nodePtr

}
else if (N has only one child C)
{

// C replaces N as the child of N’s parent
if (C is a left child)

 nodeToConnectPtr = nodePtr->getLeftChildPtr()
else

 nodeToConnectPtr = nodePtr->getRightChildPtr()
 delete nodePtr
 nodePtr = nullptr
 return nodeToConnectPtr

}
else // N has two children
{

 // Find the inorder successor of the entry in N: it is in the left subtree rooted
// at N’s right child
tempPtr = removeLeftmostNode(nodePtr->getRightChildPtr(), newNodeValue)
nodePtr->setRightChildPtr(tempPtr)

Final draft of the
removal algorithm

 A Link-Based Implementation of the ADT Binary Search Tree 479

nodePtr->setItem(newNodeValue) // Put replacement value in node N
return nodePtr

}

//Removes the leftmost node in the left subtree of the node pointed to by nodePtr.
// Sets inorderSuccessor to the value in this node.
// Returns a pointer to the revised subtree.
removeLeftmostNode(nodePtr: BinaryNodePointer,
 inorderSuccesssor: ItemType&): BinaryNodePointer

if (nodePtr->getLeftChildPtr() == nullptr)
{

// This is the node you want; it has no left child, but it might have a right subtree
inorderSuccesssor = nodePtr->getItem()
return removeNode(nodePtr)

}
else

return removeLeftmostNode(nodePtr->getLeftChildPtr(), inorderSuccesssor)

 Now the public method remove calls removeValue and assigns the pointer it receives back from
this call to rootPtr , as the following pseudocode indicates:

 // Removes the given data from this binary search tree.
remove(target: ItemType): boolean

 success = false
 rootPtr = removeValue(rootPtr, target, success)

return success

 Let’s see how the recursive calls work. Suppose that we have the tree in Figure 16-14 a, and we
want to remove Dave. We call remove , which calls removeValue . Assuming that removeValue recur-
sively locates Dave in Node N , it calls removeNode to remove N . Any change that removeNode makes
to its parameter nodePtr , is returned by removeNode (Figure 16-14 b) and then by removeValue .
Because Dave isn’t in the tree’s root, the return from removeValue is due to a recursive call. The
method now assigns the pointer returned by removeNode —and the recursive call to removeValue —to
the left child pointer of Node N ’s parent. The result is shown in Figure 16-14 c.

 Observe that in the case of the removeNode method, the argument that corresponds to its parame-
ter nodePtr is either one of the pointers of the parent of N , as Figure 16-14 depicts, or the external
pointer to the root, in the case where N is the root of the original tree. In either case, nodePtr points to
N . Thus, any change you make to nodePtr by calling the method removeNode with the argument
nodePtr must be returned so you can change either a pointer in the parent of node N or the root pointer.

 Note: The methods removeValue , removeNode , removeLeftmostNode are behind the
wall of abstraction, since they are protected. Therefore they can use pointers as parame-
ters, and if necessary, a reference parameter (success or inorderSuccessor). Each
method receives as an argument a pointer to the root of the subtree on which it is to per-
form its process. When that process is complete, the method refl ects—like a mirror—
back to the parent the pointer to the node that is now the root of that subtree.

 Note that what we have done is safe programming:

• Only one reference parameter is used in a method, and the argument passed to it
is local to the calling method.

• The calling method has a choice of whether or not to replace the pointer it has
passed as an argument with the one returned—which it should do here.

• Each of the three methods performs a single, clearly defi ned task.

480 CHAPTER 16 Tree Implementations

FIGURE 16-14 Recursive deletion of node N

Node N

Gaby

Kyle

Dave

removeNode returns
this pointer

removeValue("Dave")

(a)

Node N

Gaby

Kyle

removeNode(N) (b)

Dave

rootPtr

Pointer returned by removeNode/removeValue
is assigned to left child pointer of Node N’s parent

Kyle

(c)

Gaby

 The recursive method removeLeftmostNode, which is called by removeNode if N has two children,
also uses this strategy to remove the inorder successor of the node containing the item to be removed.

 Exercise 12 at the end of this chapter describes an easier removal algorithm. However, that algo-
rithm tends to increase the height of the tree, and, as you will see later, an increase in height can
decrease the effi ciency of searching the tree.

 A Link-Based Implementation of the ADT Binary Search Tree 481

 Retrieving an entry. By refi ning the search algorithm, you can implement the operation getEntry .
Recall from Section 15.3.2 of Chapter 15 that the search algorithm is

 // Searches a binary search tree for a given target value.
search(binTree: BinarySearchTree, target: ItemType)

if (binTree is empty)
The desired item is not found

else if (target == data item in the root of binTree)
The desired item is found

else if (target < data item in the root of binTree)
search(Left subtree of binTree, target)

else
search(Right subtree of binTree, target)

 We can refi ne this algorithm as follows:

 // Locates the node in the binary search tree to which subTreePtr points that contains
 // the value target. Returns either a pointer to the located node or nullptr if such a
 // node is not found.
findNode(subTreePtr: BinaryNodePointer, target: ItemType): BinaryNodePointer

if (subTreePtr == nullptr)
 return nullptr // Not found

else if (subTreePtr->getItem() == target)
 return subTreePtr; // Found

else if (subTreePtr->getItem() > target)
 // Search left subtree

return findNode(subTreePtr->getLeftChildPtr(), target)
else

 // Search right subtree
 return findNode(subTreePtr->getRightChildPtr(), target)

 The operation getEntry must return the item with the desired value if it exists; otherwise it must
throw an exception NotFoundException. The method, therefore, calls findNode and checks its return
value. If the desired target is found, getEntry returns it. If findNode returns nullptr , getEntry
throws an exception.

 Question 8 Given the binary search tree in Figure 15-18 of Chapter 15 , trace the removal
algorithms when removing each of the following values from the tree. Begin with the origi-
nal tree each time.

a. 70
b. 20
c. 60

CHECK POINT

 findNode is a
refi nement of
search

 Note: Traversals

 The traversals of a binary search tree are the same as the traversals of a binary tree. Recall
from Chapter 15 that an inorder traversal of a binary search tree will visit the tree’s nodes
in sorted order according to their entries.

 16.3.2 The Class BinarySearchTree

 A C++ link-based defi nition of the class BinarySearchTree is given in Listing 16-4. Notice the
protected methods that implement the recursive algorithms. These methods are not public, because

482 CHAPTER 16 Tree Implementations

clients do not have access to node pointers. The methods could be private instead, but making them
protected enables a derived class to use them directly.

 The ADT binary tree and the ADT binary search tree have many methods in common, as Section
 15.3.1 of Chapter 15 noted. This observation should not surprise you, as a binary search tree is a
binary tree. For this reason, we have derived BinarySearchTree from BinaryNodeTree .

LISTING 16-4 A header fi le for the link-based implementation
of the class BinarySearchTree

 /** Link-based implementation of the ADT binary search tree.
 @file BinarySearchTree.h */

#ifndef _BINARY_SEARCH_TREE
#define _BINARY_SEARCH_TREE

#include "BinaryTreeInterface.h"
#include "BinaryNode.h"
#include "BinaryNodeTree.h"
#include "NotFoundException.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class BinarySearchTree : public BinaryNodeTree<ItemType>
 {
 private :
 BinaryNode<ItemType>* rootPtr;

 protected :
//--
// Protected Utility Methods Section:
// Recursive helper methods for the public methods.
//--
// Recursively finds where the given node should be placed and
// inserts it in a leaf at that point.

 BinaryNode<ItemType>* insertInorder(BinaryNode<ItemType>* subTreePtr,
 BinaryNode<ItemType>* newNode);

// Removes the given target value from the tree while maintaining a
// binary search tree.

 BinaryNode<ItemType>* removeValue(BinaryNode<ItemType>* subTreePtr,
const ItemType target,
bool& success);

// Removes a given node from a tree while maintaining a
// binary search tree.

 BinaryNode<ItemType>* removeNode(BinaryNode<ItemType>* nodePtr);

// Removes the leftmost node in the left subtree of the node
// pointed to by nodePtr.
// Sets inorderSuccessor to the value in this node.
// Returns a pointer to the revised subtree.

 BinaryNode<ItemType>* removeLeftmostNode(
 BinaryNode<ItemType>* subTreePtr, ItemType& inorderSuccessor);

 Saving a Binary Search Tree in a File 483

// Returns a pointer to the node containing the given value,
// or nullptr if not found.

 BinaryNode<ItemType>* findNode(BinaryNode<ItemType>* treePtr,
const ItemType& target) const ;

 public :
//--
// Constructor and Destructor Section.
//--

 BinarySearchTree();
 BinarySearchTree(const ItemType& rootItem);
 BinarySearchTree(const BinarySearchTree<ItemType>& tree);

virtual ~BinarySearchTree();

//--
// Public Methods Section.
//--
bool isEmpty() const ;
int getHeight() const ;
int getNumberOfNodes() const ;

 ItemType getRootData() const throw (PrecondViolatedExcep);
void setRootData(const ItemType& newData) const

throw (PrecondViolatedExcep);
bool add(const ItemType& newEntry);
bool remove(const ItemType& anEntry);
void clear();

 ItemType getEntry(const ItemType& anEntry) const
 throw (NotFoundException);

bool contains(const ItemType& anEntry) const ;

//--
// Public Traversals Section.
//--
void preorderTraverse(void visit(ItemType&)) const ;
void inorderTraverse(void visit(ItemType&)) const ;
void postorderTraverse(void visit(ItemType&)) const ;

//--
// Overloaded Operator Section.
//--

 BinarySearchTree<ItemType>&
 operator=(const BinarySearchTree<ItemType>& rightHandSide);
 }; // end BinarySearchTree
#include "BinarySearchTree.cpp"
 #endif

 16.4 Saving a Binary Search Tree in a File
 Imagine a program that maintains the names, addresses, and telephone numbers of your friends and
relatives. While the program is running, you can enter a name and get the person’s address and phone
number. If you terminate program execution, the program must save its database of people in a form
that it can recover at a later time.

484 CHAPTER 16 Tree Implementations

 If the program uses a binary search tree to represent the database, it must save the tree’s data in a
fi le so that it can later restore the tree. Two different algorithms for saving and restoring a binary
search tree will be considered here. The fi rst algorithm restores a binary search tree to its original
shape. The second restores a binary search tree to a shape that is balanced.

 Saving a binary search tree and then restoring it to its original shape. The fi rst algorithm restores
a binary search tree to exactly the same shape it had before it was saved. For example, consider the
tree in Figure 16-15 . If you save the tree in preorder, you get the sequence 60, 20, 10, 40, 30, 50, 70. If
you then use the add method to insert these values into a binary search tree that is initially empty, you
will get the original tree.

 Saving a binary search tree and then restoring it to a balanced shape. After you save a binary
search tree in a fi le, do you necessarily want the restored tree to have its original shape? Recall that
you can use a given set of data items to create several binary search trees with different shapes.
Although the shape of a binary search tree has no effect whatsoever on the correctness of the ADT
operations, it will affect the effi ciency of those operations. Effi cient operations are ensured if the
binary search tree is balanced.

 The algorithm that restores a binary search tree to a balanced shape is surprisingly simple. In
fact, you can even guarantee a restored tree of minimum height—a condition stronger than balanced.
To gain some insight into the solution, consider a full tree, because it is balanced. If you save a full
tree in a fi le by using an inorder traversal, the fi le will be in sorted order, as Figure 16-16 illustrates.

 A full tree with exactly n = 2 h – 1 nodes for some height h has the exact middle of the data items
in its root. The left and right subtrees of the root are full trees of 2 h –1 – 1 nodes each (that is, half of
n – 1, as n is odd or, equivalently, n / 2). Thus, you can use the following recursive algorithm to create
a full binary search tree with n nodes, provided you either know or can determine n beforehand.

 // Builds a full binary search tree from n sorted values in a file.
 // Returns a pointer to the tree’s root.
readFullTree(n: integer): BinaryNodePointer

if (n > 0)
 {

 // Get the root
 treePtr = pointer to new node with nullptr as its child pointers
 rootItem = next item from file
 treePtr->setItem(rootItem)

Use a preorder
traversal to save a
binary search tree in
a fi le; restore it to its
original shape by
using add

A balanced binary
search tree
increases the
effi ciency of the
ADT operations

FIGURE 16-15 An initially empty binary search tree after the insertion of 60, 20, 10, 40, 30, 50,
and 70

60

20 70

10 40

30 5050

Building a full binary
search tree

 Saving a Binary Search Tree in a File 485

 // Construct the left subtree
 leftPtr = readFullTree(treePtr->getLeftChildPtr(), n / 2)
 treePtr->setLeftChildPtr(leftPtr)

 // Construct the right subtree
 rightPtr = readFullTree(treePtr->getRightChildPtr(), n / 2)
 treePtr->setRightChildPtr(rightPtr)

 return treePtr
 }
else

 return nullptr

 Surprisingly, you can construct the tree directly by reading the sorted data sequentially from the
fi le.

 This algorithm for building a full binary search tree is simple, but what can you do if the tree
to be restored is not full—that is, if it does not have n = 2 h – 1 nodes for some h ? The fi rst thing
that comes to mind is that the restored tree should be complete—full up to the last level, with the
last level fi lled in from left to right. Actually, because you care only about minimizing the height
of the restored tree, it does not matter where the nodes on the last level go, as Figure 16-17
shows.

 The method readFullTree is essentially correct even if the tree is not full. However, you do
have to be a bit careful when computing the sizes of the left and right subtrees of the tree’s root. If n
is odd, both subtrees are of size n / 2, as before, and the root is automatically accounted for. If n is
even, however, you have to deal with the root and the fact that one of the root’s subtrees will have

FIGURE 16-16 A full tree saved in a fi le by using inorder traversal

30

20

40 60

50

10 25

30252010 40 50 60

File

FIGURE 16-17 A tree of minimum height that is not complete

486 CHAPTER 16 Tree Implementations

one more node than the other. In this case, you can arbitrarily choose to put the extra node in the left
subtree. The following algorithm makes these compensations:

 // Builds a minimum-height binary search tree from n sorted values in a file.
 // Returns a pointer to the tree’s root.
readTree(n: integer): BinaryNodePointer

if (n > 0)
{

 // Get the root
 treePtr = pointer to new node with nullptr as its child pointers
 rootItem = next item from file
 treePtr->setItem(rootItem)

 // Construct the left subtree
 leftPtr = readFullTree(treePtr->getLeftChildPtr(), n / 2)
 treePtr->setLeftChildPtr(leftPtr)

 // Construct the right subtree
 rightPtr = readFullTree(treePtr->getRightChildPtr(), (n - 1) / 2)
 treePtr->setRightChildPtr(rightPtr)

 return treePtr
}
else

 return nullptr

 You should trace this algorithm and convince yourself that it is correct for both even and odd values
of n .

 To summarize, you can easily restore a tree as a balanced binary search tree if the data is
sorted—that is, if it has been produced from the inorder traversal—and you know the number n of
nodes in the tree. You need n so that you can determine the middle item and, in turn, the number of
nodes in the left and right subtrees of the tree’s root. Knowing these numbers is a simple matter of
counting nodes as you traverse the tree and then saving the number in a fi le that the restore opera-
tion can read.

 Note that readTree would be an appropriate protected method of BinarySearchTree , if you also
had a public method to call it.

Building a minimum-
height binary search
tree

 Note: You can use the readTree algorithm to restore an out-of-balance binary search
tree. Exercise 18 asks you to try it using an array instead of a fi le.

 Question 9 Consider the pseudocode operation readTree .

a. What binary search tree results when you execute readTree with a fi le of the
six integers 2, 4, 6, 8, 10, 12?

b. Is the resulting tree’s height a minimum? Is the tree complete? Is it full?

CHECK POINT

 16.5 Tree Sort
 You can use the ADT binary search tree to sort an array effi ciently. To simplify the discussion, we will
sort an array of integers into ascending order, as we did with the sorting algorithms in Chapter 11 .

 General Trees 487

 The basic idea of the algorithm is simple:

 // Sorts the integers in an array into ascending order.
treeSort(anArray: array, n: integer)

Insert anArray’s entries into a binary search tree bst
Traverse bst in inorder. As you visit bst’s nodes, copy their data items into successive

 locations of anArray
 An inorder traversal of the binary search tree bst visits the integers in bst ’s nodes in ascending
order.

 A tree sort can be quite effi cient. As Figure 15-17 in Chapter 15 indicates, each insertion into a
binary search tree requires O(log n) operations in the average case and O(n) operations in the worst
case. Thus, tree sort’s n insertions require O(n × log n) operations in the average case and O(n2) opera-
tions in the worst case. The traversal of the tree involves one copy operation for each of the n entries
and so is O(n). Because O(n) is less than O(n × log n) and O(n2), tree sort in the average case is O(n ×
log n) and O(n2) in the worst case.

Tree sort uses a
binary search tree

Tree sort is O(n ×

log n) in the average

case and O(n 2) in
the worst case

 16.6 General Trees
 This chapter ends with a brief discussion of general trees and their relationship to binary trees. Con-
sider the general tree in Figure 16-18 . The three children B, C, and D of node A , for example, are sib-
lings. The leftmost child B is the oldest child, or fi rst child, of A , as mentioned in Section 15.1 of
 Chapter 15 . One way to implement this tree uses the BinaryNode objects that we used for a link-based
binary tree. That is, each node has two pointers: The left pointer points to the node’s oldest child and
the right pointer points to the node’s next sibling. Thus, you can use the data structure in Figure 16-19a
to implement the tree in Figure 16-18 . Notice that the structure in Figure 16-19 a also represents the
binary tree pictured in Figure 16-19 b.

 Recall from Chapter 15 that an n -ary tree is a generalization of a binary tree whose nodes each
can have no more than n children. The tree in Figure 16-18 could be an n -ary tree with n = 3 instead of
a general tree. You can, of course, use the implementation just described for an n -ary tree. However,
because you know the maximum number of children for each node, you can let each node point
directly to its children. Figure 16-20 illustrates such a representation for the tree in Figure 16-18 . This
tree is shorter than the tree in Figure 16-19 b.

 Question 10 Trace the tree sort algorithm as it sorts the following array into ascending
order: 20 80 40 25 60 30.

CHECK POINT

FIGURE 16-18 A general tree

A

B D

C

FE G H I

488 CHAPTER 16 Tree Implementations

 Exercise 17 discusses general trees further.

FIGURE 16-19 (a) A link-based implementation of the general tree in Figure 16-18 ; (b) the
binary tree that part a represents

A

B C D

E F G H I

A

B

CE

F D

G H

I

(a) (b)

1. The implementation of a binary tree is usually link based. However, if the binary tree is complete, an effi cient
array-based implementation is possible.

2. A node in a binary tree is an object that references a data entry and two child nodes.

3. Because a binary tree has a recursive nature, recursion is useful in the implementation of its operations. As is
typical, the recursive methods are not public, since they require parameters that are a part of the underlying data
structure. Those methods can be either private or protected, but as protected methods, they are available to
classes derived from the class of binary trees.

 SUMMARY

FIGURE 16-20 An implementation of the n -ary tree in Figure 16-18

A

B C D

E F G H I

 Exercises 489

4. The ADT binary search tree has several methods that are the same as those in the ADT binary tree. However, its
insertion, removal, and retrieval operations have different defi nitions than those for the ADT binary tree.

5. Operations on a binary search tree can be quite effi cient. In the worst case, however—when the tree approaches
a linear shape—the performance of its operations degrades and is comparable to that of a linear linked chain.
If you must avoid such a situation for a given application, you should use the balancing methods presented
in Chapter 19 .

6. The tree sort algorithm effi ciently sorts an array by using the binary search tree’s insertion and traversal
operations.

7. If you save a binary search tree’s data in a fi le while performing an inorder traversal of its nodes, you can restore
the tree as a binary search tree of minimum height. If you save a binary search tree’s data in a fi le while
performing a preorder traversal of its nodes, you can restore the tree to its original form

8. You can use a binary tree to represent a general tree or an n -ary tree. However, an n -ary tree can have nodes that
point to all of its children.

 EXERCISES

1. Consider the binary search tree in Figure 15-20 of Chapter 15 . The numbers simply label the nodes so that you
can reference them; they do not indicate the contents of the nodes.

 a. Which node must contain the inorder successor of the value in the root? Explain.
 b. Which node must contain the inorder predecessor of the value in the root? Explain.

 2. Arrange nodes that contain the letters A , C , E , F , L , V , and Z into two binary search trees: one that has maxi-
mum height and one that has minimum height.

 3. Consider the binary search tree in Figure 15-18 of Chapter 15 .

 a. What tree results after you insert the entries 80, 65, 75, 45, 35, and 25, in that order?
 b. After inserting the nodes mentioned in part a , what tree results when you remove the entries 50 and 20?

 4. Consider the binary search tree in Figure 15-19 of Chapter 15 . What does the tree look like after you remove M ,
D , G , and T , in that order?

 5. If you remove an item from a binary search tree and then insert it back into the tree, will you ever change the
shape of the tree?

 6. Suppose that the ADT binary tree has the operation

 replace(item: ItemType, replacementItem: ItemType): boolean

 It locates, if possible, the node in a binary tree that contains item and replaces item with replacementItem .

 a. Add the operation replace to the link-based implementation of the ADT binary tree given in this
chapter. The operation should replace an item without altering the tree structure.

 b. Add the operation replace to the link-based implementation of the ADT binary search tree. Be sure
that the tree remains a binary search tree.

 c. Implement a method replace within a client of BinarySearchTree .

490 CHAPTER 16 Tree Implementations

 7. Consider an array-based implementation of a binary search tree bst . Figure 16-1 presents such a representa-
tion for a particular binary search tree.

 a. Depict the array in an array-based implementation for the binary search tree in Figure 15-14 a of
 Chapter 15 . Assume that tree items are strings.

 b. Show the effect of each of the following sequential operations on the array in part a of this exercise.

 bst.add("Doug");
 bst.add("Nancy");
 bst.add("Bob");
 bst.add("Sarah");

 c. Repeat parts a and b of this exercise for the tree in Figure 15-14 b.
 d. Write an inorder traversal algorithm for this array-based implementation.

 8. Duplicates in an ADT could mean either identical items or, more subtly, objects that match because their class
overloads the equality operator so that it compares only certain fi elds, while differences exist in other fi elds. If
duplicates are allowed in a binary search tree, it is important to have a convention that determines the relation-
ship between the duplicates. Items that duplicate the root of a tree should either all be in the left subtree or all be
in the right subtree, and, of course, this property must hold for every subtree.

 a. Why is this convention critical to the effective use of the binary search tree?
 b. This chapter stated that you can remove an item from a binary search tree by replacing it with the item

that either immediately follows or immediately precedes the item to be deleted. If duplicates are
allowed, however, the choice between inorder successor and inorder predecessor is no longer arbitrary.
How does the convention of putting duplicates in either the left or right subtree affect this choice?

 9. Complete the trace of the nonrecursive inorder traversal algorithm that Figure 16-4 began. Show the contents
of the implicit stack as the traversal progresses.

 10. Implement in C++ the nonrecursive inorder traversal algorithm for a binary tree that was presented in this
chapter.

 11. Exercise 13 in Chapter 15 introduced the minimax tree. It has min nodes and max nodes. Part b of the exercise
asked you to design a solution for representing and evaluating these trees. Implement your design in C++.

 12. Design another algorithm to remove items from a binary search tree. This algorithm differs from the one
described in this chapter when a node N has two children. First let N ’s right child take the place of the deleted
node N in the same manner in which you delete a node with one child. Next reconnect N ’s left child (along with
its subtree, if any) to the left side of the node containing the inorder successor of the value in N .

13. Write iterative methods to perform insertion and removal operations on a binary search tree.

14. A level-order traversal of a tree processes (visits) nodes one level at a time, from left to right, beginning with
the root. Design an algorithm that performs a level-order traversal of a binary tree.

15. If you know in advance that you often access a given item in a binary search tree several times in succession
before accessing a different item, you will end up searching for the same item repeatedly. One way to avoid this
problem is to add an extra bookkeeping component to your implementation. That is, you can maintain a last-
accessed pointer that will always reference the last item that any binary search tree operation accessed. When-
ever you perform such an operation, you can check the search key of the item most recently accessed before
performing the operation.

 Revise the implementation of the ADT binary search tree to add this new feature by adding the data mem-
ber lastAccessed to the class.

 Programming Problems 491

16. Exercise 10 in Chapter 4 introduced the doubly linked chain. The analogy for a binary search tree is to maintain
parent pointers in each binary node in addition to the pointers to the node’s children. That is, every node except
the root will have a pointer to its parent in the tree. This type of binary tree is called a doubly linked binary tree .
Write insertion and removal operations for this tree.

17. A node in a general tree can have an arbitrary number of children.

 a. Describe a C++ implementation of a general tree in which every node contains an array of child
pointers. Write a recursive preorder traversal method for this implementation. What are the advantages
and disadvantages of this implementation?

 b. Consider the implementation of a general tree that is illustrated in Figure 16-19 . Each node has two
pointers: The left pointer points to the node’s oldest child and the right pointer points to the node’s next
sibling. Write a recursive preorder traversal method for this implementation.

 c. Every node in a binary tree T has at most two children. Compare the oldest-child/next-sibling repre-
sentation of T , as part b describes, to the left-child/right-child representation of a binary tree, as this
chapter describes. Does one representation simplify the implementation of the ADT operations? Are
the two representations ever the same?

18. Given an unbalanced binary search tree, use an inorder traversal to copy its data to an array. Then create a bal-
anced binary search tree using the readTree algorithm given in Section 16.4 , but use your array instead of a
fi le.

*19. Add an overloaded == operator to the class BinaryNodeTree .

 PROGRAMMING PROBLEMS

1. Complete the implementation of the class BinaryNodeTree that was begun in Section 16.2.2 of this chapter.

2. Implement the class BinarySearchTree , as given in Listing 16-4.

3. Write an array-based implementation of the ADT binary tree that uses dynamic memory allocation. Use a data
structure like the one in Figure 16-1 .

4. Repeat the previous problem, but defi ne a binary search tree instead.

5. Write a program that maintains a database containing data, such as name and birthday, about your friends and
relatives. You should be able to enter, remove, modify, or search this data. Initially, you can assume that the
names are unique. The program should be able to save the data in a fi le for use later.

 Design a class to represent the database and another class to represent the people. Use a binary search tree
of people as a data member of the database class.

 You can enhance this problem by adding an operation that lists everyone who satisfi es a given criterion.
For example, you could list people born in a given month. You should also be able to list everyone in the
database.

*6. Implement the ADT queue operations as well as a sorted traversal operation for a queue that points into a
doubly linked binary search tree, as shown in Figure 16-21 . Doubly linked binary trees are explained in
Exercise 16. You will need the insertion and removal operations for a binary search tree that contains parent
pointers.

492 CHAPTER 16 Tree Implementations

FIGURE 16-21 A queue that points into a doubly linked binary search tree

Smith

queuePtr

Baker Wilson

Able Jones

treePtr

 Iterators 6
 Contents
 C6.1 Iterators 493

 C6.1.1 Common Iterator Operations 494
 C6.1.2 Using Iterator Operations 496
 C6.1.3 Implementing an Iterator 497

 C6.2 Advanced Iterator Functionality 499

 Prerequisites
 Chapter 9 List Implementations
 C++ Interlude 5 Overloaded Operators and Friend Access

An iterator is an object that traverses a collection of data. During the traversal, you
can look at the data entries and process them. You can compare iterators to see if they
point to the same entry in a collection, and C++ provides special functions that let you
perform other actions with collections, such as searching and counting, when using
iterators. Iterators are commonly implemented by overloading operators that
correspond to the functions an iterator performs. A container can instantiate an iterator
and give it to a client to use to traverse the contained data collection.

 C6.1 Iterators
 How would you count the number of lines on this page? You could use your fi nger to
point to each line as you counted it. Your fi nger would keep your place on the page. If
you paused at a particular line, your fi nger would be on the current line, and there would
be a previous line and a next line. If you think of this page as a list of lines, you would be
traversing the list as you counted the lines.

 An iterator is a program component that enables you to traverse a collection of
data, such as the data in a list, beginning with the fi rst entry. During one complete
traversal, or iteration, each data item is considered once. You control the progress of the
iteration by repeatedly asking the iterator to give you a reference to the next entry in the

 C++
Interlude

An iterator is an
object that traverses
a collection of like
objects

VideoNote

C++ iterators

494 C++ INTERLUDE 6 Iterators

collection. You also can modify the collection as you traverse it by adding, removing, or simply
changing entries.

 You are familiar with iteration because you have written loops. For example, if nameList is a list
of strings, you can write the following for loop to display the entire list:

 int listSize = nameList.getLength();
 for (int position = 1; position <= listSize; position++)
 cout << nameList.getEntry(position) << endl;

 Here the loop traverses, or iterates, through the entries in the list. Instead of simply displaying each
entry, we could do other things to or with it.

 Notice that the previous loop is at the client level, since it uses the ADT operation getEntry to
access the list. For an array-based implementation of the list, getEntry can retrieve the desired array
entry directly and quickly. But if a chain of linked nodes represents the list’s entries, getEntry must
move from node to node until it locates the desired one. For example, to retrieve the nth entry in the
list, getEntry would begin at the fi rst node in the chain and then move to the second node, the third
node, and so on until it reached the nth node. At the next repetition of the loop, getEntry would
retrieve the n + 1 st entry in the list by beginning again at the fi rst node in the chain and stepping from
node to node until it reached the n + 1 st node. This wastes time.

 Note: Iterators

 An iterator is a program component that steps through, or traverses, a collection of data.
The iterator keeps track of its progress during the traversal, or iteration. It can tell you
whether a next entry exists and, if so, return a reference to it. During one cycle of the
iteration, each data item is considered once.

 Iteration is such a common operation that we could include it as part of the ADT list. Doing so
would enable a more effi cient implementation than you could achieve at the client level. Notice that
the operation toVector of the ADT bag in Chapters 3 and 4 performs a traversal and is an example of
a traversal controlled by the ADT. A client can invoke toVector but cannot control its traversal once
it begins.

 But toVector only returns the list’s entries. What if we want to do something else with them as
we traverse them? We do not want to add another operation to the ADT each time we think of another
way to use an iteration. We need a way for a client to step through a collection of data and retrieve or
modify the entries. The traversal should keep track of its progress; that is, it should know where it is in
the collection and whether it has accessed each entry. An iterator provides such a traversal.

 C++ provides a rich library of tools to build iterators, but in this interlude we focus on the capa-
bilities necessary to implement simple iterators that traverse a collection of items, retrieve an item in
a collection, and compare two iterators to determine whether they access the same entry in the collec-
tion. Such iterators are known as input iterators .

 C6.1.1 Common Iterator Operations

 Though not required, iterators in C++ typically provide basic functionality by using overloaded oper-
ators. An iterator operation that accesses the item it currently references is usually implemented by
overloading the C++ dereferencing operator * . For example, you can defi ne the * operator for an iter-
ator i so that *i is the item that i references.

 Iterators also have operations that move the iterator forward through the collection. Often, these
operations take the form of the overloaded operator ++. Bidirectional iterators also overload the ––

 Iterators 495

operator to allow you to move backward through the collection. Lastly, the operators == and != are
usually overloaded to compare iterators for equality.

Note: Common iterator operations

 Operation Description
 * Return the item that the iterator currently references

 ++ Move the iterator to the next item in the collection

–– Move the iterator to the previous item in the collection (used only
for bidirectional or random iterators)

== Compare two iterators for equality

!= Compare two iterators for inequality

 By enabling you to overload these operators for your iterator class, C++ gives you the advanced
iterator operations covered in the next section without further programming. An additional step you
must take to enable this functionality, however, is to derive your iterator class from the C++ template
class iterator . This template does not have any methods. Instead, it is used to identify the category
of iterator you are creating by using an iterator category tag as the template type.

 For example, to declare an input iterator for the class LinkedList , we would use the lines:

 template < class ItemType>
 class LinkedIterator : public iterator<input_iterator_tag, int >

 where input_iterator_tag indicates that this iterator implements input-iterator functionality. The sec-
ond template type specifi ed, int , identifi es the type of value used to measure the distance between two
iterators. These values are normally integers. The distance between two iterators is the number of ele-
ments or positions between the current positions of the two iterators. For example, if an iterator points to
the fi rst item in a list and another iterator points to the fi fth item in the same list, their distance is 4.

 Note: C++ iterator categories

 All of the following iterators provide operations that copy or assign (=) and increment (++).

 Category Tag Operation
 Input iterator input_iterator_tag Equality/inequality (==, !=), access col-

lection entry (*)

 Output iterator output_iterator_tag Change a collection entry (*)

 Forward iterator forward_iterator_tag Same as the input and output iterators and
has a default constructor

 Bidirectional
iterator

bidirectional_iter-

ator_tag
Same as the forward iterator, but also can
traverse the collection backward (––)

Random-access
iterator

random_iterator_tag Same as the bidirectional iterator and adds
support for arithmetic (+ , - , += , -=) and
relational (< , <= , > , >=) operations between
iterators. Supports the [] operator to directly
access collection entries.

496 C++ INTERLUDE 6 Iterators

 C6.1.2 Using Iterator Operations

 Before discussing the details of a class of iterators and its implementation, we should examine how
clients of LinkedList would use these iterators. Standard containers in C++ implement two special
methods, begin and end , that return an iterator to the fi rst entry and last entry respectively. These itera-
tors should have an order of magnitude in performance of O(1) as they move from entry to entry. Let’s
see how a client could use these methods if we implemented them in our LinkedList class.

 Up to this point, if we want to display all the entries in a list myList , we need to perform this
O(n2) action:

 int currentPosition = 1;
 while (currentPosition <= myList.getLength())
 {
 cout << myList.getEntry(currentPosition); // O(n) operation
 currentPosition++;
} // end while

 Now assume that LinkedIterator is a class of iterators for LinkedList, and LinkedList defi nes
the methods begin and end and declares them as follows:

 LinkedIterator<ItemType> begin() const ;
LinkedIterator<ItemType> end() const ;

 We can rewrite the above snippet of code using LinkedIterator objects:

 LinkedIterator<ItemType> currentIterator = myList.begin();
 while (currentIterator != myList.end())
 {
 cout << *currentIterator // O(1) operation
 ++currentIterator;
} // end while

 The fi rst line creates a LinkedIterator object, currentIterator , that points to the fi rst entry in the
list. The while -loop test checks to see whether currentIterator points to the entry that is at the end
of the list. Then, for each entry in the list, we dereference the iterator using the * operator to access
and display the entry at the iterator’s current position. The iterator is then incremented to reference the
next entry in the list for the following iteration.

 Notice that the ++ operator precedes the name of the iterator. We use this prefi x operator to dif-
ferentiate it from an arithmetic increment of an integer, which uses the postfi x ++ operator. Iterators
may implement the postfi x ++ operator, but we have chosen not to do this to avoid possible confusion
in reading the code.

 Note: Using the ++ and –– operators

 In C++, the operators ++ and –– can be used in either prefi x or postfi x form to represent
incrementing or decrementing the corresponding variable. To differentiate between in-
crementing or decrementing arithmetic variables from iterator positions, we use ++ and
–– as postfi x operators for the former operations and as prefi x operators for the latter.

 The implementation of the methods begin and end in the LinkedList class are straightforward:

 template < class ItemType>
LinkedIterator<ItemType> LinkedList<ItemType>::begin()
 {

return LinkedIterator<ItemType>(this, headPtr);
} // end begin

 Iterators 497

 template < class ItemType>
LinkedIterator<ItemType> LinkedList<ItemType>::end()
 {

return LinkedIterator<ItemType>(this, nullptr);
} // end end

 In the begin method, we send the iterator references to the list object and the fi rst node in the chain
that contains the list items. Giving the iterator direct access to LinkedList ’s data member violates the
wall of abstraction and must be done with care. Well-designed iterators only traverse the collection and
access the items stored in the collection; they should not change the structure of a collection.

 C6.1.3 Implementing an Iterator

 Listing C6-1 is the header fi le for the class, LinkedIterator , of input iterators designed to work with
our LinkedList class. It is a distinct class separate from LinkedList . The constructor has two param-
eters, the list traversed by the iterator and an initial node for the iterator to reference. The second
parameter is used by the LinkedList class methods begin and end to initialize the iterator’s position.

 LISTING C6-1 The header fi le for the class LinkedIterator

 #ifndef _LINKED_ITERATOR
#define _LINKED_ITERATOR

#include <iterator>
#include "Node.h"

 template < class ItemType>
 class LinkedList;

 template < class ItemType>
 class LinkedIterator : public iterator<input_iterator_tag, int >
 {
 private :

// ADT associated with iterator
const LinkedList<ItemType>* containerPtr;

// Current location in collection
 Node<ItemType>* currentItemPtr;

 public :
 LinkedIterator(const LinkedList<ItemType>* someList,
 Node<ItemType>* nodePtr);

/** Dereferencing operator overload.
@return The item at the position referenced by iterator. */
const ItemType operator*();

/** Prefix increment operator overload.
@return The iterator referencing the next position in

 the list. */
 LinkedIterator<ItemType> operator ++();

/** Equality operator overload.
@param LinkedList The iterator for comparison.
@return True if this iterator references the same list and

 the same position as rightHandSide, false otherwise. * /
(continues)

498 C++ INTERLUDE 6 Iterators

bool operator ==(const LinkedIterator<ItemType>& rightHandSide) const ;

/** Inequality operator overload.
@param LinkedList The iterator for comparison.
@return True if this iterator does not reference the same

 list and the same position as rightHandSide,
 false otherwise. */

bool operator !=(const LinkedIterator<ItemType>& rightHandSide) const ;

 }; // end LinkedIterator

#include "LinkedIterator.cpp"
 #endif

 In addition to the base class specifi cation and class constructor, there are two other lines in this
header fi le that differ from previous header fi les. Before the LinkedIterator class is declared, the
following two lines provide a forward declaration of the class LinkedList:

 template < class ItemType>
 class LinkedList;

 These lines are necessary because LinkedList must instantiate an object of the class
LinkedIterator<ItemType> in the begin and end methods, but the LinkedIterator class must have
a complete declaration of LinkedList<ItemType> to instantiate itself. To resolve these circular refer-
ences, we include this forward declaration. When the compiler begins to compile the LinkedIterator
class, it will read these statements and know that LinkedList<ItemType> is also a class. The compiler
can then use placeholders for the details of LinkedList.

 The implementation of LinkedIterator is shown in Listing C6-2.

 LISTING C6-2 The implementation fi le for the class LinkedIterator

 #include "LinkedIterator.h"

 template < class ItemType>
 LinkedIterator<ItemType>::
 LinkedIterator(const LinkedList<ItemType>* someList,
 Node<ItemType>* nodePtr):
 containerPtr(someList), currentItemPtr(nodePtr)
 {

} // end constructor

 template < class ItemType>
 const ItemType LinkedIterator<ItemType>:: operator *()
 {

return currentItemPtr->getItem();
} // end operator*

 template < class ItemType>
LinkedIterator<ItemType> LinkedIterator<ItemType>:: operator ++()
 {

 Advanced Iterator Functionality 499

 currentItemPtr = currentItemPtr->getNext();
return * this ;

} // end prefix operator++

 template < class ItemType>
 bool LinkedIterator<ItemType>:: operator ==(const
 LinkedIterator<ItemType>& rightHandSide) const
 {

return ((containerPtr == rightHandSide.containerPtr) &&
 (currentItemPtr == rightHandSide.currentItemPtr));
} // end operator==

 template < class ItemType>
 bool LinkedIterator<ItemType>::operator!=(const
 LinkedIterator<ItemType>& rightHandSide) const
 {

return ((containerPtr != rightHandSide.containerPtr) ||
 (currentItemPtr != rightHandSide.currentItemPtr));
} // end operator!=

 The implementations of the iterator methods use the methods of the Node class. For example, the
dereferencing * operator returns the result of calling getItem on the current node, and the ++ operator uses
getNext to advance the iterator to the next position. Notice that the ++ operator returns the current object to
the caller. This is part of the C++ standard for the ++ operator, but clients seldom use the return value.

 An alternative is to use only iterators that have access to public methods of your data structure,
but then you lose the effi ciencies gained by directly accessing the structure. The best approach is to
design an iterator for your class at the same time that you design your ADT, so that you can coordinate
the features and ensure that the iterator does not change the class’s structure.

 C6.2 Advanced Iterator Functionality
 Deriving our iterator from the C++ template class iterator enables the iterator to be used in a
number of standard functions provided by C++ that simplify the processing of many common algo-
rithms, such as displaying the items in a collection, searching a collection, and counting the number
of occurrences of an item in the collection.

The function for_each . Earlier in this interlude, we presented a while loop that used iterators to ac-
cess and display each item in a list of strings. C++ provides a function for_each that can accomplish
this in a simpler manner. The syntax of the for_each function is:

 for_each(start_iterator , end_iterator , function_to_perform);

 where start_iterator and end_iterator are iterators to the fi rst and last position that should be proc-
essed in the collection, and function_to_ perform is a function with a single parameter of the same
type as the entries stored in the collection. This is similar to the visit function discussed with respect
to ADT binary tree traversals in Chapter 15 . This function is applied to each of the items in the collec-
tion from start_iterator to end_iterator .

 To use the for_each function, we must create a function to be applied to each of the items in the
collection. In this case, the items are strings, and we want to display each one:

 void displayOneItem(string itemToDisplay)
 {
 cout << itemToDisplay << endl;
} // end displayOneItem

500 C++ INTERLUDE 6 Iterators

 We can then call the for_each function to display all items in the collection as follows:

 for_each(myList.begin(), myList.end(), displayOneItem);

 With this one statement, C++ takes care of all the details. The compiler will insert code that begins at
the fi rst position of myList and sends each item to the function displayOneItem to be displayed until
all items have been processed.

 Note: The syntax used to call most of the special functions that use iterators to process
collections follows the form

 function_name (start_iterator , end_iterator , special_ parameters);

 where special_ parameters represents one or more parameters that the function needs to
perform its task.

The function find . To search a collection for a specifi ed target entry, you use the function find . This
function returns an iterator to the target if it exists in the collection. If the target is not in the collec-
tion, find returns an iterator to the last position:

 // Find the entry "Ace" in the collection myList
LinkedIterator<string> myCard = find(myList.begin(), myList.end(), "Ace");

 The function count. Another useful function is count . This function returns an integer that repre-
sents the number of times a specifi ed value occurs in the collection between the starting iterator and
ending iterator:

 // Count the number of occurrences of "Ace" in collection myList
 int aceCount = count(myList.begin(), myList.end(), "Ace");

 The function advance. To move an iterator forward a specifi c number of positions, you can use the
advance function. It has a slightly different form:

 advance(someIterator , distanceToAdvance);

 For example, if we needed an iterator to the fi fth element of myList , we would use the following statements:

 // Iterator to first position in myList
LinkedIterator<string> myIterator = myList.begin();

// Advance from first position to fifth (4 positions ahead)
advance(myIterator, 4);

 The function distance. To determine how many entries remain to be processed, we can determine
the distance from our current position to the end of the collection, using the distance function:

int numberRemaining = distance(myIterator, myList.end());

 The function equal. If you want to determine whether the elements in two lists are the same, either
for the entire fi rst list or for a subrange within the lists, you can use the equal function. Suppose
myList and yourList are two instances of LinkedList<string> . To determine if all entries in
myList are equal to the fi rst entries in yourList , you would write:

bool same = equal(myList.begin(), myList.end(), yourList.begin());

 Advanced Iterator Functionality 501

 This function is concerned only with a range of positions. The number of entries to compare, n , is
determined by the distance between the fi rst two iterator parameters. The third iterator parameter
specifi es a starting location in the second collection for the comparison. The number of entries in the
second collection can be greater than the number in the fi rst collection, but only n entries are
compared.

 Note: Some useful C++ functions that use iterators

• Process entries in a collection from start_iterator position to end_iterator position
using the function function_to_perform:

for_each(start_iterator , end_iterator , function_to_perform);

• Return an iterator to the position of the fi rst occurrence of target between start_
iterator and end_iterator :

 iteratorType someIterator = find(start_iterator , end_iterator, target);

• Return the number of occurrences of target between start_iterator and end_iterator :

int numberOccur = count(start_iterator , end_iterator , target);

• Compare entries in collection 1 from start1_iterator through end1_iterator to
those in collection 2 beginning at start2_iterator :

bool result = equal(start1_iterator , end1_iterator, start2_iterator);

• Move someIterator from its current position forward distanceToAdvance positions:

advance(someIterator , distanceToAdvance);

• Determine the distance or number of positions from someIterator to anotherIterator :

int theDistance = distance(someIterator , anotherIterator);

This page intentionally left blank

 Chapter

 Heaps 17
 Contents
 17.1 The ADT Heap 503
 17.2 An Array-Based Implementation of a Heap 506

 17.2.1 Algorithms for the Array-Based Heap Operations 508
 17.2.2 The Implementation 512

 17.3 A Heap Implementation of the ADT Priority Queue 516
 17.4 Heap Sort 519

 Summary 522
 Exercises 522
 Programming Problems 523

 Prerequisites
 Chapter 13 Queues and Priority Queues
 Chapter 15 Trees
 Chapter 16 Tree Implementations

Chapter 15 introduced the ADTs binary tree and binary search tree. This chapter will
present the ADT heap, which is a special kind of complete binary tree that provides an
effi cient implementation of the ADT priority queue. You can also use a heap to sort an
array as effi ciently as you can by using either a quick sort or a merge sort.

 17.1 The ADT Heap
 A heap is a complete binary tree that either is empty or whose root

• Contains a value greater than or equal to the value in each of its children, and
• Has heaps as its subtrees

A heap is a special
complete binary tree

504 CHAPTER 17 Heaps

 A heap is similar to a binary search tree, although it differs from a binary search tree in two signifi cant ways:

• While you can view a binary search tree as sorted, a heap is ordered in a much weaker sense.
• While binary search trees come in many different shapes, heaps are always complete binary trees.

 In our defi nition of a heap, the root contains the item with the largest value. Such a heap is also
known as a maxheap . A minheap , on the other hand, places the item with the smallest value in its
root. An example of a maxheap and a minheap are given in Figure 17-1 . Exercises 1 and 8 and Pro-
gramming Problem 3 consider the minheap further.

 The ADT heap has the following operations:

FIGURE 17-1 (a) A maxheap and (b) a minheap

10

69

23 5 10

2

3 5

9 6

(a) (b)
The largest value
in the maxheap

The smallest value
in the minheap

 Note: ADT heap operations

• Test whether a heap is empty
• Get the number of nodes in a heap
• Get the height of a heap
• Get the item in the heap’s root
• Insert a new item into the heap
• Remove the item in the heap’s root
• Remove all nodes from the heap

 Depending on whether the heap is a maxheap or a minheap, the removal and retrieval
operations respectively involve either the largest or the smallest item in the heap

FIGURE 17-2 UML diagram for the class Heap

Heap

+isEmpty(): boolean
+getNumberOfNodes(): integer
+getHeight(): integer
+peekTop(): ItemType
+add(newData: ItemType): boolean
+remove(): boolean
+clear(): void

VideoNote

The ADT heap

 The ADT Heap 505

 ABSTRACT DATA TYPE: HEAP

 DATA

• A fi nite number of objects in hierarchical order.

 OPERATIONS

 PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this heap is empty.
 Input: None.
 Output: True if the heap is empty; otherwise false.

 getNumberOfNodes() Task: Gets the number of nodes in this heap.
 Input: None.
 Output: The number of nodes in the heap.

 getHeight() Task: Gets the height of this heap.
 Input: None.
 Output: The height of the heap.

 peekTop() Task: Gets the data that is in the root (top) of this heap.
 Input: None. Assumes the heap is not empty.
 Output: The item in the root of the heap. If the heap is a maxheap, this item is the largest

value in the heap. For a minheap, the item is the smallest value.

 add(newData) Task: Inserts newData into this heap.
 Input: newData is the data item to be inserted.
 Output: True if the insertion is successful, or false if not.

 remove() Task: Removes the item in the root of this heap.
 Input: None.
 Output: True if the removal is successful, or false if not.

 clear() Task: Removes all nodes from this heap.
 Input: None.
 Output: The heap is empty.

 An interface that fi nalizes the operation contract for the ADT heap appears in Listing 17-1.

 LISTING 17-1 An interface for the ADT heap

 /** Interface for the ADT heap.
 @file HeapInterface.h */

#ifndef _HEAP_INTERFACE
#define _HEAP_INTERFACE

 template < class ItemType>
 class HeapInterface
 {
 public :

(continues)

 The following contract specifi es these operations in more detail, and a UML diagram for a class
of heaps appears in Figure 17-2 .

506 CHAPTER 17 Heaps

 /** Sees whether this heap is empty.
 @return True if the heap is empty, or false if not. */

virtual bool isEmpty() const = 0;

 /** Gets the number of nodes in this heap.
 @return The number of nodes in the heap. */

virtual int getNumberOfNodes() const = 0;

 /** Gets the height of this heap.
 @return The height of the heap. */

virtual int getHeight() const = 0;

 /** Gets the data that is in the root (top) of this heap.
 For a maxheap, the data is the largest value in the heap;
 for a minheap, the data is the smallest value in the heap.
 @pre The heap is not empty.
 @post The root’s data has been returned, and the heap is unchanged.
 @return The data in the root of the heap. */

virtual ItemType peekTop() const = 0;

 /** Adds a new node containing the given data to this heap.
 @param newData The data for the new node.
 @post The heap contains a new node.
 @return True if the addition is successful, or false if not. */

virtual bool add(const ItemType& newData) = 0;

 /** Removes the root node from this heap.
@return True if the removal is successful, or false if not. */

virtual bool remove() = 0;

 /** Removes all nodes from this heap. */
virtual void clear() = 0;

 }; // end HeapInterface
 #endif

 Note: Do not confuse the ADT heap with the collection of memory cells known as a
heap. This memory is available for allocation to your program when you use the new
operator. The heap that contains this available memory is not an instance of the ADT
heap.

Question 1 Is the full binary tree in Figure 16-16 of Chapter 16 a heap? Why?
CHECK POINT

 17.2 An Array-Based Implementation of a Heap
 Because a heap is a binary tree, you can use the array-based implementation of a binary tree
discussed in Section 16.1.1 of Chapter 16 , if you know the maximum size of the heap. However,
because a heap is a complete binary tree, you can use a simpler array-based implementation that saves

VideoNote

Overview of
ArrayHeap

 An Array-Based Implementation of a Heap 507

memory. As you saw in Chapter 15 , a complete tree of height h is full to level h – 1 and has level h
fi lled from left to right.

 Figure 17-3 a shows a complete binary tree with its nodes numbered according to a level-by-level
scheme. The root is numbered 0, and the children of the root—which are at the next level of the tree—
are numbered, left to right, 1 and 2. The nodes at the next level are numbered, left to right, 3, 4, and 5.
You place these nodes into the array items in numeric order. That is, items[i] contains the node
numbered i , as Figure 17-3 b illustrates. Now, given any node items[i] , you can easily locate both of
its children and its parent:

• Its left child, if it exists, is items[2 * i + 1]
• Its right child, if it exists, is items[2 * i + 2]
• Its parent, if it exists, is items[(i - 1) / 2]

 Remember that only the root in items[0] does not have a parent.
 This array-based representation requires a complete binary tree. If nodes were missing from the

middle of the tree, the numbering scheme would be thrown off, and the parent-child relationship
among nodes would be ambiguous. This requirement implies that any changes to the tree must main-
tain its completeness.

 As you will see, an array-based representation of a heap is useful in the implementation of the
ADT priority queue.

FIGURE 17-3 (a) Level-by-level numbering of a complete binary tree; (b) its array-based
implementation

Jane

TomBob

ElisaAlan Nancy

1

0

3

2

54

Jane

Bob

Tom

Alan

Elisa

Nancy

0

1

2

3

4

5

6

7

(a) (b)

Level 1

Level 2

Level 3

items

If the binary tree is
complete and
remains complete,
you can use a
memory-effi cient
array-based
implementation

 Question 2 What array represents the maxheap shown in Figure 17-1 a?

 Question 4 What criterion can you use to tell whether the node in items[i] is a leaf?

 Question 3 What array represents the minheap shown in Figure 17-1 b? CHECK POINT

508 CHAPTER 17 Heaps

 17.2.1 Algorithms for the Array-Based Heap Operations

 Let’s assume that our class of heaps has the following private data members:

• items : an array of heap items
• itemCount : an integer equal to the number of items in the heap
• maxItems : an integer equal to the maximum capacity of the heap

 The array items corresponds to the array-based representation of a complete binary tree, such as the
array shown in Figure 17-3 b. We will assume that we are working with a maxheap of integers.

 Retrieving an item from a heap. First consider the heap’s peekTop operation. Where is the largest
item in the heap? Because the item in every tree node is greater than or equal to the item in either of its
children, the largest item must be in the root of the tree—that is, at the top of the heap. Thus, the peek-
Top operation needs to take only the following step:

 // Return the item in the root
 return items[0]

 Removing an item from a heap. While the peekTop operation returns the largest item in the heap—
which we know is in its root—the heap operation remove must remove it. Removing the root of
the heap leaves two disjoint heaps, as Figure 17-4 a indicates. Therefore, you do not want to actu-
ally remove the root. Instead, you remove the last node of the tree and place its item in the root, as
 Figure 17-4 b shows. The result of this step is not necessarily a heap. It is, however, a complete binary
tree whose left and right subtrees are both heaps. The only problem is that the item in the root usually
is out of place. Such a structure is called a semiheap .

 You thus need a way to transform a semiheap into a heap. One strategy allows the item in the root
to trickle down the tree until it reaches a node in which it will not be out of place; that is, the item will
come to rest in the fi rst node where it would be greater than or equal to the item in each of its children.
To accomplish this, you fi rst compare the item in the root of the semiheap to the items in its children.
If the root’s item is smaller than the larger of the items in its children, you swap the item in the root
with that larger item. For convenience, we will refer to the child containing the larger item as the
larger child . The result of this step is shown in Figure 17-4 c. Although the value 5 trickles down in
this example to its correct position after only one swap, in general more swaps may be necessary.

 We need to remember that an array represents the original heap before we remove its root. The
remove operation will simply move items within this array. Figure 17-5 shows the array for the heaps
and semiheap illustrated in Figure 17-4 . The transformation from the heap in Figure 17-5 a to the
semiheap in Figure 17-5 b is accomplished by the following steps:

 // Copy the item from the last node and place it into the root
items[0] = items[itemCount - 1]

// Remove the last node
 itemCount ––

 Question 6 Does the array in the previous question represent a heap?

 Question 5 What complete binary tree does the following array represent?

5 1 2 8 6 10

0 1 2 3 4 5

3

6

9

7

4

8

7

9

The data members
for an array-based
implementation of a
heap

 peekTop’s logic

 remove’s fi rst step
produces a
semiheap

 An Array-Based Implementation of a Heap 509

 The transformation from the semiheap in Figure 17-5 b to the heap in Figure 17-5 c is accom-
plished by the following recursive algorithm. Note that the algorithm will not work if it does not begin
with a semiheap.

// Converts a semiheap rooted at index root into a heap.
heapRebuild(root: integer, items: ArrayType, itemCount: integer)

// Recursively trickle the item at index root down to its proper position by
 // swapping it with its larger child, if the child is larger than the item.
 // If the item is at a leaf, nothing needs to be done.

if (the root is not a leaf)
{

// The root must have a left child; assume it is the larger child
largerChildIndex = 2 * rootIndex + 1 // Left child index

if (the root has a right child)
{

 rightChildIndex = largerChildIndex + 1 // Right child index
 if (items[rightChildIndex] > items[largerChildIndex])

largerChildIndex = rightChildIndex // Larger child index
}
// If the item in the root is smaller than the item in the larger child, swap items

if (items[rootIndex] < items[largerChildIndex])
{

Swap items[rootIndex] and items[largerChildIndex]

FIGURE 17-4 (a) Disjoint heaps after removing the heap’s root; (b) a semiheap; (c) the
restored heap

Delete 10

Copy item in last
node to root

Trickle down
by swapping

Disjoint heaps

Semiheap

Heap

Heap

10

69

23 5

9

23

6

5

5

69

23

Heap

10

69

23 5

(a)

(b)

Semiheap

5

69

23

(c)

6

9

23

5

 remove’s fi nal step
transforms the
semiheap into a
heap

Every nonleaf in a
complete tree has a
left child

510 CHAPTER 17 Heaps

// Transform the semiheap rooted at largerChildIndex into a heap
heapRebuild(largerChildIndex, items, itemCount)

}
 }

// Else root is a leaf, so you are done

 Figure 17-6 illustrates heapRebuild ’s recursive calls.

FIGURE 17-5 The array representation of (a) the heap in Figure 17-4 a; (b) the semiheap in
 Figure 17-4 b; (c) the restored heap in Figure 17-4 c

10

9

6

3

2

5

0

1

2

3

4

5

10

69

23 5

(a)

5

9

6

3

2

0

1

2

3

4

5

69

23

(b)

9

5

6

3

2

0

1

2

3

4

9

65

23

(c)Item in root is
smaller than items
in its children

Swapped root
item with item
in larger child

FIGURE 17-6 Recursive calls to heapRebuild

First semiheap passed
to heapRebuild

Second semiheap passed
to heapRebuild

5

69

23

9

65

23

 An Array-Based Implementation of a Heap 511

 Now the heap’s remove operation uses heapRebuild as follows:

 // Copy the item from the last node into the root
items[0] = items[itemCount - 1]

 // Remove the last node
 itemCount––

 // Transform the semiheap back into a heap
heapRebuild(0, items, itemCount)

 Consider briefl y the effi ciency of remove . Because the tree is stored in an array, the removal of a
node requires you to swap array entries rather than simply to change a few pointers. These swaps may
concern you, but they do not necessarily indicate that the algorithm is ineffi cient. At most, how many
array entries will you have to swap? After remove copies the item in the last node of the tree into the
root, heapRebuild trickles this item down the tree until its appropriate place is found. This item trav-
els down a single path from the root to, at worst, a leaf. Therefore, the number of array items that
heapRebuild must swap is no greater than the height of the tree. The height of a complete binary tree
with n nodes is always < log 2 (n + 1) = , as you know from Chapter 15 . Because each swap requires three
data moves, remove requires

 3 � < log2(n �1) = �1

 data moves. Thus, remove is O(log n), which is in fact quite effi cient.

Adding an item to a heap. The strategy for the add algorithm is the opposite of that for remove .
A new item is inserted at the bottom of the tree, and it trickles up to its proper place, as Figure 17-7
illustrates. It is easy to trickle up a node, because the parent of the node in items[i] is always stored
in items[(i - 1) / 2] —unless, of course, the node is the root.

 remove’s effi ciency

 remove is O(log n)

FIGURE 17-7 Insertion into a heap

Insert
15

Trickle
up

Trickle
up

9

65

23 23

5

9

6

15

9

155

23 6

15

95

23 6

Swapped

Swapped

 The pseudocode for add follows:

 // Insert newData into the bottom of the tree
items[itemCount] = newData

 // Trickle new item up to the appropriate spot in the tree
newDataIndex = itemCount
inPlace = false
 while ((newDataIndex >= 0) and !inPlace)
{
 parentIndex = (newDataIndex - 1) / 2
if (items[newDataIndex] < items[parentIndex])

Insertion strategy

512 CHAPTER 17 Heaps

inPlace = true
else
{

Swap items[newDataIndex] and items[parentIndex]
newDataIndex = parentIndex

 }
 }
 itemCount++

 The effi ciency of insert is like that of remove . At worst, insert has to swap array entries on a
path from a leaf to the root. The number of swaps, therefore, cannot exceed the height of the tree.
Because the height of the tree, which is complete, is always < log 2 (n + 1) = , insert is also O(log n).

 insert is O(log n)

 Question 7 Is the full binary tree in Figure 16-16 of Chapter 16 a semiheap?

CHECK POINT Question 8 Consider the maxheap in Figure 17-1 a. Draw the heap after you insert 12 and
then remove 12.

 Question 9 What does the initially empty heap myHeap contain after the following
sequence of pseudocode operations?

 myHeap.add(2)

 myHeap.add(3)

 myHeap.add(4)

 myHeap.add(1)

 myHeap.add(9)

 myHeap.remove()

 myHeap.add(7)

 myHeap.add(6)

 myHeap.remove()

 myHeap.add(5)

 17.2.2 The Implementation

 The header fi le for the class ArrayMaxHeap , which is an array-based implementation of the ADT
heap, is in Listing 17-2. This heap is a maxheap.

 LISTING 17-2 The header fi le for the class ArrayMaxHeap

 /** Array-based implementation of the ADT heap.
 @file ArrayMaxHeap.h */
#ifndef _ARRAY_MAX_HEAP
#define _ARRAY_MAX_HEAP

#include "HeapInterface.h"
#include "PrecondViolatedExcep.h"

 template < class ItemType>
 class ArrayMaxHeap : public HeapInterface<ItemType>
 {

 An Array-Based Implementation of a Heap 513

 private :
static const int ROOT_INDEX = 0; // Helps with readability
static const int DEFAULT_CAPACITY = 21; // Small capacity to test for a full heap

 ItemType* items; // Array of heap items
int itemCount; // Current count of heap items
int maxItems; // Maximum capacity of the heap

// ---
// Most of the private utility methods use an array index as a parameter
// and in calculations. This should be safe, even though the array is an
// implementation detail, since the methods are private.
// ---

// Returns the array index of the left child (if it exists).
int getLeftChildIndex(const int nodeIndex) const;

// Returns the array index of the right child (if it exists).
int getRightChildIndex(int nodeIndex) const;

// Returns the array index of the parent node.
int getParentIndex(int nodeIndex) const;

// Tests whether this node is a leaf.
bool isLeaf(int nodeIndex) const;

// Converts a semiheap to a heap.
void heapRebuild(int subTreeRootIndex);

// Creates a heap from an unordered array.
void heapCreate();

 public :
 ArrayMaxHeap();
 ArrayMaxHeap(const ItemType someArray[], const int arraySize);

virtual ~ArrayMaxHeap();

// HeapInterface Public Methods:
bool isEmpty() const ;
int getNumberOfNodes() const ;
int getHeight() const ;

 ItemType peekTop() const throw (PrecondViolatedExcep);
bool add(const ItemType& newData);
bool remove();
void clear();

 }; // end ArrayMaxHeap
#include "ArrayMaxHeap.cpp"
 #endif

 Some method defi nitions. Let’s examine the defi nitions of some of the methods in ArrayMaxHeap ,
beginning with the private ones. To make our code more readable, we established the private methods
getLeftChildIndex , getRightChildIndex , and getParentIndex . The implementations of these
methods follow from our observations at the beginning of Section 17.2 . For example, the left child of
node items[i] is items[2 * i + 1] , so the method getLeftChildIndex has the following defi nition:

 template < class ItemType>
 int ArrayMaxHeap<ItemType>::getLeftChildIndex(const int nodeIndex) const
 {

514 CHAPTER 17 Heaps

return (2 * nodeIndex) + 1;
} // end getLeftChildIndex

 The recursive private method heapRebuild closely follows the pseudocode given earlier in this
chapter, so let’s assume that we have coded it and look at a method that uses it. The second constructor
creates a heap from an array of entries. To do so, this constructor can call the private method heapCreate ,
which in turn will need to call heapRebuild . Consider the details.

 Notice that heapCreate has no parameters, but it does have access to our class’s private data. In
particular, heapCreate can use the array items and the counter itemCount . These two data mem-
bers will serve as both the input to and the output from heapCreate . So if the constructor places
values into itemCount and the array items , it can call heapCreate to rearrange the values in the
array into a heap.

 Thus, we can defi ne the constructor as follows:

 template < class ItemType>
 ArrayMaxHeap<ItemType>::
 ArrayMaxHeap(const ItemType someArray[], const int arraySize):
 itemCount(arraySize), maxItems(2 * arraySize)
 {

// Allocate the array
 items = new ItemType[2 * arraySize];

// Copy given values into the array
for (int i = 0; i < itemCount; i++)

 items[i] = someArray[i];

// Reorganize the array into a heap
 heapCreate();
} // end constructor

 We use initializers to set the initial values of itemCount and maxItems . After allocating the array
items , we copy the values from the given array someArray into items . Finally, we call heapCreate .

 Now heapCreate must form a heap from the values in the array items . One way to accomplish
this transformation is to use the heap’s add method to insert the items into the heap one by one. How-
ever, a more effi cient technique of building a heap out of the items in an array is possible.

 For example, assume that the initial contents of an array are as shown in Figure 17-8 a. First you
imagine the array as a complete binary tree by assigning the array’s items to the tree’s nodes, beginning
with the root and proceeding left to right down the tree. Figure 17-8 b shows the resulting tree. Next,
you transform this tree into a heap by calling heapRebuild repeatedly. Each call to heapRebuild

FIGURE 17-8 (a) The initial contents of an array; (b) the array’s corresponding complete
binary tree

6

53

29 10

(b)(a)

6 3 5 9 2 10

0 1 2 3 4 5

 An Array-Based Implementation of a Heap 515

transforms a semiheap—a tree whose subtrees are both heaps but whose root may be out of place—
into a heap. But are there any semiheaps in the tree for heapRebuild to work on? Although the tree in
 Figure 17-8 b is not a semiheap, if you look at its leaves you will fi nd semiheaps—that is, each leaf is
a semiheap. In fact, each leaf is a heap, but for the sake of simplicity, ignore this fact.

 You fi rst call heapRebuild on the leaves from right to left. You then move up the tree, knowing that
by the time you reach a node N , its subtrees are heaps, and thus heapRebuild will transform the semi-
heap rooted at N into a heap. The following pseudocode steps transform the array items of itemCount
items into a heap:

 for (index = itemCount - 1 down to 0)
{

// Assertion: The tree rooted at index is a semiheap
heapRebuild(index)
// Assertion: The tree rooted at index is a heap

 }

 Actually, you can replace itemCount – 1 with itemCount / 2 in the previous for statement. Thus,
our pseudocode becomes

 for (index = itemCount / 2 down to 0)
 {

// Assertion: The tree rooted at index is a semiheap
heapRebuild(index)
// Assertion: The tree rooted at index is a heap

 }

 Exercise 11 at the end of this chapter asks you to explain why this improvement is possible.
 Figure 17-9 traces this algorithm for the array in Figure 17-8 a. Since the array contains six items,
index in the for statement begins at 5 / 2, or 2.

Building a heap from
an array of items

FIGURE 17-9 Transforming an array into a heap

6 3 5 9 2 10Original array

Array Tree representation of the array

6

3 5

9 2 10

6

3 10

9 2 5

6

9 10

3 2 5

10

9 6

3 2 5

6 3 10 9 2 5After heapRebuild(2)

6 9 10 3 2 5After heapRebuild(1)

10 9 6 3 2 5After heapRebuild(0)

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

516 CHAPTER 17 Heaps

 We now translate this pseudocode into C++ to get the method heapCreate :

 template < class ItemType>
 void ArrayMaxHeap<ItemType>::heapCreate()
 {

for (int index = itemCount / 2; index >= 0; index––)
 heapRebuild(index);
} // end heapCreate

 Programming Problem 1 asks you to complete the implementation fi le for the class ArrayMaxHeap .
 Finally, we will defi ne the method peekTop , since it must throw an exception if the heap is empty.

Although you might be tempted to simply return items[0] , since it always contains the top of the
heap, if you do, peekTop will return a value even when the heap might be empty. Thus, you need to
have peekTop test for an empty heap, as in the following defi nition:

 template < class ItemType>
ItemType ArrayMaxHeap<ItemType>::peekTop() const throw (PrecondViolatedExcep)
 {

if (isEmpty())
throw PrecondViolatedExcep("Attempted peek into an empty heap.");

return items[0];
} // end peekTop

 Question 10 Execute the following pseudocode statements on the array shown in Check-
point Question 5.

 for (index = n - 1 down to 0)
 heapRebuild(index)

CHECK POINT

 17.3 A Heap Implementation of the ADT Priority Queue
 Section 13.3 of Chapter 13 introduced the ADT priority queue, and Section 14.2 of Chapter 14 offered
an implementation based on a sorted list. At that time, we mentioned that using a heap to defi ne a
priority queue results in a more time-effi cient implementation.

 Once you have implemented the ADT heap, the implementation of the ADT priority queue is
straightforward, because priority queue operations are exactly analogous to heap operations. The pri-
ority value in a priority queue item corresponds to an item in a heap. Thus, the implementation of the
priority queue can reuse ArrayMaxHeap . To do so, we could use an instance of ArrayMaxHeap as a
data member of the class of priority queues, or we could use inheritance. Although a heap provides an
excellent implementation of a priority queue, a priority queue is not a heap. Since an is-a relationship
does not exist between ArrayMaxHeap and the class of priority queues, public inheritance is not
appropriate. But we can use private inheritance, and that is what we will do. Let’s assume that we have
an interface for the ADT priority queue, as Exercise 8 in Chapter 13 asked you to write, so that we can
derive our new class from it as well.

 Listing 17-3 contains a header fi le for a class of priority queues.

 LISTING 17-3 A header fi le for the class Heap_PriorityQueue

 /** ADT priority queue: Heap-based implementation.
 @file Heap_PriorityQueue.h */
#ifndef _HEAP_PRIORITY_QUEUE
#define _HEAP_PRIORITY_QUEUE

 Priority-queue
operations and heap
operations are
analogous

Header fi le

 A Heap Implementation of the ADT Priority Queue 517

#include "ArrayMaxHeap.h"
#include "PriorityQueueInterface.h"

 template < class ItemType>
 class Heap_PriorityQueue : public PriorityQueueInterface<ItemType>,

private ArrayMaxHeap<ItemType>
 {
 public :
 Heap_PriorityQueue();

bool isEmpty() const;
bool add(const ItemType& newEntry);
bool remove();

/** @pre The priority queue is not empty. */
 ItemType peek() const throw (PrecondViolatedExcep);
 }; // end Heap_PriorityQueue

#include "Heap_PriorityQueue.cpp"
 #endif

 Each of the method defi nitions in Listing 17-4 calls the corresponding method in ArrayMaxHeap .
Notice how the method peek handles the exception thrown by the heap’s peekTop method, so that the
message given mentions the priority queue and not the underlying heap.

 LISTING 17-4 An implementation of the class Heap_PriorityQueue

 /** Heap-based implementation of the ADT priority queue.
 @file Heap_PriorityQueue.cpp */

#include "Heap_PriorityQueue.h"

 template < class ItemType>
 Heap_PriorityQueue<ItemType>::Heap_PriorityQueue()
 {
 ArrayMaxHeap<ItemType>();
} // end constructor

 template < class ItemType>
 bool Heap_PriorityQueue<ItemType>::isEmpty() const
 {

return ArrayMaxHeap<ItemType>::isEmpty();
} // end isEmpty

 template < class ItemType>
 bool Heap_PriorityQueue<ItemType>::add(const ItemType& newEntry)
 {

return ArrayMaxHeap<ItemType>::add(newEntry);
} // end add

 template < class ItemType>
 bool Heap_PriorityQueue<ItemType>::remove()
 {

return ArrayMaxHeap<ItemType>::remove();
} // end remove

(continues)

518 CHAPTER 17 Heaps

 template < class ItemType>
ItemType Heap_PriorityQueue<ItemType>::peek() const throw (PrecondViolatedExcep)
 {

try
 {

return ArrayMaxHeap<ItemType>::peekTop();
 }

catch (PrecondViolatedExcep e)
 {

throw PrecondViolatedExcep("Attempted peek into an empty priority queue.");
 } // end try/catch
} // end peek

 A heap versus a binary search tree as a priority queue. How does a heap compare to a binary
search tree as an implementation of a priority queue? If you know the maximum number of items in
the priority queue, the heap is the better implementation.

 Because a heap is complete, it is always balanced, which is its major advantage. If the binary
search tree is balanced, both implementations will have the same average performance for n items:
They both will be O(log n). The height of a binary search tree, however, can increase during the inser-
tion and removal of entries, greatly exceeding log 2n and degrading the implementation’s effi ciency to
O(n) in the worst case. The heap implementation avoids this decrease in performance. In Chapter 19 ,
you will see how to keep a search tree balanced, but the operations that do this are far more complex
than the heap operations.

 Finite, distinct priority values. If you have a fi nite number of distinct priority values, such as the
integers 1 through 20, many items will likely have the same priority value. You could place items
whose priority values are the same in the order in which you encounter them.

 A heap of queues accommodates this situation, one queue for each distinct priority value. To
insert an item into the priority queue, you add a queue for the item’s priority value to the heap, if it is
not already there. Then you insert the item into the corresponding queue. To remove an item from a
priority queue, you remove the item at the front of the queue that corresponds to the highest priority
value in the heap. If this removal leaves the queue empty, you remove the queue from the heap. Pro-
gramming Problem 7 at the end of this chapter treats distinct priority values further.

The heap
implementation
requires knowledge
of the priority
queue’s maximum
size

A heap is always
balanced

A heap of queues

 Question 11 Consider a heap-based implementation of the ADT priority queue. What
does the underlying heap contain after the following sequence of pseudocode operations,
assuming that pQueue is an initially empty priority queue?

 pQueue.add(5)
 pQueue.add(9)
 pQueue.add(6)
 pQueue.add(7)
 pQueue.add(3)
 pQueue.add(4)
 pQueue.remove()
 pQueue.add(9)
 pQueue.add(2)
 pQueue.remove()

CHECK POINT

 Heap Sort 519

 17.4 Heap Sort
 As its name implies, the heap sort algorithm uses a heap to sort an array of items that are in no par-
ticular order. Suppose that we have a heap and an empty array whose size is the number of items in the
heap. A call to peekTop gets the largest item in the heap, and we can place that item at the end of the
array. A call to remove then removes that item from the heap. By repeatedly calling peekTop and
remove , we can move the items from the heap in descending order and place them into sequentially
decreasing positions in the array. The result is an array sorted into ascending order.

 While this approach would work, it uses more memory and time than is necessary. Let’s start
over with an array of unsorted values. Our fi rst step would be to transform the array into a heap.
Recall the private method heapCreate from our implementation of the ADT heap in Section 17.2.2 .
This method transformed the array items , which is a data member of the class of heaps, into a heap.
The body of heapCreate is simply the following loop:

 for (int index = itemCount / 2; index >= 0; index––)
 heapRebuild(index);

 As members of the class ArrayMaxHeap , both heapCreate and heapRebuild have access to the class’s
data members, including the array items and its number of entries, itemCount . To use heapRebuild
in a heap sort, we must revise it so that it has the array and its size as parameters. Let’s declare
heapRebuild as a function outside of ArrayMaxHeap , as follows:

void heapRebuild(int index, ItemType& anArray[], int n)

 After transforming the array into a heap, heap sort partitions the array into two regions—the
Heap region and the Sorted region—as Figure 17-10 illustrates. The Heap region is in anArray[0..
last] , and the Sorted region is in anArray[last + 1..n - 1] . Initially, the Heap region is all of
anArray and the Sorted region is empty.

Building a heap from
an array of items

This version of
heapRebuild
is not in
ArrayMaxHeap

FIGURE 17-10 Heap sort partitions an array into two regions

0 1 n – 1last last+1

Heap Sorted (largest entries in array)

Array indices

 Each step of the algorithm moves an item I from the Heap region to the Sorted region. During
this process, the following statements are true—they are the algorithm’s invariant:

• The Sorted region contains the largest values in anArray , and they are in sorted order—that is,
anArray[n – 1] is the largest item, anArray[n – 2] is the second largest, and so on.

• The items in the Heap region form a heap.

 So that the invariant holds, I must be the item that has the largest value in the Heap region, and there-
fore I must be in the root of the heap. To accomplish the move, you exchange the item in the root of the
heap with the last item in the heap—that is, you exchange anArray[0] with anArray[last] —and
then decrement the value of last . As a result, the item just swapped from the root into anArray[last]

Invariant for
heap sort

520 CHAPTER 17 Heaps

becomes the smallest item in the Sorted region (and is in the fi rst position of the Sorted region). After
the move, you must transform the Heap region back into a heap because the new root may be out of
place. You can accomplish this transformation by using heapRebuild to trickle down the item now in
the root so that the Heap region is once again a heap.

 The following algorithm summarizes these steps:

 // Sorts anArray[0..n-1].
heapSort(anArray: ArrayType, n: integer)

// Build initial heap
for (index = n / 2 down to 0)
{
 // Assertion: The tree rooted at index is a semiheap
heapRebuild(index, anArray, n)

 // Assertion: The tree rooted at index is a heap
}
// Assertion: anArray[0] is the largest item in heap anArray[0..n-1]

// Move the largest item in the Heap region—the root anArray[0] —to the beginning
// of the Sorted region by swapping items and then adjusting the size of the regions
Swap anArray[0] and anArray[n - 1]
heapSize = n - 1 // Decrease the size of the Heap region, expand the Sorted region

while (heapSize > 1)
{
 // Make the Heap region a heap again
heapRebuild(0, anArray, heapSize)

 // Move the largest item in the Heap region—the root anArray[0] —to the beginning
 // of the Sorted region by swapping items and then adjusting the size of the regions

Swap anArray[0] and anArray[heapSize - 1]
heapSize–– // Decrease the size of the Heap region, expand the Sorted region

}

 If we begin with the array shown in Figure 17-9 , the fi rst steps of heap sort are the same as those
shown in the fi gure, and they transform the array into a heap. Figure 17-11 traces the heap sort from
that point on. The C++ implementation of heap sort is left as an exercise.

 The analysis of the effi ciency of heap sort is similar to that of merge sort, as given in Chapter 11 .
Both algorithms are O(n × log n) in both the worst and average cases. Heap sort has an advantage over
merge sort in that it does not require a second array. Quick sort is also O(n × log n) in the average case
but is O(n2) in the worst case. Even though quick sort has poor worst-case effi ciency, it is generally
the preferred sorting algorithm.

Heap sort is
O(n × log n)

 Question 12 Trace the heap sort as it sorts the following array into ascending order: 25 30
20 80 40 60 CHECK POINT

 Heap Sort 521

FIGURE 17-11 A trace of heap sort, beginning with the heap in Figure 17-9

10 9 6 3 2 5After making anArray a heap

Heap

Array anArray

5 9 6 3 2 10After swapping anArray[0] with
anArray[5] and decreasing
the size of the Heap region

Heap

9 5 6 3 2 10After heapRebuild(0, anArray, 4)

Heap

2 5 6 3 9 10

Heap

6 5 2 3 9 10After heapRebuild(0, anArray, 3)

Heap

3 5 2 6 9 10

Heap

5 3 2 6 9 10After rebuildHeap(0, anArray, 2)

Heap

Sorted

Sorted

Sorted

Sorted

Sorted

Sorted

Tree representation of Heap region

10

9 6

3 2 5

5

9 6

3 2

9

5 6

3 2

2

5 6

3

6

5 2

3

3

5 2

5

3 2

2 3 5 6 9 10

3 2 5 6 9 10After heapRebuild(0, anArray, 1)

Heap Sorted

Heap Sorted

2

3

2

3

2

2 3 5 6 9 10

Array is sorted

Heap Sorted

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

After swapping anArray[0] with
anArray[4] and decreasing
the size of the Heap region

After swapping anArray[0] with
anArray[3] and decreasing
the size of the Heap region

After swapping anArray[0] with
anArray[2] and decreasing
the size of the Heap region

After swapping anArray[0] with
anArray[1] and decreasing
the size of the Heap region

2 3 5 6 9 10

0 1 2 3 4 5

522 CHAPTER 17 Heaps

 SUMMARY

 1. Since a heap is a complete binary tree, it has an effi cient array-based implementation.

 2. The root of a maxheap contains the heap’s largest value. The root of a minheap contains the heap’s smallest
value.

 3. To remove the value in the root of a heap, you fi rst replace the value with the value in the last node of the heap.
This step likely results in a semiheap. After deleting the last node, you convert the semiheap to a heap by a
trickle-down step.

 4. To add an item to a heap, you insert a new leaf into the heap so that it remains a complete binary tree. You then
use a trickle-up step to reposition the new value.

 5. A heap that uses an array-based representation of a complete binary tree is a good implementation of a priority
queue when you know the maximum number of items that will be stored at any one time.

 6. Heap sort converts an array into a heap to locate the array’s largest item. This step enables the heap sort to sort an
array in an effi cient manner.

 7. Heap sort, like merge sort, has good worst-case and average-case behaviors, but neither algorithm is as good in
the average case as quick sort. Heap sort has an advantage over merge sort in that it does not require a second
array.

 EXERCISES

 1. Given the minheap myHeap in Figure 17-12 a, show what it would look like after each of the following pseudo-
code operations:

a. myHeap.add(8)
b. myHeap.add(5)
c. myHeap.remove()

 2. Given the maxheap myHeap in Figure 17-12 b, show what it would look like after each of the following pseudo-
code operations:

 a. myHeap.add(16)
 b. myHeap.add(14)
 c. myHeap.remove()

FIGURE 17-12 (a) Minheap for Exercise 1; (b) maxheap for Exercise 2

4

7

1310 12

9

11

13

10

83 7

9

(a) (b)

 Programming Problems 523

1. Complete the implementation fi le for the class ArrayMaxHeap that is described in Section 17.2.2 .

 2. Use a binary search tree in the implementation of HeapInterface . Where in the tree will the largest entry occur?
How effi cient is this implementation?

 3. Implement a class of minheaps using an array. Name your class ArrayMinHeap .

 4. Consider the problem of combining two heaps together into a single heap.

 a. Write an effi cient algorithm for combining two heaps, one with size n and the other with size 1. What is
the Big O performance of your algorithm?

 b. Write an effi cient algorithm for combining two heaps of equal size n . What is the Big O performance of
your algorithm?

 c. Write an effi cient algorithm for combining two arbitrary-sized heaps into one heap. What is the Big O
performance of your algorithm?

 d. Implement the algorithm that you wrote in part c .

 5. Section 2.4.4 of Chapter 2 discussed the problem of fi nding the kth smallest value in an array of n values. Design
an algorithm that uses a minheap to solve this problem. Using the class ArrayMinHeap defi ned in Programming
Problem 3, implement your algorithm as a function at the client level.

 3. Repeat Checkpoint Question 10, but instead use the array 9, 12, 4, 8, 3, 11, 6, 15.

 4. Prove that the root of a maxheap contains the largest value in the tree.

 5. Does the order in which you insert items into a heap affect the heap that results? Explain.

 6. Revise the pseudocode for the ADT heap methods add and heapRebuild so that they do not swap items.

 7. Suppose that you have two items with the same priority value. How does the order in which you insert these
items into a priority queue affect the order in which they will be removed? What can you do if you need entries
whose priority values are equal to be served on a fi rst-come, fi rst-served basis?

 8. Suppose that you wanted the remove operation of a priority queue to remove the entry whose priority value is
smallest instead of largest. You would then use a minheap. Convert the maxheap implementation to a minheap
implementation.

 9. Suppose that you wanted to maintain the index of the item with the smallest value in a maxheap. That is, in addi-
tion to a getTop operation, you might want to support a getMin operation. How diffi cult would it be to maintain
this index within the add and remove operations?

 10. Suppose that after you have placed several items into a priority queue, you need to adjust one of their priority
values. For example, a particular task in a priority queue of tasks could become either more or less urgent. How
can you adjust a heap if a single value changes?

 11. Show that within the pseudocode for the method heapCreate you can replace the statement

 for (index = n - 1 down to 0)

 with

 for (index = n / 2 down to 0)

 12. Trace the action of heapSort on the array given in Checkpoint Question 5.

 13. Implement heapSort in C++.

 14. Revise heapSort so that it sorts an array into descending order.

 PROGRAMMING PROBLEMS

524 CHAPTER 17 Heaps

 6. Implement the to-do list described at the beginning of Section 13.3 in Chapter 13 . Use the class Heap_Priori-
tyQueue as given in Listings 17-3 and 17-4.

 7. Suppose that you wanted to implement a priority queue whose priority values are integers 1 through 20.

 a. Implement the priority queue as a heap of queues, as described in this chapter.
 b. Another solution uses an array of 20 queues, one for each priority value. Use this approach to imple-

ment the priority queue.

 8. Write an interactive program that will monitor the fl ow of patients in a large hospital. The program should
account for patients who check in and out of the hospital and should allow access to information about a given
patient. In addition, the program should manage the scheduling of three operating rooms. Doctors make a
request that includes a patient’s name and a priority value between 1 and 10 that refl ects the urgency of the
operation. Patients are chosen for the operating room by priority value, and patients with the same priority are
served on a fi rst-come, fi rst-served basis.

 The user should use either one-letter or one-word commands to control the program. As you design your
solution, try to identify the essential operations (excuse the pun) that you must perform on the data, and only
then choose an appropriate data structure for implementation. This approach will allow you to maintain the wall
between the main part of the program and the implementations.

 9. Implement a class of priority queues using a binary search tree to contain its items. Discuss the appropriateness
and effi ciency of this implementation.

 Chapter Dictionaries
and Their

Implementations 18
 Contents
 18.1 The ADT Dictionary 526

 18.1.1 An Interface for the ADT Dictionary 530
 18.2 Possible Implementations 531

 18.2.1 A Sorted Array-Based Implementation of the ADT Dictionary 534
 18.2.2 A Binary Search Tree Implementation of the ADT Dictionary 536

 18.3 Selecting an Implementation 538
 18.3.1 Three Scenarios 539

 18.4 Hashing 544
 18.4.1 Hash Functions 547
 18.4.2 Resolving Collisions 549
 18.4.3 The Effi ciency of Hashing 554
 18.4.4 What Constitutes a Good Hash Function? 557
 18.4.5 Dictionary Traversal: An Ineffi cient Operation Under Hashing 559
 18.4.6 Using Hashing and Separate Chaining to Implement the ADT Dictionary 559

 Summary 563
 Exercises 563
 Programming Problems 565

 Prerequisites
 Chapter 4 Link-Based Implementations
 Chapter 10 Algorithm Effi ciency
 Chapter 11 Sorting Algorithms and Their Effi ciency
 Chapter 12 Sorted lists and Their Implementations
 Chapter 15 Trees
 Chapter 16 Tree Implementations

526 CHAPTER 18 Dictionaries and Their Implementations

This chapter considers the ADT dictionary, which is appropriate for problems that must manage
data by value. Several dictionary implementations—which use arrays, linked chains, binary search
trees, and a new technique known as hashing—will be presented, along with their advantages and
disadvantages.

 To make an intelligent choice among the various possible dictionary implementations, you must
analyze the effi ciency with which each of the implementations supports the dictionary operations.
For example, we analyze the time-effi ciency of array-based and link-based dictionary implementa-
tions and conclude that, in many applications, the implementations do not support the dictionary
operations as effi ciently as possible. This conclusion motivates the use of more sophisticated
dictionary implementations.

 18.1 The ADT Dictionary
 When we began our discussion of sorting a collection of data in Chapter 11, we introduced the notion
of a sort key. For example, you might want to sort a collection of data about people based on their
names, their ages, or their zip codes. The criterion you choose is known as the sort key. Similarly, you
might want to search the same collection of data for a name, an address, or a phone number. The crite-
rion you choose for this search is known as a search key .

 Applications that require value-oriented operations are extremely prevalent, as you might imag-
ine. For example, the tasks

• Find the phone number of John Smith
• Delete all the information about the employee with ID number 12908

 involve values instead of positions. We fi rst encountered a value-oriented ADT, the sorted list, in
 Chapter 12 . Chapter 15 presented the binary search tree, which is also a value-oriented ADT. This
section describes yet another value-oriented ADT, the dictionary.

