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Chapter 11

Numerical Algorithms
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Numerical Algorithms

In textbook do:
» Matrix multiplication

» Solving a system of linear equations
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Matrices — A Review
Ann’~ mmatrix

Column
9,0 41 ------- dom-2  dom-1
aio arq1 ------- A1 m-2 Qi m-1
Row
an20 Qn21 ------ an.2 m-2 8n-2,m-1
' an-10 Q11 T an-1,m-2 An-1,m-1
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Matrix Addition

Involves adding corresponding elements of each matrix to form the
result matrix.

Given the elements of A as a;; and the elements of B as b;;, each
element of C is computed as

Cij = ai;* by

(O£i<n,0£j<m)
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Matrix Multiplication

Multiplication of two matrices, A and B, produces the matrix C

whose elements, ¢;; (0 £i<n, 0 £ <m), are computed as follows:

-1
G,j T a by

where Aisann’ | matrix and B is an |~ m matrix.
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Matrix multiplication, C=A" B

. Column sum
Multlpl< j B results

//__>—

/'/—>_

Row

N

i [T | =

Ci,j
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Matrix-Vector Multiplication
c=A"b

Matrix-vector multiplication follows directly from the definition of
matrix-matrix multiplication by making B an n ~ 1 matrix (vector).

Resultan n” 1 matrix (vector).

>
[ 1] o
1
[ 1] o

Ro

P[] | %
~_ 1L
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Relationship of Matrices to Linear Equations

A system of linear equations can be written in matrix form:

AxX =Db

Matrix A holds the a constants
X 1S a vector of the unknowns

b is a vector of the b constants.
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Implementing Matrix Multiplication

Sequential Code
Assume throughout that the matrices are square (n~ n matrices).
The sequential code to compute A~ B could simply be

for (i =0; i < n; i++4)
for (j =0; jJ <n; j++) {
c[i][j] = 0;
for (k = 0; k < n; k++)
\ c[i][jl =clilli]l + al[i]ll[k] * b[k][]];

This algorithm requires n® multiplications and n® additions, leading

to a sequential time complexity of O(n®). Very easy to parallelize.
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Parallel Code

With n processors (and n~ n matrices), can obtain:

« Time complexity of O(n?) with n processors
Each instance of inner loop independent and can be done by a
separate processor

« Time complexity of O(n) with n? processors
One element of A and B assigned to each processor.

Cost optimal since O(n3) =n’ O(nz) =n?- O(n)].

« Time complexity of O(log n) with n® processors
By parallelizing the inner loop. Not cost-optimal since

O(n%):n% O(log n)).

O(log n) lower bound for parallel matrix multiplication.
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Partitioning into Submatrices

Suppose matrix divided into s? submatrices. Each submatrix has n/
s ” n/s elements. Using notation A, ¢ as submatrix in submatrix row

p and submatrix column q:

for (p =0; p <s; pt+)
for (g =0; g <s; g++) {
G.q = 0; /* clear elenents of submatrix */
for (r =0; r <m r++)* submatrix nultiplication &/
G.q =G, qt+tAr ¥ B g/*add to accum submatrix*/

The line

G0 = Qg A T BLg

means multiply submatrix A, ; and B, ¢ using matrix multiplication
and add to submatrix G, 4 using matrix addition. Known as block
matrix multiplication.
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Block Matrix Multiplication

) Sum
Multiply —q- results

I —

I
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SU b m at r IX 30 3,1 |32 a3 boo Dbo1 | bo2 bog
multiplication

a0 a1 | &2 a3 bio b1 | b2 big

(8) Matrices ap ag1 | a2 a3 bog bo1 | bop  bog3

agg ag1 | a3 a33 b3o b3y | b3z bzg

Ao Bo,o Aol B1o
30 a1 boo  bPo1 32 3 boo P21
+
(b) Multiplying Ay g~ Boo a0 a1 bio b11 a2 a3 bso b1

to obtain C
0.0 agobootap 1010 apobo,1tag 1011 agobpotagabz o @by itagsbs

a1 0bgotaribio apobpataribis a1 obpotagsbzg apobpitag by
ag0bo,0+ag,1b1,0tap 2020180 3030  @,0bo,1+ap,1b1,11 a0 2021180 3031

ay gbgotay 1byptag Jopptagsbzg @y gbpytag by itag obygtag bz

=Cop
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Direct Implementation

One processor to compute each element of C - n? processors would
be needed. One row of elements of A and one column of elements
of B needed. Some of same elements sent to more than one
processor. Can use submatrices.

