
The Incremental Association

Rule Problem

Presented by...

Susan Imberman Ph.D.
Imberman@mail.csi.cuny.edu

© Copyright 2005 Susan P. Imberman. All rights reserved

Incremental Association Rules

� What are our options when databases are

increasing in size?

� Rerun Apriori on the “new” database

� Costly and inefficient. Most of the cost in processing

large databases is in scanning the data

� Incremental Association Rule Algorithms

� Use information gained from the previous increment

to reduce database scans

Notation

� DB is the set of old transactions (where
transactions denote the records in the original
database)

� db is the set of new coming transactions (the
increment)

� DB+db is the set of old and new coming
transactions

� supportDB (X) is the support of itemset X in
DB

� supportdb (X) is the support of X in db,

� supportDB + db (X) is the support of X in DB+
db

Notation – cont.

� SCDB X support count of X in DB

� SCdb X support count of X in db

� sdb minimum support for itemset X in db

� sDB minimum support for itemset X in DB

� s minimum support for itemset X in DB+db

� T - transaction in DB or db

� minsuppA is the minimum support threshold for
database/increment A

Plotting Support Count in DB + db

|db| < |DB|

Support Count in db

Support

Count

in DB

|db|

|DB|

For each point (SCdb , SCDB)

SCdb + SCDB = SCDB+db

Support Count in db

Support

Count

in DB

|db|

|DB|

minSCdb

minSCDB

minSCDB + minSCdb

minSCdb = minium # transactions to be large in db

minSCDB = minium # transactions to be large in DB

For all points G on line HC SCdb + SCDB = minSCDB+db

G

Support Count in db

Support

Count

in DB

|db|

|DB|

minSCdb

minSCDB F

minSCDB + minSCdb H

minSCDB + minSCdb - |db| E C

I

A BO

D

J

Line HC partitions the space of itemsets.

All itemsets above and including HC are large.

All below HC are small. Incremental itemset problem,

find all itemsets in the red area

The possibilities

Small in DBLarge in DB

??Large in DB + dbLarge in db

Small in DB + db??Small in db

FUP – David W. Cheung, Jiawei Han,

Vincent T. Ng, C.Y. Wong
� Based on Apriori and DHP

� Iteration 1 – Find large 1 itemsets
� For all itemsets in L1DB check support in db and

update

� Remove “losers” . Place winners in L1DB+db.

� while scanning db, find all 1-itemsets in db that are
not in L1DB. These are candidate 1 – itemsets and are
placed in C1

� Prune from C1 all itemsets that have support below
threshold s in db. These have no chance of being
large.

� Find count of each remaining itemset X in C1 from
DB. If supportDB+db(X) > s then place in L1DB+db.

� Reduce database

K - iteration
� Remove k - superset of any small 1-itemset

� For all items in Lk DB check support in db.

� Remove losers. Winners are in Lk DB+db

� Ck = apriorigen (Lk-1 DB+db) - Lk DB

� Scan db for support of all X in Ck

� While scanning reduce db

� Remove X from Ck if supportdb(X) < s
db

and place X in
P

� For remaining X in Ck scan DB and update support.

� If support DB+db (X) in Ck > s
DB+db

then X ∈ Lk DB+db

� Any items in DB that are not in Ck or Lk DB+db can be
pruned from DB when scanning for support DB+db (X)

FUP and database reduction

� From DHP - An itemset I at level k+1 has k+1
subsets at level k

� Any one item i ∈ I will appear in only k of those
subsets.

� Therefore if we look at each item i in a
transaction T from db, and count the subsets in
T relative to Ck and Lk DB+db in which i appears, if
i is in fewer than k sets, it can’t be in any k+1
itemsets.

The Lattice (Again!)

