
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-1

Algorithms and Applications

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-2

Areas done in textbook:

• Sorting Algorithms

• Numerical Algorithms

• Image Processing

• Searching and Optimization

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-3

Sorting Algorithms

- rearranging a list of numbers into increasing (strictly non-

decreasing) order.

Chapter 10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-4

Potential Speedup

Ο(n logn) optimal for any sequential sorting algorithm without using

special properties of the numbers.

Best we can expect based upon a sequential sorting algorithm

using n processors is

Has been obtained but the constant hidden in the order notation

extremely large.

Optimal parallel time complexity
O(n n)log

n
------------------------- O(n)log= =

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-5

Compare-and-Exchange Sorting Algorithms

Compare and Exchange

Form the basis of several, if not most, classical sequential sorting

algorithms.

Two numbers, say A and B, are compared. If A > B, A and B are

exchanged, i.e.:

if (A > B) {
temp = A;
A = B;
B = temp;

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-6

Message-Passing Compare and Exchange

Version 1

P1 sends A to P2, which compares A and B and sends back B to P1

if A is larger than B (otherwise it sends back A to P1):

A

P1

Compare

B

P2

Send(A)

If A > B send(B)

If A > B load A
else load B

else send(A)

1

3

2

Sequence of steps

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-7

Compare

A

P1

Compare

B

P2

Send(A)

Send(B)

If A > B load A

If A > B load B

1

3

2

3

Alternative Message Passing Method

Version 2

For P1 to send A to P2 and P2 to send B to P1. Then both processes

perform compare operations. P1 keeps the larger of A and B and P2

keeps the smaller of A and B:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-8

Note on Precision of Duplicated Computations

Previous code assumes that the if condition, A > B, will return the

same Boolean answer in both processors.

Different processors operating at different precision could

conceivably produce different answers if real numbers are being

compared.

This situation applies to anywhere computations are duplicated in

different processors to reduce message passing, or to make the

code SPMD.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-9

43
42
28
25

88
50
28
25

Return
lower
numbers

98
80
43
42

88
50
28
25

43
42
28
25

98
88
80
50

Merge

Keep
higher
numbers

Original
numbers

Final
numbers

P1 P2

Data Partitioning

(Version 1)

p processors and n numbers. n/p numbers assigned to each

processor:

Original
numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-10

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge

Keep
lower
numbers

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge
Keep
higher
numbers

Merging Two Sublists — Version 2

P1 P2

Original
numbers

Original
numbers

(final

(final
numbers)

numbers)

Original
numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-11

Bubble Sort

First, largest number moved to the end of list by a series of

compares and exchanges, starting at the opposite end.

Actions repeated with subsequent numbers, stopping just before

the previously positioned number.

In this way, the larger numbers move (“bubble”) toward one end,

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-12

Time

4 2 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 5 8 1 3 6

2 4 7 5 1 8 3 6

2 4 7 5 1 3 8 6

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 5 7 1 3 6 8

Original

Phase 1

Phase 2

sequence: 4 2 7 8 5 1 3 6

Place
largest
number

Place
next
largest
number

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-13

Time Complexity

Indicates a time complexity of Ο(n2) given that a single compare-

and-exchange operation has a constant complexity, Ο(1).

Number of compare and exchange operations i
i 1=

n 1–
∑ n n 1–()

2
--------------------= =

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-14

1

1

1

12

2

3 2 1

Time
Phase 3

Phase 2

Phase 1

3 2 1

Phase 4

4 3 2 1

Parallel Bubble Sort

Iteration could start before previous iteration finished if does not

overtake previous bubbling action:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-15

Odd-Even (Transposition) Sort

Variation of bubble sort.

Operates in two alternating phases, even phase and odd phase.

Even phase

Even-numbered processes exchange numbers with their right
neighbor.

Odd phase

Odd-numbered processes exchange numbers with their right
neighbor.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-16

4 2 7 5 1 68 3

2 4 7 1 5 68 3

2 4 7 8 3 61 5

2 4 1 3 8 67 5

2 1 4 7 5 63 8

1 2 3 5 7 84 6

1 2 3 5 6 84 7

1 2 3 5 6 84 7

Step

1

2

3

4

5

6

7

0

Odd-Even Transposition Sort
Sorting eight numbers

P0 P1 P2 P3 P4 P5 P6 P7

Time

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-17

Mergesort

A classical sequential sorting algorithm using divide-and-conquer

approach. Unsorted list first divided into half. Each half is again

divided into two. Continued until individual numbers are obtained.

