Parallel Graph Coloring

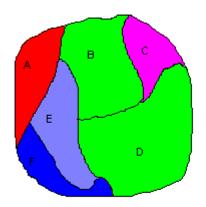
1

What is Graph Coloring?

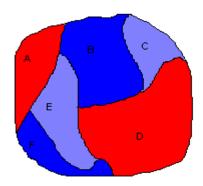
Graph coloring problem is to assign colors to certain elements of a graph subject to certain constraints.

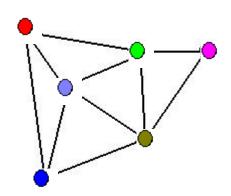
Vertex coloring is the most common graph coloring problem. The problem is, given m colors, find a way of coloring the vertices of a graph such that no two adjacent vertices are colored using same color.

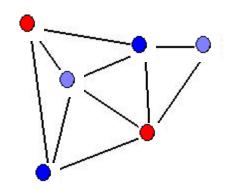
Origin of the problem



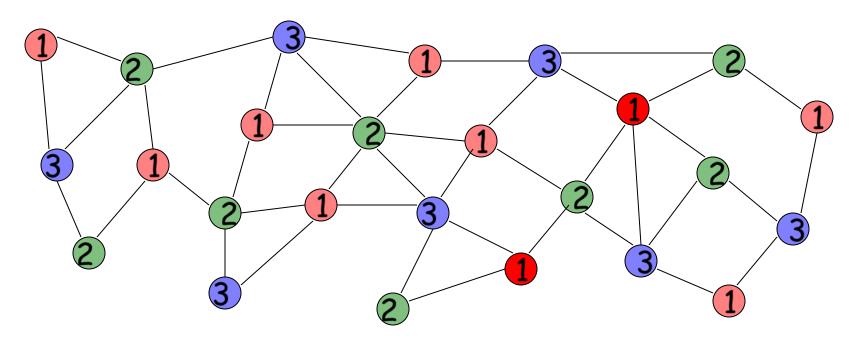
Origin of the problem







k – coloring: a valid coloring with k colors



Chromatic number $\varphi(G)$:

The smallest number of colors that can be used to give a valid coloring in graph G

NP Complete!!!

Sequential $\Delta + 1$ -coloring

For any graph G there is a $\Delta + 1$ -coloring

Therefore, $\varphi(G) \leq \Delta + 1$

Sequential Coloring Algorithm

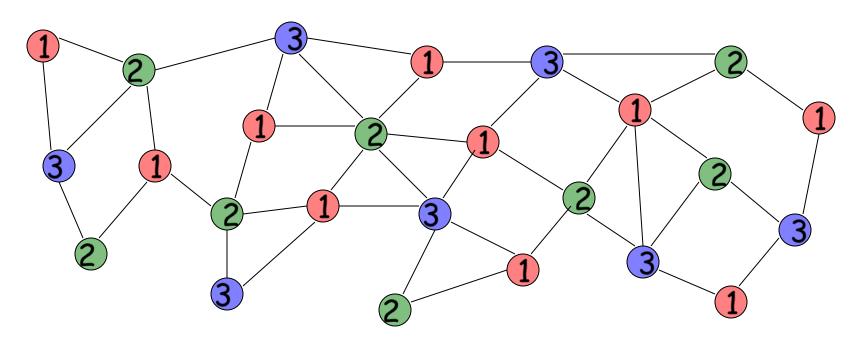
Mark all entries in the palettes of all the nodes as available

Repeat:

- Pick an uncolored node V
 Let c be an available color (from v 's palette) (such a color always exists)
- 3. Color node v with color c
- 4. Mark $_{C}$ as unavailable in the color palette of every neighbor of $_{V}$

