
Parallel Singular Value
Decomposition

Jiaxing Tan

Outline

• What is SVD?
• How to calculate SVD?
• How to parallelize SVD?
• Future Work

What is SVD?

Matrix Decomposition

• Eigen Decomposition
• A (non-zero) vector v of dimension N is an eigenvector of a square

(N×N) matrix A if it satisfies the linear equation

• Where is eigenvalue corresponding to v

• What if it is not a square matrix?

What is SVD?

• Singular Value Decomposition(SVD) is a technique for factoring
matrices.

• Now comes a highlight of linear algebra. Any real m × n matrix can be
factored as

• Where U is an m×m orthogonal matrix whose columns are the
eigenvectors of AAT , V is an n×n orthogonal matrix whose columns
are the eigenvectors of ATA

What is SVD?

• Σ is an m × n diagonal matrix of the form

• with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(A). In the above, σ1, . . . , σr
are the square roots of the eigenvalues of AT A. They are called the
singular values of A.

What is SVD?

• Factor matrix A of size MxN
• – U Is size M*M and Contains left Singular values
• – Σ is size M*N and Contains singular Values of A
• – V is size N*N and contains the right singular

values

SVD and Eigen Decomposition

• Intuitively, SVD says for any linear map, there is an
orthonormal frame in the domain such that it is first mapped
to a different orthonormal frame in the image space, and
then the values are scaled.

• Eigen decomposition says that there is a basis, it doesn't
have to be orthonormal, such that when the matrix is
applied, this basis is simply scaled. That is assuming you
have n linearly independent eigenvectors of course.

Example of SVD

• Singular value decomposition takes a rectangular matrix of gene
expression data (defined as A, where A is a n x p matrix) in which
the n rows represents the genes, and the p columns represents the
experimental conditions.

• The SVD theorem states:

• Where the columns of U are the left singular vectors (gene coefficient
vectors); S (the same dimensions as A) has singular values and is
diagonal (mode amplitudes); and VT has rows that are the right
singular vectors (expression level vectors).

Example

Example

How to Calculate SVD

How to Calculate SVD

How to Calculate SVD

How to Calculate SVD

How to Calculate SVD

How to parallelize SVD

• The SVD computation consists of three consecutive
steps:
• (i) bi-diagonalization
• (ii) computation of singular values and vectors
• (iii) post-multiplication of results from previous

two steps.

One-Sided Block-Jacobi Algorithm
(OSBJA)

• Block-column partitioning of A in the form:

• where the width of Ai is ni , 1 ≤ i ≤ r, so that n1 + n2 + · · · + nr = n.

• The OSBJA can be written as an iterative process:

One-Sided Block-Jacobi Algorithm
(OSBJA)

• The OSBJA can be written as an iterative process:

• The purpose of matrix multiplication A(k)U(k) is to mutually
orthogonalize the columns between column-blocks i and j of A(k).

• Here the n × n orthogonal matrix U(k) is the so-called block rotation of
the form:

Single Side

Jacobi
Matrix

(Rotation)

One-Sided Block-Jacobi Algorithm
(OSBJA)

• The orthogonal matrix

• is called the pivot submatrix of U(k) at step k.

One-Sided Block-Jacobi Algorithm
(OSBJA)
• One (serial) step of the OSBJA can be described in three parts:
• 1. For the given pivot pair (i, j), the symmetric, positive semidefinite

Gram matrix is computed:

• This requires (ni + nj)(ni + nj −1)/2 dot products
• Or m(ni + nj)(ni + nj −1)/2 flops.
• The two diagonal blocks of will be always diagonal. This reduces

the flop count to m (ni*nj + ni + nj)
• where m (ni + nj) comes from the computation of the diagonal

elements of

FLOP (Floating-point operations per second)

One-Sided Block-Jacobi Algorithm
(OSBJA)

• 2. is diagonalized, i.e., the eigenvalue decomposition of is
computed:

• And the eigenvector matrix is partitioned according to (3). The
matrix defines the orthogonal transformation U (k) in (2) and (1),
which is then applied to A(k) and V(k) .

• Notice that the explicit diagonalization of is equivalent to the
implicit mutual orthogonalization of columns between column blocks
i and j in A(k) , i.e., in (Ai

(k), Aj
(k)). This diagonalization requires on

average around 8(ni + nj)3 flops.

One-Sided Block-Jacobi Algorithm
(OSBJA)
• 3. Finally, an updating of two block-columns of A(k) and V (k) is

required, which requires 2m(ni + nj)2 flops.

• In summary, the kth step of the standard OSBJA requires

• Flops.

One-Sided Block-Jacobi Algorithm
(OSBJA)

• Each time only 2 column block are involved in the calculation
• Could be implemented with parallel computing

Parallel OSBJA

• Having p processors, the above OSBJA can be parallelized
with the blocking factor r = 2p and, for simplicity, assume n1
= n2 = . . . = n2p = n/(2p).

