
DEVS COMPONENT-BASED M&S FRAMEWORK: AN INTRODUCTION

Bernard P. Zeigler

Arizona Center for Integrative Modeling & Simulation
Department of Electrical & Computer Engineering

University of Arizona
Tucson, AZ, 85721-0104, USA

http://www.acims.arizona.edu zei-
gler@ece.arizona.edu

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ, 85287-5406, USA

http://www.acims.arizona.edu hes-
sam.sarjoughian@asu.edu

ABSTRACT

This tutorial describes the DEVS modeling and simulation
framework and its underlying fundamental modeling con-
cepts. We exemplify the DEVS formalism atomic and
coupled models using simple, novel discrete event neu-
rons. We discuss the hierarchical, modular composition
approach derived from systems theory and show that it
affords a good basis for model reusability. We conclude
with an observation that models developed in the DEVS
framework can be executed in either central-
ized/parallel/distributed computing environments without
changing their dynamic characterizations and conse-
quently their interpretations/execution.

1 FRAMEWORK FOR MODELING AND
SIMULATION

The Discrete Event System Specification (DEVS) formal-
ism provides a means of specifying a mathematical object
called a system [Zeigler, et. al, 2000]. Basically, a system
has a time base, inputs, states, and outputs, and functions
for determining next states and outputs given current
states and inputs. Discrete event systems represent certain
constellations of such parameters just as continuous sys-
tems do. For example, the inputs in discrete event systems
occur at arbitrarily spaced moments, while those in con-
tinuous systems are piecewise continuous functions of
time. The insight provided by the DEVS formalism is in
the simple way that it characterizes how discrete event
simulation languages specify discrete event system pa-
rameters. Having this abstraction, it is possible to design
new simulation languages with sound semantics that eas-
ier are to understand. Indeed, the DEVJAVA environment
[ACIMS, 2002] is an implementation of the DEVS for-
malism in Java which enables the modeler to specify
models directly in its terms.

1.1 Brief Review of the DEVS Concepts

Figure 1 depicts the conceptual framework underlying the
DEVS formalism [Zeigler and Sarjoughian, 2001]. The

modeling and simulation enterprise concerns three basic
objects:

 the real system, in existence or proposed, which is
regarded as fundamentally a source of data

 model, which is a set of instructions for generating

data comparable to that observable in the real system.
The structure of the model is its set of instructions.
The behavior of the model is the set of all possible
data that can be generated by faithfully executing the
model instructions.

 simulator, which exercises the model's instructions to

actually generate its behavior.

 experimental frame, which captures how the mod-
eler’s objectives impact on model construction, ex-
perimentation and validation. As we shall see later,
in DEVJAVA experimental frames are formulated as
model objects in the same manner as the models of
primary interest. In this way, model/experimental
frame pairs form coupled model objects with the
same properties as other objects of this kind. It will
become evident later, that this uniform treatment
yields immediate benefits in terms of modularity and
system entity structure representation.

The basic objects are related by two relations:

 modeling relation linking real system and model,
defines how well the model represents the system
or entity being modeled. In general terms a model
can be considered valid if the data generated by
the model agrees with the data produced by the real
system in an experimental frame of interest.

 simulation relation, linking model and simulator,

represents how faithfully the simulator is able to
carry out the instructions of the model.

Source

System
Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

behavior database

Figure 1 Basic Entities and Relations

 The basic items of data produced by a system or model
are time segments. These time segments are mappings
from intervals defined over a specified time base to values
in the ranges of one or more variables. The variables can
either be observed or measured. An example of a data
segment is shown in Figure 2.

x0 x1X

S

Y
y0

e

t0 t1 t2

Figure 2 Discrete event time segments

The structure of a model may be expressed in a mathe-
matical language called a formalism. The discrete event
formalism focuses on the changes of variable values and
generates time segments that are piecewise constant.
Thus an event is a change in a variable value which occurs
instantaneously.

In essence the formalism defines how to generate new
values for variables and the times the new values should
take effect. An important aspect of the formalism is that

the time intervals between event occurrences are variable
(in contrast to discrete time where the time step is gener-
ally a constant number).

1.2 Basic Models

In the DEVS formalism, one must specify 1) basic models
from which larger ones are built, and 2) how these models
are connected together in hierarchical fashion.

To specify modular discrete event models requires that we
adopt a different view than that fostered by traditional
simulation languages. As with modular specification in
general, we must view a model as possessing input and
output ports through which all interaction with the envi-
ronment is mediated. In the discrete event case, events
determine values appearing on such ports. More specifi-
cally, when external events, arising outside the model, are
received on its input ports, the model description must
determine how it responds to them. Also, internal events
arising within the model, change its state, as well as mani-
festing themselves as events on the output ports to be
transmitted to other model components.

