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ABSTRACT  

This tutorial describes the DEVS modeling and simulation 
framework and its underlying fundamental modeling con-
cepts. We exemplify the DEVS formalism atomic and 
coupled models using simple, novel discrete event neu-
rons. We discuss the hierarchical, modular composition 
approach derived from systems theory and show that it 
affords a good basis for model reusability. We conclude 
with an observation that models developed in the DEVS 
framework can be executed in either central-
ized/parallel/distributed computing environments without 
changing their dynamic characterizations and conse-
quently their interpretations/execution. 

1 FRAMEWORK FOR MODELING AND 
SIMULATION 

The Discrete Event System Specification (DEVS) formal-
ism provides a means of specifying a mathematical object 
called a system [Zeigler, et. al, 2000]. Basically, a system 
has a time base, inputs, states, and outputs, and functions 
for determining next states and outputs given current 
states and inputs. Discrete event systems represent certain 
constellations of such parameters just as continuous sys-
tems do. For example, the inputs in discrete event systems 
occur at arbitrarily spaced moments, while those in con-
tinuous systems are piecewise continuous functions of 
time. The insight provided by the DEVS formalism is in 
the simple way that it characterizes how discrete event 
simulation languages specify discrete event system pa-
rameters. Having this abstraction, it is possible to design 
new simulation languages with sound semantics that eas-
ier are to understand. Indeed, the DEVJAVA environment 
[ACIMS, 2002] is an implementation of the DEVS for-
malism in Java which enables the modeler to specify 
models directly in its terms.   

1.1 Brief Review of the DEVS Concepts 

Figure 1 depicts the conceptual framework underlying the 
DEVS formalism [Zeigler and Sarjoughian, 2001]. The 

modeling and simulation enterprise concerns three basic 
objects:  
 

 the real system, in existence or proposed, which is 
regarded as fundamentally a source of data 

 
 model, which is a set of instructions for generating 

data comparable to that observable in the real system.  
The structure of the model is its set of instructions.  
The behavior of the model is the set of all possible 
data that can be generated by faithfully executing the 
model instructions.   

 
 simulator, which exercises the model's instructions to  

actually generate its behavior. 
 

 experimental frame, which captures how the mod-
eler’s objectives impact on  model construction, ex-
perimentation and validation.  As we shall see later, 
in DEVJAVA experimental frames are formulated as 
model objects in the same manner as the models of 
primary interest.  In this way, model/experimental 
frame pairs form coupled model objects with the 
same properties as other objects of this kind. It will 
become evident later, that this uniform treatment 
yields immediate benefits in terms of modularity and 
system entity structure representation. 

 
The basic objects are related by two relations: 
 

 modeling relation linking real system and model, 
defines  how  well the  model  represents the system 
or entity being  modeled.  In general terms a  model  
can be considered  valid  if  the  data generated  by  
the  model agrees with the data  produced  by  the real 
system in an experimental frame of interest.   

 
 simulation  relation, linking model and simulator, 

represents  how faithfully  the  simulator is  able  to  
carry  out  the instructions of the model.   
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Figure 1  Basic Entities and Relations 

 
     The basic items of data produced by a system or model 
are time segments.  These time segments are mappings 
from intervals defined over a specified time base to values 
in the ranges of one or more variables.  The variables can 
either be observed or measured. An example of a data 
segment is shown in Figure 2.   
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Figure 2    Discrete event time segments 

The structure of a model may be expressed in a mathe-
matical language called a formalism.  The discrete event 
formalism focuses on the changes of variable values and 
generates time segments that are piecewise constant.  
Thus an event is a change in a variable value which occurs 
instantaneously. 
 
In essence the formalism defines how to generate new 
values for variables and the times the new values should 
take effect. An important aspect of the formalism is that 

the time intervals between event occurrences are variable 
(in contrast to discrete time where the time step is gener-
ally a constant number).   

1.2 Basic Models 

In the DEVS formalism, one must specify 1) basic models 
from which larger ones are built, and 2) how these models 
are connected together in hierarchical fashion.  
 
To specify modular discrete event models requires that we 
adopt a different view than that fostered by traditional 
simulation languages. As with modular specification in 
general, we must view a model as possessing input and 
output ports through which all interaction with the envi-
ronment is mediated. In the discrete event case, events 
determine values appearing on such ports. More specifi-
cally, when external events, arising outside the model, are 
received on its input ports, the model description must 
determine how it responds to them. Also, internal events 
arising within the model, change its state, as well as mani-
festing themselves as events on the output ports to be 
transmitted to other model components.  
 
