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What is SVD? 



Matrix Decomposition 

• Eigen Decomposition 
• A (non-zero) vector v of dimension N is an eigenvector of a square 

(N×N) matrix A if it satisfies the linear equation 
 
 

• Where     is eigenvalue corresponding to v 
 

• What if it is not a square matrix? 



What is SVD? 

• Singular Value Decomposition(SVD) is a technique for factoring 
matrices. 
 

• Now comes a highlight of linear algebra. Any real m × n matrix can be 
factored as 
 
 

• Where U is an m×m orthogonal matrix whose columns are the 
eigenvectors of AAT , V is an n×n orthogonal matrix whose columns 
are the eigenvectors of ATA 



What is SVD? 

• Σ is an m × n diagonal matrix of the form 
 
 
 
 
 
 

• with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(A). In the above, σ1, . . . , σr 
are the square roots of the eigenvalues of AT A. They are called the 
singular values of A. 
 



What is SVD? 

• Factor matrix A of size MxN 
• – U Is size M*M and Contains left Singular values 
• – Σ is size M*N and Contains singular Values of A 
• – V is size N*N and contains the right singular 

values 



SVD and Eigen Decomposition 

• Intuitively, SVD says for any linear map, there is an 
orthonormal frame in the domain such that it is first mapped 
to a different orthonormal frame in the image space, and 
then the values are scaled. 

• Eigen decomposition says that there is a basis, it doesn't 
have to be orthonormal, such that when the matrix is 
applied, this basis is simply scaled. That is assuming you 
have n linearly independent eigenvectors of course.  



Example of SVD 

• Singular value decomposition takes a rectangular matrix of gene 
expression data (defined as A, where A is a n x p matrix) in which 
the n rows represents the genes, and the p columns represents the 
experimental conditions. 

• The SVD theorem states: 
 
 

• Where the columns of U are the left singular vectors (gene coefficient 
vectors); S (the same dimensions as A) has singular values and is 
diagonal (mode amplitudes); and VT has rows that are the right 
singular vectors (expression level vectors).  
 



Example  



Example 



How to Calculate SVD 
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How to Calculate SVD 



How to parallelize SVD 

• The SVD computation consists of three consecutive 
steps:  
• (i) bi-diagonalization 
• (ii) computation of singular values and vectors 
• (iii) post-multiplication of results from previous 

two steps. 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 

• Block-column partitioning of A in the form: 
 
 

• where the width of Ai is ni , 1 ≤ i ≤ r, so that n1 + n2 + · · · + nr = n.  
 

• The OSBJA can be written as an iterative process: 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 

• The OSBJA can be written as an iterative process: 
 
 
 

• The purpose of matrix multiplication A(k)U(k)  is to mutually 
orthogonalize the columns between column-blocks i and j of A(k). 

• Here the n × n orthogonal matrix U(k) is the so-called block rotation of 
the form: 

Single Side 

Jacobi 
Matrix 

(Rotation) 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 

• The orthogonal matrix 
 
 
 

• is called the pivot submatrix of U(k) at step k. 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 
• One (serial) step of the OSBJA can be described in three parts: 
• 1. For the given pivot pair (i, j), the symmetric, positive semidefinite 

Gram matrix is computed: 
 
 

• This requires (ni + nj )(ni + nj −1)/2 dot products  
• Or m(ni + nj)(ni + nj −1)/2 flops. 
• The two diagonal blocks of        will be always diagonal. This reduces 

the flop count to m (ni*nj + ni + nj )  
• where m (ni + nj ) comes from the computation of the diagonal 

elements of 

FLOP (Floating-point operations per second) 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 

• 2.        is diagonalized, i.e., the eigenvalue decomposition of        is 
computed: 
 
 

• And the eigenvector matrix       is partitioned according to (3). The 
matrix         defines the orthogonal transformation U (k) in (2) and (1), 
which is then applied to A(k) and V(k) . 
 

• Notice that the explicit diagonalization of       is equivalent to the 
implicit mutual orthogonalization of columns between column blocks 
i and j in A(k) , i.e., in (Ai

(k), Aj
(k)). This diagonalization requires on 

average around 8(ni + nj )3 flops. 
 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 
• 3. Finally, an updating of two block-columns of A(k) and V (k) is 

required, which requires 2m(ni + nj )2 flops. 
 

• In summary, the kth step of the standard OSBJA requires 
 
 
 

• Flops. 
 