A basic model contains the following information:

 the set of input ports through which external events
are received,

 the set of output ports through which external events

are sent,

 the set of state variables and parameters: two state
variables are usually present, “phase” and “sigma”
(in the absence of external events the system stays in
the current “phase” for the time given by “sigma”),

 the time advance function which controls the timing

of internal transitions – when the “sigma” state vari-
able is present, this function just returns the value of
“sigma”,

 the internal transition function which specifies to

which next state the system will transit after the time
given by the time advance function has elapsed,

 the external transition function which specifies how

the system changes state when an input is received –
the effect is to place the system in a new “phase” and
“sigma” thus scheduling it for a next internal tran-
stion; the next state is computed on the basis of the
present state, the input port and value of the external
event, and the time that has elapsed in the current
state,

 the confluent transition function which is applied

when an input is received at the same time that an in-
ternal transition is to occur – the default definition
simply applies the internal transition function before

applying the external transition function to the result-
ing sate, and

 the output function which generates an external out-

put just before an internal transition takes place.

2 THE DEVS FORMALISM

In this section we start with the basic DEVS formalism
and discuss an example using it. We then discuss the
DEVS formalism for coupled models also giving exam-
ples.

2.1 Parallel DEVS

A Parallel Discrete Event System Specification (DEVS) is
a structure

M = 〈X,S,Y,δint,δext, δcon,λ, ta〉
where

X is the set of input values
S is a set of states,
Y is the set of output values
δint: S → S is the internal transition function

δext: Q × Xb → S

 is the external transition function, where
Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total
state set

 e is the time elapsed since last transition

 Xb denotes the collection of bags over X (sets in
which some elements may occur more than once).

δcon: Q × Xb → S

is the confuentl transition function,

λ: S → Yb is the output function

ta: S → R+

0,∞ is the time advance function

The interpretation of these elements is illustrated in Figure
3. At any time the system is in some state, s. If no exter-
nal event occurs the system will stay in state s for time
ta(s). Notice that ta(s) could be a real number as one
would expect. But it can also take on the values 0 and ∞.
In the first case, the stay in state s is so short that no ex-
ternal events can intervene – we say that s is a transitory
state. In the second case, the system will stay in s forever
unless an external event interrupts its slumber. We say
that s is a passive state in this case. When the resting time
expires, i.e., when the elapsed time, e = ta(s), the system
outputs the value, λ (s), and changes to state δint(s). Note
output is only possible just before internal transitions.

S

λ

δext δint

ta

Xb Yb

R

input to function

result of function

trigger function

Legend

δcon

Make a
transition
(external)

Make a
transition
(internal)

Handle
input

Send an
output

Hold for
some
time

Figure 3 Parallel DEVS

If an external event x ∈ Xb occurs before this expiration
time, i.e., when the system is in total state (s, e) with e ≤
ta(s), the system changes to state δext(s,e,x). Thus the in-
ternal transition function dictates the system’s new state
when no events have occurred since the last transition.
While the external transition function dictates the sys-
tem’s new state when an external event occurs – this state
is determined by the input, x, the current state, s, and how
long the system has been in this state, e, when the external
event occurred. In both cases, the system is then is some
new state s′ with some new resting time, ta(s′) and the
same story continues.

Note that an external event x ∈ Xb is a bag of elements of
X. This means that one or more elements can appear on
input ports at the same time. This capability is needed
since Parallel DEVS allows many components to generate
output and send these to input ports all at the same instant
of time.

Warning: There is no way to generate an output directly
from an external input event. An output can only occur
just before an internal transition. To have an external
event cause an output without delay, we have it “sched-
ule" an internal state with a hold time of zero. The rela-
tionship between external transitions, internal transitions,
and outputs are as shown in Figure 3.

The above explanation of the semantics (or meaning) of a
DEVS model suggests, but does not fully describe, the
operation of a simulator that would execute such models
to generate their behavior. Nevertheless, the behavior of a
DEVS is well defined and can be depicted as we men-
tioned earlier in Figure 2. In that figure, the input trajec-
tory is a series of events occurring at times such as t0 and
t2. In between, such event times may be those such as t1
which are times of internal events. The latter are notice-
able on the state trajectory which is a step-like series of

states, which change at external and internal events (sec-
ond from top). The elapsed time trajectory is a saw-tooth
pattern depicting the flow of time in an elapsed time clock
which gets reset to 0 at every event. Finally, at the bottom,
the output trajectory depicts the output events that are
produced by the output function just before applying the
internal transition function at internal events. Such behav-
iors will be illustrated in the next chapter.