A basic model contains the following information:  
 

 the set of input ports through which external events 
are received,                                                                  

 
 the set of output ports through which external events 

are sent, 
 

 the set of state variables and parameters: two state 
variables are usually present,  “phase” and “sigma” 
(in the absence of external events the system stays in 
the current “phase” for the time given by “sigma”), 

 
 the time advance function which controls the timing 

of internal transitions – when the “sigma” state vari-
able is present, this function just returns the value of 
“sigma”, 

 
 the internal transition function which specifies to 

which next state the system will transit after the time 
given by the time advance function has elapsed, 

 
 the external transition function which specifies how 

the system changes state when an input is received –  
the effect is to place the system in a new “phase” and 
“sigma” thus scheduling it for a next internal tran-
stion; the next state is computed on the basis of the 
present state, the input port and value of the external 
event, and the time that has elapsed in the current 
state, 

 
 the confluent transition function which is applied 

when an input is received at the same time that an in-
ternal transition is to occur –  the default definition 
simply applies the internal transition function  before 



applying the external transition function to the result-
ing sate, and 

 
 the output function which generates an external out-

put just before an internal transition takes place. 

2 THE DEVS FORMALISM 

In this section we start with the basic DEVS formalism 
and discuss an example using it. We then discuss the 
DEVS formalism for coupled models also giving exam-
ples.    

2.1 Parallel DEVS 

A Parallel Discrete Event System Specification (DEVS) is 
a structure  
 

M = 〈X,S,Y,δint,δext, δcon,λ, ta〉 
where 

X  is the set of input values 
S  is a set of states,  
Y  is the set of output values 
δint: S → S is the internal transition function 
 
δext: Q × Xb → S 
 
 is the external transition function, where 
Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total    
state set 

  e is the time elapsed since last transition 
    
  Xb denotes the collection of bags over X (sets in 
which some elements may occur more than once). 
   

δcon: Q × Xb → S  
 
is the confuentl transition function, 
 
λ: S → Yb is the output function 
 
ta: S → R+

0,∞ is the time advance function 
 

The interpretation of these elements is illustrated in Figure 
3.  At any time the system is in some state, s. If no exter-
nal event occurs the system will stay in state s for time 
ta(s). Notice that ta(s) could be a real number as one 
would expect. But it can also take on the values 0 and ∞. 
In the first case, the stay in state s is so short that no ex-
ternal events can intervene – we say that s is a transitory 
state. In the second case, the system will stay in s forever 
unless an external event interrupts its slumber. We say 
that s is a passive state in this case. When the resting time 
expires, i.e., when the elapsed time, e = ta(s), the system 
outputs the value, λ (s), and changes to state δint(s). Note 
output is only possible just before internal transitions.  
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Figure 3   Parallel DEVS 

If an external event x ∈ Xb occurs before this expiration 
time, i.e., when the system is in total state (s, e) with e ≤ 
ta(s), the system changes to state δext(s,e,x). Thus the in-
ternal transition function dictates the system’s new state 
when no events have occurred since the last transition. 
While the external transition function dictates the sys-
tem’s new state when an external event occurs – this state 
is determined by the input, x, the current state, s, and how 
long the system has been in this state, e, when the external 
event occurred.  In both cases, the system is then is some 
new state s′ with some new resting time, ta(s′) and the 
same story continues. 
 
Note that an external event x ∈ Xb is a bag of elements of 
X. This means that one or more elements can appear on 
input ports at the same time. This capability is needed 
since Parallel DEVS allows many components to generate 
output and send these to input ports all at the same instant 
of time. 
 
Warning:  There is no way to generate an output directly 
from an external input event.   An output can only occur 
just before an internal transition.  To have an external 
event cause an output without delay, we have it “sched-
ule" an internal state with a hold time of zero. The rela-
tionship between external transitions, internal transitions, 
and outputs are as shown in Figure 3. 

The above explanation of the semantics (or meaning) of a 
DEVS model suggests, but does not fully describe, the 
operation of a simulator that would execute such models 
to generate their behavior.  Nevertheless, the behavior of a 
DEVS is well defined and can be depicted as we men-
tioned earlier in Figure 2.  In that figure, the input trajec-
tory is a series of events occurring at times such as t0 and 
t2. In between, such event times may be those such as t1 
which are times of internal events. The latter are notice-
able on the state trajectory which is a step-like series of 



states, which change at external and internal events (sec-
ond from top). The elapsed time trajectory is a saw-tooth 
pattern depicting the flow of time in an elapsed time clock 
which gets reset to 0 at every event. Finally, at the bottom, 
the output trajectory depicts the output events that are 
produced by the output function just before applying the 
internal transition function at internal events. Such behav-
iors will be illustrated in the next chapter.  

