Matrix Multiplication

Nur Dean
PhD Program in Computer Science The Graduate Center, CUNY

05/01/2017

Today, I will talk about matrix multiplication and 2 parallel algorithms to use for my matrix multiplication calculation.

Overview

(1) Background

- Definition of A Matrix
- Matrix Multiplication
(2) Sequential Algorithm
(3) Parallel Algorithms for Matrix Multiplication
- Checkerboard
- Fox's Algorithm
- Example 3×3 Fox's Algorithm
- Fox's Algorithm Psuedocode
- Analysis of Fox's Algorithm
- SUMMA:Scalable Universal Matrix Multiplication Algorithm
- Example 3×3 SUMMA Algorithm
- SUMMA Algorithm
- Analysis of SUMMA

Definition of A Matrix

- A matrix is a rectangular two-dimensional array of numbers
- We say a matrix is $m \times n$ if it has m rows and n columns.
- We use $a_{i j}$ to refer to the entry in $i^{\text {th }}$ row and $j^{t h}$ column of the matrix A.
- Matrix multiplication is a fundamental linear algebra operation that is at the core of many important numerical algorithms.
- If A, B, and C are $N x N$ matrices, then $C=A B$ is also an $N x N$ matrix, and the value of each element in C is defined as:

$$
C_{i j}=\sum_{k=0}^{N} A_{i k} B_{k j}
$$

Algorithm 1 Sequential Algorithm

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; i<n ; \mathrm{i}++) \text { do } \\
& \text { for }(\mathrm{j}=0 ; i<n ; \mathrm{j}++) \text { do } \\
& c[i][j]=0 ; \\
& \text { for }(\mathrm{k}=0 ; k<n ; k++) \text { do } \\
& c[i][j]+=a[i][k] * b[k][j] \\
& \text { end for } \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

- During the first iteration of loop variable i the first matrix A row and all the columns of matrix B are used to compute the elements of the first result matrix C row
- This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C. In fact, a result matrix row is computed per outer loop (loop variable i) iteration.

As each result matrix element is a scalar product of the initial matrix A row and the initial matrix B column, it is necessary to carry out $n^{2}(2 n-1)$ operations to compute all elements of the matrix C. As a result the time complexity of matrix multiplication is;
$T_{1}=n^{2}(2 n-1) \tau$
where τ is the execution time for an elementary computational operation such as multiplication or addition.

Checkerboard

Most parallel matrix multiplication functions use a checkerboard distribution of the matrices. This means that the processes are viewed as a grid, and, rather than assigning entire rows or entire columns to each process, we assign small sub-matrices. For example, if we have four processes, we might assign the element of a 4×4 matrix as shown below, checkerboard mapping of a 4×4 matrix to four processes.

Process 0	Process 1
$a_{00} a_{01}$	$a_{02} a_{03}$
$a_{10} a_{11}$	$a_{12} a_{13}$
Process 2	Process 3
$a_{20} a_{21}$	$a_{22} a_{23}$
$a_{30} a_{31}$	$a_{32} a_{33}$

Fox's Algorithm

Process 0	Process 1							
a_{00}	a_{01}	a_{02}						
a_{10}	a_{11}	a_{12}						
a_{13}			$	$	Process 2	Process 3		
:---	:---	:---	:---					
a_{20}	a_{21}	a_{22}	a_{23}					
a_{30}	a_{31}	a_{32}	a_{33}					

- Fox's algorithm is a one that distributes the matrix using a checkerboard scheme like the above.
- In order to simplify the discussion, lets assume that the matrices have order n, and the number of processes, p, equals n^{2}. Then a checkerboard mapping assigns $a_{i j}, b_{i j}$, and $c_{i j}$ to process (i, j).
- In a process grid like the above, the process (i, j) is the same as process $p=i * n+j$, or, loosely, process (i, j) using row major form in the process grid.

Cont. Fox's Algorithm

- Fox's algorithm takes n stages for matrices of order n one stage for each term $a_{i k} b_{k j}$ in the dot product $C_{i j}=a_{i 0} b_{0 j}+a_{i 1} b_{1 i}+\ldots+a_{i, n-1} b_{n-1, j}$
- Initial stage, each process multiplies the diagonal entry of A in its process row by its element of B :

Stage 0 on process($i, j)$: $c_{i j}=a_{i i} b_{i j}$

- Next stage, each process multiplies the element immediately to the right of the diagonal of A by the element of B directly beneath its own element of B :

Stage 1 on process $(i, j): c_{i j}=c_{i j}+a_{i, i+1} b_{i+1, j}$

- In general, during the $k^{\text {th }}$ stage, each process multiplies the element k columns to the right of the diagonal of A by the element k rows below its own element of B :