Column j b[i]

Row i a[il]

Processor P;;

clilli]
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Performance Improvement
Using tree construction n numbers can be added in log n steps
using N processors:

ap,0 bo,0 30,1 P10 32 b20 803 b3

Po P P P3
Po P2
Computational time
: Po
complexity of O(log n)
using n3 processors. a
,0
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Recursive Implementation

i j
L " PoP1P7Ps
- |
— | Po+P)|(P.+Py
Af A= >Bpp )qu <0C D C
~J pp Pq
j -
I i N (P4+ PQ @6+P7>
Agp | ’/in =By | ~Bqg Cep Cqq
P4PsPeP-

Apply same algorithm on each submatrix recursivly.

Excellent algorithm for a shared memory systems because of
locality of operations.
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Recursive Algorithm
mat _mul t (Ayp, Byp, S)
{

if (s == 1) /* if submatrix has one el enment */
C=A* B /* multiply elenments */
el se { /* continue to make recursive calls */
s = s/2 /* no of elenents in each row colum */
PO = mat _mul t (Ap, Byp, S);
P1 = rrat_rrult(,%q, Byp: s);
P2 = mat _nul t (Ap, By S);
P3 = mat_mult(Aqg Byg S);
P4 = mat _nult (Ap, Byp, S);
PS = mat _nult (Aqg Byp, S);
P6 = mat_mult (Ap, Byg S);
P7 = rrat_rrult(,%lq, By s);
Gp = PO + P1; /* add submatri x products to */
Cq = P2 + P3; /* formsubmatrices of final matrix */
Cypp = P4 + P5;
Cyq = P6 + PT7;
}
return (O); /[* return final matrix */
}
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Mesh Implementations

» Cannon’s algorithm
* Fox’s algorithm (not in textbook but similar complexity)

 Systolic array

All involve using processor arranged a mesh and shifting elements
of the arrays through the mesh. Accumulate the partial sums at

each processor.
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Mesh Implementations
Cannon’s Algorithm

Uses a mesh of processors with wraparound connections (a torus) to shift the A
elements (or submatrices) left and the B elements (or submatrices) up.

1.Initially processor P;; has elements a;; and b;; (0 £i<n, 0 £k <n).

2. Elements are moved from their initial position to an “aligned” position. The
complete ith row of A is shifted i places left and the complete jth column of
B is shifted j places upward. This has the effect of placing the element &; j,;
and the element bj,;; in processor P;;,. These elements are a pair of those
required in the accumulation of c; ;.

3.Each processor, P;;, multiplies its elements.

4. The ith row of A is shifted one place right, and the jth column of B is shifted
one place upward. This has the effect of bringing together the adjacent
elements of A and B, which will also be required in the accumulation.

5. Each processor, P;;, multiplies the elements brought to it and adds the
result to the accumulating sum.

6. Step 4 and 5 are repeated until the final result is obtained (n - 1 shifts with
n rows and n columns of elements).
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Movement of A and B elements

y
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Step 2 — Alignment of elements of A and B

i places

j places 8 j+

| —'—’A

bi 4,
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Step 4 — One-place shift of elements of A and B
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Systolic array b3
] Bs,z Bz,s
: 31 22 13
Pumping b3 o by 1 by, bo 3

action ’ o b’ .

2.0 1.1 0.2
- b1 o bo 1 . .
bo'o . . .