 Consider the data given in Figure 18-1 for some major cities in the world. Each city has certain
information listed, and the design of the data collection enables you to look up this information. For

FIGURE 18-1 A collection of data about certain cities

City

Buenos Aires

Cairo

Cape Town

London

Madrid

Mexico City

Mumbai

New York City

Paris

Sydney

Tokyo

Toronto

Country

Argentina

Egypt

South Africa

England

Spain

Mexico

India

U.S.A.

France

Australia

Japan

Canada

Population
13,170,000

14,450,000

3,092,000

12,875,000

4,072,000

20,450,000

19,200,000

19,750,000

9,638,000

3,665,000

32,450,000

4,657,000

VideoNote

The ADT dictionary

 The ADT Dictionary 527

The ADT dictionary
uses a search key to
identify its items

example, if you wanted to know the population of London, you could scan the column of city
names, starting at the top, until you came to London. Because the cities are listed in alphabetical
order, you could also mimic a binary search. You could begin the search near the middle of the
column determine in which half London lies, and recursively apply the binary search to the appro-
priate half. As you know, a binary search is far more effi cient than scanning the entire column of
city names from the beginning.

 If, however, you wanted to fi nd out which cities in the data collection are in Spain, you would
have no choice but to scan the entire data collection. The alphabetical order of the city names does
not help you for this problem at all. The data arrangement facilitates the search for a given city, but
other types of questions require a complete scan of the data.

 The ADT dictionary , or map , or table , also allows you to look up information easily and has a
special operation for this purpose. Typically, the items in the ADT dictionary are objects that contain
several pieces of data. You can facilitate the retrieval of an item by basing the search on a specifi ed
search key. In the dictionary of cities, for example, you could designate City as the search key if you
often needed to retrieve the information about a city. You can devise implementations of a dictionary
that allow the rapid retrieval of the item(s) whose search key matches some specifi ed value. However,
if you need to retrieve item(s) based on a value that is not a search key, you will have to inspect the
entire dictionary. Therefore, the choice of a search key sends the ADT implementer the following
message:

Arrange the data to facilitate the search for an item, given the value of its search key.

 The basic operations that defi ne the ADT dictionary are as follows:

Note: ADT dictionary operations

• Test whether a dictionary is empty.
• Get the number of items in a dictionary.
• Insert a new item into a dictionary.
• Remove the item with a given search key from a dictionary.
• Remove all items from a dictionary.
• Get the item with a given search key from a dictionary.
• Test whether a dictionary contains an item with a given search key.
• Traverse the items in a dictionary in sorted search-key order.

 For simplicity, we will assume that all items in the dictionary have distinct search keys. This
assumption can affect our design in one of in several ways:

• Distinct search keys can be a precondition of the insertion operation
• The insertion operation can deny an attempt to insert a new entry whose search key already

exists in the dictionary
• The insertion operation can replace an existing entry whose search key matches the search key

of a new entry with the new entry

 We will choose the fi rst option.
 The following operation contract specifi es in more detail an ADT dictionary of items with dis-

tinct search keys. Figure 18-2 shows a UML diagram for a class of dictionaries.

528 CHAPTER 18 Dictionaries and Their Implementations

Various sets of
dictionary
operations are
possible

 ABSTRACT DATA TYPE: DICTIONARY

DATA

• A fi nite number of objects, each associated with a search key.

OPERATIONS

PSEUDOCODE DESCRIPTION

 isEmpty() Task: Sees whether this dictionary is empty.
 Input: None.
 Output: True if the dictionary is empty; otherwise false.

 getNumberOfItems() Task: Gets the number of items in this dictionary.
 Input: None.
 Output: The number of items in the dictionary.

add(searchKey, newItem) Task: Inserts an item into this dictionary according to the item’s search key.
 Input: newItem is the data item to be inserted; searchKey is the item’s associated

search key and differs from all search keys presently in the dictionary.
 Output: True if the insertion is successful, or false if not.

 remove(searchKey) Task: Removes the item with the given search key from this dictionary.
 Input: searchKey is the search key of the item to be removed.
 Output: True if the removal is successful, or false if not.

 clear() Task: Removes all entries from this dictionary.
 Input: None.
 Output: None.

 getItem(searchKey) Task: Gets an item with a given search key from this dictionary.
 Input: searchKey is the search key of the item to be retrieved.
 Output: The item associated with the given search key.

 contains(searchKey) Task: Sees whether this dictionary contains an item with a given search key.
 Input: searchKey is the search key of the desired item.
 Output: True if the dictionary contains the designated item, or false if not.

traverse(visit) Task: Traverses this dictionary and calls a given client function once for each item.
 Input: The client function visit, which exists outside of the ADT implementation.
 Output: visit ’s action occurs once for each item in the dictionary and possibly

alters the item.

Our dictionary
assumes distinct
search keys

 You should realize that these operations are only one possible set of dictionary operations. The
client may require either a subset of these operations or other operations not listed here to fi t the appli-
cation at hand. It may also be convenient to modify the defi nitions of some of the operations. For
example, these operations assume that no two dictionary items have the same search keys. However,
in many applications it is quite reasonable to expect duplicate search keys. If this is the case, you must
redefi ne several of the operations to eliminate the ambiguity that would arise from duplicate search
keys. For example, which item should getItem return if several items have the specifi ed search key?
You should tailor your defi nition of the ADT dictionary to the problem at hand.

 The ADT Dictionary 529

 Although just the operations add, remove , and getItem in the previous set of operations are suf-
fi cient for some applications, you cannot do several signifi cant things without additional operations.
For instance, you cannot display all the dictionary items, because you cannot retrieve a data item
unless you know the value of its search key. Thus, you cannot display the entire dictionary unless you
can traverse the dictionary.

 The traverse operation visits each item in the dictionary once. In defi ning this operation, you
must specify the order in which the traversal should visit the items. One common specifi cation is to
visit the items in sorted order by search key, but perhaps you do not care about the order in which the
items are visited. As you will see, the way you defi ne traverse —if you request it at all—can affect
the way you implement the dictionary.

FIGURE 18-2 UML diagram for a class of dictionaries

Dictionary

+isEmpty(): boolean
+getNumberOfItems(): integer
+add(itemKey: KeyType, newItem: ItemType): boolean
+remove(itemKey: KeyType): boolean
+clear(): void
+geItem(itemKey: KeyType): ItemType
+contains(itemKey: KeyType): boolean
+traverse(visit(item: ItemType): void): void

Other dictionaries
could allow
duplicate search
keys

 traverse visits all
dictionary items

Note: Search keys

 The concept of a search key for the dictionary items is essential to the implementation of the
dictionary. It is important that the value of the search key remain the same as long as the item
is stored in the dictionary. Changing the search key of an existing entry in the dictionary
could make that entry or other dictionary entries impossible to fi nd. Thus, the client should
not be able to modify the value of an entry’s search key once that entry is in the dictionary.

 Like the traversal operations for the ADT binary tree, traverse has a visit function as its argu-
ment. Because visit can do any number of things—including access the dictionary via the ADT
operations—traverse is a versatile operation. We illustrate this versatility with three brief examples,
in which the dictionary contains the data for the cities listed in Figure 18-1 .

Examples: Each of the following tasks will use the city’s name as the search key. The class City
contains all the information for a city, including its name, country, and population. The class has
accessor and mutator methods for each these pieces of data.

• Display, in alphabetical order, the name of each city and its population. This task requires
you to write the city names in alphabetical order. Since the city names are the search keys,
traverse must visit items alphabetically by search key. You pass the method the name of the
function displayItem , which appears in pseudocode as follows:

 displayItem(anItem: ItemType): void

Display anItem.getName()
Display anItem.getPopulation()

Tasks that use the
city’s name as the
search key

530 CHAPTER 18 Dictionaries and Their Implementations

 Although the visitation order of traverse is signifi cant for this fi rst task, it is immaterial for the next
one.

• Increase the population of each city by 10 percent. To perform this task, you pass to
traverse the name of the function updatePopulation , which we defi ne in pseudocode as
follows:

updatePopulation(anItem: ItemType): void

 anItem.setPopulation(1.1 * anItem.getPopulation())

 18.1.1 An Interface for the ADT Dictionary

 To complete our specifi cation of the ADT dictionary, we write the interface shown in Listing 18-1.
Note that the interface specifi es two data-type parameters— KeyType and ItemType —in the
statement

 template<class KeyType , class ItemType>

 These parameters make it possible for the data type of the dictionary’s data items to differ from the
data type of their search keys.

LISTING 18-1 An interface for the ADT dictionary

 /** An interface for the ADT dictionary.
 @file DictionaryInterface.h */

#ifndef _DICTIONARY_INTERFACE
#define _DICTIONARY_INTERFACE

#include "NotFoundException.h"

 template < class KeyType , class ItemType>
 class DictionaryInterface
 {
 public :
 /** Sees whether this dictionary is empty.
 @return True if the dictionary is empty;
 otherwise returns false. */

virtual bool isEmpty() const = 0;

 /** Gets the number of items in this dictionary.
 @return The number of items in the dictionary. */

virtual int getNumberOfItems() const = 0;

 /** Inserts an item into this dictionary according to the item’s
 search key.
 @pre The search key of the new item differs from all search
 keys presently in the dictionary.
 @post If the insertion is successful, newItem is in its
 proper position within the dictionary.
 @param searchKey The search key associated with the item to be inserted.
 @param newItem The item to add to the dictionary.
 @return True if item was successfully added, or false if not. */

virtual bool add(const KeyType& searchKey, const ItemType& newItem) = 0;

 Possible Implementations 531

 /** Removes an item with the given search key from this dictionary.
 @post If the item whose search key equals searchKey
 existed in the dictionary, the item was removed.
 @param searchKey The search key of the item to be removed.
 @return True if the item was successfully removed, or false if not. */

virtual bool remove(const KeyType& searchKey) = 0;

 /** Removes all entries from this dictionary. */
virtual void clear() = 0;

 /** Retrieves an item with a given search key from a dictionary.
 @post If the retrieval is successful, the item is returned.
 @param searchKey The search key of the item to be retrieved.
 @return The item associated with the search key.
 @throw NotFoundException if the item does not exist. */

virtual ItemType getItem(const KeyType& searchKey) const
throw (NotFoundException) = 0;

 /** Sees whether this dictionary contains an item with a given
 search key.
 @post The dictionary is unchanged.
 @param searchKey The search key of the item to be retrieved.
 @return True if an item with the given search key exists in the
 dictionary. */

virtual bool contains(const KeyType& searchKey) const = 0;

 /** Traverses this dictionary and calls a given client function once
 for each item.
 @post The given function’s action occurs once for each item in the
 dictionary and possibly alters the item.
 @param visit A client function. */

virtual void traverse(void visit(ItemType&)) const = 0;
 }; // end DictionaryInterface
 #endif

Question 1 Using the ADT dictionary operations, write pseudocode for a replace func-
tion at the client level that replaces the dictionary item whose search key is x with another
item whose search key is also x .

CHECK POINT

 18.2 Possible Implementations
 In previous chapters, ADT implementations often were either array based or link based. That is, you
used either an array or a chain of linked nodes to store the ADT’s items. Such implementations are
called linear because they represent items one after another in a data structure and thus mirror the fl at,
list-like appearance of the city data given in Figure 18-1 .

 Linear implementations of a dictionary are certainly possible and fall into four categories:

• Sorted (by search key), array-based
• Sorted (by search key), link-based

Four categories
of linear
implementations

532 CHAPTER 18 Dictionaries and Their Implementations

• Unsorted, array-based
• Unsorted, link-based

 The unsorted implementations store the items in no particular order; they can insert a new item
into any convenient location. Notice that the add operation has two parameters: a data item and the
item’s search key. The sorted implementations must insert a new item into its proper position as deter-
mined by the value of its search key. Whether sorted or unsorted, the dictionary must not only store
both pieces of data—search key and data item—but also form an association between the two. To do
so, we will encapsulate each item with its search key into an object of a new class, Entry , as pictured
in Figure 18-3 .

FIGURE 18-3 A dictionary entry

Data itemSearch key

 The array-based and link-based linear implementations have the basic structures shown in
 Figure 18-4 . Both implementations maintain a count of the present number of items in the diction-
ary. The two implementations in this fi gure happen to be sorted. As you will see, the unsorted and
sorted implementations have their relative advantages and disadvantages.

FIGURE 18-4 The data members for two sorted linear implementations of the ADT dictionary
for the data in Figure 18-1 : (a) array based; (b) link based

headPtr

9

0 1 size – 1 MAX_SIZE – 1

itemssize

(a)

Athens9

size

(b)

BarcelonaAthens Venice

VeniceBarcelonaAthens

 Note: A linear array-based implementation of the ADT dictionary must shift data dur-
ing an insertion in sorted order and when removing an entry. These shifts can be expen-
sive, particularly for large dictionaries.

 Although a linear link-based implementation of the ADT dictionary eliminates the
need to shift data, it does not support the insertion and removal operations any more effi -
ciently than does an array-based implementation, because you cannot perform a binary
search in a reasonable fashion.

 The header fi le for the class Entry is in Listing 18-2. Notice that, like DictionaryInterface , the
class Entry specifi es two data-type parameters. We leave Entry ’s implementation for you as an exercise.

 Possible Implementations 533

LISTING 18-2 A header fi le for a class of dictionary entries

 /** A class of entry objects for an array-based implementation of the
 ADT dictionary.
 @file Entry.h */

#ifndef _ENTRY
#define _ENTRY

 template < class KeyType , class ItemType>
 class Entry
 {
 private :
 ItemType item;
 KeyType searchKey;

 protected :
void setKey(const KeyType& searchKey);

 public :
 Entry();
 Entry(ItemType newEntry, KeyType searchKey);
 ItemType getItem() const ;
 KeyType getKey() const ;

void setItem(const ItemType& newEntry);

bool operator==(const Entry<KeyType, ItemType>& rightHandItem) const ;
bool operator>(const Entry<KeyType, ItemType>& rightHandItem) const ;

 }; // end Entry
#include "Entry.cpp"
 #endif

Note: Observations about the class Entry

 The class Entry has two data members, a dictionary item and an associated search key. It
also has a set method and a get method for the item portion, but only a public get method
for the search key. This design prevents us from accidentally changing an Entry object’s
search key, as doing so would destroy the integrity of the dictionary. However, Entry
does have a protected method setKey . This method is necessary so that the constructor
of any derived class of Entry can initialize the search key.

 Notice that the class overloads the operators == and > . While we will not need these
overloaded operators for the array-based dictionary, we will use them when we store the
dictionary’s entries in a binary search tree.

 At this point in your study of ADTs, you have other choices for a dictionary implementation. For
instance, you can implement the ADT dictionary by using the ADT list, sorted list, or binary search
tree. The binary search tree implementation, as illustrated in Figure 18-5 , is an example of a nonlin-
ear implementation and offers several advantages over linear implementations. Among these advan-
tages is the opportunity to reuse the implementation of the ADT binary search tree discussed in
 Chapter 16 . Implementations based on the ADTs list and sorted list also share this advantage, and
they are left for you to consider as exercises.

A binary search tree
implementation is
nonlinear

534 CHAPTER 18 Dictionaries and Their Implementations

 We also will consider an important unsorted implementation that uses a technique known as
hashing. Although based on an array, this implementation is unlike any you have seen in this book.

 18.2.1 A Sorted Array-Based Implementation of the ADT Dictionary

 Whether a dictionary organizes its entries in sorted order by search key or leaves them unsorted, an
array-based implementation has data members that are similar to those in array-based implementa-
tions of other ADTs that you have seen, namely an array of data items, a count of the items, and a
maximum number of items. We have already seen that the data items will be Entry objects that con-
tain both a search key and some other data.

 For a sorted dictionary, the operation traverse should visit the dictionary’s data items in an
order such that their search keys are in sorted order. Note that we have specifi ed this behavior in the
header fi le for the class of dictionaries given in Listing 18-3. Notice also that this dictionary requires
that its search keys be unique. This requirement will simplify our implementation, but Exercises 7
and 8 at the end of this chapter ask you to remove this restriction.

 The declaration of the class ArrayDictionary contains nothing unusual, but it does declare two
private methods— destroyDictionary and findEntryIndex . The former method can be called by
both the destructor and the public method clear . The latter method locates the entry in the array
items that has a given search key. This method is useful for the public methods remove , getItem , and
contains . Notice that both private methods perform operations needed by more than one public
method, enabling us to avoid repetitive code in the defi nitions of the public methods.

FIGURE 18-5 The data members for a binary search tree implementation of the ADT
dictionary for the data in Figure 18-1

size

9

rootPtr

Cairo

Barcelona

NewYork

Toronto

VeniceParisLondon

RomeAthens

 Possible Implementations 535

LISTING 18-3 A header fi le for the class ArrayDictionary

 /** An array-based implementation of the ADT dictionary
 that organizes its data items in sorted search-key order.
 Search keys in the dictionary are unique.
 @file ArrayDictionary.h */

#ifndef _ARRAY_DICTIONARY
#define _ARRAY_DICTIONARY

#include "DictionaryInterface.h"
#include "Entry.h"
#include "NotFoundException.h"

 template < class KeyType, class ItemType>
 class ArrayDictionary : public DictionaryInterface<KeyType, ItemType>
 {
 private :

static const int DEFAULT_CAPACITY = 21; // Small capacity to test for
 // a full dictionary

 Entry<KeyType, ItemType>* items; // Array of dictionary entries
int itemCount; // Current count of dictionary items
int maxItems; // Maximum capacity of the dictionary

void destroyDictionary();
int findEntryIndex(int firstIndex, int lastIndex,

const KeyType& searchKey) const ;

 public :
 ArrayDictionary();
 ArrayDictionary(int maxNumberOfEntries);
 ArrayDictionary(const ArrayDictionary<KeyType, ItemType>& dict);

virtual ~ArrayDictionary();

bool isEmpty() const ;
int getNumberOfItems() const ;
bool add(const KeyType& searchKey, const ItemType& newItem);
bool remove(const KeyType& searchKey);
void clear();

 ItemType getItem(const KeyType& searchKey) const
 throw (NotFoundException);

bool contains(const KeyType& searchKey) const ;

/** Traverses the items in this dictionary in sorted search-key order
and calls a given client function once for each item. */

void traverse(void visit(ItemType&)) const ;
 }; // end ArrayDictionary
#include "ArrayDictionary.cpp"
 #endif

 The requirement that we traverse the dictionary in sorted search-key order provides one rea-
son to sort the array items according to the search key. While we could sort items each time
traverse is called, maintaining this array in sorted order has advantages other than avoiding a
sorting step. One important advantage of a sorted array is that the private method findEntryIndex
can perform a recursive binary search when looking for a particular search key. Notice that the

536 CHAPTER 18 Dictionaries and Their Implementations

This dictionary
implementation has
a binary search tree
as a data member

declaration of this method in Listing 18-3 provides two indices as parameters to indicate the por-
tion of the array to search.

 The public method add bears the responsibility for keeping the array items sorted. Let’s examine
its defi nition:

 template < class KeyType, class ItemType>
 bool ArrayDictionary<KeyType, ItemType>::add(const ItemType& newItem,

const KeyType& searchKey)
 {

bool ableToInsert = (itemCount < maxItems);
if (ableToInsert)

 {
// Make room for new entry by shifting all entries at
// positions >= newPosition toward the end of the array
// (no shift if newPosition == itemCount + 1). Performing
// a binary search doesn’t help here, because we need to
// shift the entries while looking for the insertion location.
int index = itemCount;

// Short-circuit evaluation is important
while ((index > 0) && (searchKey < items[index-1].getKey()))

 {
 items[index] = items[index-1];
 index–-;
 } // end while

// Insert new entry
 items[index] = Entry<KeyType, ItemType>(newItem, searchKey);
 itemCount++; // Increase count of entries
 } // end if

return ableToInsert;
} // end add

 Programming Problem 1 at the end of this chapter asks you to complete the implementation of
ArrayDictionary .

Question 2 Explain how the while loop in the previous defi nition of the method add
locates the insertion point for the new entry in the array items .

CHECK POINT

Question 3 Why is short-circuit evaluation important in the while loop of the previous
defi nition of the method add ?

Question 4 We mentioned that the remove method calls the private method findEntryIndex
to locate the entry to remove. Assuming that the entry is located, what does remove need to do
after it gets the index of this entry?

Question 5 What is the defi nition of the method traverse for ArrayDictionary ?

 18.2.2 A Binary Search Tree Implementation of the ADT Dictionary

 Although linear implementations of the ADT dictionary are fi ne for specifi c applications, they are not
suitable as general-purpose classes. The following nonlinear link-based implementation uses a binary
search tree to represent the items in the ADT dictionary. That is, the dictionary class will use
composition and thus will have a binary search tree as one of its data members. In this way, our class
reuses the class BinarySearchTree from Chapter 16 .

 Possible Implementations 537

The header fi le. The header fi le in Listing 18-4 declares the class TreeDictionary . Like
ArrayDictionary , TreeDictionary stores Entry objects that encapsulate data items with their cor-
responding search keys. Much of this class is the same as or is similar to ArrayDictionary , except
for the private section. It is there that we declare the binary search tree, itemTree , along with a method
to help with the traversal operation.

LISTING 18-4 A header fi le for the class TreeDictionary

 /** A binary search tree implementation of the ADT dictionary
 that organizes its data items in sorted search-key order.
 Search keys in the dictionary are unique.
 @file TreeDictionary.h */

#ifndef _TREE_DICTIONARY
#define _TREE_DICTIONARY

#include "DictionaryInterface.h"
#include "BinarySearchTree.h"
#include "Entry.h"
#include "NotFoundException.h"

 template < class KeyType, class ItemType>
 class TreeDictionary : public DictionaryInterface<KeyType, ItemType>
 {
 private :

// Binary search tree of dictionary entries
 BinarySearchTree<Entry<KeyType, ItemType> > itemTree;

void traversalHelper(Entry<KeyType, ItemType>& theEntry);

 public :
 TreeDictionary();
 TreeDictionary(int maxNumberOfEntries);
 TreeDictionary(const TreeDictionary<KeyType, ItemType>& dict);

virtual ~TreeDictionary();

// The declarations of the public methods appear here and are the
// same as given in Listing 18-3 for the class ArrayDictionary.

 . . .

 }; // end TreeDictionary
#include "TreeDictionary.cpp"
 #endif

The method implementations. Several of the methods in TreeDictionary simply call the analo-
gous method in BinarySearchTree . For example, the method add creates an Entry object from the
item and search key passed to it and then passes that object to the add method in BinarySearchTree .
The resulting defi nition follows:

 template < class KeyType, class ItemType>
 bool TreeDictionary<KeyType, ItemType>::add(const ItemType& newItem,

const KeyType& searchKey)
 {

return itemTree.add(Entry<KeyType, ItemType>(newItem, searchKey));
} // end add

538 CHAPTER 18 Dictionaries and Their Implementations

 Perspective,
effi ciency, and
motivation are
reasons for studying
the linear
implementations

 Each of the methods remove , getItem , and contains is passed a search key as its only argument.
Each method must search the binary search tree for an Entry object that has a particular search key.
How will TreeDictionary ’s method remove , for example, call BinarySearchTree ’s method remove ?
After all, it requires an Entry object as its argument.

 The methods of BinarySearchTree compare Entry objects by using either of the operators == or
> . These operators are the same ones that Entry overloads. Thus, we can control how Binary-
SearchTree will make these comparisons. Because we are searching for a specifi c search key, we
overload == and > to examine only the search-key portion of an Entry object. For example, the defi ni-
tion of the overloaded operator == in Entry is

 template < class KeyType, class ItemType>
 bool Entry<KeyType, ItemType>::operator==(
 const Entry<KeyType, ItemType>& rightHandItem) const
 {

return (searchKey == rightHandItem.getKey());
} // end operator==

 Now that BinarySearchTree can compare Entry objects based only on their search keys, how
does TreeDictionary ’s method remove call BinarySearchTree ’s remove ? Because Binary-
SearchTree ’s remove expects an Entry object as an argument, TreeDictionary ’s remove creates an
Entry object that has a specifi c search key and any item portion, and passes it to the invoked method.
To create this Entry object, you can write the following expression:

 Entry<KeyType, ItemType>(ItemType(), searchKey)

 The result is a call to Entry ’s second constructor with these two arguments: the result of a call to
ItemType ’s default constructor and the search key that was passed to TreeDictionary ’s remove as an
argument. Thus, the remove method in TreeDictionary has the following defi nition:

 template < class KeyType, class ItemType>
 bool TreeDictionary<KeyType, ItemType>::remove(const KeyType& searchKey)
 {

return itemTree.remove(Entry<KeyType, ItemType>(ItemType(), searchKey));
} // end remove

 We leave the rest of this implementation for you to complete as an exercise.

Note: Usually a binary search tree can support the ADT dictionary operations quite effi -
ciently. However, in the worst case, when the tree approaches a linear shape, the perform-
ance of the dictionary operations is comparable to that of a linear link-based implementation.
If a given application cannot tolerate poor performance, you should use the dictionary
implementations presented either in Section 18.4 of this chapter or in Chapter 19 .

 18.3 Selecting an Implementation
 A major goal of this chapter is to indicate how the requirements of a particular application infl u-
ence the selection of an implementation. The discussion here elaborates on the comments made in
 Section 10.2.4 of Chapter 10. Some applications require all of the ADT dictionary operations given
earlier; others require either a subset of them or additional operations. Before choosing an imple-
mentation of the ADT dictionary, you as problem solver should carefully analyze which operations

 Selecting an Implementation 539

you really need for the application at hand. It is tempting to want all possible operations, but this
strategy is a poor one, because often one implementation supports some of the operations more
effi ciently than another implementation does. Therefore, if you include an operation that you never
use, you might end up with an implementation of the ADT that does not best suit your purpose.

 In addition to knowing what operations are needed for a given application, the ADT implementer
should know approximately how often the application will perform each operation. Although some
applications may require many occurrences of every operation, other applications may not. For exam-
ple, if you maintained a dictionary of major cities—such as those in Figure 18-1 —you would expect
to perform many more retrieval operations than additions or removals. Thus, if you seldom add items
to a dictionary, you can tolerate an implementation that results in an ineffi cient add operation, as long
as frequently used operations are effi cient. Of course, as Chapter 10 mentioned, if an ADT operation
is to be used in a life-or-death situation, that operation must be effi cient even if you rarely need it. The
necessary operations, their expected frequency of occurrence, and their required response times are
therefore some factors that infl uence which implementation of an ADT you should select for a par-
ticular application. You should, however, remain conscious of factors other than effi ciency, as dis-
cussed in Chapter 10 .

 18.3.1 Three Scenarios

 Consider now several different application scenarios, each of which requires a particular mix of the
dictionary operations. The analysis of various implementations of the ADT dictionary will illustrate
some of the basic concerns of the analysis of algorithms. You will see, given an application, how to
select an implementation that supports in a reasonably effi cient manner the required mix of diction-
ary operations.

 Scenario A: Insertion and traversal in no particular order. Mary’s sorority plans to raise money
for a local charity. Tired of previous fund-raisers, Mary suggests a brainstorming session to dis-
cover a new money-making strategy. As sorority members voice their ideas, Mary records them by
adding each new thought to a dictionary. Later, she will print a report of all the ideas currently in
the dictionary. Assume that the organization of the report is irrelevant—the items can be sorted or
unsorted. Also assume that operations such as retrieval, removal, or traversal in sorted order either
do not occur or occur so infrequently that they do not infl uence your choice of an implementation.

 For this application, maintaining the items in a sorted order has no advantage. In fact, by not
maintaining a sorted order, the add operation can be quite effi cient. For either unsorted linear imple-
mentation, you can insert a new item into any convenient location. For an unsorted array-based imple-
mentation, you can easily insert a new item after the last item in the array—that is, at location
items[itemCount] . Figure 18-6 a shows the result of this insertion after itemCount has been updated.
For a link-based implementation, you can simply insert a new item at the beginning of the linked
chain. As Figure 18-6 b illustrates, the head pointer points to the new item, and the new item points to
the item that was previously fi rst in the chain. Thus, you can insert a new item quickly into either
unsorted implementation of a dictionary; in fact, the add operation is O(1): It requires a constant time
for either implementation regardless of the dictionary size.

 Should you choose the array-based or the link-based implementation? As you have seen with
other ADTs, an implementation that uses dynamically allocated memory is appropriate if you do not
have a good estimate of the maximum possible size of the dictionary. Mary’s brainstorming session
likely falls into this category. On the other hand, if you know that the dictionary’s maximum size is not
drastically larger than its expected size, 1 the choice is mostly a matter of style. An array-based

What operations are
needed?

How often is each
operation required?

An unsorted order is
effi cient

 1 Section 4.5 of Chapter 4 discussed how the expected and maximum number of items in an ADT affect an array-based
implementation.

Array-based versus
pointer-based

540 CHAPTER 18 Dictionaries and Their Implementations

implementation requires less space than a link-based implementation, because no explicit pointer is
stored. The extra cost of this pointer relative to the size of the data items, however, is insignifi cant in
most situations because large data items are typical.

 Should you use a binary search tree in the dictionary implementation for this application?
Because such an implementation orders the dictionary items, it does more work than the applica-
tion requires. In fact, as you saw in Chapter 15 , insertion into a binary search tree is O(log n) in the
average case; it is slower than the O(1) linear implementations.

 Scenario B: Retrieval. When you use a word processor’s thesaurus to look up synonyms for a word,
you use a retrieval operation. If an ADT dictionary represents the thesaurus, each dictionary item is a
record that contains both the word—which is the search key—and the word’s synonyms. Frequent
retrieval operations require a dictionary implementation that allows you to search effi ciently for an
item, given its search key. Typically, you cannot alter the thesaurus, so no insertion or removal opera-
tions are necessary.

 For an array-based implementation, you can use a binary search to retrieve a particular word’s
synonyms, if the array is sorted. On the other hand, for a link-based implementation, you must
traverse the linked chain from its beginning until you encounter the word. The binary search performs
this retrieval in signifi cantly less time than is required to traverse a linked chain. Two questions come
to mind at this point:

• Is a binary search of a linked chain possible?
• How much more effi cient is a binary search of an array than a sequential search of a linked

chain?

 Can you perform a binary search of a linked chain? Yes, but too ineffi ciently to be practical. Con-
sider the very fi rst step of the binary search algorithm:

Look at the “middle” item in the dictionary

FIGURE 18-6 Insertion for unsorted linear implementations: (a) array based; (b) link based

0 1 k – 1 maxItems – 1

itemsitemCount

k + 1

itemCount

k + 1

(a)

Data Data Data(b)

k + 1k

? ?
New
item

DataDataData

New
item

Old value

New value

headPtr

Place new item
 in next available

array location

Insert new node
 at beginning

of chain

A sorted array-
based
implementation can
use a binary search

 Questions

A binary search is
impractical with a
link-based
implementation

 Selecting an Implementation 541

 If n items are in a linked chain, how can you possibly get to the middle one? You can traverse the chain
from its beginning until you have visited n / 2 items. But, as you will see in the answer to the second
question posed before, just this fi rst step will often take longer than the entire binary search of an
array. Further, you would have the same problem of fi nding the “middle” item at each recursive step.
It is thus not practical to perform a binary search for the linear link-based implementation. This
observation is extremely signifi cant.

 On the other hand, if n items are in an array items , the middle item is at location n / 2 and can be
accessed directly. Thus, a binary search of an array requires considerably less time than an algorithm
that must inspect every item in the dictionary. What does “considerably less time” mean? As you
know, without the ability to perform a binary search, you may have to inspect every item in the dic-
tionary, either to locate an item with a particular search key or to detect that such an item is not
present. In other words, if a dictionary has size n, you will have to inspect as many as n items; thus,
such a search is O(n). How much better can you do with a binary search? Recall from Chapter 10 that
a binary search is O(log 2n) in its worst case and that an O(log 2n) algorithm is substantially more effi -
cient than an O(n) algorithm. For example, log 2 1,024 = 10 and log 2 1,048,576 = 20. For a large dic-
tionary, the binary search has an enormous advantage.

 Because a thesaurus is probably large, you must choose an implementation for which a binary
search is practical. As you have just seen, this observation eliminates the linear link-based imple-
mentations. The sorted array-based implementation is fi ne here, because you know the size of the
thesaurus.

 An implementation using a binary search tree is also a good choice for retrieval-dominated
applications. As you saw in Chapter 15 , searching a binary search tree is O(log n) if the tree is bal-
anced. Because the thesaurus does not change, you can create a balanced tree that remains balanced
and be assured of an effi cient search. Although the pointers in a binary search tree add a space cost, as
scenario A mentioned, this cost is relatively insignifi cant when the data items are large.

 Scenario C: Insertion, removal, retrieval, and traversal in sorted order. If your local library has
computerized its catalog of books, you perform a retrieval operation when you access this catalog.
The library staff uses insertion and removal operations to update the catalog and a traversal to save the
entire catalog in a fi le. Presumably, retrieval is the most frequent operation, but the other operations
are not infrequent enough to ignore. If they were, this scenario would be the same as scenario B!

 To insert into a dictionary an item whose search key is X , you must fi rst determine where the item
belongs in the dictionary’s sorted order. Similarly, to remove from the dictionary an item that has X as
its search key, you must fi rst locate the item. Thus, both the add and remove operations perform the
following steps:

1. Find the appropriate position in the dictionary.
2. Insert into (or remove from) this position.

 Step 1 is far more effi cient if the dictionary implementation is array based instead of link based. For
an array-based implementation, you can use a binary search to determine—in the case of insertion—
where the new item X belongs and—in the case of removal—where the item is located. On the other
hand, for a link-based implementation, you know from the discussion in scenario B that a binary
search is impractical, and so you must traverse the chain from its beginning. You also saw in scenario
B that it takes signifi cantly less time to perform a binary search of an array than it does to traverse a
linked chain.

 Thus, because it facilitates a binary search, the array-based implementation is superior with
respect to step 1 of add and remove . However, as you may have guessed, the link-based implementa-
tion is better for step 2, the actual insertion or removal of the item. Under the array-based implemen-
tation, add must shift array entries to make room for the new item, as Figure 18-7 a illustrates. The
worst case would require that every array entry be shifted. On the other hand, under the link-based

If you know the
dictionary’s
maximum size, a
sorted array-based
implementation is
appropriate for
frequent retrievals

If you do not know
the dictionary’s
maximum size,
use a binary
search tree in the
implementation

Both add and
remove perform
these two steps

Use an array-based
implementation for
step 1

Use a link-based
implementation for
step 2

542 CHAPTER 18 Dictionaries and Their Implementations

Despite certain
diffi culties, linear
implementations of
a dictionary can be
appropriate

The sorted linear
implementations are
comparable here,
but none is suitable

A sorted
array-based
implementation
shifts data during
insertions and
removals

implementation, you can accomplish this second step simply by changing at most two pointers, as
 Figure 18-7 b indicates. Similar comments are true for the remove operation. It must shift array entries
to fi ll in the gap created when an item is removed, but it needs to change only two pointers at most to
remove an item from a linked chain.

 When you take steps 1 and 2 together, you will fi nd that the sorted array-based and sorted link-
based implementations of add or remove both require roughly the same amount of time—they are
both O(n). Neither implementation supports these two operations particularly well. The binary search
tree implementation, however, combines the best features of the two linear implementations. Because
it is link based, you avoid shifting data, and the dictionary can grow dynamically as needed. You can
also retrieve items from a binary search tree effi ciently.

Note: When designing an ADT to solve a particular problem, do not include unneces-
sary operations. The proper choice of an implementation depends on the mix of requested
operations, and if you request an operation that you do not need, you might get an imple-
mentation that does not best support what you are really doing.

Summary. Although linear implementations of a dictionary are less sophisticated and generally
require more time to perform their operations than a binary search tree implementation, they are nev-
ertheless useful for many applications. Because linear implementations are easy to understand con-
ceptually, they are appropriate for dictionaries that will contain only a small number of entries. In
such cases effi ciency is not as great a concern as are simplicity and clarity. Even when a dictionary is
large, a linear implementation may still be appropriate for applications that can use an unsorted dic-
tionary and have few removals.

FIGURE 18-7 Insertion for sorted linear implementations: (a) array based; (b) pointer based

DataData

New
item

Old value

0 1 k maxItems – 1

items

(a)

Data Data

headPtr

(b)

New
item

Data Data Data Data Data ? ?

k + 1k – 1

Shift items to
make room
for new item

Insert new node
 in sorted order

 Selecting an Implementation 543

 The nonlinear, binary search tree implementation of the ADT dictionary can be a better choice
than a linear implementation, in general. If an n -node binary search tree has minimum height—that
is, has height < log 2 (n + 1) =—the binary search tree implementation of the ADT dictionary certainly
succeeds where the linear implementations failed: You can, with effi ciency comparable to that of a
binary search, locate an item in both the retrieval operation and the fi rst steps of the add and remove
operations. In addition, the link-based implementation of the binary search tree permits dynamic
allocation of its nodes, so that it can handle a dictionary whose maximum size is unknown.

 This implementation also effi ciently performs the second step of the insertion and removal oper-
ations: The actual insertion or removal of a node requires only a few pointer changes—plus a short
traversal to the inorder successor if the node to be removed has two children—rather than the possible
shifting of all the dictionary entries, as the array-based implementations require. The binary search
tree implementation therefore combines the best aspects of the two linear implementations, yet avoids
their disadvantages.

 As Chapter 15 showed, however, the height of a binary search tree depends on the order in
which you perform the add and remove operations on the tree and can be as large as n . If the inser-
tion and removal operations occur in a random order, the height of the binary search tree will be
quite close to its minimum value. You do need to watch for a possible increase in the tree’s height,
however, and the resulting decrease in performance. If instead you use a variation of the binary
search tree that remains balanced—as the next chapter will describe—you can keep the height of
the tree near log 2n .

 Figure 18-8 summarizes the order of the insertion, removal, retrieval, and traversal operations for
the dictionary implementations discussed so far in this chapter.

Note: Comparing linear implementations of the ADT dictionary

• An unsorted array-based implementation of the ADT dictionary can effi ciently insert
an item at the end of an array. A removal, however, will usually require shifting data so
that no gap remains in the array. Because the items are unsorted, retrieval will require a
sequential search.

• A sorted array-based implementation usually requires shifting data during both inser-
tions and removals. Retrieval, however, can use an effi cient binary search because the
items are sorted.

• An unsorted link-based implementation can effi ciently insert an item at the beginning
of a linked chain. A removal will require a sequential search but no data shifts. Re-
trieval will also require a sequential search.

• A sorted link-based implementation requires a sequential search but no data shifts dur-
ing both insertions and removals. Retrieval will also require a sequential search.

A binary search
tree implementation
is a better choice
than a linear
implementation, in
general

A balanced binary
search tree
increases the
effi ciency of the
ADT dictionary
operations

FIGURE 18-8 The average-case order of the ADT dictionary operations for various
implementations

Insertion

O(1)

O(1)

O(n)

O(n)

O(log n)

Removal

O(n)

O(n)

O(n)

O(n)

O(log n)

Retrieval

O(n)

O(n)

O(log n)

O(n)

O(log n)

Traversal

O(n)

O(n)

O(n)

O(n)

O(n)

Unsorted array-based

Unsorted link-based

Sorted array-based

Sorted link-based

Binary search tree

544 CHAPTER 18 Dictionaries and Their Implementations

 18.4 Hashing
 The binary search tree provides an excellent implementation of the ADT dictionary, as do the bal-
anced search trees discussed in Chapter 19 . They allow you to perform all of the dictionary operations
quite effi ciently. If, for example, a dictionary contains 10,000 items, the operations getItem, add, and
remove each require approximately log 2 10,000 ≈ 13 steps. As impressive as this effi ciency may be,
situations do occur for which the search-tree implementations are not adequate.

 As you know, time can be vital. For example, when a person calls the 911 emergency system, the
system detects the caller’s telephone number and searches a database for the caller’s address. Simi-
larly, an air traffi c control system searches a database of fl ight information, given a fl ight number.
Clearly these searches must be rapid.

 A radically different strategy is necessary to locate (and insert or remove) an item virtually
instantaneously. Imagine an array table of N items—with each array slot capable of holding a single
dictionary item—and a seemingly magical box called an “address calculator.” Whenever you have a
new item that you want to insert into the dictionary, the address calculator will tell you where you
should place it in the array. Figure 18-9 illustrates this scenario.

 You can thus easily perform an insertion into the dictionary as follows:

 add(newItem: ItemType): boolean

i = the array index that the address calculator gives you for newItem’s search key
table[i] = newItem

 This add operation is O(1); that is, it requires constant time.
 You also use the address calculator for the getItem and remove operations. If you want to retrieve

an item that has a particular search key , you simply ask the address calculator to tell you where it
would insert such an item. Because you would have inserted the item earlier by using the add algo-
rithm just given, if the desired item is present in the dictionary, it will be in the array location that the
address calculator specifi es.

Note: Perspective

 You might wonder why, if the binary search tree implementation of the ADT dictionary is
so good, we studied the linear implementations at all. There are three reasons. The fi rst
and foremost reason is perspective. Section 10.2.4 of Chapter 10 spoke of the dangers of
overanalyzing a problem. If the size of the problem is small, the difference in effi ciency
among the possible solutions is likely insignifi cant. In particular, if the size of the dic-
tionary is small, a linear implementation is adequate and simple to understand.

 The second reason is effi ciency: A linear implementation can be quite effi cient for
certain situations. For example, a linear implementation was best for scenario A, where
the predominant operations are insertion and traversal in no particular order. For scenario
B, where the predominant operation is retrieval, the sorted array-based implementation is
adequate, if the maximum number of items is known. For these situations, a concern for
simplicity suggests that you use a linear implementation and not a binary search tree,
even for large dictionaries.

 The third reason is motivation. By seeing scenarios for which the linear implementa-
tions are not adequate, you are forced to look beyond arrays and consider other imple-
mentations, such as the binary search tree. Actually looking at both a linear
implementation and a binary search tree implementation allows you to see these inade-
quacies more clearly.

 Dictionary
operations without
searches

VideoNote

Hashing

 Hashing 545

 Thus, the getItem operation appears in pseudocode as follows:

 getItem(searchKey: KeyType): ItemType throw NotFoundException

i = the array index that the address calculator gives you for an item whose search
key equals searchKey

if (table[i].getKey() == searchKey)
return table[i]

else
Throw NotFoundException

 Similarly, the pseudocode for the remove operation is

 remove(searchKey: KeyType): boolean

i = the array index that the address calculator gives you for an item whose search
key equals searchKey

if (table[i].getKey() == searchKey)
{

Remove the item from table[i]
 isSuccessful = true

}
else

 isSuccessful = false

return isSuccessful

 It thus appears that you can perform the operations getItem, add, and remove virtually instanta-
neously. You never have to search for an item; instead, you simply let the address calculator determine
where the item should be. The amount of time required to carry out the operations is O(1) and depends
only on how quickly the address calculator can perform this computation.

 If you are to implement such a scheme, you must, of course, be able to construct an address cal-
culator that can, with very little work, tell you where a given item should be. Address calculators are
actually not as mysterious as they seem; in fact, many exist that can approximate the idealized behav-
ior just described. Such an address calculator is usually referred to as a hash function . The scheme
just described is an idealized description of a technique known as hashing , and the array table is
called the hash table .

 To understand how a hash function works, consider the 911 emergency system mentioned ear-
lier. If, for each person, the system had a record whose search key was the person’s telephone number,
it could store these records in a search tree. Although searching a tree would be fast, faster access to a
particular record would be possible by storing the records in an array table , as follows. You store the
record for a person whose telephone number is t into table[t] . Retrieval of the record, then, is

FIGURE 18-9 Address calculator

Address
calculator

table

0

1

n–1

Search key

A hash function tells
you where to place
an item in an array
called a hash table

546 CHAPTER 18 Dictionaries and Their Implementations

A hash function
maps an integer into
an array index

almost instantaneous given its search key t . For example, you can store the record for the telephone
number 123-4567 in table[1234567] . If you can spare 10 million memory locations for table , this
approach is fi ne. You need not use memory so extravagantly, however, because 911 systems are
regional. If you consider only one telephone exchange, for example, you can store the record for the
number 123-4567 in table[4567] and get by with an array table of 10,000 locations.

 The transformation of 1234567 into an array index 4567 is a simple example of a hash function.
A hash function h must take an arbitrary integer x and map it into an integer that you can use as an
array index. In our example, such indices would be in the range 0 through 9999. That is, h is a function
such that for any integer x ,

h (x) � i , where i is an integer in the range 0 through 9999

 Because the database contains entries for every telephone number in a particular exchange, the
array table is completely full. In this sense, our example is not typical of hashing applications and
serves only to illustrate the idea of a hash function. What if many fewer entries were in the array?
Consider, for example, an air traffi c control system that stores an entry for each current fl ight accord-
ing to its four-digit fl ight number. You could store an entry for Flight 4567 in table[4567] , but you
still would need an array of 10,000 locations, even if only 50 fl ights were current.

 A different hash function would save memory. If you allow space for a maximum of 101 fl ights,
for example, so that the array table has indices 0 through 100, the necessary hash function h should
map any four-digit fl ight number into an integer in the range 0 through 100.

 If you have such a hash function h —and you will see several suggestions for hash functions
later—the dictionary operations are easy to write. For example, in the getItem algorithm, the step

 i = the array index that the address calculator gives you for an item whose search
key equals searchKey

 is implemented simply as

 i = h(searchKey)

 In the previous example, searchKey would be the fl ight number.
 Although the dictionary operations appear to be virtually instantaneous, is hashing really as

good as it sounds? If it really was this good, there would have been little reason for developing all
those other dictionary implementations. Hashing would beat them hands down!

 Why is hashing not quite as simple as it seems? You might fi rst notice that since the hashing
scheme stores the items in an array, it would appear to suffer from the familiar problems associated
with a fi xed-size implementation. Obviously, the hash table must be large enough to contain all of the
items that you want to store. This requirement is not the crux of the implementation’s diffi culty, how-
ever, for—as you will see later—there are ways to allow the hash table to grow dynamically. But the
implementation does have a major pitfall, even given the assumption that the number of items to be
stored will never exceed the size of the hash table.

 Ideally, you want the hash function to map each search key x into a unique integer i . The hash
function in the ideal situation is called a perfect hash function . In fact, it is possible to construct
perfect hash functions if you know all of the possible search keys that actually occur in the dictionary.
You have this knowledge for the 911 example, since everyone is in the database, but not for the air
traffi c control example. Usually, you will not know the values of the search keys in advance.

 In practice, a hash function can map two or more search keys x and y into the same integer. That
is, the hash function tells you to store two or more items in the same array location table[i] . This
occurrence is called a collision. Thus, even if fewer than 101 items were present in the hash table
table[0..100] , h could very well tell you to place more than one item into the same array location.
For example, if two items have search keys 4567 and 7597, and if

A perfect hash
function maps each
search key into a
unique location of
the hash table

A perfect hash
function is possible
if you know all the
search keys

Collisions occur
when the hash
function maps more
than one item into
the same array
location

 Hashing 547

h (4567) � h (7597) = 22

h will tell you to place the two items into the same array location, table[22] . That is, the search keys
4567 and 7597 have collided.

 Even if the number of items that can be in the array at any one time is small, the only way to avoid
collisions completely is for the hash table to be large enough that each possible search-key value can
have its own location. If, for example, Social Security numbers were the search keys, you would need
an array location for each integer in the range 000000000 through 999999999. This situation would
certainly require a good deal of storage! Because reserving vast amounts of storage is usually not
practical, collision-resolution schemes are necessary to make hashing feasible. Such schemes usually
require that the hash function place items evenly throughout the hash table.

 To summarize, a typical hash function must

• Be easy and fast to compute
• Place items evenly throughout the hash table

 Note that the size of the hash table affects the ability of the hash function to distribute the items evenly
throughout the table. The requirements of a hash function will be discussed in more detail later in this
chapter.

 Consider now several hash functions and collision-resolution schemes .

 18.4.1 Hash Functions

 It is suffi cient to consider hash functions that have an arbitrary integer as an argument. Why? If a
search key is not an integer, you can simply map the search key into an integer, which you then hash.
At the end of this section, you will see one way to convert a string into an integer.

 There are many ways to convert an arbitrary integer into an integer within a certain range, such as
0 through 100. Thus, there are many ways to construct a hash function. Many of these functions, how-
ever, will not be suitable. Here are several simple hash functions that operate on positive integers.

 Selecting digits. If your search key is the nine-digit employee ID number 001364825, you could
select the fourth digit and the last digit, to obtain 35 as the index to the hash table. That is,

h (001364825) � 35 (select the fourth and last digits)

 Therefore, by using digit selection to defi ne your hash function, you would store the item whose
search key is 001364825 in table[35] .

 You do need to be careful about which digits you choose in a particular situation. For example,
the fi rst three digits of a Social Security number are based on the geographic region in which the
number was assigned. If you select only these digits, you will map all people from the same state into
the same location of the hash table.

 Digit-selection hash functions are simple and fast, but generally they do not evenly distribute the
items in the hash table. A hash function really should utilize the entire search key.

 Folding. One way to improve on the previous approach of selecting digits is to add the digits. The
resulting process is known as folding. For example, you can add all of the digits in 001364825 to obtain

 0�0�1�3�6�4�8�2�5 � 29 (add the digits)

 Therefore, you would store the item whose search key is 001364825 in table[29] . Notice that if you
add all of the digits from a nine-digit search key,

 0� h(search key)�81

Requirements for a
hash function

It is suffi cient for
hash functions to
operate on integers

Digit selection does
not distribute items
evenly in the hash
table

548 CHAPTER 18 Dictionaries and Their Implementations

Applying more than
one hash function to
a single search key

 That is, you would use only table[0] through table[81] of the hash table. To change this situation
or to increase the size of the hash table, you can group the digits in the search key and add the groups.
For example, you could form three groups of three digits from the search key 001364825 and add
them as follows:

 001�364�825 � 1,190

 For this hash function,

 0 � h (search key)� 3 � 999 � 2,997

 Clearly, if 2,997 is larger than the size of the hash table that you want, you can alter the groups that
you choose. Perhaps not as obvious is that you can apply more than one hash function to a search key.
For example, you could select some of the digits from the search key before adding them, or you
could either select digits from the previous result 2,997 or apply folding to it once again by adding 29
and 97.

 Modulo arithmetic. Modulo arithmetic provides a simple and effective hash function that we will
use in the rest of this chapter. For example, consider the function 2

h (x) � x mod tableSize

 where the hash table has tableSize elements. In particular, if tableSize is 101, h (x) = x mod 101 maps
any integer x into the range 0 through 100. For example, h maps 001364825 into 12.

 For h (x) = x mod tableSize , many x ’s map into table[0] , many x ’s map into table[1] , and so on.
That is, collisions occur. However, you can distribute the dictionary items evenly over all of table —
thus reducing collisions—by choosing a prime number as tableSize . For instance, 101 in the previous
example is prime. The choice of table size will be discussed in more detail later in this chapter. For
now, realize that 101 is used here as a simple example of a prime table size. For the typical hash table,
101 is much too small.

 Converting a character string to an integer. If your search key is a character string—such as a
name—you could convert it into an integer before applying the hash function h (x). To do so, you
could fi rst assign an integer value to each character in the string. For example, for the word “NOTE”
you could assign the ASCII values 78, 79, 84, and 69, to the letters N , O , T , and E , respectively. Or, if
you assign the values 1 through 26 to the letters A through Z , you could assign 14 to N , 15 to O , 20 to
T , and 5 to E .

 If you now simply add these numbers, you will get an integer, but it will not be unique to the char-
acter string. For example, the word “TONE” will give you the same result. Instead, you can write the
numeric value for each character in binary and concatenate the results. If you assign the values 1
through 26 to the letters A through Z , you obtain the following result for the word “NOTE”:

N is 14, or 01110 in binary
O is 15, or 01111 in binary
T is 20, or 10100 in binary
E is 5, or 00101 in binary

 Concatenating the binary values gives you the binary integer

 01110011111010000101

 which is 474,757 in decimal. You can apply the hash function x mod tableSize for x = 474,757.

 2 Remember that this book uses “mod” as an abbreviation for the mathematical operation modulo. In C++, the modulo
operator is %.

The dictionary size
should be prime

 Hashing 549

 Now consider a more effi cient way to compute 474,757. Rather than converting the previous
binary number to decimal, you can evaluate the expression

 14 � 323 � 15 � 322 � 20 � 321 � 5 � 320

 This computation is possible because we have represented each character as a 5-bit binary number,
and 2 5 is 32.

 By factoring this expression, you can minimize the number of arithmetic operations. This tech-
nique is called Horner’s rule and results in

 ((14 � 32 � 15) � 32 � 20) � 32 � 5

 Although both of these expressions have the same value, the result in either case could very well be
larger than a typical computer can represent; that is, an overfl ow can occur. If you use the hash
function

h (x) � x mod tableSize

 you can prevent an overfl ow by applying the modulo operator after computing each parenthesized
expression in Horner’s rule. The implementation of this algorithm is left as an exercise.

Horner’s rule
minimizes the
number of
computations

 Programming Tip: You can use the following hash function—named
getHashIndex —in your programs. C++ Interlude 7 will discuss the Standard Template
Library (STL) and make sense of the way that this function uses the STL.

 template < class KeyType, class ItemType>
 int HashedDictionary<KeyType, ItemType>::
 getHashIndex(const KeyType& key) const
 {

// We are creating a hash function type called hashFunction that hashes
// a search key. First we create an unordered_map object for our KeyType
// and ItemType.

 std::tr1::unordered_map<KeyType, ItemType> mapper;

// Then we invoke the method hash_function to return the hash function
// for the KeyType and assign it to 'hashFunction'.
typename std::tr1::unordered_map<KeyType, ItemType>::

 hasher hashFunction = mapper.hash_function();

// Need static_cast because hashFunction returns an unsigned long.
return static_cast < int>(hashFunction(searchKey) % hashTableSize);

} // end getHashIndex

 18.4.2 Resolving Collisions

 Consider the problems caused by a collision. Suppose that you want to insert an item whose search
key is 4567 into the hash table table, as was described previously. The hash function h (x) = x mod
101 tells you to place the new item in table[22] , because 4567 mod 101 is 22. Suppose, however,
that table[22] already contains an item, as Figure 18-10 illustrates. If earlier you had placed 7597
into table[22] because 7597 mod 101 equals 22, where do you place the new item? You certainly do
not want to disallow the insertion on the grounds that the dictionary is full: You could have a collision
even when inserting into a dictionary that contains only one item!

550 CHAPTER 18 Dictionaries and Their Implementations

Three states:
occupied, empty,
removed

Two approaches to
collision resolution

 Two general approaches to collision resolution are common. One approach places the new item
into another location within the hash table. A second approach changes the structure of the hash table
so that each location table[i] can accommodate more than one item. The collision-resolution
schemes described next exemplify these two approaches.

 Approach 1: Open addressing. During an attempt to insert a new item into a dictionary, if the hash
function indicates a location in the hash table that is already occupied, you look—or probe—for
some other empty, or open, location in which to place the item. The sequence of locations that you
examine is called the probe sequence .

 Such schemes are said to use open addressing . The concern, of course, is that you must be
able to fi nd a dictionary item effi ciently after you have inserted it. That is, the remove and getItem
operations must be able to reproduce the probe sequence that add used and must do so effi ciently.

 The difference among the various open-addressing schemes is the technique used to probe for an
empty location. We briefl y describe three such techniques.

Linear probing. In this simple scheme to resolve a collision, you search the hash table sequentially,
starting from the original hash location. More specifi cally, if table[h(searchKey)] is occupied, you
check the dictionary locations table[h(searchKey)+1] , table[h(searchKey)+2] , and so on until
you fi nd an available location. Figure 18-11 illustrates the placement of four items that all hash into
the same location table[22] of the hash table, assuming a hash function h (x) = x mod 101. Typically,
you wrap around from the last array location to the fi rst array location if necessary.

 In the absence of removals, the implementation of getItem under this scheme is straightforward.
You need only follow the same probe sequence that add used until you either fi nd the item you are
searching for; reach an empty location, which indicates that the item is not present; or visit every
table location.

 Removals, however, complicate matters slightly. The remove operation itself is no problem. You
merely fi nd the desired item, as in getItem , and remove it from the hash table, making the location
empty. But now what happens when getItem needs to locate an item? The new empty locations that
remove created along a probe sequence could cause getItem to stop prematurely, incorrectly indicat-
ing a failure. You can solve this problem by placing a table location into one of three states: occupied

FIGURE 18-10 A collision

table

0

1

2

22

99

100

7597h(4567) table[22] is occupied

Begin at the hash
location and search
the dictionary
sequentially

 Hashing 551

(currently in use), empty (has not been used), or removed (was once occupied but is now available).
You then modify the getItem operation to continue probing when it encounters a location in the
removed state. Similarly, you modify add to insert into locations that are in either the empty or
removed states.

 One of the problems with the linear-probing scheme is that items tend to cluster together in the
hash table. That is, the table contains groups of consecutively occupied locations. This phenomenon
is called primary clustering . Clusters can get close to one another and, in fact, merge into a larger
cluster. Large clusters tend to get even larger. Thus, one part of the hash table might be quite densely
populated, even though another part has relatively few items.

FIGURE 18-11 Linear probing with h (x) = x mod 101

22 7597

23 4567

24 0628

25 3658

h = 7597 mod 101 = 22

h+1

h+2

h+3

table

Clustering can be a
problem

Note: Primary clustering causes long probe searches and therefore decreases the over-
all effi ciency of hashing.

Question 6 Write the pseudocode for the remove operation when linear probing is used to
implement the hash table.

CHECK POINT

Quadratic probing. You can virtually eliminate primary clusters simply by adjusting the linear prob-
ing scheme just described. Instead of probing consecutive table locations from the original hash loca-
tiontable[h(searchKey)] , you check locations table[h(searchKey)+12], table[h(searchKey)+22],
table[h(searchKey)+32], and so on until you fi nd an available location. Figure 18-12 illustrates this
open-addressing scheme—which is called quadratic probing —for the same items that appear in
 Figure 18-11 .

 Unfortunately, when two items hash into the same location, quadratic probing uses the same
probe sequence for each item. The resulting phenomenon—called secondary clustering —delays the
resolution of the collision. Although the research of quadratic probing remains incomplete, it appears
that secondary clustering is not a problem.

552 CHAPTER 18 Dictionaries and Their Implementations

A hash address and
a step size
determine the probe
sequence

 Double hashing. Double hashing, which is yet another open-addressing scheme, drastically reduces
clustering. The probe sequences that both linear probing and quadratic probing use are key inde-
pendent . For example, linear probing inspects the locations in the hash table sequentially no matter
what the hash key is. In contrast, double hashing defi nes key-dependent probe sequences. In this
scheme the probe sequence still searches the hash table in a linear order, starting at the location
h1 (key), but a second hash function h2 determines the size of the steps taken.

 Although you choose h1 as usual, you must follow these guidelines for h2 :

h2 (key) � 0

h2 � h1

 Clearly, you need a nonzero step size h2 (key) to defi ne the probe sequence. In addition, h2 must differ
from h1 to avoid clustering.

 For example, let h1 and h2 be the primary and secondary hash functions defi ned as

h1 (key) � key mod 11

h2 (key) � 7 � (key mod 7)

 where a hash table of only 11 items is assumed, so that you can readily see the effect of these functions
on the hash table. If key = 58, h1 hashes key to dictionary location 3 (58 mod 11), and h2 indicates that
the probe sequence should take steps of size 5 (7 – 58 mod 7). In other words, the probe sequence will
be 3, 8, 2 (wraps around), 7, 1 (wraps around), 6, 0, 5, 10, 4, 9. On the other hand, if key = 14, h1
hashes key to table location 3 (14 mod 11), and h2 indicates that the probe sequence should take steps
of size 7 (7 – 14 mod 7), and so the probe sequence would be 3, 10, 6, 2, 9, 5, 1, 8, 4, 0.

 Each of these probe sequences visits all the table locations. This phenomenon always occurs if
the size of the hash table and the size of the probe step are relatively prime, that is, if their greatest
common divisor is 1. Because the size of a hash table is commonly a prime number, it will be rela-
tively prime to all step sizes.

 Figure 18-13 illustrates the insertion of 58, 14, and 91 into an initially empty hash table. Because
h1 (58) is 3, you place 58 into table[3] . You then fi nd that h1 (14) is also 3, so to avoid a collision, you
step by h2 (14) = 7 and place 14 into table[3 + 7] , or table[10] . Finally, h1 (91) is 3 and h2 (91) is 7.

Guidelines for the
step-size function h 2

Primary and
secondary hash
functions

FIGURE 18-12 Quadratic probing with h (x) = x mod 101

31 3658 h+32

table

22

h+22

23 4567

7597

24

25

26 0628

h = 7597 mod 101 = 22

h+12

 Hashing 553

Because table[3] is occupied, you probe table[10] and fi nd that it, too, is occupied. You fi nally
store 91 in table[(10 + 7) % 11] , or table[6] .

 While more than two hash functions can be desirable, such schemes are diffi cult to implement.

FIGURE 18-13 Double hashing during the insertion of 58, 14, and 91

10

table

3 58

6 91

14

0

h1(91) Third insertion collides

Second insertion collides h1(14)

First insertion h1(58)

Probe h1(14) + h2(14)

h1(91) + h2(91) Probe collides

(h1(91) + h2(91) + h2(91)) % 7 Probe again

Question 7 What is the probe sequence that double hashing uses when

h1 (key) � key mod 11, h2 (key) � 7 � (key mod 7), and key � 19?CHECK POINT

Note: Rehashing

 After creating a new, larger hash table of an appropriate size, you use the dictionary
method add to add each item in the original hash table to the new table. The method com-
putes the hash index using the size of the new table and handles any collisions. This
process of enlarging a hash table and computing new hash indices for its contents is
called rehashing . You can see that increasing the size of a hash table requires considera-
bly more work than increasing the size of an ordinary array. Rehashing is a task that you
should not do often.

 Increasing the size of the hash table. With any of the open-addressing schemes, as the hash
table fi lls, the probability of a collision increases. At some point, a larger hash table becomes desira-
ble. If you use a dynamically allocated array for the hash table, you can increase its size whenever the
dictionary becomes too full.

 You cannot simply double the size of the array, as we did in earlier chapters, because the size of
the hash table must remain prime. In addition, you do not simply move the items from the original
hash table to the new hash table. If your hash function is x mod tableSize , it changes as tableSize
changes. Thus, you need to apply your new hash function to every item in the old hash table before
placing it into the new hash table.

554 CHAPTER 18 Dictionaries and Their Implementations

The load factor
measures how full a
hash table is

 Approach 2: Restructuring the hash table. Another way to resolve collisions is to change the
structure of the array table —the hash table—so that it can accommodate more than one item in the
same location. We describe two such ways to alter the hash table.

Buckets. If you defi ne the hash table so that each location table[i] is itself an array—called a
bucket —you can store the items that hash into table[i] in this array. The problem with this
approach, of course, is choosing the size b of each bucket. If b is too small, you will only have post-
poned the problem of collisions until b + 1 items map into some array location. If you attempt to make
b large enough so that each array location can accommodate the largest number of items that might
map into it, you are likely to waste a good deal of storage.

 Separate chaining. A better approach than using buckets is to design the hash table as an array of
linked chains. In this collision-resolution technique, known as separate chaining , each entry
table[i] is a pointer to a chain of linked nodes containing the items that the hash function has
mapped into location i , as Figure 18-14 illustrates. Separate chaining provides a successful approach
to resolving collisions. With separate chaining, the size of the dictionary is dynamic and can exceed
the size of the hash table, because each linked chain can be as long as necessary. As you will see in the
next section, the length of these chains affects the effi ciency of retrievals and removals. Even so, sep-
arate chaining is the most time-effi cient collision-resolution scheme.

 We will discuss an implementation of the ADT dictionary using hashing and separate chaining in
 Section 18.4.6 of this chapter.

FIGURE 18-14 Separate chaining

0

1

2

tableSize – 1

table

Each location of
the hash table
contains a pointer
to a linked chain

Question 8 If h (x) = x mod 7 and separate chaining resolves collisions, what does the
hash table look like after the following insertions occur: 8, 10, 24, 15, 32, 17? Assume that
each item contains only a search key.

CHECK POINT

Each hash-table
location can
accommodate more
than one item

A bucket is an
element of a hash
table that is itself an
array

Each hash-
dictionary location is
a linked chain

Separate chaining
successfully
resolves collisions

 18.4.3 The Effi ciency of Hashing

 An analysis of the average-case effi ciency of hashing involves the load factor alpha (�) , which is the
ratio of the current number of items in the dictionary to the maximum size of the array dictionary .
That is,

� 5
Current number of table items

tableSize

 Open-addressing
schemes require a
good estimate of
the number of
insertions and
removals

 Hashing 555

� is a measure of how full the hash table is. As the table fi lls, α increases and the chance of collision
increases, so search times increase. Thus, hashing effi ciency decreases as � increases.

 Unlike the effi ciency of earlier dictionary implementations, the effi ciency of hashing does not
depend solely on the number n of items in the dictionary. While it is true that for a fi xed tableSize
effi ciency decreases as n increases, for a given n you can choose tableSize to increase effi ciency.
Thus, when determining the size of the hash table, you should estimate the largest possible n and
select tableSize so that � is small. As you will see shortly, � should not exceed 2/3.

 Hashing effi ciency for a particular search also depends on whether the search is successful. An
unsuccessful search requires more time in general than a successful search. The following analyses 3

enable a comparison of collision-resolution techniques.

 Linear probing. For linear probing, the approximate average number of comparisons that a search
requires is

1

2
c1 1 1

1 2 �
d for a successful search, and

1

2
c1 1 111 2 � 2 2 d for an unsuccessful search

 As collisions increase, the probe sequences increase in length, causing increased search times.
For example, for a dictionary that is two-thirds full (� = 2/3), an average unsuccessful search
might require at most fi ve comparisons, or probes, while an average successful search might
require at most two comparisons. To maintain effi ciency, it is important to prevent the hash table
from fi lling up.

 Quadratic probing and double hashing. The effi ciency of both quadratic probing and double hash-
ing is given by

2 loge (1 2 �)

�
 for a successful search, and

1

1 2 �
 for an unsuccessful search

 On average, both techniques require fewer comparisons than linear probing. For example, for a dic-
tionary that is two-thirds full, an average unsuccessful search might require at most three compari-
sons, or probes, while an average successful search might require at most two comparisons. As a
result, you can use a smaller hash table for both quadratic probing and double hashing than you can
for linear probing. However, because they are open-addressing schemes, all three approaches suffer
when you are unable to predict the number of insertions and removals that will occur. If your hash
table is too small, it will fi ll up, and search effi ciency will decrease.

 Separate chaining. Because the dictionary’s add operation places the new item at the beginning of a
linked chain within the hash table, it is O(1). The getItem and remove operations, however, are not as
fast. They each require a search of the linked chain of items, so ideally you would like for these chains
to be short.

 For separate chaining, tableSize is the number of chains, not the maximum number of diction-
ary items. Thus, it is entirely possible, and even likely, that the current number of dictionary items
n exceeds tableSize . That is, the load factor �, or n / tableSize , can exceed 1. Because tableSize is
the number of linked chains, n / tableSize —that is, �—is the average length of each linked chain.

 3 D. E. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming (Menlo Park, CA: Addison-Wesley, 1973).

 Unsuccessful
searches generally
require more time
than successful
searches

Do not let the hash
table get too full

Insertion is
instantaneous

556 CHAPTER 18 Dictionaries and Their Implementations

 Some searches of the hash table are unsuccessful because the relevant chain is empty. Such
searches are virtually instantaneous. For an unsuccessful search of a nonempty chain, however,
getItem and remove must examine the entire chain, or � items in the average case. On the other hand,
a successful search must examine a nonempty chain. In the average case, the search will locate the
item in the middle of the chain. That is, after determining that the linked chain is not empty, the search
will examine � / 2 items.

 Thus, the effi ciency of the retrieval and removal operations under the separate-chaining approach is

1 1
�

2
 for a successful search, and

� for an unsuccessful search

 Even if the linked chains typically are short, you should still estimate the worst case. If you seri-
ously underestimate tableSize , or if most of the dictionary items happen to hash into the same loca-
tion, the number of items in a chain could be quite large. In fact, in the worst case, all n items in the
dictionary could be in the same linked chain!

 As you can see, the time that a retrieval or removal operation requires can range from almost
nothing—if the linked chain to be searched either is empty or has only a couple of items in it—to the
time required to search a chain that contains all the items in the dictionary, if all the items hashed into
the same location.

 Comparing techniques. Figure 18-15 plots the relative effi ciency of the collision-resolution
schemes just discussed. When the hash table is about half full—that is, when � is 0.5—the techniques
are nearly equal in effi ciency. As the dictionary fi lls and � approaches 1, separate chaining is the most
effi cient technique. Does this mean that we should discard all other search algorithms in favor of
hashing with separate chaining?

FIGURE 18-15 The relative effi ciency of four collision-resolution methods

20

18

16

14

12

10

8

6

4

2

0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

Linear probing

Quadratic probing,
double hashing

Separate chaining

20

18

16

14

12

10

8

6

4

2

0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 n
um

be
r

of
 c

om
pa

ris
on

s

Linear probing

Quadratic probing,
double hashing

Separate chaining

Unsuccessful searchSuccessful search

 Average-case
effi ciency of
retrievals and
removals

You cannot avoid
collisions entirely

 Hashing 557

 No. The analyses here are average-case analyses. Although an implementation of the ADT dic-
tionary that uses hashing might often be faster than one that uses a search tree, in the worst case it can
be much slower. If you can afford both an occasional slow search and a large tableSize —that is, a
small �—then hashing can be an attractive dictionary implementation. However, if you are perform-
ing a life-and-death search for your city’s poison control center, a search-tree implementation would
at least provide you with a guaranteed limit on its worst-case behavior.

 Furthermore, while separate chaining is the most time-effi cient collision-resolution scheme, you
do have the storage overhead of the pointers in the linked chain. If the data entries in the dictionary are
small, the pointers add a signifi cant overhead in storage, and you may want to consider a simpler
collision-resolution scheme. On the other hand, if the entries are large, the addition of a pointer is
insignifi cant, so separate chaining is a good choice.

In the worst case,
a hashing
implementation
of a dictionary can
be much slower
than other
implementations

Note: Maintaining the performance of hashing

 Collisions and their resolution typically cause the load factor � to increase and the effi -
ciency of the dictionary operations to decrease. To maintain effi ciency, you should
restrict the size of � as follows:

• � < 0.5 for open addressing
• � < 1.0 for separate chaining

 Should the load factor exceed these bounds, you must increase the size of the hash table
using rehashing.

 18.4.4 What Constitutes a Good Hash Function?

 Before we conclude this introduction to hashing, consider in more detail the issue of choosing a hash
function to perform the address calculations for a given application. A great deal has been written on
this subject, most of which is beyond the mathematical level of this book. However, this section will
present a brief summary of the major concerns.

• Is the hash function easy and fast to compute? If a hashing scheme is to perform dictionary
operations almost instantaneously and in constant time, you certainly must be able to calculate
the hash function rapidly. Most of the common hash functions require only a single division
(like the modulo operation), a single multiplication, or some kind of “bit-level” operation on
the internal representation of the search key. In all these cases, the requirement that the hash
function be easy and fast to compute is satisfi ed.

• Does the hash function scatter the data evenly throughout the hash table? Unless you use
a perfect hash function—which is usually impractical to construct—you typically cannot
avoid collisions entirely. For example, to achieve the best performance from a separate-
chaining scheme, each entry table[i] should point to a chain containing approximately
the same number of items; that is, each chain should contain approximately n / tableSize
items (and thus no chain should contain signifi cantly more than n / tableSize items). To
accomplish this goal, your hash function should scatter the search keys evenly throughout
the hash table.

• How well does the hash function scatter random data? If every search-key value is equally
likely, will the hash function scatter the search keys evenly? For example, consider nine-digit
employee ID numbers as the search keys, a hash table table[0..39] , and a hash function
h (x) = (fi rst two digits of x) mod 40. If all employee ID numbers are equally likely, does a given
ID number x have equal probability of hashing into any one of the 40 array locations? For this
hash function, the answer is no. Only ID numbers that start with 19, 59, and 99 map into

558 CHAPTER 18 Dictionaries and Their Implementations

 General
requirements of a
hash function

table[19] , while only ID numbers that start with 20 and 60 map into table[20] . In general,
three different ID prefi xe s—that is, the fi rst two digits of an ID number—map into each array
location 0 through 19 , while only two different prefi xes map into each array location 20
through 39. Because all ID numbers are equally likely—and thus all prefi xes 00 through 99 are
equally likely—a given ID number is 50 percent more likely to hash into one of the locations 0
through 19 than it is to hash into one of the locations 20 through 39 . As a result, each array
location 0 through 19 would contain, on average, 50 percent more items than each location 20
through 39.

 Thus, the hash function

h (x) � (fi rst two digits of x) mod 40

 does not scatter random data evenly throughout the array table[0..39] . On the other hand, it
can be shown that the hash function

h (x) � x mod 101

 does, in fact, scatter random data evenly throughout the array table[0..100] .
• How well does the hash function scatter nonrandom data? Even if a hash function scatters

random data evenly, it may have trouble with nonrandom data. In general, no matter what hash
function you select, it is always possible that the data will have some unlucky pattern that will
result in uneven scattering. Although there is no way to guarantee that a hash function will
scatter all data evenly, you can greatly increase the likelihood of this behavior.

 As an example, consider a hash table table[0..39] and a hash function h (x) = fi rst two
digits of x . If every ID number is equally likely, h will scatter the search keys evenly through-
out the array. But what if every ID number is not equally likely? For instance, a company
might assign employee IDs according to department, as follows:

 10xxxxx Sales
 20xxxxx Customer Relations
 . . .
 90xxxxx Data Processing

 Under this assignment, only 9 out of the 100 array locations would contain any items at all.
Further, those locations corresponding to the largest departments (Sales, for example, which
corresponds to table[10]) would contain more items than those locations corresponding to
the smallest departments. This scheme certainly does not scatter the data evenly.

 Much research has been done into the types of hash functions you should use to guard
against various types of patterns in the data. The results of this research are really in the prov-
ince of more advanced courses, but two general principles can be noted here:

• The calculation of the hash function should involve the entire search key . Thus, for exam-
ple, computing a modulo of the entire ID number is much safer than using only its fi rst
two digits.

• If a hash function uses modulo arithmetic, the base should be prime; that is, if h is of the
form

h (x) = x mod tableSize

 then tableSize should be a prime number. This selection of tableSize is a safeguard against
many subtle kinds of patterns in the data (for example, search keys whose digits are likely to
be multiples of one another). Although each application can have its own particular kind of
patterns and thus should be analyzed on an individual basis, choosing a prime number for
tableSize is an easy way to safeguard against some common types of patterns in the data.

A function that does
not scatter random
data evenly

A function that does
scatter random data
evenly

Hashing versus
balanced search
trees

 Hashing 559

 18.4.5 Dictionary Traversal: An Ineffi cient Operation
Under Hashing

 For many applications, hashing provides the most effi cient implementation of the ADT diction-
ary. One important dictionary operation—traversal in sorted order—performs poorly when hash-
ing implements the dictionary. As was mentioned previously, a good hash function scatters items
as randomly as possible throughout the array, so that no ordering relationship exists between a
search key that hashes into table[i] and one that hashes into table[i + 1] . As a consequence,
if you must traverse the dictionary in sorted order, you fi rst would have to sort the items. If sort-
ing were required frequently, hashing would be a far less attractive implementation than a search
tree.

 Traversing a dictionary in sorted order is really just one example of a whole class of opera-
tions that hashing does not support well. Many similar operations that you often wish to perform
on a dictionary require that the items be ordered. For example, consider an operation that must
fi nd the dictionary item whose search key is the smallest or largest. If you use a search-tree imple-
mentation, these items are in the leftmost and rightmost nodes of the tree, respectively. If you use
a hashing implementation, however, you do not know where these items are—you would have to
search the entire dictionary. A similar type of operation is a range query , which requires that you
retrieve all items whose search keys fall into a given range of values. For example, you might want
to retrieve all items whose search keys are in the range 129 to 755. This task is relatively easy to
perform by using a search tree (see Exercise 3 in the next chapter), but if you use hashing, there is
no effi cient way to answer the range query.

 In general, if an application requires any of these ordered operations, you should probably use a
search tree. Although the getItem, add, and remove operations are somewhat more effi cient when
you use hashing to implement the dictionary instead of a balanced search tree, the balanced search
tree supports these operations so effi ciently itself that, in most contexts, the difference in speed for
these operations is negligible (whereas the advantage of the search tree over hashing for the ordered
operations is signifi cant).

 In the context of external storage, however, the story is different. For data that is stored exter-
nally, the difference in speed between hashing’s implementation of getItem and a search tree’s imple-
mentation may well be signifi cant, as you will see in Chapter 21 . In an external setting, it is not
uncommon to see a hashing implementation of the getItem operation and a search-tree implementa-
tion of the ordered operations used simultaneously.

 18.4.6 Using Hashing and Separate Chaining
to Implement the ADT Dictionary

 Let’s now use hashing to implement the ADT dictionary. We will resolve collisions by using separate
chaining.

 The hash table. Recall from Figure 18-14 that to use separate chaining, you create a hash table of
pointers to chains of linked nodes that represent entries in the dictionary. Although each node in a
chain could contain an object of the class Entry , as given earlier in Listing 18-2—and as you might
do in any of the linked-based implementations mentioned earlier in this chapter—we will derive a
new class, HashedEntry , from Entry and add a pointer fi eld, as Figure 18-16 illustrates. Listing 18-5
shows the declaration of this new class. Notice that HashedEntry is like a combination of the classes
Node —which we have used in previous link-based implementations—and Entry . In particular, it has
the data members and methods of Entry , as well as the pointer data fi eld and the methods getNext
and setNext of Node .

Items hashed into
table[i] and
table[i+1] have
no ordering
relationship

560 CHAPTER 18 Dictionaries and Their Implementations

LISTING 18-5 The class HashedEntry

 /** A class of entry objects for a hashing implementation of the
 ADT dictionary.
 @file HashedEntry.h */

#ifndef _HASHED_ENTRY
#define _HASHED_ENTRY

#include "Entry.h"

 template < class KeyType, class ItemType>
 class HashedEntry : public Entry<KeyType, ItemType>
 {

private :

 HashedEntry<KeyType, ItemType>* nextPtr;

 public :
 HashedEntry();
 HashedEntry(ItemType newEntry, KeyType searchKey);
 HashedEntry(ItemType newEntry, KeyType searchKey,

 HashedEntry<KeyType, ItemType>* nextEntryPtr);

void setNext(HashedEntry<KeyType, ItemType>* nextEntryPtr);
 HashedEntry<KeyType, ItemType>* getNext() const ;
 }; // end HashedEntry

#include "HashedEntry.cpp"
 #endif

 Now the data members of our dictionary class, HashedDictionary , are

 HashedEntry<KeyType, ItemType>** hashTable; // Array of pointers to entries
 int itemCount; // Count of dictionary entries
 int hashTableSize; // Table size must be prime
 static const int DEFAULT_SIZE = 101;

 The array hashTable contains pointers to the itemCount entries in the dictionary. The fi eld
hashTableSize is the size of this array. The constructors will set the value of this fi eld, either to
DEFAULT_SIZE or to a value given by the client. We note again that this value must be a prime number.
Any value given to the constructor will need to be checked to determine whether it is prime and, if not,
replaced by a prime number.

The method add. To insert a new entry into the dictionary, you place it at the beginning of the chain
that the hash function indicates. Assuming that the initial values of the pointers in the hash table are
each nullptr , the following pseudocode describes the algorithm for the add operation:

 add(newItem: ItemType, searchKey: KeyType): boolean

p = pointer to a new HashedEntry object containing newItem and searchKey

FIGURE 18-16 A dictionary entry when separate chaining is used

Search keyData item

 Hashing 561

i = h(searchKey)
if (hashTable[i] == nullptr)

hashTable[i] = p
else
{

// Add new entry to beginning of chain
p->setNext(hashTable[i])
hashTable[i] = p

}
return true

 Recall that we assume that the search key given to add is not already in the dictionary.
 The defi nition of add in the implementation fi le for HashedDictionary is

 template < class KeyType, class ItemType>
 bool HashedDictionary<KeyType, ItemType>::add(const ItemType& newItem,
 const KeyType& searchKey)
 {

// Create entry to add to dictionary
 HashedEntry<KeyType, ItemType>* entryToAddPtr =

new HashedEntry<KeyType, ItemType>(newItem, searchKey);

// Compute the hashed index into the array
int itemHashIndex = getHashIndex(searchKey);

// Add the entry to the chain at itemHashIndex
if (hashTable[itemHashIndex] == nullptr)

 {
 hashTable[itemHashIndex] = entryToAddPtr;
 }

else
 {
 entryToAddPtr->setNext(hashTable[itemHashIndex]);
 hashTable[itemHashIndex] = entryToAddPtr;
 } // end if

return true ;
} // end add

 The method remove. To remove an entry, given its search key, from the dictionary, you proceed as
the following pseudocode indicates:

 remove(searchKey: KeyType): boolean

i = h(searchKey)
if (hashTable[i] != nullptr)
{

Search the chain pointed to by hashTable[i] for searchKey
if (searchKey is in the first node)
{

p = hashTable[i]
hashTable[i] = hashTable[i]->getNext()
delete p
return true

}
else
{

 curPtr = pointer to the entry containing searchKey
 prevPtr = pointer to the previous entry in the chain

562 CHAPTER 18 Dictionaries and Their Implementations

 prevPtr->setNext(curPtr->getNext())
 delete curPtr
 return true
 }
}
else

return false

HashedDictionary ’s defi nition of remove follows:

 template < class KeyType, class ItemType>
 bool HashedDictionary<KeyType, ItemType>::remove(const KeyType& searchKey)
 {

bool itemFound = false ;

// Compute the hashed index into the array
int itemHashIndex = getHashIndex(searchKey);
if (hashTable[itemHashIndex] != nullptr)

 {
// Special case - first node has target
if (searchKey == hashTable[itemHashIndex]->getKey())

 {
 HashedEntry<KeyType, ItemType>* entryToRemovePtr =

 hashTable[itemHashIndex];
 hashTable[itemHashIndex] = hashTable[itemHashIndex]->getNext();

delete entryToRemovePtr;
 entryToRemovePtr = nullptr ; // For safety
 itemFound = true ;
 }

else // Search the rest of the chain
 {
 HashedEntry<KeyType, ItemType>* prevPtr = hashTable[itemHashIndex];
 HashedEntry<KeyType, ItemType>* curPtr = prevPtr->getNext();

while ((curPtr != nullptr) && !itemFound)
 {

// Found item in chain so remove that node
if (searchKey == curPtr->getKey())

 {
 prevPtr->setNext(curPtr->getNext());
 delete curPtr;
 curPtr = nullptr ; // For safety
 itemFound = true ;
 }

else // Look at next entry in chain
 {
 prevPtr = curPtr;
 curPtr = curPtr->getNext();
 } // end if
 } // end while
 } // end if
 } // end if

return itemFound;
} // end remove

 The rest of the implementation of the class HashedDictionary is left as an exercise.

 Exercises 563

 SUMMARY

1. The ADT dictionary supports value-oriented operations, such as “Retrieve all the information about John Smith.”

2. The linear implementations (array-based and link-based) of a dictionary are adequate only in limited situations,
such as when the dictionary is small or for certain operations. In those situations, the simplicity of a linear
implementation may be an advantage. A linear implementation of a dictionary, however, is not suitable as a
general-purpose, reusable class.

3. A nonlinear link-based (binary search tree) implementation of the ADT dictionary provides the best aspects of
the two linear implementations. The link-based implementation allows the dictionary to grow dynamically and
allows insertions and removals of data to occur through pointer changes instead of data movement. In addition,
the binary search tree allows you to use a binary-search-like algorithm when searching for an item with a speci-
fi ed value. These characteristics make a nonlinear dictionary implementation far superior to the linear imple-
mentations in many applications.

4. Hashing as a dictionary implementation calculates where a data item should be rather than searching for it.
Hashing allows for very effi cient retrievals, insertions, and removals.

5. The hash function should be extremely easy to compute—it should require only a few operations—and it should
scatter the search keys evenly throughout the hash table.

6. A collision occurs when two different search keys hash into the same array location. Two ways to resolve colli-
sions are through probing and chaining.

7. Separate chaining is the most time-effi cient collision-resolution scheme.

8. Hashing does not effi ciently support operations that require the table items to be ordered—for example, travers-
ing the table in sorted order.

9. When dictionary operations such as traversal are not important to a particular application, if you know the
maximum number of dictionary items, and if you have ample storage, hashing is an implementation for a dic-
tionary that is simpler and faster than balanced search tree implementations. Tree implementations, however,
are dynamic and do not require you to estimate the maximum number of table items.

 EXERCISES

1. Implement the class Entry, as given in Listing 18-2, and then complete the sorted array-based implementation
of the ADT dictionary.

2. Consider an operation replace(replacementItem, searchKey) that locates, if possible, the item in a diction-
ary with the given search key. If the dictionary contains such an item, the method replaces it with replacement-
Item .

 a. Write implementations of replace for the classes ArrayDictionary, TreeDictionary, and Hashed-
Dictionary, as described in this chapter.

 b. For TreeDictionary, under what circumstances can replace replace an item without altering the
structure of the binary search tree? (See Exercise 6 in Chapter 16 .)

3. Imagine an application program that behaves like an English dictionary. The user types a word and the program
provides the word’s defi nition. Thus, the dictionary needs only a retrieval operation. Which implementation of
the ADT dictionary would be most effi cient as an English dictionary?

4. When you use a word processor’s spell checker, it compares the words in your document with words in a dictionary.
You can add new words to the dictionary as necessary. Thus, this dictionary needs frequent retrievals and occasional
insertions. Which implementation of the ADT dictionary would be most effi cient as a spell checker’s dictionary?

564 CHAPTER 18 Dictionaries and Their Implementations

5. A C++ compiler uses a symbol table to keep track of the identifi ers that a program uses. When the compiler
encounters an identifi er, it searches the symbol table to see whether that identifi er has already been encoun-
tered. If the identifi er is new, it is inserted into the table. Thus, the symbol table needs only insertion and
retrieval operations. Which implementation of the ADT dictionary would be most effi cient as a symbol
table?

6. Consider adding operations to the ADT dictionary to form the union and intersection of two given dictionar-
ies. Each operation returns a new dictionary. The union should combine all of the entries in both dictionaries
into a third dictionary. The intersection should be a dictionary of the entries common to both of the two
dictionaries.

Within each given dictionary, search keys are not repeated. However, an entry in one dictionary could have
the same search key as an entry in the second dictionary. Propose and discuss ways to specify these two opera-
tions for this case.

7. The implementations of the ADT dictionary given in this chapter make the following assumption: At any time, a
dictionary contains at most one item with a given search key. Although the defi nition of the ADT required for a
specifi c application may not allow duplicates, it is probably wise to test for them rather than simply to assume
that they will not occur. Why?

 Modify the dictionary implementations so that they test for—and disallow—any duplicates. What diction-
ary operations are affected? What are the implications for the unsorted linear implementations?

