Step-by-Step instructions Lab 9
Lab 9:
Step 1: define data types

1) Define a structure named Customer with four members:

CustomerName: 15-character string, which is the name of the customer

ArrivalTime: integer, which is the arrival time of the customer

ServiceTime: integer, which is the time point that the customer starts to be serviced

FinishTime: integer, which is the leaving time of the customer

2) Define a structure named FCFSQueue with two members:

CustomerList: an array of 100 elements of type Customer;

length: integer, which is the number of the customers in the queue.

Step 2: Functions

1) function IsEmpty check whether the queue is empty or not. Return true if empty, otherwise return false;
function prototype:

bool IsEmpty(FCFSQueue);
function definition:

bool IsEmpty(FCFSQueue queue)

{

//if queue’s member length is 0, return true; otherwise, return false

}

2) function GetLength will returns the number of customers in the queue;
function prototype:

int GetLength(FCFSQueue);

function definition:

int GetLength(FCFSQueue queue)

{

//return queue’s member length

}

3) function Enqueue will insert a new customer to the tail of the queue;
function prototype:

void Enqueue(FCFSQueue&, Customer);

function definition:

void Enqueue(FCFSQueue &queue, Customer cus)

{

/* Note: queue’s member length represents the number of customers in the queue, and these customers take the place (index) of 0 to length-1 of queue’s member CustomerList.*/
/* If queue is not full (think how you know whether the queue is full or not), insert cus to the tail of the queue (that is, the place (or index) length of queue’s member CustomerList, CustomerList[length]) and update the number of customers in the queue; otherwise, print out ”the queue is full”.

}

4) function Dequeue will remove a customer from the head of the queue.

function prototype:

void Dequeue(FCFSQueue&);

function definition:

void Dequeue(FCFSQueue &queue)

{

/* Note: queue’s member length represents the number of customers in the queue, and these customers take the place (index) of 0 to length-1 of queue’s member CustomerList.*/
/* If queue is not empty, delete the first customer from the head of queue and save it to cus: save the first element of queue’s member CustomerList (that is, CustomerList[0]) to cus and shift the remaining customers (with the index 1 to length-1) one place earlier (with the index 0 to length-2) and update the number of customers in the queue; otherwise, print out ”the queue is empty”.

}

Step 3: main function

1) declare a variable myQueue of type FCFSQueue and initialize the length member to be 0, which means the queue is empty.

2) Declare a variable newCus of type Customer and initialize it to :

CustomerName: Tom
ArrivalTime: 1
ServiceTime: 0
FinishTime: 0
3) Call function Enqueue and insert newCus to myQueue
4) Reset the value of newCus as follows:

CustomerName: Bob
ArrivalTime: 3
ServiceTime: 0
FinishTime: 0
5) Call function Enqueue and insert newCus to myQueue
6) Display all the customers’ name in myQueue
7) Call function Dequeue and print out the name of the customer who is leaving

8) Call function Dequeue and print out the name of the customer who is leaving

9) Call function Dequeue and print out the name of the customer who is leaving, what happened? What is the output?