Then pairs of numbers combined (merged) into sorted list of two

numbers. Pairs of these lists of four numbers are merged into sorted

lists of eight numbers. This is continued until the one fully sorted list

is obtained.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-18

4 2 6

4 2 7 8 5 1 3 6

4 2 7 8 5 1 3 6

7 8 5 1 3

4 2 67 8 5 1 3

2 4 6

1 2 3 4 5 6 7 8

2 4 7 8 1 3 5 6

7 8 1 5 3

Sorted list

Unsorted list

Merge

Divide
list

P0

P2P0

P4 P5 P6 P7P1 P2 P3P0

P0

P6P4

P4

P0

P2P0

P0

P6P4

P4

Process allocation

Parallelizing Mergesort
Using tree allocation of processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-19

Analysis

Sequential

Sequential time complexity is Ο(n logn).

Parallel

2 log n steps in the parallel version but each step may need to

perform more than one basic operation, depending upon the

number of numbers being processed - see text.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-20

Quicksort

Very popular sequential sorting algorithm that performs well with an

average sequential time complexity of Ο(n logn).

First list divided into two sublists. All the numbers in one sublist

arranged to be smaller than all the numbers in the other sublist.

Achieved by first selecting one number, called a pivot, against which

every other number is compared. If the number is less than the

pivot, it is placed in one sublist. Otherwise, it is placed in the other

sublist.

Pivot could be any number in the list, but often the first number in

the list is chosen. Pivot itself could be placed in one sublist, or the

pivot could be separated and placed in its final position.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-21

P4

P6P1P0

2 1 6

4 2 7 8 5 1 3 6

3 2 1 4 5 7 8 6

3 4 5 7 8

1 2 7 86

Sorted list

Unsorted list

P0

P0

P7

P0

P6

P4

Process allocation

Pivot

3

P2

Parallelizing Quicksort
Using tree allocation of processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-22

862 6

1 2 6

4 2 7 8 5 1 3 6

3 2 1 5 7 8 6

7 8

Sorted list

Unsorted list

4

1

82

3

7

5

Pivots

Pivot

With the pivot being withheld in processes:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-23

Analysis

Fundamental problem with all tree constructions – initial division

done by a single processor, which will seriously limit speed.

Tree in quicksort will not, in general, be perfectly balanced Pivot

selection very important to make quicksort operate fast.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-24

Work pool

Sublists

Slave processes

Request
sublist Return

sublist

Work Pool Implementation of Quicksort

First, work pool holds initial unsorted list. Given to first processor
which divides list into two parts. One part returned to work pool to
be given to another processor, while the other part operated upon
again.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-25

Neither Mergesort nor Quicksort parallelize very well as the

processor efficiency is low (see book for analysis).

Quicksort also can be very unbalanced. Can use load balancing

techniques.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-26

Batcher’s Parallel Sorting Algorithms

• Odd-even Mergesort

• Bitonic Mergesort

Originally derived in terms of switching networks.

Both are well balanced and have parallel time complexity of

O(log2n) with n processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-27

Odd-Even Mergesort

Odd-Even Merge Algorithm

Start with odd-even merge algorithm which will merge two sorted

lists into one sorted list. Given two sorted lists a1, a2, a3, …, an and

b1, b2, b3, …, bn (where n is a power of 2)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-28

82 4 5 1 6 73

83 4 761 2 5

Odd indices
Even indices

Sorted lists

a[] b[]

c[] d[]

e[]Final sorted list

Compare and exchange

1 2 3 4 5 6 7 8

Odd-Even Merging of Two Sorted Lists

Merge

Merge

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-29

a2

b2

a4

b4

a3

b3

a1

b1

bn

anan−1

bn−1

Even
mergesort

Odd
mergesort

c1
c2
c3
c4

c2nc2n−1

Compare and
exchange

Odd-Even Mergesort

Apply odd-even merging recursively

c5

c7c6

c2n−2

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-30

Bitonic Mergesort

Bitonic Sequence

A monotonic increasing sequence is a sequence of increasing
numbers.

A bitonic sequence has two sequences, one increasing and one
decreasing. e.g.

a0 < a1 < a2, a3, …, ai−1 < ai > ai+1, …, an−2 > an−1

for some value of i (0 ≤ i < n).