Stage k on $\operatorname{process}(i, j): c_{i j}=c_{i j}+a_{i, i+k} b_{i+k, j}$

Example of the Algorithm Applied to 2×2 Matrices

$A=\left|\begin{array}{ll}a_{00} & a_{01} \\ a_{10} & a_{11}\end{array}\right| \quad B=\left|\begin{array}{ll}b_{00} & b_{01} \\ b_{10} & b_{11}\end{array}\right|$
$C=\left|\begin{array}{ll}a_{00} b_{00}+a_{01} b_{10} & a_{00} b_{01}+a_{01} b_{11} \\ a_{10} b_{00}+a_{11} b_{10} & a_{10} b_{01}+a_{11} b_{11}\end{array}\right|$
Assume that we have n^{2} processes, one for each of the elements in A, B, and C. Call the processes P_{00}, P_{01}, P_{10}, and P_{11}, and think of them as being arranged in a grid as follows:

P_{00}	P_{01}
P_{10}	P_{11}

- Stage 0
(a) We want $a_{i, i}$ on process $P_{i, j}$, so broadcast the diagonal elements of A across the rows, $\left(a_{i i} \rightarrow P_{i j}\right)$ This will place $a_{0,0}$ on each $P_{0, j}$ and $a_{1,1}$ on each $P_{1, j}$. The A elements on the P matrix will be

a_{00}	a_{00}
a_{11}	a_{11}

(b) We want $b_{i, j}$ on process $P_{i, j}$, so broadcast B across the rows ($b_{i j} \rightarrow P_{i j}$) The A and B values on the P matrix will be

a_{00}	a_{00}
b_{00}	b_{01}
a_{11}	a_{11}
b_{10}	b_{11}

(c) Compute $c_{i j}=A B$ for each process

a_{00}	a_{00}
b_{00}	b_{01}
$c_{00}=a_{00} b_{00}$	$c_{01}=a_{00} b_{01}$
a_{11}	a_{11}
b_{10}	b_{11}
$c_{10}=a_{11} b_{10}$	$c_{11}=a_{11} b_{11}$

We are now ready for the second stage. In this stage, we broadcast the next column $(\bmod n)$ of A across the processes and shift-up $(\bmod n)$ the B values.

- Stage 1
(a) The next column of A is $a_{0,1}$ for the first row and $a_{1,0}$ for the second row (it wrapped around, mod n). Broadcast next A across the rows

a_{01}	a_{01}
b_{00}	b_{01}
$c_{00}=a_{00} b_{00}$	$c_{01}=a_{00} b_{01}$
a_{10}	a_{10}
b_{10}	b_{11}
$c_{10}=a_{11} b_{10}$	$c_{11}=a_{11} b_{11}$

(b) Shift the B values up. $B_{1,0}$ moves up from process $P_{1,0}$ to process $P_{0,0}$ and $B_{0,0}$ moves up $(\bmod \mathrm{n})$ from $P_{0,0}$ to $P_{1,0}$. Similarly for $B_{1,1}$ and $B_{0,1}$.

a_{01}	a_{01}
b_{10}	b_{11}
$c_{00}=a_{00} b_{00}$	$c_{01}=a_{00} b_{01}$
a_{10}	a_{10}
b_{00}	b_{01}
$c_{10}=a_{11} b_{10}$	$c_{11}=a_{11} b_{11}$

(c) Compute $C_{i j}=A B$ for each process

a_{01}	a_{01}
b_{10}	b_{11}
$c_{00}=c_{00}+a_{01} b_{10}$	$c_{01}=c_{01}+a_{01} b_{11}$
a_{10}	a_{10}
b_{00}	b_{01}
$c_{10}=c_{10}+a_{10} b_{00}$	$c_{11}=c_{11}+a_{10} b_{01}$

The algorithm is complete after n stages and process $P_{i, j}$ contains the final result for $c_{i, j}$.

Example 3x3 Fox's Algorithm

Consider multiplying 3×3 block matrices:

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 3 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 2 & 9 \\
4 & 4 & 5 \\
4 & 2 & 6
\end{array}\right]
$$

Stage 0:

Process $(i, i \bmod 3)$	Broadcast along row i
$(0,0)$	a_{00}
$(1,1)$	a_{11}
$(2,2)$	a_{22}

$$
\begin{array}{lll}
a_{00}, b_{00} & a_{00}, b_{01} & a_{00}, b_{02} \\
a_{11}, b_{10} & a_{11}, b_{11} & a_{11}, b_{12} \\
a_{22}, b_{20} & a_{22}, b_{21} & a_{22}, b_{22}
\end{array}
$$