Until all nodes are colored

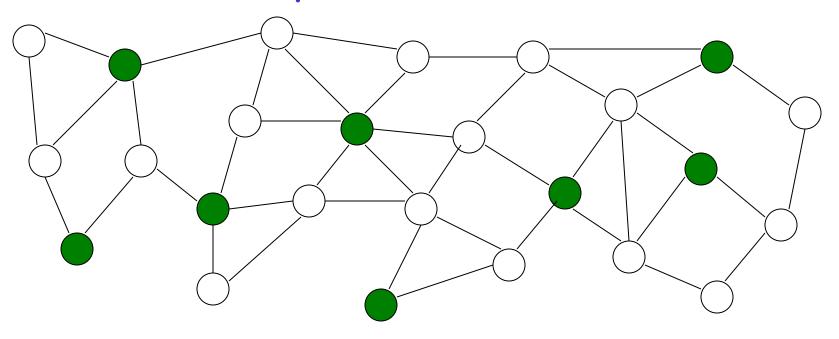
Example coloring



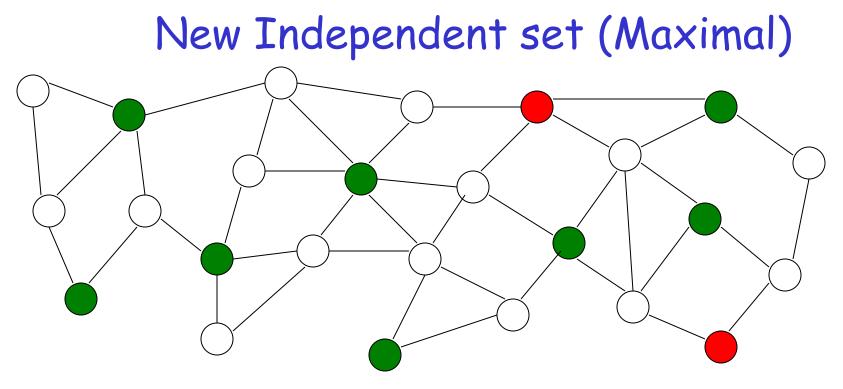
Coloring and MIS

In a valid coloring, the nodes of same color form an independent set

Independent Set



However, the independent set may <u>not</u> be maximal:

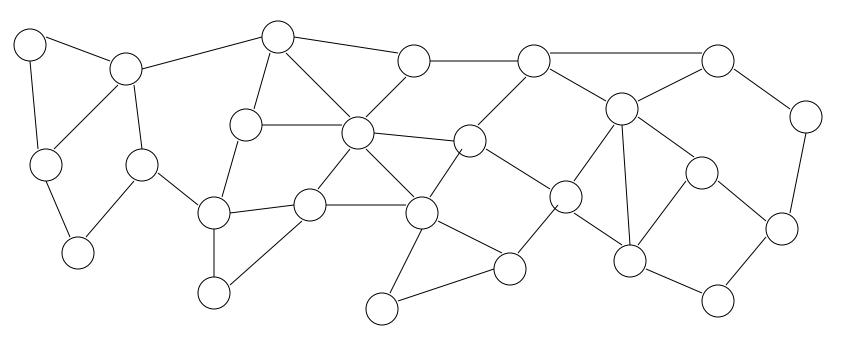


Vertex Coloring is reduced to MIS

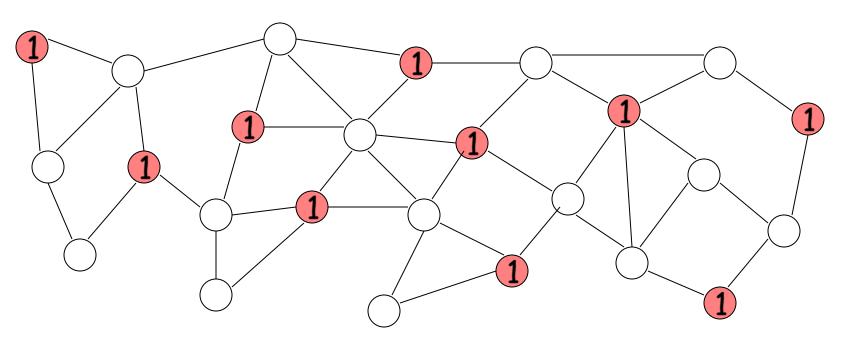
Consider an uncolored graph G

Coloring algorithm for G using MIS: $c \leftarrow 1$: Repeat: Find a MIS in the uncolored nodes: Assign color *C* to each node in MIS; $c \leftarrow c + 1;$ Until every node is colored;