A sequence is also bitonic if the preceding can be achieved by
shifting the numbers cyclically (left or right).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-31

a0, a1, a2, a3, … an−2, an−1

Bitonic Sequences

Value

a0, a1, a2, a3, … an−2, an−1

(a) Single maximum (b) Single maximum and single minimum

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-32

“Special” Characteristic of Bitonic Sequences

If we perform a compare-and-exchange operation on ai with ai+n/2

for all i , where there are n numbers in the sequence, get TWO

bitonic sequences, where the numbers in one sequence are all less

than the numbers in the other sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-33

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Bitonic sequence

Bitonic sequence Bitonic sequence

Compare and
exchange

Example - Creating two bitonic sequences from
one bitonic sequence

Starting with the bitonic sequence

3, 5, 8, 9, 7, 4, 2, 1

we get:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-34

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Compare and
exchange

2 1 3 4 7 5 8 9

1 2 3 4 5 7 8 9
Sorted list

Bitonic sequence

Sorting a bitonic sequence

Compare-and-exchange moves smaller numbers of each pair to left
and larger numbers of pair to right. Given a bitonic sequence,
recursively performing operations will sort the list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-35

Sorting

To sort an unordered sequence, sequences are merged into larger
bitonic sequences, starting with pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of adjacent numbers
are formed into increasing sequences and decreasing sequences,
pairs of which form a bitonic sequence of twice the size of each of
the original sequences.

By repeating this process, bitonic sequences of larger and larger
lengths are obtained.

In the final step, a single bitonic sequence is sorted into a single
increasing sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-36

Sorted list

Bitonic Mergesort

Unsorted numbers

Bitonic
sorting
operation

Direction
of increasing
numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-37

8 3 4 7 9 2 1 5

3 8 7 4 2 9 5 1

3 4 7 8 5 9 2 1

3 4 7 8 9 5 2 1

3 4 2 1 9 5 7 8

2 1 3 4 7 5 9 8

1 2 3 4 5 7 8 9

1

2

3

4

5

6

Form
bitonic lists
of four

Form
bitonic list
of eight

numbers

numbers

Sort bitonic list

StepBitonic
Mergesort
on Eight
Numbers

Compare and
exchange

HigherLower

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-38

Phases

The six steps (for eight numbers) are divided into three phases:

Phase 1 (Step 1) Convert pairs of numbers into increasing/
decreasing sequences and hence into 4-bit
bitonic sequences.

Phase 2 (Steps 2/3) Split each 4-bit bitonic sequence into two 2-bit
bitonic sequences, higher sequences at
center.

Sort each 4-bit bitonic sequence increasing/
decreasing sequences and merge into 8-bit
bitonic sequence.

Phase 3 (Steps 4/5/6)Sort 8-bit bitonic sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-39

Number of Steps

In general, with n = 2k, there are k phases, each of 1, 2, 3, …, k
steps. Hence the total number of steps is given by

Steps i
i 1=

k
∑ k k 1+()

2

n nlog 1+()log

2
------------------------------------- Ο n2log()= = = =

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-40

Sorting Conclusions so far

Computational time complexity using n processors

• Odd-even transposition sort- O(n)

• Parallel mergesort - O(n) but unbalanced processor load and
communication

• Parallel quicksort - O(n) but unbalanced processor load, and
communication can generate to O(n2)

• Odd-even Mergesort and Bitonic Mergesort O(log2n)

Bitonic mergesort has been a popular choice for a parallel sorting.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-41

Sorting on Specific Networks

Algorithms can take advantage of the underlying interconnection

network of the parallel computer.

Two network structures have received specific attention: the mesh

and hypercube because parallel computers have been built with

these networks.

Of less interest nowadays because underlying architecture often

hidden from user - We will describe a couple of representative

algorithms.