R A B

80,380,280,180,0—={ Coo [ Co1 [ Co2 [ Co3

One cycle delay

41,3812811810 = —*>Cio[—"Cy1[ " C12[ " C13

23822821320 + = —>Cro[[C21 [ C22["[C23

433832831430 - -+ - —>C3o[ " C31[ " C32 C33
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Matrix-Vector

.. . b
Multiplication | by
Pumping b

action bé

-

dop,3 ap,2 80,180,0—={ Cg

Q3d12a81a10 + —= ¢

3o a0 -+ - —= Cy

agzdgzdzrdzp - +« + —= C3
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Solving a System of Linear Equations

An.1,0X0 T An-1,1X1 T An.1,2X2 o Fanin1Xn-1 =bpog
az pXp T Az 1X1 + A oXo o tagniXpy  =Dbo
aj oXp t aj 1X1 T aq Xy e FapniXpr  =Dbg
ap oXp T dp 1X1 t ag 2X2 . tagn1Xp-1 =Dbg

which, in matrix form, is

AX

1
O

Objective is to find values for the unknowns, Xg, X1, ..., X1, given
values forag g, @9 1, --+» Ap-1,n-1, @aNd by, ..., by .
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Solving a System of Linear Equations

Dense matrices

Gaussian Elimination - parallel time complexity O(n2)
Sparse matrices

By iteration - depends upon iteration method and number of
iterations but typically O(log n)

* Jacobi iteration

» Gauss-Seidel relaxation (not good for parallelization)
* Red-Black ordering

 Multigrid

Slides for Parallel Programming Techniques& ApplicationsUsing Networ ked Workstations& Parallel Computers2nded., by B. Wilkinson & M. Allen, & 2004 Pearson Education Inc. All rightsreserved.



slides11-27

Gaussian Elimination

Convert general system of linear equations into triangular system of
equations. Then be solved by Back Substitution.

Uses characteristic of linear equations that any row can be replaced
by that row added to another row multiplied by a constant.

Starts at the first row and works toward the bottom row. At the ith
row, each row j below the ith row is replaced by row j + (row i) (- a; i/

a;j)- The constant used for row j is - a; /a; ;. Has the effect of making
all the elements in the ith column below the ith row zero because
a&d; io
i AT i 0
1 ) ] e—ﬁ—ﬂ’
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Gaussian elimination
> Column
| |
Row |
Y |
|
_ |
Row i
bl Step through
Row j
Cleared
Already B to zero
cleared —
to zero Columnii
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Partial Pivoting

If a;; is zero or close to zero, we will not be able to compute the

quantity - a i/a; ;.

Procedure must be modified into so-called partial pivoting by
swapping the ith row with the row below it that has the largest
absolute element in the ith column of any of the rows below the ith

row if there is one. (Reordering equations will not affect the system.)

In the following, we will not consider partial pivoting.
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Sequential Code

Without partial pivoting:

for (i =0; i <n-1; i++) [* for each row, except last */
for (j =141, j <n; j++) {*step thro subsequent rows */
m=a[j][i]/a[i][i]; [/* Conpute nultiplier */
for (k =1; k <n; k++)/*last n-i-1 elenents of row j*/

a[j][k] =a[j]l[k] - a[i][k] * m
b[j] = b[j] - b[i] * m/* rmodify right side */
}

The time complexity is O(n3).
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Parallel Implementation
> Column
| |
Row \
Y ] n- i +1 elements
| }(including b[ i ])
| =
Row i
N \( Y
Broadcast
ith row

Already |
cleared —
to zero
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Analysis

Communication

n - 1 broadcasts performed sequentially. ith broadcast contains n -
I +1 elements.

Time complexity of 0(n?) (see textbook)

Computation

After row broadcast, each processor P; beyond broadcast processor
P; will compute its multiplier, and operate upon n - j + 2 elements of
its row. Ignoring the computation of the multiplier, there aren - j + 2
multiplications and n - j + 2 subtractions.

Time complexity of 0(n?) (see textbook).

Efficiency will be relatively low because all the processors before
the processor holding row i do not participate in the computation
again.
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Pipeline implementation of Gaussian elimination

Po Py P Pn-1
Row
— Broadcast ]
rows
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Strip Partitioning
Row
0
Po
n/p
P1
2n/p
P2
3n/p
P3
Poor processor allocation! Processors do not participate in
computation after their last row is processed.
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Cyclic-Striped Partitioning

An alternative which equalizes the processor workload:

//3?\\
E/%
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lterative Methods

Time complexity of direct method at o(N?) with N processors, is

significant.