8. Although disallowing duplicate search keys in the ADT dictionary is reasonable for some applications, it is just
as reasonable to have an application that will allow duplicates.

 a. What are the implications of inserting identical items with the same search keys? What are the implica-
tions for the removal and retrieval operations?

 b. What are the implications of inserting items that are not identical but have the same search key?
Specifi cally, what would the implementations of add, remove, and getItem do?

9. Suppose that you want to support two remove operations for the ADT dictionary—for example, removeByName
and removeByID. Describe an effi cient implementation for these operations.

10. Repeat Exercise 9, but instead use a binary search tree to organize one of the search keys and a sorted linked
chain to organize the second search key.

11. Can you use a heap instead of a binary search tree as an implementation of the ADT dictionary?

12. Write pseudocode for the dictionary operations add, remove , and getItem when the implementation uses
hashing and linear probing to resolve collisions.

13. Write the pseudocode for the remove operation when the implementation uses hashing and separate chaining to
resolve collisions.

14. The success of a hash-table implementation of the ADT dictionary is related to the choice of a good hash func-
tion. A good hash function is one that is easy to compute and will evenly distribute the possible data. Comment
on the appropriateness of the following hash functions. What patterns would hash to the same location?

 a. The hash table has size 2,048. The search keys are English words. The hash function is

h (key) � (Sum of positions in alphabet of key’s letters) mod 2048

 b. The hash table has size 2,048. The keys are strings that begin with a letter. The hash function is

h (key) � (position in alphabet of fi rst letters key) mod 2048

Thus, “BUT” maps to 2. How appropriate is this hash function if the strings are random? What if the
strings are English words?

Programming Problems 565

 c. The hash table is 10,000 entries long. The search keys are integers in the range 0 through 9999. The
hash function is

h (key) � (key* random) truncated to an integer

where random represents a sophisticated random-number generator that returns a real value between
0 and 1.

 d. The hash table is 10,000 entries long (HASH_TABLE_SIZE is 10000). The search keys are integers in the
range 0 through 9999. The hash function is given by the following C++ function:

int hashIndex(int x)
{
 for (int i = 1; i <= 1000000; i++)
 x = (x * x) % HASH_TABLE_SIZE;

return x;
} // end hashIndex

 PROGRAMMING PROBLEMS

1. Complete the implementation of the class ArrayDictionary as given in Listing 18-3.

2. Complete the implementation of the class TreeDictionary as given in Listing 18-4.

3. Write the sorted link-based, unsorted array-based, and unsorted link-based implementations of the ADT
dictionary described in this chapter.

4. Write unsorted and sorted implementations of the ADT dictionary that use, respectively, the ADTs list and
sorted list, which Chapters 8 and 12 described.

5. Repeat Programming Problem 5 of Chapter 16 , using the ADT dictionary as the database.

6. Develop a program that can be used to test an implementation of the ADT dictionary.

7. Implement the symbol table described in Exercise 5 by reusing the class TreeDictionary , as described in
 Section 18.2.2 of this chapter.

8. Consider any collection of data that you can organize in at least two ways. For example, you can order
employees by name or by Social Security number and books by title or by author. Note that other information
about the employees or books is present in the database but is not used to organize these items. This program
assumes that the search keys (for example, book title or book author) are unique and are strings. Thus, in the
previous examples, the Social Security number must be a string instead of an integer, and only one book per
author is permitted. Choose any set of data that conforms to these requirements, and create a text fi le.

Program behavior. When your program begins execution, it should read your text fi le. It then should pro-
vide some typical database management operations, all under user control via an interface of your design. For
example, you should be able to add an item, remove an item, display (that is, retrieve) an item, and display all of
the items in search-key order. You should be able to use either of two search keys to designate the item to be
removed or displayed.

Implementation notes. The items in the database should be objects that contain two search keys and
additional data, all of which appear in the text fi le. Thus, you need to design and implement a class of these
objects.

Although your program could create two dictionaries from these objects—one organized by one search key
(such as the employee name) and the other organized by another search key (such as the Social Security
number)—this approach could waste a substantial amount of memory due to the duplication of all of the data in
both dictionaries.

566 CHAPTER 18 Dictionaries and Their Implementations

 A better approach revises the ADT dictionary to provide operations according to two search keys. For
example, you want to be able to remove by name and by Social Security number. The underlying data structure
for the dictionary’s implementation should be a binary search tree. Actually, you will want two binary search
trees so that you can organize the data in two ways: by name and by Social Security number, for example.

 To avoid duplicated data, store the data in an ADT list and let each node in the binary search trees contain
the position of the actual data item in the list, instead of the data item itself.

 Your program can be specifi c to the type of database (employees, books, and so on), or it can be more gen-
eral. For example, you could determine the search-key descriptions that the user interface displays by requiring
that they be in the text fi le.

9. Repeat Programming Problem 7, but use the class HashedDictionary, as described in Section 18.4.6 , which
uses separate chaining to resolve collisions. Use the hash function h(x) = x mod tableSize and the algorithm that
involves Horner’s rule, as described in Section 18.4.1 about hash functions, to convert a variable into an integer x.

Because you add an item to the dictionary only if its search key is not already present, does the time required
for an insertion increase?

10. Repeat Programming Problem 9, but this time

 a. Use linear probing as the collision-resolution scheme.
 b. Use double hashing as the collision-resolution scheme.
 c. Use quadratic probing as the collision-resolution scheme.

11. Repeat Programming Problem 9, but allocate the hash table dynamically. If the hash table becomes more than
half full, increase its size to the fi rst prime number greater than 2 � tableSize .

12. Repeat Programming Problem 9, but experiment with variations of chaining. For example, the hash table could
point to binary search trees instead of chains of linked entries.

 Chapter

 Balanced
Search Trees 19

 Contents
 19.1 Balanced Search Trees 568
 19.2 2-3 Trees 569

 19.2.1 Traversing a 2-3 Tree 572
 19.2.2 Searching a 2-3 Tree 572
 19.2.3 Inserting Data into a 2-3 Tree 575
 19.2.4 Removing Data from a 2-3 Tree 579

 19.3 2-3-4 Trees 585
 19.3.1 Searching and Traversing a 2-3-4 Tree 587
 19.3.2 Inserting Data into a 2-3-4 Tree 587
 19.3.3 Removing Data from a 2-3-4 Tree 591

 19.4 Red-Black Trees 592
 19.4.1 Searching and Traversing a Red-Black Tree 594
 19.4.2 Inserting into and Removing from a Red-Black Tree 594

 19.5 AVL Trees 597

 Summary 600
 Exercises 600
 Programming Problems 602

 Prerequisites
 Chapter 15 Trees
 Chapter 16 Tree Implementations
 Chapter 18 Dictionaries and Their Implementations

 Although Chapter 18 described the advantages of using the binary search tree to
implement the ADT dictionary, the effi ciency of this implementation suffers when the
tree loses its balance. This chapter introduces various other search trees, which remain
balanced in all situations and thus enable dictionary operations whose effi ciency is
comparable to a binary search.

568 CHAPTER 19 Balanced Search Trees

 19.1 Balanced Search Trees
 As you saw in the previous chapter, the effi ciency of the binary search tree implementation of the
ADT dictionary is related to the tree’s height. The operations add , remove , and getItem follow a path
from the root of the tree to the node that contains the desired item (or, in the case of the add operation,
to the node that is to become the parent of the new item). At each node along the path, you compare a
given value to the search key in the node and determine which subtree to search next. Because the
maximum number of nodes on such a path is equal to the height of the tree, the maximum number of
comparisons that the dictionary operations can require is also equal to this height.

 As you know, the height of a binary search tree of n nodes ranges from a maximum of n to a mini-
mum of < log 2 (n + 1) = As a consequence, locating a particular item in a binary search tree requires
between n and < log 2 (n + 1) = comparisons. Thus, a search of a binary search tree can be as ineffi cient as
a sequential search of a chain of linked nodes or as effi cient as a binary search of a sorted array. Effi -
ciency was the primary reason for developing the binary search tree implementation of the dictionary:
We wanted to perform a search of a linked structure as effi ciently as we could perform a binary search
of an array. Thus, we certainly want the optimum behavior of the binary search tree.

 What affects the height of a binary search tree? As you learned in Chapters 15 and 16 , the height
of the tree is quite sensitive to the order in which you insert or remove items. For example, consider a
binary search tree that contains the items 10, 20, 30, 40, 50, 60, and 70. If you inserted the items into
the tree in ascending order, you would obtain a binary search tree of maximum height, as shown in
 Figure 19-1 a. If, on the other hand, you inserted the items in the order 40, 20, 60, 10, 30, 50, 70, you
would obtain a balanced binary search tree of minimum height, as shown in Figure 19-1 b.

 As you can see, if you use the algorithms in Chapter 16 to maintain a binary search tree, insertions
and removals can cause the tree to lose its balance and approach a linear shape. Such a tree is no better
than a linear chain of linked nodes. For this reason, it is desirable in many applications to use one of

The height of a
binary search tree is
sensitive to the
order of insertions
and removals

Various search trees
can retain their
balance despite
insertions and
removals

FIGURE 19-1 (a) A binary search tree of maximum height; (b) a binary search tree of
minimum height

30

20

10 40

20 60

(a)

40

50

60

70

10 30 50 70

(b)

 2-3 Trees 569

several variations of the basic binary search tree. Such trees can absorb insertions and removals without
a deterioration of their balance and are easier to maintain than a minimum-height binary search tree. In
addition, you can search these trees almost as effi ciently as you can search a minimum-height binary
search tree. This chapter discusses the better-known search trees to give you a sense of the possibilities.
We continue to assume that the entries in a tree are unique—that is, that there are no duplicates.

 19.2 2-3 Trees
 A 2-3 tree is a tree in which each internal node (nonleaf) has either two or three children and all leaves
are at the same level. For example, Figure 19-2 shows a 2-3 tree of height 3. A node with two children
is called a 2-node —the nodes in a binary tree are all 2-nodes—and a node with three children is
called a 3-node .

FIGURE 19-2 A 2-3 tree of height 3

A 2-3 tree is not a
binary tree

A 2-3 tree is never
taller than a
minimum-height
binary tree

 Note: 2-3 trees

T is a 2-3 tree of height h if one of the following is true:

• T is empty, in which case h is 0.
• T is of the form

r

TL TR

 A 2-3 tree is not a binary tree, because a node can have three children; nevertheless, a 2-3 tree
does resemble a full binary tree. If a particular 2-3 tree contains only 2-nodes—a possibility, accord-
ing to the defi nition—it is like a full binary tree, because all of its internal nodes have two children
and all of its leaves are at the same level. If, on the other hand, some of the internal nodes of a 2-3 tree
do have three children, the tree will contain more nodes than a full binary tree of the same height.
Therefore, a 2-3 tree of height h always has at least as many nodes as a full binary tree of height h ; that
is, it always has at least 2 h – 1 nodes. To put this another way, a 2-3 tree with n nodes never has height
greater than < log 2 (n + 1) = , the minimum height of a binary tree with n nodes.

 Given these observations, a 2-3 tree might be useful as an implementation of the ADT dictionary.
Indeed, this is the case if the 2-3 tree orders its nodes to make it useful as a search tree. Just as we dis-
tinguish between a binary tree and a binary search tree, we could distinguish between a “2-3 tree” and
a “2-3 search tree.” The previous description would defi ne a 2-3 tree, and the recursive defi nition
given next would defi ne a 2-3 search tree. Most people, however, do not make such a distinction and
use the term “2-3 tree” to mean “2-3 search tree;” we will do so as well. The following recursive defi -
nition of a 2-3 tree specifi es the order of its nodes, making it a search tree:

VideoNote

2-3 trees

570 CHAPTER 19 Balanced Search Trees

 Thus, the items in a 2-3 tree are ordered. For example, the tree in Figure 19-4 is a 2-3 tree.

 where r is a node that contains one data item and TL and TR are both 2-3 trees, each of
height h – 1. In this case, the item in r must be greater than each item in the left subtree
TL and smaller than each item in the right subtree TR .

• T is of the form

r

TL TRTM

 where r is a node that contains two data items and TL , TM , and TR are 2-3 trees, each of
height h – 1. In this case, the smaller item in r must be greater than each item in the left
subtree TL and smaller than each item in the middle subtree TM . The larger item in
r must be greater than each item in the middle subtree TM and smaller than each item in
the right subtree TR .

 Note: Rules for placing data items in the nodes of a 2-3 tree

 The previous defi nition of a 2-3 tree implies the following rules for how you may place
data items in its nodes:

• A 2-node, which has two children, must contain a single data item that is greater
than the left child’s item(s) and less than the right child’s item(s), as Figure 19-3 a
illustrates.

• A 3-node, which has three children, must contain two data items, S and L , that satisfy the
following relationships, as Figure 19-3 b illustrates: S is greater than the left child’s item(s)
and less than the middle child’s item(s); L is greater than the middle child’s item(s) and
less than the right child’s item(s).

• A leaf may contain either one or two data items.

Items in a 2-3 tree
are ordered

FIGURE 19-3 Nodes in a 2-3 tree: (a) a 2-node; (b) a 3-node

S L

Data items > LData items < S

Data items > S
and < L

S

Data items > SData items < S

(a) (b)

 2-3 Trees 571

 Listing 19-1 declares a class of nodes for a 2-3 tree. When a node contains only one data item,
you can place it in smallItem and use leftChildPtr and midChildPtr to point to the node’s chil-
dren. To be safe, you can place nullptr in rightChildPtr .

FIGURE 19-4 A 2-3 tree

10 60 80 16030 40 100 110 130 140

7020

50 90

120 150

 LISTING 19-1 A header fi le for a class of nodes for a 2-3 tree

 /** A class of nodes for a link-based 2-3 tree.
 @file TriNode.h */

#ifndef _TRI_NODE
#define _TRI_NODE

 template < class ItemType>
 class TriNode
 {
 private :
 ItemType smallItem, largeItem; // Data portion
 TriNode<ItemType>* leftChildPtr; // Left-child pointer
 TriNode<ItemType>* midChildPtr; // Middle-child pointer
 TriNode<ItemType>* rightChildPtr; // Right-child pointer

 public :
 TriNode();
 TriNode(const ItemType& anItem);
 TriNode(const ItemType& anItem, TriNode<ItemType>* leftPtr,
 TriNode<ItemType>* midPtr, TriNode<ItemType>* rightPtr);

bool isLeaf() const ;
bool isTwoNode() const ;
bool isThreeNode() const ;

 ItemType getSmallItem() const ;
 ItemType getLargeItem() const ;

void setSmallItem(const ItemType& anItem);
void setLargeItem(const ItemType& anItem);

(continues)

572 CHAPTER 19 Balanced Search Trees

 TriNode<ItemType>* getLeftChildPtr() const ;
 TriNode<ItemType>* getMidChildPtr() const ;
 TriNode<ItemType>* getRightChildPtr() const ;

void setLeftChildPtr(TriNode<ItemType>* leftPtr);
void setMidChildPtr(TriNode<ItemType>* midPtr);
void setRightChildPtr(TriNode<ItemType>* rightPtr);

 }; // end TriNode
#include "TriNode"
 #endif

 19.2.1 Traversing a 2-3 Tree

 The algorithms for the traversal, retrieval, insertion, and removal operations on a 2-3 tree are recur-
sive. You can avoid distracting implementation details by defi ning the base case for these recursive
algorithms to be a leaf rather than an empty subtree. As a result, the algorithms must assume that they
are not passed an empty tree as an argument.

 You can traverse a 2-3 tree in sorted order by performing the analogue of an inorder traversal on a
binary tree:

 // Traverses a nonempty 2-3 tree in sorted order.
inorder(23Tree: TwoThreeTree): void

if (23Tree’s root node r is a leaf)
 Visit the data item(s)

else if (r has two data items)
{

inorder(left subtree of 23Tree’s root)
Visit the first data item
inorder(middle subtree of 23Tree’s root)
Visit the second data item
inorder(right subtree of 23Tree’s root)

 }
else // r has one data item
{

inorder(left subtree of 23Tree’s root)
Visit the data item
inorder(right subtree of 23Tree’s root)

}

 19.2.2 Searching a 2-3 Tree

 The ordering of items in a 2-3 tree is analogous to the ordering for a binary search tree and allows you to
search a 2-3 tree effi ciently for a particular item. In fact, the retrieval operation for a 2-3 tree is quite
similar to the retrieval operation for a binary search tree, as you can see from the following pseudocode:

 // Locates the value target in a nonempty 2-3 tree. Returns either the located
 // entry or throws an exception if such a node is not found.
findItem(23Tree: TwoThreeTree, target: ItemType): ItemType

if (target is in 23Tree ’s root node r)
{ // The item has been found

 treeItem = the data portion of r
 return treeItem // Success

}

Inorder traversal

Searching a 2-3 tree
is effi cient

 2-3 Trees 573

else if (r is a leaf)
throw NotFoundException // Failure

// Else search the appropriate subtree
else if (r has two data items)
{

if (target < smaller item in r)
return findItem(r ’s left subtree, target)

else if (target < larger item in r)
return findItem(r ’s middle subtree, target)

else
return findItem(r ’s right subtree, target)

}
else // r has one data item
{

if (target < r ’s data item)
return findItem(r ’s left subtree, target)

else
return findItem(r’s right subtree, target)

}

 You can search the 2-3 tree and the shortest binary search tree with approximately the same
effi ciency, because

• A binary search tree with n nodes cannot be shorter than < log 2 (n + 1) =
• A 2-3 tree with n nodes cannot be taller than < log 2 (n + 1) =
• A node in a 2-3 tree has at most two items

 Searching a 2-3 tree is not more effi cient than searching a binary search tree, however. This observa-
tion may surprise you because, after all, the nodes of a 2-3 tree can have three children, and hence a 2-3
tree might indeed be shorter than the shortest possible binary search tree. Although true, this advantage
in height is offset by the extra time required to compare a given value with two values instead of only one.
In other words, although you might visit fewer nodes when searching a 2-3 tree, you might have to make
more comparisons at each node. As a consequence, the number of comparisons that you need to search a
2-3 tree for a given item is approximately equal to the number of comparisons required to search a binary
search tree that is as balanced as possible. This number is approximately log 2n .

 If you can search a 2-3 tree and a balanced binary search tree with approximately the same effi -
ciency, why then should you use a 2-3 tree? Because although maintaining the balance of a binary
search tree is diffi cult in the face of insertion and removal operations, maintaining the shape of a 2-3
tree is relatively simple. For example, consider the two trees in Figure 19-5 . The fi rst tree is a binary

9030

10

70 10 20

60

50

20 40

80 100

(a)

30

50

40 80

(b)

70 90

60 100

FIGURE 19-5 (a) A balanced binary search tree; (b) a 2-3 tree with the same entries

Searching a 2-3 tree
is O(log n)

574 CHAPTER 19 Balanced Search Trees

search tree and the second is a 2-3 tree. Both trees contain the same data items. The binary search tree
is as balanced as possible, and thus you can search both it and the 2-3 tree for an item with approxi-
mately the same effi ciency. If, however, you perform a sequence of insertions on the binary search
tree—by using the insertion algorithm of Chapter 16 —the tree can quickly lose its balance, as Figure
 19-6 a indicates. In this example, we have inserted the values 32 through 39 in numerical order. As you
soon will see, you can perform the same sequence of insertions on the 2-3 tree without a degradation
in the tree’s shape—it will retain its structure, as Figure 19-6 b shows.

 The new values (32 through 39) that were inserted into the binary search tree of Figure 19-5 a
appear along a single path in Figure 19-6 a. The insertions increased the height of the binary search
tree from 4 to 12—an increase of 8. On the other hand, the new values have been spread throughout
the 2-3 tree in Figure 19-6 b. As a consequence, the height of the resulting tree is only 1 greater than
the height of the original 2-3 tree in Figure 19-5 b. We demonstrate these insertions into the original
2-3 tree next.

9030

10

70

60

50

20 40

80 100

(a)

(b)

39

38

37

36

35

34

33

32 10 20

39

50

40 80

70 90

60 10038

37

33

35

3634

30

32

FIGURE 19-6 (a) The binary search tree of Figure 19-5 a after inserting the sequence of values
32 through 39; (b) the 2-3 tree of Figure 19-5 b after the same insertions

Maintaining the
shape of a 2-3 tree
is relatively easy

 2-3 Trees 575

 19.2.3 Inserting Data into a 2-3 Tree

 Because the nodes of a 2-3 tree can have either two or three children and can contain one or two
values, you can insert items into the tree while maintaining its shape. The following paragraphs
informally describe the sequence of insertions that produced the 2-3 tree shown in Figure 19-6 b
from the original tree in Figure 19-5 b.

 Insert 39. As is true with a binary search tree, the fi rst step in inserting a node into a 2-3 tree is to
locate the node at which the search for the value to be inserted would terminate. To do this, you can
use the search strategy of the findItem algorithm given previously; an unsuccessful search will
always terminate at a leaf. With the tree in Figure 19-5 b, the search for 39 terminates at the leaf <40>.
(We will use this angle-bracket notation to denote a node and its contents.) Because this node con-
tains only one item, you can simply insert the new item into this node. The result is the 2-3 tree in
 Figure 19-7 .

Insertion into a
2-node leaf is
simple

FIGURE 19-7 After inserting 39 into the tree in Figure 19-5b

10 20

30

50

80

70 90

60 10039 40

 Insert 38. In a similar manner, you would search the tree in Figure 19-7 for 38 and fi nd that the
search terminates at the node <39 40>. You cannot place 38 in this node, as Figure 19-8 a illustrates,
because a node cannot contain three values. You arrange these three values, however, into the smallest
(38), middle (39), and largest (40) values. You can move the middle value (39) up to the node’s parent
p and separate the remaining values, 38 and 40, into two nodes that you attach to p as children, as
 Figure 19-8 b indicates. Because you chose to move up the middle value of <38 39 40>, the parent
correctly separates the values of its children; that is, 38 is less than 39, which is less than 40. The
result of the insertion is the 2-3 tree in Figure 19-8 c.

Insertion into a
3-node causes it to
divide

FIGURE 19-8 The steps for inserting 38 into the tree in Figure 19-7: (a) The located node has
no room; (b) the node splits; (c) the resulting tree

10 20

50

80

70 90

60 10038

30 39

40

(c)

10 20 38

30 39

40

(b)

10 20

(a) 30

38 4039

576 CHAPTER 19 Balanced Search Trees

 Insert 37. The insertion of 37 into the tree in Figure 19-8 c is easy because 37 belongs in a leaf that
currently contains only one value, 38. The result of this insertion is the 2-3 tree in Figure 19-9 .

FIGURE 19-9 After inserting 37 into the tree in Figure 19-8c

50

80

70 90

60 100

30 39

10 20 37 38 40

 Insert 36. The search for 36 terminates at the node <37 38> of the tree in Figure 19-9 , but the node has
no room for 36, as Figure 19-10 a indicates. Thus, you arrange the three values 36, 37, and 38 into the
smallest (36), middle (37), and largest (38) values, as you did previously. You then try to move the middle
value (37) up to the node’s parent <30 39> and give the parent children containing the smallest (36) and
largest (38) values, as Figure 19-10 b illustrates. However, the node <30 39> cannot contain three values
and have four children. This situation is familiar, with the slight difference that the overcrowded node is
not a leaf but rather has four children. As you did before, you divide the node into the smallest (30), mid-
dle (37), and largest (39) values and then move the middle value up to the node’s parent.

 Because you are splitting an internal node, you now must account for its four children—that is, what
happens to nodes <10 20>, <36>, <38>, and <40>? The solution is to attach the left pair of children—<10
20> and <36>—to the smallest value (30) and attach the right pair of children—<38> and <40>—to the
largest value (39), as shown in Figure 19-10 c. The fi nal result of this insertion is the 2-3 tree in Figure 19-10 d.

FIGURE 19-10 (a), (b), (c) The steps for inserting 36 into the tree in Figure 19-9; (d) the
resulting tree

30 39

10 20 36 38 40

50

30 39

10 20 40

37

(a)

80

70 90

60 100

37

3836

(b)

10 20 36

30

37 50

(d)

39

403810 20 36

30

37 50

(c)

39

4038

 2-3 Trees 577

 Insert 35, 34, and 33. Each of these insertions is similar to the previous ones. Figure 19-11 shows
the tree after the three insertions.

 The insertion algorithm. Let’s consider the general strategy for inserting an item into a 2-3 tree. To
begin, you locate the leaf at which the search for the new item would terminate. If the leaf does not
contain two items, you insert the new item into the leaf, and you are done. However, if the leaf already
contains two items, you must split it into two nodes, n1 and n2 . As Figure 19-12 illustrates, you place
the smallest item S into n1 , place the largest item L into n2 , and try to move the middle item M up to the
original leaf’s parent. If the parent has room for a new item—as is true here—nodes n1 and n2 become
children of the parent, and you are fi nished. The parent now has only three children and contains two
items.

FIGURE 19-11 The tree after the insertion of 35, 34, and 33 into the tree in Figure 19-10d

80

70 90

60 100

39

4038

37 50

30 35

10 20 33 34 36

 Question 1 To be sure that you fully understand the insertion algorithm, insert 32 into the
2-3 tree in Figure 19-11 . The result should be the tree shown in Figure 19-6 b. Once again,
compare this tree with the binary search tree in Figure 19-6 a and notice the dramatic advan-
tage of the 2-3 tree’s insertion strategy.

CHECK POINT

When a leaf would
contain three items,
split it into two
nodes

FIGURE 19-12 Splitting a leaf in a 2-3 tree when the leaf is a (a) left child; (b) right child

M PP(a)

(b)

S L

P

S LM

S LM

P M

S L

n1 n2

n1 n2

578 CHAPTER 19 Balanced Search Trees

 On the other hand, if the parent cannot accommodate the item moving up, you must split the par-
ent, as follows. You split an internal node n that contains three items by using the process just described
for a leaf, except that you must also take care of n ’s four children. As Figure 19-13 illustrates, you split
n into n1 and n2 , place n ’s smallest item S into n1 , attach n ’s two leftmost children to n1 , place n ’s largest
item L into n2 , attach n ’s two rightmost children to n2 , and move n ’s middle item M up to n ’s parent.

When an internal
node would contain
three items, split it
into two nodes and
accommodate its
children

FIGURE 19-13 Splitting an internal node in a 2-3 tree when the node is a (a) left child;
(b) right child

M PP(a)

(b)

S LS LM n1 n2

e
n

a b c d

e

a c db

P MP

S LS LM n1 n2n

b c d e b d ec

a a

 After this, the process of splitting a node and moving an item up to the parent continues recur-
sively until a node is reached that had only one item before the insertion and thus has only two items
after it takes on a new item. Notice in the previous sequence of insertions that the tree’s height never
increased from its original value of 3. In general, an insertion will not increase the height of the tree as
long as there is at least one node containing only one item on the path from the root to the leaf into
which the new item is inserted. The insertion strategy of a 2-3 tree has thus postponed the growth of
the tree’s height much more effectively than the strategy of a basic binary search tree did.

 When the height of a 2-3 tree does grow, it does so from the top. An increase in the height of a 2-3
tree will occur if every node on the path from the root of the tree to the leaf into which the new item is
inserted contains two items. In this case, the recursive process of splitting a node and moving an item
up to the node’s parent will eventually reach the root r . When this occurs you must split r into r1 and r2
exactly as you would any other internal node. However, you must create a new node that contains the
middle item of r and becomes the parent of r1 and r2 . Thus, the new node is the new root of the tree, as
 Figure 19-14 illustrates.

When the root would
contain three items,
split it into two
nodes and create a
new root node

FIGURE 19-14 Splitting the root of a 2-3 tree

M

S Lr1 r2

a c db

New root

S LM

a b c d

Root r

 2-3 Trees 579

 The following high-level algorithm summarizes the entire insertion strategy:

// Inserts a new item into a 2-3 tree whose items are distinct and differ from the
// new item .
insertItem(23Tree: TwoThreeTree, newItem: ItemType)

Locate the leaf, leafNode, in which newItem belongs
Add newItem to leafNode

if (leafNode has three items)
 split(leafNode)

// Splits node n, which contains two items. Note: If n is
 // not a leaf, it has four children.
split(n: TwoThreeNode)

if (n is the root)
 Create a new node p

else
 Let p be the parent of n

 Replace node n with two nodes, n1 and n2, so that p is their parent
Give n1 the item in n with the smallest value
Give n2 the item in n with the largest value

if (n is not a leaf)
{

 n1 becomes the parent of n ’s two leftmost children
 n2 becomes the parent of n ’s two rightmost children

}
 Move the item in n that has the middle value up to p
if (p now has three items)

 split(p)

2-3 tree insertion
algorithm

 Question 2 What is the result of inserting 5, 40, 10, 20, 15, and 30—in the order given—
into an initially empty 2-3 tree? Note that insertion of one item into an empty 2-3 tree will
create a single node that contains the inserted item.

 Question 3 What is the result of inserting 3 and 4 into the 2-3 tree that you created in the
previous question?

CHECK POINT

 19.2.4 Removing Data from a 2-3 Tree

 The removal strategy for a 2-3 tree is the inverse of its insertion strategy. Just as a 2-3 tree spreads
insertions throughout the tree by splitting nodes when they would become too full, it spreads remov-
als throughout the tree by merging nodes when they become empty. As an illustration of the 2-3 tree’s
removal strategy, consider the removal of 70, 100, and 80 from the tree in Figure 19-15 a.

 Remove 70. By searching the tree in Figure 19-15 a, you discover that 70 is in the node <70 90>.
Because you always want to begin the removal process at a leaf, the fi rst step is to swap 70 with its
inorder successor—the value that follows it in the sorted order. Because 70 is the smaller of the two
values in the node, its inorder successor (80) is the smallest value in the node’s middle subtree. Note
that the inorder successor of an item in an internal node will always be in a leaf. After the swap, the
tree appears as shown in Figure 19-15 b. The value 80 is in a legal position of the search tree because it
is larger than all the values in its node’s left subtree and smaller than all the values in its node’s right
subtree. The value 70 is not in a legal position, but this is of no concern, because the next step is to
remove this value from the leaf.

Swap the value to
be removed with its
inorder successor

580 CHAPTER 19 Balanced Search Trees

 In general, after you remove a value from a leaf, another value may remain in the leaf (because
the leaf contained two values before the removal). If this is the case, you are done, because a leaf of a
2-3 tree can contain a single value. In this example, however, once you remove 70 from the leaf, the
node is left without a value, as Figure 19-15 c indicates.

 You then delete the node, as Figure 19-15 d illustrates. At this point you see that the parent of the
deleted node contains two values (80 and 90) but has two children (60 and 100). This situation is not
allowed in a 2-3 tree. You can remedy the problem by moving the smaller value (80) down from the
parent into the left child, as Figure 19-15 e illustrates. Deleting the leaf node and moving a value down
to a sibling of the leaf is called merging the leaf with its sibling. The 2-3 tree that results from this
removal operation is shown in Figure 19-15 f.

 Remove 100. The search strategy discovers that 100 is in the leaf <100> of the tree in Figure 19-15 f.
When you remove the value from this leaf, the node becomes empty, as Figure 19-16 a indicates. In
this case, however, no merging of nodes is required, because the sibling <60 80> can spare a value.
That is, the sibling has two values, whereas a 2-3 tree requires only that it have at least one value.
However, if you simply move the value 80 into the empty node—as Figure 19-16 b illustrates—you
fi nd that the search-tree order is destroyed: The value in 90’s right child should be greater than 90, but
it is 80. Instead, you move the larger value (80) from <60 80> into the parent and move the value

FIGURE 19-15 (a) A 2-3 tree; (b), (c), (d), (e) the steps for removing 70; (f) the resulting tree

10 20

30

50

80

70 90

60 10040

(a)

80 90

60 100

Delete value from leaf

(c)

80 90

60 100

Merge nodes by deleting empty leaf and moving 80 down

(d)

90

100

(e)

60 80

10 20

30

50

40

(f)

90

60 80 100

(b)

10 20

30

50

70

80 90

60 10040

After the swapSwap with inorder successor

Merge nodes

Redistribute values

 2-3 Trees 581

90 down from the parent into the node that had been empty, as Figure 19-16 c shows. This distribution
preserves the search-tree order, and you have thus completed the removal. The resulting 2-3 tree is
shown in Figure 19-16 d.

 Remove 80. The search strategy fi nds that 80 is in an internal node of the tree in Figure 19-16 d. You
thus must swap 80 with its inorder successor, 90, as Figure 19-17 a illustrates. When you remove 80
from the leaf, the node becomes empty, as Figure 19-17 b shows. Because the sibling of the empty
node has only one value, you cannot redistribute as you did in the previous removal of 100. Instead
you must merge the nodes, bringing the value 90 down from the parent and deleting the empty leaf, as
 Figure 19-17 c indicates.

 You are not yet fi nished, however, because the parent contains no data and has only one child. You
must recursively apply the removal strategy to this internal node without a value. First, you should
check to see whether the node’s sibling can spare a value. Because the sibling <30> contains only the
single value 30, you cannot redistribute—you must merge the nodes. The merging of two internal
nodes is identical to the merging of leaves, except that the child <60 90> of the empty node must be
adopted. Because the sibling of the empty node contains only one value—and hence can have only
two children, as stated in the rule for 2-nodes—it can become the parent of <60 90> only if you bring
the value 50 down from the sibling’s parent. The tree now appears as shown in Figure 19-17 d. Note
that this operation preserves the search property of the tree.

 Now the parent of the merged nodes is left without a data item and only a single child. Usually,
you would apply the recursive removal strategy to this node, but this case is special because the node
is the root. Because the root is empty and has only one child, you can simply delete it, allowing <30
50> to become the root of the tree, as Figure 19-17 e illustrates. This deletion has thus caused the
height of the tree to shrink by 1.

 To summarize, we have removed 70, 100, and 80 from the 2-3 tree in Figure 19-15 a and obtained
the 2-3 tree in Figures 19-17 e and 19-18 a. In contrast, after removing 70, 100, and 80 from the bal-
anced binary search tree in Figure 19-5 a, you are left with the tree in Figure 19-18 b. Notice that the

FIGURE 19-16 (a), (b), (c) The steps for removing 100 from the tree in Figure 19-15f;
(d) the resulting tree

Remove value from leaf

(a)

90

60 80

10 20

30

50

40

Doesn’t work

(b)

90

8060

Redistribute

(c)

80

9060

80

9060

(d)

582 CHAPTER 19 Balanced Search Trees

FIGURE 19-17 The steps for removing 80 from the tree in Figure 19-16d

10 20

30

50

40

90

8060

(a)

After swap with inorder successor

(b)

90

60

Remove value from leaf

10 20

30

50

Merge by moving 90 down and removing empty leaf

60 90

(c)

10 20 40

Merge: move 50 down, adopt empty leaf's child, delete empty node

(d)

30 50

60 90 10 20 40

Delete empty root

(e)

30 50

60 90

Node becomes empty

Root becomes empty

40

FIGURE 19-18 Results of removing 70, 100, and 80 from (a) the 2-3 tree of Figure 19-15 a and
(b) the binary search tree of Figure 19-5 a

9030

10

60

50

20 40

10 20 40

(b)(a)

30 50

60 90

 2-3 Trees 583

removals affected only one part of the binary search tree, causing it to lose its balance. The left sub-
tree has not been affected at all, and thus the overall height of the tree has not been diminished.

 The removal algorithm. In summary, to remove an item I from a 2-3 tree, you fi rst locate the node n
that contains it. If n is not a leaf, you fi nd I ’s inorder successor and swap it with I . As a result of the
swap, the removal always begins at a leaf. If the leaf contains an item in addition to I , you simply
remove I and you are done. On the other hand, if the leaf contains only I, removing I would leave the
leaf without a data item. In this case you must perform some additional work to complete the removal.

 You fi rst check the siblings of the now-empty leaf. If a sibling has two items, you redistribute the
items among the sibling, the empty leaf, and the leaf’s parent, as Figure 19-19 a illustrates. If no sib-
ling of the leaf has two items, you merge the leaf with an adjacent sibling by moving an item down
from the leaf’s parent into the sibling—it had only one item before, so it has room for another—and
deleting the empty leaf. This case is shown in Figure 19-19 b.

 By moving an item down from a node n , as just described, you might cause n to be left without a
data item and with only one child. If so, you recursively apply the removal algorithm to n . Thus, if n
has a sibling with two items—and three children—you redistribute the items among n , the sibling,
and n ’s parent. You also give n one of its sibling’s children, as Figure 19-19 c indicates.

 If n has no sibling with two items, you merge n with a sibling, as Figure 19-19 d illustrates. That
is, you move an item down from the parent and let the sibling adopt n ’s one child. (At this point you
know that the sibling previously had only one item and two children.) You then delete the empty leaf.
If the merge causes n ’s parent to be without an item, you recursively apply the removal process to it.

 If the merging continues so that the root of the tree is without an item—and has only one
child—you simply delete the root. When this step occurs, the height of the tree is reduced by 1, as
 Figure 19-19 e illustrates.

 A high-level statement of the algorithm for removing data from a 2-3 tree follows:

 // Removes the given data item from a 2-3 tree. Returns true if successful
 // or false if no such item exists.
removeItem(23Tree: TwoThreeTree, dataItem: ItemType): boolean

Attempt to locate dataItem
if (dataItem is found)
{

if (dataItem is not in a leaf)
Swap dataItem with its inorder successor, which will be in a leaf leafNode

 // The removal always begins at a leaf
Remove dataItem from leaf leafNode
if (leafNode now has no items)

fixTree(leafNode)
return true

}
else

return false

 // Completes the removal when node n is empty by either deleting the root,
 // redistributing values, or merging nodes. Note: If n is internal, it has one child.
fixTree(n: TwoThreeNode)

if (n is the root)
Delete the root

else
{

Let p be the parent of n
if (some sibling of n has two items)
{

Distribute items appropriately among n, the sibling, and p

Redistribute values

Merge nodes

2-3 tree removal
algorithm

584 CHAPTER 19 Balanced Search Trees

P

Sibling

(a)

Leaf

L

PS

Sibling Leaf

Sibling

(b)

Leaf

S

L

(c)

(d)

ca b

P

S

ba c

(e)

ba c

Empty root

Height h

b d

P

a c c

n

da b

S P

L

S L

S L S L

S L

S L

S P

Empty
node n

Empty
node n

ba c

Height h – 1

Delete

Merge

Redistribute

Merge

Redistribute

FIGURE 19-19 (a) Redistributing values; (b) merging a leaf; (c) redistributing values and
children; (d) merging internal nodes; (e) deleting the root

 2-3-4 Trees 585

if (n is internal)
 Move the appropriate child from sibling to n

}
else // Merge the node
{

Choose an adjacent sibling s of n
 Bring the appropriate item down from p into s
if (n is internal)

Move n ’s child to s
Remove node n
if (p is now empty)

 fixTree(p)
}

 }

 The details of the C++ implementation of the preceding insertion and removal algorithms for 2-3
trees are rather involved. The implementation is left as a challenging exercise (Programming Problem 2).

 You might be concerned about the overhead that the insertion and removal algorithms incur in
the course of maintaining the 2-3 structure of the tree. That is, after the search strategy locates either
the item or the position for the new item, the insertion and removal algorithms sometimes have to
perform extra work, such as splitting and merging nodes. However, this extra work is not a real con-
cern. A rigorous mathematical analysis would show that the extra work required to maintain the struc-
ture of a 2-3 tree after an insertion or a removal is not signifi cant. In other words, when analyzing the
effi ciency of the insertItem and removeItem algorithms, it is suffi cient to consider only the time
required to locate the item (or the position for the insertion). Given that a 2-3 tree is always balanced,
you can search a 2-3 tree in all situations with the logarithmic effi ciency of a binary search.

 Thus, a 2-3 tree implementation of the ADT dictionary is guaranteed to have effi cient operations.
Although a binary search tree that is as balanced as possible minimizes the amount of work required
by the ADT dictionary operations, its balance is diffi cult to maintain. A 2-3 tree is a compromise:
Although searching it may not be quite as effi cient as searching a binary search tree of minimum
height, it is relatively simple to maintain.

A 2-3 tree is always
balanced

A 2-3 tree
implementation of a
dictionary is O(log n)
for all of its
operations

 Question 4 What is the result of removing the 10 from the 2-3 tree that you created in
Checkpoint Question 1?

CHECK POINT

 19.3 2-3-4 Trees
 If a 2-3 tree is so good, are trees whose nodes can have more than three children even better? To some
extent, the answer is yes. A 2-3-4 tree is like a 2-3 tree, but it also allows 4-nodes , which are nodes
that have four children and three data items. For example, Figure 19-20 shows a 2-3-4 tree of height 3

FIGURE 19-20 A 2-3-4 tree with the same data items as the 2-3 tree in Figure 19-6 b

10 20 80

70 90

60 10036

39

4038

37 50

32 3433

30 35

VideoNote

2-3-4 and red-black
trees

586 CHAPTER 19 Balanced Search Trees

that has the same items as the 2-3 tree in Figure 19-6 b. As you will see, you can perform insertions
and removals on a 2-3-4 tree with fewer steps than a 2-3 tree requires.

Note: 2-3-4 trees

T is a 2-3-4 tree of height h if one of the following is true:

• T is empty, in which case h is 0.
• T is of the form

r

TL TR

 where r is a node that contains one data item and TL and TR are both 2-3-4 trees, each of
height h – 1. In this case, the item in r must be greater than each item in the left subtree
TL and smaller than each item in the right subtree TR .

• T is of the form
r

TL TRTM

 where r is a node that contains two data items and TL , TM , and TR are 2-3-4 trees, each of
height h – 1. In this case, the smaller item in r must be greater than each item in the left
subtree TL and smaller than each item in the middle subtree TM . The larger item in r
must be greater than each item in TM and smaller than each item in the right subtree TR .

• T is of the form
r

TL TRTML TMR

 where r is a node that contains three data items and TL , TML , TMR , and TR are 2-3-4 trees,
each of height h – 1. In this case, the smallest item in r must be greater than each item in
the left subtree TL and smaller than each item in the middle-left subtree TML . The middle
item in r must be greater than each item in TML and smaller than each item in the mid-
dle-right subtree TMR . The largest item in r must be greater than each item in TMR and
smaller than each item in the right subtree TR .

A 2-3-4 tree

 Note: Rules for placing data items in the nodes of a 2-3-4 tree

 The previous defi nition of a 2-3-4 tree implies the following rules for how you may place
data items in its nodes:

• A 2-node, which has two children, must contain a single data item that satisfi es the
relationships pictured earlier in Figure 19-3 a.

• A 3-node, which has three children, must contain two data items that satisfy the
relationships pictured earlier in Figure 19-3 b.

 2-3-4 Trees 587

 Although a 2-3-4 tree has more effi cient insertion and removal operations than a 2-3 tree, a 2-3-4
tree has greater storage requirements due to the additional data members in its 4-nodes, as the begin-
ning of the class QuadNode indicates:

 template < class ItemType>
 class QuadNode
 {
 private :
 ItemType smallItem, middleItem, largeItem; // Data portion
 QuadNode<ItemType>* leftChildPtr; // Left-child pointer
 QuadNode<ItemType>* leftMidChildPtr; // Middle-left-child pointer
 QuadNode<ItemType>* rightMidChildPtr; // Middle-right-child pointer
 QuadNode<ItemType>* rightChildPtr; // Right-child pointer

// Constructors, accessor methods, and mutator methods are here.

 . . .

 }; // end QuadNode

 As you will see later, however, you can transform a 2-3-4 tree into a special binary tree that reduces
the storage requirements.

 19.3.1 Searching and Traversing a 2-3-4 Tree

 The search algorithm and the traversal algorithm for a 2-3-4 tree are simple extensions of the corre-
sponding algorithms for a 2-3 tree. For example, to search the tree in Figure 19-20 for 31, you would
search the left subtree of the root, because 31 is less than 37; search the middle subtree of the node
<30 35>, because 31 is between 30 and 35; and terminate the search at the left child pointer of <32 33
34>, because 31 is less than 32—deducing that 31 is not in the tree. Exercise 8 asks you to complete
the details of searching and traversing a 2-3-4 tree.

 19.3.2 Inserting Data into a 2-3-4 Tree

 The insertion algorithm for a 2-3-4 tree, like the insertion algorithm for a 2-3 tree, splits a node by
moving one of its items up to its parent node. For a 2-3 tree, the search algorithm traces a path from
the root to a leaf and then backs up from the leaf as it splits nodes. To avoid this return path after

• A 4-node, which has four children, must contain three data items S , M , and L that
satisfy the following relationships, as Figure 19-21 illustrates: S is greater than the
left child’s item(s) and less than the middle-left child’s item(s); M is greater than the
middle-left child’s item(s) and less than the middle-right child’s item(s); L is greater
than the middle-right child’s item(s) and less than the right child’s item(s).

• A leaf may contain either one, two, or three data items.

FIGURE 19-21 A 4-node in a 2-3-4 tree

S LM

Data items < S
Data items > S and < M Data items > M and < L

Data items > L

A 2-3-4 tree requires
more storage than a
2-3 tree

A node in a 2-3-4
tree

588 CHAPTER 19 Balanced Search Trees

reaching a leaf, the insertion algorithm for a 2-3-4 tree splits 4-nodes as soon as it encounters them
on the way down the tree from the root to a leaf. As a result, when a 4-node is split and an item is
moved up to the node’s parent, the parent cannot possibly be a 4-node, and so it can accommodate
another item.

 As an example of the algorithm, consider the tree in Figure 19-22 a. This one-node tree is the
result of inserting 60, 30, and 10 into an initially empty 2-3-4 tree. We will now insert more data into
this tree.

 Insert 20. While determining the insertion point, you begin at the root and encounter the 4-node <10
30 60>, which you split by moving the middle value 30 up. Because the node is the root, you create a
new root, move 30 into it, and attach two children, as Figure 19-22 b illustrates. You continue the
search for 20 by examining the left subtree of the root, because 20 is less than 30. The insertion results
in the tree in Figure 19-22 c.

Split 4-nodes as
they are
encountered

FIGURE 19-22 Inserting 20 into a one-node 2-3-4 tree (a) the original tree; (b) after splitting the
node; (c) after inserting 20

30

6010

30

6010 2010 6030

(a) (b) (c)

 Insert 50 and 40. The insertions of 50 and 40 do not require split nodes and result in the tree in
 Figure 19-23 .

FIGURE 19-23 After inserting 50 and 40 into the tree in Figure 19-22c

10 20 40 6050

30

 Insert 70. While searching Figure 19-23 for 70’s insertion point, you encounter the 4-node <40 50
60>, because 70 is greater than 30. You split this 4-node by moving 50 up to the node’s parent, <30>,
to get the tree in Figure 19-24 a. You then insert 70 into the leaf <60>, as Figure 19-24 b illustrates.

FIGURE 19-24 The steps for inserting 70 into the tree in Figure 19-23: (a) after splitting the
4-node; (b) after inserting 70

30 50

60

(a)

10 20 40

30 50

(b)

10 20 40 60 70

 2-3-4 Trees 589

 Insert 90. As you search Figure 19-25 for 90’s insertion point, you traverse the root’s right subtree,
because 90 is greater than 50, and encounter the 4-node <60 70 80>. You split this 4-node into two
nodes and move 70 up to the root, as Figure 19-26 a indicates. Finally, because 90 is greater than 70,
you insert 90 into the leaf <80> to get the tree in Figure 19-26 b.

 Insert 80 and 15. These insertions do not require split nodes and result in the tree in Figure 19-25 .

FIGURE 19-25 After inserting 80 and 15 into the tree in Figure 19-24b

30 50

10 20 40 60 8015 70

FIGURE 19-26 The steps for inserting 90 into the tree in Figure 19-25

10 20 40

(a)

30 70

60 80

50

15 10 20 40

(b)

30 70

80 9060

50

15

 Insert 100. As you begin to search Figure 19-26 b, you immediately encounter a 4-node at the tree’s
root. You split this node into two nodes and move 50 up to a new root, as Figure 19-27 a indicates.
After continuing the search, you insert 100 into <80 90> to get the tree in Figure 19-27 b.

FIGURE 19-27 The steps for inserting 100 into the tree in Figure 19-26b

50

30 70

80 90604010 2015

(a)

50

30 70

80 10090604010 2015

(b)

 Splitting 4-nodes during insertion. As you have just seen, you split each 4-node as soon as you
encounter it during your search from the root to the leaf that will accommodate the new item to be
inserted. As a result, each 4-node either will

• Be the root,
• Have a 2-node parent, or
• Have a 3-node parent

590 CHAPTER 19 Balanced Search Trees

 Figure 19-29 illustrates the two possible situations that can occur when you split a 4-node whose
parent is a 2-node. For example, when you split <40 50 60> during the insertion of 70 into the tree in
 Figure 19-23 , you get the tree in Figure 19-24 a.

 Figure 19-28 illustrates how to split a 4-node that is the tree’s root. You have seen two previous
examples of this: We split <10 30 60> in Figure 19-22 a, resulting in the tree in Figure 19-22 b. We
also split <30 50 70> during the insertion of 100 into the tree in Figure 19-26 b, giving us the tree in
 Figure 19-27 a.

FIGURE 19-28 Splitting a 4-node root during insertion into a 2-3-4 tree

S LM

a b c d

S L

M

a b c d

FIGURE 19-29 Splitting a 4-node whose parent is a 2-node during insertion into a 2-3-4 tree,
when the 4-node is a (a) left child; (b) right child

S LM

b c d e

S L

b c d e

P MP

a

(b)

S LM

a b c d

S L

a b c d

M P

e

P

e

(a)

a

 Question 5 Insert 25 into the 2-3-4 tree in Figure 19-27b.

 Question 6 Insert 3 and 4 into the 2-3-4 tree that you created in the previous question. CHECK POINT

 Figure 19-30 illustrates the three possible situations that can occur when you split a 4-node
whose parent is a 3-node. For example, when you split <60 70 80> during the insertion of 90 into the
tree in Figure 19-25 , you get the tree in Figure 19-26 a.

 2-3-4 Trees 591

 19.3.3 Removing Data from a 2-3-4 Tree

 The removal algorithm for a 2-3-4 tree has the same beginning as the removal algorithm for a
2-3 tree. You first locate the node n that contains the item I that you want to remove. You then
find I ’s inorder successor and swap it with I so that the removal will always be at a leaf. If that
leaf is either a 3-node or a 4-node, you simply remove I . If you can ensure that I does not occur
in a 2-node, you can perform the removal in one pass through the tree from root to leaf, unlike
removal from a 2-3 tree. That is, you will not have to back away from the leaf and restructure
the tree.

 In fact, you can guarantee that I does not occur in a 2-node by transforming each 2-node that
you encounter during the search for I into either a 3-node or a 4-node. Several cases are possible,
depending on the confi guration of the 2-node’s parent and its nearest sibling. (Arbitrarily, a
node’s nearest sibling is its left sibling, unless the node is a left child, in which case its nearest
sibling is to its right.) That is, either the parent or the sibling could be a 2-node, a 3-node, or a
4-node. For example, if the next node that you encounter is a 2-node and both its parent and near-
est sibling are 2-nodes, apply the transformation that Figure 19-28 illustrates, but in reverse;
however, if the parent is a 3-node, apply the transformation that Figure 19-29 illustrates, but in
reverse; and if the parent is a 4-node, apply the transformation that Figure 19-30 illustrates, but
in reverse.

 The details of removal from a 2-3-4 tree are left to you as a challenging exercise (Exercise 8).

S LM

a b c d

S L

a b c d

ff

(a)
P Q

e

M QP

e

S LM

b c d e

S L

b c d e

ff

(b)
P Q P QM

a a

S LM

c d e f

S L

c d e f

(c)
P Q P MQ

a ab b

FIGURE 19-30 Splitting a 4-node whose parent is a 3-node during insertion into a 2-3-4 tree,
when the 4-node is a (a) left child; (b) middle child; (c) right child

Transform each
2-node into a
3-node or a 4-node

592 CHAPTER 19 Balanced Search Trees

 19.4 Red-Black Trees
 A 2-3-4 tree is appealing because it is balanced and because its insertion and removal operations
use only one pass from root to leaf. On the other hand, a 2-3-4 tree requires more storage than a
binary search tree that contains the same data because a 2-3-4 tree has nodes that must accommo-
date up to three data items. A typical binary search tree, however, might not be balanced.

 You can use a special binary search tree—a red-black tree —to represent a 2-3-4 tree that
retains the advantages of a 2-3-4 tree without the storage overhead. The idea is to represent each
3-node and 4-node in a 2-3-4 tree as an equivalent binary search tree. To distinguish between
2-nodes that appeared in the original 2-3-4 tree and 2-nodes that were generated from 3-nodes and
4-nodes, you use red and black child pointers. Let all the child pointers in the original 2-3-4 tree
be black, and use red child pointers to link the 2-nodes that result when you split 3-nodes and
4-nodes.

2-3 and 2-3-4 trees
are attractive
because their
balance is easy to
maintain

Insertion and
removal algorithms
for a 2-3-4 tree
require fewer steps
than those for a
2-3 tree

Allowing nodes with
more than four
children is
counterproductive

 Note: 2-3 trees versus 2-3-4 trees

 The advantage of both 2-3 and 2-3-4 trees is their easy-to-maintain balance, not their
shorter height. Even if a 2-3 tree is shorter than a balanced binary search tree, the
reduction in height is offset by the increased number of comparisons that the search
algorithm might require at each node. The situation is similar for a 2-3-4 tree, but its
insertion and removal algorithms require only one pass through the tree and so are
more effi cient than those for a 2-3 tree. This decrease in effort makes the 2-3-4 tree
more attractive than the 2-3 tree.

 Note: Nodes with more than four children?

 Should we consider trees whose nodes have even more than four children? Although a
tree whose nodes can each have 100 children would be shorter than a 2-3-4 tree, its search
algorithm would require more comparisons at each node to determine which subtree to
search. Thus, allowing the nodes of a tree to have many children is counterproductive.
Such a search tree is appropriate, however, when it is implemented in external storage,
because moving from node to node is far more expensive than comparing the data values
in a node. In such cases, a search tree with the minimum possible height is desirable, even
at the expense of additional comparisons at each node. Chapter 21 will discuss external
search trees further.

A 2-3-4 tree requires
more storage than a
binary search tree

A red-black tree has
the advantages of a
2-3-4 tree but
requires less
storage

 Note: In a red-black tree, red pointers link the 2-nodes that now contain the values that
were in a 3-node or a 4-node.

 Figure 19-31 indicates how to represent a 4-node and a 3-node as binary trees. Because there are
two possible ways to represent a 3-node as a binary tree, a red-black representation of a 2-3-4 tree is
not unique. Figure 19-32 gives a red-black representation for the 2-3-4 tree in Figure 19-20 . In all of
these fi gures, a dashed blue line represents a red pointer and a solid black line represents a black
pointer.

 Red-Black Trees 593

 A node in a red-black tree is similar to a node in a binary search tree, but it must also store the
pointer colors, as the following C++ statements indicate:

 enum Color {RED, BLACK};

 template < class ItemType>
 class RedBlackNode : public BinaryNode<ItemType>
 {
 private :
 Color leftColor, rightColor;

 public :
 // Get and set methods for leftColor and rightColor

// . . .

 }; // end RedBlackNode

FIGURE 19-31 Red-black representation of (a) a 4-node; (b) a 3-node

S LM

a b c d

S L

a b c d

M
Red pointer
Black pointer

S L

a b c

S or

a b

L

L

b c

S

c a

(a)

(b)

FIGURE 19-32 A red-black tree that represents the 2-3-4 tree in Figure 19-20

37

30 50

39 90

100704038

20 35

363310

80603432

A node in a
red-black tree

 Note: Even with the pointer colors, a node in a red-black tree requires less storage than
a node in a 2-3-4 tree. Keep in mind that the transformations in Figure 19-31 imply a
change in the structure of the nodes.

594 CHAPTER 19 Balanced Search Trees

 19.4.1 Searching and Traversing a Red-Black Tree

 Because a red-black tree is a binary search tree, you can search and traverse it by using the algorithms
for a binary search tree. You simply ignore the color of the pointers.

 19.4.2 Inserting into and Removing from a Red-Black Tree

 Because a red-black tree actually represents a 2-3-4 tree, you simply need to adjust the 2-3-4 inser-
tion algorithms to accommodate the red-black representation. Recall that while searching a 2-3-4
tree, you split each 4-node that you encounter, so it is suffi cient to reformulate that process in terms
of the red-black representation. For example, Figure 19-31 a shows the red-black representation of
a 4-node. Thus, to identify a 4-node in its red-black form, you look for a node that has two red
pointers.

 Suppose that the 4-node is the root of the 2-3-4 tree. Figure 19-28 shows how to split the root into
2-nodes. By comparing this fi gure with Figure 19-31 a, you see that to perform an equivalent opera-
tion on a red-black tree, you simply change the color of its root’s pointers to black, as Figure 19-33
illustrates.

Splitting the
equivalent of a
4-node requires only
simple color
changes

FIGURE 19-33 Splitting a red-black representation of a 4-node that is the root

S L

a b c d

M

S L

a b c d

M

Color changes

 Figure 19-29 shows how to split a 4-node whose parent is a 2-node. If you reformulate this fi gure
by using the red-black notation given in Figure 19-31 , you get Figure 19-34 . Notice that this case also
requires only color changes within the red-black tree.

 Finally, Figure 19-30 shows how to split a 4-node whose parent is a 3-node. Figure 19-35
shows this process for a red-black tree, using the transformations that Figure 19-31 describes.
Note that each of the configurations before the split in Figure 19-30 has two red-black repre-
sentations, as Figure 19-35 illustrates. As you can see, each pair of representations transforms
into the same red-black configuration. Of the six possibilities given in Figure 19-35 , only two
require simple color changes. The others also require changes to the pointers themselves. These
pointer changes, which are called rotations , result in a shorter tree.

 The removal algorithm is derived in an analogous fashion from the 2-3-4 tree removal algorithm.
Because insertion and removal operations on a red-black tree frequently require only color changes,
they are more effi cient than the corresponding operations on a 2-3-4 tree.

 Exercise 11 asks you to complete the details of the insertion and removal algorithms.

Pointer changes
called rotations
result in a shorter
tree

 Question 8 What red-black tree represents the 2-3-4 tree in Figure 19-27 a?
CHECK POINT

 Question 7 Why does a node in a red-black tree require less memory than a node in a
2-3-4 tree?

CHECK POINT

 Red-Black Trees 595

S L

a b c d

M

Color changes

P

e

S L

a b c d

M

P

e

S L

b c d e

M

Color changes

P

a

S L

b c d e

M

P

a

(a)

(b)

FIGURE 19-34 Splitting a red-black representation of a 4-node whose parent is a 2-node, when
the 4-node is a (a) left child; (b) right child

FIGURE 19-35 Splitting a red-black representation of a 4-node whose parent is a 2-node

S L

a b c d

M

P

Color changes

(a)

Q

e f

S L

a b c d

M

P

Q

e f

S L

a b c d

M

P

Q

e

f

Rotation and
color changes

(continues)

596 CHAPTER 19 Balanced Search Trees

Rotation and
color changes

Color changes

P

Q

S L

M

c d e f

(c)

b

a

P

Q

M

a b
S L

c d e f
P

Q

M

a b
S L

c d e f

S
a f

b c

P

M
Rotation and
color changes

(b)

Q

S L

b c d e

b c d e

M

Q

f

P

a

d e

L

Rotation and
color changes

M
a

f

P

Q

S L

FIGURE 19-35 Splitting a red-black representation of a 4-node whose parent is a 2-node
(continued)

 AVL Trees 597

 19.5 AVL Trees
 An AVL tree —named for its inventors, Adel’son-Vel’skii and Landis—is a balanced binary search
tree. Because the heights of the left and right subtrees of any node in a balanced binary tree differ by
no more than 1, you can search an AVL tree almost as effi ciently as a minimum-height binary search
tree. This section will simply introduce you to the notion of an AVL tree—which is the oldest form of
balanced binary tree—and leave the details for another course.

 It is, in fact, possible to rearrange any binary search tree of n nodes to obtain a binary search
tree with the minimum possible height < log 2 (n + 1) = . Recall, for example, the algorithms devel-
oped in Section 16.4 of Chapter 16 that use a fi le to save and restore a binary search tree. You can
start with an arbitrary binary search tree, save its values in a fi le, and then construct from these
same values a new binary search tree of minimum height. Although this approach may be appro-
priate in the context of a dictionary that occasionally is saved and restored, it requires too much
work to be performed every time an insertion or removal leaves the tree unbalanced. The cost of
repeatedly rebuilding the tree could very well outweigh the benefi t of searching a tree of mini-
mum height.

 The AVL algorithm is a compromise. It maintains a binary search tree with a height close to the
minimum, but it is able to do so with far less work than would be necessary to keep the height of the
tree exactly equal to the minimum. The basic strategy of the AVL algorithm is to monitor the shape of
the binary search tree. You insert or delete nodes just as you would for any binary search tree, but after
each insertion or deletion, you check that the tree is still an AVL tree. That is, you determine whether
any node in the tree has left and right subtrees whose heights differ by more than 1. For example, sup-
pose that the binary search tree in Figure 19-36 a is the result of a sequence of insertions and removals.
The heights of the left and right subtrees of the root <30> differ by 2. You can restore this tree’s AVL
property—that is, its balance—by rearranging its nodes. For instance, you can rotate the tree so that
the node <20> becomes the root, with left child <10> and right child <30>, as in Figure 19-36 b.
Notice that you cannot arbitrarily rearrange the tree’s nodes, because you must take care not to destroy
the search tree’s ordering property in the course of the rebalancing.

 Rotations are not necessary after every insertion or removal. For example, you can insert 40 into
the AVL tree in Figure 19-36 b and still have an AVL tree, as Figure 19-36 c shows. However, when a
rotation is necessary to restore a tree’s AVL property, the rotation will be one of two possible types.
Let’s look at an example of each type.

 Suppose that you insert a new node containing 60 into an AVL tree to get the tree in Figure 19-37 a.
An imbalance occurs at the node <20>; that is, this node’s left and right subtrees differ in height by
more than 1. A single rotation to the left is necessary to obtain the balanced tree in Figure 19-37 b:
<40> becomes the parent of <20>, which adopts <30> as its right child. Figure 19-37 c shows this
rotation in a more general form. It shows, for example, that before the rotation the left and right

An AVL tree is a
balanced binary
search tree

An AVL tree
maintains a height
close to the
minimum

Rotations restore
the balance

FIGURE 19-36 (a) An unbalanced binary search tree; (b) a balanced tree after rotation;
(c) a balanced tree after insertion

30

20

10

20

10 30

20

10 30

40

(a) (b) (c)

598 CHAPTER 19 Balanced Search Trees

FIGURE 19-37 (a) Before; (b) and after a single left rotation that decreases the tree’s height;
(c) the rotation in general

40

20 50

20

10 40

5030

60

603010

(a)

(c)
20

40

Before rotation

40

After rotation

20T1

T3 T1 T2

T3

h h + 1hh

h

T2

h + 1

(b)

FIGURE 19-38 (a) Before; (b) and after a single left rotation that does not affect the tree’s
height; (c) the rotation in general

40

20 50

20

10 40

5030

60

603010

(a) (b)

25 25

20

40

Before rotation After rotation

T1

T2 T3 T1 T2

T3

h

h

20

40
(c)

h+ 1

h + 1

h + 1 h + 1

 AVL Trees 599

FIGURE 19-39 (a) Before; (b) during; and (c) after a double rotation that decreases the tree’s
height; (d) the double rotation in general

40

30 50

40

20

5

50

6030 603520

(a) (b)

25 25

5

10

22

35 510

22

30

20 40

502510

(c)

35

22 60

40

30

Before rotation After rotation

T3

T4

20

T1

h

T4

T2

T1 T2 T3

30

4020

h h

h

(d)

h + 1

h + 1

h + 1 h + 1

An AVL tree
implementation of a
dictionary is more
diffi cult than other
implementations

subtrees of the node <40> have heights h and h + 1, respectively. After the rotation, the tree is bal-
anced and, in this particular case, has decreased in height from h + 3 to h + 2.

 Figure 19-38 shows examples of a single left rotation that restores a tree’s balance but does not
affect its height. An analogous single right rotation would produce mirror images of these examples.

 A more complex rotation might be necessary. For example, consider the tree in Figure 19-39 a,
which is the result of nodes being added to or deleted from an AVL tree. The left and right subtrees of
the node <40> differ in height by more than 1. A double rotation is necessary to restore this tree’s bal-
ance. Figure 19-39 b shows the result of a left rotation about <20>, and Figure 19-39 c shows the result
of a right rotation about <40>. Figure 19-39 d illustrates this double rotation in a more general form.
Mirror images of these fi gures would provide examples of other possible double rotations.

 It can be proven that the height of an AVL tree with n nodes will always be very close to the theo-
retical minimum of < log 2 (n + 1) = . The AVL tree implementation of a dictionary is, therefore, one
implementation that guarantees a binary search-like effi ciency. Usually, however, implementations
that use either a 2-3-4 tree or a red-black tree will be simpler.

600 CHAPTER 19 Balanced Search Trees

 SUMMARY

1. A 2-3 tree and a 2-3-4 tree are variants of a binary search tree. The internal nodes of a 2-3 tree can have either
two or three children. The internal nodes of a 2-3-4 tree can have either two, three, or four children. Allowing
the number of children to vary permits the insertion and removal algorithms to maintain the balance of the
tree easily.

2. The insertion and removal algorithms for a 2-3-4 tree require only a single pass from root to leaf and, thus, are
more effi cient than the corresponding algorithms for a 2-3 tree.

3. A red-black tree is a binary tree representation of a 2-3-4 tree that requires less storage than a 2-3-4 tree.
Insertions and removals for a red-black tree are more effi cient than the corresponding operations on a
2-3-4 tree.

4. An AVL tree is a binary search tree that is guaranteed to remain balanced. The insertion and removal algorithms
perform rotations in the event that the tree starts to stray from a balanced shape.

1. Consider the following sequence of operations on an initially empty search tree:

 Insert 10
 Insert 100
 Insert 30
 Insert 80
 Insert 50
 Remove 10
 Insert 60
 Insert 70
 Insert 40
 Remove 80
 Insert 90
 Insert 20
 Remove 30
 Remove 70

 What does the tree look like after these operations execute if the tree is
a. A binary search tree? d. A red-black tree?
b. A 2-3 tree? e. An AVL tree?
c. A 2-3-4 tree?

2. What are the advantages of implementing the ADT dictionary with a 2-3 tree instead of a binary search tree?
Why do you not, in general, maintain a completely balanced binary search tree?

3. Write a pseudocode function that performs a range query for a 2-3 tree. That is, the function should visit all
items that are within a given range of values. For example, your function should visit all values between 100
and 1,000.

 EXERCISES

 Exercises 601

4. Given the 2-3 tree in Figure 19-40 , draw the tree that results after inserting k , b , c , y , and w into the tree.

5. Given the 2-3 tree in Figure 19-41 , draw the tree that results after removing t , e , k , and d from the tree.

6. Draw the 2-3-4 tree that results from inserting o , d , j , h , s , g , and a , in the order given, into a 2-3-4 tree that
contains a single node whose value is n .

7. Assume that the tree in Figure 19-5 b is a 2-3-4 tree, and insert 39, 38, 37, 36, 35, 34, 33, and 32 into it. What
2-3-4 tree results?

*8. Write pseudocode for the insertion, removal, retrieval, and traversal operations for a 2-3-4 tree.

9. Figure 19-32 is a red-black tree that represents the 2-3-4 tree in Figure 19-20 . Draw another red-black tree that
also represents the same 2-3-4 tree.

10. What 2-3-4 tree does the red-black tree in Figure 19-42 represent?

11. Write pseudocode for the insertion, removal, retrieval, and traversal operations for a red-black tree.

12. Write a C++ function that converts a 2-3-4 tree to a red-black tree.

FIGURE 19-40 A 2-3 tree for Exercise 4

r

e h u

d f o p s t v

 FIGURE 19-41 A 2-3 tree for Exercise 5

d e p r

o

h m q t

k n v

602 CHAPTER 19 Balanced Search Trees

 PROGRAMMING PROBLEMS

1. Implement the ADT dictionary by using a 2-3-4 tree.

 *2. Implement the ADT dictionary by using a 2-3 tree. (This implementation is more diffi cult than the 2-3-4
implementation.)

3. Implement the ADT dictionary by using a red-black tree.

4. Repeat Programming Problem 5 of Chapter 16 using a dictionary implemented with a balanced search tree.

 FIGURE 19-42 A red-black tree for Exercise 10

50

37

39 70

85

90

10089

87

8065

60

40

45

3835

33 36

3432

10

20

30

 Chapter

Graphs 20
Contents
 20.1 Terminology 604
 20.2 Graphs as ADTs 606

 20.2.1 Implementing Graphs 608
 20.3 Graph Traversals 611

 20.3.1 Depth-First Search 611
 20.3.2 Breadth-First Search 613

 20.4 Applications of Graphs 615
 20.4.1 Topological Sorting 615
 20.4.2 Spanning Trees 618
 20.4.3 Minimum Spanning Trees 621
 20.4.4 Shortest Paths 624
 20.4.5 Circuits 627
 20.4.6 Some Diffi cult Problems 629

 Summary 631
 Exercises 632
 Programming Problems 635

Prerequistes
Chapter 5 Recursion as a Problem-Solving Technique
Chapter 6 Stacks
Chapter 15 Trees

Graphs are an important mathematical concept with signifi cant applications not only
in computer science, but also in many other fi elds. You can view a graph as a
mathematical construct, a data structure, or an abstract data type. This chapter provides
an introduction to graphs that allows you to view a graph in any of these three ways. It
also presents the major operations and applications of graphs that are relevant to the
computer scientist.

604 CHAPTER 20 Graphs

 20.1 Terminology
 You are undoubtedly familiar with graphs: Line graphs, bar graphs, and pie charts are in common
use. The simple line graph in Figure 20-1 is an example of the type of graph that this chapter
considers: a set of points that are joined by lines. Clearly, graphs provide a way to illustrate data.
However, graphs also represent the relationships among data items, and it is this feature of graphs
that is important here.

 A graph G consists of two sets: a set V of vertices, or nodes, and a set E of edges that connect the
vertices. For example, the campus map in Figure 20-2 a is a graph whose vertices represent buildings
and whose edges represent the sidewalks between the buildings. This defi nition of a graph is more
general than the defi nition of a line graph. In fact, a line graph, with its points and lines, is a special
case of the general defi nition of a graph.

 G = { V, E}; that is, a
graph is a set of
vertices and edges

Adjacent vertices
are joined by an
edge

A path between
two vertices is a
sequence of edges

FIGURE 20-1 An ordinary line graph

FIGURE 20-2 (a) A campus map as a graph; (b) a subgraph

Dormitory

Gymnasium

Student Union

Library

Dormitory

Student Union

Library

(a) (b)

 A subgraph consists of a subset of a graph’s vertices and a subset of its edges. Figure 20-2 b
shows a subgraph of the graph in Figure 20-2 a. Two vertices of a graph are adjacent if they are joined
by an edge. In Figure 20-2 b, the Library and the Student Union are adjacent. A path between two
vertices is a sequence of edges that begins at one vertex and ends at another vertex. For example, there
is a path in Figure 20-2 a that begins at the Dormitory, leads fi rst to the Library, then to the Student

VideoNote

Graph concepts

 Terminology 605

Union, and fi nally back to the Library. Although a path may pass through the same vertex more than
once, as the path just described does, a simple path may not. The path Dormitory–Library–Student
Union is a simple path. A cycle is a path that begins and ends at the same vertex; a simple cycle is a
cycle that does not pass through other vertices more than once. The path Library–Student Union–
Gymnasium–Dormitory–Library is a simple cycle in the graph in Figure 20-2 a. A graph is connected
if each pair of distinct vertices has a path between them. That is, in a connected graph you can get
from any vertex to any other vertex by following a path. Figure 20-3 a shows a connected graph.
Notice that a connected graph does not necessarily have an edge between every pair of vertices.
Figure 20-3 b shows a disconnected graph.

 In a complete graph , each pair of distinct vertices has an edge between them. The graph in
Figure 20-3 c is complete. Clearly, a complete graph is also connected, but the converse is not true;
notice that the graph in Figure 20-3 a is connected but is not complete.

 Because a graph has a set of edges, a graph cannot have duplicate edges between vertices. How-
ever, a multigraph , as illustrated in Figure 20-4 a, does allow multiple edges. Thus, a multigraph is
not a graph. A graph’s edges cannot begin and end at the same vertex. Figure 20-4 b shows such an
edge, which is called a self edge or loop.

 You can label the edges of a graph. When these labels represent numeric values, the graph is
called a weighted graph . The graph in Figure 20-5 a is a weighted graph whose edges are labeled
with the distances between cities.

 All of the previous graphs are examples of undirected graphs , because the edges do not indicate
a direction. That is, you can travel in either direction along the edges between the vertices of an undi-
rected graph. In contrast, each edge in a directed graph, or digraph, has a direction and is called a

A simple path
passes through a
vertex only once

A cycle is a path that
begins and ends at
the same vertex

A connected graph
has a path between
each pair of distinct
vertices

A complete graph
has an edge
between each pair
of distinct vertices

A complete graph is
connected

A multigraph has
multiple edges and
so is not a graph

The edges of a
weighted graph
have numeric labels

Each edge in a
directed graph has a
direction

FIGURE 20-3 Graphs that are (a) connected; (b) disconnected; and (c) complete

(a) (b) (c)

FIGURE 20-4 (a) A multigraph is not a graph; (b) a self edge is not allowed in a graph

(a) (b)

606 CHAPTER 20 Graphs

directed edge . Although each distinct pair of vertices in an undirected graph has only one edge
between them, a directed graph can have two edges between a pair of vertices, one in each direction.
For example, the airline fl ight map in Figure 20-5 b is a directed graph. There are fl ights in both direc-
tions between Providence and New York, but, although there is a fl ight from San Francisco to Albu-
querque, there is no fl ight from Albuquerque to San Francisco. You can convert an undirected graph to
a directed graph by replacing each edge with two directed edges that point in opposite directions.

 The defi nitions just given for undirected graphs apply also to directed graphs, with changes that
account for direction. For example, a directed path is a sequence of directed edges between two vertices,
such as the directed path in Figure 20-5 b that begins in Providence, goes to New York, and ends in San
Francisco. However, the defi nition of adjacent vertices is not quite as obvious for a digraph. If there is a
directed edge from vertex x to vertex y , then y is adjacent to x. (Alternatively, y is a successor of x , and x is
a predecessor of y .) It does not necessarily follow, however, that x is adjacent to y . Thus, in Figure 20-5 b,
Albuquerque is adjacent to San Francisco, but San Francisco is not adjacent to Albuquerque.

 20.2 Graphs as ADTs
 You can treat graphs as abstract data types. Insertion and removal operations are somewhat different
for graphs than for other ADTs that you have studied, in that they apply to either vertices or edges.
You can defi ne the ADT graph so that its vertices either do or do not contain values. A graph whose
vertices do not contain values represents only the relationships among vertices. Such graphs are not
unusual, because many problems have no need for vertex values. However, the following ADT graph
operations do assume that the graph’s vertices contain values.

In a directed graph,
vertex y is adjacent
to vertex x if there is
a directed edge from
x to y

FIGURE 20-5 (a) A weighted graph; (b) a directed graph

San Francisco

Albuquerque

New York

Providence

2,600

900

15
0

(a)

San Francisco

Albuquerque

New York

Providence(b)

Vertices can have
values

 Graphs as ADTs 607

 Several variations of this ADT are possible. For example, if the graph is directed, you can replace
occurrences of “edges” in the previous operations with “directed edges.” You can also add traversal
operations to the ADT. Graph-traversal algorithms are discussed in Section 20.3.

Listing 20-1 contains an interface that specifi es in more detail the ADT operations for an undi-
rected graph.

LISTING 20-1 A C++ interface for undirected, connected graphs

/** An interface for the ADT undirected, connected graph.
 @file GraphInterface.h */
#ifndef _GRAPH_INTERFACE
#define _GRAPH_INTERFACE

template<class LabelType>
class GraphInterface
{
public:

 /** Gets the number of vertices in this graph.
@pre None.

 @return The number of vertices in the graph. */
virtual int getNumVertices() const = 0;

 /** Gets the number of edges in this graph.
 @pre None.
 @return The number of edges in the graph. */

virtual int getNumEdges() const = 0;

/** Creates an undirected edge in this graph between two vertices
 that have the given labels. If such vertices do not exist, creates
 them and adds them to the graph before creating the edge.
 @param start A label for the first vertex.
 @param end A label for the second vertex.
 @param edgeWeight The integer weight of the edge.
 @return True if the edge is created, or false otherwise. */

virtual bool add(LabelType start, LabelType end, int edgeWeight) = 0;

 /** Removes an edge from this graph. If a vertex has no other edges,
 it is removed from the graph since this is a connected graph.

Note: ADT graph operations
• Test whether a graph is empty.
• Get the number of vertices in a graph.
• Get the number of edges in a graph.
• See whether an edge exists between two given vertices.
• Insert a vertex in a graph whose vertices have distinct values that differ from the new

vertex’s value.
• Insert an edge between two given vertices in a graph.
• Remove a particular vertex from a graph and any edges between the vertex and other

vertices.
• Remove the edge between two given vertices in a graph.
• Retrieve from a graph the vertex that contains a given value.

(continues)

608 CHAPTER 20 Graphs

 @pre None.
 @param start A label for the first vertex.
 @param end A label for the second vertex.
 @return True if the edge is removed, or false otherwise. */

virtual bool remove(LabelType start, LabelType end) = 0;

 /** Gets the weight of an edge in this graph.
 @return The weight of the specified edge.
 If no such edge exists, returns a negative integer. */

virtual int getEdgeWeight(LabelType start, LabelType end) const = 0;

 /** Performs a depth-first search of this graph beginning at the given
 vertex and calls a given function once for each vertex visited.
 @param start A label for the first vertex.
 @param visit A client-defined function that performs an operation on
 or with each visited vertex. */

virtual void depthFirstTraversal(LabelType start, void visit(LabelType&)) = 0;

 /** Performs a breadth-first search of this graph beginning at the given
 vertex and calls a given function once for each vertex visited.
 @param start A label for the first vertex.
 @param visit A client-defined function that performs an operation on
 or with each visited vertex. */

virtual void breadthFirstTraversal(LabelType start, void visit(LabelType&)) = 0;
}; // end GraphInterface
#endif

Adjacency list

 20.2.1 Implementing Graphs

 The two most common implementations of a graph are the adjacency matrix and the adjacency list.
An adjacency matrix for a graph with n vertices numbered 0, 1, . . ., n – 1 is an n by n array matrix
such that matrix[i][j] is 1 (true) if there is an edge from vertex i to vertex j , and 0 (false) otherwise.
 Figure 20-6 shows a directed graph and its adjacency matrix. Notice that the diagonal entries
 matrix[i][i] are 0, although sometimes it can be useful to set these entries to 1. You should choose
the value that is most convenient for your application.

 When the graph is weighted, you can let matrix[i][j] be the weight that labels the edge from
vertex i to vertex j, instead of simply 1, and let matrix[i][j] equal ∞ instead of 0 when there is no
edge from vertex i to vertex j . For example, Figure 20-7 shows a weighted undirected graph and its
adjacency matrix. Notice that the adjacency matrix for an undirected graph is symmetrical; that is,
matrix[i][j] equals matrix[j][i] .

 Our defi nition of an adjacency matrix does not mention the value, if any, in a vertex. If you need
to associate values with vertices, you can use a second array, values , to represent the n vertex values.
The array values is one-dimensional, and values[i] is the value in vertex i .

 An adjacency list for a graph with n vertices numbered 0, 1, . . ., n – 1 consists of n linked chains.
The ith linked chain has a node for vertex j if and only if the graph contains an edge from vertex i to
vertex j . This node can contain the vertex j ’s value, if any. If the vertex has no value, the node needs to
contain some indication of the vertex’s identity. Figure 20-8 shows a directed graph and its adjacency
list. You can see, for example, that vertex 0 (P) has edges to vertex 2 (R) and vertex 5 (W). Thus, the
fi rst linked chain in the adjacency chain contains nodes for R and W .

 Figure 20-9 shows an undirected graph and its adjacency list. The adjacency list for an undi-
rected graph treats each edge as if it were two directed edges in opposite directions. Thus, the edge

Adjacency matrix

 Graphs as ADTs 609

between A and B in Figure 20-9 a appears as edges from A to B and from B to A in Figure 20-9 b. The
graph in 20-9a happens to be weighted; you can include the edge weights in the nodes of the adja-
cency list, as shown in Figure 20-9 b.

 Which of these two implementations of a graph—the adjacency matrix or the adjacency list—is
better? The answer depends on how your particular application uses the graph. For example, the two
most commonly performed graph operations are

1. Determine whether there is an edge from vertex i to vertex j
2. Find all vertices adjacent to a given vertex i

 The adjacency matrix supports the fi rst operation somewhat more effi ciently than does the adja-
cency list. To determine whether there is an edge from i to j by using an adjacency matrix, you need

FIGURE 20-7 (a) A weighted undirected graph and (b) its adjacency matrix

(a) (b) 0 1 2 3

0

1

2

3

∞

8

∞

6

∞

9

∞

∞

6

∞

∞

∞

8

∞

9

∞

A B C D

A

B

C

D

A

0

D

3

C

B

1

2

6

8

9

Two common
operations on
graphs

FIGURE 20-6 (a) A directed graph and (b) its adjacency matrix

Z
(a)

Y

W

P

QX

R T

S
3

0

5

7

8

2

16

(b)

Q

0

0

0

0

0

0

0

0

0

R

1

0

0

0

0

0

0

1

0

S

0

0

0

0

0

1

0

0

0

T

0

0

0

1

0

0

0

0

0

W

1

0

0

0

1

0

0

0

0

X

0

1

1

0

0

0

0

0

0

Y

0

0

0

0

0

1

0

0

0

Z

0

0

0

0

0

0

0

1

0

P

Q

R

S

T

W

X

Y

Z

0

1

2

3

4

5

6

7

8

P

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8

4

610 CHAPTER 20 Graphs

only examine the value of matrix[i][j] . If you use an adjacency list, however, you must traverse the
ith linked chain to determine whether a vertex corresponding to vertex j is present.

 The second operation, on the other hand, is supported more effi ciently by the adjacency list. To
determine all vertices adjacent to a given vertex i , given the adjacency matrix, you must traverse
the ith row of the array; however, given the adjacency list, you need only traverse the ith linked chain.
For a graph with n vertices, the ith row of the adjacency matrix always has n entries, whereas the ith

linked chain has only as many nodes as there are vertices adjacent to vertex i , a number typically far
less than n .

 Consider now the space requirements of the two implementations. On the surface it might appear
that the adjacency matrix requires less memory than the adjacency list, because each entry in the

FIGURE 20-8 (a) A directed graph and (b) its adjacency list

R

X

X

T

W

S

R

W

Y

Z

P

Q

R

S

T

W

X

Y

Z

0

1

2

3

4

5

6

7

8

Z
(a)

Y

W

P

QX

R T

S
3

0

5

7

8

2

16

(b)

4

FIGURE 20-9 (a) A weighted undirected graph and (b) its adjacency list

B

A

B

A

8

8

9

6

6

9

D

C

A

B

C

D

0

1

2

3

A
B

CD

0

8 1

3 2

6 9

(a) (b)

An adjacency list
often requires less
space than an
adjacency matrix

An adjacency matrix
supports operation
1 more effi ciently

 Graph Traversals 611

matrix is simply an integer, whereas each list node contains both a value to identify the vertex and a
pointer. The adjacency matrix, however, always has n2 entries, whereas the number of nodes in an
adjacency list equals the number of edges in a directed graph or twice that number for an undirected
graph. Even though the adjacency list also has n head pointers, it often requires less storage than an
adjacency matrix.

 Thus, when choosing a graph implementation for a particular application, you must consider
such factors as what operations you will perform most frequently on the graph and the number of
edges that the graph is likely to contain. For example, Chapters 5 and 6 presented the HPAir prob-
lem, which was to determine whether an airline provided a sequence of fl ights from an origin city to
a destination city. The fl ight map for that problem is in fact a directed graph and appeared earlier in
this chapter in Figure 20-8 a. Figures 20-6 b and 20-8 b show, respectively, the adjacency matrix and
adjacency list for this graph. Because the most frequent operation was to fi nd all cities (vertices)
adjacent to a given city (vertex), the adjacency list would be the more effi cient implementation of
the fl ight map. The adjacency list also requires less storage than the adjacency matrix, which you
can demonstrate as an exercise.

 20.3 Graph Traversals
 The solution to the HPAir problem in Chapter 6 involved an exhaustive search of the graph in
Figure 20-8 a to determine a directed path from the origin vertex (city) to the destination vertex
(city). The algorithm searchS started at a given vertex and traversed edges to other vertices until
it either found the desired vertex or determined that no (directed) path existed between the
two vertices.

 What distinguishes searchS from a standard graph traversal is that searchS stops when it
fi rst encounters the designated destination vertex. A graph-traversal algorithm, on the other
hand, will not stop until it has visited all of the vertices that it can reach. That is, a graph traversal
that starts at vertex v will visit all vertices w for which there is a path between v and w . Unlike a
tree traversal, which always visits all of the nodes in a tree, a graph traversal does not necessarily
visit all of the vertices in the graph unless the graph is connected. In fact, a graph traversal visits
every vertex in the graph if and only if the graph is connected, regardless of where the traversal
starts. (See Exercise 18.) Thus, you can use a graph traversal to determine whether a graph is
connected.

 If a graph is not connected, a graph traversal that begins at vertex v will visit only a subset
of the graph’s vertices. This subset is called the connected component containing v . You
can determine all of the connected components of a graph by repeatedly starting a traversal at an
unvisited vertex.

 If a graph contains a cycle, a graph-traversal algorithm can loop indefi nitely. To prevent such a
misfortune, the algorithm must mark each vertex during a visit and must never visit a vertex more
than once.

 Two basic graph-traversal algorithms, which apply to either directed or undirected graphs, are
presented next. These algorithms visit the vertices in different orders, but if they both start at the same
vertex, they will visit the same set of vertices. Figure 20-10 shows the traversal order for the two algo-
rithms when they begin at vertex v .

 20.3.1 Depth-First Search

 From a given vertex v , the depth-fi rst search (DFS) strategy of graph traversal proceeds along a path
from v as deeply into the graph as possible before backing up. That is, after visiting a vertex, a DFS
visits, if possible, an unvisited adjacent vertex.

A graph traversal
visits all of the
vertices that it can
reach

A graph traversal
visits all vertices if
and only if the graph
is connected

A connected
component is the
subset of vertices
visited during a
traversal that begins
at a given vertex

DFS traversal goes
as far as possible
from a vertex before
backing up

An adjacency list
supports operation
2 more effi ciently

VideoNote

Graph operations

612 CHAPTER 20 Graphs

 The DFS strategy has a simple recursive form:

 // Traverses a graph beginning at vertex v by using a
// depth-first search: Recursive version.
 dfs(v: Vertex)

Mark v as visited
for (each unvisited vertex u adjacent to v)

dfs(u)

 The depth-fi rst search algorithm does not completely specify the order in which it should visit
the vertices adjacent to v . One possibility is to visit the vertices adjacent to v in sorted (that is, alpha-
betic or numerically increasing) order. This possibility is natural either when an adjacency matrix
represents the graph or when the nodes in each linked chain of an adjacency list are linked in sorted
order.

