
Clustering Algorithm 
(DBSCAN) 

VISHAL BHARTI 
Computer Science Dept. 

GC, CUNY 



Clustering Algorithm 

▪ Clustering is an unsupervised machine learning algorithm that divides a data into 
meaningful sub-groups, called clusters. 

▪ The subgroups are chosen such that the intra-cluster differences are minimized 
and the inter-cluster differences are maximized. 

▪ The very definition of a ‘cluster’ depends on the application. There are a myriad of 
clustering algorithms. 

▪ These algorithms can be generally classified into four categories: partitioning 
based, hierarchy based, density based and grid based. 



Hierarchical clustering algorithms 

▪ Hierarchical clustering algorithms seek to build a hierarchy of cluster. 
They start with some initial clusters and gradually converge to the 
solution. 

▪ The Hierarchical clustering algorithms can take two approaches : 
– Agglomerative (top-down) approach : Each point has its own cluster and clusters 

are gradually built by combining points. 

– Divisive (bottom-up) approach : All points belong to one cluster and this cluster 
is gradually broken into smaller clusters. 



Hierarchical clustering algorithms 



Partitioning based clustering algorithms 

▪ Partitioning based clustering algorithms divide the dataset into initial 
‘K’ clusters and iteratively improve the clustering quality based on a 
objective function. 

▪ K-means is an example of a partitioning based clustering algorithm. 

▪ The objective function in K-means is the SSE. 

▪ Partitioning based algorithm are sensitive to initialization. 



Partitioning based clustering algorithms 



Grid based clustering algorithms 

▪ In grid based clustering algorithm, 
the entire dataset is overlaid by a 
regular hypergrid. 

▪ The clusters are then formed by 
combining dense cells. 

▪ Some consider it as a variant of 
density based clustering 
algorithms. 

▪ CLIQUE is a grid based clustering 
algorithm. 



Density based clustering algorithms 

▪ Density based clustering algorithms make 
an assumption that clusters are dense 
regions in space separated by regions of 
lower density. 

▪ A dense cluster is a region which is “density 
connected”, i.e. the density of points in that 
region is greater than a minimum.  

▪ Since these algorithms expand clusters 
based on dense connectivity, they can find 
clusters of arbitrary shapes. 

▪ DBSCAN is an example of density based 
clustering algorithm. 



DBSCAN (Density Based Spatial Clustering 
of Applications with Noise) 

▪ Published by Ester et. al. in 1996  

▪ The algorithm finds dense areas and expands these recursively to find dense 
arbitrarily shaped clusters. 

▪ Two main parameters to DBSCAN are ‘ε’ and ‘minPoints’. ‘ε’ defines radius of the 
‘neighborhood region’ and ‘minPoints’ defines the minimum number of points that 
should be contained within that neighborhood. 

▪ Since it has a concept of noise, it works well even with noisy datasets. 

 

 



DBSCAN Algorithm 

▪ Epsilon neighborhood (Nε) : set of all points 
within a distance ‘ε’. 

▪ Core point : A point that has at least ‘minPoint’ 
(including itself) points within it’s Nε . 

▪ Direct Density Reachable (DDR) : A point q is 
directly density reachable from a point p if p is 
core point and q ∈ Nε . 

▪ Density Reachable (DR) : Two points are DR if 
there is a chain of DDR points that link these two 
points. 

▪ Border Point: Point that are DDR but not a core 
point. 

▪ Noise : Points that do not belong to any point’s 
Nε . 

 



DBSCAN Visualization 



DBSCAN serial algorithm 

▪ The algorithm proceeds by arbitrarily picking 
up point in the dataset (until all points have 
been visited).  

▪ If there are at least ‘minPoint’ points within a 
radius of ‘ε’ to the point then we consider all 
these points to be part of  the same cluster.  

▪ The clusters are then expanded by recursively 
repeating the neighborhood calculation for 
each neighboring point. 

▪ The complexity of this algorithm is O(n2), 
where n is the number of points. 

▪ With spatial indexing (kd-tree or r-tree), the 
complexity is O(n log n). 

 



Parallelizing DBSCAN 

▪ Patwari et. al. (2011) presented a 
disjoint set based DBSCAN algorithm 
(DSDBSCAN). 

▪ The algorithm uses a disjoint set data 
structure. 

▪ Initially all points belong to a 
singleton tree. 

▪ If two points belong to the same 
cluster, their trees are merged. 