MPI does provide features for mapping algorithms onto meshes,

and one can always use a mesh or hypercube algorithm even if the

underlying architecture is not the same.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-42

Smallest

Largest

number

number

Mesh - Two-Dimensional Sorting

The layout of a sorted sequence on a mesh could be row by row or

snakelike. Snakelike:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-43

4 14 8 2

10 3 13 16

7 15 1 5

12 6 11 9

2 4 8 14

16 13 10 3

1 5 7 15

12 11 9 6

1 4 7 3

2 5 8 6

12 11 9 14

16 13 10 15

1 3 4 7

8 6 5 2

9 11 12 14

16 15 13 10

1 3 4 2

8 6 5 7

9 11 12 10

16 15 13 14

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

(a) Original placement

Shearsort
Alternate row and column sorting until list fully sorted. Row sorting

alternative directions to get snake-like sorting:

(b) Phase 1 — Row sort (c) Phase 2 — Column sort

(d) Phase 3 — Row sort (e) Phase 4 — Column sort (f) Final phase — Row sort

of numbers

Smallest

Largest

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-44

Shearsort

Requires steps for n numbers on a × mesh.n nlog 1+() n n

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-45

(b) Transpose operation(a) Operations between elements
in rows

(c) Operations between elements
in rows (originally columns)

Using Transposition

Causes the elements in each column to be in positions in a row.
Can be placed between the row operations and column operations:

Transposition can be achieved with (− 1) communications
(Ο(n)). An all-to-all routine could be reduce this.

n n

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-46

Hypercube

Quicksort

Hypercube network has structural characteristics that offer scope

for implementing efficient divide-and-conquer sorting algorithms,

such as quicksort.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-47

Complete List Placed in One Processor

Suppose a list of n numbers placed on one node of a d-dimensional

hypercube. List can be divided into two parts according to the

quicksort algorithm by using a pivot determined by the processor,

with one part sent to the adjacent node in the highest dimension.

Then the two nodes can repeat the process.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-48

Example
3-dimensional hypercube with the numbers originally in node 000:

Node Node

1st step: 000 → 001 (numbers greater than a pivot, say p1)

2nd step: 000 → 010 (numbers greater than a pivot, say p2)
001 → 011 (numbers greater than a pivot, say p3)

3rd step: 000 → 100 (numbers greater than a pivot, say p4)
001 → 101 (numbers greater than a pivot, say p5)
010 → 110 (numbers greater than a pivot, say p6)
011 → 111 (numbers greater than a pivot, say p7)

Finally, the parts sorted using a sequential algorithm, all in parallel.
If required, sorted parts can be returned to one processor in a
sequence that allows processor to concatenate the sorted lists to
create the final sorted list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-49

Hypercube quicksort algorithm when the
numbers are originally in node 000

(a) Phase 1 001 010 011 100 101 110 111000

001 010 011 100 101 110 111000(b) Phase 2

≤ p1 > p1

001 010 011 100 101 110 111000(c) Phase 3

> p2 > p3≤ p3≤ p2

> p6 > p7≤ p7≤ p6> p4 > p5≤ p5≤ p4

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-50

There are other hypercube quicksort algorithms - see textbook.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-51

Other Sorting Algorithms

We began by giving the lower bound for the time complexity of a

sequential sorting algorithm based upon comparisons as O(n logn).

Consequently, the time complexity of a parallel sorting algorithm

based upon comparisons is O((logn)/p) with p processors or

O(logn) with n processors.

There are sorting algorithms that can achieve better than O(n logn)

sequential time complexity and are very attractive candidates for

parallelization but they often assume special properties of the

numbers being sorted.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-52

First, let us look at one sorting algorithm, rank sort, that does not

achieve a sequential time of O(n logn), but can be parallelized

easily, and leads us onto linear sequential time algorithms which

can be parallelized to achieve O(logn) parallel time and are

attractive algorithms for clusters.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-53

Rank Sort

The number of numbers that are smaller than each selected
number is counted. This count provides the position of selected
number in sorted list; that is, its “rank.”

First a[0] is read and compared with each of the other numbers,
a[1] … a[n-1], recording the number of numbers less than
a[0].Suppose this number is x. This is the index of the location in
the final sorted list. The number a[0] is copied into the final sorted
list b[0] … b[n-1], at location b[x]. Actions repeated with the
other numbers.

Overall sequential sorting time complexity of Ο(n2) (not exactly a
good sequential sorting algorithm!).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-54

Sequential Code

for (i = 0; i < n; i++) { /* for each number */
x = 0;
for (j = 0; j < n; j++) /* count number less than it */
if (a[i] > a[j]) x++;

b[x] = a[i]; /* copy number into correct place */
}

This code will fail if duplicates exist in the sequence of numbers. Easy
to fix. (How?)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-55

Parallel Code
Using n Processors

One processor allocated to each number. Finds final index in Ο(n)
steps. With all processors operating in parallel, parallel time complexity
Ο(n).

