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What is SVD?

The SVD is the Swiss Army knife of matrix decompositions

—Diane O'Leary, 2006



Matrix Decomposition

* Eigen Decomposition

* A (non-zero) vector v of dimension N is an eigenvector of a square
(NxN) matrix A if it satisfies the linear equation

Av = )\v

« WhereA is eigenvalue corresponding to v

e What if it is not a square matrix?



What is SVD?

e Singular Value Decomposition(SVD) is a technique for factoring
matrices.

* Now comes a highlight of linear algebra. Any real m x n matrix can be
factored as

A=UxVT

* Where U is an mxm orthogonal matrix whose columns are the
eigenvectors of AAT, V is an nxn orthogonal matrix whose columns
are the eigenvectors of A'A



What is SVD?

e 7 is an m x n diagonal matrix of the form

(o \

e withol >022:--2>0r>0andr=rank(A). Inthe above, 01, .. ., or
are the square roots of the eigenvalues of AT A. They are called the
singular values of A.



What is SVD?

e Factor matrix A of size MxN A=UxVT
— U Is size M*M and Contains left Singular values
e— 3 is size M*N and Contains singular Values of A

—V is size N*N and contains the right singular
values



SVD and Eigen Decomposition

* Intuitively, SVD says for any linear map, there is an
orthonormal frame in the domain such that it is first mapped
to a different orthonormal frame in the image space, and
then the values are scaled.

e Eigen decomposition says that there is a basis, it doesn't
have to be orthonormal, such that when the matrix is
applied, this basis is simply scaled. That is assuming you
have n linearly independent eigenvectors of course.



Example of SVD

e Singular value decomposition takes a rectangular matrix of gene
expression data (defined as A, where A is a n x p matrix) in which
the n rows represents the genes, and the p columns represents the
experimental conditions.

e The SVD theorem states:

Anxp= Unxn Snxp VTpxp

 Where the columns of U are the left singular vectors (gene coefficient
vectors); S (the same dimensions as A) has singular values and is
diagonal (mode amplitudes); and V' has rows that are the right
singular vectors (expression level vectors).
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How to Calculate SVD

An eigenvector of a square matrix A is a vector v such that A only
changes the magnitude of v

» |.e. Av = Av for some A € R

» Such A is an eigenvalue of A
The eigendecomposition of A is A = QAQ ™!

» The columns of Q are the eigenvectors of A

» Matrix A is a diagonal matrix with the eigenvalugs
Not every (square) matrix has eigendecomposition

» If A is of form BB, it always has eigendecomposition

The SVD of A is closely related to the eigendecompositions of AAT
and ATA

» The left singular vectors are the eigenvectors of AAT
» The right singular vectors are the eigenvectors of AT A

» The singular values are the square roots of the eigenvalues of both
AA’ and ATA



How to Calculate SVD

Example: Find the SVD of A4, UXV?T, where A = ( g g _22 )

First we compute the singular values o; by finding the eigenvalues of AA”.

r (17 8
AA_(S 17)'

The characteristic polynomial is det(AAT — NI) = X2 — 34\ +225 = (A — 25)(A —9), so
the singular values are oy = V25 =5 and 0y = V9 = 3.



How to Calculate SVD

Now we find the right singular vectors (the columuns of V') by finding an orthonormal
set of eigenvectors of AT A. It is also possible to proceed by finding the left singular
vectors (columns of U) instead. The eigenvalues of AT A are 25, 9, and 0, and since
AT A is symmetric we know that the eigenvectors will be orthogonal.

For A = 25, we have

~12 12 2
ATA — 9251 = 12 —-12 -2
2 -2 17

1
. A unit-length vector in the kernel of that matrix

o= O

1 —
which row-reduces to 0 0
0 0

1/v2
iS’Ulz 1/\/§
0



How to Calculate SVD

4 12 2

1 0 -1
For \ =9wehave ATA-9 = | 12 4 —2 | whichrow-reducesto | 0 1 %
2 -2 -1 00 0
1/v/18
A unit-length vector in the kernel is vy = | —1/4/18

4/V18

For the last eigenvector, we could compute the kernel of A7 A or find a unit vector

a
perpendicular to v; and vy. To be perpendicular to vq b | we need —a = b.
c
Then the condition that viwvs = 0 becomes 2a/v/18 + 4c¢/\/18 = 0 or —a = 2c. So
a 2/3
V3 = —a and for it to be unit-length we need a = 2/3 so v3 = | —2/3
—a/2

~1/3



How to Calculate SVD

So at this point we know that

500 vz 1/y2 !
) 0)(1/\@ VT 4/\@).