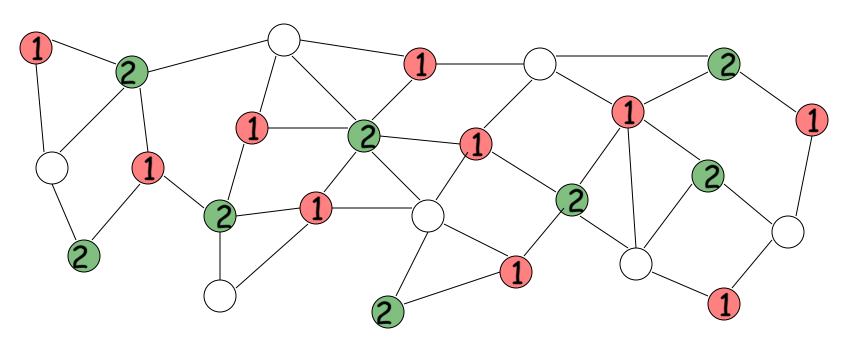
initially, all nodes are uncolored



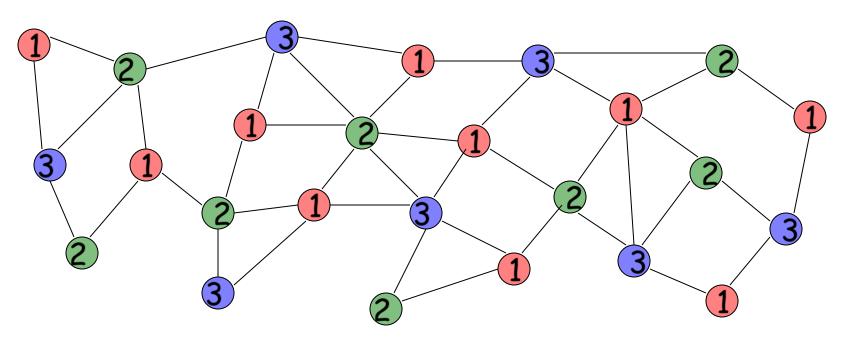
Iteration 1: Find an MIS of the uncolored nodes and give to the nodes color 1



Iteration 2: Find an MIS of the uncolored nodes and give to the nodes color 2



Iteration 3: Find an MIS of the uncolored nodes and give to the nodes color 3



A Simple Randomized 2Δ -Coloring Algorithm

Parallel Algorithm

Randomized Algorithm

Running time: O(logn) with high probability

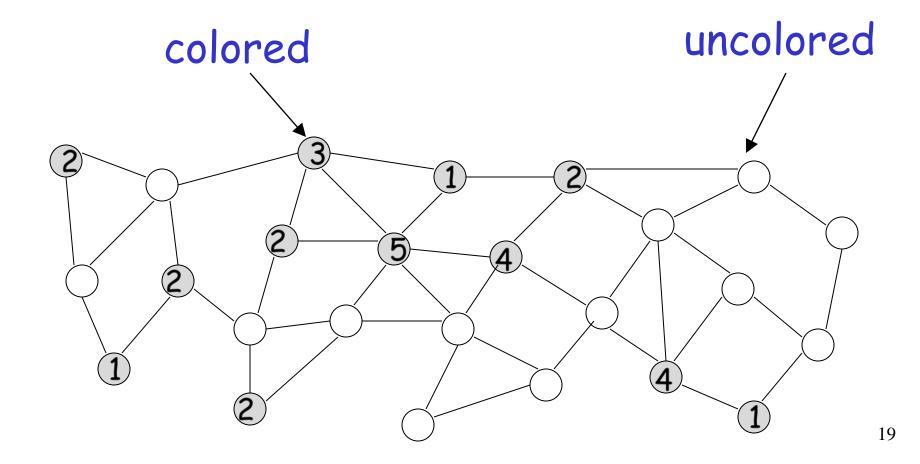
(*n* is the number of nodes)

Each node V has a palette with $2\delta(v)$ colors Palette of node V 1 2 3 4 |||| 2 $\delta(v)$