In forall notation, the code would look like

forall (i = 0; i < n; i++) {/* for each no in parallel*/
x = 0;
for (j = 0; j < n; j++) /* count number less than it */
if (a[i] > a[j]) x++;

b[x] = a[i]; /* copy no into correct place */
}

Parallel time complexity, Ο(n), as good as any sorting algorithm so far.
Can do even better if we have more processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-56

a[i] a[0] a[i] a[n-1]

Increment
counter, x

b[x] = a[i]

Compare

Using n2 Processors
Comparing one number with the other numbers in list using multiple
processors:

n − 1 processors used to find rank of one number. With n numbers,
(n − 1)n processors or (almost) n2 processors needed. Incrementing
the counter done sequentially and requires maximum of n steps.
Total number of steps is by 1 + n.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-57

a[i] a[0] a[i] a[1] a[i] a[2] a[i] a[3]

Tree

Add

0/1 0/10/1 0/1

Add

0/1/2 0/1/2

Add

0/1/2/3/4

Compare

Reduction in Number of Steps

Tree to reduce number of steps involved in incrementing counter:

Ο(logn) algorithm with n2 processors.
Processor efficiency relatively low.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-58

Parallel Rank Sort Conclusions

Easy to do as each number can be considered in isolation.

Rank sort can sort in:

Ο(n) with n processors

or

Ο(logn) using n2 processors.

In practical applications, using n2 processors prohibitive.

Theoretically possible to reduce time complexity to Ο(1) by
considering all increment operations as happening in parallel since
they are independent of each other.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-59

a[] b[]

Slaves

Master

Read
numbers

Place selected
number

Message Passing Parallel Rank Sort
Master-Slave Approach

Requires shared access to list of numbers. Master process
responds to request for numbers from slaves. Algorithm better for
shared memory

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-60

Counting Sort

If the numbers to be sorted are integers, there is a way of coding the
rank sort algorithm to reduce the sequential time complexity from

O(n2) to O(n), called as Counting Sort.

Counting sort is naturally a stable sorting algorithm (that is, it will
place identical numbers in the same order as in the original
sequence).

As in the rank sort code suppose the unsorted numbers stored in an
array a[] and final sorted sequence is stored in array b[]. Algorithm
uses an additional array, say c[], having one element for each
possible value of the numbers. Suppose the range of integers is
from 1 to m. The array has element c[1] through c[m] inclusive. Now,
let us working through the algorithm in stages.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-61

First, c[] will be used to hold the histogram of the sequence, that is,

the number of each number. This can be computed in O(m) time

with code such as:

for (i = 1; i <= m; i++)
c[i] = 0;

for (i = 1; i <= m; i++)
c[a[i]]++;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-62

Next stage: The number of numbers less than each number found
by preforming a prefix sum operation on array c[].

In the prefix sum calculation, given a list of numbers, x0, …, xn−1, all
the partial summations (i.e., x0; x0 + x1; x0 + x1 + x2; x0 + x1 + x2 +
x3; …) are computed.

Here, the prefix sum is computed using the histogram originally held
in c[] in O(m) time as described below:

for (i = 2; i <= m; i++)

c[i] = c[i] + c[i-1];

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-63

Final stage: The numbers are placed in the sorted order in O(n) time

as described below:

for (i = n; i >= 1; i--) {

b[c[a[i]]] = a[i]

c[a[i]]--; /* done to ensure stable sorting */

}

Complete code has O(n + m) sequential time complexity. If m is

linearly related to n as it is in some applications, the code has O(n)

sequential time complexity.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-64

Counting sort

5 2 3 467 5 1

1 2 3 754 5

1 2 3 874 6 8

1 1 1 111 2 0

1 2 3 4 5 6 7 8

c[]Step 1: Histogram

Step 2: Prefix sum

Step 3: Sort

Move 5 to position 6.

b[]

a[]

c[]

Original sequence

Final sorted sequence

Then decrement c[5]

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-65

Parallelizing counting sort can use the parallel version of the prefix

sum calculation which requires O(logn) time with n − 1 processors.

