
Clustering Algorithm
(DBSCAN)

VISHAL BHARTI
Computer Science Dept.

GC, CUNY

Clustering Algorithm

▪ Clustering is an unsupervised machine learning algorithm that divides a data into
meaningful sub-groups, called clusters.

▪ The subgroups are chosen such that the intra-cluster differences are minimized
and the inter-cluster differences are maximized.

▪ The very definition of a ‘cluster’ depends on the application. There are a myriad of
clustering algorithms.

▪ These algorithms can be generally classified into four categories: partitioning
based, hierarchy based, density based and grid based.

Hierarchical clustering algorithms

▪ Hierarchical clustering algorithms seek to build a hierarchy of cluster.
They start with some initial clusters and gradually converge to the
solution.

▪ The Hierarchical clustering algorithms can take two approaches :
– Agglomerative (top-down) approach : Each point has its own cluster and clusters

are gradually built by combining points.

– Divisive (bottom-up) approach : All points belong to one cluster and this cluster
is gradually broken into smaller clusters.

Hierarchical clustering algorithms

Partitioning based clustering algorithms

▪ Partitioning based clustering algorithms divide the dataset into initial
‘K’ clusters and iteratively improve the clustering quality based on a
objective function.

▪ K-means is an example of a partitioning based clustering algorithm.

▪ The objective function in K-means is the SSE.

▪ Partitioning based algorithm are sensitive to initialization.

Partitioning based clustering algorithms

Grid based clustering algorithms

▪ In grid based clustering algorithm,
the entire dataset is overlaid by a
regular hypergrid.

▪ The clusters are then formed by
combining dense cells.

▪ Some consider it as a variant of
density based clustering
algorithms.

▪ CLIQUE is a grid based clustering
algorithm.

Density based clustering algorithms

▪ Density based clustering algorithms make
an assumption that clusters are dense
regions in space separated by regions of
lower density.

▪ A dense cluster is a region which is “density
connected”, i.e. the density of points in that
region is greater than a minimum.

▪ Since these algorithms expand clusters
based on dense connectivity, they can find
clusters of arbitrary shapes.

▪ DBSCAN is an example of density based
clustering algorithm.

DBSCAN (Density Based Spatial Clustering
of Applications with Noise)

▪ Published by Ester et. al. in 1996

▪ The algorithm finds dense areas and expands these recursively to find dense
arbitrarily shaped clusters.

▪ Two main parameters to DBSCAN are ‘ε’ and ‘minPoints’. ‘ε’ defines radius of the
‘neighborhood region’ and ‘minPoints’ defines the minimum number of points that
should be contained within that neighborhood.

▪ Since it has a concept of noise, it works well even with noisy datasets.

DBSCAN Algorithm

▪ Epsilon neighborhood (Nε) : set of all points
within a distance ‘ε’.

▪ Core point : A point that has at least ‘minPoint’
(including itself) points within it’s Nε .

▪ Direct Density Reachable (DDR) : A point q is
directly density reachable from a point p if p is
core point and q ∈ Nε .

▪ Density Reachable (DR) : Two points are DR if
there is a chain of DDR points that link these two
points.

▪ Border Point: Point that are DDR but not a core
point.

▪ Noise : Points that do not belong to any point’s
Nε .

DBSCAN Visualization

DBSCAN serial algorithm

▪ The algorithm proceeds by arbitrarily picking
up point in the dataset (until all points have
been visited).

▪ If there are at least ‘minPoint’ points within a
radius of ‘ε’ to the point then we consider all
these points to be part of the same cluster.

▪ The clusters are then expanded by recursively
repeating the neighborhood calculation for
each neighboring point.

▪ The complexity of this algorithm is O(n2),
where n is the number of points.

▪ With spatial indexing (kd-tree or r-tree), the
complexity is O(n log n).

Parallelizing DBSCAN

▪ Patwari et. al. (2011) presented a
disjoint set based DBSCAN algorithm
(DSDBSCAN).

▪ The algorithm uses a disjoint set data
structure.

▪ Initially all points belong to a
singleton tree.

▪ If two points belong to the same
cluster, their trees are merged.

▪ The process is repeated until all
clusters have been found.

Parallelizing DBSCAN

▪ The DSDBSCAN algorithm uses the Rem’s
algorithm(1976) to construct the disjoint
set tree structure.

▪ The complexity of DSDBSCAN is O(n log n).

▪ The cluster trees are constructed without
any specific order.

▪ The DSDBSCAN algorithm is hence suitable
for a parallel implementation.

Parallel DBSCAN on Distributed Memory
computers(PDSDBSCAN-D)

▪ Since the DSDBSCAN algorithm constructs the tree sets arbitrarily,
this algorithm can be highly parallelized.