Initially all colors in palette are available

The algorithm works in phases

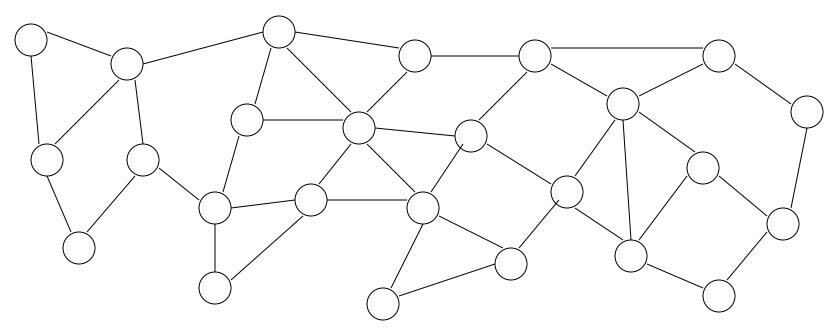
At the beginning of a phase, there are two kinds of nodes:



Algorithm for node V**Repeat** (iteration = phase) Pick a color *C* uniformly at random from available palette colors; Send color C to neighbors; If (some neighbor chose same color C) Then Reject color C; Else Accept color C; Inform neighbors about color C; (so that they mark color C as unavailable)

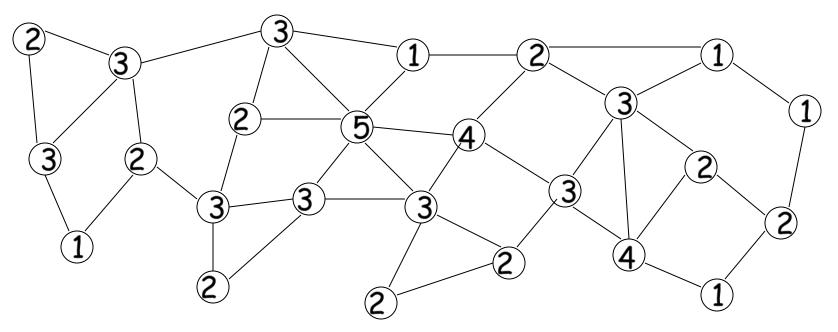
Until color is accepted;

Example execution

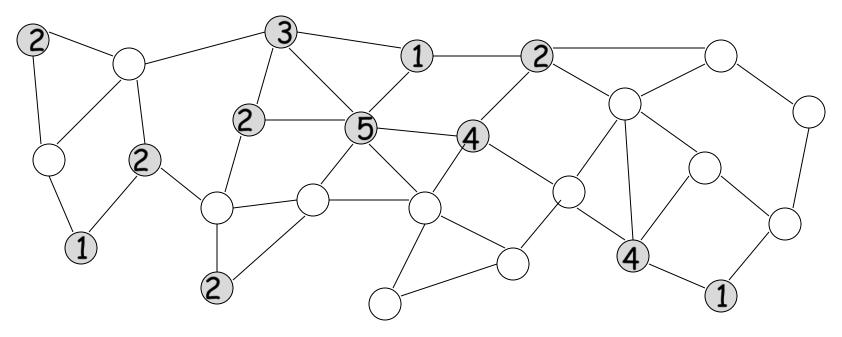


Phase 1: (iteration 1 of synchronous exectution)