 As Figure 20-10 a illustrates, the DFS traversal algorithm marks and then visits each of the
vertices v , u , q , and r . When the traversal reaches a vertex—such as r —that has no unvisited adja-
cent vertices, it backs up and visits, if possible, an unvisited adjacent vertex. Thus, the traversal
backs up to q and then visits s . Continuing in this manner, the traversal visits vertices in the order
given in the fi gure.

 An iterative version of the DFS algorithm is also possible by using a stack:

 // Traverses a graph beginning at vertex v by using a
// depth-first search: Iterative version.
 dfs(v: Vertex)

s= a new empty stack

// Push v onto the stack and mark it
s.push(v)
Mark v as visited

// Loop invariant: there is a path from vertex v at the
 // bottom of the stack s to the vertex at the top of s

while (!s.isEmpty())

FIGURE 20-10 Visitation order for (a) a depth-fi rst search; (b) a breadth-fi rst search

v

u xw

q

r s

t

(a) (1)

(2) (7) (8)

(3) (6)

(4) (5)

v

u xw

q

r s

(b) (1)

(2) (3) (4)

(5) (6)

(7) (8)

t

Recursive DFS
traversal algorithm

Choose an order in
which to visit
adjacent vertices

An iterative DFS
traversal algorithm
uses a stack

 Graph Traversals 613

{
 if (no unvisited vertices are adjacent to the vertex on the top of the stack)

s.pop() // Backtrack

 else
{

Select an unvisited vertex u adjacent to the vertex on the top of the stack
s.push(u)

 Mark u as visited
}

}

 The dfs algorithm is similar to searchS of Chapter 6 , but the while statement in searchS termi-
nates when the top of the stack is destinationCity .

 For another example of a DFS traversal, consider the graph in Figure 20-11 . Figure 20-12 shows
the contents of the stack as the previous function dfs visits vertices in this graph, beginning at vertex
a. Because the graph is connected, a DFS traversal will visit every vertex. In fact, the traversal visits
the vertices in this order: a, b, c, d, g, e, f, h, i .

 The vertex from which a depth-fi rst traversal embarks is the vertex that it visited most recently.
This last visited, fi rst explored strategy is refl ected both in the explicit stack of vertices that the iterative
dfs uses and in the implicit stack of vertices that the recursive dfs generates with its recursive calls.

 20.3.2 Breadth-First Search

 After visiting a given vertex v, the breadth-fi rst search (BFS) strategy of graph traversal visits every
vertex adjacent to v that it can before visiting any other vertex. As Figure 20-10 b illustrates, after
marking and visiting v , the BFS traversal algorithm marks and then visits each of the vertices u , w ,
and x . Since no other vertices are adjacent to v , the BFS algorithm visits, if possible, all unvisited ver-
tices adjacent to u . Thus, the traversal visits q and t . Continuing in this manner, the traversal visits
vertices in the order given in the fi gure.

 A BFS traversal will not embark from any of the vertices adjacent to v until it has visited all pos-
sible vertices adjacent to v. Whereas a DFS is a last visited , fi rst explored strategy, a BFS is a fi rst vis-
ited , fi rst explored strategy. It is not surprising, then, that a breadth-fi rst search uses a queue. An
iterative version of this algorithm follows.

FIGURE 20-11 A connected graph with cycles

i

a

g

e

b

c

d

h

f

BFS traversal visits
all vertices adjacent
to a vertex before
going forward

614 CHAPTER 20 Graphs

 // Traverses a graph beginning at vertex v by using a
// breadth-first search: Iterative version.
 bfs(v: Vertex)

q = a new empty queue

// Add v to queue and mark it
q.enqueue(v)
Mark v as visited

 while (!q.isEmpty())
 {

 q.dequeue(w)

// Loop invariant: there is a path from vertex w to every vertex in the queue q
 for (each unvisited vertex u adjacent to w)
{

Mark u as visited
q.enqueue(u)

 }
 }

 Figure 20-13 shows the contents of the queue as bfs visits vertices in the graph in Figure 20-11 ,
beginning at vertex a . In general, a breadth-fi rst search will visit the same vertices as a depth-fi rst
search, but in a different order. In this example, the BFS traversal visits all of the vertices in this order:
a , b , f , i , c , e , g , d , h .

 A recursive version of BFS traversal is not as simple as the recursive version of DFS traversal.
Exercise 19 at the end of this chapter asks you to think about why this is so.

FIGURE 20-12 The results of a depth-fi rst traversal, beginning at vertex a , of the graph in
 Figure 20-11

Node visited___________

a

b

c

d

g

e

f

h

i

(backtrack)

(backtrack)

(backtrack)

(backtrack)

(backtrack)

(backtrack)

(backtrack)

(backtrack)

(backtrack)

a

a b

a b c

a b c d

a b c d g

a b c d g e

a b c d g

a b c d g f

a b c d g

a b c d

a b c d h

a b c d

a b c

a b

a

a i

a

(empty)

Stack (bottom to top)

An iterative BFS
traversal algorithm
uses a queue

 Applications of Graphs 615

 20.4 Applications of Graphs
 There are many useful applications of graphs. This section surveys some of these common applications.

 20.4.1 Topological Sorting

 A directed graph without cycles, such as the one in Figure 20-14 , has a natural order. For example,
vertex a precedes b, which precedes c . Such a graph has signifi cance in ordinary life. If the vertices
represent academic courses, the graph represents the prerequisite structure for the courses. For exam-
ple, course a is a prerequisite to course b, which is a prerequisite to both courses c and e . In what order
should you take all seven courses so that you will satisfy all prerequisites? There is a linear order,
called a topological order , of the vertices in a directed graph without cycles that answers this ques-
tion. In a list of vertices in topological order, vertex x precedes vertex y if there is a directed edge from
x to y in the graph.

FIGURE 20-13 The results of a breadth-fi rst traversal, beginning at vertex a, of the graph in
Figure 20-11

Node visited___________
a

b
f
i

c
e

g

d

h

a

b
b f
b f i
f i
f i c
f i c e
i c e
i c e g
c e g
e g
e g d
g d
d

h

(empty)

(empty)

(empty)

Queue (front to back)

FIGURE 20-14 A directed graph without cycles

ba

d e

g

f

c

616 CHAPTER 20 Graphs

 The vertices in a given graph may have several topological orders. For example, two topological
orders for the vertices in Figure 20-14 are

 a, g, d, b, e, c, f

 and

 a, b, g, d, e, f, c

 If you arrange the vertices of a directed graph linearly and in a topological order, the edges will
all point in one direction. Figure 20-15 shows two versions of the graph in Figure 20-14 that corre-
spond to the two topological orders just given.

 Arranging the vertices into a topological order is called topological sorting . There are several
simple algorithms for fi nding a topological order. First, you could fi nd a vertex that has no successor.
You remove from the graph this vertex and all edges that lead to it, and add it to the beginning of a list
of vertices. You add each subsequent vertex that has no successor to the beginning of the list. When
the graph is empty, the list of vertices will be in topological order. The following pseudocode describes
this algorithm:

 // Arranges the vertices in graph theGraph into a
// topological order and places them in list aList.
 topSort1(theGraph: Graph, aList: List)

n = number of vertices in theGraph
for (step = 1 through n)
{

Select a vertex v that has no successors
aList.insert(1, v)
Remove from theGraph vertex v and its edges

}

 When the traversal ends, the list aList of vertices will be in topological order. Figure 20-16
traces this algorithm for the graph in Figure 20-14 . The resulting topological order is the one that
 Figure 20-15 a represents.

 Another algorithm is a simple modifi cation of the iterative depth-fi rst search algorithm. First you
push all vertices that have no predecessor onto a stack. Each time you pop a vertex from the stack, you
add it to the beginning of a list of vertices. The pseudocode for this algorithm is

 // Arranges the vertices in graph theGraph into a
// topological order and places them in list aList.
 topSort2(theGraph: Graph, aList: List)

FIGURE 20-15 The graph in Figure 20-14 arranged according to the topological orders (a) a, g,
d, b, e, c, f and (b) a, b, g, d, e, f, c

a dg b e c f

cga b d e f

(a)

(b)

A simple topological
sorting algorithm

The DFS topological
sorting algorithm

 Applications of Graphs 617

s = a new empty stack
for (all vertices v in the graph)

 if (v has no predecessors)
{

s.push(v)
Mark v as visited

}
 while (!s.isEmpty())
{

 if (all vertices adjacent to the vertex on the top of the stack have been visited)
{

s.pop(v)
aList.insert(1, v)

}
 else
{

FIGURE 20-16 A trace of topSort1 for the graph in Figure 20-14

ba

d

g

Remove b from theGraph;
add it to aList

ba

d e

g

Remove e from theGraph;
add it to aList

ba

d e

g

c

Remove c from theGraph;
add it to aList

ba

d e

g

f

c

Remove f from theGraph;
add it to aList

f

c f

e c f

Graph theGraph List aList

a

g

Remove g from theGraph;
add it to aList

a

d

g

Remove d from theGraph;
add it to aList

b e c f

d b e c f

g d b e c f

a

Remove a from theGraph;
add it to aList

a g d b e c f

Graph theGraph List aList

618 CHAPTER 20 Graphs

Select an unvisited vertex u adjacent to the vertex on the top of the stack
s.push(u)
Mark u as visited

}
 }

 When the traversal ends, the list aList of vertices will be in topological order. Figure 20-17
traces this algorithm for the graph in Figure 20-14 . The resulting topological order is the one that
 Figure 20-15 b represents.

FIGURE 20-17 A trace of topSort2 for the graph in Figure 20-14

c

c

f c

e f c

d e f c

g d e f c

g d e f c

b g d e f c

a b g d e f c

List aList (beginning to end)Stack s (bottom to top)

a

a g

a g d

a g d e

a g d e c

a g d e

a g d e f

a g d e

a g d

a g

a

a b

a

(empty)

Action

Push a

Push g

Push d

Push e

Push c

Pop c, add c to aList

Push f

Pop f, add f to aList

Pop e, add e to aList

Pop d, add d to aList

Pop g, add g to aList

Push b

Pop b, add b to aList

Pop a, add a to aList

Observations about
undirected graphs
that enable you to
detect a cycle

A tree is an
undirected
connected graph
without cycles

 20.4.2 Spanning Trees

 A tree is a special kind of undirected graph, one that is connected but that has no cycles. Each vertex in
the graph in Figure 20-3 a could be the root of a different tree. Although all trees are graphs, not all graphs
are trees. The nodes (vertices) of a tree have a hierarchical arrangement that is not required of all graphs.

 A spanning tree of a connected undirected graph G is a subgraph of G that contains all of G ’s
vertices and enough of its edges to form a tree. For example, Figure 20-18 shows a spanning tree for
the graph in Figure 20-11 . The dashed lines in Figure 20-18 indicate edges that were omitted from the
graph to form the tree. There may be several spanning trees for a given graph.

 If you have a connected undirected graph with cycles and you remove edges until there are no
cycles, you will obtain a spanning tree for the graph. It is relatively simple to determine whether a
graph contains a cycle. One way to make this determination is based on the following observations
about undirected graphs:

1. A connected undirected graph that has n vertices must have at least n – 1 edges. To
establish this fact, recall that a connected graph has a path between every pair of vertices.
Suppose that, beginning with n vertices, you choose one vertex and draw an edge between it
and any other vertex. Next, draw an edge between this second vertex and any other unat-
tached vertex. If you continue this process until you run out of unattached vertices, you will
get a connected graph like the ones in Figure 20-19 . If the graph has n vertices, it has n – 1
edges. In addition, if you remove an edge, the graph will not be connected.

 Applications of Graphs 619

2. A connected undirected graph that has n vertices and exactly n – 1 edges cannot contain
a cycle. To see this, begin with the previous observation: To be connected, a graph with n
vertices must have at least n – 1 edges. If a connected graph did have a cycle, you could
remove any edge along that cycle and still have a connected graph. Thus, if a connected
graph with n vertices and n – 1 edges did contain a cycle, removing an edge along the cycle
would leave you with a connected graph with only n – 2 edges, which is impossible accord-
ing to observation 1.

3. A connected undirected graph that has n vertices and more than n – 1 edges must
contain at least one cycle. For example, if you add an edge to any of the graphs in Figure
 20-19 , you will create a cycle within the graph. This fact is harder to establish and is left as
an exercise. (See Exercise 17 at the end of this chapter.)

 Thus, you can determine whether a connected graph contains a cycle simply by counting its
vertices and edges.

 It follows, then, that a tree, which is a connected undirected graph without cycles, must connect
its n nodes with n – 1 edges. Thus, to obtain the spanning tree of a connected graph of n vertices, you
must remove edges along cycles until n – 1 edges are left.

 Two algorithms for determining a spanning tree of a graph are based on the previous traversal
algorithms and are presented next. In general, these algorithms will produce different spanning trees
for any particular graph.

 The DFS spanning tree. One way to determine a spanning tree for a connected undirected graph is
to traverse the graph’s vertices by using a depth-fi rst search. As you traverse the graph, mark the edges
that you follow. After the traversal is complete, the graph’s vertices and marked edges form a spanning

FIGURE 20-18 A spanning tree for the graph in Figure 20-11

i

a

g

e

b

c

d

h

f

Root

FIGURE 20-19 Connected graphs that each have four vertices and three edges

Count a graph’s
vertices and
edges to determine
whether it contains
a cycle

620 CHAPTER 20 Graphs

tree, which is called the depth-fi rst search (DFS) spanning tree . (Alternatively, you can remove the
unmarked edges from the graph to form the spanning tree.) Simple modifi cations to the previous itera-
tive and recursive versions of dfs result in algorithms to create a DFS spanning tree. For example, the
recursive algorithm follows:

 // Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using depth-first search:
// Recursive version.
 dfsTree(v: Vertex)

Mark v as visited

 for (each unvisited vertex u adjacent to v)
{

Mark the edge from u to v
dfsTree(u)

}

 When you apply this algorithm to the graph in Figure 20-11 , you get the DFS spanning tree
rooted at vertex a shown in Figure 20-20 . The fi gure indicates the order in which the algorithm visits
vertices and marks edges. You should reproduce these results by tracing the algorithm.

 The BFS spanning tree. Another way to determine a spanning tree for a connected undirected
graph is to traverse the graph’s vertices by using a breadth-fi rst search. As you traverse the
graph, mark the edges that you follow. After the traversal is complete, the graph’s vertices and
marked edges form a spanning tree, which is called the breadth-fi rst search (BFS) spanning
tree . (Alternatively, you can remove the unmarked edges from the graph to form the spanning
tree.) You can modify the previous iterative version of bfs by marking the edge between w and u
before you add u to the queue. The result is the following iterative algorithm to create a
BFS spanning tree.

 // Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using breadth-first search:
// Iterative version.
 bfsTree(v: Vertex)

q = a new empty queue

// Add v to queue and mark it

DFS spanning tree
algorithm

FIGURE 20-20 The DFS spanning tree rooted at vertex a for the graph in Figure 20-11

i

a

g

e

b

c

d

h

f

Root (1)

(2)

(3)

(5)

(7)

(4)

(6)

(8)

The DFS spanning tree algorithm visits vertices in this
order: a, b, c, d, g, e, f, h, i. Numbers indicate the order
in which the algorithm marks edges.

 Applications of Graphs 621

q.enqueue(v)
Mark v as visited

 while (!q.isEmpty())
{

q.dequeue(w)

// Loop invariant: there is a path from vertex w to
// every vertex in the queue q
 for (each unvisited vertex u adjacent to w)
{

Mark u as visited
Mark edge between w and u
q.enqueue(u)

}
 }

 When you apply this algorithm to the graph in Figure 20-11 , you get the BFS spanning
tree rooted at vertex a shown in Figure 20-21 . The figure indicates the order in which the
algorithm visits vertices and marks edges. You should reproduce these results by tracing the
algorithm.

 20.4.3 Minimum Spanning Trees

 Imagine that a developing country hires you to design its telephone system so that all the cities in the
country can call one another. Obviously, one solution is to place telephone lines between every pair of
cities. However, your engineering team has determined that due to the country’s mountainous terrain,
it is impossible to put lines between certain pairs of cities. The team’s report contains the weighted
undirected graph in Figure 20-22 . The vertices in the graph represent n cities. An edge between two
vertices indicates that it is feasible to place a telephone line between the cities that the vertices repre-
sent, and each edge’s weight represents the installation cost of the telephone line. Note that if this
graph is not connected, you will be unable to link all of the cities with a network of telephone lines.
The graph in Figure 20-22 is connected, however, making the problem feasible.

 If you install a telephone line between each pair of cities that is connected by an edge in the graph,
you will certainly solve the problem. However, this solution may be too costly. From observation 1 in

FIGURE 20-21 The BFS spanning tree rooted at vertex a for the graph in Figure 20-11

i

a

g

e

b

c

d

h

f

Root
(1)

(4)

(7)
(8)

(6)

(3)

The BFS spanning tree algorithm visits vertices in this
order: a, b, f, i, c, e, g, d, h. Numbers indicate the order
in which the algorithm marks edges.

(5)

(2)

622 CHAPTER 20 Graphs

the previous section, you know that n – 1 is the minimum number of edges necessary for a graph of n
vertices to be connected. Thus, n – 1 is the minimum number of lines that can connect n cities.

 If the cost of installing each line is the same, the problem is reduced to one of fi nding any
spanning tree of the graph. The total installation cost—that is, the cost of the spanning tree —is
the sum of the costs of the edges in the spanning tree. However, as the graph in Figure 20-22
shows, the cost of installing each line varies. Because there may be more than one spanning tree,
and because the cost of different trees may vary, you need to solve the problem by selecting a span-
ning tree with the least cost; that is, you must select a spanning tree for which the sum of the edge
weights (costs) is minimal. Such a tree is called the minimum spanning tree , and it need not be
unique. Although there may be several minimum spanning trees for a particular graph, their costs
are equal.

 One simple algorithm, called Prim’s algorithm, fi nds a minimum spanning tree that begins at any
vertex. Initially, the tree contains only the starting vertex. At each stage, the algorithm selects a least-
cost edge from among those that begin with a vertex in the tree and end with a vertex not in the tree.
The latter vertex and least-cost edge are then added to the tree. The following pseudocode describes
this algorithm:

 // Determines a minimum spanning tree for a weighted,
// connected, undirected graph whose weights are
// nonnegative, beginning with any vertex v.
 primsAlgorithm(v: Vertex)

Mark vertex v as visited and include it in the minimum spanning tree
 while (there are unvisited vertices)
{

Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
 Mark u as visited
Add the vertex u and the edge (v, u) to the minimum spanning tree

}

 Figure 20-23 traces primsAlgorithm for the graph in Figure 20-22 , beginning at vertex a . Edges
added to the tree appear as solid lines, while edges under consideration appear as dashed lines.

 It is not obvious that the spanning tree that primsAlgorithm determines will be minimal.
However, the proof that primsAlgorithm is correct is beyond the scope of this book.

FIGURE 20-22 A weighted, connected, undirected graph

i

a

g

e

b

c

d

h

f

6
7

4

8

1

5

2

2 9

4

3

Minimum spanning
tree algorithm

A minimum
spanning tree of a
connected
undirected graph
has a minimal
edge-weight sum

 Applications of Graphs 623

FIGURE 20-23 A trace of primsAlgorithm for the graph in Figure 20-22 , beginning at vertex a

i

a b

f

6

2

4
i

a b

f

6

2

4

(a) Mark a, consider edges from a (b) Mark i, include edge (a, i)

i

a

g

e

b

c

d

h

f

6

4

8

1

5

2

2

4

i

a

g

b

f

6

2

2

4
i

a

g

e

b

d

f

6

8
5

2

2

4

i

a

g

e

b

c

d

h

f

6

4

8

1

5

2

2

4

(f) Mark h, include edge (d, h)

(c) Mark f, include edge (a, f) (d) Mark g, include edge (f, g)

(e) Mark d, include edge (g, d)

i

a

g

e

b

c

d

h

f

6
7

4

8

1

5

2

2

4
3

(g) Mark c, include edge (d, c)

i

a

g

e

b

c

d

h

f

6
7

4
1

5

2

2 9

4
3

(h) Mark e, include edge (c, e)

(i) Mark b, include edge (a, b)

i

a

e

b

c

d

h

f

6

4
1

5

2

2

4
3

g

624 CHAPTER 20 Graphs

 20.4.4 Shortest Paths

 Consider once again a map of airline routes. A weighted directed graph can represent this map: The
vertices are cities, and the edges indicate existing fl ights between cities. The edge weights represent
the mileage between cities (vertices); as such, the weights are not negative. For example, you could
combine the two graphs in Figure 20-5 to get such a weighted directed graph.

 Often for weighted directed graphs you need to know the shortest path between two particular
vertices. The shortest path between two given vertices in a weighted graph is the path that has the
smallest sum of its edge weights. Although we use the term “shortest,” realize that the weights could
be a measure other than distance, such as the cost of each fl ight in dollars or the duration of each fl ight
in hours. The sum of the weights of the edges of a path is called the path’s length or weight or cost .

 For example, the shortest path from vertex 0 to vertex 1 in the graph in Figure 20-24 a is not the
edge between 0 and 1—its cost is 8—but rather the path from 0 to 4 to 2 to 1, with a cost of 7. For
convenience, the starting vertex, or origin, is labeled 0 and the other vertices are labeled from 1 to
n – 1. Notice the graph’s adjacency matrix in Figure 20-24 b.

 The following algorithm, which is attributed to E. Dijkstra, actually determines the shortest
paths between a given origin and all other vertices. The algorithm uses a set vertexSet of selected ver-
tices and an array weight, where weight [v] is the weight of the shortest (cheapest) path from vertex 0
to vertex v that passes through vertices in vertexSet .

 If v is in vertexSet, the shortest path involves only vertices in vertexSet . However, if v is not in
vertexSet, then v is the only vertex along the path that is not in vertexSet. That is, the path ends with an
edge from a vertex in vertexSet to v .

Initially, vertexSet contains only vertex 0, and weight contains the weights of the single-edge
paths from vertex 0 to all other vertices. That is, weight [v] equals matrix [0][v] for all v , where matrix
is the adjacency matrix. Thus, initially weight is the fi rst row of matrix .

 After this initialization step, you fi nd a vertex v that is not in vertexSet and that minimizes
weight [v]. You add v to vertexSet . For all (unselected) vertices u not in vertexSet , you check the values
weight [u] to ensure that they are indeed minimums. That is, can you reduce weight [u]—the weight of
a path from vertex 0 to vertex u —by passing through the newly selected vertex v ?

 To make this determination, break the path from 0 to u into two pieces and fi nd their weights as
follows:

weight[v] = weight of the shortest path from 0 to v
matrix[v][u] = weight of the edge from v to u

 Then compare weight [u] with weight [v] + matrix [v][u] and let

weight[u] = the smaller of the values weight[u] and weight[v] + matrix[v][u]

FIGURE 20-24 (a) A weighted directed graph and (b) its adjacency matrix

0 1 2

43

8

4

9
3

2

1

2

1

7

Origin(a) (b)
0 1 2 3 4

0

1

2

3

4

∞

∞

∞

∞

∞

8

∞

2

∞

∞

∞

1

∞

2

1

9

∞

3

∞

∞

4

∞

∞

7

∞

Finding the shortest
paths between
vertex 0 and all
other vertices

The shortest path
between two
vertices in a
weighted graph has
the smallest
edge-weight sum

 Applications of Graphs 625

 The pseudocode for Dijkstra’s shortest-path algorithm is as follows:

 // Finds the minimum-cost paths between an origin vertex
// (vertex 0) and all other vertices in a weighted directed
 // graph theGraph; theGraph’s weights are nonnegative.
 shortestPath(theGraph: Graph, weight: WeightArray)

 // Step 1: initialization
Create a set vertexSet that contains only vertex 0
n = number of vertices in theGraph
 for (v = 0 through n - 1)

weight[v] = matrix[0][v]

// Steps 2 through n
// Invariant: For v not in vertexSet, weight[v] is the

 // smallest weight of all paths from 0 to v that pass
 // through only vertices in vertexSet before reaching
 // v. For v in vertexSet, weight[v] is the smallest
 // weight of all paths from 0 to v (including paths
 // outside vertexSet), and the shortest path
 // from 0 to v lies entirely in vertexSet.

 for (step = 2 through n)
{

Find the smallest weight[v] such that v is not in vertexSet
Add v to vertexSet

// Check weight[u] for all u not in vertexSet
 for (all vertices u not in vertexSet)

 if (weight[u] > weight[v] + matrix[v][u])
weight[u] = weight[v] + matrix[v][u]

}

 The loop invariant states that once a vertex v is placed in vertexSet, weight [v] is the weight of the
absolutely shortest path from 0 to v and will not change.

 Figure 20-25 traces the algorithm for the graph in Figure 20-24 a. The algorithm takes the follow-
ing steps:

Step 1. vertexSet initially contains vertex 0, and weight is initially the fi rst row of the graph’s
adjacency matrix, shown in Figure 20-24 b.

Step 2. weight [4] = 4 is the smallest value in weight, ignoring weight [0] because 0 is in
vertexSet . Thus, v = 4, so add 4 to vertexSet . For vertices not in vertexSet— that is, for
u = 1, 2, and 3 — check whether it is shorter to go from 0 to 4 and then along an edge to
u instead of directly from 0 to u along an edge. For vertices 1 and 3, it is not shorter to

FIGURE 20-25 A trace of the shortest-path algorithm applied to the graph in Figure 20-24 a

____Step

1

2

3

4

5

_v

–

4

2

1

3

___________vertexSet

0

0, 4

0, 4, 2

0, 4, 2, 1

0, 4, 2, 1, 3

_______ [0]

 0

 0

 0

 0

 0

_______ [1]

 8

 8

 7

 7

 7

∞

_______ [2]

 5

 5

 5

 5

_______ [3]

 9

 9

 8

 8

 8

_______ [4]

 4

 4

 4

 4

 4

weight

The shortest-path
algorithm

626 CHAPTER 20 Graphs

include vertex 4 in the path. However, for vertex 2 notice that weight [2] = ∞ > weight [4]
+ matrix [4][2] = 4 + 1 = 5. Therefore, replace weight [2] with 5. You can also verify this
conclusion by examining the graph directly, as Figure 20-26 a shows.

Step 3. weight [2] = 5 is the smallest value in weight, ignoring weight [0] and weight [4] because
0 and 4 are in vertexSet . Thus, v = 2, so add 2 to vertexSet . For vertices not in vertex-
Set— that is, for u = 1 and 3 — check whether it is shorter to go from 0 to 2 and then
along an edge to u instead of directly from 0 to u along an edge. (See Figures 20-26 b
and 20-26 c.)

FIGURE 20-26 Checking weight [u] by examining the graph: (a) weight [2] in step 2;
(b) weight [1] in step 3; (c) weight [3] in step 3; (d) weight [3] in step 4

0 1 2

43

4 3

2

1

0 2

43

4

9

3

1

(c)

0 1 2

4

8

4

2

1

(b)

0 2

4

∞

4
1

(a)

∞

(d)

Step 2. The path 0–4–2 is
 shorter than 0–2

Step 3. The path 0–4–2–1 is
 shorter than 0–1

Step 3 continued. The path 0–4–2–3 is
 shorter than 0–3

Step 4. The path 0–4–2–3 is
 shorter than
 0–4–2–1–3

 Applications of Graphs 627

 Notice that

weight [1] = 8 > weight [2] + matrix [2][1] = 5 + 2 = 7. Therefore, replace weight [1] with 7.

weight [3] = 9 > weight [2] + matrix [2][3] = 5 + 3 = 8. Therefore, replace weight [3] with 8.

Step 4. weight [1] = 7 is the smallest value in weight, ignoring weight [0], weight [2], and
weight [4] because 0, 2, and 4 are in vertexSet. Thus, v = 1, so add 1 to vertexSet. For
vertex 3, which is the only vertex not in vertexSet, notice that weight [3] = 8 < weight [1]
+ matrix [1][3] = 7 + ∞, as Figure 20-26 d shows. Therefore, leave weight [3] as it is.

Step 5. The only remaining vertex not in vertexSet is 3, so add it to vertexSet and stop.

 The fi nal values in weight are the weights of the shortest paths. These values appear in the last
line of Figure 20-25 . For example, the shortest path from vertex 0 to vertex 1 has a cost of weight [1],
which is 7. This result agrees with our earlier observation about Figure 20-24 . We saw then that the
shortest path is from 0 to 4 to 2 to 1. Also, the shortest path from vertex 0 to vertex 2 has a cost of
weight [2], which is 5. This path is from 0 to 4 to 2.

 The weights in weight are the smallest possible, as long as the algorithm’s loop invariant is true.
The proof that the loop invariant is true is by induction on step , and is left as a diffi cult exercise. (See
Exercise 20.)

 20.4.5 Circuits

 A circuit is simply another name for a type of cycle that is common in the statement of certain prob-
lems. Recall that a cycle in a graph is a path that begins and ends at the same vertex. Typical circuits
either visit every vertex once or visit every edge once.

 Probably the fi rst application of graphs occurred in the early 1700s when Euler proposed a bridge
problem. Two islands in a river are joined to each other and to the river banks by several bridges, as
 Figure 20-27 a illustrates. The bridges correspond to the edges in the multigraph in Figure 20-27 b,
and the land masses correspond to the vertices. The problem asked whether you can begin at a vertex
v, pass through every edge exactly once, and terminate at v . Euler demonstrated that no solution exists
for this particular confi guration of edges and vertices.

 For simplicity, we will consider an undirected graph rather than a multigraph. A path in an undi-
rected graph that begins at a vertex v, passes through every edge in the graph exactly once, and termi-
nates at v is called an Euler circuit . Euler showed that an Euler circuit exists if and only if each vertex
touches an even number of edges. Intuitively, if you arrive at a vertex along one edge, you must be able
to leave the vertex along another edge. If you cannot, you will not be able to reach all of the vertices.

FIGURE 20-27 (a) Euler’s bridge problem and (b) its multigraph representation

(b)(a)

An Euler circuit
begins at a vertex v ,
passes through
every edge exactly
once, and
terminates at v

628 CHAPTER 20 Graphs

 Finding an Euler circuit is like drawing each of the diagrams in Figure 20-28 without lifting
your pencil or redrawing a line, and ending at your starting point. No solution is possible for Fig-
ure 20-28 a, but you should be able to fi nd one easily for Figure 20-28 b. Figure 20-29 contains
undirected graphs based on Figure 20-28 . In Figure 20-29 a, vertices h and i each touch an odd
number of edges (three), so no Euler circuit is possible. On the other hand, each vertex in Figure
 20-29 b touches an even number of edges, making an Euler circuit feasible. Notice also that the
graphs are connected. If a graph is not connected, a path through all of the vertices would not be
possible.

 Let’s fi nd an Euler circuit for the graph in Figure 20-29 b, starting arbitrarily at vertex a . The strat-
egy uses a depth-fi rst search that marks edges instead of vertices as they are traversed. Recall that a
depth-fi rst search traverses a path from a as deeply into the graph as possible. By marking edges
instead of vertices, you will return to the starting vertex; that is, you will fi nd a cycle. In this example,
the cycle is a , b , e , d , a if we visit the vertices in alphabetical order, as Figure 20-30 a shows. Clearly
this is not the desired circuit, because we have not visited every edge. We are not fi nished, however.

 To continue, fi nd the fi rst vertex along the cycle a , b , e , d , a that touches an unvisited edge. In our
example, the desired vertex is e . Apply our modifi ed depth-fi rst search, beginning with this vertex.
The resulting cycle is e , f , j , i , e . Next you join this cycle with the one you found previously. That is,
when you reach e in the fi rst cycle, you travel along the second cycle before continuing in the fi rst
cycle. The resulting path is a , b , e , f , j , i , e , d , a , as Figure 20-30 b shows.

 The fi rst vertex along our combined cycle that touches an unvisited edge is i . Beginning at i , our
algorithm determines the cycle i , h , d , c , g , h , k , l , i . Joining this to our combined cycle results in the
Euler circuit a , b , e , f , j , i , h , d , c , g , h , k , l , i , e , d , a . (See Figure 20-30 c.)

FIGURE 20-28 Pencil and paper drawings

(a) (b)

FIGURE 20-29 Connected undirected graphs based on the drawings in Figure 20-28

f

jih

c

g

d

ba

e

(a)

f

j

k l

ih

c

g

d

ba

e

(b)

 Applications of Graphs 629

 20.4.6 Some Diffi cult Problems

 The next three applications of graphs have solutions that are beyond the scope of this book.

 The traveling salesperson problem. A Hamilton circuit is a path that begins at a vertex v, passes
through every vertex in the graph exactly once, and terminates at v . Determining whether an arbitrary
graph contains a Hamilton circuit can be diffi cult. A well-known variation of this problem—the
traveling salesperson problem—involves a weighted graph that represents a road map. Each edge has
an associated cost, such as the mileage between cities or the time required to drive from one city to the
next. The salesperson must begin at an origin city, visit every other city exactly once, and return to the
origin city. However, the circuit traveled must be the least expensive.

Loop invariant FIGURE 20-30 The steps to determine an Euler circuit for the graph in Figure 20-29 b

k l

f

jih

c

g

d

ba

e

(a)

f

j

k l

ih

c

g

d

ba

e

(b)

f

j

k l

ih

c

g

d

ba

e

Euler circuit: a b e f j i h d c g h k l i e d a

(c)

e f j i e

a b e d a

i h d c g h k l i

A Hamilton circuit
begins at a vertex v ,
passes through
every vertex exactly
once, and
terminates at v

630 CHAPTER 20 Graphs

 Unfortunately for this traveler, solving the problem is no easy task. Although a solution does
exist, it is quite slow, and no better solution is known.

 The three utilities problem. Imagine three houses A, B, and C and three utilities X, Y, and Z (such as
telephone, water, and electricity), as Figure 20-31 illustrates. If the houses and the utilities are verti-
ces in a graph, is it possible to connect each house to each utility with edges that do not cross one
another? The answer to this question is no.

 A graph is planar if you can draw it in a plane in at least one way so that no two edges cross. The
generalization of the three utilities problem determines whether a given graph is planar. Making this
determination has many important applications. For example, a graph can represent an electronic
circuit where the vertices represent components and the edges represent the connections between
components. Is it possible to design the circuit so that the connections do not cross? The solutions to
these problems are also beyond the scope of this book.

 The four-color problem. Given a planar graph, can you color the vertices so that no adjacent verti-
ces have the same color, if you use at most four colors? For example, the graph in Figure 20-11 is
planar because none of its edges cross. You can solve the coloring problem for this graph by using
only three colors. Color vertices a, c, g, and h red, color vertices b, d, f, and i blue, and color vertex e
green.

 The answer to our question is yes, but it is diffi cult to prove. In fact, this problem was posed more
than a century before it was solved in the 1970s with the use of a computer.

FIGURE 20-31 The three utilities problem

A B C

X Y Z

Question 1 Describe the graphs in Figure 20-32 . For example, are they directed?
Connected? Complete? Weighted?

Question 2 Use the depth-fi rst strategy and the breadth-fi rst strategy to traverse the graph
in Figure 20-32 a, beginning with vertex 0. List the vertices in the order in which each traver-
sal visits them.

Question 3 Write the adjacency matrix for the graph in Figure 20-32 a.

Question 4 Add an edge to the directed graph in Figure 20-14 that runs from vertex d to
vertex b. Write all possible topological orders for the vertices in this new graph.

Question 5 Is it possible for a connected undirected graph with fi ve vertices and four
edges to contain a simple cycle? Explain.

CHECK POINT

A planar graph can
be drawn so that no
two edges cross

 Summary 631

 SUMMARY

Question 6 Draw the DFS spanning tree whose root is vertex 0 for the graph in
 Figure 20-33 .

Question 7 Draw the minimum spanning tree whose root is vertex 0 for the graph in
 Figure 20-33 .

Question 8 What are the shortest paths from vertex 0 to each vertex of the graph in Figure 20-
24 a? (Note the weights of these paths in Figure 20-25 .)

FIGURE 20-32 Graphs for Checkpoint Questions 1, 2, and 3

4

(a)

3

10

2

(b)

FIGURE 20-33 A graph for Checkpoint Questions 6 and 7 and for Exercises 1 and 4

5

10

4

2

3

9 8

77

1 6 2 5

 1. The two most common implementations of a graph are the adjacency matrix and the adjacency list. Each has its
relative advantages and disadvantages. The choice should depend on the needs of the given application.

 2. Graph searching is an important application of stacks and queues. Depth-fi rst search (DFS) is a graph-traversal
algorithm that uses a stack to keep track of the sequence of visited vertices. It goes as deep into the graph as it
can before backtracking. Breadth-fi rst search (BFS) uses a queue to keep track of the sequence of visited verti-
ces. It visits all possible adjacent vertices before traversing further into the graph.

 3. Topological sorting produces a linear order of the vertices in a directed graph without cycles. Vertex x precedes
vertex y if there is a directed edge from x to y in the graph.

 4. Trees are connected undirected graphs without cycles. A spanning tree of a connected undirected graph is a
subgraph that contains all of the graph’s vertices and enough of its edges to form a tree. DFS and BFS traversals
produce DFS and BFS spanning trees.

 5. A minimum spanning tree for a weighted undirected graph is a spanning tree whose edge-weight sum is mini-
mal. Although a particular graph can have several minimum spanning trees, their edge-weight sums will be the
same.

 6. The shortest path between two vertices in a weighted directed graph is the path that has the smallest sum of its
edge weights.

632 CHAPTER 20 Graphs

 EXERCISES

 7. An Euler circuit in an undirected graph is a cycle that begins at vertex v , passes through every edge in the graph
exactly once, and terminates at v .

 8. A Hamilton circuit in an undirected graph is a cycle that begins at vertex v , passes through every vertex in the
graph exactly once, and terminates at v .

 When given a choice of vertices to visit, the traversals in the following exercises should visit vertices in sorted order.

 1. Give the adjacency matrix and adjacency list for

a. The weighted graph in Figure 20-33
 b. The directed graph in Figure 20-34

 2. Show that the adjacency list in Figure 20-8 b requires less memory than the adjacency matrix in Figure 20-6 b.

 3. Consider Figure 20-35 and answer the following:

a. Will the adjacency matrix be symmetrical?
 b. Provide the adjacency matrix.
 c. Provide the adjacency list.

 4. Use both the depth-fi rst strategy and the breadth-fi rst strategy to traverse the graph in Figure 20-33 , beginning
with vertex 0, and the graph in Figure 20-36 , beginning with vertex a . List the vertices in the order in which each
traversal visits them.

 5. By modifying the DFS traversal algorithm, write pseudocode for an algorithm that determines whether a graph
contains a cycle.

 6. Using the topological sorting algorithm topSort1 , as given in this chapter, write the topological order of the
vertices for each graph in Figure 20-37 .

 7. Trace the DFS topological sorting algorithm topSort2 , and indicate the resulting topological order of the verti-
ces for each graph in Figure 20-37 .

 8. Revise the topological sorting algorithm topSort1 by removing predecessors instead of successors. Trace the
new algorithm for each graph in Figure 20-37 .

 9. Trace the DFS and BFS spanning tree algorithms, beginning with vertex a of the graph in Figure 20-11 , and
show that the spanning trees are the trees in Figures 20-20 and 20-21 , respectively.

FIGURE 20-34 A graph for Exercise 1

a

d

e

f

i

gh

b

c

 Exercises 633

FIGURE 20-35 A graph for Exercise 3

b

d

c

ea

f

FIGURE 20-36 A graph for Exercises 4 and 10

g

e

c

i

f

d

ha

b

1

15

4
2 6 4

2 3

453

 10. Draw the DFS and BFS spanning trees rooted at a for the graph in Figure 20-36 . Then draw the minimum span-
ning tree rooted at a for this graph.

 11. For the graph in Figure 20-38 ,

 a. Draw all the possible spanning trees.
 b. Draw the minimum spanning tree.

 12. Write pseudocode for an iterative algorithm that determines a DFS spanning tree for an undirected graph. Base
your algorithm on the traversal algorithm dfs .

 13. Draw the minimum spanning tree for the graph in Figure 20-22 when you start with

 a. Vertex g
 b. Vertex c

 *14. Trace the shortest-path algorithm for the graph in Figure 20-39 , letting vertex 0 be the origin.

 *15. Implement the shortest-path algorithm in C++. How can you modify this algorithm so that any vertex can be the
origin?

634 CHAPTER 20 Graphs

 *16. Determine an Euler circuit for the graph in Figure 20-40 . Why is one possible?

 *17. Prove that a connected undirected graph with n vertices and more than n – 1 edges must contain at least one
simple cycle. (See observation 3 in Section 20.4.2.)

 *18. Prove that a graph-traversal algorithm visits every vertex in the graph if and only if the graph is connected,
regardless of where the traversal starts.

FIGURE 20-37 Graphs for Exercises 6, 7, and 8

(a) (c)
a b

d e

c b

d

ca

(b) b

ea c

d

21

4 3

5

16

22
19

12

15

FIGURE 20-38 A graph for Exercise 11

FIGURE 20-39 A graph for Exercise 14

6

4

2

5

3

0

1

1

15

4
2 6

2 3

21

3

5

53

2

 Programming Problems 635

FIGURE 20-40 A graph for Exercise 16

f d

cb

e g

a

 *19. Although the DFS traversal algorithm has a simple recursive form, a recursive BFS traversal algorithm is not
straightforward.

 a. Explain why this statement is true.
 b. Write the pseudocode for a recursive version of the BFS traversal algorithm.

 *20. Prove that the loop invariant of Dijkstra’s shortest-path algorithm is true by using a proof by induction on step .

 PROGRAMMING PROBLEMS

 1. Write a C++ class derived from GraphInterface, as given in Listing 20-1. Use an adjacency matrix to represent
the graph.

 2. Repeat the previous programming problem, but represent the graph using an adjacency list instead of an adja-
cency matrix.

 3. Repeat Programming Problems 1 and 2, but allow the graph to be either weighted or unweighted and either
directed or undirected.

 4. Extend Programming Problem 3 by adding ADT operations such as isConnected and hasCycle . Also, include
operations that perform a topological sort for a directed graph without cycles, determine the DFS and BFS
spanning trees for a connected graph, and determine a minimum spanning tree for a connected undirected
graph.

 5. The HPAir problem was the subject of Programming Problems 11 through 14 of Chapter 6 . Revise these prob-
lems by implementing the ADT fl ight map as a derived class of the graph class that you wrote for Programming
Problem 3.

This page intentionally left blank

 Chapter Processing
Data in

External Storage 21
 Contents
 21.1 A Look at External Storage 638
 21.2 Sorting Data in an External File 640
 21.3 External Dictionaries 646

 21.3.1 Indexing an External File 648
 21.3.2 External Hashing 651
 21.3.3 B-Trees 654
 21.3.4 Traversals 662
 21.3.5 Multiple Indexing 664

 Summary 665
 Exercises 666
 Programming Problems 669

 Prerequisites
 Appendix G Files
Chapter 11 Sorting algorithms and Their Effi ciency
 Chapter 18 Dictionaries and Their Implementations
 Chapter 19 Balanced Search Trees

A ll of the previous dictionary implementations assume that the data items reside in
the computer’s internal memory. Many real-world applications, however, require a
dictionary so large that it greatly exceeds the amount of available internal memory. In
such situations, you must store the dictionary on an external storage device such as a
disk and perform dictionary operations there.

 This chapter considers the problem of data management in an external environment
by using a direct access fi le as a model of external storage. In particular, this chapter
discusses how to sort the data in an external fi le by modifying the merge sort algorithm
and how to search an external fi le by using generalizations of the hashing and search-
tree schemes developed previously.

638 CHAPTER 21 Processing Data in External Storage

 21.1 A Look at External Storage
 You use external storage when your program reads data from and writes data to a C++ fi le. Also, when
you use a word processing program, for example, and choose Save , the program saves your current
document in a fi le. This action enables you to exit the program and then use it later to retrieve your
document for revision. This is one of the advantages of external storage: It exists beyond the execu-
tion period of a program. In this sense, it is “permanent” instead of volatile like internal memory.

 Another advantage of external storage is that, in general, there is far more of it than internal
memory. If you have a collection of one million data items, each of which is an object of moderate
size, you will probably not be able to store the entire collection in internal memory at one time. On
the other hand, this much data can easily reside on an external disk. As a consequence, when dealing
with collections of this magnitude, you cannot simply read all of the data into memory when you
want to operate on it and then write it back onto the disk when you are fi nished. Instead, you must
devise ways to operate on data—for example, sort it and search it—while it resides externally.

 In general, you can create fi les for either sequential access or direct access. To access the data
stored at a given position in a sequential access fi le , you must advance the fi le window beyond all the
intervening data. In this sense, a sequential access fi le resembles a linked chain. To access a particular
node in the chain, you must traverse the chain from its beginning until you reach the desired node. In
contrast, a direct access fi le allows you to access the data at a given position directly. A direct access
fi le resembles an array in that you can access the element at data[i] without fi rst accessing the ele-
ments before data[i] .

 Without direct access fi les, it would be impossible to support the dictionary operations effi ciently
in an external environment. Many programming languages, including C++, support both sequential
access and direct access of fi les. However, to permit a language-independent discussion, we will con-
struct a model of direct access fi les that illustrates how a programming language that does not support
such fi les might implement them. This model will be a simplifi cation of reality but will include the
features necessary for this discussion.

 Imagine that a computer’s memory is divided into two parts: internal memory and external mem-
ory, as Figure 21-1 illustrates. Assume that an executing program, along with its nonfi le data, resides
in the computer’s internal memory; the permanent fi les of a computer system reside in the external
memory. Further assume that the external storage devices have the characteristics of a disk (although
some systems use other devices).

 A fi le consists of data records . A data record can be anything from a simple value, such as an
integer, to an aggregate structure, such as an employee record. For simplicity, assume that the data
records in any one fi le are all of the same type.

 The records of a fi le are organized into one or more blocks , as Figure 21-2 shows. The size of a
block—that is, the number of bits of data it can contain—is determined by both the hardware confi gu-
ration and the system software of the computer. In general, an individual program has no control over
this size. Therefore, the number of records in a block is a function of the size of the records in the fi le.
For example, a fi le of integer records will have more records per block than a fi le of employee records.

External storage
exists after program
execution

Generally, there is
more external
storage than internal
memory

Direct access fi les
are essential for
external dictionaries

FIGURE 21-1 Internal and external memory

Internal
memory

Disk

External
memory

A fi le contains
records that are
organized into blocks

Direct access input
and output involves
blocks instead of
records

A buffer stores data
temporarily

Updating a portion
of a record within a
block

 A Look at External Storage 639

 Much as you number the elements of an array, you can number the blocks of a fi le in a linear
sequence. With a direct access fi le, a program can read a given block from the fi le by specifying its
block number, and similarly, it can write data out to a particular block. In this regard a direct access
fi le resembles an array of arrays, with each block of the fi le analogous to a single array element, which
is itself an array that contains several records.

 In this direct access model, all input and output is at the block level rather than at the record level .
That is, you can read and write a block of records, but you cannot read or write an individual record.
Reading or writing a block is called a block access .

 The algorithms in this chapter assume that commands exist for reading and writing blocks. The
pseudocode statement

 buf.readBlock(dataFile, i)

 will read the ith block of fi le dataFile and place it in an object buf . The object must accommodate the
many records that each block of fi le dataFile contains. For example, if each block contains 100
employee records, buf must store at least 100 employee records. The object buf is called a buffer , which
is a location that temporarily stores data as it makes its way from one process or location to another.

 Once the system has read a block into buf , the program can process—for example, inspect or
modify—the records in the block. Also, because the records in the object buf are only copies of the
records in the fi le dataFile , if a program does modify the records in buf , it must write buf back out to
dataFile , so that the fi le also refl ects the modifi cations. We assume that the statement

 buf.writeBlock(dataFile, i)

 will write the contents of buf to the ith block of the fi le dataFile . If dataFile contains n blocks, the
statement

 buf.writeBlock(dataFile, n + 1)

 will append a new block to dataFile , and thus the fi le can grow dynamically, just as a C++ fi le can.
 Again, realize that these input and output commands allow you to read and write only entire

blocks. As a consequence, even if you need to operate on only a single record of the fi le, you must
access an entire block. For example, suppose that you want to give employee Smith a $1,000 raise. If
Smith’s record is in block i (how to determine the correct block is discussed later in the chapter), you
would perform the following steps:

 // Read block i from file dataFile into buffer buf
 buf.readBlock(dataFile, i)

B1 B2 B3 B4 Bi

Last block
of file

jth record
of i th block

↑ k records
per block

FIGURE 21-2 A fi le partitioned into blocks of records

640 CHAPTER 21 Processing Data in External Storage

Reduce the number
of block accesses

File access time is
the dominant factor
when considering
an algorithm’s
effi ciency

Find the entry buf.getRecord(j) that contains the
 record whose search key is “Smith”

 // Increase the salary portion of Smith’s record
 (buf.getRecord(j)).setSalary((buf.getRecord(j)).getSalary() + 1000)

//Write changed block back to file dataFile
buf.writeBlock(dataFile, i)

 The time required to read or write a block of data is typically much longer than the time required
to operate on the block’s data once it is in the computer’s internal memory. 1 For example, you typi-
cally can inspect every record in the buffer buf in less time than that required to read a block into the
buffer. As a consequence, you should reduce the number of required block accesses. In the previous
pseudocode, for instance, you should process as many records in buf as possible before writing it to
the fi le. You should pay little attention to the time required to operate on a block of data once it has
been read into internal memory.

 Interestingly, several programming languages, including C++, have commands to make it appear
that you can access records one at a time. In general, however, the system actually performs input and
output at the block level and perhaps hides this fact from the program. For example, if a programming
language includes the statement

 rec.readRecord(dataFile, i) // Reads the ith record of file dataFile into rec.

 the system probably accesses the entire block that contains the ith record. Our model of input and out-
put therefore approximates reality reasonably well.

 In most external data-management applications, the time required for block accesses typically
dominates all other factors. The rest of the chapter discusses how to sort and search externally stored
data. The goal will be to reduce the number of required block accesses.

 21.2 Sorting Data in an External File
 This section considers the following problem of sorting data that resides in an external fi le:

 An external fi le contains 1,600 employee records. You want to sort these records by Social Secu-
rity number. Each block contains 100 records, and thus the fi le contains 16 blocks B1 , B2 , and so
on to B16 . Assume that the program can access only enough internal memory to manipulate about
300 records (three blocks’ worth) at one time.

 Sorting the fi le might not sound like a diffi cult task, because you have already seen several sort-
ing algorithms earlier in this book. There is, however, a fundamental difference here in that the fi le is
far too large to fi t into internal memory all at once. This restriction presents something of a problem
because the sorting algorithms presented earlier assume that all the data to be sorted is available at
one time in internal memory (for example, that it is all in an array). Fortunately, however, we can
remove this assumption for a modifi ed version of merge sort.

 The basis of the merge sort algorithm is that you can easily merge two sorted segments—such as
arrays—of data records into a third sorted segment that is the combination of the two. For example, if
S1 and S2 are sorted segments of records, the fi rst step of the merge is to compare the fi rst record of

 1 Data enters or leaves a buffer at a rate that differs from the record-processing rate. (Hence, a buffer between two processes
compensates for the difference in the rates at which they operate on data.)

A sorting problem

VideoNote

Sorting fi le data

External merge sort

 Sorting Data in an External File 641

each segment and select the record with the smaller sort key. If the record from S1 is selected, the next
step is to compare the second record of S1 to the fi rst record of S2 . This process is continued until all of
the records have been considered. The key observation is that at any step, the merge never needs to
look beyond the leading edge of either segment.

 This observation makes a merge sort appropriate for the problem of sorting external fi les, if you
modify the algorithm appropriately. Suppose that the 1,600 records to be sorted are in the fi le F and
that you are not permitted to alter this fi le. You have two work fi les, F1 and F2 . One of the work fi les
will contain the sorted records when the algorithm terminates. The algorithm has two phases: Phase 1
sorts each block of records, and phase 2 performs a series of merges.

Phase 1. Read a block from F into internal memory, sort its records by using an internal sort, and
write the sorted block out to F1 before you read the next block from F . After you process all 16
blocks of F , F1 contains 16 sorted runs R1 , R2 , and so on to R16 ; that is, F1 contains 16 blocks of
records, with the records within each block sorted among themselves, as Figure 21-3 a illustrates.
Phase 2. Phase 2 is a sequence of merge steps. Each merge step merges pairs of sorted runs to
form larger sorted runs. With each merge step, the number of blocks in each sorted run doubles,
and thus the total number of sorted runs is halved. For example, as Figure 21-3 b shows, the fi rst

R

B

1

1

R

B

2

2

R

B

3

3

R

B

4

4

R

B

5

5

R

B

6

6

R

B

7

7

R

B

8

8

R

B

9

9

R

B

10

10

R

B

11

11

R

B

12

12

R

B

13

13

R

B

14

14

R

B

15

15

R

B

16

16

R1

B - B1 2

R2

B - B3 4

R3

B - B5 6

R4

B - B7 8

R5

B - B9 10

R6

B - B11 12

R7

B - B13 14

R8

B - B15 16

R1 R2 R3 R4

B - B13 16B - B1 4 B - B5 8 B - B9 12

R1

B - B1 8

R2

B - B9 16

F1

F2

F1

F2

16 sorted runs, 1 block each

8 sorted runs, 2 blocks each

4 sorted runs, 4 blocks each

2 sorted runs, 8 blocks each

(a)

(b)

(c)

(d)

FIGURE 21-3 (a) Sixteen sorted runs, one block each, in fi le F1 ; (b) Eight sorted runs, two
blocks each, in fi le F2 ; (c) Four sorted runs, four blocks each, in fi le F1 ; (d) Two
sorted runs, eight blocks each, in fi le F2

642 CHAPTER 21 Processing Data in External Storage

merge step merges eight pairs of sorted runs from F1 (R1 with R2 , R3 with R4 , . . ., R15 with R16) to
form eight sorted runs, each two blocks long, which are written to F2 . The next merge step merges
four pairs of sorted runs from F2 (R1 with R2 , R3 with R4 , . . ., R7 with R8) to form four sorted runs,
each four blocks long, which are written back to F1 , as Figure 21-3 c illustrates. The next step
merges the two pairs of sorted runs from F1 to form two sorted runs, which are written to F2 . (See
 Figure 21-3 d.) The fi nal step merges the two sorted runs into one, which is written to F1 . At this
point, F1 will contain all of the records of the original fi le in sorted order.

 Given this overall strategy, how can you merge the sorted runs at each step of phase 2? The state-
ment of the problem provides only suffi cient internal memory to manipulate at most 300 records at
once. However, in the later steps of phase 2, runs contain more than 300 records each, so you must
merge the runs a piece at a time. To accomplish this merge, you must divide the program’s internal
memory into three arrays, in1 , in2 , and out , each capable of holding 100 records (the block size).
You read block-sized pieces of the runs into the two in arrays and merge them into the out array.
Whenever an in array is exhausted—that is, when all of its entries have been copied to out —you read
the next piece of the run into an in array; whenever the out array becomes full, you write this com-
pleted piece of the new sorted run to one of the fi les.

 Consider how you can perform the fi rst merge step. You start this step with the pair of runs R1 and
R2 , which are in the fi rst and second blocks, respectively, of the fi le F1 . (See Figure 21-3 a.) Because at
this fi rst merge step each run contains only one block, an entire run can fi t into one of the in arrays.
You can thus read R1 and R2 into the arrays in1 and in2 , and then merge in1 and in2 into out . How-
ever, although the result of merging in1 and in2 is a sorted run two blocks long (200 records), out can
hold only one block (100 records). Thus, when in the course of the merge out becomes full, you write

Merging sorted runs
in Phase 2

FIGURE 21-4 (a) Merging single blocks; (b) merging long runs

in1

in2

out

in1

in2

out

B1 B3

B2 B4

R1

R2

F2

Write when out becomes full

B1

B5

R1

R2

B2

B6

B3

B7

B4

B8

Write when out becomes full

Next pair
to merge

Read when either in1 or in2 becomes empty

(a)

(b)

F2

 Sorting Data in an External File 643

Pseudocode to
merge sorted runs

its contents to the fi rst block of F2 , as Figure 21-4 a illustrates. The merging of in1 and in2 into out
then resumes. The array out will become full for a second time only after all of the records in in1 and
in2 are exhausted. At that time, write the contents of out to the second block of F2 . You merge the
remaining seven pairs from F in the same manner and append the resulting runs to F2 .

 This fi rst merge step is conceptually a bit easier than the others, because the initial runs are
only one block in size, and thus each can fi t entirely into one of the in arrays. What do you do in the
later steps when the runs to be merged are larger than a single block? Consider, for example, the
merge step in which you must merge runs of four blocks each to form runs of eight blocks each.
(See Figure 21-3 c.) The fi rst pair of these runs to be merged is in blocks 1 through 4 and 5 through
8 of F1 .

 The algorithm will read the fi rst block of R1 —which is the fi rst block B1 of the fi le—into in1 , and
it will read the fi rst block of R2 —which is B5 —into in2 , as Figure 21-4 b illustrates. Then, as it did
earlier, the algorithm merges in1 and in2 into out . The complication here is that as soon as you fi nish
moving all of the records from either in1 or in2 , you must read the next block from the corresponding
run. For example, if you fi nish in2 fi rst, you must read the next block of R2 —which is B6 —into in2
before the merge can continue. The algorithm thus must detect when the in arrays become exhausted
as well as when the out array becomes full.

 A high-level description of the algorithm for merging arbitrary-sized sorted runs Ri and Rj from
F1 into F2 is as follows:

 Read the first block of Ri into in1
Read the first block of Rj into in2

while (either in1 or in2 is not exhausted)
{
 Select the smaller “leading” record of in1 and in2 and place it into
 the next position of out (if one of the arrays is exhausted, select the

leading record from the other)

 if (out is full)
 Write its contents to the next block of F2

 if (in1 is exhausted and blocks remain in Ri)
 Read the next block into in1

 if (in2 is exhausted and blocks remain in Rj)
 Read the next block into in2
}

 A pseudocode version of the external sorting algorithm follows. Notice that it uses readBlock
and writeBlock , as introduced in the previous section, and assumes a function copyFile that copies a
fi le. To avoid further complications, the solution assumes that the number of blocks in the fi le is a
power of 2. This assumption allows the algorithm always to pair off the sorted runs at each step of the
merge phase, avoiding special end-of-fi le testing that would obscure the algorithm. Also note that the
algorithm uses two temporary fi les and copies the fi nal sorted temporary fi le to the designated output
fi le.

 // Sorts a file by using an external merge sort.
 // Precondition: unsortedFileName is the name of an external
// file to be sorted. sortedFileName is the name that the
 // function will give to the resulting sorted file.
 // Postcondition: The new file named sortedFileName is sorted.
 // The original file is unchanged. Both files are closed.
 // Calls: blockSort, mergeFile, and copyFile.

A pseudocode
mergesort function

644 CHAPTER 21 Processing Data in External Storage

 // Simplifying assumption: The number of blocks in the
 // unsorted file is an exact power of 2.
externalMergesort(unsortedFileName: string,

sortedFileName: string)

 Associate unsortedFileName with the file variable inFile
 and sortedFileName with the file variable outFile

// Phase 1: Sort file block by block and count the blocks
blockSort(inFile, tempFile1, numberOfBlocks)

 // Phase 2: Merge runs of size 1, 2, 4, 8,..., numberOfBlocks/2
 // (uses two temporary files and a toggle that keeps files for each merge step)
toggle = 1
 for (size = 1 through numberOfBlocks/2 with increments of size)
{

 if (toggle == 1)
 mergeFile(tempFile1, tempFile2, size, numberOfBlocks)
 else

{
 mergeFile(tempFile2, tempFile1, size, numberOfBlocks)
 toggle = -toggle

}
}

 // Copy the current temporary file to outFile
if (toggle == 1)
 copyFile(tempFile1, outFile)
 else
 copyFile(tempFile2, outFile)

 Notice that externalMergesort calls blockSort and mergeFile , which calls mergeRuns . The pseu-
docode for these functions follows.

 // Sorts each block of records in a file.
 // Precondition: The file variable inFile is associated
 // with the file to be sorted .
 // Postcondition: The file associated with the file variable
 // outFile contains the blocks of inFile. Each block is
 // sorted; numberOfBlocks is the number of blocks processed.
 // Both files are closed.
 // Calls: readBlock and writeBlock to perform direct access
 // input and output, and sortBuffer to sort an array.
 blockSort(inFile: File, outFile: File, numberOfBlocks: integer)

 Prepare inFile for input
Prepare outFile for output

 numberOfBlocks = 0
while (more blocks in inFile remain to be read)
{
 numberOfBlocks++
 buffer.readBlock(inFile, numberOfBlocks)

 sortArray(buffer) // Sort with some internal sort

 buffer.writeBlock(outFile, numberOfBlocks)
}

 Close inFile and outFile

 Sorting Data in an External File 645

 // Merges blocks from one file to another.
 // Precondition: inFile is an external file that contains
 // numberOfBlocks sorted blocks organized into runs of
 // runSize blocks each.
 // Postcondition: outFile contains the merged runs of
 // inFile. Both files are closed.
 // Calls: mergeRuns.
mergeFile(inFile: File, outFile: File,

 runSize: integer, numberOfBlocks: integer)

 Prepare inFile for input
 Prepare outFile for output

for (next = 1 to numberOfBlocks with increments of 2 * runSize)
{
 // Invariant: Runs in outFile are ordered
 mergeRuns(inFile, outFile, next, runSize)
}
 Close inFile and outFile

 // Merges two consecutive sorted runs in a file.
 // Precondition: fromFile is an external file of sorted runs
 // open for input. toFile is an external file of sorted runs
 // open for output. start is the block number of the first
 // run on fromFile to be merged; this run contains size
 // blocks.
 // Run 1: Block start to block start + size - 1
 // Run 2: Block start + size to start + (2 * size) - 1
 // Postcondition: The merged runs from fromFile are appended
 // to toFile. The files remain open.
mergeRuns(fromFile: File, toFile: File,

 start: integer, size: integer)

 // Initialize the input buffers for runs 1 and 2
 in1.readBlock(fromFile, first block of Run 1)
in2.readBlock(fromFile, first block of Run 2)

 // Merge until one of the runs is finished. Whenever an
 // input buffer is exhausted, the next block is read.
 // Whenever the output buffer is full, it is written.
while (neither run is finished)
{
 // Invariant: out and each block in toFile are ordered
 Select the smaller “leading edge” of in1 and in2, and
 place it in the next position of out

if (out is full)
out.writeBlock(toFile, next block of toFile)

if (in1 is exhausted and blocks remain in Run 1)
 in1.readBlock(fromFile, next block of Run 1)

if (in2 is exhausted and blocks remain in Run 2)
 in2.readBlock(fromFile, next block of Run 2)
 }

 // Assertion: Exactly one of the runs is complete

 // Append the remainder of the unfinished input
 // buffer to the output buffer and write it

646 CHAPTER 21 Processing Data in External Storage

 Sorted-order
traversal

A simple external
dictionary
implementation:
records stored in
search-key order

while (in1 is not exhausted)
 // Invariant: out is ordered

Place next item of in1 into the next position of out

while (in2 is not exhausted)
 // Invariant: out is ordered

Place next item of in2 into the next position of out

out.writeBlock(toFile, next block of toFile)

 // Finish off the remaining complete blocks

while (blocks remain in Run 1)
 {
 // Invariant: Each block in toFile is ordered
 in1.readBlock(fromFile, next block of Run 1)
 in1.writeBlock(toFile, next block of toFile)
}

while (blocks remain in Run 2)
 {
 // Invariant: Each block in toFile is ordered
 in2.readBlock(fromFile, next block of Run 2)
 in2.writeBlock(toFile, next block of toFile)
 }

 21.3 External Dictionaries
 This section discusses techniques for organizing records in external storage so that you can effi -
ciently perform ADT dictionary operations such as retrieval, insertion, removal, and traversal.
Although this discussion will only scratch the surface of this topic, you do have a head start: Two of
the most important external dictionary implementations are variations of hashing and the 2-3 tree,
which you studied in Chapters 18 and 19 .

 Suppose that you have a direct access fi le of records that are to be dictionary items. The fi le is
partitioned into blocks, as described earlier in this chapter. One of the simplest dictionary implemen-
tations stores the records in order by their search key, perhaps sorting the fi le by using the external
merge sort algorithm developed in the previous section. Once it is sorted, you can easily traverse the
fi le in sorted order by using the following algorithm:

// Traverses the sorted file dataFile in sorted order,
// calling function visit once for each item.
 traverse(dataFile: File, numberOfBlocks: integer,

 recordsPerBlock: integer, visit: FunctionType)
 // Read each block of file dataFile into an internal buffer buf
for (blockNumber = 1 through numberOfBlocks)
 {
 buf.readBlock(dataFile, blockNumber)
 // Visit each record in the block

 for (recordNumber = 1 through recordsPerBlock)
 Visit record buf.getRecord(recordNumber-1)

}

 To perform the retrieval operation on the sorted fi le, you can use a binary search algorithm as
follows:

 // Searches blocks first through last of the file dataFile
 // for the record whose search key equals searchkey

VideoNote

Managing
external data

 External Dictionaries 647

 // Returns the record if found, else throws NotFoundException.
 getItem(dataFile: File, recordsPerBlock: integer,

 first: integer, last: integer,
 searchKey: KeyType): ItemType

if (first > last or nothing is left to read from dataFile)
 throw NotFoundException

else
 {

// Read the middle block of file dataFile into array buf
 mid = (first + last)/2
 buf.readBlock(dataFile, mid)

if ((searchKey >= (buf.getRecord(0)).getKey()) &&
 (searchKey <= (buf.getRecord(recordsPerBlock-1)).getKey()))

 {
// Desired block is found

 Search buffer buf for record buf.getRecord(j) whose search key equals searchKey
 if (record is found)
 return = buf.getRecord(j)

 else
 throw NotFoundException

 }

// Else search appropriate half of the file
 else if (searchKey < (buf.getRecord(0)).getKey())

return getItem(dataFile, recordsPerBlock, first, mid-1, searchKey)

 else
return getItem(dataFile, recordsPerBlock, mid+1, last, searchKey)

 }

 The retrieval algorithm recursively splits the fi le in half and reads the middle block into the
internal object buf . Splitting a fi le segment requires that you know the numbers of the fi rst and last
blocks of the segment. You would pass these values as arguments, along with the fi le variable, to
getItem .

 Once you have read the middle block of the fi le segment into buf , you determine whether a
record whose search key equals searchKey could be in this block. You can make this determination
by comparing searchKey to the smallest search key in buf —which is in buf.getRecord(0) —and
to the largest search key in buf , which is in buf.getRecord(recordsPerBlock-1) . If searchKey
does not lie between the values of the smallest and largest search keys in buf , you must recursively
search one of the halves of the fi le (which half to search depends on whether searchKey is less than
or greater than the search keys in the block you just examined). If, on the other hand, searchKey
does lie between the values of the smallest and largest search keys of the block in buf , you must
search buf for the record. Because the records within the block buf are sorted, you could use a
binary search on the records within this block. However, the number of records in the block buf is
typically small, and thus the time required to scan the block sequentially is insignifi cant compared
to the time required to read the block from the fi le. It is therefore common simply to scan the block
sequentially.

 This external implementation of the ADT dictionary is not very different from the internal sorted
array-based implementation. As such, it has many of the same advantages and disadvantages. Its
main advantage is that because the records are sorted sequentially, you can use a binary search to
locate the block that contains a given search key. The main disadvantage of the implementation is

648 CHAPTER 21 Processing Data in External Storage

 add and remove
 for an external
implementation of
the ADT dictionary
can require many
costly fi le accesses
due to shifting
records

that, as is the case with an array-based implementation, the add and remove operations must shift
dictionary items. Shifting records in an external fi le is, in general, far more costly than shifting array
items. A fi le may contain an enormous number of large records, which are organized as several thou-
sand blocks. As a consequence, the shifting could require a prohibitively large number of block
accesses.

 Consider, for example, Figure 21-5 . If you insert a new record into block k , you must shift the
records not only in block k , but also in every block after it. As a result, you must shift some records
across block boundaries. Thus, for each of these blocks, you must read the block into internal mem-
ory, shift its records by using a statement such as

 buf.setRecord(i+1, buf.getRecord(i))

 and write the block to the fi le so that the fi le refl ects the change. This large number of block accesses
makes the external sorted array-based implementation practical only for dictionaries where inser-
tions and removals are rare.

 21.3.1 Indexing an External File

 Two of the best external dictionary implementations are variations of the internal hashing and search-
tree schemes. The biggest difference between the internal and external versions of these implementa-
tions is that in the external versions, it is often advantageous to organize an index to the data fi le
rather than to organize the data fi le itself. An index to a data fi le is conceptually similar to other
indexes with which you are familiar. For example, consider a library catalog. Rather than looking all
over the library for a particular title, you can simply search the catalog. The catalog is typically organ-
ized alphabetically by title (or by author), so it is a simple matter to locate the appropriate entry. The
entry for each book contains an indication (for example, a Library of Congress number) of where on
the shelves you can fi nd the book.

 Using a catalog to index the books in a library has at least three benefi ts:

• Because each catalog entry is much smaller than the book it represents, the entire catalog
for a large library can fi t into a small space. A patron can thus locate a particular book
quickly.

• The library can organize the books on the shelves in any way, without regard to how easy it
will be for a patron to scan the shelves for a particular book. To locate a particular book, the
patron searches the catalog for the appropriate entry.

• The library can have different types of catalogs to facilitate different types of searches. For
example, it can have one catalog organized by title and another organized by author.

Advantages of a
library catalog

FIGURE 21-5 Shifting across block boundaries

Block k

Need slot
here

Shift across
block boundaries

An index to a data
fi le

 External Dictionaries 649

 Now consider how you can use an index to a data fi le to much the same advantage as the
library catalog. As Figure 21-6 illustrates, you can leave the data fi le in a disorganized state and
maintain an organized index to it. When you need to locate a particular record in the data fi le, you
search the index for the corresponding entry, which will tell you where to fi nd the desired record in
the data fi le.

 An index to the data fi le is simply another fi le, called the index fi le , that contains an index
record for each record in the data fi le, just as a library catalog contains an entry for each book in
the library. An index record has two parts: a key, which contains the same value as the search key
of its corresponding record in the data fi le, and a “pointer,” which shows the number of the block in
the data fi le that contains this data record. (Despite its name, an index record’s pointer contains an
integer, not a C++ pointer.) You thus can determine which block of the data fi le contains the record
whose search key equals searchKey by searching the index fi le for the index record whose key
equals searchKey .

 Maintaining an index to a data fi le has benefi ts analogous to those provided by the library’s
catalog:

• In general, an index record will be much smaller than a data record. While the data record may
contain many components, an index record contains only two: a key, which is also part of the
data record, and a single integer pointer, which is the block number. Thus, just as a library cata-
log occupies only a small fraction of the space occupied by the books it indexes, an index fi le is
only a fraction of the size of the data fi le. As you will see, the small size of the index fi le often
allows you to manipulate it with fewer block accesses than you would need to manipulate the
data fi le.

• Because you do not need to maintain the data fi le in any particular order, you can insert new
records in any convenient location, such as at the end of the fi le. As you will see, this fl exibility
eliminates the need to shift the data records during insertions and removals.

• You can maintain several indexes simultaneously. Just as a library can have one catalog organ-
ized by title and another organized by author, you can have one index fi le that indexes the data
fi le by one search key (for example, an index fi le that consists of < name , pointer > records),
and a second index fi le that indexes the data fi le by another search key (for example, an index
fi le that consists of < socSec , pointer > records). Such multiple indexing is discussed briefl y
at the end of this chapter.

 Although you do not organize the data fi le, you must organize the index fi le so that you can
search and update it rapidly. Before considering how to organize an index fi le by using either hashing
or search-tree schemes, fi rst consider a less complex organization that illustrates the concepts of

FIGURE 21-6 A data fi le with an index

Index file: small, organized index records

Data file: blocks of large, unorganized data records

Advantages of an
index fi le

Organize the index
fi le, but not the data
fi le

650 CHAPTER 21 Processing Data in External Storage

indexing. In particular, let the index fi le simply store the index records sequentially, sorted by their
keys, as shown in Figure 21-7 .

 To perform the retrieval operation, for example, you can use a binary search on the index fi le as
follows:

 // Searches the file dataFile for the record whose search key equals searchKey.
 // Returns the record if found, else throws NotFoundException.
getItem(indexFile: File, dataFile: File,

 searchKey: KeyType): ItemType

 if (no blocks are left in indexFile to read)
 throw NotFoundException
 else
 {
 // Read the middle block of indexfile into object buf
 mid = number of middle block of indexFile
 buf.readBlock(indexFile, mid)

 if ((searchKey >= (buf.getRecord(0)).getKey()) &&
 (searchKey <= (buf.getRecord(indexrecordsPerBlock-1)).getKey()))

{
 // Desired block of index file found
 Search buf for index file record whose key value equals searchKey

 if (index record buf.getRecord(j) is found)
 {
 blockNum = number of the data-file block to which buf.getRecord(j) points
 data.readBlock(dataFile, blockNum)
 Find data record whose search key equals searchKey
 return data.getRecord(k)
 }

 else
 throw NotFoundException

 }
 else if (indexFile is one block in size)

 throw NotFoundException // No more blocks in file

FIGURE 21-7 A data fi le with a sorted index fi le

Ann Bill Charles DonnaSorted index file

Data file—each
block contains
several data
records

Block that contains data
record for Ann

Data record
for Ann

Data record
for Charles

An index fi le
reduces the number
of required block
accesses for
dictionary
operations

 External Dictionaries 651

 // Else search appropriate half of index file
 else if (searchKey < (buf.getRecord(0)).getKey())

 return getItem(first half of indexFile, dataFile,
 searchKey)

 else
 return getItem(second half of indexFile, dataFile,

 searchKey)
}

 Because the index records are far smaller than the data records, the index fi le contains far fewer
blocks than the data fi le. For example, if the index records are one-tenth the size of the data records
and the data fi le contains 1,000 blocks, the index fi le will require only about 100 blocks. As a result,
the use of an index cuts the number of block accesses in getItem down from about log 2 1000 � 10 to
about 1 + log 2 100 � 8. (The one additional block access is into the data fi le once you have located the
appropriate index record.)

 The reduction in block accesses is far more dramatic for the add and remove operations. In the
implementation of an external dictionary discussed earlier in this section, if you insert a record into or
remove a record from the fi rst block of data, for example, you have to shift records in every block,
requiring that you access all 1,000 blocks of the data fi le. (See Figure 21-5 .)

 However, when you perform an insertion or a removal by using the index scheme, you have to
shift only index records. When you use an index fi le, you do not keep the data fi le in any particular
order, so you can insert a new data record into any convenient location in the data fi le. This fl exibil-
ity means that you can simply insert a new data record at the end of the fi le or at a position left
vacant by a previous removal (as you will see). As a result, you never need to shift records in the
data fi le. However, you do need to shift records in the index fi le to create an opening for a corre-
sponding index entry in its proper sorted position. Because the index fi le contains many fewer
blocks than the data fi le (100 versus 1,000 in the previous example), the maximum number of block
accesses required is greatly reduced. A secondary benefi t of shifting index records rather than data
records is a reduction in the time requirement for a single shift. Because the index records them-
selves are smaller, the time required for the statement buf.setRecord(i+1, buf.getRecord(i))
is decreased.

 Removals under the index scheme reap similar benefi ts. Once you have searched the index fi le
and located the data record to be removed, you can simply leave its location vacant in the data fi le, and
thus you need not shift any data records. You can keep track of the vacant locations in the data fi le, so
that you can insert new data records into the vacancies, as was mentioned earlier. The only shifting
required is in the index fi le to fi ll the gap created when you remove the index record that corresponds
to the deleted data record.

 Even though this scheme is an improvement over maintaining a sorted data fi le, in many applica-
tions it is far from satisfactory. The 100 block accesses that could be required to insert or remove an
index record often would be prohibitive. Far better implementations are possible when you use either
hashing or search trees to organize the index fi le.

 21.3.2 External Hashing

 The external hashing scheme is quite similar to the internal scheme described in Chapter 18 . In the
internal hashing scheme, each entry of the array table —the hash table—contains a pointer to the
beginning of a chain of items that hash into that location. In the external hashing scheme, each entry
of table still contains a pointer to the beginning of a chain, but here each chain consists of blocks
of index records. In other words, you hash an index fi le rather than the data fi le, as Figure 21-8

Shift index records
instead of data
records

An unsorted data
fi le with a sorted
index is more
effi cient than a
sorted data fi le, but
other schemes are
even better

You hash the index
fi le instead of the
data fi le

652 CHAPTER 21 Processing Data in External Storage

illustrates. (In many applications the array table is itself so large that you must keep it in external
storage—for example, in the fi rst K blocks of the index fi le. To avoid this extra detail, you can assume
here that the array table is an internal array.)

 Associated with each entry table[i] is a linked chain of blocks of the index fi le, as you can see
in Figure 21-8 . Each block of table[i] ’s linked chain contains index records whose keys (and thus
whose corresponding data records’ search keys) hash into location i . To form the linked chains, you
must reserve space in each block for a block pointer—the integer block number of the next block in
the chain—as Figure 21-9 illustrates. That is, in this linked chain the pointers are integers, not C++
pointers. A pointer value of –1 is used as a null pointer.

Retrieval under external hashing of an index fi le. The retrieval operation appears in pseudocode
as follows:

 // Searches the data file for the record whose search key equals searchKey.
 // Returns the record if found, else throws NotFoundException.
 getItem(indexFile: File, dataFile: File,
 searchKey: KeyType): ItemType

FIGURE 21-8 A hashed index fi le

.

.

.

.

. . .

Each index record points to a block of the data file

Blocks of index file—each block contains several index records

Data file—each block contains several data records

Hash table hashes
index file

–1

table

FIGURE 21-9 A single block with a pointer

Index records

Pointer to next
block in chain

 External Dictionaries 653

// Apply the hash function to the search key
 i = h(searchKey)

// Find the first block in the chain of index blocks –
// these blocks contain index records that hash into location i
 p = table[i]

 // if p == -1, no values have hashed into location i
 if (p != -1)
 buf.readBlock(indexFile, p)

 // Search for the block with the desired index record
 while (p != -1 and buf does not contain an index record whose key value equals searchKey)
{
 p = number of next block in chain
 // if p equals -1, you are at the last block in the chain

 if (p != -1)
 buf.readBlock(indexFile, p)
 }

 // Retrieve the data item if present
 if (p != -1)
 {

// buf.getRecord(j) is the index record whose key value equals searchKey
 blockNum = number of the data-file block to which buf.getRecord(j) points
 data.readBlock(dataFile, blockNum)
 Find data record data.getRecord(k) whose search key equals searchKey
 return data.getRecord(k)
}
 else

 throw NotFoundException

 Insertion under external hashing of an index fi le. The external hashing versions of the insertion
and removal operations are also similar to the internal hashing versions. The major difference is that,
in the external environment, you must insert or remove both a data record and the corresponding
index record.

 To insert a new data record whose search key is searchKey , you take the following steps:

 1. Insert the data record into the data fi le. Because the data fi le is not ordered, the new
record can go anywhere you want. If a previous removal has left a free slot in the middle of
the data fi le, you can insert it there.

 If no slots are free, you insert the new data record at the end of the last block, or,
if necessary, you append a new block to the end of the data fi le and store the record
there. In either case, let p denote the number of the block that contains this new
data record.

 2. Insert a corresponding index record into the index fi le. You need to insert into the
index fi le an index record that has key value searchKey and pointer value p . (Recall that p
is the number of the block in the data fi le into which you inserted the new data record.)
Because the index fi le is hashed, you fi rst apply the hash function to searchKey , letting

 i = h(searchKey)

 You then insert the index record < searchKey , p > into the chain of blocks that the entry
table[i] points to. You can insert this record into any block in the chain that contains a
free slot, or, if necessary, you can allocate a new block and link it to the beginning of the
chain.

654 CHAPTER 21 Processing Data in External Storage

Organize the index
fi le as an external
2-3 tree

Choose external
hashing for basic
dictionary
operations

 Removal under external hashing of an index fi le. To remove the data record whose search key is
searchKey , you take the following steps:

 1. Search the index fi le for the corresponding index record. You apply the hash function to
searchKey , letting

i = h(searchKey)

 You then search the chain of index blocks pointed to by the entry table[i] for an index
record whose key value equals searchKey . If you do not fi nd such a record, you can
conclude that the data fi le does not contain a record whose search key equals searchKey .
However, if you fi nd an index record < searchKey , p >, you remove it from the index fi le
after noting the block number p , which indicates where in the data fi le you can fi nd the data
record to be removed.

 2. Remove the data record from the data fi le. You know that the data record is in block p of
the data fi le. You simply access this block, search the block for the record, remove the
record, and write the block back to the fi le.

 Observe that for each of the operations getItem , add , and remove the number of block accesses
is very low. You never have to access more than one block of the data fi le, and at worst you have to
access all of the blocks along a single hash chain of the index fi le. You can take measures to keep the
length of each of the chains quite short (for example, one or two blocks long), just as you can with
internal hashing. You should make the size of the array table large enough so that the average length
of a chain is near one block, and the hash function should scatter the keys evenly. If necessary, you can
even structure each chain as an external balanced search tree by using the techniques described in the
next section.

 The hashing implementation is the one to choose when you need to perform retrieval, insertion,
and removal operations on a large external dictionary. As is the case with internal hashing, however,
this implementation is not practical for certain other operations, such as sorted traversal, retrieval of
the smallest or largest item, and range queries that require ordered data. When these types of opera-
tions are added to the basic dictionary operations, you should use a search-tree implementation
instead of hashing.

 21.3.3 B-Trees

 Another way to search an external dictionary is to organize it as a balanced search tree. Just as you
can apply external hashing to the index fi le, you can organize the index fi le, not the data fi le, as an
external search tree. The implementation developed here is a generalization of the 2-3 tree of
 Chapter 19 .

 You can organize the blocks of an external fi le into a tree structure by using block numbers for
child pointers. In Figure 21-10 a, for example, the blocks are organized into a 2-3 tree. Each block of
the fi le is a node in the tree and contains three child pointers, each of which is the integer block
number of the child. A child pointer value of –1 plays the role of a null pointer, and thus, for example,
a leaf will contain three child pointers with the value –1.

 If you organized the index fi le into a 2-3 tree, each node (block of the index fi le) would contain
either one or two index records, each of the form < key , pointer >, and three child pointers. The
pointer portion of an index record has nothing to do with the tree structure of the index fi le; pointer
indicates the block (in the data fi le) that contains the data record whose search key equals key . (See
 Figure 21-10 b.) To help avoid confusion, the pointers in the tree structure of the index fi le will be
referred to as child pointers.

 External Dictionaries 655

 You must organize the index records in the tree so that their keys obey the same search-tree
ordering property as an internal 2-3 tree. This organization allows you to retrieve the data record with
a given value in its search key as follows:

 // Searches the data file for the record whose search key equals searchKey.
 // Returns the record if found, else throws NotFoundException.
 // rootNum is the block number (of the index file) that contains the root of the tree.
 getItem(indexFile: File, dataFile: File, rootNum: integer,

 searchKey: KeyType): ItemType

 if (no blocks are left in the index file to read)
 throw NotFoundException

 else
 {
 // Read from index file into internal array buf the block that contains the root of the 2-3 tree
 buf.readBlock(indexFile, rootNum)

 // Search for the index record whose key value equals searchKey
 if (searchKey is in the root)
 {

 blockNum = number of the data-file block that index record specifies
 data.readBlock(dataFile, blockNum)
 Find data record data.getRecord(k) whose search key equals searchKey
 return data.getRecord(k)

 }

FIGURE 21-10 (a) Blocks organized into a 2-3 tree; (b) a single node of the 2-3 tree

Block number
of child

Index
record

Index
record

Index
record –1

Index
record –1Index

record–1–1 –1–1–1

Block with
2 children

Leaf

(a)

(b)

Search key pointer to data Search key Pointer to data

Index record Index recordBlock number
of middle child

Block number
of left child

Block number
of right child

Index
record

656 CHAPTER 21 Processing Data in External Storage

Binary search tree:
the number of
records and children
per node

An external 2-3 tree
is adequate, but an
improvement is
possible

 // Else search the appropriate subtree
 else if (the root is a leaf)

 throw NotFoundException
 else

 {
 child = block number of root of appropriate subtree
 return getItem(indexFile, dataFile, child, searchKey)
 }
 }

 You also can perform insertions and removals in a manner similar to those in the internal ver-
sion, with the addition that you must insert records into and remove records from both the index
fi le and the data fi le (as was the case in the external hashing scheme described earlier). In the
course of insertions into and removals from the index fi le, you must split and merge nodes of the
tree just as you do for the internal version. You perform insertions into and removals from the data
fi le—which, recall, is not ordered in any way—exactly as described for the external hashing
implementation. You thus can support the dictionary operations fairly well by using an external
version of the 2-3 tree.

 However, you can generalize the 2-3 tree to a structure that is even more suitable for an external
environment. Recall the discussion in Chapter 19 about search trees whose nodes can have many chil-
dren. Adding more children per node reduces the height of the search tree but increases the number of
comparisons at each node during the search for a value.

 In an external environment, however, the advantage of keeping a search tree short far out-
weighs the disadvantage of performing extra work at each node. As you traverse the search tree in
an external environment, you must perform a block access for each node visited. Because the time
required to access a block of an external fi le is, in general, far greater than the time required to
process the data in that block once it has been read in, the overriding concern is to reduce the
number of block accesses required. This fact implies that you should attempt to reduce the height
of the tree, even at the expense of requiring more comparisons at each node. In an external search
tree, you should thus allow each node to have as many children as possible, with only the block
size as a limiting factor.

 How many children can a block of some fi xed size accommodate? If a node is to have m children,
clearly you must be able to fi t m child pointers in the node. In addition to child pointers, however, the
node must also contain index records. Before you can answer the question of how many children a
block can accommodate, you must fi rst consider this related question: If a node N in a search tree has
m children, how many key values—and thus how many index records—must it contain?

 In a binary search tree, if the node N has two children, it must contain one key value, as Figure 21-11 a
indicates. You can think of the key value in node N as separating the key values in N ’s two subtrees—all of
the key values in N ’s left subtree are less than N ’s key value, and all of the key values in N ’s right subtree
are greater than N ’s key value. When you are searching the tree for a given key value, the key value in N
tells you which branch to take.

 Similarly, if a node N in a 2-3 tree has three children, it must contain two key values. (See Figure
 21-11 b.) These two values separate the key values in N ’s three subtrees—all of the key values in the
left subtree are less than N ’s smaller key value, all of the key values in N ’s middle subtree lie between
N ’s two key values, and all of the key values in N ’s right subtree are greater than N ’s larger key value.
As is the case with a binary search tree, this requirement allows a search algorithm to know which
branch to take at any given node.