• Hence, each processor contains two block columns and a
parallel dynamic ordering has to define which pairs of block
columns will meet in a given processor in each parallel
iteration step.

Parallel OSBJA

• The computation can be organized in such a way that after
the first parallel iteration step (initialization), each block
column contains inside orthogonal columns. Let us suppose
that all k = n/(2p) columns in each block column are
normalized to the unit Euclidean norm.

• Hence, each block column is the orthonormal basis of the k-
dimensional subspace which is spanned by the column
vectors of a given block column.

• The main idea is to mutually orthogonalize those block
columns first which are maximally inclined to each other, i.e.,
their mutual position differs maximally from the orthogonal
one.

Algorithm

EVD(G,X): eigenvalue
decompositions of p
auxiliary matrices G

Algorithm

• Note that the diagonalization of the auxiliary matrix G is equivalent
to the mutual orthogonalization of block columns AL and AR of
matrix A.

• Some parallel ordering is required in the procedure ReOrderingComp
that defines p independent pairs of block columns of A which are
simultaneously mutually orthogonalized in a given parallel iteration
step by computing p eigenvalue decompositions EVD(G,X) of p
auxiliary matrices G.

Ordering Method

• A big disadvantage of any fixed ordering is the fact that the actual
status of orthogonality is usually checked only after a whole sweep
and one has no information about the quality of this process at the
beginning of a parallel iteration step.

• In other words, in a given parallel iteration step one can try to
orthogonalize some mutually ‘almost orthogonal’ block columns
while neglecting pairs that are far from being orthogonal.

Ordering Method

• It is clear, at least intuitively, that orthogonalizing block columns with
small mutual angles first would mean to eliminate the ‘worst’ pairs
first, and this would mean (hopefully) the faster convergence of the
whole algorithm as compared with any fixed, cyclic ordering.

• Hence, the main question is how to choose p pairs of block columns
with smallest principal angles among all
pairs.

Naïve Ordering Method

• The obvious, but very naive way is to compute, for each column block
X, all possible matrix products XTY, then to compute the SVD of XTY
and look at the singular values, which are the cosines of acute
principal angles (the smaller angle, the larger cosine)

Naïve Ordering Method

• When the block columns are distributed in processors, to compute
matrix products XTY for each two different block columns X and Y
means to move block columns across processors, i.e., it leads to
heavy communication at the beginning of each parallel iteration step.

• Besides that, one needs to compute many matrix products and SVDs.
Moreover, when p pairs of column blocks with smallest principal
angles are chosen, they must meet in processors, which means yet
another communication.

Dynamic Ordering

• After the first parallel iteration step, the block columns inside contain
mutually orthogonal columns.

• Suppose that each processor contains exactly two block columns (this
is not substantial for the following discussion).

• Moreover, suppose that k ≡ n/2p columns in each block column are
normalized so that each has the unit Euclidean norm.

• Hence, each column block is the orthonormal basis of the k-
dimensional subspace which is spanned by the column vectors of a
given block column.

Dynamic Ordering

• Having p processors, our goal is to choose p pairs of those
block columns that are maximally inclined to each other,

• i.e., their mutual position differs maximally from the
orthogonal one.

• Mathematically, this goal can be described by using the
notion of principal angles between two k-dimensional
subspaces spanned by two block columns Ai , Aj .

• We are interested in, say, L smallest principal angles, i.e., in L
largest cosines (largest singular values)

Dynamic Ordering

• To estimate L largest singular value of the k × k matrix AT
i Aj , use the

Lanczos process applied to the symmetric Jordan-Wielandt matrix C

• It is well known that the eigenvalues of the 2k ×2k matrix C has k
pairs of eigenvalues with the same absolute value.

• Use the Approximated values as weight to rank all the column blocks.

• L is # of iterations in approximation, order n=4000 matrix
• static1 (the odd-even ordering CO(0))and static2 (the robinround

ordering DO(0))

Future Work

• Literature Survey on more possible solution
• Implement Algorithm with MPI

	Parallel Singular Value Decomposition
	Outline
	What is SVD?
	Matrix Decomposition
	What is SVD?
	What is SVD?
	What is SVD?
	SVD and Eigen Decomposition
	Example of SVD
	Example
	Example
	How to Calculate SVD
	How to Calculate SVD
	How to Calculate SVD
	How to Calculate SVD
	How to Calculate SVD
	How to parallelize SVD
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	One-Sided Block-Jacobi Algorithm (OSBJA)
	Parallel OSBJA
	Parallel OSBJA
	Algorithm
	Algorithm
	Ordering Method
	Ordering Method
	Naïve Ordering Method
	Naïve Ordering Method
	Dynamic Ordering
	Dynamic Ordering
	Dynamic Ordering
	Slide Number 38
	Future Work