2.2 Example: Fire-Once Neuron 

In a DEVS, inputs events arriving in time are handled 
somewhat in the manner of interrupts by the modeler-
specified external transition function and result in an im-
mediate change in state. This function determines the state 
transition and how long to stay in the new state. At the 
end of this duration, the model outputs an event deter-
mined by the output function and transits to a new state 
determined by the internal transition function. As an ex-
ample, consider a DEVS model of the fire-once neuron 
[Zeigler, 2002]. It remains in the receptive state until an 
input arrives. The external transition function sends it to 
the fire state, where it remains for a duration given by 
firing-time, after which it emits a pulse and enters state 
refract.  The time advance in refract is infinity, and it 
remains in refract upon receiving an input, so the neuron 
remains in refract forever, never able to fire again. 
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Figure 4  Fire-Once Neuron 

 
Figure 4 illustrates the use of graphical notation to denote 
critical aspects of DEVS models. We’ll correlate this no-
tation with the DEVS model for the fire-once neuron, 
which can be expressed as follows: 
 

M = 〈X, S, Y, δint, δext, λ, ta〉 
where 

X  is the set of input values, {pulse} 
S  is a set of states, {receptive, fire, refract} 
Y  is the set of output values, {pulse} 
 
δint: S → S is the internal transition function 
 

    δint(fire) = refract 
(note: internal transitions are depicted by  light transition 
arrows as in Figure 4) 

 
              δext: Q × Xb → S is the external transition func-
tion,   
 

   δext(receptive, e, pulseb) = fire    
 
(note: external transitions are depicted by  heavy transi-
tion arrows as in Figure 4) 

     
δext(fire, e, pulseb) =  fire 

               δext(refract, e, pulseb) =  refract 
 
(note: we use the notation, pulseb, to indicate one or more 
pulses arriving at the same instant. In this model, they 
have no combined effect greater than any one of them.) 
 

λ: S → Y b is the output function 
 
    λ(fire) = {pulse} 
 

 (note: outputs are depicted by  dotted  arrows as in Figure 
4; also only a single pulse is generated.) 
 

    λ(receptive) = ϕ  (the symbol for null output, 
i.e., no event occurs) 

    λ(refract) = ϕ    
 
ta: S → R+

0,∞ is the time advance function 
  

  ta (receptive) = ∞ 
  ta (fire) = firingDelay 
  ta (refract) = ∞ 

 
 
Note that states that have an infinite time advance cannot 
generate output (since an internal transition will never 
occur from such a state). So we need not explicitly associ-
ate the null-event output with such states (as we have 
done for illustration above). In other words, the output 
function need only be defined for the non-passive states of 
a model. 

2.3 Coupled Models 

Basic models may be coupled in the DEVS formalism to 
form a coupled model. A coupled model tells how to cou-
ple (connect) several component models together to form 
a new model. This latter model can itself be employed as 
a component in a larger coupled model, thus giving rise to 
hierarchical construction.   A coupled model contains the 
following information:  
 

 the set of components  
 the set of input ports through which external events 

are received                   
                                                



 the set of output ports through which external events 
are sent 

 
 the coupling specification consisting of:  

 
 the external input coupling which connects the 

input ports of  the coupled to model to one or 
more of the input ports of the components – this 
directs inputs received by the coupled model to 
designated component models, 
 

 the external output coupling which connects out-
put ports of  components to output ports of the 
coupled model – thus when an output is gener-
ated by a component it may be sent to a desig-
nated output port of the coupled model and thus 
be transmitted externally, 
 

 the internal coupling which connects output ports 
of components to input ports of other compo-
nents- when an input is generated by a compo-
nent it may be sent to the input ports of desig-
nated components (in addition to being sent to an 
output port of the coupled model). 