 In general, if a node N in a search tree is to have m children, it must contain m – 1 key values to
separate the values in its subtrees correctly. (See Figure 21-11 c.) Suppose that you denote the sub-
trees of N as S0 , S1 , and so on to Sm–1 and denote the key values in N as K1 , K2 , and so on to Km–1 (with
K1 < K2 < · · · < Km–1). The key values in N must separate the values in its subtrees as follows:

Keep an external
search tree short

2-3 tree: the number
of records and
children per node

General search tree:
the number of
records and children
per node

 External Dictionaries 657

• All the values in subtree S0 must be less than the key value K1 .
• For all i , 1 � i � m – 2, all the values in subtree Si must lie between the key values Ki and Ki+1 .
• All the values in subtree Sm –1 must be greater than the key value Km –1 .

 If every node in the tree obeys this property, you can search the tree by using a generalized ver-
sion of a search tree’s retrieval algorithm as follows:

 // Searches the data file for the record whose search key equals searchKey.
 // Returns the record if found, else throws NotFoundException.
 getItem(indexFile: File, dataFile: File, rootNum: integer,

 searchKey: KeyType): ItemType

 if (no blocks are left in the index file to read)
 throw NotFoundException

 else
 { // Read from index file into internal array buf the
 // block that contains the root of the tree
 buf.readBlock(indexFile, rootNum)

// Search for the index record whose key value equals searchKey

 if (searchKey is one of the Ki in the root)
 {
 blockNum = number of the data-file block that index record specifies
 data.readBlock(dataFile, blockNum)
 Find data record data.getRecord(k) whose search key equals searchKey
 return data.getRecord(k)
 }

// Else search the appropriate subtree
 else if (the root is a leaf)

 throw NotFoundException

FIGURE 21-11 (a) A node with two children; (b) a node with three children; (c) a node with m
children

key

key key

S0

K1

S1

K2 Km–1

Sm–1Sm–2

Left subtree Right subtree

Left subtree Right subtreeMiddle subtree

(a)

(b)

(c)

Retrieval with a
general external
search tree

658 CHAPTER 21 Processing Data in External Storage

Number of children
per node

 else
 {

 Determine which subtree Si to search
 child = block number of the root of Si
 return getItem(indexFile, dataFile, child, searchKey)
 }
 }

 Now return to the question of how many children the nodes of the search tree can have—that is,
how big can m be? If you wish to organize the index fi le into a search tree, the items that you store in
each node will be records of the form <key , pointer> . Thus, if each node in the tree (which, recall, is
a block of the index fi le) is to have m children, it must be large enough to accommodate m child point-
ers and m – 1 records of the form < key , pointer >. You should choose m to be the largest integer such
that m child pointers (which, recall, are integers) and m – 1 <key , pointer> records can fi t into a sin-
gle block of the fi le. Actually, the algorithms are somewhat simplifi ed if you always choose an odd
number for m . That is, you should choose m to be the largest odd integer such that m child pointers
and m – 1 index records can fi t into a single block.

 Ideally, then, you should structure the external search tree so that every internal node has m chil-
dren, where m is chosen as just described, and all leaves are at the same level, as is the case with full
trees and 2-3 trees. For example, Figure 21-12 a shows a full tree whose internal nodes each have fi ve
children. Although this search tree has the minimum possible height, its balance is too diffi cult to
maintain in the face of insertions and removals. As a consequence, you must make a compromise. You
can still insist that all the leaves of the search tree be at the same level—that is, that the tree be bal-
anced—but you must allow each internal node to have between m and [m /2] + 1 children. (The []
notation means greatest integer in . Thus, [5/2] is 2, for example.)

FIGURE 21-12 (a) A full tree whose internal nodes have fi ve children; (b) the format of a
single node

(a)

(b)

S0

K1

S1

K2

S2

K3

S3

K4

S4

 External Dictionaries 659

A 2-3 tree is a B-tree
of degree 3

 This type of search tree is known as a B-tree of degree m and has the following characteristics:

• All leaves are at the same level.
• Each node contains between m – 1 and [m /2] records, and each internal node has one more

child than it has records. An exception to this rule is that the root of the tree can contain as few
as one record and can have as few as two children. This exception is necessitated by the inser-
tion and removal algorithms described next.

 A 2-3 tree is a B-tree of degree 3. Furthermore, the manner in which the B-tree insertion and
removal algorithms maintain the structure of the tree is a direct generalization of the 2-3 tree’s strat-
egy of splitting and merging nodes. These algorithms are illustrated next by means of an exam-
ple. Assume that the index file is organized into a B-tree of degree 5—that is, 5 is the maximum
and 3 is the minimum number of children that an internal node—other than the root—in the
tree can have. (Typically, a B-tree will be of a higher degree, but the diagrams would get out of
hand!)

 Insertion into a B-tree. To insert a data record with search key 55 into the tree shown in Figure 21-13 ,
you take the following steps:

 1. Insert the data record into the data fi le. First you fi nd block p in the data fi le into which
you can insert the new record. As was true with the external hashing implementation, block
p is either any block with a vacant slot or a new block.

 2. Insert a corresponding index record into the index fi le. You now must insert the index
record <55, p > into the index fi le, which is a B-tree of degree 5. The fi rst step is to locate
the leaf of the tree in which this index record belongs by determining where the search for
55 would terminate.

 Suppose that this is the leaf L shown in Figure 21-14 a. Conceptually, you insert the
new index record into L , causing it to contain fi ve records (Figure 21-14 b). Since a node
can contain only four records, you must split L into L1 and L2 . With an action analogous to
the splitting of a node in a 2-3 tree, L1 gets the two records with the smallest key values, L2
gets the two records with the largest key values, and the record with the middle key value
(56) is moved up to the parent P. (See Figure 21-14 c.)

B-tree of degree m

FIGURE 21-13 A B-tree of degree 5

20 30

35 48 60 68

50 56 57 58

w x y z

ba

660 CHAPTER 21 Processing Data in External Storage

 In this example, P now has six children and fi ve records, so it must be split into P1 and
P2 . The record with the middle key value (56) is moved up to P ’s parent, Q . Then P ’s
children must be distributed appropriately, as happens with a 2-3 tree when an internal node
is split. (See Figure 21-14 d.)

 At this point the insertion is complete, as P ’s parent Q now contains only three records
and has only four children. In general, though, an insertion might cause splitting to propagate
all the way up to the root (Figure 21-14 e). If the root must be split, the new root will contain
only one record and have only two children—the defi nition of a B-tree allows for this
eventuality.

 Removal from a B-tree. To remove a data record with a given search key from a B-tree, you take the
following steps:

 1. Locate the index record in the index fi le. You use the search algorithm to locate the
index record with the desired key value. If this record is not already in a leaf, you swap

FIGURE 21-14 (a through d) The steps for inserting 55 ; (e) splitting the root

20 30

35 48 60 68

50 56 57 58

w x y z

ba

L

Leaf found

(a) 20 30

35 48 60 68

50 55 57 58

w x y z

ba

L

Record inserted

(b)

56

20 30

5635 48 60 68

50 55 57 58

w x y z

ba

Split leaf

(c) Q

P P

P

L1 L2

20 56

35 48 60 68

50 55 57 58

w x y z

ba

Split internal node

(d) Q

P2

L1 L2

30

P1

10 15

u

(e)

35 45 55 10 15

35

45 55

New root

Root

Height h + 1

v w x y z u v w x y z

Height h

Splitting can propagate to the root

 External Dictionaries 661

it with its inorder successor. Suppose that the leaf L shown in Figure 21-15 a contains the
index record with the desired key value, 73. After noting the value p of the pointer in
this index record (you will need p in step 2 to remove the data record), you remove the
index record from L (Figure 21-15 b). Because L now contains only one value (recall that
a node must contain at least two values), and since L ’s siblings cannot spare a value, you
merge L with one of the siblings and bring down a record from the parent P (Figure
 21-15 c). Notice that this step is analogous to the merge step for a 2-3 tree. However, P
now has only one value and two children, and since its siblings cannot spare a record
and child, you must merge P with its sibling P1 and bring a record down from P’s parent,
Q . Because P is an internal node, its children must be adopted by P1 . (See Figure
 21-15 d.)

 After this merge, P ’s parent Q is left with only two children and one record. In
this case, however, Q ’s sibling Q1 can spare a record and a child, so you redistribute
children and records among Q1 , Q and the parent S to complete the removal. (See
 Figure 21-15 e.) If a removal ever propagates all the way up to the root, leaving it
with only one record and only two children, you are f inished because the definition
of a B-tree allows this situation. If a future removal causes the root to have a single
child and no records, you remove the root so that the tree’s height decreases by 1, as
 Figure 21-15 f illustrates. The removal of the index record is complete, and you now
must remove the data record.

FIGURE 21-15 (a through e) The steps for removing 73 ; (f) removing the root

68 78(a)

Leaf found

P

70 7360 65 80 85

M1 M2

68 78(b)

Index record removed

P

7060 65 80 85

M1 M2

22 90(c)

P2

Q

7815 20 100 120PP1

60 65 68 70 80 85

M1 M2

Merge leaf;
bring record down

vu w yx z

L

L

(continues)

662 CHAPTER 21 Processing Data in External Storage

 2. Remove the data record from the data fi le. Prior to removing the index record, you noted
the value p of its pointer. Block p of the data fi le contains the data record to be removed.
Thus, you simply access block p , remove the data record, and write the block back to the
fi le. The high-level pseudocode for the insertion and removal algorithms parallels that of
the 2-3 tree and is left as an exercise.

 21.3.4 Traversals

 Now consider the operation traverse in sorted order, which is one of the operations that hashing
does not support at all effi ciently. Often an application requires only that the traversal display the
search keys of the records. If such is the case, the B-tree implementation can effi ciently support the
operation, because you do not have to access the data fi le. You can visit the search keys in sorted order
by using an inorder traversal of the B-tree, as follows:

 // Traverses in sorted order an index file that is organized as a B-tree of degree m.
 // blockNum is the block number of the root of the B-tree in the index file.

(d) 14 150

P2

S

908 11

100 120

Q

15 20 22 78

80 85

M2

c d

yx zvu w

60 65 68 70

M1

5Q1

ba

P1

Merge internal node;
bring record down

e

(e) 11 150 S

908 Q

P1dc

5Q1

ba

e

14

P2

(f)

C

Empty
root

Redistribute values

Height h
C

New root

Remove empty root

Height h – 1

FIGURE 21-15 (a through e) The steps for removing 73 ; (f) removing the root (continued)

Accessing only the
search key of each
record, but not the
data fi le

 External Dictionaries 663

 traverse(blockNum: integer, m: integer)

 if (blockNum != -1)
{

// Read the root into internal array buf
 buf.readBlock(indexFile, blockNum)

 // Traverse the children

 // Traverse S0
 Let p be the block number of the 0th child of buf
 traverse(p, m)

 for (i = 1 through m - 1)
 {

Display key Ki of buf

// Traverse Si
 Let p be the block number of the ith child of buf
 traverse(p, m)
 }
}

 This traversal accomplishes the task with the minimum possible number of block accesses because
each block of the index fi le is read only once. This algorithm, however, assumes that enough internal
memory is available for a recursive stack of h blocks, where h is the height of the tree. In many situa-
tions this assumption is reasonable—for example, a 255-degree B-tree that indexes a fi le of 16 million
data records has a height of no more than 3. When internal memory cannot accommodate h blocks,
you must use a different algorithm. (See Exercise 12.)

 If the traversal must display the entire data record (and not just the search key), the B-tree imple-
mentation is less attractive. In this case, as you traverse the B-tree, you must access the appropriate
block of the data fi le. The traversal becomes

 // Traverses in sorted order a data file that is indexed with a B-tree of degree m.
// blockNum is the block number of the root of the B-tree.
 traverse(blockNum: integer, m: integer)

 if (blockNum != -1)
{

 // Read the root into internal array buf
 buf.readBlock(indexFile, blockNum)
 // Traverse S0
 Let p be the block number of the 0th child of buf
 traverse(p, m)

 for (i = 1 through m - 1)
{

 Let p_i be the pointer in the ith index record of buf
 data.readBlock(dataFile, p_i)
 Extract from data the data record whose search key equals Ki
 Display the data record

 // Traverse Si
 Let p be block number of the ith child of buf
 traverse(p, m)

}
 }

Accessing the entire
data record

 Sorted-order
traversal of a data
fi le indexed with a
B-tree

Inorder traversal of
a B-tree index fi le

664 CHAPTER 21 Processing Data in External Storage

Multiple index fi les
allow multiple data
organizations

 This traversal requires you to read a block of the data fi le before you display each data record; that
is, the number of data-fi le block accesses is equal to the number of data records. In general, such a
large number of block accesses would not be acceptable. If you must perform this type of traversal
frequently, you probably would modify the B-tree scheme so that the data fi le itself was kept
nearly sorted.

 21.3.5 Multiple Indexing

 Before concluding the discussion of external implementations, let’s consider the multiple indexing of
a data fi le. Programming Problem 8 in Chapter 18 asked you to support multiple organizations for
data stored in internal memory. Such a problem is also common for data stored externally. For exam-
ple, suppose that a data fi le contains a collection of employee records on which you need to perform
two types of retrievals:

 // Retrieves the item whose search key contains the name aName.
 retrieveN(aName: NameType): ItemType

// Retrieves the item whose search key contains the
// Social Security Number ssn.
 retrieveS(ssn: SSNType): ItemType

 One solution to this problem is to maintain two independent index fi les to the data fi le. For exam-
ple, you could have one index fi le that contains index records of the form <name , pointer> and a sec-
ond index fi le that contains index records of the form <socSec , pointer> . These index fi les could
both be hashed, could both be B-trees, or could be one of each, as Figure 21-16 indicates. The choice
would depend on the operations you wanted to perform with each search key. Similarly, if an applica-
tion required extremely fast retrievals on socSec and also required operations such as traverse in
sorted socSec order and range queries on socSec , it might be reasonable to have two socSec index
fi les—one hashed, the other a B-tree.

Generally, the
previous traversal is
unacceptable

FIGURE 21-16 Multiple index fi les

Data file

Index records
point to the
same data file

Index file
organized
with a B-tree
for socSec

Index records
point to
data file

Hashed
index file
for name

 Summary 665

A removal by name
must update both
indexes

Question 1 Consider two fi les of 1,600 employee records each. The records in each fi le
are organized into sixteen 100-record blocks. One fi le is sequential access and the other is
direct access. Describe how you would append one record to the end of each fi le.

CHECK POINT

Question 2 Trace externalMergesort with an external fi le of 16 blocks. Assume that the
arrays in1 , in2 , and out are each one block long. List the calls to the various functions in the
order in which they occur.

Question 3 Trace the retrieval algorithm for an indexed external fi le when the search
key is less than all keys in the index. Assume that the index fi le stores the index records
sequentially, sorted by their search keys, and contains 20 blocks of 50 records each. Also
assume that the data fi le contains 100 blocks, and that each block contains 10 employee
records. List the calls to the various functions in the order in which they occur.

Question 4 Repeat Checkpoint Question 3, but this time assume that the search key
equals the key in record 26 of block 12 of the index. Also assume that record 26 of the
index points to block 98 of the data fi le.

 Although you can perform each retrieval operation by using only one of the indexes
(that is, use the name index for retrieveN and the socSec index for retrieveS), insertion
and removal operations must update both indexes. For example, the remove-by-name
operation removeN(Jones) requires the following steps:

 1. Search the name index fi le for Jones and remove the index record.
 2. Remove the appropriate data record from the data fi le, noting the socSec value ssn

of this record.
 3. Search the socSec index fi le for ssn and remove this index record.

 In general, the price paid for multiple indexing is more storage space and an additional
overhead for updating each index whenever you modify the data fi le.

 This chapter has presented at a very high level the basic principles of managing data in
external storage. The details of implementing the algorithms depend heavily on your specifi c
computing system. Particular situations often mandate either variations of the techniques
described here or completely different approaches. In future courses and work experience,
you will undoubtedly learn much more about these techniques.

 SUMMARY

1. An external fi le is partitioned into blocks. Each block typically contains many data records, and a block is gen-
erally the smallest unit of transfer between internal and external memory. That is, to access a record, you must
access the block that contains it.

2. You can access the ith block of a direct access fi le without accessing the blocks that precede it. In this sense
direct access fi les resemble arrays.

 3. Before you can process (for example, inspect or update) a record, you must read it from an external fi le into
internal memory. Once you modify a record, you must write it back to the fi le.

666 CHAPTER 21 Processing Data in External Storage

 4. Block accesses are typically quite slow when compared to other computer operations. Therefore, you must
carefully organize a fi le so that you can perform tasks by using only a few block accesses. Otherwise, response
time can be very poor.

5. You can modify the merge sort algorithm, presented in Chapter 11 , so that it can sort an external fi le of records
without requiring all of the records to be in internal memory at one time.

6. An index to a data fi le is a fi le that contains an index record for each record in the data fi le. An index record
contains both the search key of the corresponding data record and the number of the block in the data fi le that
contains the data record.

 7. If a record is inserted into or removed from a data fi le, you must make the corresponding change to the index
fi le. If a data fi le has more than one index fi le, you must update each index fi le. Thus, multiple indexing has an
overhead.

 8. You can organize an index fi le by using either hashing or a B-tree. These schemes allow you to perform the
basic dictionary operations by using only a few block accesses.

9. Although external hashing generally permits retrievals, insertions, and removals to be performed more quickly
than does a B-tree, it does not support such operations as sorted traversals or range queries. This defi ciency is
one motivation for multiple indexing.

 10. You can have several index fi les for the same data fi le. Such multiple indexing allows you to perform different
types of operations effi ciently, such as retrieval by name and retrieval by Social Security number.

 EXERCISES

1. Assuming the existence of readBlock and writeBlock functions, write a pseudocode program for shifting data
to make a gap at some specifi ed location of a sorted fi le. Pay particular attention to the details of shifting the last
item out of one block and into the fi rst position of the next block. You can assume that the last record of the fi le
is in record lastRec of block lastBlock and that lastBlock is not full. (Note that this assumption permits
shifting without allocating a new block to the fi le.)

2. The problem of managing the blocks of an external data fi le indexed by either a B-tree or an external hashing
scheme is similar to that of managing memory for internal structures. When an external structure such as a data
fi le needs more memory (for example, to insert a new record), it gets a new block from a free list that the system
manages. That is, if the fi le contains n blocks, the system can allocate to it an (n + 1) th block. When the fi le no
longer needs a block, you can deallocate it and return it to the system.

 The complication in the management of external storage is that a block allocated to a fi le may have availa-
ble space interspersed with data. For example, after you have removed a record from the middle of a data fi le,
the block that contained that record will have space available for at least one record. Therefore, you must be
able to keep track of blocks that have space available for one or more records as well as recognize when blocks
are completely empty (so that you can return them to the system).

 Assuming the existence of allocateBlock and returnBlock functions that get empty blocks from and
return empty blocks to the system, write pseudocode implementations of the following external memory-man-
agement functions:

 Exercises 667

 // Determines the block number (blockNum) and record number (recNum) of an available slot in file
 // dataFile. A new block is allocated to the file from the system if necessary.
 getSlot(dataFile: File, blockNum: integer,

 recNum: integer)

 // Makes record recNum in block blockNum of file dataFile available.
 // The block is returned to the system if it becomes empty.
 freeSlot(dataFile: File, blockNum: integer,

 recNum: integer)

What data structure is appropriate to support these operations? You may assume that you can distinguish slots
of a block that do not contain a record from those that do. You can make this distinction either by having a con-
vention for null values within a record or by adding an empty/full fl ag.

3. Describe pseudocode algorithms for insertion into and removal from a dictionary implemented externally with
a hashed index fi le.

4. Execute the following sequence of operations on an initially empty dictionary book that is implemented as a
B-tree of degree 5. Note that insertion into an empty B-tree will create a single node that contains the inserted
item.

book.add(10)
 book.add(100)
 book.add(30)
 book.add(80)
 book.add(50)
 book.remove(10)
 book.add(60)
 book.add(70)
 book.add(40)
 book.remove(80)
 book.add(90)
 book.add(20)
 book.remove(30)
 book.remove(70)

5. Given a B-tree of degree 5 and a height of 3,

 a. What is the maximum number of nodes (including the root)?
 b. What is the maximum number of records that can be stored?

6. Given the B-tree of degree 7 in Figure 21-17 , draw the B-tree that results after the insertion of m , o , y , r, c , i , k ,
w, and h .

7. Given the B-tree of degree 7 in Figure 21-18 , draw the B-tree that results after the removal of s , t, p , m , k , and e .

8. Describe a pseudocode algorithm for fi nding an item’s inorder successor in an external B-tree.

9. Describe pseudocode algorithms for insertion into and removal from an ADT dictionary implemented with an
index fi le organized as a B-tree.

10. Write a rangeQuery function for a B-tree in pseudocode. (See Exercise 3 of Chapter 19 .) Assume that only the
key values are needed (as opposed to the entire data record).

668 CHAPTER 21 Processing Data in External Storage

a b d e j n p s v x

g

FIGURE 21-17 A B-tree for Exercise 6

b e f s t u xk l m o p q

j n r

FIGURE 21-18 A B-tree for Exercise 7

11. Integrate calls to the appropriate memory-management functions (see Exercise 2) into the pseudocode for add
and remove under both the B-tree and hashing schemes. (See Exercises 3 and 9.)

12. The B-tree traversal algorithm presented in this chapter assumes that internal memory is large enough to
accommodate the recursive stack that contains up to h blocks, where h is the height of the B-tree. If you
are in an environment where this assumption is not true, modify the traversal algorithm so that the recur-
sive stack contains block numbers rather than the actual blocks. How many block accesses does your
algorithm have to perform?

13. a. Write pseudocode B-tree implementations of traversals and range queries that need to access entire
data records, not simply the search keys. How many block accesses do your functions require?

 b. To reduce the number of block accesses required by these operations, various modifi cations of the
basic B-tree structure are frequently used. The central idea behind such structures is to keep the data
fi le itself sorted. First, assume that you can keep the data fi le in sequential sorted order—that is, the
records are sorted within each block and the records in Bi–1 are less than the records in Bi for i = 2, 3,
and so on to the number of blocks in the fi le. Rewrite your implementations of the traversal and
range-query operations to take advantage of this fact. How many block accesses do these operations
now require?

 c. Because it is too ineffi cient to maintain a sequentially sorted data fi le in the face of frequent insertions and
removals, a compromise scheme is often employed. One such possible compromise is as follows. If a data
record belongs in block B and B is full, a new block is allocated and linked to B, allowing the new record
to be inserted into its proper sorted location. The diffi culty is that you must now view each index record in
the B-tree as indicating the fi rst of possibly several blocks in a chain of blocks that might contain the
corresponding data record. Rewrite the add , remove, getItem, traverse, and rangeQuery operations in
terms of this implementation. What is the effect on their effi ciency?

14. Write an iterative (nonrecursive) version of the internal merge sort, as given in Chapter 11 , that is based on the
external version that this chapter describes. That is, merge sorted runs that double in size at each pass of the
array.

 Programming Problems 669

 PROGRAMMING PROBLEMS

1. a. Implement in C++ the externalMergesort algorithm given in Section 21.2 by using the functions
seekg and seekp. Assume that the fi le to be sorted is a fi le of type int and that each block contains one
integer. Further assume that the fi le contains 2 n integers for some integer n .

 b. Now assume that each block contains many integers. Write C++ functions that simulate readBlock
and writeBlock. Implement externalMergesort by using these functions.

 c. Extend your implementation of externalMergesort by removing the restriction that the fi le contains
2n blocks.

2. Implement the ADT dictionary by using a sorted index fi le, as described in Section 21.3.1.

3. Implement an ADT dictionary that uses a sorted index fi le using the STL map container.

4. Implement a simple dictionary application, such as the one described in Exercise 4 of Chapter 18 , using the
external dictionary of Programming Problem 3.

5. Implement the ADT dictionary by using a hashed index fi le, as described in Section 21.3.2.

6. Implement the ADT dictionary by using a B-tree, as described in Section 21.3.3.

7. Repeat Programming Problem 8 of Chapter 18 , using an external dictionary.

This page intentionally left blank

The Standard
Template Library 7

 Contents
 C7.1 STL Containers 671

 C7.1.1 Container Adapters 673
 C7.1.2 Sequence Containers 674
 C7.1.3 Associative Containers 678

 C7.2 STL Algorithms 682

This interlude gives an overview of some useful methods available with each of the
STL containers and in the STL algorithms library. We do not attempt to describe the
entire library.

 C7.1 STL Containers
 Throughout this text we have been designing and implementing containers that hold
collections of objects. Each ADT was inspired by a problem to solve and was
designed to effi ciently solve that specifi c problem. While each ADT can be used in a
variety of situations, we need to consider the strengths and weaknesses of each one
when choosing which to use.

 C++ comes with a library of containers that implement many of the more com-
monly used ADTs. These classes are defi ned in the Standard Template Library , or
STL . Many of the ADTs that are presented in this text have a corresponding class in the
STL. For example, the STL defi nes a stack class that is similar to the class Linked-
Stack presented in Chapter 7 . Just like the ADTs we designed, each container in the
STL has strengths and weaknesses that you need to consider when deciding which one
to use.

 You may wonder why we spent so much time developing ADTs in this text if
they are already provided in the STL. There are many reasons for doing so; here are
just a few:

 C++
Interlude

VideoNote

C++ STL

672 C++ INTERLUDE 7 The Standard Template Library

• Developing simple ADTs provides a foundation for learning to develop other ADTs, espe-
cially ones that are not in the STL.

• STL containers are not part of a class hierarchy and so cannot take advantage of polymor-
phism in the same way our ADTs can.

• You might fi nd yourself working in a language that does not provide any predefi ned ADTs.
You need to have the ability to develop ADTs on your own, and hence you must understand the
process.

• If the ADTs defi ned by the language you are using are insuffi cient, you may need to develop
your own or enhance existing ones.

 The STL provides support for predefi ned ADTs through the use of three basic items: containers,
iterators, and algorithms. Containers are objects, such as a list, that hold other objects. Iterators pro-
vide a way to cycle through the contents of a container and are described in C++ Interlude 6. Algo-
rithms, such as a sorting algorithm, act on containers. STL containers are implemented as templates,
similar to the ADTs we implemented in this text.

 You already are familiar with one STL class—the class vector —which we used in Chapter 3 to
implement the ADT bag method toVector . Moreover, many introductory C++ courses use the STL
class vector instead of arrays as a simple way to store multiple items of a similar type

 There are three types of containers in the STL:

• Container adapters provide effi cient, restricted, position-based access to the collection. They
are considered adapters because they use other STL containers to implement their operations.

• Sequence containers provide effi cient sequential access to the collection. The containers in
this group provide various trade-offs in effi ciency for insertions and removals.

• Associative containers provide effi cient key-based access to the collection. Each of these
containers organizes and accesses the search keys to provide effi cient groups of operations.

 Each container type implements similar operations, but with a different emphasis in effi ciency.
You’ll fi nd that many of these operations have corresponding operations in the ADTs that we defi ned
in this text, but the STL names might be different.

 Two operations that all STL containers defi ne are empty and size . These correspond to isEmpty
and getLength , respectively, in this book’s ADTs. For sequence and associative containers, the con-
tainer size is the number of entries it can hold. If the container is empty, not only does it not have any
entries, but it cannot hold any. To add a new entry to the container, you must either use one of the
methods that increases the container size during the add operation or, in the case of sequence contain-
ers, resize the container using the resize method.

 OPERATIONS COMMON TO ALL STL CONTAINERS

 OPERATION DESCRIPTION EFFICIENCY

 Constructor Creates a container; sequence containers allow the
user to specify an initial size.

 Varies

 Destructor Destroys all entries in the container, and then
destroys the container.

 O(n)

 operator= Assigns entries in the container on the right-hand
side to the one on the left-hand side.

 O(n)

 bool empty() Returns true if the container is empty (size is 0). O(1)

 uint 1 size() Returns the number of locations in the container. O(1)

 1 uint is the data type for an unsigned integer

 STL Containers 673

 Operations that remove entries from a collection throw an exception when they fail.
 To use one of the STL classes, you must include the appropriate header fi le, which has the same

name as the STL class. So to use the class stack , for example, your code must have the following
statement:

 #include <stack>;

 To instantiate an STL container, you must supply the type of item it will hold, just as we instantiated
our ADTs. For example, the following statement creates a vector that can hold 10 strings:

 vector<string> cities(10); // Create a vector to hold 10 strings

 All STL containers are part of the std:: namespace. Therefore, if you do not use the statement

 using namespace std;

 in your code, you must precede any reference to the container with std:: as shown here;

 std::vector<std::string> cities(10); // Create a vector to hold 10 strings

 In our ADTs, we used ItemType to represent the type of the item stored in the collection. The
STL header fi les use value_type or simply T to represent the item in a collection. If the collection is
similar to our ADT dictionary, with key and item types, the STL uses key_type and mapped_type
respectively.

 C7.1.1 STL Container Adapters

 The STL container adapter classes are stack , queue and priority_queue . These correspond to the
ADTs stack, queue, and priority queue and are optimized so that the operations listed below perform
at O(1). These containers grow to accommodate new entries as the entries are added. When entries
are removed, the size of the container decreases. Thus, each of these containers has a size exactly
equal to the number of entries in it currently.

 STL STACK OPERATIONS

 OPERATION DESCRIPTION

value_type& top() Returns a reference to the top entry on the stack.

 void push(value_type& item) Pushes item onto the top of the stack.

 void pop() Removes the top entry from the stack.

 STL QUEUE OPERATIONS

 OPERATION DESCRIPTION

value_type& front() Returns a reference to the front entry in the queue.

value_type& back() Returns a reference to the last (back) entry in the queue.

 void push(value_type& item) Adds item onto the back of the queue.

 void pop() Removes the front entry from the queue.

674 C++ INTERLUDE 7 The Standard Template Library

 STL PRIORITY_QUEUE OPERATIONS

 OPERATION DESCRIPTION

value_type& top() Returns a reference to the front entry in the priority queue.

void push(value_type& item) Inserts item into the priority queue.

 void pop() Removes the front entry in the priority queue.

 Listing C7-1 provides an example of how to use the STL stack .

LISTING C7-1 Example use of the STL stack

#include <iostream>
#include <stack>
 using namespace std;

 int main()
 {
 stack< int> aStack;

// Right now, the stack is empty
if (aStack.empty())

 cout << "The stack is empty." << endl;

for (int j = 0; j < 5; j++)
 aStack.push(j); // Places items on top of stack

 while (!aStack.empty())
 {
 cout << aStack.top() << " ";
 aStack.pop();
 } // end while

return 0;

} // end main

 Output

The stack is empty.
 4 3 2 1 0

 C7.1.2 Sequence Containers

 The elements in a sequence container are ordered in a linear sequence and can be accessed, inserted, and
removed by position. Similar to the arrangement in traditional arrays, the positions in sequence contain-
ers are numbered from 0 to size - 1. The front of these containers is at position 0, and the back is at
position size - 1.

 The STL sequence containers are: array , vector , deque , list , and forward_list . Let’s con-
sider each of these containers.

 The sequence container array . As part of the recent C11 standard, the STL array provides a fi xed-
size container that is implemented as a traditional array, so unlike other STL containers, an STL
array container cannot grow or shrink in size. You can access individual elements in an STL array

 STL Containers 675

just as you access elements in a traditional array, by using the operator [] . An advantage of an STL
array over traditional C++ arrays is the method at that allows for range checking. For example, a
traditional array declared as

 int myArray[5];

 permits the programmer to access elements beyond the memory allocated to the array by using an
expression such as myArray[24] . This leads to unpredictable results and is a common source of errors
in a program.

 An STL array declared as

 array<int> mySTLArray(5);

 would have the same issue if the programmer used the expression mySTLArray[24] . In situations
where accessing elements outside the bounds of the array is possible, it is better to use an expression
such as mySTLArray.at(24) . This expression will throw an out_of_bounds exception that you can
catch, enabling you to fi x the error and allow the program to continue execution safely.

 Two other important features of the STL array are its size method—enabling you to determine
how many locations are in the array—and the availability of iterators for array traversal, as discussed
in C++ Interlude 6.

 STL ARRAY OPERATIONS

 OPERATION DESCRIPTION EFFICIENCY

value_type& front() Returns a reference to the front entry in the array. O(1)

value_type& back() Returns a reference to the last (back) entry in the array. O(1)

value_type& at(size_type n) Behaves the same as [], but performs a bounds check. O(1)

void fill(constvalue_type& val) Fills array elements with val . O(n)

iterator begin() Returns an iterator to the fi rst element in the container. O(1)

iterator end() Returns an iterator to the last element in the container. O(1)

reverse_iterator rbegin() Returns a reverse iterator to the last element in the container. O(1)

reverse_iterator rend() Returns a reverse iterator to the fi rst element in the container. O(1)

 Other STL sequence containers have many operations in common but are optimized differently.
For example, vector and deque permit effi cient access to specifi c locations using the [] operator,
but list is better for sorting. Though these containers can be constructed with an initial size, they
also grow and shrink as entries are added and removed. If you realize that you need to add a signifi -
cant number of entries to the container, a resize method lets you adjust the number of elements.

 OPERATIONS COMMON TO STL SEQUENCE CONTAINERS

 OPERATION DESCRIPTION EFFICIENCY

value_type& front() Returns a reference to the front entry in the container. O(1)

value_type& back() Returns a reference to the last (back) entry in the
container.

 O(1)

(continues)

676 C++ INTERLUDE 7 The Standard Template Library

 void push_back(value_type& item) Adds item onto the back of the container
(grows container).

 O(1)

 void pop_back(value_type& item) Removes the back entry from the container
(shrinks container).

 O(1)

 void resize (uint newSize) Resizes the container to have newSize elements. O(n)

 void clear() Destroys all entries in the container, and resizes the
container to a size of 0.

 O(n)

 void insert(uint position,

 value_type& item)
 Inserts item at position and grows the container. Varies

 void insert(iterator itPosition,

 value_type& item)
 Inserts item at itPosition and grows the container. Varies

 void erase(uint position) Removes element position from the container
(shrinks container).

 Varies

 void erase(iterator itPosition) Removes element itPosition from container
(shrinks container).

 Varies

iterator begin() Returns an iterator to the fi rst element of the container. O(1)

iterator end() Returns an iterator to the last element of the container. O(1)

reverse_iterator rbegin() Returns a reverse iterator to the last element of the
container.

 O(1)

reverse_iterator rend() Returns a reverse iterator to the fi rst element of the
container.

 O(1)

 The STL class vector. The STL class vector is implemented using dynamic arrays so that it can
increase in size as necessary. You access individual elements in a vector just as you do for an STL
array by using either [] or at . Since vectors are stored as an array in a contiguous sequence of
memory locations, vectors are good for accessing elements by either position or iteration, and for
adding elements to or removing elements from the back.

 ADDITIONAL STL VECTOR OPERATION

 OPERATION DESCRIPTION EFFICIENCY

value_type& at(size_type n) Behaves the same as [], but performs a bounds check. O(1)

 The STL container deque. The STL container deque allows access to individual elements using
[] and enables the effi cient addition and removal of entries at both its front and back. Unlike our
ADT deque, the STL deque permits insertion (insert) and removal (erase) from the interior of
the container.

 The STL deque does not use contiguous memory locations, but stores sequences of its entries in
multiple blocks of memory that it tracks internally. While this makes the STL deque more complex to
implement, it enables it to grow in size more effi ciently, since additional memory can be allocated
without the need to copy all existing entries into the new elements.

 STL Containers 677

 The STL class list. The STL class list is typically implemented using some form of a doubly
linked chain. It is optimized for the insertion and removal of entries but does not provide subscripting,
because element access would be ineffi cient. Bidirectional iterators are provided to access list entries.
The STL list can effi ciently insert and remove entries at any location in the container. This perform-
ance is improved if an iterator, either forward or reverse, is used to determine position. The nature of
the STL list is well suited for sorting and merging operations, and it has methods that implement
those algorithms. The STL list does not provide direct access to elements by position. Access to
elements other than the front or back must be done using an iterator.

 The STL container forward_list. Another C11 STL container is forward_list . It is similar in effi -
ciency to the STL list. Since the STL forward _list is implemented as a singly linked chain, it performs
better with operations using forward iterators and requires less storage than the STL list. The STL
forward_list offers the same functionality for sorting, merging, and element access as the STL list .

 ADDITIONAL STL DEQUE OPERATIONS

 OPERATION DESCRIPTION EFFICIENCY

value_type& at(size_type n) Behaves the same as [], but performs a bounds check. O(1)

 void push_front(value_type& item) Adds item onto the front of the deque (grows container). O(1)

 void pop_front(value_type& item) Removes the front entry from the deque (shrinks container). O(1)

 ADDITIONAL STL LIST AND FORWARD_LIST OPERATIONS

 OPERATION DESCRIPTION EFFICIENCY

void push_front(value_type& item) Adds item onto the front of the list (grows container). O(1)

 void pop_front(value_type& item) Removes the front entry from the list (shrinks container). O(1)

 void remove(value_type& val) Removes all items from the list that are equal to val . O(n)

 void sort() Sorts the list in ascending order. O(n)

void merge(list<value_type>& rhs) Merges rhs with the current list by placing entries in
their correct sorted order, resulting in a sorted list of
all entries.

 O(n)

 void slice(iterator position,

 list<value_type>& rhs)

 Inserts entries in rhs into the current list by placing them
at position ; other forms specify the number of entries.

 O(n)

 void reverse() Reverses the order of entries in the list. O(n)

 Listing C7-2 contains an example that uses the STL list to maintain a list of groceries. Each
entry is inserted in the front of the list, and then the list is sorted.

LISTING C7-2 Example of using the STL list

#include <iostream>
#include <string>

(continues)

678 C++ INTERLUDE 7 The Standard Template Library

 2 The unordered hash-based containers are part of C11-TR1 (Technical Report 1) and should be preceded by the tr1::
namespace indicator, even if you include the statement using namespace std; in your program.

#include <list>
using namespace std;

 int main()
 {

 list<string> groceryList; // Create an empty list
 list<string>::iterator myPosition = groceryList.begin();

 groceryList.insert(myPosition, "apples");
 groceryList.insert(myPosition, "bread");
 groceryList.insert(myPosition, "juice");
 groceryList.insert(myPosition, "carrots");

 cout << "Number of items on my grocery list: "
 << groceryList.size() << endl;

 groceryList.sort();

 cout << "Items are:" << endl;
 myPosition = groceryList.begin();

while (myPosition != groceryList.end())
 {
 cout << *myPosition << endl;
 ++myPosition;
 } // end while
} // end main

 Output

 Number of items on my grocery list: 4
Items are:
 apples
 bread
 carrots
 juice

 C7.1.3 Associative Containers

 STL associative containers store their entries according to search keys, much as our value-based
ADT dictionary does. There are two basic associative containers— set and map —with several vari-
ations of each. The STL set uses the entry to be stored as the key and uses a binary tree for its
structure. The STL map uses a separate entry as the key, similar to the technique used by our ADT
dictionary. The STL set and STL map both expect unique keys, and they store entries in ascending
order based on these keys.

 The STL multiset and STL multimap are variations of the STL set and STL map , respectively,
that permit multiple occurrences of the search keys. The STL containers unordered_set , unor-
dered_map , unordered_multiset , and unordered_multimap are hash-based implementations of
the corresponding ordered STL containers. 2

 Since they are hash based, the unordered associative containers are faster for direct access of an
entry based on its search key. The ordered associative containers are better for iterator-based access.
The STL map and STL unordered_map containers permit direct access to entries using the [] operator.

 STL Containers 679

 Generally, the operations of the STL map and its variations have the same behavior as those of the STL
set , though the parameters are different since the STL map uses a key for each mapped value stored in
the container. For insertion operations, the STL map expects a pair_type that contains both the key
and the entry value mapped to that key.

 For example, the following code declares a map with a key of type char and a mapped type of
int . It then stores several values in the map and uses an iterator to display them:

 #include <iostream>
#include <map>
using namespace std;

int main ()
 {
 map<char, int> myMap;
 myMap.insert(pair<char, int>('A', 100));
 myMap.insert(pair<char, int>('B', 200));
 myMap.insert(pair<char, int>('C', 300));
 map<char, int>::iterator mapIterator;

for (mapIterator = myMap.begin(); mapIterator != myMap.end(); ++mapIterator)
 cout << "Key: " << mapIterator->first;
 cout << " Value: " << mapIterator->second << endl;

return 0;
} // end main

 OPERATIONS COMMON TO THE STL SET AND MULTISET

 OPERATION DESCRIPTION EFFICIENCY

 void clear() Destroys all entries in the container, and resizes
the container to the size of 0.

 O(n)

 void insert(value_type& item) Inserts item and grows the container. O(log n)

 void erase(value_type& item) Removes all entries matching item from the
container (shrinks container).

 O(log n)

 void erase(iterator& position) Removes the entry at position from the container
(shrinks container).

 O(1)

iterator find(value_type& item) Returns the iterator referencing item . O(log n)

 uint count(value_type& item) Counts the occurrences of item in the container. For
set this is at most 1; it can vary for multiset .

 O(log n)

 iterator lower_bound (value_type& item) Returns an iterator referencing the fi rst element
not less than item .

 O(log n)

 iterator upper _bound (value_type& item) Returns an iterator referencing the fi rst element
greater than item .

 O(log n)

iterator begin() Returns an iterator to the fi rst element of the container. O(1)

iterator end() Returns an iterator to the last element of the container. O(1)

reverse_iterator rbegin() Returns a reverse iterator to the last element of
the container.

 O(1)

reverse_iterator rend() Returns a reverse iterator to the fi rst element of
the container.

 O(1)

680 C++ INTERLUDE 7 The Standard Template Library

 As an alternative to the insert statement, you can use the [] operator:

 myMap['A'] = 100;
 myMap['B'] = 200;
 myMap['C'] = 300;

 Other operations for the STL map use a parameter of key_type or an iterator to identify the entry to
act upon.

 OPERATIONS COMMON TO THE STL MAP AND MULTIMAP

 OPERATION DESCRIPTION EFFICIENCY

 void clear() Destroys all entries in the container and changes its size to 0. O(n)

 void insert(pair_type& item) Inserts item (grows container). O(log n)

uint erase(key_type& item) Removes all entries matching item from the container
(shrinks container).

 O(log n)

 void erase(iterator& position) Removes the entry at position from the container
(shrinks container).

 O(1)

iterator find(key_type& item) Returns an iterator referencing item . O(log n)

 uint count(key_type& item) Counts the occurrences of item in the container.
 For set , this count is at most 1; it can vary for multiset .

 O(log n)

iterator lower_bound (key_type& item) Returns an iterator referencing the fi rst entry not less
than item .

 O(log n)

iterator upper _bound (key_type& item) Returns an iterator referencing the fi rst entry greater
than item .

 O(log n)

iterator begin() Returns an iterator to the fi rst entry of the container. O(1)

iterator end() Returns an iterator to the last entry of the container. O(1)

reverse_iterator rbegin() Returns a reverse iterator to the last entry of the container. O(1)

reverse_iterator rend() Returns a reverse iterator to the fi rst entry of the container. O(1)

 As mentioned earlier, the unordered variations of the associative containers are hash-based—
they use a hashing function to determine the position of an entry inserted into the container. When
you instantiate an unordered associative container, you can use the default hash function for the type
of data you are inserting or you can specify your own. Most often, the default hash function will pro-
duce acceptable results, but if you are testing your own hashing algorithm, you have the option to pass
it to the constructor of an unordered associative container.

 Since hash functions are diffi cult to write, it is often helpful to take advantage of an STL provided
hash. The current C++ standard, C11, does not provide a stand-alone hash function. An unordered
associative container, typically an unordered_map , must be instantiated fi rst. Then, the hash function
for that container can be used to hash any key of the correct type. Section 18.4.1 in Chapter 18 contains
a Programming Tip that demonstrates one way to use this hash within the getHashIndex function.

 Let’s look at a slightly different way of implementing the getHashIndex function in the Hashed-
Dictionary class discussed in Chapter 18. We need to take two steps when using the unorder_map hash
function within getHashIndex : Instantiate an unordered_map object, and create a variable to represent
the hash function. We can accomplish both of these tasks within the header fi le of HashedDictionary .

 STL Containers 681

 In the private section of our header fi le, we instantiate our mapper object:

 std::tr1::unordered_map<KeyType, ItemType> mapper;

 The sole purpose of the dummy object mapper is to give us access to its hash function.
 We then call the method hash_function and store the reference it returns in the variable

hashFunction :

 typename std::tr1::unordered_map<KeyType, ItemType>::hasher hashFunction =
 mapper.hash_function();

 The returned reference is to the hash function used to hash our KeyType . Note that the variable hash-
Function is of type hasher . In the C11 standard, hashing functions are functions of this type. They
have a single parameter of type KeyType and return an unsigned integer that represents the hash value
of the key. The keyword typename is required so that the compiler understands that this statement is
based on the template parameters.

 Because hashFunction is defi ned and initialized in the header fi le, it is available to any method
in the HashedDictionary class. When it is used, we need to use the modulo operator, since
hashFunction returns an unsigned integer in the range 0 to UINT_MAX —the maximum unsigned inte-
ger. After the modulo operator is applied, we can cast the result to be the type of index we need for our
dictionary. Thus, we have the following statement:

 int hashIndex = static_cast<int>(hashFunction(searchKey) % hashTableSize);

 The code in Listing C7-3 gives an example of how to use a hash function when it is not part
of an ADT. This example creates a hash function for string objects. Since the key type of the
map determines the hash function, the type of the mapped value is not important; hence we use
int .

LISTING C7-3 Alternative defi nition of a hashing function

#include <iostream>
#include <string>
#include <tr1/unordered_map> // Note header name since this is in tr1
 using namespace std;

// Create a type since this is a long name to use (optional)
 typedef std::tr1::unordered_map<string, int> StringKeyMap;

// Create a dummyMap object so we can get its hash function
StringKeyMap dummyMap;

// Capture the hash function for use in program
StringKeyMap::hasher myHashFunction = dummyMap.hash_function();

 int main ()
 {
 cout << "Hashing a String: " << myHashFunction("Hashing a String:") << endl;
 cout << "Smashing a String: " << myHashFunction ("Smashing a String:") << endl;

return 0;
} // end main

 Output

Hashing a String: 2084157801917477989
Smashing a String: 14048775086903850803

682 C++ INTERLUDE 7 The Standard Template Library

 C7.2 STL Algorithms
 One of the strengths of the STL container library is the set of functions defi ned in the header
<algorithm> . These functions are designed to operate on ranges of elements in any container with
iterators. In C++ Interlude 6 you saw a few of these: for_each , find , count , advance , and dis-
tance . In most cases, the type of container is not important, but it must support iterators. This
makes possible the comparison of differing types of containers. For instance, the entries stored in a
vector can be compared to those stored in a map .

 The fi rst group of algorithms search and compare items in a range. Though they may change a
value, they do not modify the structure of the containers. Several algorithms, such as for_each ,
find_if , and count_if , apply helper functions to each entry during the traversal in a manner similar
to the tree traversals presented in Chapter 15 . The table below only shows one form of each function.
Most functions have several forms that allow additional customization of the range of container
entries to process and the functions to use for comparison. Also, STL map operations, such as upper_
bound and lower_bound can be used as functions and applied to other container types.

 STL SEARCH AND COMPARE ALGORITHMS

 OPERATION DESCRIPTION

 void for_each(iterator start,

 iterator end,

 Function fun)

 Applies fun to the range specifi ed by start and end.

 iterator find(iterator start,
 iterator end,

 value_type& val)

 Returns an iterator to val in the range specifi ed by start and end .

iterator find_if(iterator start,

 iterator end,

 PredFunction fun)

 Returns an iterator to the entry between start and end that
makes the predicate function fun true.

 uint count(iterator start,

 iterator end,

 value_type& val)

 Counts the number of occurrences of val between start and end .

 uint count_if(iterator start,

 iterator end,

 PredFunction fun)

 Counts the number of entries between start and end that make
the predicate function fun true.

 bool equal(iterator start1,

 iterator end1,

 iterator start2)

 Compares the entries between start1 and end1 to those
beginning at start2 . Returns true if all items match.

 value_type& min (value_type& item1,

 value_type& item2)
 Returns the minimum of item1 and item2 .

 value_type& min_element (iterator start,

 iterator end)
 Returns the minimum value in the range from start to end .

 value_type& max (value_type& item1,

 value_type& item2)
 Returns the maximum of item1 and item2 .

 value_type& max_element (iterator start,

 iterator end)
 Returns the maximum value in the range from start to end .

 STL Algorithms 683

 The sequence-modifi cation algorithms change the entries stored in a container within a range
specifi ed by two iterators. The entries can be either

• Replaced by a specifi c value using fill
• Copied or moved to new locations using copy or move
• Removed based on specifi ed conditions using remove , or
• Have operations applied to them using transform

 The following table lists a few of the more common operations and the syntax used to invoke them.

 STL SEQUENCE MODIFICATION ALGORITHMS

 OPERATION DESCRIPTION

 iterator copy(iterator start1,

 iterator end1,

 iterator start2)

 Copies the entries within the range start1 to end1 to the
positions beginning at start2 within the same or another
container. Returns an iterator to the last entry copied.

 iterator copy_backward (iterator start1,

 iterator end1,

 iterator start2)

 Copies the entries within the range start1 to end1 to the
positions beginning at start2 (used if ranges overlap in the
same container). Copies entries starting at end1 - 1 . Returns
an iterator to the last entry copied.

 void swap(value_type& item1,

 value_type& item2)
 Swaps the values of two objects, item1 and item2 .

 iterator transform (iterator start1,

 iterator end1,

 iterator start2,

 UnaryOperator op)

 Applies the given unary operator op to items within the range
start1 to end1 and places the result in elements beginning at
start2 . Returns an iterator to the last element in the result
container.

 iterator transform (iterator start1,

 iterator end1,

 iterator operand2,

 iterator start2,

 BinaryOperator bop)

 Uses items within the range start1 to end1 as the left-hand
operand for bop and the entries beginning at operand2 as the
right-hand operand. Places the result in elements beginning
at start2 . Returns an iterator to the last element in the result
container.

 void fill(iterator start1,

 iterator end1,

 value_type& val)

 Sets all entries within the range from start1 to end1 to the
value val .

 The STL algorithm library also provides a number of operations that perform sorting or heap
operations on a range of elements in a container. It also includes operations, such as partition and
nth_element that can be used to implement user-developed sorting algorithms.

 STL SORTING AND HEAP ALGORITHMS

 OPERATION DESCRIPTION

 void sort(iterator start,

 iterator end)

 Sorts entries within the range start to end into ascending
order.

(continues)

684 C++ INTERLUDE 7 The Standard Template Library

 void stable_sort(iterator start,

 iterator end)

 Sorts entries within the range start to end into ascending
order but has stability in ordering—that is, the relative
order of equal values is maintained.

iterator partition (iterator start,

 iterator end,

 PredFunction fun)

 Rearranges all entries within the range from start to end so
that those that make the predicate function fun true are
before those for which the function is false.

 iterator partition_stable (iterator start,

 iterator end,

 PredFunction fun)

 Behaves the same as partition , but has stability in
ordering—that is, the relative order of equal values is
maintained.

 void nth_element (iterator start,

 iterator nth,

 iterator end)

 Rearranges the entries within the range start to end so that
the entry in position nth is in the correct sorted
position—that is, it is in the nth position in the sorted
sequence.

 void make_heap (iterator start,

 iterator end)

 Rearrange the entries in the range start to end to form a heap.

 void push_heap (iterator start,

 iterator end)

 Assumes that the entries within the range start to end - 1
form a heap and places the entry at position end into the
correct location in the heap, extending the heap to
position end .

 void pop_heap (iterator start,

 iterator end)

 Moves the value at position start to position end - 1 and
rebuilds the heap in the range start to end - 2 inclusive.

 void sort_heap (iterator start,

 iterator end)

 Assumes that the entries within the range start to end - 1
form a heap and turns the heap back into a sorted
container.

 Appendix

Review of C++
Fundamentals A

 Contents
 A.1 Language Basics 686

 A.1.1 Comments 686
 A.1.2 Identifi ers and Keywords 687
 A.1.3 Fundamental Data Types 687
 A.1.4 Variables 688
 A.1.5 Literal Constants 688
 A.1.6 Named Constants 689
 A.1.7 Enumerations 690
 A.1.8 The typedef Statement 690
 A.1.9 Assignments and Expressions 691

 A.2 Input and Output Using iostream 693
 A.2.1 Input 693
 A.2.2 Output 694
 A.2.3 Manipulators 695

 A.3 Functions 696
 A.3.1 Standard Functions 699

 A.4 Selection Statements 699
 A.4.1 The if Statement 699
 A.4.2 The switch Statement 701

 A.5 Iteration Statements 702
 A.5.1 The while Statement 702
 A.5.2 The for Statement 702
 A.5.3 The do Statement 703

 A.6 Arrays and Vectors 704
 A.6.1 One-Dimensional Arrays 704
 A.6.2 Multidimensional Arrays 706
 A.6.3 Vectors 707

 A.7 Strings 709

686 APPENDIX A Review of C++ Fundamentals

 A.8 Classes 711
 A.8.1 The Header File 711
 A.8.2 The Implementation File 713
 A.8.3 Using the Class Sphere 715
 A.8.4 Inheritance 716

 A.9 Libraries 717

 Prerequisite
 Knowledge of a modern programming language

 This book assumes that you already know how to write programs in a modern programming
language. If that language is C++, you can probably skip this appendix, returning to it for reference as
necessary. If instead you know a language such as Java or C, this appendix will introduce you to C++.
Also, Appendixes K and L compare C++ to Java and Python, respectively.

 It isn’t possible to cover all of C++ in these pages. Instead this appendix focuses on the parts of
the language used in this book. First we look at the basics of data types, variables, expressions, opera-
tors, and simple input/output. We continue with functions, decision constructs, looping constructs,
arrays, and strings. Various C++ Interludes, which appear throughout the book as needed, will cover
classes, pointers, exceptions, and fi les.

 A.1 Language Basics
 Let’s begin with the elements of the language that allow you to perform simple computations. For
example, the C++ program in Figure A-1 computes the volume of a sphere. Running this program
produces the following output, where the user’s response appears in blue:

 Enter the radius of the sphere: 19.1
The volume of a sphere of radius 19.1 is 29186.927734

 A typical C++ program consists of several modules, some of which you write and some of which
you use from standard libraries. C++ provides a source-inclusion facility , which allows the system
to include the contents of a fi le automatically at a specifi ed point in a program before the program is
compiled. For example, our sample program uses a standard library to perform input and output
operations. The fi rst line of this program is an include directive that names a standard header
iostream , which enables the program to use the input/output module. The second line informs the
compiler to use the standard namespace (see Section C1.2 in C++ Interlude 1).

 A C++ program is a collection of functions, one of which must be called main . Program
execution always begins with the function main . The following paragraphs provide an overview of
the basics of C++ and refer to the simple program in Figure A-1 by line number. Note that the only
function this simple program contains is main .

 A.1.1 Comments

 Each comment line in C++ begins with two slashes // and continues until the end of the line.
You can also begin a multiple-line comment with the characters /* and end it with */ . However, a

Each C++ program
must contain a
function main

Each comment line
begins with two
slashes

 Language Basics 687

comment that begins with /* and ends with */ cannot contain another comment that begins with /*
and ends with */ .

 Appendix I talks about documentation comments that begin with /** and end with */ . We use
this style of comment in this book at the beginning of classes, methods, and functions.

 A.1.2 Identifi ers and Keywords

 A C++ identifi er is a sequence of letters, digits, and underscores that must begin with either a letter or
an underscore. C++ distinguishes between uppercase and lowercase letters, so be careful when typing
identifi ers.

 You use identifi ers to name various parts of the program. Certain identifi ers, however, are
reserved by C++ as keywords , and you should not use them for other purposes. A list of all C++
reserved keywords appears inside the cover of this book. The keywords that occur within C++ state-
ments in this book appear in color.

 A.1.3 Fundamental Data Types

 The fundamental data types in C++ are organized into four categories: boolean, character, integer,
and fl oating point. With the exception of boolean, each category contains several data types. For most
applications, you can use

bool for boolean values
char for character values
int for integer values
double for fl oating-point values

FIGURE A-1 A simple C++ program

1. Enables input and output ------------>

 2. Opens the standard namespace ---->

 3. Begins the function main ------------>

4. A comment ----------------------------->

5. Begins body of function -------------->

6. Defines a constant -------------------->

7. Declares a variable -------------------->

8. Displays a prompt to the user ------->

9. Reads radius ------------------------->

10. Declares and computes volume --->

 11. Displays results ------------------------->

 12. Statement continues ------------------>

 13. Statement continues ----------------->

 14. Normal program termination ------->

 15. Ends body of function ---------------->

#include <iostream>

using namespace std;

int main()

// Computes the volume of a sphere of a given radius.

{

const double PI = 3.14159;

double radius;

 cout << "Enter the radius of the sphere: ";

 cin >> radius;

double volume = 4 * PI * radius * radius * radius / 3;

 cout << "The volume of a sphere of radius "

 << radius << " inches is " << volume

 << " cubic inches.\n";

return 0;

} // end program

C++ is case-
sensitive

688 APPENDIX A Review of C++ Fundamentals

 A boolean value can be either true or false. Characters are represented by their ASCII integer
values, which are listed in Appendix J. Integer values are either signed, such as –5 and +98, or
unsigned, such as 5 and 98. The fl oating-point types are used for real numbers that have both an inte-
ger portion and a fractional portion. Boolean, character, and integer types are called integral types .
Integral and fl oating-point types are called arithmetic types .

 Most of the data types are available in several forms and sizes. Although you will probably not
need more than the four types given previously, Figure A-2 lists the available fundamental data types
for your reference.

 The size of a data type affects the range of its values. For example, a long integer can have a
larger magnitude than a short integer. The sizes of—and therefore the specifi c ranges for—a data
type depend on the particular computer and version of C++ that you use. C++, however, provides a
way to determine these ranges, as you will see later in Section A.1.6.

 A.1.4 Variables

 A variable, whose name is a C++ identifi er, represents a memory location that contains a value of a
particular data type. You declare a variable’s data type by preceding the variable name with the data
type, as in

 double radius; // Radius of a sphere

 Note that you can write a comment on the same line to describe the purpose of the variable.
 This declaration is also a defi nition in that it assigns memory for the variable radius . The memory,

however, has no particular initial value and so is said to be uninitialized. The program in Figure A-1
declares radius without an initial value and later reads its value by using cin >> radius .

 When possible, you should avoid uninitialized variables. That is, you should initialize a variable
when you fi rst declare its data type or, alternatively, declare a variable’s data type when you fi rst assign
it a value. For example, volume appears for the fi rst time in line 10 of Figure A-1 in the statement

 double volume = 4 * PI * radius * radius * radius / 3;

 Because we did not declare volume ’s data type earlier in the program—thus avoiding an uninitialized
value—we declare its data type and assign it a value in the same statement.

 A.1.5 Literal Constants

 You use literal constants to indicate particular values within a program. The 4 and 3 in line 10 of
Figure A-1 are examples of literal constants that are used within a computation. You can also use a
literal constant to initialize the value of a variable. For example, you use true and false as the values
of a boolean variable, as mentioned previously.

FIGURE A-2 Fundamental data types

Boolean

Character

Signed integer

Unsigned integer

Floating point

signed char

int

unsigned

double

unsigned char

long

unsigned long

long double

bool

char

short

unsigned short

float

Available Data Types by Category Category

When possible,
avoid uninitialized
variables

 Language Basics 689

 You write decimal integer constants without commas, decimal points, or leading zeros. The
default data type of such a constant is either int , if small enough, or long .

 You write fl oating-point constants, which have a default type of double , with a decimal point.
You can specify an optional power-of-10 multiplier by writing e or E followed by the power of 10. For
example, 1.2e–3 means 1.2 × 10 −3 .

 Character constants are enclosed in single quotes—for example, 'A' and '2' —and have a
default type of char . You write a literal character string as a sequence of characters enclosed in double
quotes.

 Several characters have names that use a backslash notation, as given in Figure A-3. This nota-
tion is useful when you want to embed one of these characters within a literal character string. For
example, the program in Figure A-1 uses the new-line character \n in the string "cubic inches.\n"
to end the line of output with a carriage return. You will learn about this use of \n in the discussion of
output later in this appendix. You also use the backslash notation to specify either a single quote as a
character constant ('\'') or a double quote within a character string.

Do not begin a
decimal integer
constant with zero

FIGURE A-3 Some special character constants

Constant

\n

\t

\'

\"

\0

Name

New line

Tab

Single quote

Double quote

Zero

 Programming Tip: Do not begin a decimal integer constant with zero. A constant
that begins with zero is either an octal constant or a hexadecimal constant. 1

 1 Octal and hexadecimal constants are also available, but they are not used in this book. An octal constant begins with 0 , a hex
constant with 0x or 0X .

 A.1.6 Named Constants

 Unlike variables, whose values can change during program execution, named constants have values
that do not change. The declaration of a named constant is like that of an initialized variable, but the
keyword const precedes the data type. For example, the statement

 const double PI = 3.14159;

 declares PI as a named fl oating constant, as is the case in the sample program in Figure A-1. Once a
named constant such as PI is declared, you can use it, but you cannot assign it another value. By using
named constants, you make your program both easier to read and easier to modify.

 The standard header fi le climits contains named constants such as INT_MIN and LONG_MAX that
specify installation-dependent maximum and minimum values for the integral data types. Likewise,
the standard header fi le cfloat contains named constants that specify installation-dependent maxi-
mum and minimum values for the fl oating data types. You use the include directive to gain access to
these header fi les.

The value of a
named constant
does not change

Named constants
make a program
easier to read and
modify

690 APPENDIX A Review of C++ Fundamentals

 A.1.7 Enumerations

Enumeration provides another way to name integer constants. For example, the statement

 enum {SUN, MON, TUE, WED, THU, FRI, SAT};

 is equivalent to the statements

 const int SUN = 0;
 const int MON = 1;
. . .
 const int SAT = 6;

 By default, the values assigned to the constants—called enumerators —begin with zero and are con-
secutive. You can, however, assign explicit values to any or all of the enumerators, as in

 enum {PLUS = '+', MINUS = '–'};

 By naming an enumeration, you create a distinct integral type. For example,

 enum Season {WINTER, SPRING, SUMMER, FALL};

 creates a type Season . The variable whichSeason , declared as

 Season whichSeason;

 can have values WINTER , SPRING , SUMMER , or FALL . This use of named enumerations instead of int can
make your program easier to understand.

 A.1.8 The typedef Statement

 You use the typedef statement to give another name to an existing data type. In this way, you can
make your program easier to modify and to read. For example, the statement

 typedef double Real;

 declares Real as a synonym for double and allows you to use Real and double interchangeably.
 Suppose that you revise the program in Figure A-1 by using Real as follows:

 int main()
 {
 typedef double Real;

const Real PI = 3.14159;
Real radius;

cout << "Enter the radius of the sphere: ";
cin >> radius;
Real volume = 4 * PI * radius * radius * radius / 3;
. . .

 At fi rst glance, this program does not seem to be more advantageous than the original version, but
suppose that you decide to increase the precision of your computation by declaring PI , radius , and
volume as long double instead of double . In the original version of the program (Figure A-1), you
would have to locate and change each occurrence of double to long double . In the revised program,
you simply change the typedef statement to

 typedef long double Real;

 Realize that typedef does not create a new data type, but simply declares a new name for a data
type. A new data type requires more than a name; it requires a set of operations. C++, however, does
provide a way to create your own data types, as described in C++ Interlude 1.

 Enumeration
provides another
way to name
constants

You can create an
integral data type
by naming an
enumeration

The typedef
statement gives
another name to an
existing data type,
making your
program easier to
change

The typedef
statement does not
create a new data
type

 Language Basics 691

 A.1.9 Assignments and Expressions

 You form an expression by combining variables, constants, operators, and parentheses. The assign-
ment statement

 volume = 4 * PI * radius * radius * radius / 3;

 assigns to the previously declared variable volume the value of the arithmetic expression on the right-
hand side of the assignment operator =, assuming that PI and radius have values. The assignment
statement

 double volume = 4 * PI * radius * radius * radius / 3;

 which appears in line 10 of Figure A-1, also declares volume ’s data type, since it was not declared
previously.

 The various kinds of expressions that you can use in an assignment statement are discussed next.

 Arithmetic expressions. You can combine variables and constants with arithmetic operators and
parentheses to form arithmetic expressions. The arithmetic operators are

+ Binary add or unary plus
- Binary subtract or unary minus
* Multiply
/ Divide
% Remainder after division

 The operators * , / , and % have the same precedence ,2 which is higher than that of + and - ; unary
operators3 have a higher precedence than binary operators. The following examples demonstrate
operator precedence:

a – b / c means a − (b/c) (precedence of / over −)
−5 / a means (− 5)/ a (precedence of unary operator −)
a / −5 means a /(− 5) (precedence of unary operator −)

 Arithmetic operators and most other operators are left-associative. That is, operators of the same
precedence execute from left to right within an expression. Thus,

 a / b * c

 means

 (a / b) * c

 The assignment operator and all unary operators are right-associative, as you will see later. You can
use parentheses to override operator precedence and associativity.

 Relational and logical expressions. You can combine variables and constants with parentheses; with
the relational, or comparison, operators < , <= , >= , and > ; and with the equality operators == (equal to)
and != (not equal to) to form a relational expression. Such an expression is true or false according to
the validity of the specifi ed relation. For example, the expression 5 == 4 has a value of false because 5
is not equal to 4. Note that equality operators have a lower precedence than relational operators.

 You can combine variables and constants of the arithmetic types, relational expressions, and the
logical operators && (and) and || (or) to form logical expressions, which are either true or false. C++
evaluates logical expressions from left to right and stops as soon as the value of the entire expression

 2 A list of all C++ operators and their precedences appears inside the cover of this book.
 3 A unary operator requires only one operand; for example, the - in -5. A binary operator requires two operands; for example,
the + in 2 + 3.

Operators have a
set precedence

Operators are either
left- or right-
associative

Logical expressions
are evaluated from
left to right

692 APPENDIX A Review of C++ Fundamentals

is apparent; that is, C++ uses short-circuit evaluation . For example, C++ determines the value of
each of the following expressions without evaluating (a < b) :

 (5 == 4) && (a < b) // False since (5 == 4) is false
(5 == 5) || (a < b) // True since (5 == 5) is true

Sometimes the
value of a logical
expression is
apparent before it is
completely
examined

 Programming Tip: Remember that = is the assignment operator; == is the equality
operator.

 Conditional expressions. The expression

 expression 1 ? expression 2 : expression 3

 has the value of either expression2 or expression3 according to whether expression1 is true or false,
respectively. For example, the statement

 larger = ((a > b) ? a : b);

 assigns the larger of a and b to larger , because the expression a > b is true if a is larger than b and
false if not.

 Implicit type conversions. Automatic conversions from one data type to another can occur during
assignment and during expression evaluation. For assignments, the data type of the expression on the
right-hand side of the assignment operator is converted to the data type of the item on the left-hand
side just before the assignment occurs. Floating-point values are truncated—not rounded—when
they are converted to integral values.

 During the evaluation of an expression, any values of type char or short are converted to int .
Similarly, any enumerator value is converted to int if int can represent all the values of that particu-
lar enum ; otherwise, it is converted to unsigned . These conversions are called integral promotions .
After these conversions, if the operands of an operator differ in data type, the data type that is lower in
the following hierarchy is converted to one that is higher (int is lowest):

int→ unsigned→ long→ unsigned long→ float→ double→ long double

 For example, if a is long and b is float , a + b is float . Only a copy of a ’s long value is converted to
float prior to the addition, so that the value stored at a is unchanged.

 Explicit type conversions. You can explicitly convert from one data type to another using a static
cast, with the following notation:

static_cast < type >(expression)

 which converts expression to the data type type . For example, static_cast<int>(14.9) converts the
double value 14.9 to the int value 14. Thus, the sequence

 double volume = 14.9;
cout << static_cast< int >(volume);

 displays 14 but does not change the value of volume .

 Other assignment operators. In addition to the assignment operator = , C++ provides several two-
character assignment operators that perform another operation before assignment. For example,

a += b means a = a + b

 Other operators, such as −= , *= , /= , and %= , have analogous meanings.

Conversions from
one data type to
another occur
during both
assignment and
expression
evaluation

Use a static cast to
convert explicitly
from one data type
to another

 Input and Output Using iostream 693

 Two more operators, ++ and –– , provide convenient incrementing and decrementing operations:

a++ means a += 1 , which means a = a + 1

 Similarly,

a–– means a −= 1 , which means a = a - 1

 The operators ++ and −− can either follow their operands, as you just saw, or precede them. Although
++a , for instance, has the same effect as a++ , the results differ when the operations are combined with
assignment. For example,

b = ++a means a = a + 1; b = a

 Here, the ++ operator acts on a before assigning a ’s new value to b . In contrast,

b = a++ means b = a; a = a + 1

 The assignment operator assigns a ’s old value to b before the ++ operator acts on a . That is, the ++
operator acts on a after the assignment. The operators ++ and –– are often used within loops and with
array indices, as you will see later in this appendix. When we use these operators with arithmetic
variables, we write the operator after the variable.

 In addition to the operators described here, C++ provides several other operators. A summary of
all C++ operators and their precedences appears inside the cover of this book.

 A.2 Input and Output Using iostream
 A typical C++ program reads its input from a keyboard and writes its output to a display. Such input
and output consist of streams, which are simply sequences of characters that either come from or go
to an input or output (I/O) device.

 The data type of an input stream is istream , and the data type of an output stream is ostream .
The iostream library provides these data types and three default stream variables: cin for the
standard input stream, cout for the standard output stream, and cerr for the standard error stream,
which also is an output stream. Your program gains access to the iostream library by including
the iostream header fi le. This section provides a brief introduction to simple input and output.

 A.2.1 Input

 C++ provides the input operator >> to read integers, fl oating-point numbers, and characters into
variables whose data types are any of the fundamental data types. The input operator has the input
stream as its left operand and the variable that will contain the value read as its right operand.
Thus,

 cin >> x;

 reads a value for x from the standard input stream. The >> operator is left-associative. Thus,

 cin >> x >> y

 means

 (cin >> x) >> y

 That is, both of these expressions read characters for x from the input stream and then read subsequent
characters for y .

The operators ++
and −− are useful for
incrementing and
decrementing a
variable

The input operator
>> reads from an
input stream

694 APPENDIX A Review of C++ Fundamentals

 The input operator >> skips whitespace, such as blanks, tabs, and new-line characters, that might
occur between values in the input data line. For example, after the program segment

 int ia = 0;
 int ib = 0;
 double da = 0;
 double db = 0;
cin >> ia >> da >> ib;
cin >> db;

 reads the data line

 21 -3.45 -6 475.1e-2 <eol>

 the variable ia contains 21, da contains –3.45, ib contains –6, and db contains 4.751. A subsequent
attempt to read from cin will look beyond the end of the line (<eol>) and read from the next data line,
if one exists. An error occurs if no data exists for a corresponding variable processed by >> or if the
variable’s data type does not match the type of the data available. For example, after the previous pro-
gram segment reads the data line

 -1.23 456.1e-2 -7 8 <eol>

 the variable ia contains –1, da contains 0.23, ib contains 456, and db contains 0.001. The rest of the
data line is left for a subsequent read, if any. As another example, if the segment attempts to read a
data line that begins with .21 , the read would terminate because ia is int and .21 is not.

 An expression such as cin >> x has a value after the read operation takes place. If the operation
is successful, this value is true; otherwise the value is false. You can examine this value by using the
selection and iteration statements that are described later in this appendix.

 You can also use the >> operator to read individual characters from the input stream into character
variables. Again, any whitespace is skipped. For example, after the program segment

 char ch1 = '';
 char ch2 = '';
 char ch3 = '';
cin >> ch1 >> ch2 >> ch3;

 reads the data line

 xy z

ch1 contains 'x' , ch2 contains 'y' , and ch3 contains 'z' .
 You can read whitespace when reading individual characters into character variables by using the

C++ method get . Either of the statements

 cin.get(ch1);

 or

 ch1 = cin.get();

 reads the next character, even if it is a blank, a tab, or a new-line character, from the input stream into
the char variable ch1 .

 Section A.7, later in this appendix, describes how to read character strings.

 A.2.2 Output

 C++ provides the output operator << to write character strings and the contents of variables whose
data types are any of the fundamental ones. For example, the program segment

The input operator
>> skips whitespace

Use get to read
whitespace

The output operator
<< writes to an
output stream

 Input and Output Using iostream 695

 int count = 5;
 double average = 20.3;
cout << "The average of the " << count

<< " distances read is " << average
<< " miles.\n";

 produces the following output:

 The average of the 5 distances read is 20.3 miles.

 Like the input operator, the output operator is left-associative. Thus, the previous statements append
the string "The average of the" to the output stream, then append the characters that represent the
value of count , and so on.

 Note the use of the new-line character \n , which you can conveniently embed within a character
string. Observe also that the output operator does not automatically introduce whitespace between values
that are written; you must do so explicitly. The following statements provide another example of this:

 int x = 2;
 int y = 3;
 char ch = 'A';
cout << x << y << ch << "\n"; // Displays 23A

 Although you can use the output operator to display individual characters, you can also use the
put method for this task. Further, you can specify a character either as a char variable or in ASCII.
Thus, the statements

 char ch = 'a';
cout.put(ch); // Displays a
cout.put('b'); // Displays b
cout.put(99); // Displays c, which is 99 in ASCII
 cout.put(ch+3); // Displays d
 cout.put('\n'); // Carriage return

 display abcd followed by a carriage return.
 Section A.7, later in this appendix, provides further information about writing character strings.

 A.2.3 Manipulators

 C++ enables you to gain more control over the format of your output and the treatment of whitespace
during input than the previous discussion has indicated. Most of these techniques apply to the format
of output.

 Suppose, for example, that you have computed your grade point average and you want to
display it with one digit to the right of the decimal point. If the fl oating variable gpa contains 4.0, the
statement

 cout << "My GPA is " << gpa << "\n";

 writes 4 without a decimal point. A number of manipulators affect the appearance of your output.
You can use these with cout :

 cout << manipulator ;

 where manipulator has any of the values listed in Figure A-4. A manipulator is a predefi ned value or
function that you use with the input and output operator. For example,

 cout << showpoint;

 uses the showpoint manipulator and causes all fl oating-point output to appear with a decimal point.

You need to
explicitly introduce
new-line characters
and whitespace
where desired in a
program’s output

Use manipulators to
specify the
appearance of a
program’s output

Manipulators also
affect the
appearance of a
program’s output

696 APPENDIX A Review of C++ Fundamentals

 Even if you use the showpoint manipulator, gpa will likely appear as 4.00000 instead of 4.0. You
can specify the number of digits that appear to the right of the decimal point by using the manipulator
function setprecision , and you can insert a new-line character and fl ush the output stream by using
the manipulator endl. Thus,

 cout << showpoint;
cout << setprecision(1) << gpa << endl;

 displays 4.0 followed by a carriage return.
 The effect of setprecision on the output stream remains until another setprecision is encoun-

tered. Except for setprecision , however, a manipulator affects the appearance of only the next char-
acters on which << (or >>) operates. For example,

 cout << right; // Right-align output
cout << "abc" << setw(6) << "def" << "ghi";

 displays

 abc defghi

 Although manipulator values, such as endl , are available when you include iostream in your program,
you must also include iomanip to use any of the manipulator functions.

 A.3 Functions
 As was mentioned earlier in this appendix, a C++ program is a collection of functions. Usually, each
function should perform one well-defi ned task. For example, the following function returns the larger
of two integers:

 int computeMax(int x, int y)
 {

if (x > y)
return x;

else
return y;

} // end computeMax

FIGURE A-4 Stream manipulators

Manipulator

endl

fixed

left

right

scientific

setfill(f)

setprecision(n)

setw(n)

showpoint

showpos

ws

Meaning

Insert new line and flush stream

Use fixed decimal point in floating-point output

Left-align output

Right-align output

Use exponential (e) notation in floating-point output

Set fill character to f

Set floating-point precision to integer n

Set field width to integer n

Show decimal point in floating-point output

Show + with positive integers

Extract whitespace characters

A C++ program is a
collection of
functions

A function defi nition
implements a
function’s task

 Functions 697

 A function defi nition, like the one just given, has the following form:

type name(parameter-declaration-list)
{

body
}

 The portion of the defi nition before the left brace specifi es a return type, the function name, and a list
of parameters . The part of the defi nition that appears between the braces is the function’s body.

 The return type of a valued function —one that returns a value—is the data type of the value that
the function will return. The body of a valued function must contain a statement of the form

 return expression ;

 where expression has the value to be returned.
 Each parameter represents either an input to or an output from the function. You declare a param-

eter by writing a data type and a parameter name, separating it from other parameter declarations with
a comma, as in

 int x, int y

 When you call, or invoke, the function computeMax , you pass it arguments that correspond to the
parameters with respect to number, order, and data type. For example, the following statements con-
tain two calls to max :

 int a = 0;
 int b = 0;
 int c = 0;
cin >> a >> b >> c;

 int largerAB = computeMax(a, b);
cout << "The largest of " << a << ", " << b << ", "

 << " and " << c << " is " << computeMax(largerAB, c) << ".\n";

 As written, the defi nition of computeMax indicates that its arguments are passed by value. That is,
the function makes local copies of the values of the arguments— a and b , for example—and uses
these copies wherever x and y appear in the function defi nition. Thus, the function cannot alter the
arguments that you pass to it. This restriction is desirable in this example because x and y are input
parameters, which computeMax does not change.

 Alternatively, arguments can be passed by reference. The function does not copy such argu-
ments; rather, it references the argument locations whenever the parameters appear in the function’s
defi nition. This allows a function to change the values of the arguments, thus implementing output
parameters.

 For example, consider the following variation of the function computeMax :

 void computeMax(int x, int y, int& larger)
 {
 larger = ((x > y) ? x : y);
} // end computeMax

computeMax is a void function instead of a valued function. That is, its return type is void , and it does
not return a value by using a return statement. 4 Instead, computeMax returns the larger of x and y in

A valued function
must use return to
return a value

When you call a
function, you pass it
arguments that
correspond to the
parameters in
number, order, and
data type

An argument
passed by value is
copied within the
function

An argument
passed by reference
is not copied but is
accessed directly
within the function

A void function does
not use return to
return a value

 4 Whereas valued functions must contain a statement of the form return expression, void functions cannot contain such a
statement. A void function can, however, contain return without an expression. Such a statement causes the function to return
to the statement that follows its call. This book does not use return with void functions.

698 APPENDIX A Review of C++ Fundamentals

the output parameter larger . The & that follows larger ’s data type int indicates that larger is a
reference parameter . Thus, computeMax will access and alter the argument that corresponds to
larger , whereas the function will make and use copies of the values of the arguments that correspond
to the value parameters x and y .

 The following statements demonstrate how to invoke computeMax :

 int a = 0;
 int b = 0;
 int largerAB = 0;
cin >> a >> b;
computeMax(a, b, largerAB);
cout << "The larger of " << a << " and " << b

<< " is " << largerAB << ".\n";

 If a function’s input argument is a large object, like the objects you will encounter in this book,
you might not want the function to copy it. Thus, you would not pass the argument by value. Because
it is an input argument, however, you do not want the function to be able to alter it. A constant refer-
ence parameter is a reference parameter that is tagged as const . The function uses the actual argu-
ment that is passed to such a parameter, not a copy of it, yet cannot modify it.

 For example, for the function f that begins

 void f(const int& x, int y, int& z)

x is a constant reference parameter, y is a value parameter, and z is a reference parameter. Here x
and y are suitable as input parameters because f cannot change them, while z is an output parame-
ter. Note that z can also be an input parameter. That is, the argument corresponding to z can both
provide a value to the function and return a value from the function. Such arguments must be
passed by reference.

An output argument
should be a
reference argument

An input argument
should be either a
value argument or a
constant reference
argument

An argument that is
both an input to and
an output from a
function is passed
by reference

 Note: Use reference parameters with caution, as you might inadvertently change an
argument. On the other hand, constant reference parameters are safe to use.

 If you write another function f that calls computeMax , you must either place the defi nition of
f after the defi nition of computeMax or precede f ’s defi nition with a function declaration for
computeMax . For example, you can use either of the following statements to declare the function
computeMax :

 void computeMax(int x, int y, int& max);

 or

 void computeMax(int, int, int &);

 A function declaration provides the data types of the function’s parameters and its return type. Param-
eter names are optional in a function declaration, although they are helpful stylistically. However,
parameter names are required in the function’s defi nition. Although a function declaration ends with a
semicolon, a semicolon does not appear in a function defi nition.

 A typical C++ program contains a function declaration for every function used in the program.
These declarations appear fi rst in the program, usually with comments that describe each function’s
purpose, parameters, and assumptions. The program in Listing A-1 demonstrates the placement of a
function declaration, function defi nition, and main function:

A function
declaration ends
with a semicolon

Declarations for
each function
usually appear at
the beginning of a
program

 Selection Statements 699

 A.3.1 Standard Functions

 C++ provides many standard functions, such as the square root function sqrt and the input function
get . Appendix H provides a summary of the standard functions and indicates which header fi le you
need to include in your program to gain access to them. For example, the standard functions listed in
Figure A-5 facilitate character processing and require the header fi le cctype . Thus, you need to
include the statement

 #include <cctype>

 in your program when you want to use functions such as isupper and toupper . For the character
variable ch , isupper(ch) is true if ch is an uppercase letter, and toupper(ch) returns the uppercase
version of the letter ch without actually changing ch .

 A.4 Selection Statements
 Selection statements allow you to choose among several courses of action according to the value of an
expression. In this category of statements, C++ provides the if statement and the switch statement.

 A.4.1 The if Statement

 You can write an if statement in one of two ways:

 if (expression)
statement1

Standard functions
provide many
common operations
and require a
specifi c header fi le

An if statement
has two basic forms

LISTING A-1 A program that contains a function declaration

 #include <iostream>
 using namespace std;

/** Returns the larger of two given integers.
 @param x An integer.
 @param y An integer.
 @return The larger of x and y. */
 int computeMax(int x, int y); // A function declaration

 int main()
 {

int a = 0;
int b = 0;
 cout << "Please enter two integers: ";
 cin >> a >> b;

int largerAB = computeMax(a, b);
 cout << "The larger of " << a << " and " << b

 << " is " << largerAB << ".\n";
} // end main

 int computeMax(int x, int y)
 {

return (x > y) ? x : y;
} // end computeMax

700 APPENDIX A Review of C++ Fundamentals

 or

 if (expression)
statement1

 else
statement2

 where statement1 and statement2 represent any C++ statement except a declaration. Such statements
can be compound; a compound statement , or block , is a sequence of statements enclosed in braces.
If the value of expression is true, statement1 is executed. Otherwise, the fi rst form of the if statement
does nothing, whereas the second form executes statement2 . Note that the parentheses around expres-
sion are required.

 For example, the following if statements each compare the values of two integer variables a and b :

 if (a > b)
 cout << a << " is larger than " << b << ".\n";
cout << "This statement is always executed.\n";

 if (a > b)
 {
 largerAB = a;
 cout << a << " is larger than " << b << ".\n";
 }
 else
 {
 largerAB = b;
 cout << b << " is larger than " << a << ".\n";
} // end if

cout << largerAB << " is the larger value.\n";

 You can nest if statements in several ways, since either statement1 or statement2 can itself be an
if statement. The following example, which determines the largest of three integer variables a , b , and
c , shows a common way to nest if statements:

FIGURE A-5 A selection of (a) standard classifi cation functions; and (b) standard conversion
functions

Function

isalnum(ch)

isalpha(ch)

isdigit(ch)

islower(ch)

isupper(ch)

Returns true if ch is

A letter or digit

A letter

A digit

A lowercase letter

An uppercase letter

(a)

Function

tolower(ch)

toupper(ch)

toascii(ch)

Returns

Lowercase version of ch

Uppercase version of ch

int ASCII code for ch

(b)

Parentheses around
the expression in an
if statement are
required

You can nest if
statements

 Selection Statements 701

 A.4.2 The switch Statement

 When you must choose among more than two courses of action, the if statement can become
unwieldy. If your choice is to be made according to the value of an integral expression, you can use a
switch statement.

 For example, the following statement determines the number of days in a month. The int varia-
ble month designates the month as an integer from 1 to 12, and the boolean variable leapYear is true
if the year is a leap year.

 switch (month)
 {

// 30 days hath Sept., Apr., June, and Nov.
case 9: case 4: case 6: case 11:

 daysInMonth = 30;
break;

// All the rest have 31
case 1: case 3: case 5: case 7:
case 8: case 10: case 12:

 daysInMonth = 31;
break;

// Except February
case 2: // Assume leapYear is true if a leap year, else is false

if (leapYear)
daysInMonth = 29;

else
daysInMonth = 28;

break;

default :
 cout << "Incorrect value for month.\n";

} // end switch

 Parentheses must enclose the integral switch expression— month , in this example. The case
labels have the form

 case expression :

 where expression is a constant integral expression. After the switch expression is evaluated, execution
continues at the case label whose expression has the same value as the switch expression. Subsequent
statements execute until either a break or a return is encountered or the switch statement ends.

 Unless you terminate a case with either a break or a return , execution of the switch statement
continues. Although this action can be useful, omitting the break statements in the previous example
would be incorrect.

 if ((a >= b) && (a >= c))
 largest = a;
 else if (b >= c) // a is not largest at this point
 largest = b;
 else
 largest = c;

 Note: An arithmetic expression whose value is not zero is treated as true; one having a
value of zero is false.

A switch
statement provides
a choice of several
actions according to
the value of an
integral expression

Without a break
statement,
execution of a case
will continue into the
next case

702 APPENDIX A Review of C++ Fundamentals

 If no case label matches the current value of the switch expression, the statements that follow
the default label, if one exists, are executed. If no default exists, the switch statement exits.

 A.5 Iteration Statements
 C++ has three statements—the while, for, and do statements—that provide for repetition by itera-
tion, that is, loops. Each statement controls the number of times that another C++ statement—the
body—is executed. The body cannot be a declaration and is often a compound statement.

 A.5.1 The while Statement

 The general form of the while statement is

 while (expression)
statement

 As long as the value of expression is true, statement is executed. Because expression is evaluated
before statement is executed, it is possible that statement will not execute at all. Note that the paren-
theses around expression are required.

 Suppose that you wanted to compute the sum of positive integers that you enter at the keyboard.
Since the integers are positive, you can use a negative value or zero to indicate the end of the list of
integers. The following while statement accomplishes this task:

 int nextValue = 0;
 int sum = 0;

cin >> nextValue;
 while (nextValue > 0)
 {
 sum += nextValue;
 cin >> nextValue;
} // end while

 If 0 was the fi rst value read, the body of the while statement would not execute.
 Recall that the expression cin >> nextValue has the value true if the input operation was

successful and false otherwise. Thus, you could revise the previous statements as

 int nextValue = 0;
 int sum = 0;
 while ((cin >> nextValue) && (nextValue > 0))
 sum += nextValue;

 A.5.2 The for Statement

 The for statement provides for counted loops and has the general form

 for (initialize; test; update)
statement

 where initialize, test , and update are expressions. Typically, initialize is an assignment expression that
initializes a counter to control the loop. This initialization occurs only once. Then if test , which is usu-
ally a logical expression, is true, statement executes. The expression update executes next, usually
incrementing or decrementing the counter. This sequence of events repeats, beginning with the evalu-
ation of test , until the value of test is false.