2/3  —2/3 —1/3

Finally, we can compute U by the formula cu; = Awv;, or u; = %sz—. This gives

UV OB
U= ( V3 —1/v2 ) So in its full glory the SVD is:

AUmﬁU(

e (VT VE N[5 00N ([ M2 20



How to parallelize SVD

* The SVD computation consists of three consecutive
steps:

* (i) bi-diagonalization
e (ii) computation of singular values and vectors

o (iii) post-multiplication of results from previous
two steps.



One-Sided Block-Jacobi Algorithm
(OSBJA)

e Block-column partitioning of A in the form:

A=Ay, As, ..., A

e where the width of Aiisni,1<i<r,sothatnl+n2+::-:-+nr=n.

 The OSBJA can be written as an iterative process:

A =4 vO =g
AFRD — AR ®k) e — yE k) > .



One-Sided Block-Jacobi Algorithm

(OSBJA)

 The OSBJA can be written as an iterative process:

A =4 vO =,

AFHD — AR &),

V(k+1) _

V(k)U(k)1

Single Side
k>0, (1)

e The purpose of matrix multiplication AKU® is to mutually
orthogonalize the columns between column-blocks i and j of A,

* Here the n x n orthogonal matrix U is the so-called block rotation of

the form:
(1

\

Uk

(k)

I

(k)

*)
Uj;

)

1)

Jacobi
’ Matrix
(Rotation)

(2)



One-Sided Block-Jacobi Algorithm
(OSBJA)

* The orthogonal matrix

. y®
k) i1 )
= (Ug@ 2 @)

e is called the pivot submatrix of Uk at step k.



One-Sided Block-Jacobi Algorithm
(OSBJA)

* One (serial) step of the OSBJA can be described in three parts:
1. For the given pivot pair (i, j), the symmetric, positive semidefinite

Gram matrix is computed:

kYT A (k BT 4(k
A® — (AR ABT AR A®)] — (A,E T AR ABT (¢ ))
x 2 J K i

(BT (k) A(K)T 4 ()
APT AE - BT pT8)

(4)

e This requires (ni + nj )(ni + nj —1)/2 dot products
e Or m(ni + nj)(ni + nj -=1)/2 flops.

e The two diagonal blocks of A7 will be always diagonal. This reduces
the flop count to m (ni*nj + ni + nj )

e where m (ni + nj ) comes from the computation of the diagonal
elements of A®

FLOP (Floating-point operations per second)



One-Sided Block-Jacobi Algorithm
(OSBJA)

ik . . . : .. :
e 2.4 is diagonalized, i.e., the eigenvalue decomposition of AWis
computed:
)T A(R) Fr(k) A (k)
UPT A7 UW = Ay (5)
e And the eigenvector matrix U%is partitioned according to (3). The

matrix U® defines the orthogonal transformation U (k) in (2) and (1),
which is then applied to A% and VK

* Notice that the explicit diagonalization of A® is equivalent to the
implicit mutual orthogonalization of columns between column blocks
iandjin A®, i.e., in (A, Al). This diagonalization requires on
average around 8(ni + nj )3 flops.



One-Sided Block-Jacobi Algorithm
(OSBJA)

3. Finally, an updating of two block-columns of A(k) and V (k) is
required, which requires 2m(n; + n; )* flops.

* In summary, the kth step of the standard OSBJA requires

Naop(k) = m(nin; + n; +n;) + 8(n; +n;)* + 2m(n; + n;)?
= 64n3 + (9n3 + 2ng)n  (if m = n = ngr) (6)

* Flops.



One-Sided Block-Jacobi Algorithm
(OSBJA)

e Each time only 2 column block are involved in the calculation
e Could be implemented with parallel computing



Parallel OSBJA

e Having p processors, the above OSBJA can be parallelized
with the blocking factor r = 2p and, for simplicity, assume nl
=n2=...=n2p=n/(2p).

* Hence, each processor contains two block columns and a
parallel dynamic ordering has to define which pairs of block
columns will meet in a given processor in each parallel
iteration step.



Parallel OSBJA

* The computation can be organized in such a way that after
the first parallel iteration step (initialization), each block
column contains inside orthogonal columns. Let us suppose
that all k = n/(2p) columns in each block column are
normalized to the unit Euclidean norm.

* Hence, each block column is the orthonormal basis of the k-
dimensional subspace which is spanned by the column
vectors of a given block column.

 The main idea is to mutually orthogonalize those block
columns first which are maximally inclined to each other, i.e.,
their mutual position differs maximally from the orthogonal
one.



Algorithm

Parallel one-sided block-Jacobi SVD algorithm

1:
2:

w

ho i A U

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

V=I,{=2x%xp
> each processor has 2 block columns of A : Ay and Ag
G- (G Gr) _ ATAp, AlApg
Gl, Ggr ALA; ALAg

> global convergence criterion with a constant €, 0 < € K 1
while (F(A,£) > €) do

> local convergence criterion with a constant 6, 0 < § < 1

if (F(G,£) > ) then .