Nodes pick random colors

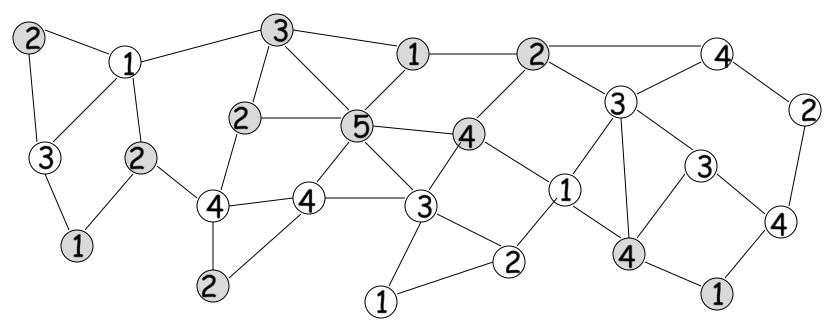


Successful Colors

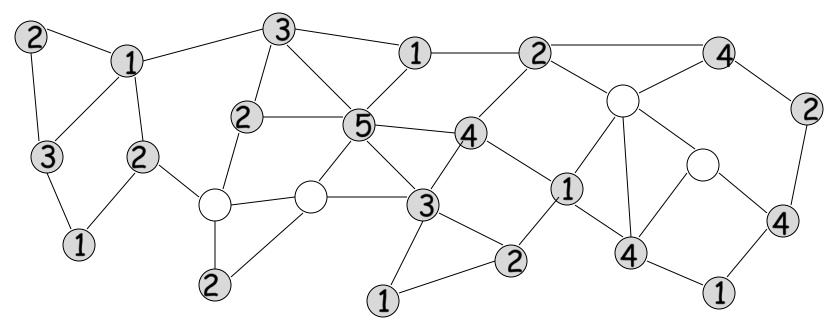


Phase 2: (iteration 2)

Nodes pick random colors

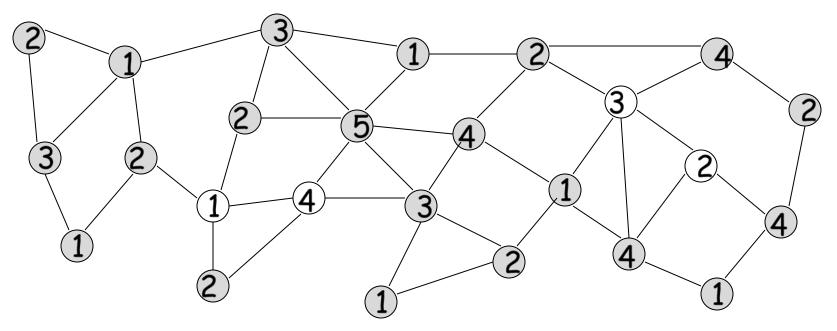


Successful Colors

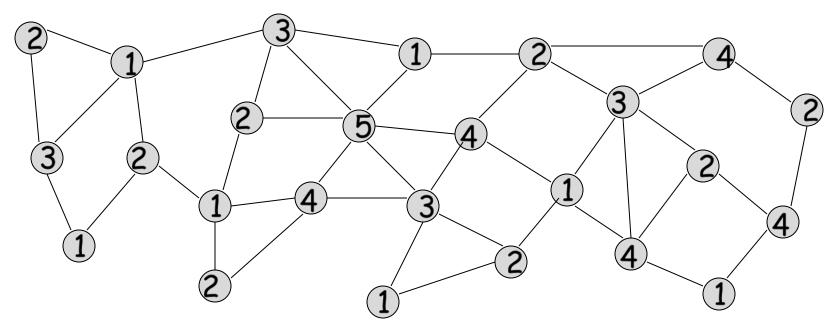


Phase 3: (iteration 3)

Nodes pick random colors



End of execution



A Randomized $\Delta + 1$ -Coloring Algorithm

Parallel Algorithm

Randomized Algorithm

Running time: O(logn) with high probability

(similar with the 2Δ -coloring algorithm, but now the color palette size is $\delta(v) + 1$)

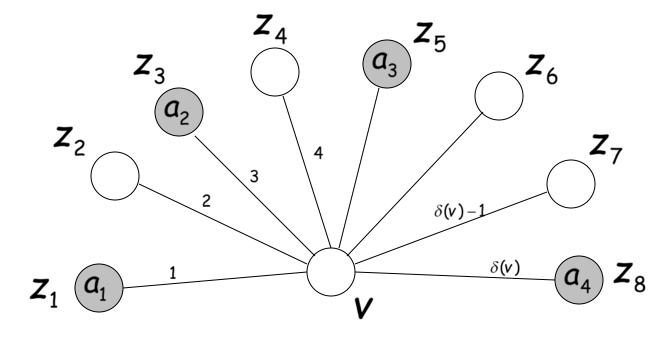
Each node V has a palette with $\delta(v) + 1$ colors Palette of node V 1 2 3 4 |||| $\delta(v) + 1$

Initially all colors in palette are available

(Recall: $\delta(v)$ is the node's degree)

At the beginning of a phase: U(v) : uncolored neighbors of v|U(v)| : uncolored degree of v