 
Figure 5 illustrates how internal coupling directs the flow 
of outputs to inputs in an illustrative coupled model, AB. 
When outputs are generated on an output port of a com-
ponent, A, they are sent at the same time instant to the 
input port of component, B due to a coupling of the re-
spective output and input ports defined from A to B. 
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Figure 5 Coupled DEVS and the mechanism imple-
menting the coupling specification 

2.4 Neural Network Example of Coupled Model 

Neural networks can be represented as coupled models 
within the DEVS formalism.  Moreover, this possibility 
gives rise to a whole class of networks constructed of dis-
crete event neuron models that includes the traditional 
models as a subclass. More significantly, this class in-
cludes new kinds with distinct behaviors and information 
processing properties. Figure 6 illustrates a small network 
of fire-once neurons (as in Figure 4).  This kind of net-
work can compute the shortest path in a directed graph by 
mapping distances of edges to an equivalent time value. 
This time is then assigned as the fireDelay for a neuron 
which represents the edge. In Figure 6, for example, a 
pulse emitted from the generator explores two paths con-
currently to reach the final neuron (number 4).  Depend-
ing of the summed firing delays along each path, a pulse 
emerging from one or the other will arrive earlier to the 
final neuron, representing the shortest path of an associ-
ated digraph.  The path can be reconstructed by extending 
the neuron model to allow retracing the path of earliest 
firings.  If instead of shortest paths, we request longest 
paths, a net of neurons that fire after their assigned fireDe-
lays every time they receive a pulse will do the job. Inter-
estingly, finding critical paths in PERT charts require such 
longest path computation. 
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Figure 6 Neural Network Coupled Model 

2.5 Hierarchical Model Construction: The DEVS 
composition framework 

A coupled model can be expressed as an equivalent basic 
model in the DEVS formalism.  Such a basic model can 
itself be employed in a larger coupled model. This shows 
that the formalism is closed under coupling as required for 
hierarchical model construction. Expressing a coupled 
model as an equivalent basic model captures the means by 



which the components interact to yield the overall behav-
ior. 
 
Closure under coupling and hierarchical construction form 
the basis of the DEVS composition framework. The 
framework deals with components which are modular, 
i.e., are self-contained and can stand alone or be incorpo-
rated, as components into a larger system.  There are two 
types of components: atomic models and coupled models. 
Atomic models are expressed directly as basic models in 
the DEVS formalism.  Coupled models are specified by 
providing the set of existing components and the internal 
and external coupling specifications. We note that due to 
closure under coupling, coupled models have the same 
input and output port interfaces as atomic models and can 
be treated in the same manner as far as their external rela-
tions to other components.  In particular, coupled models 
can become components in larger systems, just as atomic 
modules can, and this leads to hierarchical decomposition 
and construction. 
 
Figure 7 then illustrates how by adding in a coupling 
specification to a set of models, we get a coupled model. 
By using this model as a component in a larger system 
with new components, and adding coupling information, 
we get a hierarchical coupled model.  
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Figure 7 Coupled Modules formed via coupling and 
their use as components 

 
It is important to note that DEVS models, whether atomic 
or coupled can standalone and go into a repository for 
reuse by the developers or others.  In principle, the inter-
nals of any such model can be hidden (e.g., in relation to 
proprietary rights) – only the behavior as seen through the 
input/output ports needs to be communicated in a clear 

enough manner for others to use the component. This can 
foster a high degree of reuse and sharing among a grow-
ing DEVS community. 

3 SCALABLE DISTRIBUTED MODELING AND 
SIMULATION 

A direct consequence of the separation of models from 
simulators in the DEVS formalism is the independence of 
model components from alternative modes of execution – 
centralized, parallel, or distributed simulation execution. 
Model development independent of simulation execution 
is central to scalability and underlying computational 
technologies such as HLA, CORBA, or MPI. Here scal-
ability refers to building large- or very-large scale models 
knowing that the suitability and usability of models is not 
affected by the computational resources that may be re-
quired. That is to say, model components developed for 
execution on a single processor can be migrated to exe-
cute on top of simulators which in turn employ middle-
ware technologies such as CORBA and HLA. In this set-
ting, middleware technologies provide services such as 
communication and time management for DEVS models 
to interchange input/output messages while relying on 
individual computational nodes to carry out each model’s 
input, output, and state transitions.  Similarly, models de-
veloped for distributed simulations may also be used for 
execution on a single processor. Therefore, within the 
DEVS framework, modelers can develop model compo-
nents which may be migrated from single processor to 
multiprocessor and vice versa.  

4 SUMMARY 

The form of DEVS (discrete event system specification) 
discussed provides a hierarchical, modular approach to 
constructing reusable model components.  In doing so, the 
DEVS formalism embodies the concepts of systems the-
ory and modeling. Furthermore, DEVS M&S framework 
offers a full range of computational means to support 
scalability in modeling needs while ensuring models and 
their interpretations (behavior) remain invariant using 
ever more capable simulation technologies. 
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