▪ The data set is split into ‘p’ portions and each processor runs a
sequential DSDBSCAN algorithm to get the local clusters(trees).

▪ All the local clusters are then merged to get the final clusters.

▪ In the merging phase the Master just switched the pointer of root of
one tree to the other root to form the root of the merged tree, when
relabeling is done.

PDSDBSCAN-D Algorithm
Lo

ca
l

Co
m

pu
ta

tio
n

M
er

gi
ng

HPDBSCAN (Highly Parallel DBSCAN)

▪ HPDBSCAN algorithm is an efficient parallel version of DBSCAN
algorithm that adopts core idea of the grid based clustering
algorithm.

▪ Proposed by Götz et. al. in 2015.

▪ The input data is overlaid with a hypergrid, which is then used to
perform DBSCAN clustering.

▪ The grid is used as a spatial structure, which reduces the search space
for neighborhood queries and facilitates efficient partitioning of the
dataset along the cell boundaries.

HPDBSCAN

HPDBSCAN

▪ The HPDBSCAN algorithm has four main phases:

– Data loading and pre-processing

– Local clustering

– Cluster merging

– Cluster re-labeling

Data Preprocessing

▪ In this phase, the bounding region of the entire dataset is overlaid by
a regular, non-overlapping hypergrid.

▪ This hypergrid is split into ‘p’ subspaces, each of which is assigned to
one processor.

▪ Each processor than reads equal sized chunk of data in arbitrarily
fashion.

▪ Then using the hashmap with offset and pointers the indexing is
done with respect to the spatial alignment of the data point.

▪ Each processor then checks if the data points it has are a part of it’s
assigned subspace or not. If not the point is sent to the appropriate
destination processor. This is the redistribution phase.

Data Preprocessing(Indexing)

Data Preprocessing

▪ The benefit of using the indexed structure is that the neighborhood queries
have O(1) complexity.

▪ Cell Neighborhood : The cell neighborhood NCell (c) of a given cell c denotes
all cells d from the space of all available grid cells C that have a Chebychev
distance distChebychev of zero or one to c, i.e., NCell (c) = { d | d ∈ C ∧
distChebychev (c, d) ≤ 1 }.

▪ To get all neighborhood points within an assigned subspace, the processor
need an additional one cell-thick layer of redundant data items. This is known
as halos or ghost cells. These are transferred during the redistribution phase.

▪ After the redistribution phase, a local DBSCAN algorithm is run locally at
each of the processors.

▪ To ensure a balanced data space division, they use a cost heuristic.

Cost Heuristic

Local DBSCAN

Local DBSCAN

▪ For each point p the epsilon neighborhood is computed
independently.

▪ If a point has at least minPoints neighbors and none of the neighbors
is already labeled, p is marked as cluster core and cluster label
created using p’s index.

▪ In the case when any one of the point is already labeled, we mark
cluster equivalences in rules and move on.

▪ The cluster equivalence information is later used in the merger stage.

▪ The result of local DBSCAN is a list of sub-clusters along with the
points and cores they contain, a list of noise points, and a set of rules
describing which cluster labels are equivalent.

Cluster Merging and Re-labeling

▪ The label-mapping rules across different nodes are created based on
the labeling rules generated by local DBSCAN.

▪ After the local DBSCAN run, each halo zone is passed to the node
that owns the actual neighboring data chunk.

▪ Based on the comparison of local and halo points a set of re-labeling
rules are generated. These rules are then broadcasted.

▪ To ensure uniqueness of cluster labeling the label of a cluster is taken
as the lowest index of a core point in the cluster.

▪ Using these rules, final relabeling is done.

THANK YOU

	Clustering Algorithm (DBSCAN)
	Clustering Algorithm
	Hierarchical clustering algorithms
	Hierarchical clustering algorithms
	Partitioning based clustering algorithms
	Partitioning based clustering algorithms
	Grid based clustering algorithms
	Density based clustering algorithms
	DBSCAN (Density Based Spatial Clustering of Applications with Noise)
	DBSCAN Algorithm
	DBSCAN Visualization
	DBSCAN serial algorithm
	Parallelizing DBSCAN
	Parallelizing DBSCAN
	Parallel DBSCAN on Distributed Memory computers(PDSDBSCAN-D)
	PDSDBSCAN-D Algorithm
	HPDBSCAN (Highly Parallel DBSCAN)
	HPDBSCAN
	HPDBSCAN
	Data Preprocessing
	Data Preprocessing(Indexing)
	Data Preprocessing
	Cost Heuristic
	Local DBSCAN
	Local DBSCAN
	Cluster Merging and Re-labeling
	Slide Number 27