The final sorting stage can be achieved in O(n/p) time with p

processors or O(1) with n processors by simply having the body of

the loop done by different processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-66

Radix Sort

Assumes numbers to sort are represented in a positional digit
representation such as binary and decimal numbers. The digits
represent values and position of each digit indicates their relative
weighting.

Radix sort starts at the least significant digit and sorts the numbers
according to their least significant digits. The sequence is then
sorted according to the next least significant digit and so on until the
most significant digit, after which the sequence is sorted. For this to
work, it is necessary that the order of numbers with the same digit is
maintained, that is, one must use a stable sorting algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-67

Radix sort using decimal digits

315 219 479 922

219 649 863 863

649 479 649 649

479 315 632 632

100 863 922 479

922 922 219 315

863 632 315 219

632 100 100 100

Sort on least Sort on most
significant digits significant digits

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-68

6 110 011 011 111

3 011 111 111 110

7 111 001 110 101

1 001 101 010 100

5 101 110 001 011

0 000 000 101 010

2 010 010 000 001

4 100 100 100 000

Radix sort using binary digits

Sort on least Sort on most
significant bits significant bits

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-69

Radix sort can be parallelized by using a parallel sorting algorithm

in each phase of sorting on bits or groups of bits.

Already mentioned parallelized counting sort using prefix sum

calculation, which leads to O(logn) time with n − 1 processors and

constant b and r.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-70

Example of parallelizing radix sort sorting on
binary digits

Can use prefix-sum calculation for positioning each number at each
stage. When prefix sum calculation applied to a column of bits, it
gives number of 1’s up to each digit position because all the digits
can only be 0 or 1 and the prefix calculation will simply add the
number of 1’s. A second prefix calculation can also give the number
of 0’s up to each digit position by performing the prefix calculation
on the digits inverted (diminished prefix sum). In the case of the
digit of the number considered being a 0, the diminished prefix sum
calculation provides the new position for the number. In the case of
the digit being a 1, the result of normal prefix sum calculation plus
the largest diminished prefix calculation gives the final position for
the number.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-71

Sample Sort

Sample sort is an old idea (pre1970) as are many basic sorting

ideas. Has been discussed in the context of quicksort and bucket

sort.

In the context of quicksort, sample sort takes a sample of s

numbers from the sequence of n numbers. The median of this

sample is used as the first pivot to divide the sequence into two

parts as required as the first step by the quicksort algorithm rather

than the usual first number in the list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-72

In context of bucket sort, objective of sample sort is to divide the
ranges so that each bucket will have approximately the same
number of numbers.

Does this by using a sampling scheme which picks out numbers
from the sequence of n numbers as splitters which define the range
of numbers for each bucket. If there are m buckets, m - 1 splitters
are needed.

Can be found by the following method. The numbers to be sorted
are first divided into n/m groups. Each group is sorted and a sample
of s equally spaced numbers are chosen from each group. This
creates ms samples in total which are then sorted and m - 1 equally
spaced numbers selected as splitters.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-73

Select m − 1 equally spaced numbers as splitters

n numbers

s numbers s numbers

n/m numbers, sorted

Sample s
equally spaced

Selecting spliters in sample sort version of bucket sort

numbers

ms numbers

n/m numbers

Sort

n/m numbers, sorted

Sort

Sort

Partition into
m groups

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-74

Implementing Sorting Algorithms on Clusters

Factors for efficient implementation on clusters include using
broadcast and other collective operations such as gather, scatter,
and reduce provided in message-passing software such as MPI
rather than non-uniform communication patterns that require point-
to-point communication, because collective operations expected to
be implemented efficiently.

Other factors include that the distributed memory of a cluster does
not favor algorithms requiring access to widely separately numbers.
Algorithms that require only local operations are better, although all
sorting algorithms finally have to move numbers in the worst case
from one end of the sequence to the other somehow.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-75

Processors always have cache memory and it is better to have an
algorithm that operate upon a block of numbers that can be placed
in the cache. In that respect, one will need to know the size and
organization of the cache, and this has to become part of the
algorithm as parameters.

Finally with the advent of clusters of SMP processors (SMP
clusters), algorithms need to take into account that the groups of
processors in each SMP system may operate in the shared memory
mode where the shared memory is only within each SMP system,
whereas each system may communicate with other SMP systems in
the cluster in a message-passing mode. Again to take this into
account requires parameters such as number of processors within
each SMP system and size of the memory in each SMP system.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides10-76