Process (i, j) computes:

$c_{00}=1 \times 1=1$	$c_{01}=1 \times 0=0$	$c_{02}=1 \times 2=2$
$c_{10}=1 \times 2=2$	$c_{11}=1 \times 0=0$	$c_{12}=1 \times 3=3$
$c_{20}=1 \times 1=1$	$c_{21}=1 \times 2=2$	$c_{22}=1 \times 1=1$

Shift-rotate on the columns of B

Stage 1:

Process Broadcast $(i,(i+1)$ $\bmod 3)$	along row i
$(0,1)$	a_{01}
$(1,2)$	a_{12}
$(2,0)$	a_{20}

$$
\begin{array}{lll}
a_{01}, b_{10} & a_{01}, b_{11} & a_{01}, b_{12} \\
a_{12}, b_{20} & a_{12}, b_{21} & a_{12}, b_{22} \\
a_{20}, b_{00} & a_{20}, b_{01} & a_{20}, b_{02}
\end{array}
$$

Process (i, j) computes:

$c_{00}=1+(2 \times 2)=5$	$c_{01}=0+(2 \times 0)=0$	$c_{02}=2+(2 \times 3)=8$
$c_{10}=2+(2 \times 1)=4$	$c_{11}=0+(2 \times 2)=4$	$c_{12}=3+(2 \times 1)=5$
$c_{20}=1+(1 \times 1)=2$	$c_{21}=2+(1 \times 0)=2$	$c_{22}=1+(1 \times 2)=3$

Shift-rotate on the columns of B

Stage 2:

$\left.$| Process
 $(i,(i+2)$ | $\bmod 3)$ |
| :--- | :--- | | Broadcast |
| :--- |
| along row i | \right\rvert\, | $(0,2)$ | a_{02} |
| :--- | :--- |
| $(1,0)$ | a_{21} |
| $(2,1)$ | |

$$
\begin{array}{lll}
a_{02}, b_{20} & a_{02}, b_{21} & a_{02}, b_{22} \\
a_{10}, b_{00} & a_{10}, b_{01} & a_{10}, b_{02} \\
a_{21}, b_{10} & a_{21}, b_{11} & a_{21}, b_{12}
\end{array}
$$

Process (i, j) computes:

$c_{00}=5+(1 \times 1)=6$	$c_{01}=0+(1 \times 2)=2$	$c_{02}=8+(1 \times 1)=9$
$c_{10}=4+(0 \times 1)=4$	$c_{11}=4+(0 \times 0)=4$	$c_{12}=5+(0 \times 2)=5$
$c_{20}=2+(1 \times 2)=4$	$c_{21}=2+(1 \times 0)=2$	$c_{22}=3+(1 \times 3)=6$

Algorithm 2 Fox's Algorithm Psuedocode

/* my process row $=\mathrm{i}$, my process column $=\mathrm{j}$ */
$\mathrm{q}=\operatorname{sqrt}(\mathrm{p})$;
dest $=((i-1) \bmod q, j)$;
for (stage $=0$; stage $<q$; stage ++)
\{
k_bar=(i+stage) $\bmod \mathrm{q}$;
(a) Broadcast $A\left[i, k _b a r\right]$ across process row i;
(b) $\mathrm{C}[i, j]=\mathrm{C}[i, j]+\mathrm{A}\left[\mathrm{i}, \mathrm{k} _\right.$bar $] * \mathrm{~B}[\mathrm{k}$ _bar,j $]$;
(c) Send $\mathrm{B}[(\mathrm{k}$ _bar +1$) \bmod \mathrm{q}, \mathrm{j}]$ to dest;

Receive B[(k_bar+1) mod q, j] from source;

Analysis of Fox's Algorithm

- Let A, B be $n \times n$ matrices, and $C=A * B, C_{i j}=\sum_{k=0}^{q-1} A_{i k} B_{k j}$
- Let $p=q^{2}$ number of processors organized in a $q \times q$ grid
- Store $(i, j)^{t h} n / q \times n / q$ block of A, B, and C on process (i, j)
- Execution of the Fox algorithm requires q iterations, during which each processor multiplies its current blocks of the matrices A and B, and adds the multiplication results to the current block of the matrix
C.With regard to the above mentioned assumptions, Computation time:
$q\left(\frac{n}{q} \times \frac{n}{q} \times \frac{n}{q}\right)=\frac{n^{3}}{q^{2}}=\frac{n^{3}}{p}$
- As a result, the speedup and efficiency of the algorithm look as follows:

$$
\begin{aligned}
& S_{p}=\frac{n^{3}}{n^{3} / p}=p \\
& E_{p}=\frac{n^{3}}{p \cdot\left(n^{3} / p\right)}=1
\end{aligned}
$$