> diagonalization of G EVD(G ,X) . elgenvalue

gi??ﬁ}fz)fbfock columns decompOSItlonS Of p

-G auxiliary matrices G
end if

> parallel ordering—choice of p independent pairs (i, j) of block columns
ReOrderingComp(p)
Send-Receive(Ag, Vi, Gy ), Where k is either L or R

end while

svr . square roots of diagonal elements of Gy

svg : square roots of diagonal elements of Ggg

> two block columns of left singular vectors

UL = AL *djag(l/va)} UR :AR * diag(l/SVR)




Algorithm

* Note that the diagonalization of the auxiliary matrix G is equivalent
to the mutual orthogonalization of block columns AL and AR of
matrix A.

e Some parallel ordering is required in the procedure ReOrderingComp
that defines p independent pairs of block columns of A which are
simultaneously mutually orthogonalized in a given parallel iteration
step by computing p eigenvalue decompositions EVD(G,X) of p
auxiliary matrices G.



Ordering Method

* A big disadvantage of any fixed ordering is the fact that the actual
status of orthogonality is usually checked only after a whole sweep
and one has no information about the quality of this process at the
beginning of a parallel iteration step.

* In other words, in a given parallel iteration step one can try to
orthogonalize some mutually ‘almost orthogonal’ block columns
while neglecting pairs that are far from being orthogonal.



Ordering Method

e It is clear, at least intuitively, that orthogonalizing block columns with
small mutual angles first would mean to eliminate the ‘worst’ pairs
first, and this would mean (hopefully) the faster convergence of the
whole algorithm as compared with any fixed, cyclic ordering.

* Hence, the main question is how to choose p pairs of block columns
with smallest principal angles amongall /(¢ —1)/2 = p(2p—1)
pairs.



Naive Ordering Method

* The obvious, but very naive way is to compute, for each column block
X, all possible matrix products XY, then to compute the SVD of XY
and look at the singular values, which are the cosines of acute
principal angles (the smaller angle, the larger cosine)



Naive Ordering Method

 When the block columns are distributed in processors, to compute
matrix products X'Y for each two different block columns X and Y
means to move block columns across processors, i.e., it leads to
heavy communication at the beginning of each parallel iteration step.

e Besides that, one needs to compute many matrix products and SVDs.
Moreover, when p pairs of column blocks with smallest principal
angles are chosen, they must meet in processors, which means yet
another communication.



Dynamic Ordering

o After the first parallel iteration step, the block columns inside contain
mutually orthogonal columns.

e Suppose that each processor contains exactly two block columns (this
is not substantial for the following discussion).

e Moreover, suppose that k =n/2p columns in each block column are
normalized so that each has the unit Euclidean norm.

* Hence, each column block is the orthonormal basis of the k-
dimensional subspace which is spanned by the column vectors of a
given block column.



Dynamic Ordering

e Having p processors, our goal is to choose p pairs of those
block columns that are maximally inclined to each other,

e i.e., their mutual position differs maximally from the
orthogonal one.
* Mathematically, this goal can be described by using the

notion of principal angles between two k-dimensional
subspaces spanned by two block columns Ai, Aj .

 We are interested in, say, L smallest principal angles, i.e., in L
largest cosines (largest singular values)



Dynamic Ordering

* To estimate L largest singular value of the k x k matrix AT A, use the
Lanczos process applied to the symmetric Jordan-Wielandt matrix C

_( 0 A4
C—(AJT.A,; 0).

* It is well known that the eigenvalues of the 2k x2k matrix C has k
pairs of eigenvalues with the same absolute value.

e Use the Approximated values as weight to rank all the column blocks.



TABLE 2.1
Performance for n = 4000, p = 8, k¥ = 10!

mode L=1|L=2|L=4| L=6 | staticl | static2

1 o 4 4 4 4 30 30
T, [s] 5 6 9 11 13 13

2 o 4 4 4 4 30 30
T, [s] 5 6 9 11 13 12

3 o 108 99 08 99 240 270
Ty [s] 225 234 292 354 354 390

4 o 103 97 08 97 225 240
Ty [s] 212 228 289 345 327 354

5 o 109 103 99 100 255 285
Ty [s] 230 242 293 360 367 409

6 o 108 107 106 103 270 285
Ty [s] 226 252 315 371 395 420

e Lis # of iterations in approximation, order n=4000 matrix

e staticl (the odd-even ordering CO(0))and static2 (the robinround
ordering DO(0) )



Future Work

e Literature Survey on more possible solution
e Implement Algorithm with MPI
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