▪ The process is repeated until all 
clusters have been found. 



Parallelizing DBSCAN 

▪ The DSDBSCAN algorithm uses the Rem’s 
algorithm(1976) to construct the disjoint 
set tree structure. 

▪ The complexity of DSDBSCAN is O(n log n). 

▪ The cluster trees are constructed without 
any specific order. 

▪ The DSDBSCAN algorithm is hence suitable 
for a parallel implementation. 

 



Parallel DBSCAN on Distributed Memory 
computers(PDSDBSCAN-D) 

▪ Since the DSDBSCAN algorithm constructs the tree sets arbitrarily, 
this algorithm can be highly parallelized. 

▪ The data set is split into ‘p’ portions and each processor runs a 
sequential DSDBSCAN algorithm to get the local clusters(trees). 

▪  All the local clusters are then merged to get the final clusters. 

▪ In the merging phase the Master just switched the pointer of root of 
one tree to the other root to form the root of the merged tree, when 
relabeling is done. 
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HPDBSCAN (Highly Parallel DBSCAN) 

▪ HPDBSCAN algorithm is an efficient parallel version of DBSCAN 
algorithm that adopts core idea of the grid based clustering 
algorithm. 

▪ Proposed by Götz et. al. in 2015. 

▪ The input data is overlaid with a hypergrid, which is then used to 
perform DBSCAN clustering. 

▪ The grid is used as a spatial structure, which reduces the search space 
for neighborhood queries and facilitates efficient partitioning of the 
dataset along the cell boundaries. 

 



HPDBSCAN 



HPDBSCAN 

▪ The HPDBSCAN algorithm has four main phases: 

– Data loading and pre-processing 

– Local clustering 

– Cluster merging 

– Cluster re-labeling 
 

 



Data Preprocessing 

▪ In this phase, the bounding region of the entire dataset is overlaid by 
a regular, non-overlapping hypergrid. 

▪ This hypergrid is split into ‘p’ subspaces, each of which is assigned to 
one processor. 

▪ Each processor than reads equal sized chunk of data in arbitrarily 
fashion.  

▪ Then using the hashmap with offset and pointers the indexing is 
done with respect to the spatial alignment of the data point. 

▪ Each processor then checks if the data points it has are a part of it’s 
assigned subspace or not. If not the point is sent to the appropriate 
destination processor. This is the redistribution phase. 



Data Preprocessing(Indexing) 



Data Preprocessing 

▪ The benefit of using the indexed structure is that the neighborhood queries 
have O(1) complexity. 

▪ Cell Neighborhood : The cell neighborhood NCell (c) of a given cell c denotes 
all cells d from the space of all available grid cells C that have a Chebychev 
distance distChebychev  of zero or one to c, i.e., NCell (c) = { d | d ∈ C ∧ 
distChebychev (c, d) ≤ 1 }. 

▪ To get all neighborhood points within an assigned subspace, the processor 
need an additional one cell-thick layer of redundant data items. This is known 
as halos or ghost cells. These are transferred during the redistribution phase. 

▪ After the redistribution phase, a local DBSCAN algorithm is run locally at 
each of the processors. 

▪ To ensure a balanced data space division, they use a cost heuristic.  



Cost Heuristic 



Local DBSCAN 



Local DBSCAN 

▪ For each point p the epsilon neighborhood is computed 
independently. 

▪ If a point has at least minPoints neighbors and none of the neighbors 
is already labeled, p is marked as cluster core and cluster label 
created using p’s index. 

▪ In the case when any one of the point is already labeled, we mark 
cluster equivalences in rules and move on. 

▪ The cluster equivalence information is later used in the merger stage. 

▪ The result of local DBSCAN is a list of sub-clusters along with the 
points and cores they contain, a list of noise points, and a set of rules 
describing which cluster labels are equivalent. 



Cluster Merging and Re-labeling 

▪ The label-mapping rules across different nodes are created based on 
the labeling rules generated by local DBSCAN. 

▪ After the local DBSCAN run, each halo zone is passed to the node 
that owns the actual neighboring data chunk. 

▪ Based on the comparison of local and halo points a set of re-labeling 
rules are generated. These rules are then broadcasted. 

▪ To ensure uniqueness of cluster labeling the label of a cluster is taken 
as the lowest index of a core point in the cluster. 

▪ Using these rules, final relabeling is done. 
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