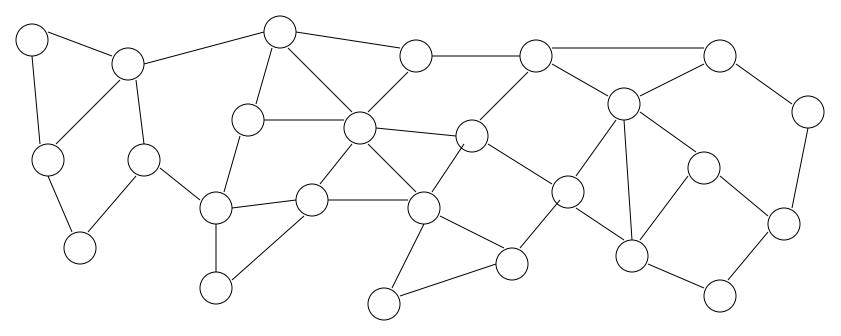
Example: $U(v) = \{z_2, z_4, z_6, z_7\}$



Algorithm for node V**Repeat** (iteration = phase) Pick a color *C* uniformly at random from available palette colors; Send color C to neighbors; If (some neighbor Z with $|U(z)| \ge |U(v)|$ chose same color C) Then Reject color C; Else Accept color C ; Inform neighbors about colorC ; (so that they mark color C as unavailable) Until color is accepted;

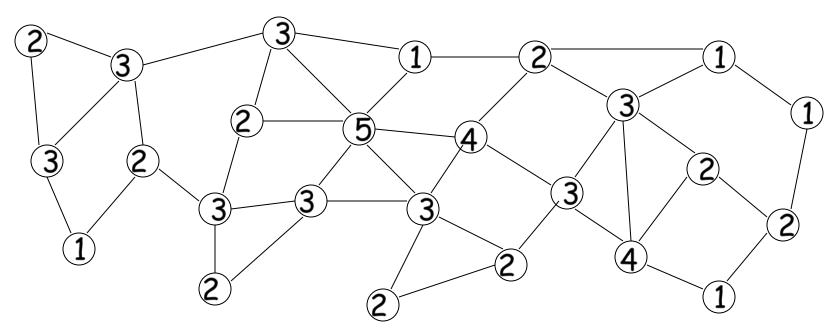
31

Example execution



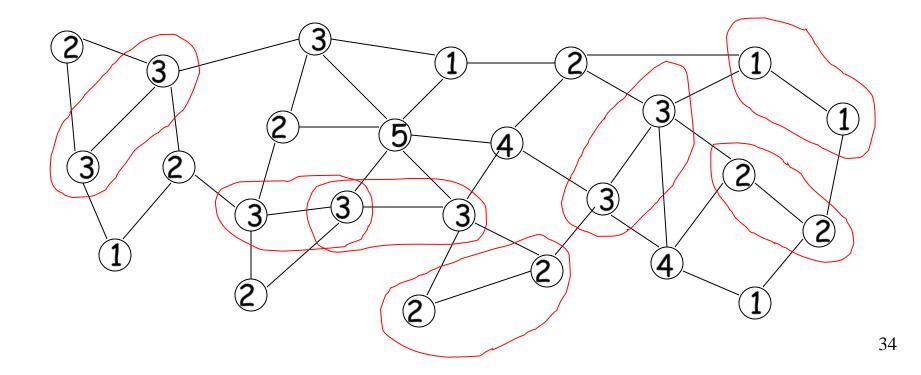
Phase 1: (iteration 1)

Nodes pick random colors

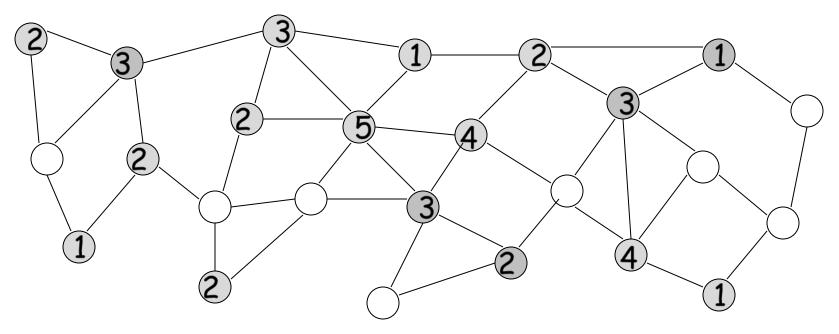


Conflicts

For this phase, uncolored degree = degree The nodes of higher uncolored degree win