A while statement
executes as long as
the expression is
true

A for statement
lists the initialization,
testing, and
updating steps in
one location

 Iteration Statements 703

 For example, the following for statement displays the integers from 1 to n :

 for (int counter = 1; counter <= n; counter++)
 cout << counter << " ";
cout << endl; // This statement is always executed

 If n is less than 1, the for statement does not execute at all. Thus, the previous statements are
equivalent to the following while loop:

 int counter = 1;
 while (counter <= n)
 {
 cout << counter << " ";
 counter++;
} // end while
cout << endl; // This statement is always executed

 In general, the logic of a for statement is equivalent to

 initialize ;

 while (test)
 {

statement ;
update ;

 }

 Note that in a for statement the fi rst expression initialize must have either an arithmetic type or a
pointer type. 5 Note that char in the following example is considered an arithmetic type:

 for (char ch = 'z'; ch >= 'a'; ch––)
// ch ranges from 'z' to 'a'

 The initialize and update portions of a for statement each can contain several expressions sepa-
rated by commas, thus performing more than one action. For example, the following loop raises a
fl oating-point value to an integer power by using multiplication:

 // Floating-point power equals floating-point x raised to int n;
// assumes int expon
 for (power = 1.0, expon = 1; expon <= n; expon++)
 power *= x;

 Both power and expon are assigned values before the body of the loop executes for the fi rst time. The
comma here is an example of the comma operator , which evaluates its operand expressions from left
to right.

 When compared to a while statement, the for statement can make it easier to understand how
the loop is controlled because the initialization, testing, and updating steps of the loop are consoli-
dated into one statement. C++ programmers use for statements for loops that process collections or
sequences of data.

 A.5.3 The do Statement

 Use the do statement when you want to execute a loop’s body at least once. Its general form is

 do
statement

 while (expression);

 Here, statement executes until the value of expression is false.

A for statement is
equivalent to a
while statement

 5 C++ Interlude 2 introduces pointer types.

For counted loops, a
for statement is
usually favored over
the while
statement

A do statement
loops at least once

704 APPENDIX A Review of C++ Fundamentals

 For example, suppose that you execute a sequence of statements and then ask the user whether to
execute them again. The do statement is appropriate, because you execute the statements before you
decide whether to repeat them:

 char response;
 do
 {

// A sequence of statements
 . . .

 cout << "Do it again?";
 cin >> response;
} while ((response == 'Y') || (response == 'y'));

 A.6 Arrays and Vectors
 An array is a container of data items, or entries , that have the same data type. An array’s memory
locations, or elements , have an order: An array has a fi rst element, a second element, and so on, as
well as a last element. That is, an array has a fi nite, limited number of elements. Therefore, you must
know the maximum number of elements needed for a particular array when you write your program
and before you execute it. Because you can access the array elements directly and in any order, an
array is a direct access , or random access , data structure.

 A.6.1 One-Dimensional Arrays

 When you decide to use an array in your program, you must declare it and, in doing so, indicate the
data type of its entries as well as its size. The following statements declare a one-dimensional array,
maxTemps , which contains the daily maximum temperatures for a given week:

 const int DAYS_PER_WEEK = 7;
 double maxTemps[DAYS_PER_WEEK];

 The bracket notation [] declares maxTemps as an array. This array can contain at most seven fl oating-
point values.

 You can refer to any of the fl oating-point entries in maxTemps directly by using an expression,
which is called the index , or subscript , enclosed in square brackets. In C++, array indices must
have integer values in the range 0 to size – 1, where size is the number of elements in the array. The
indices for maxTemps range from 0 to DAYS_PER_WEEK – 1. For example, the fi fth element in this
array is maxTemps[4] . If k is an integer variable whose value is 4, maxTemps[k] is the fi fth element
in the array, and maxTemps[k+1] is the sixth element. Also, maxTemps[k++] accesses maxTemps[k]
before adding 1 to k . Note that you use one index to refer to an element in a one-dimensional
array.

 Figure A-6 illustrates the array maxTemps , which at present contains only fi ve temperatures. The
last value in the array is in maxTemp[4] ; the values of maxTemps[5] and maxTemps[6] are not initial-
ized and therefore are unknown.

 You can use enumerators as indices because they have integer values. For example, consider the
following defi nition:

 enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};

 Given this defi nition, maxTemps[THU] has the same meaning as maxTemps[4] . You can also use the
enumerators within a loop that processes an array, as in the following for statement:

 for (Day dayIndex = SUN; dayIndex <= SAT; dayIndex++)
 cout << maxTemps[dayIndex] << endl;

An array is a
container of data
that has the same
type

You can access
array elements
directly and in any
order

Use an index to
specify a particular
element in an array

An array index has
an integer value
greater than or
equal to 0

You can use an
enumerator as an
array index

 Arrays and Vectors 705

 Clearly, before you access an element of an array, you must assign it a value. You must assign
values to array elements one at a time by using the previously described index notation. Note that, if a
and b are arrays of the same type, the assignment a = b is illegal. 6

 The data type of maxTemps is a derived type , which is a type that you derive from the fundamen-
tal types by using a declaration operator such as [] . Naming a derived type by using a typedef is
often useful. Thus, you can write

 const int DAYS_PER_WEEK = 7;
 typedef double ArrayType[DAYS_PER_WEEK];
ArrayType maxTemps;

 and make ArrayType available for use throughout your program.

 Initialization. You can initialize the elements of an array when you declare it for the fi rst time. For
example,

 double maxTemps[DAYS_PER_WEEK] = {82.0, 71.5, 61.8, 75.0, 88.3};

 initializes the fi rst fi ve elements of maxTemps to the values listed and the last two elements to zero.

 Passing an array to a function. If you wanted a function that computed the average of the fi rst n
elements in a one-dimensional array, you could declare the function as

 double getAverageTemp(double temperatures[], int n);

 Because the compiler does not know the number of items that the array can hold, you must also pass
the function either the size of the array or the number of array items to process. Traditionally, the array
is listed as the fi rst parameter and the number of items as the second. You can invoke the function by
writing, for example,

 double avg = getAverageTemp(maxTemps, 5);

 where maxTemps is the previously defi ned array.
 An array is never passed to a function by value, regardless of how you write its parameter. An

array is always passed by reference . This restriction avoids the copying of perhaps many array entries.
Thus, the function getAverageTemp could modify the elements of maxTemps , even though the array is
an input to the function. To prevent such alteration, you can specify the array parameter as a constant
reference parameter by preceding its type with const , as follows:

 double getAverageTemp(const double temperatures[], int n);

FIGURE A-6 A one-dimensional array of at most seven elements

74.1 98.6 32.0 54.3 82.4 ? ?

0 1 2 3 4 5 6 Index

Unused at present

maxTemps

maxTemps[4]

 6 C++ enables you to defi ne your own array data type and array operators so that this assignment would be valid. To do so, you
need to use classes (C++ Interlude 1) and overloaded operators (C++ Interlude 5).

You can initialize an
array when you
declare it

Arrays are always
passed by reference
to a function

706 APPENDIX A Review of C++ Fundamentals

 A.6.2 Multidimensional Arrays

 You can use a one-dimensional array, which has one index, for a simple collection of data. For exam-
ple, you can organize 52 temperatures linearly, one after another. A one-dimensional array of these
temperatures can represent this organization.

 You can also declare multidimensional arrays. You use more than one index to designate an ele-
ment in a multidimensional array. Suppose that you wanted to represent the minimum temperature
for each day during 52 weeks. The following statements declare a two-dimensional array, minTemps :

 const int DAYS_PER_WEEK = 7;
 const int WEEKS_PER_YEAR = 52;
 double minTemps[DAYS_PER_WEEK][WEEKS_PER_YEAR];

 These statements specify the ranges for two indices: The fi rst index can range from 0 to 6, while the
second index can range from 0 to 51. Most people picture a two-dimensional array as a rectangular
arrangement, or matrix, of elements that form rows and columns, as Figure A-7 indicates. The fi rst
dimension given in the defi nition of ArrayType is the number of rows. Thus, minTemps has 7 rows
and 52 columns. Each column in this matrix represents the seven daily minimum temperatures for a
particular week.

 To reference an element in a two-dimensional array, you must indicate both the row and the col-
umn that contain the element. You make these indications of row and column by writing two indices,
each enclosed in brackets. For example, minTemps[1][51] is the element in the 2 nd row and the 52 nd

column. In the context of the temperature example, this element contains the minimum temperature
recorded for the 2 nd day (Monday) of the 52 nd week. The rules for the indices of a one-dimensional
array also apply to the indices of multidimensional arrays.

 As an example of how to use a two-dimensional array in a program, consider the following pro-
gram segment, which determines the smallest value in the previously described array minTemps . We
use enumerators to reference the days of the week.

An array can have
more than one
dimension

FIGURE A-7 A two-dimensional array

Columns

0

0

1

6

1 51

Rows

In a two-dimensional
array, the fi rst index
represents the row,
the second index
represents the
column

 Arrays and Vectors 707

 enum Day {SUN, MON, TUES, WED, THURS, FRI, SAT};

// Initially, assume the lowest temperature is first in the array
 double lowestTemp = minTemps[0][0];
Day dayOfWeek = SUN;
 int weekOfYear = 1;

// Search array for lowest temperature
 for (int weekIndex = 0; weekIndex < WEEKS_PER_YEAR; weekIndex++)
 {

for (Day dayIndex = SUN; dayIndex <= SAT; dayIndex++)
{

if (lowestTemp > minTemps[dayIndex][weekIndex])
{

 lowestTemp = minTemps[dayIndex][weekIndex];
 dayOfWeek = dayIndex;
 weekOfYear = weekIndex + 1;

} // end if
} // end for

} // end for

// At this point, lowestTemp is the smallest value in minTemps and
// occurs on the day and week given by dayOfWeek and weekOfYear,
// that is, lowestTemp == minTemps[dayOfWeek][weekOfYear - 1].

 Although you can declare arrays with more than two dimensions, generally more than three
dimensions is unusual. The techniques for working with such arrays, however, are analogous to those
for two-dimensional arrays.

 Programming Tip: When referencing an element of a multidimensional array, do
not use comma-separated indices. For example, myArray[3,6] does not reference the
array element myArray[3][6] . The expression 3,6 is a comma expression whose value is
that of the last item listed, namely 6. Thus, although myArray[3,6] is legal, its meaning is
myArray[6] , which references the element myArray[0][6] .

 Initialization. You can initialize the elements of a two-dimensional array just as you initialize a one-
dimensional array. You list the initial values row by row. For example, the statement

 int x[2][3] = { {1, 2, 3},
 {4, 5, 6} }; // 2 rows, 3 columns

 initializes the two-dimensional array x so that it appears as

 1 2 3
 4 5 6

 That is, the statements initialize the elements x[0][0] , x[0][1] , x[0][2] , x[1][0] , x[1][1] , and
x[1][2] in that order. In general, when you assign initial values to a multidimensional array, it is the
last, or rightmost, index that increases the fastest.

 A.6.3 Vectors

 Another container that can hold data items of the same type is the vector . A vector is similar to a
one-dimensional array, but vectors provide additional features for the programmer not found in a
simple array. A vector is an object of a standard C++ class named vector . This class is a part of the

708 APPENDIX A Review of C++ Fundamentals

Standard Template Library , or STL . The STL is a collection of data types you can use in your
programs. These data types are not part of the offi cial C++ language, but they have been added to
the built-in data types. Section A.9 discusses libraries such as the STL and their usefulness.

 To use a vector in your program, you must begin it with the following statements:

 #include <vector>
 using namespace std;

 You can declare a vector in one of three ways:

• If you know how many elements you want in the vector, you can place the type of data it will
hold in angle brackets and the number of elements in parentheses:

 vector< double> firstVector(10); // Vector to hold 10 doubles
vector<string> myVector(12); // Vector to hold 12 strings

 The size you specify when declaring the vector is only its initial size. As you will see, a vector
can grow in size when you add entries.

• You can place initial values into a vector when you declare it, by writing a second argument:

 vector< int> intVector(5, -1); // Vector to hold 5 integers, initialized to -1

 When the elements in the vector are allocated, they are given the value of the second argument.
• You can also create an empty vector—a vector with no elements—by omitting its size and the

parentheses:

 vector< char> letterVector; // An empty vector of characters

 You can store or access items in a vector by using the [] operator, just as you would when using
an array. As for an array, the subscripts that identify elements in a vector start at 0 and go to s – 1 ,
where s is the current size of the vector. The following statements are examples of accessing an exist-
ing value in a vector and changing the value of an existing entry:

 double x = firstVector[5]; // Places sixth entry in x
myVector[3] = "This is a sample string."; // Sets fourth entry's value

 Using [] stores a value in an existing element. If you are not sure how many elements the vector has,
you can call the method size , as in the following example:

 cout << intVector.size() << endl; // Displays the number of elements in intVector

 By calling the size method, you can determine whether the vector is full. This is an important advan-
tage that a vector has over an array.

 If the vector is either full or has no elements—that is, if it was created without elements, as
letterVector was previously—you can still add new values by using the method push_back . The
push_back method accepts an argument and adds it after the last element of the vector. In other
words, it pushes the value onto the back of the vector.

 Earlier, we declared a ten-element vector firstVector that could hold data of type double . If
that vector was full, and we needed to add the additional values 2.3 and 3.4, we could use the push_
back method:

 firstVector.push_back(2.3); // Grow vector and store value
 firstVector.push_back(3.4); // Grow vector and store value

 At this point, calling the size method would return 12, since two additional elements have been
added to the vector.

 You also can reduce the size of a vector by removing either its last element or all of its ele-
ments. To remove only the last element, you can use the pop_back method. This method shortens

Access vector
entries using [] just
as you would an
array

 size returns the
number of elements
in the vector

 push_back places
its argument into a
new element at the
back of a vector

 pop_back removes
the last element
from a vector

 Strings 709

the vector but does not give you the entry in the removed element. You must save that entry
before calling pop_back . For example, the following statements determine the current size of the
vector myVector , save the value in the last element, and then remove the last element from the
vector:

 int length = myVector.size(); // Find the current number of elements
string last = myVector[length - 1]; // Get the string in the last element
 // (subscripts start at 0)
myVector.pop_back(); // Reduce the number of elements

 A subsequent call to myVector.size() would return length - 1 , since the last element was
removed.

 To remove all elements from a vector and leave the vector empty, you use the method clear :

 myVector.clear(); // myVector is now an empty vector

 After a vector has been cleared, you must use the method push_back to add new entries.
 C++ Interlude 7 provides more information about vector , including these and other methods.

 A.7 Strings
 Earlier, you saw that C++ provides literal character strings such as

 "This is a string."

 You can declare and use variables that contain such strings, and then manipulate the strings as natu-
rally as you manipulate integers by using familiar operators. Our presentation includes only some of
the possible operations on strings.

 The C++ Standard Library provides the data type string . To use this library, you include the
statements

 #include <string>
 using namespace std;

 in your program.
 You can declare a string variable title and initialize it to the empty string by writing

 string title;

 You can initialize a string variable to a string literal when you declare it by writing

 string title = "Walls and Mirrors";

 You can subsequently assign another string to title by using an assignment statement such as

 title = "J Perfect's Diary";

 In each of the previous examples, title has a length of 17. You use either of the methods length
or size to determine the current length of a string. Thus, title.length() and title.size() are
each 17.

 You can reference the individual characters in a string by using the same index notation that you
use for an array. Thus, in the previous example, title[0] contains the character J and title[16]
contains the character y .

 You can compare strings by using the familiar comparison operators. Not only can you see
whether two strings are equal, but you can also discover which of two strings comes before the other.

 clear removes all
elements from a
vector so it has a
size of 0

710 APPENDIX A Review of C++ Fundamentals

The ordering of two strings is analogous to alphabetic ordering, but you use the ASCII table instead of
the alphabet. Thus, the following relationships are all true:

"dig" < "dog"

"Star" < "star" (because 'S' < 's')
"start" > "star"

"d" > "abc"

 You can concatenate two strings to form another string by using the + operator. That is, you place
one string after another to form another string. For example, if

 string str1 = "Com";

 the statements

 string str2 = str1 + "puter";
str1 += "puter";

 assign the string "Computer" to each of str2 and str1 . Similarly, you can append a single character
to a string, as in

 str1 += 's';

 You can manipulate a portion of a string by using the method

 substr(position, length)

 The fi rst argument specifi es the position of the beginning of the substring (remember that 0 is the
position of the fi rst character in the string). The second argument is the length of the substring. For
example,

 title.substr(2, 7)

 is the string “ Perfect ”.
 To perform input and output with C++ strings, you must include the library iostream by writing

the statement

 #include <iostream>

 in your program. For example, you then can display the contents of a string variable by executing

 title = "Walls and Mirrors";
cout << title << "\n";

 The result is Walls and Mirrors . The operator << writes the entire string, including the blanks
 You can read a string of characters into a string variable. For example, when the statement

 cin >> title;

 reads the data line

 Jamie Perfect’s Diary

 it assigns the string "Jamie" to title . Whitespace in the input line terminates the read operation for a
string. To read the entire line of input, including its blank characters, you write

 getline(cin, title) ;

Examples of true
expressions

Use substr to
access part of a
string

You can use >> to
read a string without
whitespace

You can use << to
display a string

 Classes 711

 A.8 Classes
Object-oriented programming , or OOP , views a program not as a sequence of actions but as a col-
lection of components called objects that interact to produce a certain result. A group of objects of
the same kind belong to a class , which is a programming construct that defi nes the object’s data type.
 Chapter 1 talks more about OOP; here we want to discuss how to write a class in C++.

 An object contains data and can perform certain operations on or with that data. The class associ-
ated with a particular object describes its data and its operations. That is, a class is like a blueprint for
creating certain objects. An object’s operations, or behaviors , are defi ned within the class by meth-
ods , which are simply functions within a class. These methods, together with the class’s data are
known as the class’s members .

 We could use a ball as an example of an object. Because thinking of a basketball, volleyball, ten-
nis ball, or soccer ball probably suggests images of the game rather than the object itself, let’s abstract
the notion of a ball by picturing a sphere. A sphere of a given radius has attributes such as volume and
surface area. A sphere as an object should be able to report its radius, volume, surface area, and so on.
That is, the sphere object has methods that return such values.

 In C++, a class has the following form:

 class Sphere
 {
 private:

 // Declarations of private data members and methods
 // Definitions of private methods
. . .

 public:
// Definitions of public methods
. . .

 };

 By default, all members in a class are private —they are not directly accessible by any program that
uses the class—unless you designate them as public . However, explicitly indicating the private and
public portions of a class is a good programming practice and one that we will follow in this book.
You should always declare a class’s data members as private.

 Most methods are public, but private methods—which only the class can call—can be helpful, as
you will see. The defi nition of a class’s method can call any of the class’s other methods or use any of
its data members, regardless of whether they are private or public.

 Classes have special methods, called constructors and destructors, for the creation and destruc-
tion of its objects. A constructor creates and initializes new objects, or instances , of a class. A
destructor destroys an instance of a class, when the object’s lifetime ends. A typical class has several
constructors, but only one destructor. For many classes, you can omit the destructor. In such cases,
the compiler will generate a destructor for you. For now, the compiler-generated destructor is suffi -
cient. C++ Interlude 2 discusses how and why you would write your own destructor.

 In C++, a constructor has the same name as the class. Constructors have no return type—not
even void —and cannot use return to return a value. Constructors can have arguments. We discuss
constructors in more detail shortly, after we look at an example of a class defi nition.

 A.8.1 The Header File

 You should place each class defi nition in its own header fi le or specifi cation fi le —whose name by
convention ends in .h . The header fi le Sphere.h shown in Listing A-2 contains a class defi nition for
sphere objects.

A C++ class defi nes
a new data type

An object is an
instance of a class

A constructor
creates and
initializes an object

A destructor
destroys an object

712 APPENDIX A Review of C++ Fundamentals

Comments in the
header fi le specify
the methods

 LISTING A-2 The header fi le Sphere.h

 /** @file Sphere.h */
 const double PI = 3.14159;

/** Definition of a class of Spheres. */
 class Sphere
 {
 privat e :

double theRadius; // The sphere's radius

 public :
 /** Default constructor: Creates a sphere and initializes
 its radius to a default value.
 Precondition: None.
 Postcondition: A sphere of radius 1 exists. */
 Sphere();

 /** Constructor: Creates a sphere and initializes
 its radius.
 Precondition: initialRadius is the desired radius.
 Postcondition: A sphere of radius initialRadius exists. */
 Sphere(double initialRadius);

 /** Sets (alters) the radius of this sphere.
 Precondition: newRadius is the desired radius.
 Postcondition: The sphere's radius is newRadius. */

void setRadius(double newRadius);

 /** Gets this sphere's radius.
 Precondition: None.
 Postcondition: Returns the radius. */

double getRadius() const;

/** Gets this sphere's diameter.
 Precondition: None.
 Postcondition: Returns the diameter. */

double getDiameter() const;

/** Gets this sphere's circumference.
 Precondition: PI is a named constant.
 Postcondition: Returns the circumference. */

double getCircumference() const;

 /** Gets this sphere's surface area.
 Precondition: PI is a named constant.
 Postcondition: Returns the surface area. */

double getArea() const;

 /** Gets this sphere's volume.
 Precondition: PI is a named constant.
 Postcondition: Returns the volume. */

double getVolume() const ;
}; // end Sphere
 // End of header file.

 Classes 713

 You should always place a class’s data members within its private section. Typically, you provide
methods—such as setRadius and getRadius —to access the data members. In this way, you control
how and whether the rest of the program can access the data members. This design principle should lead
to programs that not only are easier to debug, but also have fewer logical errors from the beginning.

 Some method declarations, such as

 double getRadius() const;

 are tagged with const . Such methods cannot alter the data members of the class. Making getRadius
a const method is a fail-safe technique that ensures that it will only return the current value of the
sphere’s radius, without changing it.

 A.8.2 The Implementation File

 Let’s begin implementing the class Sphere by examining its constructors.

 Constructors. A constructor allocates memory for an object and can initialize the object’s data to
particular values. A class can have more than one constructor, as is the case for the class Sphere .

 The fi rst constructor in Sphere is the default constructor :

 Sphere();

 A default constructor by defi nition has no arguments. Typically, a default constructor initializes data
members to values that the class implementation chooses. For example, the implementation

 Sphere::Sphere()
 {
 theRadius = 1.0;
} // end default constructor

 sets theRadius to 1.0. Chapter 3 will show you another way to initialize data members within con-
structors that is preferable to using assignment statements.

 Notice the qualifi er Sphere:: that precedes the constructor’s name. When you implement any
method, you qualify its name with its class type followed by the scope resolution operator :: to dis-
tinguish it from other methods that might have the same name.

 When you declare an instance of the class, you implicitly invoke a constructor. For example, the
statement

 Sphere unitSphere;

 invokes the default constructor, which creates the object unitSphere and sets its radius to 1.0. Notice
that you do not include parentheses after unitSphere .

 The next constructor in Sphere is

 Sphere(double initialRadius);

 It creates a sphere object of radius initialRadius . This constructor needs only to initialize the pri-
vate data member theRadius to initialRadius . Its implementation is

 Sphere::Sphere(double initialRadius)
 {
 theRadius = initialRadius;
} // end constructor

 You implicitly invoke this constructor by writing a declaration such as

 Sphere mySphere(5.1);

A class’s data
members should be
private

 const methods
cannot change a
class’s data
members

A default
constructor has no
arguments

714 APPENDIX A Review of C++ Fundamentals

 In this case, the object mySphere has a radius of 5.1.
 We can make the previous constructor ensure that the given radius is not negative by writing its

defi nition as follows:

 Sphere::Sphere(double initialRadius)
 {

if (initialRadius > 0)
 theRadius = initialRadius;

else
 theRadius = 1.0;
 } // end constructor

 Note: If you omit all constructors from your class, the compiler will generate a default
constructor—that is, one with no arguments—for you. A compiler-generated default
constructor, however, might not initialize data members to values that you will fi nd suit-
able. If you defi ne a constructor that has arguments but you omit the default constructor,
the compiler will not generate one for you. Thus, you will not be able to write statements
such as

 Sphere defaultSphere;

 Typically, you place the implementation of a class’s constructors and other methods in an
implementation fi le whose name ends in .cpp . Listing A-3 contains an implementation fi le for the
class Sphere . Notice that within the defi nition of a method, you can reference the class’s data mem-
ber or invoke its other methods without preceding the member names with Sphere:: . In particular,
notice how the constructor calls the method setRadius to avoid duplicating the code that ensures a
positive radius.

The implementation
fi le contains the
defi nitions of the
class’s methods

 LISTING A-3 The implementation fi le Sphere.cpp

 /** @file Sphere.cpp */
#include "Sphere.h" // Include the header file

 using namespace std;

 Sphere::Sphere()
 {

theRadius = 1.0;
} // end default constructor

 Sphere::Sphere(double initialRadius)
 {

setRadius(initialRadius); // Sphere:: not needed here
} // end constructor

void Sphere::setRadius(double newRadius)
 {

if (newRadius > 0)
 theRadius = newRadius;

else
 theRadius = 1.0;
 } // end setRadius

 Classes 715

A local variable
such as
radiusCubed
should not be a data
member

double Sphere::getRadius() const
 {

return theRadius;
} // end getRadius

 double Sphere::getDiameter() const
 {

return 2.0 * theRadius;
} // end getDiameter

 double Sphere::getCircumference() const
 {

return PI * getDiameter();
} // end getCircumference

 double Sphere::getArea() const
 {

return 4.0 * PI * theRadius * theRadius;
 } // end getArea

 double Sphere::getVolume() const
 {

double radiusCubed = theRadius * theRadius * theRadius;
return (4.0 * PI * radiusCubed) / 3.0;

} // end getVolume
// End of implementation file.

 A.8.3 Using the Class Sphere

 The following simple program demonstrates the use of the class Sphere :

 #include <iostream>
#include "Sphere.h"

 using namespace std;

 int main()
 {
 Sphere unitSphere; // Radius is 1.0
 Sphere mySphere(5.1); // Radius is 5.1

 unitSphere.displayStatistics();
 mySphere.setRadius(4.2); // Resets radius to 4.2
 cout << mySphere.getDiameter() << endl;

return 0;
} // end main

 An object such as mySphere can, on request, reset the value of its radius; return its radius; and
compute its diameter, surface area, circumference, and volume. These requests to an object are called

 Note: Local variables

 You should distinguish between a class’s data members and any local variables that the
implementation of a method requires. It is inappropriate for such local variables to be
data members of the class.

716 APPENDIX A Review of C++ Fundamentals

messages and are simply calls to methods. Thus, an object responds to a message by acting on its
data. To invoke an object’s method, you qualify the method’s name—such as setRadius —with the
object variable—such as mySphere .

 Notice that the previous program included the header fi le Sphere.h , but did not include the
implementation fi le Sphere.cpp . You compile a class’s implementation fi le separately from the pro-
gram that uses the class. The way you tell the operating system where to locate the compiled imple-
mentation depends on the particular system. Section A.9 of this appendix and C++ Interlude 1 provide
more information about header and implementation fi les.

 The previous program is an example of a client of a class. A client of a particular class is simply a
program or module that uses the class. We will reserve the term user for the person who uses a program.

 A.8.4 Inheritance

 A brief discussion of inheritance is provided here, because it is a common way to create new classes
in C++. Further discussions of inheritance occur as needed throughout the book.

 Suppose we want to give our spheres a color, knowing that we have already developed the class
Sphere . Instead of writing an entirely new class of spheres that have a color, we can reuse the Sphere
implementation and add color characteristics and operations by using inheritance. Here is a declara-
tion of the class SphereInColor that uses inheritance:

 #include "Sphere.h"
 enum Color {RED, BLUE, GREEN, YELLOW};
 class SphereInColor : public Sphere
 {

 private :
 Color sphereColor;

 public :
 SphereInColor(Color initialColor);
 SphereInColor(Color initialColor, double initialRadius);

void setColor(Color newColor);
 Color getColor() const;
}; // end SphereInColor

 The class Sphere is called the base class or superclass , and SphereInColor is called the derived
class or subclass of the class Sphere .

 Any instance of the derived class is also considered to be an instance of the base class and can be
used in a program anywhere that an instance of the base class can be used. Also, when the keyword
public precedes the name of the base class in the new class’s header, any of the publicly defi ned
methods or data members that can be used with instances of the base class can be used with instances
of the derived class. The derived class instances also have the additional methods and data members
that are publicly defi ned in the derived class defi nition.

 The implementation of the methods for the class SphereInColor is as follows:

 SphereInColor::SphereInColor(Color initialColor): Sphere()
 {
 sphereColor = initialColor;
} // end constructor

SphereInColor::SphereInColor(Color initialColor, double initialRadius)
 : Sphere(initialRadius)
 {
 sphereColor = initialColor;
} // end constructor

A class derived from
the class Sphere

 Libraries 717

 void SphereInColor::setColor(Color newColor)
 {
 sphereColor = newColor;
} // end setColor

Color SphereInColor::getColor() const
 {

return sphereColor;
} // end getColor

 Notice how the constructors for the class SphereInColor invoke the base-class constructors
Sphere() and Sphere(initialRadius) . The derived class needs the initialization of the data mem-
bers in the base class that the base-class constructors can provide. The derived-class constructors then
add initializations that are specifi c to the derived class.

 Here is a function that uses the class SphereInColor :

 void useSphereInColor()
 {
 SphereInColor ball(RED);
 ball.setRadius(5.0);
 cout << "The ball diameter is " << ball.getDiameter();
 ball.setColor(BLUE);
 ...

} // end useSphereInColor

 This function uses the constructor and the method setColor from the derived class SphereInColor .
It also uses the methods setRadius and getDiameter that are defi ned in the base class Sphere .

 A.9 Libraries
 One of the advantages of modular programming is that you can implement modules independently of
other modules. You might also fi nd it possible for several different programs to use a particular mod-
ule. As a result, you can build a library of modules that you can include in future programs.

 Any library—a C++ standard library or one that you write—has a corresponding header that
provides information about the contents of the library. For standard libraries, the header is simply
an abstraction that the compiler may map to a fi lename or handle in a different manner. Thus,
when using the standard libraries, you do not see the .h extension that ends the names of our own
header fi les.

 You have already seen some standard libraries, such as the one that provides input and output
services. To use the modules contained in a library, you use the include directive with the name of
the header associated with the library. For example, you write

 #include <iostream>
 using namespace std;

 Appendix H provides a list of available headers.
 User-defi ned libraries are typically organized into two fi les. One fi le, the header fi le, contains a

defi nition for each class in the library that is available to your program. This fi le could also contain,
for example, function declarations, constant defi nitions, typedef statements, enumerations, and
other include statements. By convention, the name of a header fi le associated with a user-defi ned
library ends in .h . The other fi le—the implementation fi le—contains defi nitions of the class methods
that the header fi le declares. Typically, the name of an implementation fi le ends in .cpp .

 The assumption, of course, is that the fi les are in source form—that is, they need to be compiled.
It certainly would be more effi cient to compile the method defi nitions once, independently of any

An instance of a
derived class can
invoke public
methods of the base
class

718 APPENDIX A Review of C++ Fundamentals

particular program, and then later merge the results of the compilation with any program that you
desire. In fact, you should compile the implementation fi le and then include the header fi le in source
form in your program by using an include directive such as

 #include "MyHeader.h"

 You use double quotes instead of angle brackets to enclose the name of a header fi le that you have
written. The mechanics of incorporating the compiled implementation fi le into your program are sys-
tem dependent.

 Thus, your program can use previously compiled C++ statements, which are no longer available
to you in source form. Maybe you did not even write these statements, just as you did not write the
standard C++ functions such as sqrt . That is, you use a library in the same spirit in which you use
standard functions. Because the header fi le indicates what is available to you, you must think of a
library in terms of what it can do for you and not how it is implemented. You should think of all of
your modules in this way, even if you eventually implement them yourself.

1. Each comment line in C++ begins with two slashes // and continues until the end of the line.

2. A C++ identifi er is a sequence of letters, digits, and underscores that must begin with either a letter or an under-
score.

 3. You can use a typedef statement to declare new names for data types. These names are simply synonyms for
the data types; they are not new data types.

 4. You defi ne named constants by using a statement of the form

 const type identifier = value ;

 5. Enumeration provides another way to name integer constants and to defi ne an integral data type, as in

 enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};

 6. C++ uses short-circuit evaluation for expressions that contain the logical operators && (and) and || (or). That is,
evaluation proceeds from left to right and stops as soon as the value of the entire expression is apparent.

 7. The output operator << places a value into an output stream, and the input operator >> extracts a value from an
input stream. You can imagine that these operators point in the direction of data fl ow. Thus, in cout << myVar ,
the operator points away from the variable myVar —data fl ows from myVar to the stream—whereas in cin >>
myVar , the operator points to the variable myVar —data fl ows from the stream into myVar .

 8. The general form of a function defi nition is

 type name (parameter-declaration-list)
 {

body
 }

 A valued function returns a value by using the return statement. Although a void function does not return a
value, it can use return to exit.

 SUMMARY

 Summary 719

 9. When invoking a function, the actual arguments must correspond to the parameters in number, order, and
type.

 10. A function makes local copies of the values of any arguments that are passed by value. Thus, the arguments
remain unchanged by the function. Such arguments are, therefore, input arguments. A function does not copy
arguments that are passed by reference. Rather, it references the actual argument locations whenever the
parameters appear in the function’s defi nition. In this way, a function can change the values of the arguments,
thus implementing output arguments. However, a function does not copy and cannot change a constant refer-
ence argument. If copying an input argument would be expensive, make it a constant reference argument
instead of a value argument.

 11. The general form of the if statement is

 if (expression)
statement 1

 else
statement 2

 If expression is true, statement1 executes; otherwise statement2 executes.

 12. The general form of the switch statement is

 switch (expression)
 {
case constant 1 :

statement 1
break;

 . . .
case constantn :

statementn
break;

default:
statement

 }

 The appropriate statement executes according to the value of expression . Typically, break (or sometimes
return) follows the statement or statements after each case . Omitting break causes execution to continue to
the statement(s) after the next case .

 13. The general form of the while statement is

 while (expression)
statement

 As long as expression is true, statement executes. Thus, it is possible that statement never executes.

 14. The general form of the for statement is

 for (initialize; test; update)
statement

 where initialize , test , and update are expressions. Typically, initialize is an assignment expression that occurs
only once. Then if test , which is usually a logical expression, is true, statement executes. The expression update
executes next, usually incrementing or decrementing a counter. This sequence of events repeats, beginning
with the evaluation of test , until test is false.

720 APPENDIX A Review of C++ Fundamentals

 15. The general form of the do statement is

 do
 statement
 while (expression);

 Here, statement executes until the value of expression is false. Note that statement always executes at least
once. Also note the required semicolon.

 16. An array is a container of items that have the same data type. You can refer to these items by using an index that
begins with zero. Arrays are always passed to functions by reference.

 17. A string is a sequence of characters. You can manipulate the entire string, a substring, or the individual characters.

 18. You must be careful that an array index does not exceed the size of the array. C++ does not check the range of
array indices. Similar comments apply to strings.

 19. An object encapsulates both data and operations on that data. In C++, objects are instances of a class, which is
a programmer-defi ned data type.

 20. A C++ class contains at least one constructor, which is an initialization method, and a destructor, which is a
cleanup method that destroys an object when its lifetime ends.

 21. If you do not defi ne a constructor for a class, the compiler will generate a default constructor—that is, one with-
out arguments—for you. If you do not defi ne a destructor, the compiler will generate one for you. Chapter 4
describes when you need to write your own destructor.

 22. Members of a class are private unless you designate them as public. The client of the class—that is, the program
that uses the class—cannot use members that are private. However, the implementations of methods can use
them. You should make the data members of a class private and provide public methods to access some or all of
the data members.

 23. Because certain classes have applications in many programs, you should take steps to facilitate their use. You
can defi ne and implement a class within header and implementation fi les, which a program can include when it
needs to use the class.

 24. A typical C++ program uses header fi les that you incorporate by using the include directive. A header fi le
contains class defi nitions, function declarations, constant defi nitions, typedef statements, enumerations, and
other include statements. The program might also require an implementation fi le of function defi nitions that
have been compiled previously and placed into a library. The operating system locates the required implemen-
tation fi le and combines it with the program in ways that are system dependent.

 Appendix
Important Themes

in Programming B
 Contents
B.1 Modularity 722
 B.2 Style 723

 B.2.1 Use of Private Data Members 723
 B.2.2 Proper Use of Reference Arguments 724
 B.2.3 Proper Use of methods 724
 B.2.4 Avoidance of Global Variables in Modules 726
 B.2.5 Error Handling 726
 B.2.6 Readability 726
 B.2.7 Documentation 728

 B.3 Modifi ability 729
 B.3.1 Named Constants 730
 B.3.2 The typedef Statement 730

 B.4 Ease of Use 730
 B.5 Fail-Safe Programming 731

 B.5.1 Guarding Against Errors in Input Data 732
 B.5.2 Guarding Against Errors in Program Logic 734

 B.6 Debugging 736
 B.6.1 Debugging Functions and Methods 737
 B.6.2 Debugging Loops 737
 B.6.3 Debugging if Statements 737
 B.6.4 Using cout Statements 737
 B.6.5 Using Special Dump Functions 737

 B.7 Testing 738
 B.7.1 Levels of Testing 738
 B.7.2 Kinds of Testing 738
 B.7.3 Developing Test Data 738
 B.7.4 Testing Techniques 739
 B.7.5 Use of Drivers 740

722 APPENDIX B Important Themes in Programming

Prerequisites
Appendix A Review of C++ Fundamentals
Chapter 1 Data Abstraction: The Walls

What are the specifi c characteristics of good solutions? How can you construct good solutions?
This appendix provides some answers to these very diffi cult questions.

 The programming themes that we will discuss should be familiar to you. However, the novice
programmer usually does not truly appreciate their importance. After the fi rst course in program-
ming, many students still simply want to “get the thing to run.” The discussion that follows should
help you realize just how important these themes really are.

 One of the most widespread misconceptions held by novice programmers is that a computer pro-
gram is “read” only by a computer. As a consequence, they tend to consider only whether the compu-
ter is able to “understand” the program—that is, does the program compile, execute, and produce the
correct output? The truth is, of course, that other people often must read and modify programs. In a
typical programming environment, many individuals share a program. One person may write a pro-
gram, which other people use in conjunction with other programs written by other people, and a year
later, a different person may modify the program. It is therefore essential that you take great care to
design a program that is easy to read and understand.

 You should always keep in mind the following seven themes of programming: modularity, style,
modifi ability, ease of use, fail-safe programming, debugging, and testing.

 B.1 Modularity
 As this book continually emphasizes, you should strive for modularity in all phases of the problem-solving
process, beginning with the initial design of a solution. Many programming tasks become more diffi cult as
the size and complexity of a program grows. Modularity slows the rate at which the level of diffi culty
grows. More specifi cally, modularity has a favorable impact on the following aspects of programming:

• Constructing the program. The primary difference between a small modular program and a
large modular program is simply the number of modules each contains. Because the modules
are independent, writing one large modular program is not very different from writing many
small, independent programs, although the interrelationships among modules make the design
much more complicated. On the other hand, working on a large nonmodular program is more
like working on many interrelated programs simultaneously. Modularity also permits team
programming, in which several programmers work independently on their own modules
before combining them into one program.

• Debugging the program. Debugging a large program can be a monstrous task. Imagine that you
type a 10,000-line program and eventually get it to compile. Neither of these tasks would be much
fun. Now imagine that you execute your program, and after a few hundred lines of output, you
notice an incorrect number. You should anticipate spending the next day or so tracing through the
intricacies of your program before discovering a problem such as an array index that is too large.

 A great advantage of modularity is that the task of debugging a large program is reduced
to one of debugging many small programs. When you begin to code a module, you should be
almost certain that all other modules coded so far are correct. That is, before you consider a
module fi nished, you should test it extensively, both separately and in context with the other
modules, by calling it with actual arguments carefully chosen to induce all possible behaviors
of the modules. If this testing is done thoroughly, you can feel fairly sure that any problem is a
result of an error in the last module added. Modularity isolates errors.

People read
programs, too

Key programming
themes

Modularity facilitates
programming

Modularity isolates
errors

 Style 723

Modular programs
are easy to read

 Formal theoretical techniques are available to verify the correctness of a program. Modu-
lar programs are amenable to this verifi cation process.

• Reading the program. A person reading a large program may get lost in its details. Just as a
modular design helps the programmer cope with the complexities of solving a problem, so too
does a modular program help its reader understand how the program works. A modular pro-
gram is easy to follow because the reader can get a good idea of what is going on without read-
ing any of the code. A well-written function can be understood fairly well from only its name,
initial comments, and the names of the other functions that it calls. Readers of a program need
to study actual code only if they require a detailed understanding of how the program operates.
Program readability is discussed further in the next section on style.

• Modifying the program. Modifi ability is discussed in greater detail in Section B.3 of this
appendix, but as the modularity of a program has a direct bearing on its modifi ability, a brief
mention is appropriate here. A small change in the requirements of a program should require
only a small change in the code. If this is not the case, it is likely that the program is poorly
written and, in particular, that it is not modular. To accommodate a small change in the require-
ments, a modular program usually requires a change in only a few of its modules, particularly
when the modules are independent (referred to as being loosely coupled) and each module
performs a single well-defi ned task (referred to as being highly cohesive). This point is of par-
ticular importance with iterative development techniques, which produce changes in program
requirements at every iteration, as Appendix D will discuss.

 When making changes to a program, it is best to make a few at a time. By maintaining a
modular design, you can reduce a fairly large modifi cation to a set of small and relatively sim-
ple modifi cations to isolated parts of the program. Modularity isolates modifi cations.

• Eliminating redundant code. Another advantage of modular design is that you can identify a
computation that occurs in many different parts of the program and implement it as a function
or class method. Thus, the code for the computation appears only once, resulting in an increase
in both readability and modifi ability.

 B.2 Style
 We now consider the following seven issues of style in programming: the use of private data mem-
bers, the proper use of reference arguments, the proper use of methods, avoidance of global variables
in modules, error handling, readability, and documentation. Admittedly, much of the following dis-
cussion refl ects the personal taste of the authors; certainly other good programming styles are possi-
ble. Most organizations that hire programmers publish style guides, so that each programming team
can produce code that is easily read and maintained by other teams.

 B.2.1 Use of Private Data Members

 Each object has a set of methods that represents the operations that the object can perform. The
object also contains data members for storing information. You should hide the exact representation
of these data members from modules that use the object by making all of the data members private.
Doing so supports the principle of information hiding. The details of the object’s implementation
are hidden from view, with methods providing the only mechanism for getting information to and
from the object. When the only operations involved with a particular data member are retrieve and
modify , the object should provide a simple method—called an accessor —that returns the value of
the data member and another method—called a mutator —that sets the value of the data member.
For example, a Person object could provide access to the data member theName through the meth-
ods getName to return the person’s name and setName to change the person’s name.

Modularity isolates
modifi cations

 Modularity
eliminates
redundancies

Seven issues of
style

Data members
should always be
private

724 APPENDIX B Important Themes in Programming

 B.2.2 Proper Use of Reference Arguments

 A method interacts, in a controlled fashion, with the rest of the program via its arguments. Value
parameters, which are the default in C++ when you do not write & after the parameter’s data type, pass
values into the method. The value of each argument corresponding to a value parameter is copied into
the parameter, which is local to the method. Any change that the method makes to these parameters is
not refl ected in the actual arguments back in the calling program. This communication between the
calling program and the method is one-way and supports the notion of an isolated module. Thus, you
should use value arguments when possible. However, passing large objects by value is not very effi -
cient because of the copying required.

 How and when is it appropriate to use reference parameters? Since a reference parameter
becomes an alias (another name) for the corresponding argument, changes to the parameter within
the method also occur in the argument in the calling module. The obvious situation requiring refer-
ence arguments is when a method needs to return several values to the calling module. Whenever you
use a parameter to pass a value out of a method, the parameter must be a reference parameter.

 Suppose that you are writing a method that requires access to a large object x , whose value
should not be altered. You consider passing x by value; however, to increase the effi ciency of your
program, you would like to avoid the computer-time and storage requirements of making a copy of x .
So what about passing x by reference? The problem with passing x by reference is that it conveys mis-
information about the method’s relation to the rest of the program. Since a reference parameter is
used to communicate a value from the method back to its calling module, the program is more diffi -
cult to read if the parameter’s value remains unchanged. The program also is more prone to errors if
modifi cations are required. The situation is analogous to using a variable whose value never changes
when you really should use a constant. The solution is to precede the parameter’s declaration with
const , which prevents the method from changing the corresponding argument. Thus, we have the
effi ciency of pass-by-reference (no copy is made) with the protection of pass-by-value (the argument
is input only). This is called pass-by-constant-reference . If objects are large and complex, use pass-
by-constant-reference; otherwise pass-by-value works fi ne.

 B.2.3 Proper Use of Methods

 To reduce coupling among modules, you should restrict the calls that a method can make. A method
should call only other methods:

• Defi ned within the same class
• Of argument objects
• Of objects created within the method
• Of objects contained within the same class as data members

 For example, suppose we have the following code for three classes that represent a building, an
appliance, and a lamp, respectively:

 // Original Solution
 class Building
 {
 private :
 Appliance appliance;

 public :
void turnOnLight()

 {
 appliance.getLamp().turnOn(); // Improper method use
 } // end turnOnLight
 }; // end Building

 Reference
arguments return
values from a
method

When copying the
argument is
expensive, use
pass-by-constant-
reference instead of
pass-by-value

To reduce coupling,
restrict what a
method can do

 Building is
coupled to Lamp

 Style 725

 Building and
Lamp are not
coupled

 class Appliance
 {
 private:
 Lamp light;

 public :
 Lamp getLamp()
 {
 return light;
 } // end getLamp
}; // end Appliance

 class Lamp
 {
 public :

void turnOn();
}; // end Lamp

 Here, Building ’s method turnOnLight fails to follow these rules. It calls the method turnOn from
the Lamp class, although a Lamp object is not part of the Building class and has not been passed to the
turnOnLight method as an argument. This code has coupled the Building class to the Lamp class.

 A much better design would decouple the Building and Lamp classes, as follows:

 // Revised Solution
 class Building
 {
 private :
 Appliance appliance;

 public :
void turnOnLight()

 {
 appliance.turnOnLamp();
 } // end turnOnLight
}; // end Building

 class Appliance // Improved Appliance class
 {
 private :
 Lamp light;

 public :
 void turnOnLamp()
 {
 light.turnOn();
 } // end turnOnLamp
}; // end Appliance

 class Lamp
 {
 public :
 void turnOn();
}; // end Lamp

 Now the building asks the appliance to turn on the lamp, and the appliance turns on its light.
 Suppose that the lamp’s switch is replaced with a dimmer-type switch. We would need to give the

turnOn method in the Lamp class an indication of how much to dim the light. Finding the call to
turnOn in the original code segment might be diffi cult, because the Building class does not have
explicit access to a Lamp object. You could search the Building class for instances of Lamp , and not
fi nd any. This type of dependency makes a solution more diffi cult to modify.

726 APPENDIX B Important Themes in Programming

In case of an error,
methods should
return a value or
throw an exception,
but not display a
message

 In the revised code segment, the Appliance class has a Lamp object as a data member. You can
easily fi nd the calls to this object, if necessary.

 B.2.4 Avoidance of Global Variables in Modules

 One of the main advantages of the concepts of encapsulation and information hiding is the creation of
isolated modules. This isolation is sacrifi ced when a module accesses a global variable, because the
effects of a module’s action are no longer self-contained or limited to output arguments. That is, such
a module has a side effect . Hence, the isolation of both errors and modifi cations is greatly compro-
mised when global variables appear in modules.

 B.2.5 Error Handling

 A program should check for errors in both its input and its logic and attempt to behave gracefully and
consistently when it encounters them. A method should check for certain types of errors, such as
invalid input or argument values. What action should a method take when it encounters an error?
Depending on context, the appropriate action in the face of an error can range from ignoring errone-
ous data and continuing execution to terminating the program. A common technique is for a method
to return a boolean value to the calling module to indicate that it has encountered an error. Thus, the
method leaves error handling to the calling module. In general, methods should either return a value
or throw an exception instead of displaying a message when an error occurs.

 B.2.6 Readability

 For a program to be easy to follow, it should have a good structure and design, a good choice of identi-
fi ers, good indentation and use of blank lines, and good documentation. These points are demon-
strated in the programs throughout this book. You should avoid clever programming tricks that save a
little computer time at the expense of much human time.

 Choose identifi ers that describe their purpose—that is, that are self-documenting. Distinguish
between keywords, such as int , and user-defi ned identifi ers. This book uses the following conventions:

• Keywords are lowercase and appear in color.
• Names of standard functions are lowercase.
• User-defi ned identifi ers use both uppercase and lowercase letters, as follows:
� Class names are nouns, with each word in the identifi er capitalized.
� Method names and function names are verbs or action phrases, with the fi rst letter lowercase

and subsequent internal words capitalized.
� Variables begin with a lowercase letter, with subsequent words in the identifi er capitalized.
� Data types declared in a typedef statement and names of enumerations each begin with an

uppercase letter.
� Named constants and enumerators are entirely uppercase and use underscores to separate

words.
• Two other naming conventions are suggested as a learning aid:
� Data types declared in a typedef statement end in Type .
� Exception names end in Exception .

 Use a good indentation style to enhance the readability of a program. The layout of a program
should make it easy for a reader to identify the program’s modules. Use a blank line between method
or function defi nitions. Also, within these defi nitions, you should indent individual blocks of code.
These blocks are generally—but are not limited to—the actions performed within a control structure,
such as a while loop or an if statement.

Identifi er style

Two learning aids

Do not use global
variables

 Style 727

 You can choose from among several good indentation styles. The four most important general
requirements of an indentation style are:

• Blocks should be indented suffi ciently so that they stand out clearly.
• Indentation should be consistent: Always indent the same kind of construct in the same manner.
• The indentation style should provide a reasonable way to handle the problem of rightward

drift , the problem of nested blocks bumping against the right-hand margin of the page.
• In a compound statement, the open and close braces should line up, and each should appear on

its own line:

 {
 statement 1

statement 2
 .
 .
 .

statementn
 }

• To prevent future errors, you should make the body of each control structure a compound
statement, even if it consists of only one line of code. When you include open and close braces
around the single-statement body of a control structure, you enable that control structure to
contain multiple statements if needed in the future. A common programmer error is to include
a second statement in the single-statement body of a control structure, thinking that it will
execute within the body of that control structure. Because of space restrictions, this book will
not always follow this style.

 Within these guidelines there is room for personal taste. Here is a summary of the style you will see in
this book:

• A for or while statement is written for a simple action as

 while (expression)
statement

 and for a compound action as

 while (expression)
 {

statements
} // end while

• A do statement is written for a simple action as

 do
statement

 while (expression);

 and for a compound action as

 do
 {

statements
} while (expression);

• An if statement is written for simple actions as

 if (expression)
statement 1

 else
statement 2

Guidelines for
indentation style

Indentation style in
this book

728 APPENDIX B Important Themes in Programming

 and for compound actions as

 if (expression)
 {

statements
 }
 else
 {

statements
} // end if

• One special use of the if statement warrants another style. Nested if statements that choose
among three or more different courses of action, such as

 if (condition 1)
action 1

 else if (condition 2)
action 2

else if (condition 3)
 action 3
 are written as

 if (condition 1)
action 1

 else if (condition 2)
action 2

 else if (condition 3)
action 3

 This indentation style better refl ects the nature of the construct, which is like a generalized
switch statement:

 case condition 1: action 1; break;
 case condition 2: action 2; break;
 case condition 3: action 3; break;

• Braces are used to increase readability, even when they are not a syntactic necessity. For exam-
ple, in the construct

 while (expression)
 {

if (condition)
statement 1

else
statement 2

} // end while

 the braces are syntactically unnecessary, because an if is a single statement. However, the
braces highlight the scope of the while loop.

 B.2.7 Documentation

 A program should be well documented so that others can read, use, and modify it easily. Many accept-
able styles for documentation are in use today, and exactly what you should include often depends on
the particular program or your individual circumstances.

 This book will use a special form of documentation comment, called a javadoc-style comment
because it originated with the Java™ programming language. These comments start with /** and end
with */ and contain tags that classify different parts of your documentation. Several utility programs
are available to read these comments and generate HTML-based documentation. One of these

Highly formatted,
HTML-based
documentation is
easy to produce

 Modifi ability 729

programs is called doxygen . When space permits, the source code in the book is commented in this
style and can be read by doxygen.

 The advantage of using javadoc-style comments—and a documentation system, like doxy-
gen—is that you can edit the documentation for your source code as you make changes to that code.
The documentation lives directly in the source code—as javadoc-style comments—making it very
easy and convenient to keep your documentation up to date.

 The following are the essential features of any program’s documentation—with associated
commenting tags in parentheses:

 Note: Essential features of program documentation
1. An initial comment at the top of each source code fi le that includes:

a. File name (@file)
b. Statement of purpose
c. Author (@author)
d. Date (@date)
e. Optional fi le version number (@version)

2. Initial comments for each class that includes:
a. Name of class and its header fi le (@class)
b. Statement of purpose

 3. Initial comments for each method or function that includes:
a. Statement of purpose
b. Description of each argument in the argument list (@param)
c. Preconditions (@pre)
d. Postconditions (@post)
e. Exceptions thrown (@throw)
f. Return value (@return)

4. Standard C++ comments in the body of each method or function to explain
important features or subtle logic

Consider who will
read your comments
when you write them

You benefi t from
your own
documentation by
writing it now
instead of later

 Beginning programmers tend to downplay the importance of documentation because comments
do not affect a program’s logic. By now, you should realize that people also read programs. Your com-
ments must be clear enough for someone else to either use your module in a program or modify it.
Thus, some of your comments are for people who want to use your module, while others are for peo-
ple who will revise its implementation. You should be conscious of different kinds of comments.

 Beginners also have a tendency to document programs as a last step. You should, however, write
documentation as you develop the program. Because the task of writing a large program might extend
over a period of several weeks, you may fi nd that the module that seemed so obvious when you wrote
it last week seems confusing when you try to revise it next week. Why not benefi t from your own
documentation by writing it now rather than later?

 See Appendix I for more details on the use of the javadoc-style comments and the doxygen
documentation system.

 B.3 Modifi ability
 After each iteration in the development of a program, the design can change to some degree. This ten-
dency requires that your program be written in a way that makes it easy to modify. This section offers two
examples of how you can make a program easy to modify: named constants and typedef statements.

730 APPENDIX B Important Themes in Programming

 B.3.1 Named Constants

 The use of named constants is a way to enhance the modifi ability of a program. For example, the
restriction that an array must have a predefi ned, fi xed size causes a bit of diffi culty. Suppose that a
program uses an array to process the test scores of the computer science majors at your university.
When the program was written, there were 202 computer science majors, so the array was declared by

 int scores[202];

 The program processes the array in several ways. For example, it reads the scores, writes the scores,
and averages the scores. The pseudocode for each of these tasks contains a construct such as

 for (index = 0 through 201)
Process the score

 If the number of majors should change, not only do you need to revise the declaration of scores , but you
also must change each loop that processes the array to refl ect the new array size. In addition, other state-
ments in the program might depend on the size of the array. A 202 here, a 201 there—which to change?

 On the other hand, if you use a named constant such as

 const int NUMBER_OF_MAJORS = 202;

 you can declare the array by using

 int scores[NUMBER_OF_MAJORS];

 and write the pseudocode for the processing loops in this form:

 for (index = 0 through NUMBER_OF_MAJORS - 1)
Process the score

 If you write expressions that depend on the size of the array in terms of the constant NUMBER_OF_MAJORS
(such as NUMBER_OF_MAJORS - 1), you can change the array size simply by changing the defi nition of
the constant and compiling the program again.

 B.3.2 The typedef Statement

 Suppose that your program performs fl oating-point computations of type float , but you discover that you
need greater precision than float variables provide. To change the relevant float declarations to long
double , for example, you would have to locate all such declarations and decide whether to make the change.

 You can simplify this change by using a typedef statement, which gives another name to an
existing data type. For example, the statement

 typedef float RealType;

 declares RealType as a synonym for float and allows you to use RealType and float interchangea-
bly. If you declare all the relevant items in the previous program as RealType instead of float , you
can make your program easier to modify and to read. To revise the precision of the computations, you
would simply change the typedef statement to

 typedef long double RealType;

 B.4 Ease of Use
 Another area in which you need to keep people in mind is the design of the user interface. Humans
often process a program’s input and output. Here are a few obvious points:

 typedef
statements make a
program easier to
modify

Named constants
make a program
easier to modify

Prompt the user for
input

 Fail-Safe Programming 731

Echo the input

• In an interactive environment, the program should always prompt the user for input in a man-
ner that makes it quite clear what it expects. For example, the prompt “?” is not nearly as
enlightening as the prompt “Please enter your account number.” You should never assume that
the users of your program know what response the program requires.

• A program should always echo its input. Whenever a program reads data, either from a user or
from a fi le, the program should include the values it reads in its output. This inclusion serves
two purposes: First, it gives the user a check on the data entered—a safeguard against typos
and errors in data transmission. This check is particularly useful in the case of interactive
input. Second, the output is more meaningful and self-explanatory when it contains a record of
what input generated the output.

• The output should be well labeled and easy to read. An output of

 1800 6 1
Jones, Q. 223 2234.00 1088.19 N, J Smith, T. 111
110.23 I, Harris, V. 44 44000.00 22222.22

 is more prone to misinterpretation than

 CUSTOMER ACCOUNTS AS OF 1800 HOURS ON JUNE 1

Account status codes: N=new, J=joint, I=inactive

NAME ACC# CHECKING SAVINGS STATUS

Jones, Q. 223 $ 2234.00 $ 1088.19 N, J
Smith, T. 111 $ 110.23 ————————— I
Harris, V. 44 $44000.00 $22222.22 —————

 These characteristics of a good user interface are only the basics. Several more subtle points
separate a program that is merely usable from one that is user-friendly. Students tend to ignore a good
user interface, but by investing a little extra time here, you can make a big difference: the difference
between a good program and one that only solves the problem. For example, consider a program that
requires a user to enter a line of data in some fi xed format, with exactly one blank between the items.
A free-form input that allows any number of blanks between the items would be much more conven-
ient for the user. It takes so little time to add code that skips blanks, so why require the user to follow
an exact format? Once you have made this small additional effort, the code is a permanent part of
both your program and your library of techniques, and the user of your program will never have to
think about input format.

 B.5 Fail-Safe Programming
 A fail-safe program is one that will perform reasonably no matter how anyone uses it. Unfortunately,
this goal is usually unattainable. A more realistic goal is to anticipate the ways that people might mis-
use the program and to guard carefully against these abuses.

 This discussion considers two types of errors. The fi rst type is an error in input data . For exam-
ple, suppose that a program expects a nonnegative integer but reads –12. When a program encounters
this type of problem, it should not produce incorrect results or abort with a vague error message.
Instead, a fail-safe program provides a message such as

 -12 is not a valid number of children.
Please enter this number again.

 The second type of error is an error in the program logic . Although a discussion of this type of error
belongs in the next section about debugging, detecting errors in program logic is also a characteristic of

Label the output

A good user
interface is
important

Check for errors in
input

732 APPENDIX B Important Themes in Programming

fail-safe programming. A program that appears to have been running correctly may at some point
behave unexpectedly, even if the data that it reads is valid. For example, the program may not have
accounted for the particular data that elicited the surprise behavior, even though you tried your best to
test the program’s logic. Or perhaps you modifi ed the program and that modifi cation invalidated an
assumption that you made in some other part of the program. Whatever the diffi culty, a program should
have built-in safeguards against these kinds of errors. It should monitor itself and be able to indicate that
something is wrong and that you should not trust the results.

 B.5.1 Guarding Against Errors in Input Data

 Suppose that you are computing statistics about the people in income brackets between $10,000 and
$100,000. The brackets are rounded to the nearest thousand dollars: $10,000, $11,000, and so on to
$100,000. The raw data is a fi le of one or more lines of the form

 G N

 where N is the number of people with an income that falls into the G -thousand-dollar group. If several
people have compiled the data, several entries for the same value of G might occur. As the user enters
data, the program must add up and record the number of people for each value of G . From the prob-
lem’s context, it is clear that G is an integer in the range 10 to 100, inclusive, and N is a nonnegative
integer.

 As an example of how to guard against errors in input, consider an input function for this prob-
lem. The fi rst attempt at writing this function will illustrate several common ways in which a program
can fall short of the fail-safe ideal. Eventually you will see an input function that is much closer to this
ideal than the original solution.

 A fi rst attempt at the function might be

 const int LOW_END = 10; // 10-thousand-dollar income
 const int HIGH_END = 100; // 100-thousand-dollar income
 const int TABLE_SIZE = HIGH_END - LOW_END + 1;
 typedef int TableType[TABLE_SIZE];

/** Reads and organizes income statistics.
 @param incomeData A TableType of income statistics.
 @pre The calling module gives directions to the user.
 Input data is error-free, and each input line has the form
 G N, where N is the number of people with an income in the
 G-thousand-dollar group and LOW_END <= G <= HIGH_END.
 An input line with values of zero for both G and N
 terminates the input.
 @post incomeData[G - LOW_END] is the total number of people
 with an income in the G-thousand-dollar group for each
 G read. The values read are displayed. */
 void readData(TableType incomeData)
 {

bool terminateInput = false ;
int group, number; // input values

// Clear array
for (group = LOW_END; group <= HIGH_END; group++)

 incomeData[group - LOW_END] = 0;
do

 {
 cout << "Please enter group and number of ";
 cout << "people in group, separated by a space: ";
 cin >> group >> number;

Check for errors in
logic

This function is not
fail-safe

 Fail-Safe Programming 733

 terminateInput = (group == 0) && (number == 0);

// Group and number are not both 0
 cout << "Income group " << group << " contains "
 << number << " people.\n";
 incomeData[group - LOW_END] += number;
 } while (!terminateInput); // end do-while
} // end readData

 This function has some problems. If an input line contains unexpected data, the program will not
behave reasonably. Consider two specifi c possibilities:

• The fi rst integer on the input line, which the function assigns to group , is not in the range
LOW_END to HIGH_END . The reference

 incomeData[group - LOW_END]

 is then incorrect, since it accesses an array element outside the array bounds. This error also
will happen when the user tries to end the input by entering zeros for both group and number .

• The second number on the input line, which the function assigns to number , is negative.
Although a negative value for number is invalid, because you cannot have a negative number of
people in an income group, the function will add number to the group’s array entry. Thus, the
array incomeData will be incorrect.

 After the function reads values for group and number , it must check to see whether group is in the
range LOW_END to HIGH_END and whether number is positive. If either value is not in that range, you
must handle the input error.

 Suppose that instead of checking the value of number before you add it to the array element
incomeData[group - LOW_END] , you perform the addition and see whether the sum is positive. This
approach is insuffi cient, since you might add a negative value to an entry of incomeData without that
entry becoming negative. For example, if number is –4,000 and the corresponding entry in the array
incomeData is 10,000, the sum is 6,000. Thus, a negative value for number could remain undetected
and invalidate the results of the rest of the program.

 One possible course of action for the function to take when it detects invalid data is to set an error
fl ag and terminate. Another possibility is for it to set an error fl ag, ignore the bad input line, and con-
tinue. Which action is correct really depends on how the program uses the data once it is read.

 The following readData function attempts to be as universally applicable as possible and to
make the program that uses it as modifi able as possible. When the function encounters an error in
input, it sets a fl ag, ignores the data line, and continues. By setting a fl ag, the function leaves it to the
calling module to determine the appropriate action—such as abort or continue—when an input error
occurs. Thus, you can use the same input function in many contexts and can easily modify the action
taken upon encountering an error.

 /** Reads and organizes income statistics.
 @param incomeData A TableType of income statistics.
 @pre The calling program gives directions to the user.
 Each input line contains exactly two integers in the form G N,
 where N is the number of people with an income in the G-thousand-
 dollar group and LOW_END <= G <= HIGH_END. An input line with
 values of zero for both G and N terminates the input.
 @post incomeData[G - LOW_END] is the total number of people with
 an income in the G-thousand-dollar group. The values read are
 displayed. If either G or N is erroneous (either G < LOW_END,
 G > HIGH_END, or N < 0), the function ignores the data line and
 continues execution.
 @return False if either G or N are erroneous (either G < LOW_END,

Test for invalid input
data

A function that
includes fail-safe
programming

734 APPENDIX B Important Themes in Programming

 G > HIGH_END, or N < 0) for any data line read. In this case,
 the calling program should take action. The return value is
 true if the data is error-free. */
 bool readData(TableType incomeData)
 {

int group = -1;
int number = -1; // Input values
bool dataCorrect = true ; // No data error found as yet
bool userFinished = false ;

for (group = LOW_END; group <= HIGH_END; group++)
 incomeData[group - LOW_END] = 0;

do
 {
 cout << "Please enter group and number of ";
 cout << "people in group, separated by a space: ";
 cin >> group >> number;

 cout << "Input line specifies that income group "
 << group << "\ncontains " << number
 << " people.\n";

if ((group >= LOW_END) && (group <= HIGH_END) &&
 (number >= 0))

// Input data is valid – add it to tally
 incomeData[group - LOW_END] += number;

else if ((group == 0) && (number == 0))
 userFinished = true ; // User signaled input is finished

else
 {

// Error in input data:
// Set error flag and ignore input line

 dataCorrect = false ;
 } // end if
 } while((dataCorrect && !userFinished); // end do-while

return dataCorrect;
} // end readData

 Although this input function will behave gracefully in the face of most common input errors, it is
not completely fail-safe. What happens if an input line contains only one integer? What happens if an
input line contains a noninteger? The function would be more fail-safe if it read its input character by
character, converted the characters to an integer, and checked for the end of the input line. In most
contexts, this processing would be a bit extreme. However, if the people who enter the data frequently
err by typing nonintegers, you could alter the input function easily because the function is an isolated
module. In any case, the function’s initial comments should include any assumptions it makes about
the data and an indication of what might make the program abort abnormally.

 B.5.2 Guarding Against Errors in Program Logic

 Now consider the second type of error that a program should guard against: errors in its own logic.
These are errors that you may not have caught when you debugged the program or that you may have
introduced through program modifi cation.

 Unfortunately, a program cannot reliably let you know when something is wrong with it. (Could
you rely on a program to tell you that something is wrong with its mechanism for telling you that
something is wrong?) You can, however, build into a program checks that ensure that certain condi-
tions always hold when the program is correctly implementing its algorithm. For example, all integers
in the array incomeData of the previous example must be greater than or equal to zero. Although we

Functions should
check conditions
that should be true

 Fail-Safe Programming 735

argued that the function readData should not check the validity of the entries of incomeData instead
of checking number , it could do so in addition to checking number . For example, if the function fi nds
that an entry in the array incomeData is outside some range of believability, it can signal a potential
problem to its users.

 Another general way in which you should make a program fail-safe is to make each function
check its precondition. For example, consider the following function, factorial , which returns the
factorial of an integer:

 /** Computes the factorial of an integer.
 @param n The given integer.
 @pre n >= 0.
 @post None.
 @return n * (n - 1) * ... * 1, if n > 0, or 1, if n == 0. */
 int factorial (int n)
 {

int fact = 1;
for (int i = n; i > 1; i–)

 fact *= i;

return fact;
} // end factorial

 The initial comments in this function contain a precondition—information about what assump-
tions are made—as should always be the case. The value that this function returns is valid only if the
precondition is met. If n is less than zero, the function will return the incorrect value of 1.

 In the context of the program for which this function was written, it may be reasonable to make
the assumption that n will never be negative. That is, if the rest of the program is working correctly, it
will call factorial only with correct values of n . Ironically, this last observation gives you a good
reason for factorial to check the value of n : If n is less than zero, the warning that results from the
check indicates that something may be wrong elsewhere in the program.

 Another reason the function factorial should check whether n is less than zero is that the func-
tion should be correct outside the context of its program. That is, if you borrow the function for use in
another program, the function should warn you if you use it incorrectly by passing it an n that is nega-
tive. A stronger check than simply the statement of the precondition in a comment is desirable.

Functions should
enforce their
preconditions

 Note: A function should state its assumptions and, when possible, check whether its
arguments conform to these assumptions.

 In this example, factorial could check the value of n and, if it is negative, return zero, because
factorials are never zero. The program that uses factorial could then check for this unusual value.
 Alternatively, factorial could abort execution if its argument is negative. Many programming lan-
guages, including C++, support a mechanism for error handling called an exception . A module indi-
cates that an error has occurred by throwing an exception. A module reacts to an exception that
another module throws by catching the exception and executing code to deal with the error condi-
tion. C++ Interlude 3 provides more information about exceptions.

 C++ also provides a convenient function assert(expression) that both displays an informative
message and aborts a program if expression is zero. You can use assert to check for both error condi-
tions and the validity of preconditions within your program. C++ Interlude 3 provides more informa-
tion about assert .

Functions should
check the values of
their arguments

736 APPENDIX B Important Themes in Programming

 B.6 Debugging
 No matter how much care you take in writing a program, it will contain errors that you need to track
down. Fortunately, programs that are modular, clear, and well documented are generally amenable to
debugging. Fail-safe techniques, which guard against certain errors and report them when they are
encountered, are also a great aid in debugging.

 Without a systematic approach, fi nding a small mistake in a large program can indeed be a diffi -
cult task. Many people have diffi culty in debugging a program, perhaps because they believe that
their program is really doing what it is supposed to do. For example, on receiving an execution-time
error message at line 1098, a person might say, “That’s impossible. The statement at line 1098 was not
even executed, because it is in the else clause, and I am positive that it was not executed.” However,
the proper approach is either to trace the program’s execution by using available debugging facilities
or to add cout statements that show which part of the if statement was executed. By doing so, you
verify the value of the expression in the if statement. If the expression is 0, for example, when you
expect it to be 1, the next step is to determine how it became 0.

 How can you fi nd the point in a program where something becomes other than what it should
be? A typical Integrated Development Environment , or IDE , allows you to trace a program’s
execution either by single-stepping through the statements in the program or by setting break-
points at which execution will halt. You also can examine the contents of particular variables by
either establishing watches or inserting temporary cout statements. The key to debugging is sim-
ply to use these techniques to tell you what is going on. This may sound pretty mundane, but the
real trick is to use these debugging aids in an effective manner. After all, you do not simply put
breakpoints, watches, and cout statements at random points in the program and have them report
random information.

 The main idea is systematically to locate the points of the program that cause the problem. A
program’s logic implies that certain conditions should be true at various points in the program. If the
program’s results differ from your expectations, an error occurs. To correct the error, you must fi nd
the fi rst point in the program at which this difference is evident. By inserting either breakpoints and
watches or cout statements at strategic locations of a program—such as at the entry and departure
points of loops and functions—you can systematically isolate the error.

 These diagnostic techniques should inform you whether things start going wrong before or
after a given point in the program. Thus, after you run the program with an initial set of diagnostics,
you should be able to trap the error between two points. For example, suppose that things are fi ne
before you call method M1 , but that something is wrong by the time you call M2 . This kind of infor-
mation allows you to focus your attention between these two points. You continue the process until
eventually the search is limited to only a few statements. There is really no place in a program for an
error to hide.

Use breakpoints,
single-stepping,
watches, and
temporary cout
statements to fi nd
logic errors

 Systematically
check a program’s
logic to determine
where an error
occurs

 Programming Tip: A statement of truth about some aspect of a program’s logic is
known as an assertion . You can express an assertion either as a comment or by using the
assert macro. By including assertions in your program, you facilitate the debugging
process.

 The ability to place breakpoints, watches, and cout statements in appropriate locations and to
have them report appropriate information comes in part from thinking logically about the problem
and in part from experience. Here are a few general guidelines.

 Debugging 737

 B.6.1 Debugging Functions and Methods

 You should examine the values of the arguments passed to a function or method as at its beginning
and end by using either watches or cout statements. Ideally, you should debug each major function or
method separately before using it in your program.

 B.6.2 Debugging Loops

 You should examine the values of key variables at the beginnings and ends of loops, as the comments
in this example indicate:

 // Check values of start and stop before entering loop
 for (index = start; index <= stop; index++)
 {

// Check values of index and key variables
 // at the beginning of iteration
 ...

// Check values of index and key variables
 // at the end of iteration
} // end for
// Check values of start and stop after exiting loop

 B.6.3 Debugging if Statements

 Just before an if statement, you should examine the values of the variables within its expression. You
can use either breakpoints or cout statements to determine which branch the if statement takes, as
this example indicates:

 // Check variables within expression before executing if
 if (expression)
 {
 cout << "Condition is true (value of expression is 1).";
 ...
 }
 else
 {
 cout << "Condition is false (value of expression is 0).";
 ...
} // end if

 B.6.4 Using cout Statements

 Sometimes cout statements can be more convenient than watches. Such cout statements should
report both the values of key variables and the location in the program at which the variables have
those values. You can use a comment to label the location, as follows:

 // This is point A
cout << "At point A in the method computeResults:\n"
 << "x = " << x << ", y = " << y << endl;

 Remember to either disable or remove these statements when your program fi nally works.

 B.6.5 Using Special Dump Functions

 Often the variables whose values you wish to examine are arrays or other, more complex data struc-
tures. If so, you should write dump functions to display the data structures in a highly readable man-
ner. You can easily move the single statement that calls each dump function from one point in the

738 APPENDIX B Important Themes in Programming

program to another as you track down an error. The time you spend on these functions often proves to
be worthwhile, as you can call them repeatedly while debugging different parts of the program.

 Hopefully, this discussion has conveyed the importance of the effective use of diagnostic aids in
debugging. Even the best programmers have to spend some time debugging. Thus, to be a truly good
programmer, you must be a good debugger.

 B.7 Testing
 Programs need to be tested to make sure that they correctly solve their current requirements. Good
testing cannot happen without a plan. Software is complex, and determining whether it works cor-
rectly is not easy. Software testing is so important that some iterative development processes argue
that tests should be developed before writing any code.

 B.7.1 Levels of Testing

 Several levels of testing should take place. The fi rst level of testing is called unit testing , and it happens
on the individual modules. You should test individual methods fi rst, and then test the classes. The sec-
ond level of testing is called integration testing , and it tests the interactions among modules. The next
level of testing is called system testing , in which the entire program is tested. Finally, a special type of
testing called acceptance testing shows whether the system as a whole complies with its requirements.

 Unit testing is something that you have probably done before. It is closely related to some of the
ideas talked about in the previous debugging section. A function is tested to make sure that it con-
forms to its requirements. Often with small programs, testing does not go beyond this level.

 One way to perform integration tests is to make sure that the various objects within a program
correctly implement the interactions in your design. Integration testing can be challenging, because
there are many ways in which the objects in a program can interact. It is diffi cult to make sure they do
what they are designed to do and nothing more.

 System testing entails running the program in the environment in which it was designed to work.
Here the program is tested to make sure that it interacts with external systems correctly. The external
systems might be other programs—such as a government tax collection system—or hardware devices.

 B.7.2 Kinds of Testing

 Two kinds of testing can be applied to a system:

• Open-box testing. With open-box , white-box , or glass-box testing , you design tests know-
ing how the modules work. You carefully choose a method’s actual arguments in a way that
exercises all lines of code in the method. For example, you must make sure that all branches of
if and switch statements are executed.

• Closed-box testing. With closed-box , black-box , or functional testing , you know the name
of the method being tested, as well as its argument list, its return type, and its operation con-
tract. Using only this information, you develop tests across a range of valid input, and then
check the output against hand-calculated results. Choosing some actual arguments outside of
their valid range tests how the module handles incorrect input.

 B.7.3 Developing Test Data

 The test data that you use must test a wide range of conditions. It should include valid, typical input
and values at the extreme limits of valid data—called boundary values— as well as values that

You can never test a
program too much

Unit testing checks
individual modules

Integration testing
checks many parts
of a solution
together

System testing
checks the
integration of the
solution with other
systems

 Testing 739

Disable, but do not
remove, testing
code after use

should never occur in normal execution. For example, suppose that you are testing a simple linear
search algorithm:

 for (int i = 0; i < size; i++)
 {

if (array[i] == target)
 return i;
} // end for

 You should use all of the following values of target :

• Just less than index[0] (boundary at the beginning of the array)
• Equal to index[0] (boundary at the beginning of the array)
• Equal to some entry in the middle of the array
• Within the range of values stored in the array, but unequal to any
• Equal to index[size – 1] (boundary at the end of the array)
• Just greater than index[size – 1] (boundary at the end of the array)

 You should also test this algorithm with

• An empty array
• An array with one entry in it
• An array with many entries

 For each of these tests, you should manually trace the data so that the results are known ahead of time.
In this way, test data can be the input to a module, and you can compare the output with known results.

 B.7.4 Testing Techniques

 As indicated in the debugging section, assert statements can be useful for checking assertions.
However, the assert statement is not powerful enough for the full-scale testing of a system. Other
techniques need to be utilized.

 A common technique is to write a block of code that tests a module. When you have fi nished test-
ing the system, you can simply comment it out—rather than deleting it—as more testing will be
required after you make modifi cations during the next iteration. Alternatively, you can turn these test-
ing blocks of code on and off globally by using one of the techniques that we discuss next.

 The fi rst technique uses a global boolean variable to grant access to testing code contained within
the body of if statements. Setting the variable to false turns testing code “off,” and setting it to true
enables testing. For example, the following test is disabled:

 const bool TESTING = false ; // Disables testing code
 if (TESTING)
 {
 ... // Testing code
 } // end if

 You could defi ne several different boolean variables to turn different tests “on” and “off.” All that is
required is to change the value of the boolean variable and to recompile.

 A second, more effi cient, technique uses the preprocessor to the compiler. You defi ne a macro
that guards the testing code. Then you place the test code within preprocessor directives that test
whether that macro has been defi ned. For example:

 #define TESTING

#ifdef TESTING
 ...// Testing code in here.
 #endif

Always carefully test
boundary values

Values for testing a
search

740 APPENDIX B Important Themes in Programming

A stub is an
incomplete method
that acknowledges
that it has been
called

 To turn off testing, you comment out the defi nition of the macro (// #define TESTING) and recom-
pile. Because the macro is no longer defi ned, the test code is not included in the executable. This has
the advantage that the test code is completely removed from the executable, making it smaller. Again,
you can defi ne several different macros to enable you to turn different blocks of testing code “on” and
“off.”

 B.7.5 Use of Stubs

 Testing a class before implementing all of its methods is often useful. Instead of simply omitting
some methods, you partially implement them so that each one acknowledges that it has been called.
Such methods are called stubs . Stubs allow you to see that the method has been called in the correct
place in the overall fl ow of a program.

For example, suppose that a class has an array data of integers as a data member and a method
sortData. You could write the following stub for sortData:

 void sortData() // Stub
 {
 cout << "sortData has been called\n"
 data[0] = 1;
 data[1] = 2;
 data[2] = 3;
 } // end sortData

 The stub sortData not only indicates that it has been called, but also changes the data into a sorted
form. Thus, this stub could be used for simple integration testing as well. Later, you could implement
sortData by using an appropriate sorting algorithm.

 B.7.6 Use of Drivers

 Given the previous class—let’s name it Example—the following main function creates an Example
object and then calls its methods:

 int main()
 {
 Example t;
 t.dump();
 t.sortData();
 t.dump();

return 0;
} // end main

 Notice the use of Example’s method dump , whose purpose is to display the data in an Example
object. First, main dumps the object t , then it sorts t ’s data, and fi nally it dumps t again. This main
function is known as a driver . It does not do anything algorithmically interesting; it simply tests an
Example object.

 As is evident from the preceding discussion, testing takes a lot of planning and is not easy to do.
Like many things in programming, testing well takes some time and experience.

 sortData is a stub

A driver is a module
that tests another
module

 Appendix

The Unifi ed
Modeling Language C

 Contents
C.1 The Use Case 741
 C.2 UML Sequence Diagrams 742
C.3 UML Class Diagrams 744
 C.4 Keeping the UML in Perspective 748

Prerequisite
C++ Interlude 4 Class Relationships and Reuse

 The Unifi ed Modeling Language , or UML , is a modeling language used to express
object-oriented designs. The UML provides specifi cations for many types of diagrams and
text-based descriptions of various aspects of a design. The diagrams are particularly useful
in showing specifi c, interesting aspects of the elements in the domain of the problem.

 C.1 The Use Case
 A use case is a set of textual scenarios or stories that describe the proposed solution. A
use case is not object-oriented, but it is an important part of the analysis of the problem. A
single use case usually has several scenarios. The main success scenario (or “happy
path”) describes how the system satisfi es the goals of the user when everything goes
smoothly. Other alternate scenarios describe the interaction between the user and the
system when specifi c things do not go well or when exceptional conditions apply.

 For example, suppose that a customer wants to withdraw money from his or her
checking account. A main success scenario might look like this:

 Customer makes a request to withdraw money from a bank account. Bank identi-
fi es and authenticates the customer. Bank gets from the customer the type of
account (savings or checking), the account number, and the amount of the with-
drawal. Bank verifi es that the account balance is greater than the amount of the
withdrawal. Bank generates a receipt for the transaction. Bank counts out the cor-
rect amount of money for the customer. Bank gives the customer the receipt and
money. Customer leaves the bank.

The Unifi ed
Modeling Language
visually represents
object-oriented
designs

A use case is a
textual story; a
scenario describes
the system’s
behavior under
certain
circumstances from
the perspective of
the user

An example of a
main success
scenario

742 APPENDIX C The Unifi ed Modeling Language

 A scenario is written from the perspective of the user of the system. In this way, the analysis will
focus on the responsibilities of the system to meet a user’s goals. That is, the analysis will focus on
what the system needs to accomplish to meet the goals of its users.

 Notice that the scenario does not describe how the system works. For example, “Bank identifi es
and authenticates the customer” does not indicate how this will occur. The focus should be on the
interactions between the user and the system but not on the user interface to the system, which will be
explored during design.

 Alternate scenarios should be written only for stories that are interesting or tricky. For example,
one such scenario describes what happens when the customer fails authentication:

 Customer makes request to withdraw money from a bank account. Bank identifi es but fails to
authenticate the customer. Bank refuses to process the customer request. Customer leaves the bank.

 Other alternate scenarios could include the denial of a withdrawal request because insuffi cient funds
are in the account or because the bank does not have suffi cient cash on hand.

 From the scenarios in the use case, you generate a list of objects by listing the nouns in the use
case. (This is where the analysis becomes object oriented.) For example, bank, money, customer,
account, account type, account number, transaction amount, and receipt are all found in the main suc-
cess scenario. The fi nal solution might not use all of the objects discovered.

An example of an
alternate scenario

Note: The use case during object-oriented analysis

1. Describes the problem domain in terms of scenarios involving the solution that
satisfi es user goals

2. Discovers noteworthy objects, attributes, and associations within the scenarios

 C.2 UML Sequence Diagrams
 After you create a use case and list potential objects, you need to explore how these objects will inter-
act with one another. You accomplish this by using UML sequence diagrams that model your use case
scenarios. A UML sequence diagram , or interaction diagram , shows how two or more objects will
interact with one another over time within a single scenario. This diagram allows you to visualize the
messages sent among the objects in a scenario and the order in which those messages happen. In addi-
tion to giving a sense of the fl ow of the logic, the diagram is important when defi ning the responsi-
bilities of the objects: What must the object “remember,” or keep track of, and what must the object
do for other objects? Many of the responsibilities are described in the use case. Figure C-1 shows a
UML sequence diagram for the main success scenario given previously.

 Although the development of the use case is part of object-oriented analysis (OOA), the creation
of sequence diagrams is part of object-oriented design (OOD). The sequence diagram shows a sce-
nario’s objects from left to right horizontally and their actions in order of occurrence vertically. The
UML represents an object as a square-cornered box containing the name of the object—if it has
one—followed by a colon and the type of the object, all underlined. In Figure C-1 , the object of type
Bank is named bank , and the objects of type Customer and Account are nameless.

 Each object in a sequence diagram has a lifeline denoted by a vertical dashed line below the
object box extending forward in time. Each lifeline can have one or more activation bars , each
represented by an open box on the lifeline. An activation bar indicates when an object is active—
and represents a responsibility of the object’s class. The class needs a method to handle that respon-
sibility. To represent the sending of a message between objects, you draw a solid arrow from the
activation bar of the calling object to the top of a new activation bar on the lifeline of the called

A UML sequence
diagram shows the
interactions among
objects over time

A UML sequence
diagram represents
an object as a box

 UML Sequence Diagrams 743

object. Such arrows are labeled with a message expression indicating what task the object needs to
perform. The message expression corresponds to the name of a method for handling that task. The
message expression may also include parameters necessary for performing the task. Ultimately,
these parameters will correspond to method arguments. When an object fi nishes a task, the activa-
tion bar associated with that task ends. If the task returns something of interest to the calling object,
a dashed arrow may be shown pointing back to the calling object’s activation bar. You can label this
arrow with the name of the variable receiving the returned value.

 In Figure C-1 , the customer asks the bank for authorization by giving its name and identifi er—
passed as arguments—to the authorize message. The bank then processes this message—as indi-
cated by the activation bar associated with the bank object’s lifeline—and then signals whether or not
the customer has been authenticated by returning a value to the variable OK within the Customer
object. Note that you should write the messages in a general, language-independent fashion. A Bank
class could declare the authorize message as follows:

 class Bank
 {
 public:
 ...

bool authorize(string name, string identifier);
...

 }; // end Bank

FIGURE C-1 Sequence diagram for the main success scenario

:Customer

If balance is greater than amount,
new Balance = balance – amount

authorize(name, identifier)

OK

withdraw(accountNum, amount)

generateReceipt()

countCash()

cash, receipt

get Balance(accountNum)

balance

setBalance(newBalance)

bank:Bank :Account

An activation bar on
an object’s lifeline
represents a
responsibility of the
object’s class

744 APPENDIX C The Unifi ed Modeling Language

 An object may also send messages to itself, as is done in the generateReceipt and countCash
messages in Figure C-1 . Notice the piggybacked activation bars, which indicate that the Bank class is
calling its own member methods.

 A sequence diagram can also show the creation of a new object. In Figure C-2 , a new account is
created. This diagram can represent a part of an alternate scenario in a use case, in which a customer
comes into the bank but does not yet have an account. In the UML, the notation <<create>> is what is
known as a stereotype . Stereotypes use left and right guillemets (<< and >>), but when drawing a
sequence diagram by hand, you can simply label the message arrow with create . A stereotype is used
to identify a unique characteristic of an element in any UML diagram.

 The UML sequence diagram is a design document that gives guidance on several levels to the
programmer implementing a solution. It gives a view of how the objects will dynamically interact
(collaborate) to solve a use case scenario. In particular, a sequence diagram shows

• Which objects collaborate to solve a particular use-case scenario
• The synchronous nature of the messages that are passed between the objects in the scenario,

providing the order in which tasks are accomplished
• Which object is responsible for what task or tasks by handling a particular message

A stereotype
identifi es a special
characteristic of an
element

FIGURE C-2 Sequence diagram showing the creation of a new object

bank:Bank

account:Account
«create»

 Note: UML sequence diagrams

• Provide a visual representation of the fl ow of messages sent between objects during a
single scenario

• Indicate the responsibilities of an object
• Indicate the collaborations among objects

A UML class
diagram shows the
unchanging
relationships among
classes of objects

 C.3 UML Class Diagrams
 The last design element we will introduce is the UML class diagram , or static diagram . The class
diagram shows the attributes and operations of an individual class and how multiple classes are
related to one another. These design elements do not change after they have been created within a
solution—that is, they are static, or unchanging.