One-Sided Block-Jacobi Algorithm 
(OSBJA) 

• Each time only 2 column block are involved in the calculation 
• Could be implemented with parallel computing 



Parallel OSBJA 

• Having p processors, the above OSBJA can be parallelized 
with the blocking factor r = 2p and, for simplicity, assume n1 
= n2 = . . . = n2p = n/(2p).  

• Hence, each processor contains two block columns and a 
parallel dynamic ordering has to define which pairs of block 
columns will meet in a given processor in each parallel 
iteration step. 



Parallel OSBJA 

• The computation can be organized in such a way that after 
the first parallel iteration step (initialization), each block 
column contains inside orthogonal columns. Let us suppose 
that all k = n/(2p) columns in each block column are 
normalized to the unit Euclidean norm.  

• Hence, each block column is the orthonormal basis of the k-
dimensional subspace which is spanned by the column 
vectors of a given block column. 

• The main idea is to mutually orthogonalize those block 
columns first which are maximally inclined to each other, i.e., 
their mutual position differs maximally from the orthogonal 
one. 



Algorithm 

 

EVD(G,X): eigenvalue 
decompositions of p 
auxiliary matrices G 



Algorithm 

• Note that the diagonalization of the auxiliary matrix G is equivalent 
to the mutual orthogonalization of block columns AL and AR of 
matrix A. 
 

• Some parallel ordering is required in the procedure ReOrderingComp 
that defines p independent pairs of block columns of A which are 
simultaneously mutually orthogonalized in a given parallel iteration 
step by computing p eigenvalue decompositions EVD(G,X) of p 
auxiliary matrices G. 



Ordering Method 

• A big disadvantage of any fixed ordering is the fact that the actual 
status of orthogonality is usually checked only after a whole sweep 
and one has no information about the quality of this process at the 
beginning of a parallel iteration step.  

• In other words, in a given parallel iteration step one can try to 
orthogonalize some mutually ‘almost orthogonal’ block columns 
while neglecting pairs that are far from being orthogonal.  



Ordering Method 

• It is clear, at least intuitively, that orthogonalizing block columns with 
small mutual angles first would mean to eliminate the ‘worst’ pairs 
first, and this would mean (hopefully) the faster convergence of the 
whole algorithm as compared with any fixed, cyclic ordering. 
 

• Hence, the main question is how to choose p pairs of block columns 
with smallest principal angles among all                                            
pairs. 



Naïve Ordering Method 

• The obvious, but very naive way is to compute, for each column block 
X, all possible matrix products XTY, then to compute the SVD of XTY 
and look at the singular values, which are the cosines of acute 
principal angles (the smaller angle, the larger cosine) 
 



Naïve Ordering Method 

• When the block columns are distributed in processors, to compute 
matrix products XTY for each two different block columns X and Y 
means to move block columns across processors, i.e., it leads to 
heavy communication at the beginning of each parallel iteration step. 

•  Besides that, one needs to compute many matrix products and SVDs. 
Moreover, when p pairs of column blocks with smallest principal 
angles are chosen, they must meet in processors, which means yet 
another communication. 
 



Dynamic Ordering 

• After the first parallel iteration step, the block columns inside contain 
mutually orthogonal columns.  

• Suppose that each processor contains exactly two block columns (this 
is not substantial for the following discussion).  

• Moreover, suppose that k ≡ n/2p columns in each block column are 
normalized so that each has the unit Euclidean norm.  

• Hence, each column block is the orthonormal basis of the k-
dimensional subspace which is spanned by the column vectors of a 
given block column. 



Dynamic Ordering 

• Having p processors, our goal is to choose p pairs of those 
block columns that are maximally inclined to each other,  

• i.e., their mutual position differs maximally from the 
orthogonal one.  

• Mathematically, this goal can be described by using the 
notion of principal angles between two k-dimensional 
subspaces spanned by two block columns Ai , Aj .  

• We are interested in, say, L smallest principal angles, i.e., in L 
largest cosines (largest singular values)  



Dynamic Ordering 

• To estimate L largest singular value of the k × k matrix AT
i Aj , use the 

Lanczos process applied to the symmetric Jordan-Wielandt matrix C 
 
 
 

• It is well known that the eigenvalues of the 2k ×2k matrix C has  k 
pairs of eigenvalues with the same absolute value. 
 

• Use the Approximated values as weight to rank all the column blocks. 
 
 



• L is # of iterations in approximation, order n=4000 matrix 
• static1 (the odd-even ordering CO(0))and static2 (the robinround 

ordering DO(0) ) 



Future Work 

• Literature Survey on more possible solution 
• Implement Algorithm with MPI 
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