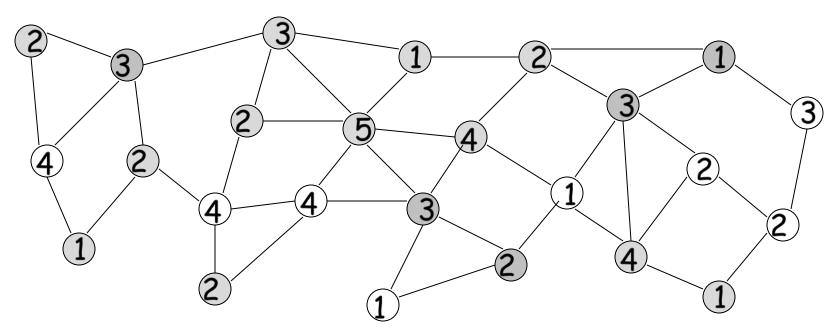


Successful colors



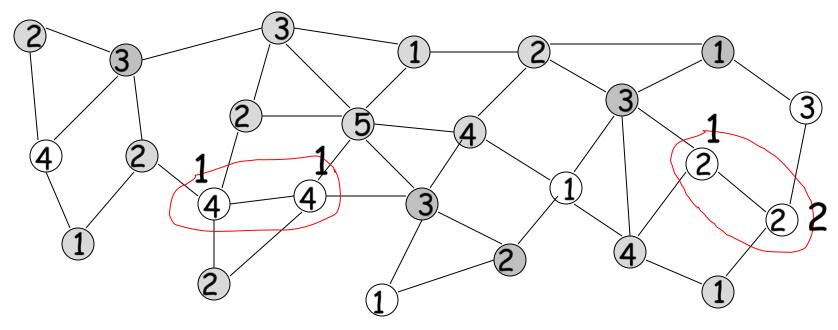
Phase 2: (iteration 2)

Nodes pick random colors

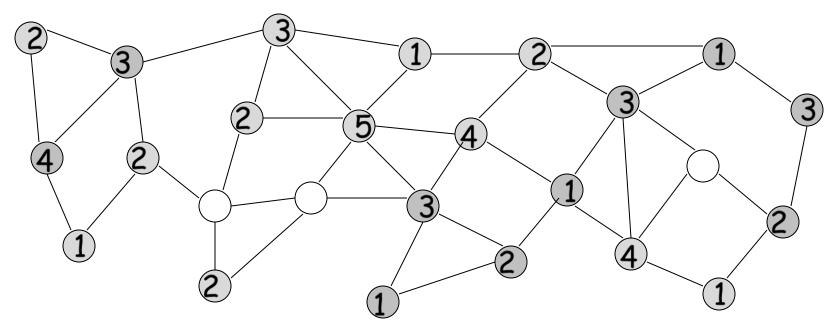


Conflicts

The nodes of higher uncolored degree win

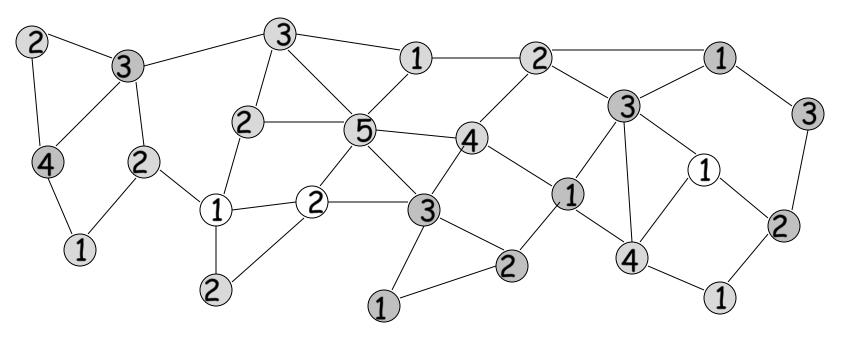


Successful colors



Phase 3: (iteration 3)

Nodes pick random colors



Successful colors

End of execution