 The class diagram shown in Figure C-3 represents a class of banks. Each diagram consists of a
square-cornered box containing the name of the class centered within its borders. Figure C-3 a shows
the simplest of class diagrams: a class with a name but no attributes or operations. Figure C-3 b shows
the bank’s attributes in the middle section and its operations in the bottom section. If a class has no
attributes, as in Figure C-3 c, an empty middle section must be present.

 UML Class Diagrams 745

 The class diagram represents a conceptual model of a class of objects in a language-independent
way. That is, the diagram does not dictate how the class is implemented. It just gives you a design to
work from. However, you can specify many qualities associated with the attributes and operations
of the class as an option. These qualities are easily implemented in C++, and they increase the
amount of information given in a design.

 The UML syntax for the attributes of a class is

 [visibility] name [:type][=defaultValue] [{property}]

 where

• All elements within square brackets are optional.
• visibility can be + for public accessibility, � for private accessibility, or # for protected acces-

sibility. (C++ Interlude 4 covers protected accessibility.) If omitted, the visibility defaults to
private accessibility.

• name is the name of the attribute.
• type is the data type of the attribute.
• defaultValue is the default value of the attribute.
• property indicates some property that applies to this attribute.

 At a minimum, the name of an attribute should be given. The defaultValue is given only in situa-
tions where the design dictates that a default value is appropriate for that attribute. In certain cases it
might be appropriate to omit the type of an attribute, leaving this detail until the implementation
phase.

 The UML specifi es that programming-language-independent names be used for the type of an
attribute. This text will follow the UML recommendations by using integer for integral storage,
float for fl oating-point storage, boolean for boolean storage, and string for storing strings.

 The property of an attribute can have one of the following values:

• changeable indicates a normal, modifi able attribute and is usually omitted.
• frozen indicates a constant or write-once attribute.

 The attributes for the Bank class in Figure C-3 b could now be written as

 –name: string
–routingNum: integer

 The visibility of these attributes is private and adheres to the object-oriented programming principle
of information hiding.

 The UML syntax for a class’s operations is more involved:

 [visibility] name ([parameterList]) [:type] [{property}]

FIGURE C-3 Three possible class diagrams for a class of banks

Bank

(a)

Bank

createAccount()

(c)

Bank

name
routingNum

authorize(name, identifier)
createAccount()

(b)

UML syntax for the
attributes of a class

UML syntax for the
operations of a
class

746 APPENDIX C The Unifi ed Modeling Language

 where

• All elements within square brackets are optional.
• visibility is the same as specifi ed for attributes, except if omitted operations default to public

accessibility.
• name is the name of the operation.
• type is the data type of the result returned from the operation. If the operation returns nothing,

type can be either omitted or specifi ed as void. The same language-independent types apply
here as for attribute types.

• property indicates some property that applies to this operation. The only property relevant to
us is query , which indicates that the operation will not modify any of the data members in the
calling object.

• parameterList is either empty—in which case the parentheses are still required—or contains a
comma-delimited list of parameters to the operation. The syntax for each parameter looks like
the following:

 [direction] name:type [=defaultValue]

 where

• All elements within square brackets are optional.
• direction shows whether the parameter is used for input (in), output (out), or both input and

output (inout).
• name is the name of the parameter.
• type is the data type of the parameter. The same language-independent types apply here as for

attribute types.
• defaultValue is the value of this parameter if no corresponding actual argument is provided

when this operation is called.

 In Figure C-3 b, the Bank class operations could be written as

 +authorize(in name: string, in identifier: string): void {query}
 -createAccount()

 The authorize operation has public accessibility, and the createAccount operation is private.
Because the design of the authorize operation has the query property specifi ed, this operation will
not change any of the data in the calling object.

 The UML provides for several types of relationships among the classes in a class diagram. For
example, Figure C-4 shows a static (class) diagram for a banking system. Because the bank has both
checking accounts and savings accounts for its customers, the diagram shows fi ve classes of objects:
a Bank class, a Customer class, an Account class, a Checking class, and a Savings class. These classes
collaborate by sending each other messages. Through these collaborations, the classes are related to
one another in various ways.

 For example, the Bank and Customer classes have an association relationship indicated by the
solid line with no arrowheads. The numbers at the ends of the association—and other relationships—
are called multiplicities and are optional. Each bank object is associated with zero or more custom-
ers, but each customer is associated with one bank. Each customer can have multiple accounts of any
type, but an account can belong to only one customer.

 The Bank and Account classes are in one kind of part/whole relationship called an aggregation ,
or containment , relationship that is denoted by the open diamond arrowhead near the containing
class. In an aggregation relationship, the lifetime of the containing object and the object contained are
not necessarily the same. Banks “live” longer than the accounts that they contain. Another part/whole
relationship, called composition , uses a fi lled-in diamond arrowhead near the containing class. This

An association
indicates that the
classes know about
each other

 Aggregation
indicates that one
class contains an
instance of another
class

 UML Class Diagrams 747

relationship denotes a stronger containment, where the lifetimes of the container and the contained
objects are the same. For example, a ballpoint pen is a pen that has a ball at the tip. When the pen
“dies,” the ball “dies” with it. Thus, the pen and its ball are in a composition relationship. By also
looking at the multiplicities, we can say that a bank stores—that is, contains—zero or more accounts.
The Customer and Account classes also have an aggregation relationship.

 Each of the bank’s accounts stores its account number and current balance and allows a customer
to ask for the current balance, withdraw funds, and deposit funds. The Account class specifi es these
attributes and operations common to all accounts. The Account class is related to the Checking and
Savings classes through a generalization relationship, indicated by the open triangular arrowhead
pointing to the general (or parent) class. The generalization relationship denotes inheritance. The
attributes and operations of the ancestor class , Account , are inherited by the descendant classes ,
Checking and Savings .

 Note that the Account class name is in italic in Figure C-4 . This denotes an abstract base class .
The getBalance operation in the Account class is also in italic. This indicates that getBalance is not
implemented in the Account class but must be implemented within the descendant class. In fact, the
Checking and Savings classes each implement the inherited getBalance operation. This operation
will take on polymorphic behavior when called from a parent class object. Many of these points,
both in design and implementation, will be covered in detail in C++ Interlude 4.

FIGURE C-4 A UML class diagram of a banking system

Bank

Account

-accountNum: integer
-balance: float

+getBalance(): float {query}
+withdraw(in accountNum: integer, in amount: float): boolean
+deposit(in accountNum: integer, in amount: float): boolean

Checking

-chargePerCheck: float
-numCheck: integer
-minBalance: float

Savings

-interestRate: float

-accrueInterest()
+getBalance(): float {query}

Customer

-name: string
-address: string

+getName(): string {query}
+changeName(in newName: string)
+getAddress(): string {query}
+changeAddress(in newAddress: string)

1

0..*

10..*

1

0..*

-name: string
-routingNum: integer

+getBalance(): float {query}

-createAccount()

 Note: UML Class (Static) Diagrams

• Show the attributes and operations of individual classes
• Show the unchanging relationships among the classes in the solution

Composition is a
stronger form of
aggregation; the
lifetimes of the
container and the
contained objects
are the same

748 APPENDIX C The Unifi ed Modeling Language

 C.4 Keeping The UML In Perspective
 Although the UML can be thought of as a tool for documenting a solution to a problem, this is not
how it should be used. Rather, you should use the UML to quickly draw various aspects of the current
problem to better understand it during OOA and to create a set of objects during OOD that can col-
laborate to solve this problem. Often small teams of programmers will draw several UML diagrams
on a whiteboard and, after working out the kinks in the diagrams, take digital pictures of them for
future reference. These design diagrams are considered an artifact , or document, associated with the
analysis and design. However, the ultimate implementation—that is, the solution—might not exactly
match the original design. Thus, the design diagrams might not document the solution.

 The UML is a useful tool for creating a design for a solution. It enables programmers to explore
and understand the problem domain and to develop a design that is close to the required solution.
Although the UML will not necessarily make better designs than other techniques, it can conceptu-
ally model a problem domain in terms of software objects, independently of a programming lan-
guage. Because the UML gives a visual representation of the proposed system, humans—as visual
creatures—can benefi t from using it. After all, a picture is worth a thousand words. The UML enables
the members of a programming team to communicate visually with one another, thereby gaining a
common understanding of the system that is being built.

UML diagrams are
not documentation

The UML is a tool for
exploration and
communication

 Appendix
The Software

Life Cycle D
 Contents
D.1 Iterative and Evolutionary Development 749
 D.2 Rational Unifi ed Process Development 750

 D.2.1 Inception Phase 751
 D.2.2 Elaboration Phase 751
 D.2.3 Construction Phase 752
 D.2.4 Transition Phase 752

 D.3 What About the Waterfall Method of Development? 753

Prerequisites
A general knowledge of software

This appendix examines what a major piece of software “experiences” during its
lifetime. The life cycle of software describes the phases through which software will
progress from conception to replacement to deletion from a hard disk forever. We will
look at the development phases, from project conception to deployment to end users.
Beyond this development process, software will need maintenance to correct errors and
extend it to do new tasks. Eventually the software will be retired.

 The development of good software is a complex affair. Over the last several dec-
ades many techniques have been developed to try to control that complexity. Some of
these techniques have been more successful than others.

 D.1 Iterative and Evolutionary Development
 An iterative development of a solution to a problem progresses through many short,
fi xed-length iterations , where each iteration cycles through the analysis, design, imple-
mentation, testing, and integration of a small portion of the problem domain. The early
iterations build the core of the system. Subsequent iterations build on that core. After
many iterations, the entire solution is developed.

 To manage the time spent on an iteration, each one is assigned a predetermined
duration—called a timebox —at the beginning of the project. Typical timeboxes are two

The software life
cycle describes the
phases of software
development

 Iterative
development forms
a solution after
many iterations;
each iteration builds
on the previous
iteration until a
complete solution is
achieved

750 APPENDIX D The Software Life Cycle

to four weeks in length. The portion of the system that can be developed in less than two weeks is typi-
cally too small to be meaningful. In more than four weeks, the partial system becomes too large. At the
end of each iteration, the partial system should be functional and completely tested. Each iteration
makes relatively few changes to the partial system produced by the previous iteration, so it can occur
quickly. Thus, you do not expend too much effort on something that you may have misunderstood
about the system requirements.

 This process creates the solution incrementally. Thus, there are many places for end users and
developers to check that it solves the correct problem. Because each iteration produces a functional
but partial system, developers can engage end users to generate feedback. This feedback infl uences
the next iteration and can change the direction of development so a more correct solution is reached.
 Figure D-1 illustrates the progress of an iterative development. We see that early iterations may be
way off base, refl ecting the fact that the requirements of the solution are not clearly understood. This
is not anyone’s fault; even the people that have requested the software to be built, the domain experts ,
may not be able to see what is required in the fi nal system. Later iterations will probably not vary so
much, as the requirements of the fi nal system will have become more stable and in line with the cor-
rect solution. In an incremental fashion, the correct solution is created.

A critique of each
iteration infl uences
the next iteration

FIGURE D–1 Iterative development’s progress toward the correct system

System under
development

One
iteration

Correct
solution

 Iterative, incremental development gives a programmer the ability to let the requirements analy-
sis and design evolve over time to meet a changing environment. Thus, the process is sometimes
called evolutionary development .

 Iterative
development
enables you to
adapt a solution to a
changing
environment

Note: Iterative and Evolutionary Development
• Determines timebox lengths at the start of a project
• Keeps timebox lengths short (two to four weeks)
• Gets end-user and domain-expert feedback from iteration n to infl uence the direction of

iteration n + 1

 D.2 Rational Unifi ed Process Development
 This section introduces the widely used Rational Unifi ed Process (RUP) as a basis for examining
the phases of the development process. The RUP will give structure to the use of the analysis and
design tools you learned earlier. As the RUP is a large and complex process, most of its workings are
beyond the scope of this text. Thus, we will simply introduce the process.

The RUP gives
structure to the
software
development
process

 Rational Unifi ed Process Development 751

 The RUP organizes development into four phases:

• Inception —feasibility study, project vision, rough estimates of time and cost
• Elaboration —refi ned project vision, iterative development of core system, development of

system requirements, more accurate time and cost estimates
• Construction —iterative development of remaining system
• Transition —testing and deployment of the system

 We will look at the characteristics of each phase. Figure D-2 shows how the RUP development phases
relate to iterations.

FIGURE D–2 RUP development phases

In
cep

tio
n

One
iteration

One
phase

Elaboration Construction Transition

 D.2.1 Inception Phase

 During the inception phase, we defi ne the scope of the project and decide whether the project is feasi-
ble. If a team has already implemented solutions for similar problems, and the solution is clearly fea-
sible, the inception phase may be very brief.

 At a minimum, the inception phase must defi ne an initial set of system requirements and choose
the length of the iteration timebox. While defi ning the initial requirements, you generate a core set of
use case scenarios and determine which elements of the solution involve the greatest risk. This set of
scenarios and the highest-risk aspects of the solution are the focus of the fi rst iterations in the elabora-
tion phase. Note that the inception phase is not an iteration. You should not try to develop all—or even
most—of the use case scenarios during inception. Usually only about 10 percent of the use case sce-
narios are written in any detail during the inception phase.

 D.2.2 Elaboration Phase

 During the elaboration phase, the system’s core architecture is iteratively developed, high-risk ele-
ments of the system are addressed, and most of the system requirements are defi ned. The core archi-
tecture is composed of those software components that are central to the system. For example, the
objects represented in the Unifi ed Modeling Language (UML) class diagram in Figure C-4 of
Appendix C would make up the core architecture of that banking system.

 The elaboration phase extends over two or more iterations. If the elaboration phase has only one
iteration, no feedback can come into play. Multiple iterations are necessary when developing the cor-
rect solution incrementally and adaptively.

 The usual reason for a solution to fail is that high-risk elements were not handled adequately.
Early in the elaboration phase, high-risk elements need to be addressed and resolved. If these

The inception phase
defi nes a project’s
scope and feasibility

The elaboration
phase develops a
core system and
addresses high-risk
elements

752 APPENDIX D The Software Life Cycle

elements are irresolvable, either the scope of the project must be changed to remove them or the
project must be abandoned. In either case, little time, money, and effort will have been wasted. Leav-
ing the high-risk elements until later in the development of a project can lead to time and cost
overruns—and poor time and cost estimates—because the resolution of the high-risk issues will
consume considerable resources. Moreover, if these issues cause the project to fail, much is lost.
Therefore, you should address high-risk issues early.

 Each iteration starts with an object-oriented analysis of the system requirements and input from
the testing of the previous iteration. This analysis leads to a set of use case scenarios to analyze,
design, implement, and test. Those scenarios are examined for objects and attributes. UML sequence
and class diagrams are drawn to clearly show the objects’ collaborations, responsibilities to the sys-
tem, and relationships to one another. This design is then coded and tested. If this iteration is not one
of the fi rst, the code may need to be integrated into the existing subsystem. After fi nal testing, end
users and domain experts use the system to produce feedback for subsequent iterations.

 D.2.3 Construction Phase

 The construction phase begins once most of the system requirements have been formalized. Each
iteration in this phase still consists of analysis, design, implementation, and testing. At this point in
the development of the system, however, the analysis and design components require less attention,
and increased effort is focused on implementation and testing.

 D.2.4 Transition Phase

 The transition phase begins as the system is put into the environment in which it was designed to
work. This may involve beta testing with advanced end users or one of several other techniques to
move the system into a production environment.

 Figure D-3 shows an example of the relative levels of work done during each of the phases in
analysis, design, implementation, and testing. This example simply suggests the work levels; do not
take them literally.

The elaboration
phase refi nes a
system’s
requirements and
cost

During the transition
phase, beta testing
and system
development occur

FIGURE D–3 Relative amounts of work done in each development phase

Inception

Analysis
Design

Elaboration

Phases

Iterations

1 n

Construction Transition

Implementation
Testing

The construction
phase develops the
remaining system

 What About the Waterfall Method of Development? 753

 D.3 What About the Waterfall Method of Development?
 The RUP is probably new to you, as is another development process—the waterfall method —in
which the solution is developed by sequentially moving through phases such as requirements analy-
sis, design, implementation, testing, and deployment. We think the waterfall method is inferior to the
RUP. However, you doubtless will meet programmers during your career who know only the water-
fall method. For this reason, you should know what it is.

 The waterfall method often results in the following actions:

 Systems analysts produce a set of documents specifying the requirements of the proposed sys-
tem. The requirements documents are passed to a design team that produces a set of design docu-
ments, which are passed to programmers who code the design. The code is passed to a testing
team, which verifi es that the code correctly implements the requirements of the system, as speci-
fi ed by the systems analysts at the beginning of the process.

 Notice that the phases occur one after the other. If the systems analysts do not understand every-
thing about all aspects of the system and its environment, it is likely that they will specify the wrong
system. Such aspects include the system’s end users and their needs, other computer systems that
must be used, the global business environment, and so on. Incorrect requirements analysis will create
a design that, when implemented, leads to a correct system for the wrong problem. In other words, the
system solves the problem defi ned by the requirements analysis, but the requirements analysis
describes the wrong problem.

 The diffi culty with trying to specify the requirements of the proposed system up front is that sys-
tem requirements are not predictable. Most things in the world today, especially in the high-tech and
business worlds, are highly speculative. Change is constant. This implies that the requirements of any
system might change at any time. The development process must allow the system under develop-
ment to evolve and adapt to the changing environment. The waterfall method requires analysts to be
omnipotent. For a system to succeed, the waterfall method should not be used for its development.
Using iterative, incremental, evolutionary development processes, however, allows feedback to guide
the adaptation of the system to a correct solution.

 Be careful not to impose the waterfall method on the RUP development phases. For example, the
RUP’s inception phase is not the same as the waterfall requirements phase. During the inception
phase, some, but not all, system requirements are specifi ed, and programmers also make sure the sys-
tem is feasible, estimate how much the system will cost to develop, and identify the signifi cant high-
risk issues that might doom the project. Trying to develop all use case scenarios during the inception
phase makes it the same as the waterfall method.

 Further, the RUP’s elaboration phase is not the same as the waterfall design phase. During the
elaboration phase, some, but not all, design is done, and programmers also do analysis, coding, and
testing. If the elaboration phase degrades to having only one iteration, the development process effec-
tively becomes the waterfall method. Similarly, the RUP’s construction phase is not only about imple-
mentation, and it is not the same as the waterfall implementation phase.

The waterfall
method is outdated
and should not be
used

This page intentionally left blank

 Appendix

Mathematical
Induction E

Many proofs of theorems or invariants in computer science use a technique called mathematical
induction, or simply induction . Induction is a principle of mathematics that is like a row of dominoes
standing on end. If you push the fi rst domino, all the dominoes will fall one after another. What is it
about the dominoes that allows us to draw this conclusion? If you know that when one domino falls
the next domino will fall, then you know that pushing the fi rst domino will cause them all to fall in
succession. More formally, you can show that all the dominoes will fall if you can show that the
following two facts are true:

• The fi rst domino falls.
• For any k � 1, if the kth domino falls, the (k � 1) th domino will fall.

 The principle of mathematical induction is an axiom that is stated as follows:

 Axiom E-1. The principle of mathematical induction. A property P (n) that involves an integer n
is true for all n � 0 if the following are true:

1. P (0) is true.
2. If P (k) is true for any k � 0, then P (k � 1) is true.

 A proof by induction on n is one that uses the principle of mathematical induction. Such a
proof consists of the two steps given in Axiom E-1. The fi rst step is called the basis, or base case.
The second step is the inductive step. We usually break the inductive step into two parts: the induc-
tive hypothesis (“if P (k) is true for any k � 0”) and the inductive conclusion (“then P (k � 1) is
true”).

 Example 1

 The following recursive function, which is given here in pseudocode, computes x n :

 pow2(x: integer, n: integer)

if (n == 0)
return 1

else
return x * pow2(x, n–1)

 You can prove that pow2 returns x n for all n � 0 by using the following proof by induction on n .

756 APPENDIX E Mathematical Induction

 Basis. Show that the property is true when n � 0. That is, you must show that pow2(x, 0)
returns x0 , which is 1. As you can see from the defi nition of pow2, pow2(x, 0) is 1, which estab-
lishes your basis.

 Now you must establish the inductive step. By assuming that the property is true when n � k (the
inductive hypothesis), you must show that the property is true when n � k � 1 (the inductive conclusion).

 Inductive Hypothesis. Assume that the property is true when n � k . That is, assume that

 pow2(x, k) = xk

 Inductive Conclusion. Show that the property is true when n � k � 1. That is, you must show
that pow2(x, k + 1) returns the value xk � 1 . By defi nition of the function pow2 ,

 pow2(x, k + 1) = x * pow2(x, k)

 By the inductive hypothesis, pow2(x, k) returns the value xk , so

 pow2(x, k + 1) = x * xk
 = xk + 1

 which is what you needed to show to establish the inductive step.
 The inductive proof is thus complete. We demonstrated that the two steps in Axiom E-1 are true,

so the principle of mathematical induction guarantees that pow2 returns xn for all n � 0. (End of proof.)

 Example 2

 Prove that

1 1 2 1c1 n 5
n 1n 1 1 2

2
 when n $ 1

 It will be helpful to let Sn represent the sum 1 � 2 � … � n.

 Basis. Sometimes the property to be proven is trivial when n � 0, as is the case here. You can use n � 1
as the basis instead. (Actually, you can use any value of n � 0 as the basis, but a value of 0 or 1 is typical.)

 You need to show that the sum S1 , which is simply 1, is equal to 1(1 � 1)/2. This fact is obvious.

 Inductive Hypothesis. Assume that the formula is true when n � k; that is, assume that Sk � k (k � 1)/2.

 Inductive Conclusion. Show that the formula is true when n � k � 1. To do so, you can proceed as
follows:

Sk � 1 � (1 � 2 � … � k) � (k � 1) (defi nition of Sk � 1)
� Sk � (k � 1) (defi nition of Sk)
� k (k � 1)/2 � (k � 1) (inductive hypothesis)
� (k (k � 1) � 2(k � 1))/2 (common denominator)
� (k � 1)(k � 2)/2 (factorization)

 The last expression is n (n � 1)/2 when n is k � 1. Thus, if the formula for Sk is true, the formula for Sk � 1 is
true. Therefore, by the principle of mathematical induction, the formula is true when n � 1. (End of proof.)

 Example 3

 Prove that 2 n > n2 when n � 5.

 Basis. Here is an example in which the base case is not n � 0 or 1, but instead is n � 5. It is obvious
that the relationship is true when n � 5, because

 25 � 32 > 52 � 25

 Mathematical Induction 757

 Inductive Hypothesis. Assume that the relationship is true when n � k � 5—that is, assume
that 2 k > k2 when k � 5.

 Inductive Conclusion. Show that the relationship is true when n � k � 1—that is, show that 2 k � 1

> (k � 1) 2 when k � 5. To do so, you can proceed as follows:

 (k � 1)2 � k2 � (2k � 1) (square k � 1)
� k2 � k2 when k � 5 (2k � 1 � k2)
� 2k � 2k when k � 5 (inductive hypothesis)
� 2k � 1

 Therefore, by the principle of mathematical induction, 2 n > n2 when n � 5. (End of proof.)
 Sometimes, the inductive hypothesis in Axiom E-1 is not suffi cient. That is, you may need to

assume more than P (k). The following axiom is a stronger form of the principle of mathematical
induction:

 Axiom E-2. The principle of mathematical induction (strong form). A property P (n) that
involves an integer n is true for all n � 0 if the following are true:

1. P (0) is true.
2. If P (0), P (1), . . . , P (k) are true for any k � 0, then P (k � 1) is true.

 Notice that the inductive hypothesis of Axiom E-2 (“If P (0), P (1), . . . , P (k) are true for any k � 0”)
includes the inductive hypothesis of Axiom E-1 (“If P (k) is true for any k � 0”).

 Example 4

 Prove that every integer greater than 1 can be written as a product of prime integers.
 Recall that a prime number is one that is divisible only by 1 and itself. The inductive proof is as

follows:

 Basis. The statement that you must prove involves integers greater than 1. Thus, the base case is n � 2.
However, 2 is a prime number, and therefore it trivially is a product of prime numbers.

 Inductive Hypothesis. Assume that the property is true for each of the integers 2, 3, . . . , k, where k � 2.

 Inductive Conclusion. Show that the property is true when n � k � 1; that is, show that k � 1 can be
written as a product of prime numbers.

 If k � 1 is a prime number, then there is nothing more to show. However, if k � 1 is not a prime
number, it must be divisible by an integer x such that 1 � x � k � 1. Thus,

k � 1 � x � y

 where 1 � y � k � 1. Notice that x and y are each less than or equal to k , so the inductive hypothesis
applies. That is, x and y can each be written as a product of prime numbers. Clearly, the product x � y ,
which is equal to k � 1, must be a product of prime numbers. Because the formula holds for n � k � 1,
it holds for all n � 2 by the principle of mathematical induction. (End of proof.)

 Example 5

 Chapter 2 discusses the following recursive defi nition:

rabbit(1) � 1
rabbit(2) � 2
rabbit(n) � rabbit(n � 1) � rabbit(n � 2) when n > 2

758 APPENDIX E Mathematical Induction

 Prove that

rabbit (n) � (an � bn)/!5

 where a5 11 1 !5 2 /2 and b 5 11 2 !5 2 /2 5 1 2 a .

 Basis. Because rabbit (0) is undefined, begin at n � 1. Some algebra shows that rabbit (1) �
(a1 � b1)/!5 � 1. However, notice that rabbit (2) is also a special case. That is, you cannot compute
rabbit (2) from rabbit (1) by using the recurrence relationship given here. Therefore, the basis in
this inductive proof must include n � 2.

 When n � 2, some more algebra will show that rabbit (2) � (a2 � b2)/!5 5 1 . Thus, the formula
is true when n is either 1 or 2.

 Inductive Hypothesis. Assume that the formula is true for all n such that 1 ≤ n ≤ k, where k is at least 2.

 Inductive Conclusion. Show that the formula is true for n � k � 1. To do so, you can proceed as follows:

rabbit(k � 1) � rabbit(k) � rabbit(k � 1) (recurrence relation)

� 3 1ak 2 bk 2 1 1ak21 2 bk21 2 4/!5 (inductive hypothesis)

� 3ak21 1a1 1 2 2 bk21 1b 1 1 2 4/!5 (factorization)

� 3 1ak21 1a2 2 2 bk21 2 1b2 2 / 4!5 1a1 1 5 a2; b 1 1 5 b2 2
� 1ak11 2 bk11 2 /!5

 Because the formula holds for n � k � 1, it holds for all n > 2 by the principle of mathematical induc-
tion. (End of proof.)

 Note that the previous proof requires that you show that a � 1 � a2 and b � 1 � b2 . Although
simple algebra will demonstrate the validity of these equalities, exactly how did we discover them
after the factorization step? Some experience with inductive proofs will give you the confi dence to
determine and verify the auxiliary relationships—such as a � 1 � a2 —that are necessary in a proof.
Here, after we introduced the factors (a � 1) and (b � 1), we observed that if these factors were equal
to a2 and b2 , respectively, we could fi nish the proof. Thus, we tried to show that a � 1 � a2 and b � 1 �
b2 ; indeed, we were successful. Inductive proofs often require adventurous algebraic manipulations!

 Appendix
Algorithm

Verifi cation F
Formal, theoretical techniques are available for proving that an algorithm is correct.
Although research in this area is incomplete, it is useful to mention some aspects of the
verifi cation process.

 An assertion is a statement about a particular condition at a certain point in an algo-
rithm. Preconditions and postconditions are simply assertions about conditions at the
beginning and end of methods and functions. An invariant is a condition that is always
true at a particular point in an algorithm. A loop invariant is a condition that is true before
and after each execution of an algorithm’s loop. As you will see, loop invariants can help
you write correct loops. By using invariants, you can detect errors before you begin coding
and thereby reduce your debugging and testing time. Overall, invariants can save you time.

 Proving that an algorithm is correct is like proving a theorem in geometry. For
example, to prove that a method or function is correct, you would start with its precon-
ditions—which are analogous to the axioms and assumptions in geometry—and dem-
onstrate that the steps of the algorithm lead to the postconditions. To do so, you would
consider each step in the algorithm and show that an assertion before the step leads to a
particular assertion after the step.

 By proving the validity of individual statements, you can prove that sequences of
statements, and then methods and functions, classes, and fi nally the program are cor-
rect. For example, suppose you show that if assertion A1 is true and statement S1 exe-
cutes, then assertion A2 is true. Also suppose you have shown that assertion A2 and
statement S2 lead to assertion A3 . You can then conclude that if assertion A1 is true, exe-
cuting the sequence of statements S1 and S2 will lead to assertion A3 . By continuing in
this manner, you eventually will be able to show that the program is correct.

 Clearly, if you discovered an error during the verifi cation process, you would cor-
rect your algorithm and possibly modify the analysis and/or design. Thus, when you use
invariants, your algorithm will likely contain fewer errors before you begin coding. As a
result, you will spend less time debugging your program.

 You can formally prove that particular constructs such as if statements, loops, and
assignments are correct. An important technique uses loop invariants to demonstrate

You can prove the
correctness of
some algorithms

Prerequisite
Appendix E Mathematical Induction

760 APPENDIX F Algorithm Verifi cation

the correctness of iterative algorithms. For example, we will prove that the following simple loop
computes the sum of the fi rst n elements in the array item:

 // Computes the sum of item[0], item[1], . . ., item[n-1]
// for any n >= 1
 int sum = 0;
 int j = 0;
 while (j < n)
 {
 sum += item[j];
 j++;
} // end while

 Before this loop begins execution, sum is 0 and j is 0. After the loop executes once, sum is item[0]
and j is 1. In general,

sum is the sum of the elements item[0] through item[j-1]

 This statement is the invariant for this loop.
 The invariant for a correct loop is true at the following points:

• Initially, after any initialization steps, but before the loop begins execution
• Before every iteration of the loop
• After every iteration of the loop
• After the loop terminates

 For the previous loop example, these points are as follows:

 int sum = 0;
 int j = 0;

The invariant is true here
 while (j < n)
 {

The invariant is true here
 sum += item[j];
 j++;

The invariant is true here
 } // end while

The invariant is true here

 You can use these observations to prove the correctness of an iterative (loop-controlled) algo-
rithm. For the previous example, you must show that each of the following four points is true:

1. The invariant must be true initially, before the loop begins execution for the fi rst time. In
the previous example, sum is 0 and j is 0 initially. In this case, the invariant states that sum
contains the sum of the elements item[0] through item[–1]; the invariant is true because
there are no elements in this range.

2. An execution of the loop must preserve the invariant. That is, if the invariant is true before
any given iteration of the loop, you must show that it is true after the iteration. In the example,
the loop adds item[j] to sum and then increments j by 1. Thus, after an execution of the loop,
the most recent element added to sum is item[j–1]; that is, the invariant is true after the iteration.

3. The invariant must capture the correctness of the algorithm. That is, you must show that
if the invariant is true when the loop terminates, the algorithm is correct. When the loop in
the previous example terminates, j contains n, and the invariant is true: sum contains the sum
of the elements item[0] through item[n–1], which is the sum that you intended to compute.

Loop invariant

Steps to establish
the correctness of
an algorithm

 Algorithm Verifi cation 761

4. The loop must terminate. That is, you must show that the loop will terminate after a fi nite
number of iterations. In the example, j begins at 0 and then increases by 1 at each execution
of the loop. Thus, j eventually will equal n for any n � 1. This fact and the nature of the
while statement guarantee that the loop will terminate.

 Not only can you use invariants to show that your loop is correct, but you can also use them to
show that your loop is wrong. For example, suppose that the expression in the previous while state-
ment was j <= n instead of j < n. Steps 1 and 2 of the previous demonstration would be the same, but
step 3 would differ: When the loop terminated, j would contain n + 1 and, because the invariant would
be true, sum would contain the sum of the elements item[0] through item[n]. Because this is not the
desired sum, you know that something is wrong with your loop.

 Notice the clear connection between steps 1 through 4 and mathematical induction .1 Showing
the invariant to be true initially, which establishes the base case , is analogous to establishing that a
property of the natural numbers is true for 0. Showing that each iteration of the loop preserves the
invariant is the inductive step . This step is analogous to showing that if a property is true for an arbi-
trary natural number k , then the property is true for the natural number k + 1. After performing the
four steps just described, you can conclude that the invariant is true after every iteration of the loop—
just as mathematical induction allows you to conclude that a property is true for every natural number.

 Identifying loop invariants will help you write correct loops. You should state the invariant as a
comment that either precedes or begins each loop, as appropriate. For example, in the previous exam-
ple, you might write the following:

 // Invariant: 0 <= j <= n and
// sum = item[0] + ... + item[j-1]
 while (j < n)
 . . .

 You should confi rm that the invariants for the following unrelated loops are correct. Remember
that each invariant must be true both before the loop begins and after each iteration of the loop,
including the fi nal one. Also, you might fi nd it easier to understand the invariant for a for loop if you
temporarily convert it to an equivalent while loop:

 // Compute n! for an integer n >= 0
 int factorial = 1;
// Invariant: factorial = = (j-1)!
 for (int j = 1; j <= n; j++)
 factorial *= j;

// Compute an approximation of ex for a real x
 double term = 1.0;
 double series = 1.0;
 int k = 1;
// Invariant: term == xk-1/(k-1)! and
// series == 1+x+x2/2!+...+xk-1/(k-1)!
 while (k <= n)
 {
 term *= x / k;
 series += term;
 k++;
} // end while

 1 A review of mathematical induction appears in Appendix E.

State loop invariants
in your programs

Examples of loop
invariants

This page intentionally left blank

 Appendix

C++ File
Fundamentals G

 Contents
G.1 File Input and Output 763
 G.2 Text Files 764

 G.2.1 Opening and Closing Text Files 764
 G.2.2 Reading and Writing Text File 765
 G.2.3 Manipulating Text Files 770

 G.3 Binary Files 772

Prerequisite
 Appendix A Review of C++ Fundamentals

 G.1 File Input and Output
 You have used fi les ever since you wrote your fi rst program. In fact, your C++ source pro-
gram is in a fi le that you probably created by using a text editor. You can create and access
such fi les outside of, and independently of, any particular program. Files can also contain
data that is either read or written by your program. It is this type of fi le that concerns us here.

 A fi le is a sequence of bytes that resides in auxiliary storage, often a disk. Files are
useful because they can be large and can exist after program execution terminates. In
contrast, variables, for example, represent memory that is accessible only within the
program that creates them. When program execution terminates, the operating system
reuses this memory and changes its contents.

 Because fi les can exist after program execution, they not only provide a permanent
record for human users, they also allow communication between programs. Program A can
write its output into a fi le that program B can use later for input. However, fi les that you dis-
card after program execution are not unusual. Chapter 16 discusses one such fi le that can
help balance a binary search tree. You can also use such a fi le as a scratch pad during pro-
gram execution when you have too much data to retain conveniently in memory all at once.

 Files are classifi ed as follows. A text fi le is a fi le of characters that are organized logi-
cally into lines. The fi les that you create—by using an editor—to contain your C++ pro-
grams are text fi les. Because text fi les consist of characters, and accessing characters by
position number is usually not convenient, you typically process a text fi le sequentially. A
fi le that is not a text fi le is called a binary fi le or, sometimes, a general fi le or nontext fi le .

764 APPENDIX G C++ File Fundamentals

 G.2 Text Files
 Text fi les are designed for easy communication with people. As such, these fi les are fl exible and easy
to use, but they are not as effi cient with respect to computer time and storage as binary fi les.

 One special aspect of text fi les is that they appear to be divided into lines. This illusion is often
the source of much confusion. In reality, a text fi le—like any other fi le—is a sequence of bytes. That
is, a text fi le is a sequence of characters. A special end-of-line character creates the illusion that a text
fi le contains lines by making the fi le behave as if it were divided into lines.

 When you create a text fi le by typing data at your keyboard, each time you press the Enter, or
Return, key, you insert one end-of-line character into the fi le. When an output device, such as a printer
or monitor, encounters an end-of-line character in a text fi le, the device moves to the beginning of the
next line. In C++, this end-of-line symbol is the character \n .

 In addition, you can think of a special end-of-fi le character that follows the last component in a
fi le. Such a symbol may or may not actually exist in the fi le, but C++ behaves as if one did. The prede-
fi ned constant EOF , for “end of fi le,” represents this symbol within your program. This book assumes
that all text fi les—including the empty fi le—end with both an end-of-line symbol and an end-of-fi le
symbol. Figure G-1 depicts a text fi le with these special symbols.

A text fi le contains
lines of characters

Files end with a
special end-of-fi le
symbol

FIGURE G-1 A text fi le with end-of-line and end-of-fi le symbols

eof

eof

eolneolneolneoln

eoln

T o d a y i s i t

is the end-of-line symbol

is the end-of-file symbol

 Any program that uses fi les must access the standard C++ fi le stream library. You enable this
access by including the following statements in your program:

 #include <fstream>
 using namespace std;

 The C++ fi le stream library provides three stream types: ifstream for input fi le streams, ofstream
for output fi le streams, and fstream for fi le streams that are for both input and output. You use a
stream variable of one of these types to access a fi le. Files are sometimes referred to as streams since
you can think of a fi le as a stream of characters fl owing into or out of your program.

 To use a fi le in your program, there are three simple steps:

1. Open the fi le.
2. Read data from the fi le or write data to the fi le.
3. Close the fi le.

 G.2.1 Opening and Closing Text Files

 Opening a fi le. Before you can read from or write to a fi le, you need to open it. That is, you need to
initialize the fi le and associate its name with a stream variable. One way to open a fi le is to provide the
fi le’s name when you declare the stream variable. For example,

 ifstream inFile("Ages.DAT"); // Input file

Use a stream
variable to access a
fi le

You must initialize,
or open, a fi le before
you can use it

Text Files 765

 declares an input stream variable inFile and associates it with the fi le named Ages.DAT . The fi le
name can be a literal constant, as it is here, or a string variable. Once the fi le is open, you no longer
need the fi le’s name; it is used only to link the fi le on the disk to the stream variable that you use in
your program.

 Alternatively, you can declare an input stream variable by writing

 ifstream inFile;

 and then later use the open method to associate it with the fi le’s name:

 inFile.open("Ages.DAT");

 Regardless of how you open a fi le, you can check the stream variable to see if the process was
successful by writing

 if (!inFile)
 processError(); // Deal with failure to open file

 Closing a fi le. You close a particular fi le—that is, disassociate it from a stream variable and free
system resources—by using the close method:

 myFile.close();

 Once a fi le is closed, it is no longer available for input or output until a program opens it again.

 G.2.2 Reading and Writing Text Files

 Associated with each fi le in a program is a fi le window , which marks the current position within the
fi le. Opening a fi le positions the fi le window over the fi rst byte in the fi le, as Figure G-2 illustrates.
Because each byte in a text fi le is a character, the fi le window for a text fi le moves from character to
character. The following sections describe the behavior of the fi le window.

You can check
whether a fi le was
opened successfully

A fi le window marks
the current position
within a fi le

Opening a text fi le
for input positions
the fi le window
over the fi rst
character in the fi le

FIGURE G-2 The fi le window after an existing text fi le is opened for input

YX eoln

 Character input. Suppose that you have declared an input stream variable inFile and associated it
with the name of the text fi le by writing

 ifstream inFile(fileName);

 where fileName is a string variable. When you use a fi le for input, the fi le window is over the byte
that you will read next. Thus, after you open a fi le, you are ready to read the fi rst byte, as you saw in
 Figure G-2 . As you read the characters from a text fi le, the fi le window advances sequentially from
one character to another. After reading several characters, you will see the fi le window shown in
 Figure G-3 .

 The input operator >> and methods such as get , whose use with cin was described in
Appendix A, are also used with fi les. For the character variable ch and the stream variable inFile ,
either of the statements

 inFile >> ch; // Preferred technique.

766 APPENDIX G C++ File Fundamentals

 or

 inFile.get(ch);

 means

 ch = the value at the file window
 Advance the file window to the next component

 as Figure G-4 illustrates.

FIGURE G-3 A fi le window over the component to be read next

W X

Next value
to be read

Last value
actually read

inFile´s
file window

FIGURE G-4 The effect of inFile >> ch on a text fi le inFile

eofeoln eolnfedb ca

eofeoln eolnfedb ca

ch

Before inFile >> ch;

ch

After inFile >> ch;

?

c

 You can detect when the fi le window has reached either the end of a line or the end of the fi le by
using the peek method. This method returns the character in the fi le window but does not advance the
window to the next character. For example, the loop

 while (inFile.peek() != '\n') // Loop until end of line.
 cout << (inFile.get()); // Get character from inFile and display it.

 displays a line of a text fi le, and the loop

 while (inFile.peek() != EOF) // Loop until end of entire file.
 cout << (inFile.get()); // Get character from inFile and display it.

 displays the contents of an entire text fi le.

 Text Files 767

 To summarize, consider the text fi le inFile that appears in Figure G-4 . If ch is a character varia-
ble, the statements in the following sequence assign values to ch as indicated:

 ifstream.inFile(fileName);
inFile >> ch; // ch = 'a'.
inFile.get(ch); // ch = 'b' — alternate technique 1.
ch = inFile.get(); // ch = 'c' — alternate technique 2.
inFile.ignore(10, '\n'); // Skip 'd' and end-of-file symbol.
inFile >> ch; // ch = 'e'.
ch = inFile.peek(); // ch = 'f'.
inFile >> ch; // ch = 'f'.
inFile >> ch; // ch = '\n'.
inFile.ignore(1); // Skip end-of-file symbol.
inFile >> ch; // Error: attempted read beyond end of file.

 You also can read the characters in the fi le as strings by using getline , get , and read in the same
way that you used them with cin .

 Character output. Suppose that you have declared an output stream variable outFile and associ-
ated it with the name of the text fi le, as in

 ofstream outFile(fileName);

 If you are creating a new fi le, the fi le window will be positioned at the beginning (and the end) of the
new fi le, which is empty. If the fi le already exists, opening it erases the data in the fi le and positions
the window at the beginning—and the end—of the now empty fi le.

 The output operator << and methods such as put , whose use with cout was described in
Appendix A, are also used with fi les. For the character variable ch and the stream variable outFile ,
either of the statements

 outFile << ch; // Preferred technique.

 or

 outFile.put(ch);

 means

 Write the value of ch at the file-window position
 Advance the file window

 Figure G-5 illustrates these steps when ch contains the character X . Note that if ch contains \n , either
of the previous statements writes the end-of-line symbol to the fi le.

FIGURE G-5 The effect of outFile << ch on a text fi le outFile when ch contains the
character X

R Z W Y R Z W Y X

Before outFile << ch; After outFile << ch;

 You can also write strings to a text fi le by using either << or the method write , as described in
Appendix A.

768 APPENDIX G C++ File Fundamentals

 Numeric data within text fi les. As you know, you can read integer and fl oating-point values from
the standard input stream into variables with arithmetic data types. You also know that the standard
input stream is a sequence of characters. Likewise, a text fi le is a sequence of characters, so it should
not surprise you that integer and fl oating-point values can be read from and written to a text fi le.
Although this presentation uses int values to illustrate the concepts, the other arithmetic data types
follow by analogy.

 When your program reads from a text fi le into an int variable, the system expects a sequence of
characters that it can convert into an integer. For example, if the text fi le contains the character
sequence 2 , 3 , 4 , and you read from the text fi le into the int variable x , the system will convert these
three characters into the computer’s internal representation for the integer 234 and assign this value to
x . More precisely, the text fi le contains the ASCII codes for the characters 2 , 3 , and 4 —which are,
respectively, the decimal values 50, 51, and 52. However, these codes appear in the fi le in binary, as
 Figure G-6 a indicates. If you read those characters into the integer variable x , x will contain the com-
puter’s internal representation for the integer 234, which appears in binary as shown in Figure G-6 b.
Thus, the representation of digits in a text fi le differs from the representation in memory of the
number that those digits symbolize.

FIGURE G-6 (a) The ASCII characters 2, 3, and 4 represented in binary in a text fi le;
(b) the internal binary representation of the integer 234

00110010

0000000011101010

00110011 00110100

Text file

Memory for the variable x

(a)

(b)

2

234

3 4 Character equivalents

Decimal equivalent

 To summarize, if inFile is an input stream variable that is associated with a text fi le of valid
integers, and x is an int variable, the statement

 inFile >> x;

 has the following effect:

 Skip to the first nonblank character
 Convert into an integer the sequence of characters that begins

 at the current position of inFile’s window and ends just before the next
 character c that is not a digit

 Assign this integer value to x
 Advance the file window so that it is over the character c

 Figure G-7 illustrates these steps. Observe that if the sequence begins with a character other than +, –,
or 0 through 9, reading will terminate. For example, the system cannot convert the sequence w123 into
an integer. It will, however, read the integer 123 from the sequence 123wrt .

 When your program writes an integer value such as 234 to a text fi le, the system fi rst converts the
integer from the computer’s internal binary representation (0000000011101010) to the character

 Text Files 769

sequence 2 , 3 , 4 and then writes these characters to the fi le. For the output stream variable outFile
and the integer variable x , the statement

 outFile << x;

 has the following effect:

 Convert the value of x into a sequence of characters
 Append this sequence of characters to the file
 Position the file window just past the last character written

 The following function reads and displays the contents of an entire text fi le of integers:

 void echoFile(string fileName)
 {
 ifstream inFile(fileName);

int x = 0;

while (inFile >> x) // Read fails at end of file.
 cout << x << " ";

 cout << endl;
 inFile.close();
} // end echoFile

 The function ignores the end-of-line symbols in the fi le and displays the integers all on one line.
 Suppose that you want to display each line in the fi le regardless of the number of integers per

line. You can use the peek and ignore methods to accomplish this. Note that you always pass a stream
variable to a function as a reference argument.

 // Skips blanks in a text file.
 void skipBlanks(ifstream& inFile)
 {

while (inFile.peek() == ' ') // While the current character is a blank:
 inFile.ignore(1); // Ignore character, advance file window.
} // end skipBlanks

// Displays one line of a text file.
 void echoLine(ifstream& inFile)

FIGURE G-7 Reading an integer from a text fi le

1 2 3 4 5

1 2 3 4 5?x

Before inFile >> x;

123x

After inFile >> x;

770 APPENDIX G C++ File Fundamentals

 {
int x = 0;
while (inFile.peek() != '\n') // While the current character is not eol:

 {
 inFile >> x; // Read the next integer into x.
 cout << x << " "; // Display the number to user.
 skipBlanks(inFile); // Skip blanks following number.
 } // end while

 inFile.ignore(1); // Advance beyond \n.
 cout << "\n"; // For user display.
} // end echoLine

// Displays the contents of a text file.
 void echoFile(string fileName)
 {
 ifstream inFile(fileName);

 skipBlanks(inFile);
while (inFile.peek() != EOF)

 echoLine(inFile);

 inFile.close();
} // end echoFile

 G.2.3 Manipulating Text Files

 Copying a text fi le. Suppose that you wanted to make a copy of the text fi le associated with the
stream variable originalFile . Copying a text fi le requires some work and provides a good example
of the statements you have just studied. The approach taken by the following function copies the fi le
one character at a time, taking into account both the end-of-line symbols and the end-of-fi le symbol:

 /** Makes a duplicate copy of a text file.
 @pre The name of an existing external text file and the name of the
 text file to be created are given as strings.
 @post The original text file is duplicated.
 @param originalFileName Name of file to copy.
 @param copyFileName Name of final copy. */
 void copyTextFile(string originalFileName, string copyFileName)
 {
 ifstream originalFile(originalFileName); // Input file
 ofstream copyFile(copyFileName); // Output file

char ch = '';

 // Copy characters one at a time from given file to new file.
while (originalFile.get(ch)) // Fails at end of file.

 copyFile << ch; // Write character to new file.

// Close the files.
 originalFile.close();
 copyFile.close();
} // end copyTextFile

 Notice that this function copies each end-of-line symbol just as it copies any other character. To do so,
the expression

 originalFile.get(ch)

 is necessary because

 originalFile >> ch

 skips whitespace, including the end-of-line symbol.

 Text Files 771

 Adding to a text fi le. When you open a fi le, you can specify a second argument in addition to the
fi le’s name. This second argument has the form

 ios:: mode

 where mode has values such as in , out , or app . Until now, this argument has been omitted because
ifstream fi les are by default opened for input, whereas ofstream fi les are opened for output. You
can append a component to an ofstream fi le outFile by fi rst opening it in append mode. Either the
statement

 ofstream outFile("Sample.DAT", ios::app);

 or the statements

 ofstream outFile;
outFile.open("Sample.DAT", ios::app);

 prepare the fi le for output and position the fi le window after the fi le’s last component. Thus, the old
contents of the fi le are retained, and you can write additional components.

 Searching a text fi le sequentially. Suppose that you have a text fi le of data about a company’s
employees. For simplicity, assume that this fi le contains two consecutive lines for each employee. The
fi rst line contains the employee’s name, and the next line contains data such as salary.

 Given the name of an employee, you can search the fi le for that name and then determine the
other information about this person. A sequential search examines the names in the order in which
they appear in the fi le until the desired name is located. The following function performs such a
sequential search. If the person is found, it returns that worker’s salary; otherwise, it returns -1.0 .

 double getSalary(string fileToSearch, string desiredName)
 {

bool found = false;
 string nextName;
double nextSalary = -1.0;
 ifstream inFile(fileToSearch);

while (!found && getline(inFile, nextName))
 {

inFile >> nextSalary; // Salary for nextName.
 inFile.ignore(); // Ignores remaining whitespace in line.

if (nextName == desiredName)
 found = true;

 } // end while

 inFile.close(); // Always close file before return statement.
return nextSalary;

} // end getSalary

 This function needs to look at all the names in the fi le before determining that a particular name
does not occur. If the names were in alphabetical order, you could determine when the search passed
the place in the fi le that should have contained the desired name, if it existed. In this way, you could
terminate the search before you needlessly searched the rest of the fi le.

 Accessing a text fi le directly. Although you usually process a text fi le sequentially, you can access
the character stored at a given position directly without fi rst reading the preceding characters.

 The characters in a text fi le are numbered sequentially in order of appearance in the fi le, begin-
ning with zero. The seekg method provides access to any character in the fi le, given the character’s
number. For example,

 myFile.seekg(15)

772 APPENDIX G C++ File Fundamentals

 advances the fi le window to the character numbered 15, which is actually the 16 th character in the fi le.
Immediately following this operation, you can read the character.

 You can also locate a character relative to either the beginning of the fi le, the current position in
the fi le, or the end of the fi le by specifying—as the second argument to seekg —

 ios:: mode

 where mode is one of beg , cur , or end . Thus,

 myFile.seekg(2, ios::cur)

 seeks the second character after the one at the present location of the fi le window.

 G.3 Binary Files
 Files that are not text fi les are called binary (or general or nontext) fi les. Like a text fi le, a binary fi le is
a sequence of bytes grouped together into fi le components. It is important to emphasize that each fi le
component is an indivisible entity. For example, each component of a binary fi le of integers is an inte-
ger in the computer’s internal representation. If you write the integer value 234 to a binary fi le, the
system would write the computer’s internal representation of 234, which is 0000000011101010 in
binary, to the fi le, rather than the three ASCII characters 2 , 3 , 4 , which are, respectively, 00110010,
00110011, and 00110100 in binary. Similar comments are true for a binary fi le of fl oating-point num-
bers. If you could use a text editor to look at the fi le, you would see gibberish. You create a binary fi le
not by using an editor—as you can for a text fi le—but rather by running a program.

 The statement

 ofstream outFile(myFileName, ios::binary);

 associates the stream variable outFile with the external binary fi le whose name is in the string
variable myFileName . A binary fi le has an end-of-fi le symbol at its end, just as a text fi le does. However,
the notion of lines does not exist for a binary fi le, although a binary fi le might contain data that
coincidentally looks like an end-of-line symbol. Except for the differences noted here, C++ treats
binary fi les in the same way that it treats text fi les.

 Appendix C++ Header
Files and Standard

Functions H
Here is a list of commonly used C++ header fi les. Other header fi les are introduced in the chapters
when needed.

 cassert

 This library contains only the function assert . You use

assert(assertion);

 to test the validity of an assertion. If assertion is false , assert writes an error message and terminates
program execution. You can disable all occurrences of assert in your program by placing the direc-
tive #define NDEBUG before the include directive.

 cctype

 Most functions in this library classify a given ASCII character as a letter, a digit, and so on. Two other
functions convert letters between uppercase and lowercase.

 The classifi cation functions return a true value if ch belongs to the specifi ed group; otherwise
they return false .

 isalnum(ch) Returns true if ch is either a letter or a decimal digit

 isalpha(ch) Returns true if ch is a letter

 iscntrl(ch) Returns true if ch is a control character (ASCII 127 or 0 to 31)

 isdigit(ch) Returns true if ch is a decimal digit

 isgraph(ch) Returns true if ch is printable and nonblank

 islower(ch) Returns true if ch is a lowercase letter

 isprint(ch) Returns true if ch is printable (including blank)

 ispunct(ch) Returns true if ch is a punctuation character

 isspace(ch) Returns true if ch is a whitespace character: space, tab, carriage return, new line,
or form feed

 isupper(ch) Returns true if ch is an uppercase letter

 isdigit(ch) Returns true if ch is a hexadecimal digit

 toascii(ch) Returns the ASCII code for ch

774 APPENDIX H C++ Header Files and Standard Functions

 cmath

 The C++ functions in this library compute certain standard mathematical functions. These functions
are overloaded to accommodate float , double , and long double . Unless otherwise indicated, each
function has one argument, with the return type being the same as the argument type (either float ,
double , or long double).

 cstdlib

 tolower(ch) Returns the lowercase version of ch if ch is an uppercase letter; otherwise
returns ch

 toupper(ch) Returns the uppercase version of ch if ch is a lowercase letter; otherwise
returns ch

 acos(x) Returns the arc cosine

 asin(x) Returns the arc sine

 atan(x) Returns the arc tangent

atan2(x, y) Returns the arc tangent of x /y

 ceil(x) Rounds up

 cos(x) Returns the cosine

 cosh(x) Returns the hyperbolic cosine

 exp(x) Returns e raised to the power x

 fabs(x) Returns the absolute value

 floor(x) Rounds down

fmod(x, y) Returns x modulo y

 log(x) Returns the natural log

 log10(x) Returns the log base 10

modf(x, iptr) For arguments x and iptr , returns the fractional part of x and sets iptr to point
to the integer part of x

pow(x, y) Returns x raised to the power y

 sin(x) Returns the sine

 sinh(x) Returns the hyperbolic sine

 sqrt(x) Returns the square root

 tan(x) Returns the tangent

 tanh(x) Returns the hyperbolic tangent

 abort() Terminates program execution abnormally

 abs(x) Returns the absolute value of an integer

 atof(s) Converts a string argument to fl oating point

 atoi(s) Converts a string argument to an integer

 C++ Header Files and Standard Functions 775

 exit(x) Terminates program execution, returns x to the operating system

 rand() Returns a pseudorandom integer

 srand(x) Initializes the pseudorandom number generator to x

 srand() Initializes the pseudorandom number generator to 1

 cstring

 This library enables you to manipulate C strings that end in \0 . Unless noted otherwise, these func-
tions return a pointer to the resulting string in addition to modifying an appropriate argument. The
argument ch is a character, n is an integer, and the other arguments are strings.

strncat(toS, fromS, n) Copies at most n characters of fromS to the end of toS and appends '\0'

strcmp(str1, str2) Returns an integer that is negative if str1 < str2 , zero if str1 ==
str2 , and positive if str1 > str2

stricmp(str1, str2) Behaves like strcmp , but ignores case

strncmp(str1, str2, n) Behaves like strcmp , but compares the fi rst n characters of each string

strncpy(toS, fromS, n) Copies n characters of fromS to toS , truncating or padding with
'\0' as necessary

strspn(str1, str2) Returns the number of initial consecutive characters of str1 that are
not in str2

strcspn(str1, str2) Returns the number of initial consecutive characters of str1 that are
in str2

 strlen(str) Returns the length of str , excluding '\0'

 strlwr(str) Converts any uppercase letters in str to lowercase without altering
other characters

 strupr(str) Converts any lowercase letters in str to uppercase without altering
other characters

strchr(str, ch) Returns a pointer to the fi rst occurrence of ch in str ; otherwise
returns nullptr

strrchr(str, ch) Returns a pointer to the last occurrence of ch in str ; otherwise returns
nullptr

strpbrk(str1, str2) Returns a pointer to the fi rst character in str1 that also appears in
str2 ; othewise returns nullptr

strstr(str1, str2) Returns a pointer to the fi rst occurrence of str2 in str1 ; otherwise
returns nullptr

strtok(str1, str2) Finds the next token in str1 that is followed by str2 , returns a pointer
to the token, and writes nullptr immediately after the token in str1

 fstream

 Defi nes the C++ classes that support fi le I/O.

776 APPENDIX H C++ Header Files and Standard Functions

 iomanip

 The manipulators in this library affect the format of stream operations. Note that iostream contains
additional manipulators.

 setbase(b) Sets number base to b = 8, 10, or 16

 setfill(f) Sets fi ll character to f

 setprecision(n) Sets fl oating-point precision to integer n

 setw(n) Sets fi eld width to integer n

 dec Tells the subsequent operation to use decimal representation

 endl Inserts the new-line character \n and fl ushes the output stream

 ends Inserts the null character \0 into an output stream

 flush Flushes an output stream

 hex Tells the subsequent I/O operation to use hexadecimal representation

 oct Tells the subsequent I/O operation to use octal representation

 ws Extracts whitespace characters from the input stream

 iostream

 The manipulators in this library affect the format of stream operations. Note that iomanip contains
additional manipulators.

 stdexcept

 Defi nes several exception classes that can be thrown or extended for specifi c exceptional conditions.

string

 This library enables you to manipulate C++ strings. Described here is a selection of the methods that
this library provides. In addition, you can use the following operators with C++ strings: = , + , == , != , < ,
<= , > , >= , << , and >> . Note that positions within a string begin at 0.

 erase() Makes the string empty

erase(pos, len) Removes the substring that begins at position pos and contains len
characters

 find(subString) Returns the position of the substring subString within the string

 length() Returns the number of characters in the string (same as size)

replace(pos, len, str) Replaces the substring that begins at position pos and contains len
characters with the string str

 size() Returns the number of characters in the string (same as length)

substr(pos, len) Returns the substring that begins at position pos and contains len
characters

 Appendix C++
Documentation

Systems I
Documenting programs has never been a very enjoyable task. With the advent of the javadoc
documentation system, commenting Java programs is at least less tedious. Inspired by javadoc ,
others have produced utility software to process documentation for other programming languages,
including C++. Documentation tools like doxygen (doxygen.org) and DOC++ (docpp.source-
forge.net) read C++ source code and generate HTML-based documentation from javadoc -style
comments embedded within the code. The comments in this book assume that doxygen will prepare
the documentation.

 The doxygen tool extracts the header for your class, the headers for all public methods, and com-
ments that are written in a certain form. No method bodies and no private items are extracted.

 For a comment to be extracted, the comment must satisfy two conditions:

• The comment must occur immediately before a public class defi nition or the header of a public
method.

• The comment must begin with /** and end with */ and is a special form of the C++ multiline
comment /* ... */.

 Inside the comment, doxygen tags identify different aspects of the documentation, such as the pro-
grammer’s name and a method’s parameters and return value. Tags begin with the symbol @. We will
describe only some of the available tags in this appendix. Note that some doxygen tags differ from the
tags used by javadoc .

• @author lists the name of a class’s programmer.
• @file identifi es the name of the fi le containing a class.
• @param identifi es a method’s parameter by name and includes its description.
• @post identifi es a method’s postcondition.
• @pre identifi es a method’s precondition.
• @return describes a method’s return value.
• @throw lists an exception that a method can throw.

 You write a @param tag for each parameter in a method. You should list these tags in the order in
which the parameters appear in the method’s header. After the @param tag, you give the name and
description of the parameter. For example, for the parameter customer, you might write

 @param customer The string that names the customer.

778 APPENDIX I C++ Documentation Systems

 You write a @return tag for every method that returns a value, even if you have already described
the value in the method’s description. Try to say something more specifi c about this value here. This
tag must come after any @param tags in the comment. Do not use this tag for void methods and con-
structors.

 Next, if a method can throw an exception, you name it by using a @throw tag. You list multiple
exceptions alphabetically by name.

 Here is a sample comment for a method. We usually begin such comments with a brief descrip-
tion of the method’s purpose. This is our convention; javadoc has no tag for it.

 /** Adds a new entry to a roster.
 @param newEntry The object to be added to the roster.
 @param newPosition The position of newEntry within the roster.
 @pre None.
 @post If the addition is successful, the roster contains the new entry;
 otherwise, the roster is unchanged.
 @return True if the addition is successful, or false otherwise. */

 Here is the beginning of a sample class defi nition that lives in the fi le someClass.h :

 /** An example of a class.
 @file someClass.h
 @author Ima Student */

 Programming Tip: Comments

• Use /** ... */ comments before the headers of classes and methods to document
their use and specifi cations. Use tags within a comment to identify aspects of the
documentation.

• Use // for comments within the body of a class declaration or method defi nition that
describe the details of the implementation.

• Use /* ... */ during debugging to temporarily disable a portion of your code.

 Appendix
ASCII

Character Codes J
 Code Character Code Character Code Character Code Character
0 NUL 32 (blank) 64 @ 96 ̀ (reverse quote)
1 STX 33 ! 65 A 97 a
2 SOT 34 " 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ' (apostrophe) 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , (comma) 76 L 108 l
13 CR 45 – 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 ̂ 126 ~
31 US 63 ? 95 _ (underscore) 127 DEL

 Note: The codes 0 through 31 and 127 are for control characters that do not print.

This page intentionally left blank

 Appendix
C++ for Java

Programmers K
 Contents
K.1 General Concepts 781
 K.2 Data Types, Variables, Constants, and Arrays 782
 K.3 Flow Control and Functions 783
 K.4 Classes 785
 K.5 Basic Input and Output 787

This appendix covers some of the differences between Java and C++ that a beginning
programmer may encounter. While there are many additional differences, they either
are not applicable to the code and examples used in this text or are explained when
needed. This appendix should be used in conjunction with Appendix A to fully under-
stand the features provided in C++.

 K.1 General Concepts
 Transitioning from Java to C++ is not too diffi cult, since most of the syntax and many of
the concepts are the same. C++ gives you much greater control of how and where you
create variables and objects. Thus, a C++ programmer can create programs that are
fl exible and effi cient in speed and use of storage. This fl exibility and greater control
require you to take great care in managing data and memory, because C++ does not
provide garbage collection.

 Both Java and C++ are compiled languages. While Java programs are compiled
into byte-code for the Java Virtual Machine (JVM), C++ programs are compiled into
object code that is specifi c to an operating system. This means that you need to recom-
pile your C++ code for each operating system that you want your program to run on.
The code in this book follows the recent ANSII C11 Standard, so you should be able to
compile and run your programs on whichever operating system you choose if your
compiler supports that standard.

 Java classes and interfaces can be grouped into packages that are stored in the same
directory hierarchy. When your Java code is compiled, the compiler searches this hier-
archy for classes that you use. Any class or method in the package is automatically

782 APPENDIX K C++ for Java Programmers

found by the compiler and later the JVM during program execution. If you need a class outside of the
package, you must import it using the Java import statement.

 The C++ compiler is stricter and requires the programmer to declare all functions, classes, and
variables in a fi le before they are used. Because classes and constants are often used in multiple pro-
grams and multiple locations in a program, C++ provides a mechanism called the pre-processor that
lets you specify classes and data in a separate header fi le and then include that fi le in your program.
Commands, or directives , to the pre-processor are lines that begin with the character #, such as

 #include <iostream> // Include the declaration of the iostream classes
#include "MyClass.h" // Include the declaration of MyClass

 Notice that system fi les use < > , while user-defi ned fi les use " " , to delimit the fi le name. Section
 A.8.1 of Appendix A, C++ Interlude 1, and Section K.4 of this appendix show how to develop C++
class declarations.

 Although both Java and C++ are object-oriented languages, C++ has many elements that refl ect
its roots in the imperative language C. An imperative programming language does not use classes to
group data and operations on that data. Instead, it is a sequence of statements and functions—meth-
ods that are not part of a class. As such, variables, constants, and functions in a C++ program can be
declared anywhere in a fi le; you are not forced to declare them within a class, as you are in Java. The
only restriction to this capability is that a function cannot declare them inside another function.

 Comments. Comments are an important part of any program, and C++ supports the same comment-
ing standards as Java:

 // This is a comment that appears on its own line.
 int sum = 0; // This is a comment that appears within a C++ statement
// The following multiline comments end in */.
/** This is a special multiline comment used for documentation systems
 such as doxygen. It begins with /**. See Appendix I for details. */
/* This is a multiline comment that begins with /*.
 This style is often used to temporarily disable a group of
 statements during debugging. */

 K.2 Data Types, Variables, Constants, and Arrays
 C++ uses primitive data types and variable declarations that are similar to those in Java. The Java types
char , int , float , and double are used in C++ and behave the same as in Java. In C++, int can be
modifi ed with short , long , signed , and unsigned . All Java variables are initialized to either zero, if a
primitive data type, or null , if an object reference. In contrast, you must initialize all C++ variables. If
you do not, and an uninitialized variable is used, the result of the equation or statement is unpredictable.

 Boolean types. One very important difference between Java and C++ data types occurs with boolean
variables. In Java, boolean is a distinct type that has the value true or false . In C++, the analogous data
type is bool . It also has a value of true or false , but in C++, true and false are special integers. That
is, variables of type bool are actually integers. This affects the type of statement that is used as the
predicate or test clause in an if statement, for loop, or while loop, as you will see in the next section.
The C++ value of false is 0, and an integer value of 0 can be considered false in a boolean test. The
value of true is 1, and any non-zero integer is considered true .

 String types. Java has a special class String to represent character strings. C++ also provides a spe-
cial class string (note the lower case s) that implements many of the same features. To use this class,
you must write

 #include <string>

 Flow Control and Functions 783

 as one of the fi rst lines in your program. More information on the C++ class string is in Section A.7
of Appendix A.

 Constants. Constants in Java are declared within a class or method using the syntax

 public static final int MAX_SIZE = 20;

 which creates a publicly accessible constant MAX_SIZE with the value 20 . A similar statement in C++
uses the keyword const to indicate a constant value:

 const int MAX_SIZE = 20;

 Constants in C++ are available anywhere within the scope of their declaration. If a constant is
declared outside of a class or fi le, that constant is available to any function or class defi ned after it in
the fi le and is said to be global , even though it is restricted to that fi le.

 Java has a constant null that is used to indicate that an object has not been assigned to a variable.
C++ uses nullptr for this purpose.

 Arrays. Although you declare and reference arrays in Java and C++ using similar statements, their
implementations are very different. Arrays in Java are objects and have a public data fi eld length that
contains the number of locations in the array. If a program attempts to access a position beyond the
end of the array, an exception is thrown.

 C++ arrays are not objects, but are sequences of memory locations of the data type declared for
the array. Entries in a C++ array are accessed using [] , just as they are in Java. C++ arrays have no
data fi eld that tracks the number of positions in the array, and most importantly, C++ permits the
programmer to access positions in the array that do not exist. This is a very common source of errors
in a C++ program and is one of the areas where you must take great care. The STL class vector,
which is discussed in Section A.6.3 of Appendix A, is an alternative to C++ arrays that provides
some of the features of the Java array.

 The following statement declares an array of 20 integers in Java:

 int[] myArray = new int [MAX_SIZE];

 This statement does the same thing in C++:

 int myArray[MAX_SIZE];

 You can also declare a C++ array by using syntax similar to that of Java:

 int myArray[] = new int [MAX_SIZE];

 One difference is the location of the square brackets, but you must also take responsibility for delet-
ing the array when you are fi nished using it. You do so with the delete statement:

 delete[] myArray;

 Notice the [] following the delete operator to indicate that myArray is an array. In C++ Interlude 2,
we discuss the use of the operators new and delete in C++.

 K.3 Flow Control and Functions
 Flow control. Since the syntax of Java is derived from C++, the structure of fl ow-control
statements in C++ is the same as those you are familiar with in Java. This is true for the selection
statements if , if-else , and switch . It is also true for loop statements while , do-while , and for .
The signifi cant differences in C++ are related to the test expression that controls the selection or
repetition.

784 APPENDIX K C++ for Java Programmers

 Consider the following Java if-else statement that compares the integer x to 6 and increments y
by 10 if x is 6, and by 20 otherwise:

 if (x == 6)
 y += 10;
 else
 y += 20;

 Because the syntax for an if-else statement is the same in C++, we could place this statement in a
C++ program and it would behave in the same way.

 The test x == 6 is a predicate expression that returns true if the variable x is equal to 6 and false
otherwise. In Java, a predicate expression such as this returns a value of type boolean . A Java fl ow-
control statement requires its test expression to have a boolean value, so you must use a predicate
expression as the test expression.

 A C++ fl ow-control statement does not restrict the data type of its test expression. Flow-control
decisions are made based on whether the expression returns zero or nonzero. If the test expression
returns zero, the test is false . Any nonzero value is considered true . The equality operator in the exam-
ple above returns true , which is 1, if x has the value of 6 . Otherwise, it returns false , which is 0. The
if-else statement determines its course of action based on these values.

 This behavior of the C++ if-else statement gives you great fl exibility in constructing tests for
fl ow-control statements. It also can create confusion and subtle logic errors. For example, consider
the following if-else statement:

 if (x = 6)
 y += 10;
 else
 y += 20;

 At fi rst glance, this may appear to be the same as the earlier example, but upon closer inspection you
can see that the test expression is the assignment statement x = 6 . The Java compiler will reject this as
an error, since it is not a predicate expression. The C++ compiler will accept this statement, and when
the program runs, the if-else statement will be evaluated as follows:

 if (x = 6) // The variable x is assigned the value of 6.
 y += 10; // 6 is non-zero, so it is "true"; increment y by 10.

 Every time this code executes, x will be assigned the value 6, and y will be incremented by 10. The
original value of x is overwritten by the if clause’s test expression and is never used! Tracking down
subtle errors, such as this one, has caused this author many sleepless nights. When performing equal-
ity tests in C++ fl ow-control statements, always check that the test uses == and not =.

 Functions. As mentioned earlier, C++ functions do not need to be part of a class. Thus, you do not
need to precede C++ functions with access modifi ers, as you would for Java methods. Otherwise, the
syntax for the declaration and invocation of a C++ function is similar to that of a Java method. Func-
tions can be defi ned anywhere inside a C++ fi le, except inside another function.

 Here is an example of a C++ function, realCube , that has a parameter of type double and returns
the cube of a number:

 double realCube(double x)
 {

return x * x * x;
} // end realCube

 Any function defi ned after realCube in the fi le can invoke realCube . But what if a function is defi ned
before realCube and needs to call it? In this case, the compiler would issue an error stating that

 Classes 785

realCube was not defi ned. C++ requires that each function, constant, variable, or class be defi ned
before it can be called.

 In a simple program with a few functions, it is easy to defi ne the functions in the reverse of the
order in which they are needed so the compiler sees each function defi nition before it is needed. In
more complex programs, this order is more diffi cult or even impossible to achieve.

 The part of a function defi nition that the compiler needs is the header of the function and C++
provides a mechanism that allows the programmer to provide the compiler a function’s header sepa-
rate from the actual defi nition of the function. This mechanism is the function prototype and consists
of the function’s header followed by a semicolon. For example, the function prototype of the function
realCube is

 double realCube(double x);

 To eliminate the chance that a function will be needed prior to its defi nition within a C++ fi le, a
common practice is to list the functions’ prototypes at the beginning of the fi le. In larger programs,
function prototypes are placed in header fi les, as described in Section K.1 . You then include the
header fi les in your program. Prototypes are also important in the creation of classes, as you will see
in the next section.

 Note that you can pass a function as an argument to another function or method. This is discussed
in Section 15.2.1 of Chapter 15 .

 K.4 Classes
 Many object-oriented concepts implemented in Java classes also apply to C++ classes. This appendix
covers only some of the syntax differences that you may encounter in a simple class. Additional infor-
mation about C++ classes appears in Section A.8 of Appendix A and in C++ Interludes 1 and 2.

 Consider the following Java class:

 public class PlainBox
 {

private String item;

public PlainBox()
 {
 } // end default constructor

public PlainBox(String theItem)
 {
 item = theItem;
 } // end constructor

public void setItem(String theItem)
 {
 item = theItem;
 } // end setItem

public String getItem()
 {

 return item;
 } // end getItem
} // end PlainBox class

 Though is it possible to defi ne a class in C++ in a single fi le, we will use two fi les, since this is a
more common and fl exible approach. The fi rst fi le, is the class header fi le; it contains the data fi elds

786 APPENDIX K C++ for Java Programmers

for the class and the prototypes of all methods defi ned in the class. It is a description of the class and
does not normally contain executable code. For example, here is the header fi le for the C++ class
PlainBox :

 /** @file PlainBox.h */

#include <string> // Needed because we use string objects.
 using namespace std; // Strings are part of the system std library.

 class PlainBox // This is a class declaration for PlainBox.
 {
 private: // Items defined below have private access.
 string item;

 public: // Items defined below have public access.
// Prototypes for constructors and methods.

 PlainBox();
 PlainBox(string theItem);

void setItem(string theItem);
 string getItem();
 }; // end PlainBox – Note semicolon after declaration.

 Notice that each data member and method does not need to have an access modifi er. Private data
members and methods are grouped together, and public methods are grouped with each other. A
colon follows each access modifi er. It is possible to have more than one private, protected, or public
section, but it is not common. The class declaration must end with a semicolon after the closing brace,
as shown above.

 The implementation fi le , or source fi le , for the class typically has the same name as the header
fi le, but ends in .cpp to indicate that it is a C++ fi le. The implementation fi le contains the defi nitions
for the methods declared in the accompanying header fi le. Here is the implementation fi le for the C++
class PlainBox :

 /** @file PlainBox.cpp */
#include "PlainBox.h" // We need to tell the compiler about our data

// fields and methods.
 PlainBox::PlainBox()
 {
} // end default constructor

PlainBox::PlainBox(string theItem)
 {
 item = theItem;
} // end constructor

 void PlainBox::setItem(string theItem)
 {
 item = theItem;
} // end setItem

string PlainBox::getItem()
 {

return item;
} // end getItem

 This implementation fi le begins by including the header fi le, so that the compiler has the class
declaration and knows the data fi elds and methods of this class. We then defi ne each method. In the
implementation fi le there is no “master” set of braces enclosing all of the methods. Each method is

 Basic Input and Output 787

individually defi ned. To let the compiler know that a method belongs to the PlainBox class, we added
the prefi x PlainBox:: to the method name. Observe that the prefi x comes after the method’s return
type. The prefi x is an extension of the method name only.

 To create a PlainBox object in Java, you could use the following statement:

 PlainBox myBox = new PlainBox("Jewelry");

 C++ provides several forms for creating objects also:

 PlainBox myBox = PlainBox("Jewelry");
PlainBox myBox("Jewelry");

 These statements are equivalent in C++ and create a PlainBox object that is local to the function or
method in which it is created. In these examples the C++ keyword new is not used.

 The following example does use the keyword new to create a PlainBox object that exists until the
programmer specifi cally deletes it:

 PlainBox* someBoxPtr = new PlainBox("Jewelry");

 The syntax is very similar to Java’s, except that PlainBox is followed by the * character. The * indi-
cates that someBoxPtr is a pointer to a PlainBox object and is not the object itself. Pointers are dis-
cussed in more detail in C++ Interlude 2.

 If an object in C++ is instantiated using the new operator, as in the example above, it is the
responsibility of the programmer to delete that object from memory when it is no longer needed,
because C++ does not provide garbage collection. To delete the object pointed to by someBoxPtr , use
the statements

 delete someBox; // Frees memory used by the object.
someBox = nullptr ; // A safety precaution.

 Each time you use the new operator to create an object, you must write a corresponding delete
operator to free the object’s memory. Otherwise, your application will have a memory leak.

 K.5 Basic Input and Output
 Although at the system level, Java and C++ treat keyboard input and console-display output similarly,
the high-level constructs used to accomplish these tasks differ greatly.

 For a Java application to accept input from the keyboard, you create a Scanner object with
System.in and use it to accept input from the user. Output to the display is accomplished by calling
either the print or println method of the System.out object. The following code creates a Scanner
object, displays a prompt for the user, accepts a response from the user, and echoes the response back
to the user:

 Scanner keyboard = new Scanner(System.in);
System.out.print("How many apples are in a box? ");
 int applesPerBox = keyboard.nextInt();
System.out.print("You entered " + applesPerBox + " apples per box. ");

 C++ does not have a System.in or System.out object; instead you use cin and cout objects for
keyboard input and console-display output, respectively. To use cin and cout , you include the follow-
ing statements at the start of your program:

 #include <iostream>
 using namespace std;

788 APPENDIX K C++ for Java Programmers

 The following C++ statements are equivalent to the previous Java statements:

 cout << "How many apples are in a box? ";
 int applesPerBox = 0;
cin >> applesPerBox;
cout << "You entered " << applesPerBox << " apples per box. " << endl;

 Notice the use of the output stream operator << to send string literals and variables to the output
object cout . Similarly, the input stream operator >> sends input from the input object cin to a varia-
ble. It is easy to remember which operator to use if you imagine them as arrows pointing in the direc-
tion of the data fl ow.

 The constant endl is defi ned in iostream and represents the new-line character. Additional infor-
mation about the iostream library, and about basic input and output in C++, is in Section A.2 of
Appendix A.

 Appendix
C++ for Python

Programmers L
 Contents
 L.1 General Concepts 789
 L.2 Comparison of Language Elements 790
 L.3 Functions 792
 L.4 Classes 793

This appendix covers some of the differences between Python and C++ that a begin-
ning programmer may encounter. While there are many additional differences, they
either are not applicable to the code and examples used in this text or are explained
when needed. This appendix should be used in conjunction with Appendix A to fully
understand the features provided in C++.

 L.1 General Concepts
 Transitioning from the Python programming language to C++ is similar to graduating
from high school and going through basic training in the military. Python is a weakly
typed, interpreted language with a readable syntax. C++, on the other hand, is a strongly
typed, compiled language that follows strict punctuation rules for its syntax. The good
news is that after completing boot camp, you have the chance to become an Army
Ranger or Navy Seal. This text can help you be all you can as a computer scientist and
C++ programmer.

 Python programs are interpreted and can execute on any computer that has a
Python interpreter. Python interpreters have even been written in JavaScript, so that you
can run Python code inside a window in your web browser! C++ programs, on the other
hand, are compiled into object code that is specifi c to an operating system. This means
that you need to recompile your C++ code for each operating system that you want your
program to run on. The code in this book follows the recent ANSII C11 Standard, so you
should be able to compile and run your programs on whichever operating system you
choose if your compiler supports that standard.

790 APPENDIX L C++ for Python Programmers

L.2 Comparison of Language Elements
 When it comes to writing a C++ program, there are several important differences you need to keep in
mind.

 Comments. Comments are an important part of any program, and C++ supports single and multi-
line comments with different delimiters:

 // This is a comment that appears on its own line.
 int sum = 0; // This is a comment that appears within a C++ statement.
// The following comment begins with /** and ends with */.
/** This is a special multiline comment used for documentation systems
 such as doxygen. See Appendix I for details. */
// The following comment begins with /* and ends with */.
/* This is a multiline comment that is often used to temporarily
 disable a group of statements during debugging. */

 Statements. White space and indentation in C++ have no signifi cance. C++ statements end with a
semicolon. Statements in a block, known as a compound statement, are analogous to a suite in Python
and are grouped together by braces { } .

Variables. In Python, a variable can be used as soon as it is assigned a value. Variables in C++ must
be declared and given a type before they can be used. Though the C++ compiler does not require it,
variables should also be given an initial value before being used. Once a variable has been declared
with a given a type, it maintains that type throughout the scope in which it was declared.

 Relational operators. Variables in C++ can be used only with one relational operator at a time.
Python expressions such as 5 < x < 10 must be written as (5 < x) && (x < 10) in C++. The operator
&& is used for a logical AND, and || is used for a logical OR.

 Predicate expressions. Predicate expressions in conditional and iteration fl ow-control statements
must be in parentheses.

Assignment statements. Multiple assignment is not allowed in C++. Python statements such as x,y
= 5,6 cannot be used.

 Iteration statements. C++ has a while statement that behaves like the Python while statement. The
C++ for statement is a special case of the while statement. To use a C++ for statement as you would
use a Python form statement, you must use iterators, which are explained in C++ Interlude 6. C++ has
a do-while statement, which is a post-test loop. Python has no equivalent statement.

 Basic input and output. In a Python application, you use the raw_input function to accept input
from the keyboard. This function returns a string. If you need an integer or a value of some other
data type, you must use another function to transform the string into the desired input. Output to
the display is accomplished by calling the print function. For example, the following Python code
displays a prompt for the user, accepts a response as an integer, and echoes the response back to the
user:

 userNumber = int (raw_input ("How many apples are in a box? "))
print "You entered %d apples per box."%(userNumber)

 C++ uses two objects, cin and cout , for keyboard input and console display output, respectively.
To use cin and cout , you should include the following statements at the start of your program:

 #include <iostream>
 using namespace std;

 Comparison of Language Elements 791

 The following C++ statements that are equivalent to the previous Python statements:

 cout << "How many apples are in a box? ";
 int applesPerBox = 0;
cin >> applesPerBox;
cout << "You entered " << applesPerBox << " apples per box." << endl;

 Notice the use of the output stream operator << to send string literals and variables to the output
object cout . Similarly, the input stream operator >> sends input from the input object cin to a varia-
ble. It is easy to remember which operator to use if you imagine them as arrows pointing in the direc-
tion of the data fl ow.

 The constant endl is defi ned in iostream and represents the new-line character. Additional
information about the iostream library and basic input and output in C++ is in Section A.2 of
Appendix A.

 Example. Listing L-1 gives a short interactive Python program using the statements and expressions
just discussed. Listing L-2 shows the equivalent program in C++. C++ programs begin execution at the
main function. You can see some of the differences in user input and output in this example also.

 LISTING L-1 Short Python program to test and modify a user-entered value

 small, large = 1, 1000
 print "Your number was between %d and %d large." %(small, large)
userNumber = int (raw_input ("Enter something: "))

 if small < userNumber < large :
print "Your number was between %d and %d large."%(small, large)

 elif userNumber < small :
while userNumber <= small :

 userNumber = userNumber + 1

 else :
while True :

 userNumber = userNumber - 1
 if userNumber < 1000 :
 break
 print "I fixed your number to be between %d and %d!" %(small, large)

 LISTING L-2 Short C++ program equivalent to the Python program in Listing L-1.

 #include <iostream>
 using namespace std;
 int main()
 {

int small = 1;
int large = 1000;
int userNumber = 0;

 cout << "Enter something: ";
 cin >> userNumber;

(continues)

792 APPENDIX L C++ for Python Programmers

if ((small < userNumber) && (userNumber < large))
 {
 cout << "Your number was between " << small << " and ";
 cout << large << endl;
 }

else if (userNumber < 1)
 {

while (userNumber <= 1)
 {
 userNumber++;
 }
 }

else
 {

do
 {
 userNumber–-;
 } while (userNumber >= 1000);
 cout << "I fixed your number to be between " << small << " and ";
 cout << large << endl;
 }
}

 L.3 Functions
 As with its variables, C++ functions are strongly typed. When a C++ function is defi ned, the parame-
ters are given a type. If the function returns a value, the function must indicate the type of the return
value. This information is given in the header, that is, the fi rst line, of the function. If a function does
not return a value, its return type is void . The defi nition of the function follows the header and is
enclosed in { } , as in other C++ blocks.

 Here is a short Python function that computes the cube of its single parameter:

 def realCube(x) :
 return x * x * x

 Here is the equivalent C++ function:

 double realCube(double x)
 {

return x * x * x;
 }

 Notice that the function and its parameter are each given a type. C++ functions are discussed in
greater detail in Section A.2 of Appendix A.

 Any function defi ned after realCube in the fi le can invoke realCube . But what if a function is
defi ned before realCube and needs to call it? In this case, the compiler would issue an error stating
that realCube was not defi ned. C++ requires that each function, constant, variable, or class be defi ned
before it can be called.

 In a simple program with a few functions, it is easy to order the function defi nitions so that the
compiler sees each one before it encounters the function call. In more complex programs, this is more
diffi cult, or even impossible, to achieve. However, the compiler needs only the header of a function
before processing a call to it, and C++ provides a way for you to satisfy the compiler. You simply write

 Classes 793

the function’s header followed by a semicolon—that is, its prototype—at the beginning of the pro-
gram that calls it. For example, the prototype of the function realCube is

 double realCube(double x);

 Then you can place the function’s defi nition anywhere within your program.
 In larger programs, function prototypes are placed into one or more header fi les, as described

in Section K.1 of Appendix K. You then include the header fi les in your program. Prototypes are
also important in the creation of classes, as you will see in the next section. Section A.8.1 of
Appendix A also discusses header fi les.

 Note that you can pass a function as an argument to another function or method. This is discussed
in Section 15.2.1 of Chapter 15 .

 L.4 Classes
 Python classes permit clients of the classes to access all data fi elds and methods. In C++, this is called
public access and is recommended only for methods. In Python, when you create a class member that
should be used only by class methods, you typically begin the member’s name with two underscores, __ .
This convention is only a signal to the programmer; the Python interpreter does not enforce it. C++ per-
mits the class designer to restrict access to certain data fi elds and methods by labeling them as private ,
and the compiler enforces this restriction by permitting only class methods to access private members.

 Classes in C++ have constructors that are similar to the __init__ method in a Python class.
When writing a method in a Python class, you precede the names of data fi elds by self to indicate
that they are instance variables of the class. Instance variables in a C++ class do not need a special
prefi x, if they are referenced from within a method of the class.

 Here is a simple Python class, PlainBox :

 class PlainBox

 def __init__(self, theItem):
 self.item = theItem

 def setItem(self, theItem):
 self.item = theItem

 def getItem(self) :
 return self.item

 You also can defi ne the same class in a form that is closer to that of a C++ class:

 class PlainBox

 __item = " "

 def __init__(self, theItem):
 self.__item = theItem

 def setItem(self, theItem):
 self.__item = theItem

 def getItem(self) :
 return self.__item

 Though is it possible to defi ne a class in C++ in a single fi le, we will use two fi les, since this is a
more common and fl exible approach. The fi rst fi le is the class header fi le; it contains the data fi elds for
the class and prototypes for all methods defi ned in the class. It is a description of the class and does

794 APPENDIX L C++ for Python Programmers

not normally contain executable code. For example, here is the header fi le for the C++ version of the
previous Python class:

 /** @ file PlainBox.h */
#include <string> // Needed because we use string objects.
 using namespace std; // Strings are part of the system std library.

 class PlainBox // This is a class declaration for PlainBox.
 {

private: // Items defined below have private access.
 string item;

public: // Items defined below have public access.
 // Prototypes for constructors and methods:
 PlainBox();
 PlainBox(string theItem);
 void setItem(string theItem);
 string getItem();
 }; // end PlainBox – Note semi-colon after declaration.