2.2 Example: Fire-Once Neuron

In a DEVS, inputs events arriving in time are handled
somewhat in the manner of interrupts by the modeler-
specified external transition function and result in an im-
mediate change in state. This function determines the state
transition and how long to stay in the new state. At the
end of this duration, the model outputs an event deter-
mined by the output function and transits to a new state
determined by the internal transition function. As an ex-
ample, consider a DEVS model of the fire-once neuron
[Zeigler, 2002]. It remains in the receptive state until an
input arrives. The external transition function sends it to
the fire state, where it remains for a duration given by
firing-time, after which it emits a pulse and enters state
refract. The time advance in refract is infinity, and it
remains in refract upon receiving an input, so the neuron
remains in refract forever, never able to fire again.

receptive refract
pulse

fire
firingDelay >0

external event
Internal event
output event

pulse

Legend

pulse pulse

Figure 4 Fire-Once Neuron

Figure 4 illustrates the use of graphical notation to denote
critical aspects of DEVS models. We’ll correlate this no-
tation with the DEVS model for the fire-once neuron,
which can be expressed as follows:

M = 〈X, S, Y, δint, δext, λ, ta〉
where

X is the set of input values, {pulse}
S is a set of states, {receptive, fire, refract}
Y is the set of output values, {pulse}

δint: S → S is the internal transition function

 δint(fire) = refract
(note: internal transitions are depicted by light transition
arrows as in Figure 4)

 δext: Q × Xb → S is the external transition func-
tion,

 δext(receptive, e, pulseb) = fire

(note: external transitions are depicted by heavy transi-
tion arrows as in Figure 4)

δext(fire, e, pulseb) = fire

 δext(refract, e, pulseb) = refract

(note: we use the notation, pulseb, to indicate one or more
pulses arriving at the same instant. In this model, they
have no combined effect greater than any one of them.)

λ: S → Y b is the output function

 λ(fire) = {pulse}

 (note: outputs are depicted by dotted arrows as in Figure
4; also only a single pulse is generated.)

 λ(receptive) = ϕ (the symbol for null output,
i.e., no event occurs)

 λ(refract) = ϕ

ta: S → R+

0,∞ is the time advance function

 ta (receptive) = ∞
 ta (fire) = firingDelay
 ta (refract) = ∞

Note that states that have an infinite time advance cannot
generate output (since an internal transition will never
occur from such a state). So we need not explicitly associ-
ate the null-event output with such states (as we have
done for illustration above). In other words, the output
function need only be defined for the non-passive states of
a model.

2.3 Coupled Models

Basic models may be coupled in the DEVS formalism to
form a coupled model. A coupled model tells how to cou-
ple (connect) several component models together to form
a new model. This latter model can itself be employed as
a component in a larger coupled model, thus giving rise to
hierarchical construction. A coupled model contains the
following information:

 the set of components
 the set of input ports through which external events

are received

 the set of output ports through which external events
are sent

 the coupling specification consisting of:

 the external input coupling which connects the

input ports of the coupled to model to one or
more of the input ports of the components – this
directs inputs received by the coupled model to
designated component models,

 the external output coupling which connects out-
put ports of components to output ports of the
coupled model – thus when an output is gener-
ated by a component it may be sent to a desig-
nated output port of the coupled model and thus
be transmitted externally,

 the internal coupling which connects output ports
of components to input ports of other compo-
nents- when an input is generated by a compo-
nent it may be sent to the input ports of desig-
nated components (in addition to being sent to an
output port of the coupled model).

Figure 5 illustrates how internal coupling directs the flow
of outputs to inputs in an illustrative coupled model, AB.
When outputs are generated on an output port of a com-
ponent, A, they are sent at the same time instant to the
input port of component, B due to a coupling of the re-
spective output and input ports defined from A to B.

A B

AB

S

λ

δext δint

ta
R

δcon

Coupling
(internal)

Output
port

Input
port

δext

δcon

Figure 5 Coupled DEVS and the mechanism imple-
menting the coupling specification

2.4 Neural Network Example of Coupled Model

Neural networks can be represented as coupled models
within the DEVS formalism. Moreover, this possibility
gives rise to a whole class of networks constructed of dis-
crete event neuron models that includes the traditional
models as a subclass. More significantly, this class in-
cludes new kinds with distinct behaviors and information
processing properties. Figure 6 illustrates a small network
of fire-once neurons (as in Figure 4). This kind of net-
work can compute the shortest path in a directed graph by
mapping distances of edges to an equivalent time value.
This time is then assigned as the fireDelay for a neuron
which represents the edge. In Figure 6, for example, a
pulse emitted from the generator explores two paths con-
currently to reach the final neuron (number 4). Depend-
ing of the summed firing delays along each path, a pulse
emerging from one or the other will arrive earlier to the
final neuron, representing the shortest path of an associ-
ated digraph. The path can be reconstructed by extending
the neuron model to allow retracing the path of earliest
firings. If instead of shortest paths, we request longest
paths, a net of neurons that fire after their assigned fireDe-
lays every time they receive a pulse will do the job. Inter-
estingly, finding critical paths in PERT charts require such
longest path computation.