Time complexity of iteration method depends upon:

* the type of iteration,

* number of iterations

* number of unknowns, and
* required accuracy

but can be less than the direct method especially for a few

unknowns i.e a sparse system of linear equations.
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Jacobi Iteration

Iteration formula - ith equation rearranged to have ith unknown on

left side:
k _ 1 o k—1
4 j1i
Superscript indicates iteration:

xlf IS kth iteration of x; , xk_ 1is (k- 1)th iteration of x.

)
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Example of a Sparse System of Linear Equations

Laplace’s Equation

2 2
Tl -0

Solve for f over the two-dimensional x-y space.
For a computer solution, finite difference methods are appropriate

Two-dimensional solution space is “discretized” into a large number

of solution points.
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Finite Difference Method

Solution space

0t
* fay)
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If distance between points, D, made small enough:

2

T L f(x+Dy)=2f(x y)+ f(x=D, )]
‘ﬂx2 D2

ﬂf

[f(X y+D)-2f(x,y) + f(x,y-D)]
i 7
Substituting into Laplace’s equation, we get
i[f(X+ Dy)+ f(x-D,y) + f(x y+D) + f(x, y—D)-4f(x,y)] = 0
02
Rearranging, we get

f(xy) = [f(x—D,y)+ f(x,y—D)+ f(x+D,y)+ f(x y+D)]
4
Rewritten as an iterative formula:
k [fk—l(X—D, y) + fk_l(x,y—D)+ fk_l(x+D, )+ fk_l(x,y+[))]
Frxy) = 4

fK(x, y) - kth iteration, f¥ 1(x, y) - (k - 1)th iteration.
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Natural Order

Boundary points (see text)

0777‘77\707777077707***O**'O**'*O***O**”O
X1 X2 X3 X4 X5 Xg X7 Xg Xg Xi
) ) ° ) ° ) ° ) ° ®
X11 X12 X13 X14 X135 X1 X17 X138 X19 X0
O: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ‘
Xo1 Xp2 X3 Xpq X5 Xpg X7 Xpg X9 Xz
° ) ° ) ° ) ° ) ° ®
X31 X32 X33 X34 X35 Xzg X37 X3g X39 X40
o: . ° . ° . ° . ° o
Xa1 Xg2 X43 Xaq Xg45 Xae X447 X48 X449 Xs0
° ° ° ° ° ° ° ° ° °
X51 X52 X53 X54 Xg5 Xsg X57 Xsg o X59  Xgp
° ° . ° . ° . ° . °
Xe1 Xe2 Xe63 Xpa Xg5 Xgs Xe7 Xeg Xe9 X70
° ° ° ° ° ° ° ° ° °
X71 X72 X73 X784 X75 X768 X77 X78 X79 Xg0
° ) ° ) ° ) ° ) ° )
Xg1 Xg2 Xg3 Xga Xgs Xgs Xg7 Xgg Xgg Xgo
o o o e o e o e o @
X91 Xg2 Xg93 Xgq Xg5 Xgg Xg97 Xog Xgg X100
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Relationship with a General System of Linear
Equations

Using natural ordering, ith point computed from ith equation:

.+ X + X.
X X1X

w = Ni-nTXio1 TRt
2

I+n

or
Xion t %21 G+ X1t X4n =0

which is a linear equation with five unknowns (except those with
boundary points).

In general form, the ith equation becomes:

Qi-nX-n T Ao 1611 &% T & jr1X+1t @ j+nXen=0

where ai,i = -4, and ai'i_ n- ai,i_ 1= ai’i+1 = ai,i+n =1.
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_ , ) To include T X[y [Al
A Those equations with a boundary boundary value X1 0
. point on diagonal unnecessary X 0

} for Solution and some zero 2 ;

- / entries (see text) : !

. N !

