Parallel clustering: k-Means

Soumi Maiti April 20, 2017

Clustering

- Grouping input data into subsets called "clusters"
- Within each cluster elements are *similar*
- Unsupervised learning
- Computationally expensive
 - ► Many of the algorithms are iterative or recursive procedure

Different types of clustering

K-Means clustering

- Simplest and most efficient clustering algorithm
- Most widely used
- Computationally expensive
- K= number of clusters
 - User defined parameter

Formalizing K-Means

▶ Given a set S of N points,

• Mean $\overline{X_i} = \frac{1}{|C_i|} \sum_{v \in C_i} v$

- Form K subsets { C_1 , C_2 , C_3 ,... C_K } s.t.,
- ► Each point v_{ij} is closest to it's cluster mean $\overline{X_i}$ where $1 \le i \le K$, $1 \le j \le |C_i|$

Figure 1. Two-dimensional data are clustered into 4 categories by running K-means algorithm on the data. Each color represents each category. The centroids are the representatives of each category.

• Achieves by minimizes the square-error (E),

$$E = \sum_{i=1}^{n} \sum_{v \in C_i} |\overline{X_i} - v|^2$$

Serial K-means Algorithm

- Randomly select K-subsets
- While Square-Error(E) is not stable:
 - ▶ Compute mean $\overline{X_i}$, $1 \le i \le K$
 - ▶ Compute distance d(i,j), $1 \le i \le K$, $1 \le j \le N$ for each point to each mean.
 - Choose closest members as the new member of K clusters

end

- Time complexity = O(KN) per iterations
 - where K is the number of desired clusters
 - If you have d dimensional data, T = O(KNd)
- Total time complexity = O(R_s KN)
 - \triangleright R_s is the number of iterations

Visualization 2-Means clustering

Expensive calculations

- Most intensive calculation \rightarrow calculation of distances
- In each iteration,
 - ► total of (NK) distances are computed
 - where N is the number of data points
 - ► K is the number of clusters
- Distance computations between one object with the centers is irrelevant to the distance computations between other objects with the corresponding centers.
- Distance computations between different objects with centers can be parallel executed

Parallel Algorithm -1

- Uses master-slave architecture
 - One master
 - K slaves
 - ► Each slave computes one cluster
- Message passing interface
 - Uses broadcast to reduce time
- Speedup of O(K/2)
- Kantabutra, Sanpawat, and Alva L. Couch. "Parallel K-means clustering algorithm on NOWs." NECTEC Technical journal 1.6 (2000): 243-247.

Master Process

- Divides set S into K equal subsets
- Send each subset to each of the K slaves

Receive K resulting subsets from K slaves

- Complexity
 - ► K(T_{startup}+ N/K T_{data})

Slave Process

- Receive a subset P from master process
- While Error E is not stable:
 - Compute a mean \overline{X}
 - Broadcast \overline{X} to every other slaves
 - Compute distance d(i,j), 1≤i≤K,1≤j≤|P|
 - Choose new vector members of the new K subsets
 - ▶ according to their closest distance to \overline{Xi} , $1 \le i \le K$
 - Broadcast K subsets computed in previous step to every other slaves
 - Update P by collecting vectors that belong to \overline{X} from other slaves
- end
- Send the subset P to master process

Example

Master

Slave 1 Choose groups: 1: {40, 42} 2:{102} Broadcast 40:1, 42:1 102:2 P = collect all members of 1 = 40, 42, 35Repeat loop again $\overline{X1} = 39$ Broadcast x1:39 X1=39 dist X2=95 40 55 42 3 53 35 4 60

1: {40, 42, 35}

Slave 2 Choose groups: 1: {<mark>35</mark>} 2:{99, 85}

Broadcast 35:1, 99:2 85:2

P = 99, 85, 102 Repeat loop again

<u>X2</u> = **95**

Broadcast x2:95

dist	X1=39	X2=95
99	60	4
85	46	10
102	63	7

2: {99, 85, 102}

Let R_p = the number of iterations

- Total time = Communication Time + Computation Time
- Communication Time = O(N + R_p | P |)
- Computation Time = O(2R_p K|P|)
- Total time = $O(N + R_p |P|) + O(2R_p K |P|) = O(2R_p K |P|)$
- Speedup = Execution time of single processor / Execution time of K processors $= \frac{O(R_S K N)}{O(2R_p K |P|)} = \frac{O(R_S K^2 P)}{O(2R_p K |P|)} = O(\frac{K}{2})$ [as, |p| = N/K]

Parallel Algorithm 2

- Master-slave procedure
 - Variable number of slave process
- Splits the dataset among processes
 - Each processor works on part of the data
- Reduces the communication cost
 - Only communicates means between slaves

Joshi, Manasi N. "Parallel k-means algorithm on distributed memory multiprocessors." *Computer* 9 (2003).

Algorithm

- Master calculates the initial centroids
- Send k centroids to all slaves
- Each processor
 - Computes distance of a subset of data points
 - Assign points to closest centroid
 - Compute local error
- Performs reduction for global centroids and global error
 - Uses MPIAIIReduce()

Example

- ▶ K= 2, N=6, data = [40,102,42, 35, 99, 85]
- ▶ X1 = 61, X2 = 73
- ► 3 processor

Process 1	Process 2	Process 3
D = 40,102 X1 = <mark>61</mark> , X2 = 73	D = 42, 35 X1 = <mark>61</mark> , X2 = 73	D= 99, 85 X1 = <mark>61</mark> , X2 = 73
1: { <mark>40</mark> } 2:{102}	1: { <mark>42, 35</mark> } 2:{}	1: {} 2:{ <mark>99,85</mark> }
S1 = 40, N1=1 S2 = 102 N2=1	S1 = 77, N1=2	S2 = 184, N2=2
	All Reduce S1 = 117 N1=3 S2 = 286 N2=3	
X1 = S1/N1 = 39 X2 = 95	X1 = S1/N1 = <mark>39</mark> X2 = 95	X1 = S1/N1 = <mark>39</mark> X2 = 95
1: {40} 2:{102}	1: { <mark>42, 35</mark> } 2:{}	1: {} 2:{ <mark>99,85</mark> }

Process 1	Process 2	Process 3		
S1 = 40, N1=1 S2 = 102 N2=1	S1 = 77, N1=2	S2 = 184, N2=2		
All Reduce S1 = 117 N1=3 S2 = 286 N2=3				
Converged	Converged	Converged		

Analysis

- Assume we have P processors
- Also assume n is divisible by P
- The process identified by 'id'
 - Process data $\{X_i, i = (id) * (n/P), ..., (id + 1)*(n/P)\}.$
 - n/P data points
- Each of the P processes can carry out the "distance calculations" in parallel
- With n/P data points
- Extra overhead is reduce for K centroids

Analysis- Speedup

Sequential: $(3nkd + nk + nd + kd)^* \mu * T$ -- 3nkd for distance calculation -- nk finding the closest centroid -- nd (m'_1 = m'_1 + X_i; n'_1 = n'_1 + 1;)

Parallel: $(3nkd * \mu * T)$ ----- + d*k* μ *Tp^{reduce} P

Speedup is approximately P