FireOnce
Neuron 1

FireOnce
Neuron 3

FireOnce
Neuron 2

pulseIn pulseOut

pulseOut

pulseOut

pulseOut

pulseIn

pulseIn

FireOnce
Neuron 4

pulseOut
pulseIn

Pulse
Generator

Figure 6 Neural Network Coupled Model

2.5 Hierarchical Model Construction: The DEVS
composition framework

A coupled model can be expressed as an equivalent basic
model in the DEVS formalism. Such a basic model can
itself be employed in a larger coupled model. This shows
that the formalism is closed under coupling as required for
hierarchical model construction. Expressing a coupled
model as an equivalent basic model captures the means by

which the components interact to yield the overall behav-
ior.

Closure under coupling and hierarchical construction form
the basis of the DEVS composition framework. The
framework deals with components which are modular,
i.e., are self-contained and can stand alone or be incorpo-
rated, as components into a larger system. There are two
types of components: atomic models and coupled models.
Atomic models are expressed directly as basic models in
the DEVS formalism. Coupled models are specified by
providing the set of existing components and the internal
and external coupling specifications. We note that due to
closure under coupling, coupled models have the same
input and output port interfaces as atomic models and can
be treated in the same manner as far as their external rela-
tions to other components. In particular, coupled models
can become components in larger systems, just as atomic
modules can, and this leads to hierarchical decomposition
and construction.

Figure 7 then illustrates how by adding in a coupling
specification to a set of models, we get a coupled model.
By using this model as a component in a larger system
with new components, and adding coupling information,
we get a hierarchical coupled model.

Atomic

Atomic

Atomic

Atomic

+ coupling

hierarchical
construction

Atomic

A to mic

A to mic

Figure 7 Coupled Modules formed via coupling and
their use as components

It is important to note that DEVS models, whether atomic
or coupled can standalone and go into a repository for
reuse by the developers or others. In principle, the inter-
nals of any such model can be hidden (e.g., in relation to
proprietary rights) – only the behavior as seen through the
input/output ports needs to be communicated in a clear

enough manner for others to use the component. This can
foster a high degree of reuse and sharing among a grow-
ing DEVS community.

3 SCALABLE DISTRIBUTED MODELING AND
SIMULATION

A direct consequence of the separation of models from
simulators in the DEVS formalism is the independence of
model components from alternative modes of execution –
centralized, parallel, or distributed simulation execution.
Model development independent of simulation execution
is central to scalability and underlying computational
technologies such as HLA, CORBA, or MPI. Here scal-
ability refers to building large- or very-large scale models
knowing that the suitability and usability of models is not
affected by the computational resources that may be re-
quired. That is to say, model components developed for
execution on a single processor can be migrated to exe-
cute on top of simulators which in turn employ middle-
ware technologies such as CORBA and HLA. In this set-
ting, middleware technologies provide services such as
communication and time management for DEVS models
to interchange input/output messages while relying on
individual computational nodes to carry out each model’s
input, output, and state transitions. Similarly, models de-
veloped for distributed simulations may also be used for
execution on a single processor. Therefore, within the
DEVS framework, modelers can develop model compo-
nents which may be migrated from single processor to
multiprocessor and vice versa.

4 SUMMARY

The form of DEVS (discrete event system specification)
discussed provides a hierarchical, modular approach to
constructing reusable model components. In doing so, the
DEVS formalism embodies the concepts of systems the-
ory and modeling. Furthermore, DEVS M&S framework
offers a full range of computational means to support
scalability in modeling needs while ensuring models and
their interpretations (behavior) remain invariant using
ever more capable simulation technologies.

5 REFERENCES

ACIMS, DEVSJAVA software,
http://www.acims.arizona.edu

Zeigler, B.P., (2002). The brain-machine disanalogy re-
visited, BioSystems, Vol. 64, pp. 127-140.

Zeigler, B.P., T.G. Kim, et al., (2000), Theory of Model-
ing and Simulation. New York, NY, Academic Press.

Zeigler, B.P., H.S. Sarjoughian. (2001). Introduction to
DEVS Modeling and Simulation with JAVA: A Sim-
plified Approach to HLA-Compliant Distributed
Simulations, http://www.acims.arizona.edu.