1 1-41 1 e

1 1-41 1 : :

_ . 1 1-41 1 =

ith equation ain Arid; &1 A : ;

1 1-41 1 : 1

1 1-41 1 l I

Xoi | O

XN 0

—
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Gauss-Seidel Relaxation
Uses some newly computed values to compute other values in that
iteration.
Sequential order of computation N
[ J o [ ] [ J [ J o [ ] [ J [ J 7.)
€ -
[ ] [ ] [} [ ] [ ] [ ] [} [ ] [ ] 7.)
Basic form ( -
not suitable e o o o o o o e o o
for parallelization ( .
o o [ ] [ J o o [ ] [ J o .)
¢ -
[ J o [ ] [ J ’ o [ ] [ J [ J 7.)
: ( - |
Point — 1} »e ° ° ®<—0—»0 o o o o
computed ¢
/70 o o o o o o o o o
Point to be
Computed ) ) o ) ) ) o ) ) )
[¢] [¢] o [¢] [¢] [¢] o [¢] [¢] [¢]
o) o) [} o) o) o) [} o) o) o)
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Gauss-Seidel Iteration Formula

N
j=1 j=i+1

where the superscript indicates the iteration.

i—1 N
k 1 o k o k_l
Xi = {bi—aa--xj— a a-jxj}
i

With natural ordering of unknowns, formula reduces to

K k k-1 k-1

K
Xi=(CUajj)ajinXint Qji-1X i1+ @jjr1X 41t @i j+nX i

At the kth iteration, two of the four values (before the ith element)
taken from the kth iteration and two values (after the ith element)
taken from the (k- 1)th iteration. We have:
[fk(x—D,y)+ fk(x,y—D)+ fk_l(x+ D,y) + fk_l(x,y+ D)]

4

*xy) =
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Red-Black Ordering
First, black points computed. Next, red points computed. Black
points computed simultaneously, and red points computed
simultaneously.
Red
_ JOF JoU JOX Jug
0000000
L JON JOK XN X
00000000
L JON JOK XN X
00000000
L JON JOK XN X
00000000
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Red-Black Parallel Code

forall (i =1, i < n; i++4)
forall (j =1; j < n; j++)
if ((i +j) %2 == 0) /* conmpute red points */
fLiT0)] =0.25%(f[i-2][j] + f[i1[j-1] + f[i+2][j] + f[i][]j+1]);
forall (i =1; i < n; i++)
forall (j =1; j < n; j++)
if ((i +j) %2 !1=0) /* conpute bl ack points */

FLiJ0I] = 0.25%(F[i-1][j] + f[i][i-1] + f[i+1][j] + FLi][]+1]);
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Higher-Order Difference Methods

More distant points could be used in the computation. The following
update formula:

tKx,y) =

k

i[lek_l(x—D, y) + 16 f _1(x,y—D) + 16fk_1(x+ D, y) +16fk_1(x,y+ D)

60

- fk_l(x—ZD, y)—fk_l(x,y—ZD)— fk‘l(x+ 2D, y)—fk_l(x,y+ 2D)}
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Nine-point stencil
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Overrelaxation

Improved convergence obtained by adding factor (1 - w)x; to Jacobi
or Gauss-Seidel formulae. Factor w is the overrelaxation parameter.

Jacobi overrelaxation formula

k = W|:b| - é, aIJXIk_l:| +(1—W)X:<_1
jri

where 0 <w< 1.

Gauss-Seidel successive overrelaxation

i—1 N
k w o k o k-1 k-1
i j=1 j=i+1

where O<w £ 2. Ifw =1, we obtain the Gauss-Seidel method.
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Multigrid Method

First, a coarse grid of points used. With these points, iteration
process will start to converge quickly.

At some stage, number of points increased to include points of the
coarse grid and extra points between the points of the coarse grid.
Initial values of extra points found by interpolation. Computation
continues with this finer grid.

Grid can be made finer and finer as computation proceeds, or
computation can alternate between fine and coarse grids.

Coarser grids take into account distant effects more quickly and
provide a good starting point for the next finer grid.
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Multigrid processor allocation

Coarsest grid points Finer grid points
\ Processor
—

C\ M) M) M) M) M) M) f)
- W/ N W/ N W/ N |-
CW ) ) ) ) ) ) FD
J U O U O U O \
C\ M) M) M) M) M) M) f)
- W/ N W/ N W/ N |-

C\ M) M) M) M) M) M) f)
- W/ N W/ N W/ N |-
CN ) ) ) ) ) ) FD
J J J U O U J |-
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(Semi) Asynchronous lteration

As noted early, synchronizing on every iteration will cause
significant overhead - best if one can is to synchronize after a

number of iterations.
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