SUMMA:Scalable Universal Matrix Multiplication Algorithm

- Slightly less efficient, but simpler and easier to generalize.
- Uses a shift algorithm to broadcast
- The SUMMA algorithm computes n partial outer products:
for $k:=0$ to $n-1$

$$
C[:,:]+=A[:, k] \cdot B[k,:]
$$

- Each row k of B contributes to the n partial outer products

- Compute the sum of n outer products
- Each row and column (k) of A and B generates a single outer product Column vector $A[:, k](n x 1)$ and a vector $B[k,:](1 x n)$ for $k:=0$ to $n-1$

$$
C[:,:]+=A[:, k] \cdot B[k,:]
$$

- Compute the sum of n outer products
- Each row and column (k) of A and B generates a single outer product $A[:, k+1] \cdot B[k+1,:]$
for $k:=0$ to $n-1$

$$
C[:,:]+=A[:, k] \cdot B[k,:]
$$

- Compute the sum of n outer products
- Each row and column (k) of A and B generates a single outer product $A[:, n-1] \cdot B[n-1,:]$
for $k:=0$ to $n-1$
$C[:,:]+=A[:, k] \cdot B[k,:]$

- For each k (between 0 and $n-1$),
- Owner of partial row k broadcasts that row along its process column
- Owner of partial column k broadcasts that column along its process row

$$
C(i, j)=C(i, j)+\sum_{k} A(i, k) * B(k, j)
$$

- Assume a p_{r} by p_{c} processor grid ($p_{r}=p_{c}=4$ above) Need not be square

Example 3x3 SUMMA Algorithm

Consider multiplying 3×3 block matrices:

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 3 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 2 & 9 \\
4 & 4 & 5 \\
4 & 2 & 6
\end{array}\right]
$$

- Owner of partial row 0 broadcasts that row along its process column and owner of partial column 0 broadcasts that column along its process row

	1	0	2
1	1	0	2
0	0	0	0
1	1	0	2

- Owner of partial row 1 broadcasts that row along its process column and owner of partial column 1 broadcasts that column along its process row

	2	0	3
2	4	0	6
1	2	0	3
1	2	0	3

- Owner of partial row 2 broadcasts that row along its process column and owner of partial column 2 broadcasts that column along its process row

	1	2	1
1	1	2	1
2	2	4	2
1	1	2	1

- When we sum all the entries we get the following matrix:

$$
\left[\begin{array}{lll}
6 & 2 & 9 \\
4 & 4 & 5 \\
4 & 2 & 6
\end{array}\right]
$$

Algorithm 3 SUMMA Algorithm

for $k=0$ to $n-1$ do
for all $i=1$ to p_{r} do
owner of $A(i, k)$ broadcasts it to whole processor row;
end for
for all $j=1$ to p_{c} do
owner of $B(k, j)$ broadcasts it to whole processor column;
end for
Receive $A(i, k)$ into Acol
Receive $B(k, j)$ into Brow
$C_{\text {myproc }}=C_{\text {myproc }}+$ Acol $*$ Brow
end for

- We can also take $k=0$ to $n / b-1$ where b is the block size $=$ cols in $A(i, k)$ and rows in $B(k, j)$

SUMMA Performance Model

- To simplify analysis only, assume $s=\sqrt{p}$

Algorithm 4 SUMMA Performance Model
for $k=0$ to $n / b-1$ do
for all $i=1$ to s do
owner of $A(i, k)$ broadcasts it to whole processor row; $\%$ time $=\log s *(\alpha+\beta * b * n / s)$, using a tree
end for
for all $j=1$ to s do
owner of $B(k, j)$ broadcasts it to whole processor column; $\%$ time $=\log s *(\alpha+\beta * b * n / s)$, using a tree
end for
Receive $A(i, k)$ into Acol
Receive $B(k, j)$ into Brow
$C_{\text {myproc }}=C_{\text {myproc }}+$ Acol $*$ Brow
$\%$ time $=2 *(n / s)^{2} * b$

Analysis of SUMMA

$$
\begin{aligned}
& T(p)=2 * \frac{n^{3}}{p}+\alpha * \log p * \frac{n}{b}+\beta * \log p * \frac{n^{2}}{s} \\
& E(p)=\frac{1}{\left(1+\alpha * \log p * \frac{p}{\left(2 * b * n^{2}\right)}+\beta * \log p * \frac{s}{(2 * n)}\right)}
\end{aligned}
$$

Where α is the start-up cost of a message, and β is the bandwidth

THANK YOU FOR YOUR ATTENTION TODAY!