 Notice that each data member and method does not need to have an access modifi er. Private data
members and methods are grouped together, and public methods are grouped with each other. A
colon follows each access modifi er. It is possible to have more than one private, protected, or public
section, but it is not common. The class declaration must end with a semi-colon after the closing
brace, as shown above.

 The implementation fi le , or source fi le , for the class typically has the same name as the header
fi le, but ends in .cpp to indicate that it is a C++ fi le. The implementation fi le contains the defi nition
for the methods declared in the accompanying header fi le. Here is the implementation fi le for the C++
class PlainBox :

 /** @ file PlainBox.cpp */

#include "PlainBox.h" // We need to tell the compiler about our data
// fields and methods.

 PlainBox::PlainBox()
 {
} // end default constructor

PlainBox::PlainBox(string theItem)
 {
 item = theItem;
} // end constructor

 void PlainBox::setItem(string theItem)
 {
 item = theItem;
} // end setItem

string PlainBox::getItem()
 {
 return item;
} // end getItem

 This implementation fi le begins by including the header fi le, so that the compiler has the class
declaration and knows the data fi elds and methods of this class. We then defi ne each method. In the
implementation fi le there is no “master” set of braces enclosing all of the methods. Each method is
individually defi ned. To let the compiler know that a method belongs to the PlainBox class, we add

 Classes 795

the prefi x PlainBox:: to the method name. Observe that the prefi x comes after the method’s return
type. The prefi x is an extension of the method name only.

 To create a PlainBox object in Python, you could use the following statement:

 myBox = PlainBox("Jewelry");

 C++ provides several forms for creating objects:

 PlainBox myBox = PlainBox("Jewelry");
PlainBox myBox("Jewelry");

 These statements are equivalent in C++ and create a PlainBox object that is local to the function or
method in which it is created. In these examples, the C++ keyword new is not used.

 The following example uses the keyword new to create a PlainBox object that exists until the
programmer specifi cally deletes it:

 PlainBox* someBoxPtr = new PlainBox("Jewelry");

 Notice that PlainBox is followed by the * character to indicate that someBoxPtr is a pointer to a
PlainBox object and is not the object itself. Pointers are discussed in more detail in C++ Interlude 2.

 If an object in C++ is instantiated using the new operator, as in the example above, it is the
responsibility of the programmer to delete that object from memory when it is no longer needed. In
Python, garbage collection deletes unused objects and frees the memory that was used by those
objects. C++ does not provide garbage collection, so you must free unused memory. To delete the
object pointed to by someBoxPtr , use the statements

 delete someBox; // Frees memory used by the object.
someBox = nullptr ; // A safety precaution.

 Each time you use the new operator to create an object, you must write a corresponding delete state-
ment to free the object’s memory. Otherwise, your application will have a memory leak.

 Additional information about C++ classes appears in Section A.8 of Appendix A, Chapter 1, and
in C++ Interludes 1 and 4.

This page intentionally left blank

Index

*, pointer variables, 121
.h, header fi les, 32 , 99 – 100
==, equality operator, 416 – 417 , 495
!=, inequality operator, 495
(), algebraic expressions, 165 – 166 ,

 171 – 172 , 207 – 208
(), predicate expressions, Python, 790
*, return item operator, 495
––, move to previous item (prefi x)

operator, 495 , 496
.cpp implementation fi les, 32
;, functions declaration, 698
@throws javadoc tag, 232
{ }, compound statements, 700, 790
{ }, checking balance, 201 – 203
~, destructors, 146
+, concatenation operator, overloading,

 419 – 420
++, move to next item (postfi x) operator,

 495 , 496
< >, data types, 39
<<, output stream operator, 421 – 423
=, assignment operator, overloading,

 417 – 419
#define, 34 – 35
#endif, 34 – 35
#ifndef, 34 – 35

A
 Abstract classes, 44 – 46 , 343 – 346
 Abstract data types (ADT), 11 – 26 ,

 96 – 98 , 194 – 201 , 241 – 252 ,
 254 – 259 , 348 – 352 , 357 – 367 ,
 373 – 395 , 435 – 449 , 503 – 506 ,
 526 – 531 , 606 – 611

 array-based implementation, 96 – 98 ,
 242 – 244

 axioms, 200 – 201 , 257 – 259
 binary search trees, 442 – 449
 binary trees, 435 – 442
 core methods, 97 – 98
 data structures and, 12 – 14
 designing, 14 – 16
 dictionaries, 526 – 531
 graphs, 606 – 611
 heaps, 503 – 506
 implementation, 12 , 16 – 17 , 241 – 252
 input line storage, 194
 last in, fi rst out (LIFO) property,

 196 – 197
 link-based implementation, 245 – 249
 list specifi cations, 254 – 259 , 348 – 352
 operations, 15 – 16 , 255 – 257 , 348 – 350 ,

 351 – 352 , 438 – 441 , 443 – 445 ,
 527 – 529 , 607

 position-oriented, 389
 priority queues, 379 – 381
 queues, 373 – 395
 solution design, 194 – 196
 stacks, 194 – 201 , 241 – 252
 traversal operations, 436 – 438 ,

 447 – 448 , 529
 Unifi ed modeling language (UML),

 14 – 15 , 20
 value-oriented, 389

 Access time, 154
 Accessor methods, 34
 Activation record, 54
add method, 101 – 102 , 131 – 132 ,

 139 – 140 , 380 , 440 , 444 , 464 – 465 ,
 505 , 528

 Adding a new entry/item, 471 – 473 ,
 511 – 512

 binary search trees, 471 – 473
 heaps, 511 – 512

 Adjacency list and matrix, 608 – 611
 ADT bag, 17 – 26 , 98 – 111 , 131 – 132 ,

 137 – 148
 array-based implementation, 98 – 111
 class-responsibility-collaboration

(CRC), 18
 constructors, 100 – 101 , 139
 core methods, 100 – 105 , 139 – 142
 header (.h) fi les, 99 – 100 , 138 – 139
 identifying behavior, 18 – 19
 interface template, 22 – 24
 link-based implementation, 137 – 148
 methods, 100 – 110 , 139 – 148
 operations, 21
 resizable arrays, 131 – 132
 specifi cations, 19 – 22
 testing methods for, 110 – 111 , 142

advance function, 500
 Aggregation, 343
 Algebraic expressions, 164 – 172 ,

 205 – 209 , 428 – 429
 binary trees and, 428 – 429
 converting infi x to postfi x, 206 – 209
 infi x, 164 – 166 , 205
 parenthesis () for, 165 – 166 , 171 – 172 ,

 207 – 208
 postfi x, 165 – 166 , 170 – 171 , 205 – 206
 prefi x, 165 – 170
 stacks with, 205 – 209

 Algorithms, 3 , 289 – 304 , 305 – 332 ,
 385 – 388 , 471 – 481 , 508 – 512 ,
 577 – 579 , 583 – 585 , 622 – 625 ,
 640 – 646 , 682 – 684 , 759 – 761

 adding (inserting) a new entry/item,
 471 – 473 , 511 – 512 , 583 – 585

 analysis of, 291 – 300 , 308 – 309 , 311 ,
 313 – 314 , 317 – 319 , 324 – 325

 array-based implementation, 508 – 512

798 Index

 Algorithms (cont’d)
average-case analysis, 298
 balances trees, 577 – 579 , 583 – 585
 big O notation for, 294 – 298
 binary search, 300 – 301
 binary search trees, 471 – 481
 cubic, 296
 Dijkstra’s shortest path, 624 – 625
 effi ciency of, 289 – 304 , 305 – 332
 event-driven simulations, 385 – 388
 execution time, 292 – 293
 exponential, 296
 graph applications, 622 – 625
 graph-traversal, 611
 growth rate function f (n), 294 , 297
 growth rates, 293 – 294
 heaps, 508 – 512 , 683 – 684
 insertion, 471 – 473 , 577 – 579
 linear, 296
 merge sort, 314 – 319 , 640 – 646
 nested loops in, 292 – 294
 order of, 294
 parent-child relationships for, 471 – 480
 perspective and, 298 – 300
 Prim’s minimum spanning tree, 622 – 623
 priority queues and, 385 – 388
 quadratic, 296
 removing an entry/item, 474 – 481 ,

 508 – 511 , 583 – 585
 retrieving an entry/item, 481 , 508
 search and compare, 682 – 683
 searching, 300 – 301
 sequence modifi cation, 683
 solution cost and, 290
 sorting, 305 – 332 , 683 – 684
 standard template library (STL),

 682 – 684
 traversal of linked nodes, 292
 verifi cation of, 759 – 761
 worst-case analysis, 298

 Alphabetical order of list names, 260 – 261
 Ancestor, tree relationships, 427
 Arithmetic expressions, 691
 Array-based implementation, 95 – 116 ,

 153 – 154 , 242 – 244 , 266 – 272 ,
 405 – 410 , 456 – 458 , 506 – 516 ,
 534 – 536

 abstract data type (ADT) approach,
 96 – 98 , 242 – 244

 adding a new entry/item, 511 – 512
 assertions, 98
 bags, 98 – 111
 binary trees, 456 – 458
 circular array strategies, 405 – 407

 core methods, 97 – 98 , 100 – 105
 dictionaries, 534 – 536
 fi xed-sized, 98
 header (.h) fi les, 99 – 100 , 242 – 243 ,

 266 – 267 , 407 – 408 , 512 – 513 , 535
 heaps, 506 – 516
 link-based implementation compared

to, 153 – 154 , 410
 lists, 266 – 272
 methods, 100 – 114 , 243 – 244 , 268 – 272 ,

 408 – 409 , 513 – 516
 nodes for, 456 – 458
 queues, 405 – 410
 recursion in, 112 – 114
 removing entries/items, 107 – 110 ,

 508 – 511
 retrieving entries/items, 508
 rightward drift strategy, 405
 stacks, 242 – 244
 testing methods for, 103 – 105 , 110 – 111 ,

 270
ArrayBag class, 99 – 105
ArrayDictionary class, 535 – 536
ArrayQueue class, 408 – 409
 Arrays, 67 – 75 , 130 – 132 , 320 , 486 – 487 ,

 515 – 516 , 675 , 704 – 707 , 783
 allocation of, 130 – 132
 binary search, 68 – 72 , 486 – 487
 box trace with reference argument,

 71 – 72
const declaration for, 71
 C++, 130 – 132 , 704 – 707
 dynamic allocation of, 130 – 132
 heaps, transformation into, 515 – 516
 Java programming, 783
 largest value found in, 72 – 73
 multidimensional, 706 – 707
 one-dimensional, 704 – 705
 partitioning, 74 – 75 , 320
 passing to functions, 705
 recursion and, 67 – 75
 resizable, 131 – 132
 smallest value found in, 72 – 75
 static allocation of, 130
 STL operations, 675
 target value, 68
 tree sort of, 486 – 487
 writing in backward order, 67

as-a relationships, 340 , 341 – 342
 ASCII character codes, 779
 Assertions, 98 , 229 – 230 , 759
 Assignment, 380 – 381 , 417 – 419 , 691 – 693

 C++, 691 – 693
 operator =, overloading, 417 – 419

 tracking using priority queues, 380 – 381
 Associative containers, 678 – 681
 AVL trees, 597 – 599
 Axioms, 200 – 201 , 257 – 259

B
 Backtracking, 172 – 183 , 211 – 212 , 216

 airline route search, 172 – 177 , 211 – 212
 directed path (graph), 173
 eight queens problem, 177 – 183
 exhaustive search, 173 – 177 , 211 – 212
 fl ight map operations, 175 – 176
 implementation and, 180 – 183
 recursion and, 172 – 183
 stacks, 211 – 212 , 216

 Backward order, 57 – 66
 Bag, ADT container, 17
BagInterface class, 23 – 24 , 151
 Balanced binary tree, 432 , 597
 Balanced search trees, 567 – 602 , 654 – 662

 2-3 trees, 569 – 585
 2-3-4 trees, 585 – 592
 AVL trees, 597 – 599
 B-trees, 654 – 662
 dictionaries and, 654 – 662
 external organization using, 654 – 662
 inserting data into, 575 – 579 , 587 – 591 ,

 594 – 596 , 597 – 599 , 659 – 660
 red-black trees, 592 – 596
 removing data from, 579 – 585 , 591 ,

 594 – 596 , 597 – 599 , 660 – 662
 rotation of, 597 – 599
 searching, 572 – 574 , 587 , 594
 splitting nodes, 589 – 591 , 594 – 596
 traversing, 572 , 587 , 594
 tree height and balance of, 567 – 568 ,

 597 – 599
balancedAdd method, 464 – 465
 Base (degenerative) case, 49
 Base class (superclass), 40 – 44
 Big O notation, algorithm effi ciency and,

 294 – 298
 Binary fi le, 763 , 772
 Binary search, 48 – 49 , 68 – 72 , 300 – 301 ,

 486 – 487
 arrays, 68 – 72 , 486 – 487
 algorithms, 300 – 301
 recursive solutions using, 48 – 49

 Binary search trees, 429 , 442 – 449 ,
 471 – 487 , 518 , 533 – 534 , 536 – 538

 abstract data type (ADT), 442 – 449
 adding a new entry, 471 – 473
 algorithms for, 471 – 481

 Index 799

BinarySearchTree class, 481 – 483
 creating, 446 – 447
 dictionary implementation by, 533 – 534 ,

 536 – 538
 effi ciency of, 448 – 449
 header (.h) fi les, 482 – 483 , 537
 heaps compared to, 518
 inorder successor, 476 – 477
 link-based implementation, 471 – 483
 operations, 443 – 445
 parent-child relationships of, 429 ,

 471 – 480
 pointers for, 471 – 473
 removing and retrieving an entry,

 474 – 481
 saving in a fi le, 483 – 486
 searching, 445 – 446
 sorting an array, 486 – 487
 traversals of, 447 – 448

 Binary trees, 428 – 429 , 431 – 442 ,
 456 – 471

 abstract data type (ADT), 435 – 442
 algebraic expressions and, 428 – 429
 array-based implementation, 456 – 458
 balanced, 432
 complete, 431 – 432
 constructors, 462
 copy constructors, 463
 destructors, 463
 full, 431
 header (.h) fi les, 458 – 462
 implementation, 456 – 471
 interface template for, 441 – 442
 level of a node and, 431 – 432
 link-based implementation, 458 – 471
 methods for, 464 – 465
 nodes in, 431 – 435 , 438 , 456 – 459 ,

 465 – 467
 operations, 438 – 441
 parent-child relationships of, 428
 traversals of, 436 – 438 , 465 – 471
 tree height, 431 – 435

BinarySearchTree class, 481 – 483
 Blocks, record organization and,

 638 – 640
 Block access, 639
 Boolean data types, 782
 Box trace, 54 – 57 , 71 – 72
 Breadth-fi rst search (BFS) strategy,

 613 – 615 , 620 – 621
 Breakpoints, 736
 Bubble sort algorithm, 309 – 311
 Buckets, 554
 Buffers, 639

C
 C++, 31 – 46 , 117 – 132 , 160 – 161 ,

 333 – 346 , 415 – 423 , 493 – 501 ,
 685 – 720 , 763 – 772 , 773 – 776 ,
 777 – 778 , 781 – 788 , 789 – 796

 abstract classes, 44 – 46 , 343 – 346
 arrays, 130 – 132 , 704 – 707
 classes, 31 – 46 , 711 – 717
 class relationships, 333 – 346
 compile error prevention, 35 – 36
 constructors, 33 – 34 , 711
 containment, 342 – 343
 data fi elds, 33
 destructors, 33 – 34
 documentation systems, 777 – 778
 dynamic allocation, 130 – 132
 fi les, 763 – 772
 free store (heap), 120 – 128
 friend access, 421 – 423
 functions, 696 – 699
 header (.h) fi les, 32 , 711 – 713 , 773 – 776
 identifi ers, 160 – 161
 implementation (.cpp) fi les, 32 ,

 713 – 716
 inheritance, 40 – 46 , 333 – 342 , 716 – 717
 input/output using iostream, 693 – 696
 iteration statements, 702 – 704
 iterators, 493 – 501
 Java programming, 781 – 788
 language, 160 – 161 , 686 – 693
 libraries, 717 – 718
 manipulators, 696 – 697
 memory allocation, 118 – 120
 methods, 34 – 35 , 44 – 46 , 118 – 120
 namespace, 37
 overloaded operators, 415 – 423
 polymorphism, 3 – 4 , 128 – 130
 pointers, 120 – 128
 protection, 338 – 340
 Python programming and, 789 – 796
 reuse, 333 – 346
 selection statements, 699 – 702
 solution implementation, 36 – 37
 specifi cation fi les, 32
 standard functions, 773 – 776
 static allocation, 130
 strings, 709 – 710
 templates, 31 , 37 – 40
 vectors, 707 – 709
 virtual methods, 44 – 46 , 128 – 130

catch blocks, 233 – 236
 Catching exceptions, 233 – 236
 Category tags, iterators, 495

 Child, tree relationships, 426
 Choosing k out of n things, 83 – 85
 Circuits, 627 – 630

 graph applications, 627 – 630
 Euler, 627 – 629
 Hamilton, 629
 planar graphs for, 630

 Circular array strategies, 405 – 407
 Circular chain, 400
 Class diagrams, 744 – 747
 Class relationships, 333 – 346

 abstract base classes, 343 – 346
as-a relationships, 340 , 341 – 342
 containment, 342 – 343
has-a relationships, 342 – 343
 inheritance, 333 – 338 , 340
is-a relationships, 340 – 341
 private data members, 338 – 340
 protected sections, 338 – 340
 public class sections, 338 – 339
 virtual method table (VMT), 338 – 339

 Class-responsibility-collaboration
(CRC), 18

 Classes, 2 – 3 , 31 – 46 , 215 , 239 – 240 , 422 ,
 711 – 727 , 785 – 787 , 793 – 795

 abstract, 44 – 46
 base (superclass), 40 – 42
 C++, 31 – 46 , 711 – 717
 constructors, 33 – 34 , 711 , 713 – 714
 data members, 3
 derived (subclass), 40 – 42
 friend, 422
 header (.h) fi le, 32 , 711 – 713
 implementation fi le, 713 – 716
 inheritance, 3 , 40 – 46 , 716 – 717
 instance, 2 , 711
 Java programming, 785 – 787
 member functions, 3 , 711
 methods, 3 , 711
 object orientation, 2 , 711
 private, 711
 programmer-defi ned exception,

 239 – 240
 public, 711
 Python, 793 – 795
 Standard Template Library (STL), 215
 templates, 31

clear method, 110 , 145 – 146 , 257 , 272 ,
 280 , 440 , 505 , 528

 Closed-form formula, 185
 Cluster, 551
 Code (text) storage, 120
 Collisions, resolving, 549 – 554
 Comments, 686 – 687 , 778 , 790

800 Index

 Compile error prevention, C++, 35 – 36
 Composition, 342 – 343
 Compound statements { }, 700, 790
 Computer science modeling, see

Simulations
 Concatenation operator +, overloading,

 419 – 420
 Conditional expressions, 692
 Connected component, 611
 Connected graphs, 605 , 618 – 619
const declaration, 34 – 35 , 71
 Constants, 688 – 689 , 783
 Constructors, 33 – 34 , 100 – 101 , 139 ,

 146 – 148 , 245 – 246 , 274 , 343 , 359 ,
 462 – 463 , 711 , 713 – 714

 array-based implementation, 100 – 101
 binary tree implementation, 462 – 463
 C++ class, 33 – 34 , 711 , 713 – 714
 copy, 146 – 148 , 245 – 249 , 463
 core methods using, 100 – 101 , 139
 containment and, 343 , 359
 execution order of, 343
 link-based implementation, 139 ,

 146 – 148 , 245 – 246 , 274 , 359 ,
 462 – 463

 lists, 274
 sorted list implementation, 359
 stacks, 245 – 246

 Containers, 671 – 681
 adapters, 673 – 674
 associative 678 – 681
 sequence, 674 – 678

 Containment, 342 – 343 , 357 – 362
 aggregation, 343
 composition, 342 – 343
 constructors/destructors and, 343 , 359
 effi ciency and, 360 – 362
 execution order and, 343
has-a relationships, 342 – 343
 header (.h) fi le, 358 – 359
 link-based implementation and,

 357 – 362
 methods for, 359 – 362
 sorted lists, 357 – 362

contains method, 106 , 143 – 144 ,
 440 , 528

 Converting a character string to an
integer, 548 – 549

 Copy constructor, 146 – 148 , 245 – 249 , 463
copyChain method, 354 – 355
 Core group, 97
 Core methods, 97 – 98 , 100 – 105 , 139 – 142
add, 101 – 102 , 139 – 140
 ADT approach, 97 – 98

 array-based implementation, 97 – 98 ,
 100 – 105

 bag implementation, 100 – 105 , 139 – 142
 constructors, 100 – 101 , 139
getCurrentSize, 102 , 142
 initializers for, 101
isEmpty, 102 , 142
 link-based implementation, 139 – 142
 testing, 103 – 105 , 142
toVector, 102 , 140 – 142

count function, 500
 Coupled modules, 5
cout statements, 64 , 737
 Cubic algorithm, 296
 Cycle, graph path, 605

D
 Dangling pointers, 123 , 127 – 130
 Data abstraction, 1 – 29

 abstract data types (ADT), 11 – 26
 object-oriented concepts, 2 – 4
 solutions, 2 – 5
 specifi cations, 6 – 11

 Data fi elds, C++, 33
 Data fl ow, 6
 Data members, 3
 Data organization, recursion for, 76 – 85
 Data processing, see External storage
 Data records, 638
 Data specifi cations, ADT, 19 – 22
 Data structure, ADT, 12 – 14
 Data-type parameter, 38
 Debugging, 722 , 736 – 738
 Deep copy, 147 – 148
 Default constructor, 34
 Degenerative (base) case, 49
delete operator, 122 – 123 , 131
 Depth-fi rst search (DFS) strategy,

 611 – 613 , 619 – 620
 Deque STL operations, 677
dequeue method, 374 – 375 , 403 – 404
 Derived class (subclass), 40 – 42 ,

 334 – 336
 Descendant, tree relationships, 427
 Design, ADT, 14 – 16
 Destructors (~), 33 – 34 , 146 , 245 – 246 ,

 280 , 343 , 359 , 463
 binary tree implementation, 463
 C++, 33 – 34
 containment of, 343 , 359
 execution order of, 343
 link-based implementation, 146 ,

 245 – 246 , 280 , 359 , 463

 sorted list implementation, 359
 stacks, 245 – 246
 virtual, 245 – 246

 Dictionaries, 525 – 566 , 646 – 665
 abstract data type (ADT), 526 – 531
 array-based implementation,

 534 – 536
 balanced search (B-trees), 654 – 662
 binary search tree implementation,

 533 – 534 , 536 – 538
 external fi le organization, 646 – 665
 hashing, 544 – 562 , 651 – 654
 header (.h) fi les, 533 , 535 , 537
 implementations of, 531 – 544 ,

 559 – 562
 indexing fi les, 648 – 651 , 664 – 665
 ineffi ciency of traversal and hashing, 559
 interface for, 530 – 531
 linear implementations, 531 – 534
 multiple indexing, 664 – 665
 operations, 527 – 529
 order of insertion, retrieval, removal,

and traversal, 539 – 534
 perspective and, 538 – 539 , 544
 search key for, 526 – 527 , 529
 traversal operations, 529 , 539 – 544 , 559 ,

 662 – 664
 Dijkstra’s shortest path algorithm, 624 – 625
 Direct access fi les, 638
 Directed edge, 605 – 606
 Directed graph (digraph), 173 , 605 – 606
 Directed path, 173 , 211
 Disconnected graph, 605
displayList function, 259
 Distance between iterators, 495
distance function, 500
 Divide-and conquer-strategy, 49 – 50 , 314
do statements, 703 – 704
 Documentation, programming and,

 728 – 729 , 777 – 778
 Double-ended queue (deque), 391
 Double hashing, 552 – 553 , 555
 Drivers, 740
 Dump functions, 737 – 738
 Dynamic allocation of arrays, 130 – 132
 Dynamic (late) binding, 338

E
 Early binding, 118 – 120
 Edges, 426 , 604 – 609, 611, 616,

618–624, 627–628
 Effi ciency, 85 – 87 , 360 – 362 , 448 – 449 ,

 554 – 557

 Index 801

 algorithms, 289 – 304 , 305 – 332
 big O notation for, 294 – 298
 binary search trees, 448 – 449
 containment and, 360 – 362
 execution time, 292 – 293
 factorial of n , 50 – 54 , 85 – 86
 growth rates, 293 – 294
 hashing, 554 – 557
 load factor , 554 – 555
 measurement of, 291 – 300
 perspective and, 298 – 300
 recursion and, 85 – 87
 searching algorithms, 300 – 301
 solution cost and, 290
 sorted list implementation, 360 – 362
 sorting algorithms, 305 – 332
 tail recursion, 87

 Encapsulation, object-oriented
programming and, 3 – 4

enqueue method, 374 – 375 , 402 – 403
Entry class, 533
 Enumeration, C++, 690
equal function, 500 – 501
 Equality operator ==, 495
 Error handling, 726
 Error prevention, 35 – 36 , 732 – 735

 compile errors, 35 – 36
 input data errors, 732 – 734
 logic errors, 734 – 735

 Euler circuit, 627 – 628
 Event-driven simulation, 384 – 388
 Event list, 385
 Event loops, 384 – 385
 Evolutionary development, 750
 Exceptions, 227 – 240 , 249 – 250

 ADT stack implementation using,
 249 – 250

 assertions, 229 – 230
 catching, 233 – 236
 handling, 227 , 233 – 239
javadoc tag @throws, 232
 methods and, 228
out_of_range, 236 – 238
 programmer-defi ned classes, 239 – 240
 runtime error, 232
 throwing, 230 – 233
 uncaught, 236 – 239

 Execution order, constructors and
destructors, 343

 Execution time, algorithm effi ciency and,
 292 – 293

 Exhaustive search, 173 – 177 , 210 – 215
 Explicit type conversions, 692
 Exponential algorithm, 296

 Expressions, C++, 691 – 693
 Extensible methods, 130
 External sort algorithm, 306
 External storage, 637 – 669

 balanced search trees (B-trees) for,
 654 – 662

 data processing in, 637 – 699
 dictionaries, 646 – 665
 fi les, 638 – 646
 hashing, 651 – 654
 indexing fi les, 648 – 651 , 664 – 665
 merge sort algorithm, 640 – 646
 multiple indexing, 649 , 664 – 665
 sorting data in, 640 – 646
 traversals, 662 – 664

F
 Factorial of n , 50 – 54 , 85 – 86 , 183 – 184
 Fail-safe programming, 731 – 735
 Fibonacci sequence problem, 79 – 82
 Files, 483 – 486 , 638 – 646 , 648 – 654 ,

 664 – 665 , 763 – 772
 accessing, 771 – 772
 adding to, 771
 binary, 763 , 772
 blocks, 638 – 640
 buffers, 639
 C++, 763 – 772
 data, 638 , 640 – 646
 direct access fi les, 638
 external storage, 638 – 646 , 648 – 654 ,

 664 – 665
 hashing, 651 – 654
 indexing, 648 – 651 , 664 – 665
 input/output, 763
 manipulating, 770 – 772
 multiple indexing, 649 , 664 – 665
 opening and closing, 764 – 765
 reading and writing, 765 – 770
 saving a binary search tree in, 483 – 486
 searching, 771
 sequential access fi les, 638
 sorting data in, 640 – 646
 text, 763 – 772

find function, 500
findBox class, 229 – 230 , 232
findSuccessorNode method, 477 – 478
 Fixed-sized arrays, 98
 Flight maps, 175 – 176 , 210 – 216 , 624 – 627

 backtracking, 175 – 176
 shortest path, 624 – 627
 stacks used for search of, 210 – 216

 Flow control, 783 – 784

 Folding, 547 – 548
for statements, 702 – 703
for_each function, 499 – 500
 Free list, 456 – 458
 Free store (heap), 120 – 128
 Friend access, overloading operator<<

and, 421 – 423
 Friend class, 422
 Friend method, 422
 Full binary tree, 431
 Functional (procedural) abstraction, 9
 Functions, 3 , 7 , 9 – 10 , 324 , 499 – 501 ,

 545 – 549 , 696 – 699 , 705 , 784 – 785 ,
 792 – 793

 arguments, 697 – 698
 C++, 696 – 699
 hash, 545 – 549
 information hiding, 9 – 10
 iterators, 499 – 501
 Java programming, 784 – 785
 modules and, 3 , 7 , 9 – 10
 parameters, 697 – 698
 passing arrays to, 705
 postcondition and precondition, 7
 Python, 792 – 793
 quick sort algorithm, 324
 semicolon (;) for, 698
 standard, 699
 valued, 697 – 698
 void, 697

 Fundamental data types, 687 – 688

G
 General trees, 428 , 487 – 488
getCurrentSize method, 102 , 142
getEntry method, 257 , 269 – 270 , 274 ,

 298 – 299 , 440 , 481
getFrequencyOf method, 105 – 106 ,

 113 – 114 , 143
getHeight method, 439 , 464 , 505
getIndexOf method, 109 – 110 , 112
getItem method, 33 , 34 , 134 , 528
getLeftChildIndex method, 513 – 514
getLength method, 256
getNext method, 134 – 135
getNodeAt method, 275
getNodeBefore method, 356 , 357
getNumberOfItems method, 528
getNumberOfNodes method, 440 , 505
getParentIndex method, 514
getPointerTo method, 149
getPosition method, 349 – 350 , 364
getRightChildIndex method, 514

802 Index

getRootData method, 440
 Global variable avoidance, 726
GoodMemory class, 125 – 128
 Grammar, 160 – 162
 Graphs, 603 – 635

 abstract data type (ADT), 606 – 611
 adjacency list and matrix for, 608 – 611
 breadth-fi rst search (BFS) strategy,

 613 – 615 , 620 – 621
 circuits, 627 – 630
 connected, 605 , 618 – 619
 depth-fi rst search (DFS) strategy,

 611 – 613 , 619 – 620
 directed (digraph), 605 – 606
 disconnected, 605
 edges, 604 – 606
 implementation of, 608 – 611
 interface for, 607 – 608
 minimum spanning trees, 621 – 624
 multigraph, 605
 operations, 607
 paths, 604 – 605 , 624 – 627
 planar, 630
 shortest path, 624 – 627
 spanning trees, 618 – 624
 subgraph, 604
 topological sorting, 615 – 618
 traversals, 611 – 615
 undirected, 605
 weighted, 605

 Growth rate function f (n), 294 , 297
 Growth rates, algorithm effi ciency and,

 293 – 294

H
 Hamilton circuit, 629
 Handling exceptions, 227 , 233 – 239
has-a relationships, 342 – 343
 Hash tables, 545 , 553 – 554 , 559
 Hashing, 544 – 562 , 651 – 654 , 680 – 681

 collision–resolution schemes, 547 – 549
 comparison of techniques, 556 – 557
 converting a character string to an

integer, 548 – 549
 dictionaries and, 544 – 562 , 651 – 654
 dictionary implementation using,

 559 – 562
 double, 552 – 553 , 555
 effi ciency of, 554 – 557
 external fi le organization using,

 651 – 654
 folding, 547 – 548
 hash functions for, 545 – 549 , 557 – 59

 hash table for, 545 , 553 – 554
 ineffi ciency of dictionary traversal and,

 559
 linear probing, 550 , 555
 load factor , 554 – 555
 modulo arithmetic for, 548
 open addressing, 550 – 553
 probe sequence, 550 – 552 , 555
 quadratic probing, 551 – 552 , 555
 rehashing, 553
 resolving collisions, 549 – 554
 separate chaining, 554 , 555 – 556 ,

 559 – 562
 STL functions, 680 – 681

 Head (front) of a list, 254
 Head pointer, 135
 Header (.h) fi les, 32 , 99 – 100 , 138 – 139 ,

 242 – 243 , 266 – 267 , 272 – 274 ,
 353 – 354 , 358 – 359 , 362 – 363 , 366 ,
 401 – 402 , 407 – 408 , 458 – 462 ,
 482 – 483 , 711 – 713 , 773 – 776

 abstract data types (ADT), 99 – 100 ,
 242 – 243

 array-based implementation, 99 – 100 ,
 242 – 243 , 266 – 267 , 407 – 408 ,
 512 – 513 , 535

 bag implementation, 99 – 100
 binary search tree implementation,

 482 – 483 , 537
 binary tree implementation, 458 – 462
 containment and, 358 – 359
 C++ class, 32 , 711 – 713 , 773 – 776
 dictionaries, 533 , 535 , 537
 linear implementation, 533
 link-based implementation, 138 – 139 ,

 272 – 274 , 353 – 354 , 358 – 359 ,
 401 – 402 , 458 – 462 , 482 – 483

 list implementation, 266 – 267 , 272 – 274
 private inheritance and, 366
 public inheritance and, 362 – 363
 queue implementation, 401 – 402 ,

 407 – 408
 sorted list implementation, 353 – 354 ,

 358 – 359 , 362 – 363 , 366
 stack implementation, 242 – 243
 standard functions and, 773 – 776

headptr operator, 135 – 136
heapCreate method, 514 , 516
heapRebuild method, 514 – 515
 Heaps, 503 – 524 , 683 – 684

 abstract data type (ADT), 503 – 506
 adding a new item, 511 – 512
 algorithms for, 508 – 512 , 683 – 684
 array transformation into, 515 – 516

 array-based implementation, 506 – 516
 binary search trees compared to, 518
 fi nite, distinct priority values, 518
 header (.h) fi le, 512 – 513
heap sort, 519–521
 implementation of, 506 – 516
 interface for, 505 – 506
 maxheap and minheap, 504
 methods, 513 – 516
 operations, 504 – 505
 priority queue implementation by,

 516 – 518
 queues and, 518
 removing and retrieving items, 508 – 511
 sort, 519 – 521

I
 Identifi ers, C++, 160 – 161 , 687
if statements, 699 – 701 , 737
 Implementation, 12 , 16 – 17 , 36 – 37 ,

 95 – 116 , 133 – 158 , 241 – 252 ,
 265 – 288 , 347 – 371 , 397 – 413 ,
 455 – 492 , 497 – 499 , 506 – 518 ,
 531 – 544 , 559 – 562 , 608 – 611 ,
 713 – 716 , 794 – 795

 abstract data types (ADT), 12 , 16 – 17 ,
 241 – 252

 adjacency matrix for, 608 – 611
 adjacency list for, 608 – 611
 array-based, 95 – 116 , 242 – 244 ,

 266 – 272 , 405 – 410 , 456 – 458 ,
 506 – 516 , 534 – 536

 backtracking and, 180 – 183
 binary search trees, 471 – 483 , 533 – 534 ,

 536 – 538
 binary trees, 456 – 471
 C++ (.cpp) fi les, 32 , 713 – 716
 C++ solution, 36 – 37
 comparison of, 153 – 154 , 285 , 410
 dictionaries, 531 – 544 , 559 – 562
 exceptions and, 249 – 250
 graphs, 608 – 611
 hashing used for, 559 – 562
 heaps, 506 – 518
 iterators, 497 – 499
 linear, 531 – 534
 link-based, 133 – 158 , 245 – 249 ,

 272 – 285 , 400 – 405 , 410 , 458 – 483
 lists, 265 – 288 , 347 – 371 , 398 – 400
 priority queues, 411 – 412 , 516 – 518
 private/public data members, 99 , 110 ,

 149 , 244
 Python programming, 794 – 795

 Index 803

 queues, 397 – 413
 selection of, 538 – 544
 separate chaining used for, 559 – 562
 sorted lists, 347 – 371
 stacks, 241 – 252
 traversals and, 465 – 471
 trees, 455 – 492

 Implicit type conversions, 692
 Indexing external fi les, 648 – 651 , 664 – 665
 Inductive hypothesis and conclusion, 184 ,

 185
 Inequality operator !=, 495
 Infi nite recursion, 53
 Infi x expressions, 164 – 166 , 205 – 209
 Information hiding, 9 – 10
 Inheritance, 3 – 4 , 40 – 46 , 333 – 342 ,

 362 – 367 , 716 – 717
 base class (superclass), 40 – 44
 C++ class, 40 – 46 , 716 – 717
 class relationships, 333 – 342
 derived class (subclass), 40 – 42 ,

 334 – 336
 dynamic (late) binding, 338
 multiple, 335
 object-oriented programming

and, 3 – 4
 overriding methods, 42 – 44 , 365
 private, 340 , 366 – 367
 protected, 340
 public, 340 , 362 – 365
 redefi ning methods, 335 – 337
 relationships with, 333 – 342
 sorted list implementation, 362 – 367
 static (early) binding, 337 – 338

 Initializers, 101
 Inorder successor, 476 – 477
 Inorder traversals, 437 , 448
inorderTraverse method, 440
 Input data error prevention, 732 – 734
 Input iterator, 494
 Input line storage, 194
 Input/output, 693 – 696 , 787 – 788 ,

 790 – 791
iostream used for, 693 – 696
 Java programming, 787 – 788
 Python programming, 790 – 791

insert method, 256 , 268 – 269 , 275 – 277 ,
 281 – 282

 Inserting data/items, 311 –314, 471– 473 ,
 575 – 579 , 587 – 591 , 594 – 596 ,
 597 – 660

 algorithms, 471 – 473 , 577 – 579
 balanced search trees, 575 – 579 ,

 587 – 591 , 594 – 596 , 597 – 660

 external B-trees, 599 – 660
 rotation of tree for, 597 – 599
 splitting nodes, 589 – 591 , 594 – 596
 sort algorithm, 311 – 314

 Insertion sort algorithm, 311 – 314
insertSorted method, 349 , 355 – 356 ,

 357 , 363 – 365
 Instance of a class, 2 , 711
 Instantiation, 2
 Integrated Development Environment

(IDE), 736 – 738
 Interfaces, 6 , 10 – 11 , 22 – 24 , 199 ,

 261 – 262 , 350 – 351 , 376 , 441 – 442 ,
 505 – 506 , 530 – 531 , 607 – 608

 bags, 22 – 24
 binary trees, 441 – 442
 complete, 11
 dictionaries, 530 – 531
 graphs, 607 – 608
 heaps, 505 – 506
 lists, 261 – 262 , 350 – 351
 methods, 6
 minimal, 11
 module specifi cations, 6 , 10 – 11
 queues, 376
 signature, 11
 sorted lists, 350 – 351
 stacks, 199
 template, 22 – 24 , 261 – 262 , 350 – 351 ,

 376 , 441 – 442
 Internal sort algorithm, 306
 Invariant, 759
iostream, input/output using, 693 – 696
is-a relationships, 340 – 341
isEmpty method, 102 , 142 , 197 ,

 256 , 268 , 374 – 375 , 380 , 439 , 504 ,
 528

itemCount method, 514 – 515
 Iteration, recursion compared to, 48
 Iteration statements, 702 – 704 , 790
 Iterative development, 749 – 750
 Iterators, 493 – 501

 category tags, 495
 distance between, 495
 equality operator = =, 495
 functions for, 499 – 501
 implementation of, 497 – 499
 inequality operator !=, 495
 input, 494
 move to next item (postfi x) operator ++,

 495 , 496
 move to previous item (prefi x)

operator ––, 495 , 496
 operations, 494 – 497

 program components as, 493 – 494
 return item operator *, 495

J
 Java programming, 781 – 788

 arrays, 783
 boolean data types, 782
 classes, 785 – 787
 comments, 782
 constants, 783
 fl ow control, 783 – 784
 functions, 784 – 785
 input/output, 787 – 788
 string data types, 782 – 783

K
 Key words, 687

L
 Language, 160 – 164 , 203 – 205 , 686 – 693

 assignment, 691 – 693
 C++, 160 – 161 , 686 – 693
 comments, 686 – 687
 constants, 688 – 689
 enumeration, 690
 expressions, 691 – 693
 fundamental data types, 687 – 688
 grammar and, 160 – 162
 identifi ers, 160 – 161 , 687
 key words, 687
 literal constants, 688 – 689
 named constants, 689
 palindromes, 162 – 163
 recognition algorithms, 160 – 163
 stacks, 203 – 205
 strings of A n B n formation, 163
 strings, recognition in, 203 – 205
typedef statement, 690
 variables, 688

 Last in, fi rst out (LIFO) property, 196 – 197
 Late binding, 120
 Leaf, tree relationships, 427 , 428
leftChildPtr operator, 472 – 473
 Libraries, C++, 717–718. See also

Standard Template Library (STL)
 Linear algorithm, 296
 Linear chain, 400
 Linear implementations, 531 – 534
 Linear probing, 550 , 555
 Link–based implementation, 133 – 158 ,

 245 – 249 , 272 – 285 , 352 – 357 ,
 400 – 405 , 410 , 458 – 483

804 Index

 Link–based implementation (cont’d)
abstract data types (ADT), 245 – 249
 array-based implementation compared

to, 153 – 154 , 285 , 410
 bags, 137 – 148
 binary search trees, 471 – 783
 binary trees, 458 – 471
 constructors for, 139 , 146 – 148 , 274 ,

 462
 copy constructors, 146 – 148 , 245 – 246 ,

 354 – 355 , 463
 core methods for, 139 – 142
 destructors (~) for, 146 , 280 , 463
 header (.h) fi les, 138 – 139 , 272 – 274 ,

 353 – 354 , 401 – 402 , 458 – 462
 lists, 272 – 285
 methods for, 139 – 148 , 274 – 285 ,

 354 – 357 , 402 – 405 , 464
 multiple ADT, 150 – 152
Node class, 136 – 137
 nodes and, 134 – 136 , 458 – 459
 pointers for, 134 – 136 , 400 – 401
 queues, 400 – 405 , 410
 recursion and, 148 – 149 , 281 – 285
 removal of queue items, 404 – 405
 sorted lists, 352 – 357
 stacks, 245 – 249
 testing, 142 , 150 – 152
 traversal operations, 465 – 471
 virtual destructors (~) for, 245 – 246

 Link-based lists, overloaded operators
and, 416 – 420

 Linked chain of nodes, 135
LinkedBag class, 138 – 140 , 146 – 149
LinkedIterator class, 496 – 500
LinkedList class, 272 – 285 , 416 – 422
LinkedQueue class, 401 – 404
LinkedSortedList class, 353 – 356
ListQueue class, 398 – 400
 Lists, 253 – 264 , 265 – 288 , 347 – 371 ,

 398 – 400 , 608 – 611 , 677 – 678
 abstract data type (ADT) specifi cations,

 254 – 259 ,
 adjacency, 608 – 611
 alphabetical order of, 260 – 261
 array-based implementation, 266 – 272
 axioms, 257 – 259
 displaying items on, 259
 graph implementation, 608 – 611
 head (front), 254
 implementation of, 265 – 288 , 347 – 371
 interface template for, 261 – 262
 link-based implementation, 272 – 285
 operations, 255 – 257 , 259 – 261

 predecessor and successor, 254
 queue implementation using, 398 – 400
 recursion and, 281 – 285
 replacing items, 260
 sorted, 347 – 371
 STL operations, 677 – 678
 tracing additions to, 282 – 285

 Literal constants, 688 – 689
 Load factor , 554 – 555
 Local environment, 54
 Logic error prevention, 734 – 735
 Logical expressions, 691 – 692
 Loop invariants, 759 – 760
 Loops, 107 , 292 – 293 , 737

M
MagicBox class, 32 , 43 – 44
 Manipulators, C++, 696 – 697
 Map and multimap STL operations,

 680 – 681
 Mathematical induction, 183 – 186 ,

 755 – 758
MAX_QUEUE declaration, 405 – 407 , 409 – 410
 Maxheap, 504
 Median-of-three pivot selection, 321 – 322
 Member functions, 3 , 711
 Memory leak, 121 , 123 – 126 , 136
 Memory, 118–128. See also External

storage
 allocation, 118 – 120
 code (text) storage, 120
 deallocating, 122 – 123
 early binding, 118 – 120
 free store (heap), 120 – 128
 pointers for, 120 – 128
 run-time stack, 118
 static storage, 120
 variables, 118 – 122

 Merge sort algorithm, 314 – 319 , 640 – 646
 Messages, object collaboration as, 3
 Methods, 3 , 34 – 35 , 100 – 114 , 118 – 120 ,

 128 – 130 , 139 – 149 , 228 , 243 – 244 ,
 268 – 272 , 274 – 285 , 328 , 333 – 348 ,
 354 – 357 , 359 – 362 , 363 – 365 ,
 402 – 405 , 422 , 513 – 516 , 711 ,
 724 – 726

 accessor, 34
 ADT bag implementation, 100 – 110 ,

 139 – 148
 ADT stack implementation, 243 – 244
 array-based implementation, 100 – 114 ,

 243 – 244 , 268 – 272 , 513 – 516
 C++ class, 34 – 35 , 44 – 46 , 118 – 120 , 711

 containment and, 359 – 362
 core, 100 – 105 , 139 – 142
 dynamic (late) binding, 338
 exceptions and, 228
 friend, 422
 heaps, 513 – 516
 inheritance and, 333 – 348
 interface, 6
 link-based implementation, 139 – 149 ,

 274 – 285 , 354 – 357 , 359 – 362 ,
 402 – 405

 list implementation, 268 – 272 , 274 – 285
 mutator, 35
 overriding, 328 , 365
 passing a parameter by constant

reference, 35
 polymorphism and, 128 – 130 , 328
 public inheritance and, 363 – 365
 programming use of, 724 – 726
 pure virtual, 45
 queues, 402 – 405
 recursion and, 112 – 114 , 148 – 149 ,

 281 – 285
 redefi ning, 335 – 337
 removing entries/items, 107 – 110 ,

 404 – 405
 sorted lists, 354 – 357 , 359 – 362 ,

 363 – 365
 static (early) binding, 337 – 338
 testing, 103 – 105 , 110 – 111 , 142
 virtual, 44 – 46 , 128 – 130

 Minheap, 504
 Minimum spanning trees, 621 – 624
 Modifi ability of programming, 729 – 730
 Modularity, programming and, 722 – 723
 Modules, 3 – 4 , 6 – 11

 abstraction, 8 – 9
 cohesion of, 4
 coupling of, 5
 data abstractions, 9
 data fl ow, 6
 functional (procedural) abstraction, 9
 information hiding, 9 – 10
 interfaces, 6 , 10 – 11
 operation contracts, 6 – 8
 postconditions and preconditions, 7
 solution results and, 4 – 5
 specifi cations, 6 – 11
 functions and, 3 , 7 , 9 – 10

 Modulo arithmetic for hashing, 548
 Move to next item (postfi x) operator ++,

 495 , 496
 Move to previous item (prefi x)

operator ––, 495 , 496

 Index 805

 Multigraph, 605
 Multipath recursion, 72
 Multiple inheritance, 335
 Mutator methods, 35

N
n -ary tree, 428
 Named constants, 689 , 730
 Namespace, C++, 37
 Nested loops, 292 – 294
new operator, 120 – 123
Node class, 136 – 137
nodeptr operator, 134 – 135
 Nodes, 134 – 136 , 292 , 426 – 427 , 430 – 435 ,

 438 , 456 – 459 , 465 – 467 , 589 – 591 ,
 594 – 596 , 597 – 599

 array-based implementation using,
 456 – 458

 balanced search trees, 589 – 591 ,
 594 – 596 , 597 – 599

 binary trees and, 431 – 435 , 438 ,
 456 – 459 , 465 – 467

 execution time and, 292
 free list, 456 – 458
 level of, 430
 link-based implementation using,

 134 – 136 , 458 – 459 , 465 – 467
 linked chain of, 135 , 292
 number of, 433 – 435
 parent-child relationships, 426 – 427
 rotation of tree and, 597 – 599
 splitting for data insertion, 589 – 591 ,

 594 – 596
 subtree of, 427
 traversal of linked, 292 , 465 – 467
 tree height and, 430 – 435
 trees, 426 – 427 , 430 – 435 , 456 – 459
 visiting, 438 , 465 – 467

 Nonrecursive traversal, 467 – 471
nullptr operator, 122 – 123 , 127 – 128 ,

 134 – 135 , 472 – 473

O
 Object type compatibility, 341
 Object-orientation, 2 – 4
 Object-oriented analysis (OOA), 2 – 4
 Object-oriented analysis and design

(OOAD), 2
 Object-oriented design (OOD), 3
 Object-oriented programming (OOP),

 711
 Objects, 2 , 227

 Open addressing, 550 – 553
 Opening and closing text fi les, 764 – 765
 Operations, 15–16, 21, 175–176,

197–200, 255–257, 259–261,
348–350, 351–352, 374–375,
379–380, 438–441, 443–445,
494–497, 504–505, 527–529, 607,
672–673. See also Traversal
operations

 abstract data types (ADT), 15 – 16 , 21 ,
 197 – 200 ,

 arrays, 675
 bags, 21
 binary search trees, 443 – 445
 binary trees, 438 – 441
 deque operations, 677
 dictionaries, 527 – 529
 fl ight maps, 175 – 176
 graphs, 607
 heaps, 504 – 505
 iterators, 494 – 497
 lists, 255 – 257 , 259 – 261 , 677 – 678
 map and multimap, 680 – 681
 priority queues, 379 – 380 , 674
 queues, 374 – 375 , 673
 set and multiset, 679 – 680
 sorted lists, 348 – 350 , 351 – 352
 stacks, 197 – 200 , 673
 standard template library (STL),

 672 – 673
 vectors, 676

 Order of an algorithm, 294
out_of_range exception, 236 – 238
 Overloaded operators, 415 – 423

 assignment operator =, 417 – 419
 concatenation operator +, 419 – 420
 equality comparison operator = =,

 416 – 417
 friend access and, 421 – 423
 linked-based lists and, 417 – 420
 method for, 416 – 417
 output stream operator <<, 421 – 423

 Overriding base class, 42 – 44
 Overriding methods, 338 , 365

P
 Palindromes, 162 – 163 , 377 – 378
 Parade organization problem, 82 – 83
 Parameterized constructor, 34
 Parameters, 35 , 697 – 698
 Parent, tree relationships, 426
 Parent-child relationships, 426 – 429 ,

 471 – 480

 Partitioning, 74 – 75 , 319 – 320 , 322 – 324
 adjustment of algorithm, 322 – 324
 arrays, 74 – 75 , 320
 pivot, about the, 319 – 320

 Passing a parameter by constant
reference, 35

 Passing arrays to functions, 705
 Paths, 448 , 604 – 606 , 624 – 627

 cycle, 605
 directed, 606
 edges and, 604 – 606
 graphs, 604 – 606 , 624 – 627
 shortest, 624 – 627
 trees, 448
 vertices and, 604 – 605

peek operation, 197 – 198 , 243 – 244 ,
 249 – 250 , 380

peekFront method, 374 – 375 , 404
peekTop method, 505 , 516
 Perfect hash function, 546
 Pivot selection, 321 – 322
 Pivot value, 74 – 75 , 319 – 320
PlainBox class, 32 – 33 , 36 – 37 , 38 ,

 129 – 130 , 335 , 793 – 795
 Planar graphs, 630
 Pointers, 120 – 128 , 400 – 401 ,

471 – 473
 asterisk (*) symbol for variables, 121
 binary search tree implementation,

 471 – 473
 dangling, 123 , 127 – 130
 deallocating memory for, 122 – 123
delete operator, 122 – 123
 head, 135
headptr operator, 135 – 136
 free store (heap) and, 120 – 128
 link-based implementation and,

 134 – 136 , 400 – 401 , 471 – 473
 memory leaks and, 121 , 123 – 126 , 135
new operator and, 120 – 122
nodePtr, 134 – 135
nullptr, 122 – 123 , 127 – 128
 queue implementation, 400 – 401
 tail, 400

 Polymorphic methods, 338
 Polymorphism, object-oriented

programming and, 3 – 4
pop operation, 197 – 198
 Position-oriented ADTs, 389
 Postcondition, 7
 Postfi x expressions, 165 – 166 , 170 – 171 ,

 205 – 209
 Postfi x operator ++, 495 , 496
 Postorder traversals, 436 , 437 – 438

806 Index

postorderTraverse method, 440
 Precondition, 7
 Predecessor, lists, 254
 Predicate expressions (), Python, 790
 Prefi x expressions, 165 – 170
 Prefi x operator ––, 495 , 496
 Preorder traversals, 436 – 437
preorderTraverse method, 440
 Preprocessor directives, 36
 Prim’s algorithm, 622 – 623
 Priority queues, 379 – 388 , 411 – 412 ,

 516 – 518 , 674
 abstract data types (ADT), 379 – 381
 event loops using, 384 – 385
 heap implementation of, 516 – 518
 implementation of, 411 – 412
 operations, 379 – 380
 simulations using, 381 – 388
 sorted lists and, 411 – 412
 STL operations, 674
 tracking assignments, 380 – 381

 Priority value, 379
PriorityQueue class, 380
 Private inheritance, 340 , 366 – 367
 Private/public designation, 40 – 41 , 99 ,

 110 , 149 , 244 , 338 – 340 , 711 , 723 ,
 793

 array-based implementation, 99 , 110
 classes, 40 – 41 , 711
 inheritance and, 338 – 340
 implementation and, 99 , 110 , 149 , 244
 link-based implementation, 149
 programming and, 723 , 793
 stacks, 244

 Probe sequence, 550 – 552 , 555
 Problem-solving, 2 , 159 – 192

 algebraic expressions, 164 – 172
 backtracking, 172 – 183
 grammar, 160 – 162
 language, 160 – 164
 mathematical induction, 183 – 186
 palindromes, 162 – 163
 recognition algorithms, 160 – 163
 recursion as, 159 – 192
 strings of A n B n formation, 163

 Program modules, 3
 Programmer-defi ned exception classes,

 239 – 240
 Programming, 4 , 685 – 740 , 781 – 788 ,

 789 – 796
 C++, 685 – 740
 C++ elements compared to Python,

 790 – 792
 debugging, 736 – 738

 documentation, 728 – 729
 drivers used for, 740
 ease of use and, 730 – 731
 error handling, 726
 fail-safe, 731 – 735
 global variable avoidance, 726
 input data error prevention, 732 – 734
 Integrated Development Environment

(IDE), 736 – 738
 Java, 781 – 788
 methods, proper use of, 724 – 726
 modifi ability, 729 – 730
 modularity, 722 – 723
 named constants, 730
 object-oriented (OOP), 4 , 711
 private data members used for, 723
 program logic error prevention, 734 – 735
 Python, 789 – 796
 readability, 726 – 728
 reference arguments used for, 734
 statements, 691 – 693 , 699 – 701 , 790
 stubs used for, 740
 style, 723 – 729
 testing, 738 – 740

 Protected class sections, 338 – 340
 Public class sections, 338 – 339
public declaration, 40
 Public inheritance, 340 , 362 – 365
 Pure virtual methods, 45 , 344 – 345
push operation, 197 – 198
 Python programming, 789 – 796

 C++ elements compared to, 790 – 792
 classes, 793 – 795
 comments, 790
 compound statements { }, 790
 functions, 792 – 793
 implementation fi le, 794 – 795
 input/output, 790 – 791
 iteration statements, 790
 predicate expressions (), 790
 relational operators, 790

Q
 Quadratic algorithm, 296
 Quadratic probing, 551 – 552 , 555
Queue class, 374 , 376 – 378
 Queues, 373 – 395 , 397 – 413 , 516 – 518 , 673

 abstract data types (ADT), 373 – 395
 array-based implementation, 405 – 410
 circular array strategies, 405 – 407
 comparison of implementations, 410
 double-ended (deque), 391
 heaps and, 516 – 518

 implementation of, 397 – 413
 interface template for, 376
 link-based implementation, 400 – 405
 lists for implementation of, 398 – 400
 operations, 374 – 375
 palindromes recognized from, 377 – 378
 position-oriented ADTs, 389
 priority, 379 – 388 , 411 – 412 , 516 – 518
 reading strings of characters, 377
 rightward drift strategy, 405
 simulations using, 374 , 381 – 388
 STL operations, 673
 value-oriented ADTs, 389

Quick sort algorithm, 319 – 327
 analysis of, 324 – 325
 functions for, 324
 merge sort compared to, 326
 partitioning, 319 – 320 , 322 – 324
 pivot value and selection, 319 – 322

R
 Radix sort algorithm, 327 – 329
 Rational unifi ed process (RUP), 750 – 752
 Readability of programming, 726 – 728
 Reading and writing text fi les, 765 – 770
 Reading strings of characters, 377
 Recognition algorithms, 160 – 163
 Recursion, 47 – 93 , 112 – 114 , 148 – 149 ,

 159 – 192 , 216 – 217 , 281 – 285
 airline route search, 172 – 177
 array-based implementation using,

 112 – 114
 arrays and, 67 – 75
 backtracking and, 172 – 183 , 216
 choosing k out of n things, 83 – 85
 divide and conquer strategy, 49 – 50
 effi ciency and, 85 – 87
 eight queens problem, 177 – 183
 factorial of n , 50 – 54 , 85 – 86 , 183 – 184
 Fibonacci sequence problem, 79 – 82
 infi nite, 53
 iteration compared to, 48
 link-based implementation and,

 148 – 149 , 281 – 285
 list methods and, 281 – 285
 mathematical induction and, 183 – 186
 methods for, 112 – 114 , 148 – 149
 multipath, 72
 organizing data, 76 – 85
 parade organization problem, 82 – 83
 performing an action, 57 – 66
 problem-solving techniques using,

 159 – 192

 Index 807

 returning a value, 50 – 57
 searches, 48 – 49 , 172 – 177 , 216 – 217
 solutions, 48 – 50
 stack relationships, 216 – 217
 tail, 87
 termination, 217
 Towers of Hanoi problem, 76 – 79 ,

 184 – 185
 tracing list additions, 282 – 285
 void functions, 57 – 66

 Red-black trees, 592 – 596
 2-3-4 tree representation, 592 – 593
 inserting data into, 594 – 596
 removing data from, 594 – 596
 searching, 594
 splitting nodes, 594 – 596
 traversing, 594

 Reference arguments, 734
 Rehashing, 553
 Relational operators, 691 – 692 , 790
remove method, 107 – 110 , 144 – 145 , 260 ,

 271 , 276 , 278 – 280 , 380 , 440 , 444 ,
 505

removeNode method, 477 – 480
removeSorted method, 349 , 364
removeValue method, 477 – 480
 Removing entries/items, 107 – 110 ,

 404 – 405 , 474 – 481 , 508 – 511 ,
 579 – 585 , 591 , 594 – 596 , 597 – 599 ,
 660 – 662

 algorithms, 474 – 481 , 508 – 511 ,
 583 – 585

 bags, 107 – 110
 balanced search trees, 579 – 585 , 591 ,

 594 – 596 , 597 – 599 , 660 – 662
 binary search trees, 474 – 481
 external B-trees, 660 – 662
 heaps, 508 – 511
 queues, 404 – 405
 rotation of tree for, 597 – 599

replace function, 260
 Resizable arrays, 131 – 132
 Retrieving an entry/item, 481 , 508
 Return item operator *, 495
 Returning a value, 50 – 57

 box trace, 54 – 57
 factorial of n , 50 – 54
 infi nite recursion and, 53

 Reuse, 333–346. See also Class
relationships

rightChildPtr operator, 472 – 473
 Rightward drift queue implementation

strategy, 405
 Root, tree relationships, 427

 Rotation of AVL trees, 597 – 599
 Runtime error, 232
 Runtime stack, 118

S
 Search and compare STL algorithms,

 682 – 683
 Search key, 526 – 527 , 529
 Searching, 48 – 49 , 68 – 72 , 172 – 177 ,

 210 – 217 , 300 – 301 , 445 – 446 ,
 486 – 487 , 572 – 574 , 587 , 594 ,
 611 – 615

 algorithms, 300 – 301
 arrays, 68 – 72 , 486 – 487
 backtracking and, 172 – 177
 balanced search trees, 572 – 574 , 587 ,

 594
 binary, 48 – 49 , 68 – 72 , 300 – 301
 binary search trees, 445 – 446
 breadth-fi rst (BFS) strategy, 613 – 615
 depth-fi rst (DFS) strategy, 611 – 613
 effi ciency of, 300 – 301
 exhaustive, 173 – 177 , 210 – 215
 graph traversals, 611 – 615
 recursive solutions from, 48 – 49
 sequential, 48 , 300
 stacks, 210 – 217

searchS algorithm, 214 – 215
 Secondary clustering, 551
 Selecting digits, 547
 Selection sort algorithm, 306 – 309
 Selection statements, 699 – 702
 Separate chaining, 554 – 556 , 559 – 562
 Sequence containers, 674 – 678
 Sequence diagrams, 742 – 744
 Sequence modifi cation algorithms, 683
 Sequential access fi les, 638
 Sequential search, 48 , 300
 Set and multiset STL operations,

 679 – 680
setEntry method, 257 , 270
setItem method, 33 , 35 , 118 – 120
setRootData method, 440
 Shallow copy, 146 – 147
 Shortest path, fi nding with graphs,

 624 – 627
 Siblings, tree relationships, 426
 Signature, 11
 Simulations, 374 , 381 – 388

 algorithms for, 385 – 388
 bank problem for, 381 – 382
 event list, 385
 event loops, 384 – 385

 event-driven, 384 – 388
 priority queues for, 381 – 388
 processing customers and events,

 385 – 386
 time and events, 382 – 384
 time-driven, 385

SLPriorityQueue class, 411 – 412
 Software, 749 – 753

 evolutionary development, 750
 iterative development, 749 – 750
 lifecycle of, 749 – 753
 rational unifi ed process (RUP), 750 – 752
 waterfall method of development, 753

 Solutions, 2 – 5 , 36 – 37 , 48 – 50 , 194 – 196 ,
 290

 ADT stack design for, 194 – 196
 algorithm effi ciency and, 290
 C++ implementation, 36 – 37
 cohesion and, 4 – 5
 coupling and, 5
 divide and conquer strategy, 49 – 50
 input line storage, 194
 modules and, 4 – 5
 object orientation requirements, 2 – 4
 recursive, 48 – 50
 searches for, 48 – 49

 Sort functions, STL, 329
 Sort key, 306
 Sorted lists, 347 – 371 , 411 – 412

 abstract data types (ADT), 357 – 367
 ADT specifi cations, 348 – 352
 constructors/destructors and, 359
 containment, 357 – 362
 effi ciency and, 360 – 362
 header (.h) fi le, 353 – 354 , 358 – 359 , 366
 implementation of, 347 – 371
 inheritance, 362 – 367
 interface template for, 350 – 351
 link-based implementation, 352 – 362
 methods for, 354 – 357 , 359 – 362
 operations, 348 – 350 , 351 – 352
 priority queue implementation using,

 411 – 412
 private inheritance, 366 – 367
 public inheritance, 362 – 365

SortedList class, 350 – 352
SortedListAsA class, 362 – 365
SortedListHasA class, 358 – 360
SortedListIsA class, 362 – 365
 Sorting, 305 – 332 , 519 – 521 , 615 – 618 ,

 640 – 646 , 683 – 684
 algorithms, 305 – 332 , 519 – 521 ,

 683 – 684
 bubble, 309 – 311

808 Index

 Sorting (cont’d)
comparison of methods, 326 , 329
 data fi les, 640 – 646
 external, 306 , 640 – 646
 faster algorithms, 314 – 329
 graph applications, 615 – 618
 heap sort, 519 – 521
 implementation of, 307 – 308 , 310 – 311 ,

 313 , 316 – 317
 insertion, 311 – 314
 internal, 306
 merge, 314 – 319
 quick, 319 – 327
 radix, 327 – 329
 selection, 306 – 309
 topological, 615 – 618

 Spanning trees, 618 – 624
 breadth-fi rst search (BFS), 620 – 621
 connected graphs, 605 , 618 – 619
 depth-fi rst search (DFS), 619 – 620
 minimum, 621 – 624
 Prim’s algorithm for, 622 – 623

 Specifi cation fi les, C++, 32
Sphere class, 714 – 716
stack STL class, 215
 Stacks, 193 – 225 , 241 – 252 , 673

 abstract data type (ADT), 194 – 201 ,
 241 – 252

 ADT operations for, 197 – 200
 algebraic expressions and, 205 – 209
 array-based implementation, 242 – 244
 axioms, 200 – 201
 backtracking, 211 – 212 , 216
 balanced braces { } in, 201 – 203
 exceptions and, 249 – 250
 exhaustive search using, 210 – 215
 fl ight map search using, 210 – 216
 implementation of, 241 – 252
 interface, 199
 language recognition, 203 – 205
 last in, fi rst out (LIFO) property, 196 – 197
 link–based implementation, 245 – 249
 recursion relationships, 216 – 217
 searches, 210 – 217
 Standard Template Library (STL)

class, 215
 STL operations, 673
 strings and, 201 – 205

 Standard functions, 699 , 773 – 776
 Standard Template Library (STL), 215 ,

 329 , 671 – 684
 algorithms, 682 – 684
 array operations, 675
 associative containers, 678 – 681

 class, 215
 container operations, 672 – 673
 containers, 671 – 681
 deque operations, 677
 hashing functions, 680 – 681
 heap algorithms, 683 – 684
 list operations, 677 – 678
 map and multimap operations,

 680 – 681
 priority queue operations, 674
 queue operations, 673
 search and compare algorithms,

 682 – 683
 sequence containers, 674 – 678
 sequence modifi cation algorithms,

 683
 set and multiset operations,

 679 – 680
 sort functions, 329
 sorting algorithms, 683 – 684
 stack operations, 673
 vector operations, 676

 Statements, 417 – 419 , 691 – 693 , 699 – 701 ,
 790

 assignment, 417 – 419 , 691 – 693
 iteration, 702 – 704 , 790
 overloading, 417 – 419
 selection, 699 – 702

 Static (early) binding, 337 – 338
 Static allocation of arrays, 130
 Static storage, 120
 Stereotypes, 367
 String data types, 782 – 783
 Strings, 57 – 66 , 163 , 201 – 205 , 377 – 378 ,

 709 – 710
 A n B n formation, 163
 balanced braces { } in, 201 – 203
 C++, 709 – 710
 language recognition, 203 – 205
 palindromes, 162 – 163 , 377 – 378
 queues and, 377 – 378
 reading characters of, 377
 recursive void functions, 57 – 66
 stacks and, 201 – 205
 writing backwards, 57 – 66

 Stubs, 103 , 740
 Subclass (derived class), 40 – 42
 Subgraph, 604
 Substrings, void functions using, 57
subTreePtr, 473
 Subtrees, 427 , 428
 Successor, lists, 254
 Superclass (base class), 40 – 42
switch statements, 701 – 702

T
 Tail pointer, 400
 Tail recursion, 87
 Target value, 68
 Templates, 31 , 37 – 40 , 261 – 262 , 350 – 351 ,

 376 , 441 – 442
 angle brackets < > for, 39
 binary tree interface, 441 – 442
 C++ class, 31 , 37 – 40
 data-type parameter, 38
 list interface, 261 – 262
 queue interface, 376
 sorted list interface, 350 – 351

 Testing methods, 103 – 105 , 110 – 111 , 142 ,
 150 – 152 , 270 , 738 – 740

 array-based implementation, 103 – 105 ,
 110 – 111 , 270

 bag methods, 110 – 111 , 142
 developing data for, 738 – 739
 drivers used for, 740
 link-based implementation, 142 ,

 150 – 152
 list implementations, 270
 multiple ADT implementation, 150 – 152
 programming, 738 – 740
 stubs used for, 740

 Text fi les, 763 – 772
 Throw an exception, 8 , 230 – 233
throw statement, 231
 Time and events, simulations for,

 382 – 384
 Time-driven simulation, 385
 Timebox, 749 – 750
 Topological sorting, 615 – 618
toVector method, 102 , 140 – 142 , 148 – 149
 Towers of Hanoi problem, 76 – 79 ,

 184 – 185
ToyBox class, 32 , 40 – 42
 Tracing additions to lists, 282 – 285
 Tracking assignments, 380 – 381
 Traversals, 292 , 436 – 438 , 447 – 448 ,

 465 – 471 , 529 , 539 – 544 , 559 , 572 ,
 587 , 594 , 611 – 615 , 662 – 664

 balanced search trees, 572 , 587 , 594
 binary search trees, 447 – 448
 binary trees, 436 – 438 , 465 – 471
 breadth-fi rst search (BFS) strategy,

 613 – 615
 connected components, 611
 depth-fi rst search (DFS) strategy,

 611 – 613
 dictionaries, 529 , 539 – 544 , 559 ,

 662 – 664

 Index 809

 external organization using, 662 – 664
 graph-traversal algorithm, 611
 graphs, 611 – 615
 ineffi ciency of with hashing, 559
 inorder, 437 , 448 , 572
 link-based implementation and, 465 – 471
 linked nodes, 292 , 465 – 467
 nonrecursive, 467 – 471
 order of with insertion, retrieval, and

removal, 539 – 544
 postorder, 436 , 437 – 438
 preorder, 436 – 437
 visiting a node, 438 , 465 – 467

traverse method, 470, 528, 529, 531, 535
TreeDictionary class, 537 – 538
 Tree height, 430 – 435 , 448 , 567 – 568

 AVL trees, 597 – 599
 balance and, 567 – 568 , 597 – 599
 binary trees, 431 – 435
 level of a node and, 430 – 432
 maximum and minimum, 433 – 434
 number of nodes in, 433 – 435
 rotation and, 597 – 599

 Trees, 425 – 453 , 455 – 492 , 567 – 602 ,
 618 – 624

 abstract data type (ADT), 435 – 449
 algebraic expressions and, 428 – 429
 array-based implementation, 456 – 458
 balanced search, 567 – 602
 binary search, 429 , 442 – 449 , 471 – 486
 binary, 428 , 431 – 442 , 456 – 471
 breadth-fi rst search (BFS) spanning,

 620 – 621
 depth-fi rst search (DFS) spanning,

 619 – 620
 general, 428 , 487 – 488
 graph applications, 618 – 624
height, 430–435, 448, 567–568
 hierarchical relationships of, 426 – 427
 implementation, 455 – 492
 link-based implementation, 458 – 483
 minimum spanning, 621 – 624

n -ary, 428
 nodes (vertex), 426 – 427 , 430 , 456 – 459
 parent-child relationships, 426 – 428
 saving in a fi le, 483 – 486
 sorting an array, 486 – 487
 spanning, 618 – 624
 subtrees, 427 , 428
 traversals of, 436 – 438 , 447 – 448

try block, 233 – 234
 2-3 trees, 569 – 585

 algorithms for, 577 – 579 , 583 – 585
 inserting data into, 575 – 579
 removing data from, 579 – 585
 searching, 572 – 574
 traversing, 572

 2-3-4 trees, 585 – 593
 inserting data into, 587 – 591
 red-black tree representation, 592 – 593
 removing data from, 591
 searching, 587
 splitting 4-nodes, 589 – 591
 traversing, 587

typedef statements, 690 , 730

U
 Uncaught exceptions, 236 – 239
 Undirected graph, 605
 Unifi ed modeling language (UML),

 14 – 15 , 741 – 748
 ADT design and, 14 – 15
 class diagrams, 744 – 747
 perspective and, 748
 sequence diagrams, 742 – 744
 use case (scenarios), 741 – 742

V
 Value-oriented ADTs, 389
 Valued function, 697
 Values, 68 , 72 – 76 , 379 , 518

 arrays, 68 , 72 – 76

 fi nite, distinct priority, 518
 heaps, 518
 largest, 72 – 73
 partitioning, 74 – 75
 pivot, 74 – 75
 priority, 379
 smallest, 72 – 75
 target, 68

 Variables, 118 – 128 , 688
 asterisk (*) symbol for, 121
 C++, 688
 deallocating memory, 122 – 123
 memory allocation, 118 – 120
new operator for, 120 – 123
 pointers, 120 – 128

vector class, 180 – 181
 Vectors, 676 , 707 – 709
 Vertex, 426. See also Nodes
 Vertices, graphs, 604 – 605 ,

 615 – 618
 Virtual destructors (~), 245 – 246
 Virtual method table (VMT),

338 – 339
 Virtual methods, 44 – 46 , 128 – 130
 Visiting a node, 438 , 465 – 467
 Void functions, 57 – 66 , 697 – 698

 C++, 697 – 698
cout statement, 64
 recursive actions using, 57 – 66
 strip away the fi rst character,

 60 – 61
 substrings for, 57
writeBackward function, 59 – 66
 writing a string backwards, 57 – 66

W
 Waterfall method of development, 753
 Weighted graph, 605
while statements, 702
writeArrayBackward function, 67
writeBackward function, 59 – 66

This page intentionally left blank

 C++ Operators

 Operators within the same box have the same precedence, which is higher than operators in lower
boxes.

 Operator Meaning Associativity Usage

:: global right :: name
:: scope resolution left class_name::member_name

-> member selection left pointer->member
. member selection left object.member
[] array index left array_name[expr]
() function call left function_name(expr_list)
() type construction left type (expr_list)
++ post-increment right lvalue++
–– post-decrement right lvalue––
typeid type identifi cation right typeid (type)

 typeid (expr)
dynamic_cast checked conversion right dynamic_cast<type>(expr)
static_cast checked conversion right static_cast<type>(expr)
reinterpret_cast unchecked conversion right reinterpret_cast<type>(expr)
const_cast const conversion right const_cast<type>(expr)

sizeof size of type right sizeof (type)
sizeof size of object right sizeof expr
++ pre-increment right ++lvalue
–– pre-decrement right ––lvalue
~ bitwise complement right ~expr
! logical NOT right !expr
+ unary plus right +expr
- unary minus right -expr
* dereference right *expr
& address of right &lvalue
() cast right (type) expr
new allocate right new type

new type(expr_list)
new (expr_list) type
new (expr_list) type(expr_list)

delete deallocate right delete pointer
delete[] pointer

	Cover
	Title Page
	Copyright Page
	Acknowledgements
	Contents
	Chapter 1 Data Abstraction: The Walls
	1.1 Object-Oriented Concepts
	1.1.1 Object-Oriented Analysis and Design
	1.1.2 Aspects of an Object-Oriented Solution

	1.2 Achieving a Better Solution
	1.2.1 Cohesion
	1.2.2 Coupling

	1.3 Specifications
	1.3.1 Operation Contracts
	1.3.2 Unusual Conditions
	1.3.3 Abstraction
	1.3.4 Information Hiding
	1.3.5 Minimal and Complete Interfaces

	1.4 Abstract Data Types
	1.4.1 Designing an ADT
	1.4.2 ADTs That Suggest Other ADTs

	1.5 The ADT Bag
	1.5.1 Identifying Behaviors
	1.5.2 Specifying Data and Operations
	1.5.3 An Interface Template for the ADT
	1.5.4 Using the ADT Bag

	C++ Interlude 1 C++ Classes
	C1.1 A Problem to Solve
	C1.1.1 Private Data Fields
	C1.1.2 Constructors and Destructors
	C1.1.3 Methods
	C1.1.4 Preventing Compiler Errors

	C1.2 Implementing a Solution
	C1.3 Templates
	C1.4 Inheritance
	C1.4.1 Base Classes and Derived Classes
	C1.4.2 Overriding Base-Class Methods

	C1.5 Virtual Methods and Abstract Classes
	C1.5.1 Virtual Methods
	C1.5.2 Abstract Classes

	Chapter 2 Recursion: The Mirrors
	2.1 Recursive Solutions
	2.2 Recursion That Returns a Value
	2.2.1 A Recursive Valued Function: The Factorial of n
	2.2.2 The Box Trace

	2.3 Recursion That Performs an Action
	2.3 .1 A Recursive Void Function: Writing a String Backward

	2.4 Recursion with Arrays
	2.4.1 Writing an Array’s Entries in Backward Order
	2.4.2 The Binary Search
	2.4.3 Finding the Largest Value in an Array
	2.4.4 Finding the kth Smallest Value of an Array

	2.5 Organizing Data
	2.5.1 The Towers of Hanoi

	2.6 More Examples
	2.6.1 The Fibonacci Sequence (Multiplying Rabbits)
	2.6.2 Organizing a Parade
	2.6.3 Choosing k Out of n Things

	2.7 Recursion and Efficiency

	Chapter 3 Array-Based Implementations
	3.1 The Approach
	3.1.1 Core Methods
	3.1.2 Using Fixed-Size Arrays

	3.2 An Array-Based Implementation of the ADT Bag
	3.2.1 The Header File
	3.2.2 Defining the Core Methods
	3.2.3 Testing the Core Methods
	3.2.4 Implementing More Methods
	3.2.5 Methods That Remove Entries
	3.2.6 Testing

	3.3 Using Recursion in the Implementation
	3.3.1 The Method getIndexOf
	3.3.2 The Method getFrequencyOf

	Interlude 2 Pointers, Polymorphism, and Memory Allocation
	C2.1 Memory Allocation for Variables and Early Binding of Methods
	C2.2 A Problem to Solve
	C2.3 Pointers and the Program’s Free Store
	C2.3.1 Deallocating Memory
	C2.3.2 Avoiding Memory Leaks
	C2.3.3 Avoiding Dangling Pointers

	C2.4 Virtual Methods and Polymorphism
	C2.5 Dynamic Allocation of Arrays
	C2.5.1 A Resizable Array-Based Bag

	Chapter 4 Link-Based Implementations
	4.1 Preliminaries
	4.1.1 The Class Node

	4.2 A Link-Based Implementation of the ADT Bag
	4.2.1 The Header File
	4.2.2 Defining the Core Methods
	4.2.3 Implementing More Methods

	4.3 Using Recursion in Link-Based Implementations
	4.3.1 Recursive Definitions of Methods in LinkedBag

	4.4 Testing Multiple ADT Implementations
	4.5 Comparing Array-Based and Link-Based Implementations

	Chapter 5 Recursion as a Problem-Solving Technique
	5.1 Defining Languages
	5.1.1 The Basics of Grammars
	5.1.2 Two Simple Languages

	5.2 Algebraic Expressions
	5.2.1 Kinds of Algebraic Expressions
	5.2.2 Prefix Expressions
	5.2.3 Postfix Expressions
	5.2.4 Fully Parenthesized Expressions

	5.3 Backtracking
	5.3.1 Searching for an Airline Route
	5.3.2 The Eight Queens Problem

	5.4 The Relationship Between Recursion and Mathematical Induction
	5.4.1 The Correctness of the Recursive Factorial Function
	5.4.2 The Cost of Towers of Hanoi

	Chapter 6 Stacks
	6.1 The Abstract Data Type Stack
	6.1.1 Developing an ADT During the Design of a Solution
	6.1.2 Specifications for the ADT Stack

	6.2 Simple Uses of a Stack
	6.2.1 Checking for Balanced Braces
	6.2.2 Recognizing Strings in a Language

	6.3 Using Stacks with Algebraic Expressions
	6.3.1 Evaluating Postfix Expressions
	6.3.2 Converting Infix Expressions to Equivalent Postfix Expressions

	6.4 Using a Stack to Search a Flight Map
	6.5 The Relationship Between Stacks and Recursion

	Interlude 3 Exceptions
	C3.1 Background
	C3.1.1 A Problem to Solve

	C3.2 Assertions
	C3.3 Throwing Exceptions
	C3.4 Handling Exceptions
	C3.4.1 Multiple catch Blocks
	C3.4.2 Uncaught Exceptions

	C3.5 Programmer-Defined Exception Classes

	Chapter 7 Stack Implementations
	7.1 An Array-Based Implementation
	7.2 A Link-Based implementation
	7.3 Implementations That Use Exceptions

	Chapter 8 Lists
	8.1 Specifying the ADT List
	8.2 Using the List Operations
	8.3 An Interface Template for the ADT List

	Chapter 9 List Implementations
	9.1 An Array-Based Implementation of the ADT List
	9.1.1 The Header File
	9.1.2 The Implementation File

	9.2 A Link-Based Implementation of the ADT List
	9.2.1 The Header File
	9.2.2 The Implementation File
	9.2.3 Using Recursion in LinkedList Methods

	9.3 Comparing Implementations

	Chapter 10 Algorithm Efficiency
	10.1 What Is a Good Solution?
	10.2 Measuring the Efficiency of Algorithms
	10.2.1 The Execution Time of Algorithms
	10.2.2 Algorithm Growth Rates
	10.2.3 Analysis and Big O Notation
	10.2.4 Keeping Your Perspective
	10.2.5 The Efficiency of Searching Algorithms

	Chapter 11 Sorting Algorithms and Their Efficiency
	11.1 Basic Sorting Algorithms
	11.1.1 The Selection Sort
	11.1.2 The Bubble Sort
	11.1.3 The Insertion Sort

	11.2 Faster Sorting Algorithms
	11.2.1 The Merge Sort
	11.2.2 The Quick Sort
	11.2.3 The Radix Sort

	11.3 A Comparison of Sorting Algorithms

	C++ Interlude 4 Class Relationships and Reuse
	C4.1 Inheritance Revisited
	C4.1.1 Public, Private, and Protected Sections of a Class
	C4.1.2 Public, Private, and Protected Inheritance
	C4.1.3 Is-a and As-a Relationships

	C4.2 Containment: Has-a Relationships
	C4.3 Abstract Base Classes Revisited

	Chapter 12 Sorted Lists and Their Implementations
	12.1 Specifying the ADT Sorted List
	12.1.1 An Interface Template for the ADT Sorted List
	12.1.2 Using the Sorted List Operations

	12.2 A Link-Based Implementation
	12.2.1 The Header File
	12.2.2 The Implementation File
	12.2.3 The Efficiency of the Link-Based Implementation

	12.3 Implementations That Use the ADT List
	12.3.1 Containment
	12.3.2 Public Inheritance
	12.3.3 Private Inheritance

	Chapter 13 Queues and Priority Queues
	13.1 The ADT Queue
	13.2 Simple Applications of the ADT Queue
	13.2.1 Reading a String of Characters
	13.2.2 Recognizing Palindromes

	13.3 The ADT Priority Queue
	13.3.1 Tracking Your Assignments

	13.4 Application: Simulation
	13.5 Position-Oriented and Value-Oriented ADTs

	Chapter 14 Queue Implementations
	14.1 Implementations of the ADT Queue
	14.1.1 An Implementation That Uses the ADT List
	14.1.2 A Link-Based Implementation
	14.1.3 An Array-Based Implementation
	14.1.4 Comparing Implementations

	14.2 An Implementation of the ADT Priority Queue

	C++ Interlude 5 Overloaded Operators and Friend Access
	C5.1 Overloaded Operators
	C5.1.1 Overloading = for Assignment
	C5.1.2 Overloading + for Concatenation

	C5.2 Friend Access and Overloading

	Chapter 15 Trees
	15.1 Terminology
	15.1.1 Kinds of Trees
	15.1.2 The Height of Trees
	15.1.3 Full, Complete, and Balanced Binary Trees
	15.1.4 The Maximum and Minimum Heights of a Binary Tree

	15.2 The ADT Binary Tree
	15.2.1 Traversals of a Binary Tree
	15.2.2 Binary Tree Operations
	15.2.3 An Interface Template for the ADT Binary Tree

	15.3 The ADT Binary Search Tree
	15.3.1 Binary Search Tree Operations
	15.3.2 Searching a Binary Search Tree
	15.3.3 Creating a Binary Search Tree
	15.3.4 Traversals of a Binary Search Tree
	15.3.5 The Efficiency of Binary Search Tree Operations

	Chapter 16 Tree Implementations
	16.1 The Nodes in a Binary Tree
	16.1.1 An Array-Based Representation
	16.1.2 A Link-Based Representation

	16.2 A Link-Based Implementation of the ADT Binary Tree
	16.2.1 The Header File
	16.2.2 The Implementation

	16.3 A Link-Based Implementation of the ADT Binary Search Tree
	16.3.1 Algorithms for the ADT Binary Search Tree Operations
	16.3.2 The Class BinarySearchTree

	16.4 Saving a Binary Search Tree in a File
	16.5 Tree Sort
	16.6 General Trees

	C++ Interlude 6 Iterators
	C6.1 Iterators
	C6.1.1 Common Iterator Operations
	C6.1.2 Using Iterator Operations
	C6.1.3 Implementing an Iterator

	C6.2 Advanced Iterator Functionality

	Chapter 17 Heaps
	17.1 The ADT Heap
	17.2 An Array-Based Implementation of a Heap
	17.2.1 Algorithms for the Array-Based Heap Operations
	17.2.2 The Implementation

	17.3 A Heap Implementation of the ADT Priority Queue
	17.4 Heap Sort

	Chapter 18 Dictionaries and Their Implementations
	18.1 The ADT Dictionary
	18.1.1 An Interface for the ADT Dictionary

	18.2 Possible Implementations
	18.2.1 A Sorted Array-Based Implementation of the ADT Dictionary
	18.2.2 A Binary Search Tree Implementation of the ADT Dictionary

	18.3 Selecting an Implementation
	18.3.1 Four Scenarios

	18.4 Hashing
	18.4.1 Hash Functions
	18.4.2 Resolving Collisions
	18.4.3 The Efficiency of Hashing
	18.4.4 What Constitutes a Good Hash Function?
	18.4.5 Dictionary Traversal: An Inefficient Operation Under Hashing
	18.4.6 Using Hashing and Separate Chaining to Implement the ADT Dictionary

	Chapter 19 Balanced Search Trees
	19.1 Balanced Search Trees
	19.2 2-3 Trees
	19.2.1 Traversing a 2-3 Tree
	19.2.2 Searching a 2-3 Tree
	19.2.3 Inserting Data into a 2-3 Tree
	19.2.4 Removing Data from a 2-3 Tree

	19.3 2-3-4 Trees
	19.3.1 Searching and Traversing a 2-3-4 Tree
	19.3.2 Inserting Data into a 2-3-4 Tree
	19.3.3 Removing Data from a 2-3-4 Tree

	19.4 Red-Black Trees
	19.4.1 Searching and Traversing a Red-Black Tree
	19.4.2 Inserting into and Removing from a Red-Black Tree

	19.5 AVL Trees

	Chapter 20 Graphs
	20.1 Terminology
	20.2 Graphs as ADTs
	20.2.1 Implementing Graphs

	20.3 Graph Traversals
	20.3.1 Depth-First Search
	20.3.2 Breadth-First Search

	20.4 Applications of Graphs
	20.4.1 Topological Sorting
	20.4.2 Spanning Trees
	20.4.3 Minimum Spanning Trees
	20.4.4 Shortest Paths
	20.4.5 Circuits
	20.4.6 Some Difficult Problems

	Chapter 21 Processing Data in External Storage
	21.1 A Look at External Storage
	21.2 Sorting Data in an External File
	21.3 External Tables
	21.3.1 Indexing an External File
	21.3.2 External Hashing
	21.3.3 B-Trees
	21.3.4 Traversals
	21.3.5 Multiple Indexing

	C++ Interlude 7 The Standard Template Library
	C7.1 STL Containers
	C7.1.1 Container Adaptors
	C7.1.2 Sequence Containers
	C7.1.3 Associative Containers

	C7.2 STL Algorithms

	Appendix A: Review of C++ Fundamentals
	Appendix B: Important Themes in Programming
	Appendix C: The Unified Modeling Language
	Appendix D: The Software Life Cycle
	Appendix E: Mathematical Induction
	Appendix F: Algorithm Verification
	Appendix G: Files
	Appendix H: C++ Header Files and Standard Functions
	Appendix I: C++ Documentation Systems
	Appendix J: ASCII Character Codes
	Appendix K: C++ for Java Programmers
	Appendix L: C++ for Python Programmers
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