1. Notice set {1,3,4} at level 3 has 3 subsets

2. Each item 1, 3, and 4 only occurs in 2 subsets of

{1,3,4} at level 2

{ 1 ,2 ,3 ,4 }

{ 1 , 2 , 3 } { 1 , 2 , 4 } { 1 , 3 , 4 } { 2 , 3 , 4 }

{ 1 , 2 } { 1 , 3 } { 1 , 4 } { 2 , 3 } { 2 , 4 } { 3 , 4 }

{ 1 } { 2 } { 3 } { 4 }

An FUP Example

DB db

TID Items TID Items

1 A,C,D,E,F 1 A,F

2 B,D,F 2 B,C,F

3 A,D,E 3 A,C

4 A,B,D,E,F 4 B,F

5 A,B,C,F 5 A,B,C

6 B.F 6 A,C,D

7 A,D,E,F

8 A,B,D,F

9 A,D,F

Let s = 30%

Thus sDB = .30 * |DB| = 3

sdb = .30 * |db| = 2

s = .30 * |DB+db| = 5

L1 L2 L3 L4

Itemset Support Itemset Support Itemset Support Itemset Support

{A} 7 {AB} 3 {ABF} 3 {ADEF} 3

{B} 5 {AD} 6 {ADE} 4

{D} 7 {AE} 4 {ADF} 5

{E} 4 {AF} 6 {AEF} 3

{F} 8 {BD} 3 {BDF} 3

{BF} 5 {DEF} 3

{DE} 4

{DF} 6

{EF} 3

Update support from db

L1 L1 DB+db C1

Itemset Support DB+db Itemset Support Itemset Supportdb

{A} 11 {A} 11 {C} 4

{B} 8 {B} 8

{D} 7 Ö {D} 7

{E} 4 {F} 11

{F} 11 C1

Itemset SupportDB+db

{C} 6 Õ {C} 6

Remove 2 - supersets of any small 1-itemset

L2

Itemset Support

{AB} 3

{AD} 6

{AE} 4

{AF} 6

{BD} 3

{BF} 5

{DE} 4

{DF} 6

{EF} 3

For all items in L2 DB check support in db and update for DB+db.
Place "Winners" in L2 DB+db.

L2 L2 DB+db

Itemset Support DB+db Itemset Support
{AB} 4 {AD} 7
{AD} 7 {AF} 7

{AF} 7 {BF} 7
{BD} 3 {DF} 6
{BF} 7
{DF} 6

C2 L2 DB+db

Itemset Supportdb SupportDB+db Itemset Support

{AC} 3 5 {AD} 7

{BC} 2 2 {AF} 7

{CD} 1 1 {BF} 7

{CF} 1 3 {DF} 6
{AC} 5

C2 = apriorigen (L1 DB+db) - L2 DB

Scan db for support of all X in C2

If support DB+db (X) in C2 > s DB+db then X � L 2 DB+db

Remove 3 - supersets of any small 1-itemset

L3

Itemset Support

{ABF} 3

{ADE} 4

{ADF} 5

{AEF} 3

{BDF} 3

{DEF} 3

For all items in L3 DB check support in db and update for DB+db.
Place "Winners" in L3 DB+db.

L3 L3 DB+db

Itemset Support DB+db Itemset Support

{ABF} 3 {ADF} 5

{ADF} 5

{BDF} 3

C3 = apriorigen (L2 DB+db) - L3 DB

Scan db for support of all X in C3

If support DB+db (X) in C3 > s DB+db then X � L 3 DB+db

C3 L3 DB+db

Itemset Supportdb Support DB+db Itemset Support

{ACF} 0 2 {ADF} 5
{ACD} 1 2

Remove 4 - supersets of any small
1-itemset

L4

Itemset Support

{ADEF} 3

Why are deletions harder than

insertions?

support = itemset count in database/ number records in database

Small in DBLarge in DB

??Large in DB + db

(need not rescan DB)

Large in db+

Small in DB + db

(need not rescan DB)

??Small in db+

Small in DBLarge in DB

????Large in db-

????Small in db-

FUP2 - David Cheung, S. D. Lee, Benjamin Kao

Generalization of FUP

Notation:

∆- deletions where db- ⊆ DB

∆+ insertions

DB+db = (DB - ∆-) U ∆+

Deletions Only db+ = Ø

� L1 is found by checking support of all items I

� An efficiency – Partition Ck into P and Q where
P= Ck ∩Lk . Therefore to find support in DB+db,
you need only to update with the support of the
itemset in the increment.

� Q,k contains all itemsets that were previously
small. If an itemset from Qk is large in the
increment, then it can’t be large in the updated
database.

Optimize – we need not find, in the

increment, the support of some

small itemsets
� Supersets of a small itemsets are small

� Don’t scan the increment for those

itemsets from Qk that contain a small

1-itemset.

FUP2 Insertions and Deletions

� Use Lk-1 DB+db to generate candidates Ck

� Partition Ck into Pk and Qk

� We know supportDB of the itemsets in Pk ,
therefore only scan db+ and db- to update
support

� Add itemsets with sufficient updated support to
Lk DB+db

� Prune from Qk those itemsets that are small in
db+ + db- . Since these were previously small,
they can’t be in Lk DB+db

More Optimizations
� For X ⊆ Y , support X ≤ support y

� The k-1 subset of a k-itemset Y will have the smallest support of all
subsets of Y of size < k.

� Therefore, the minimum support of all k -1 itemsets gives us an
upper bound (b +x) on the support of Y in db+ and an upper bound
(b -x) on the support of Y in db-.

� Prune from Qk those itemsets where

b +x ≤ (|db+| - |db-|) * s%

� Prune from Pk those itemsets, X where

supportDB + (b +x) < (|DB+db|) * s%

� Prune from Qk those itemsets where

b +x – support db- x ≤ (|db+|- |db-|) * s%

� Prune from Pk those itemsets, X where

supportDB + b +x – support db- x < (|DB+db|) * s%

� if |db-| < |db+| place into Rk from Q,k those itemsets where

b +x – b -x ≤ (|db+|- |db-|) * s%

� You can prune from Rk those itemsets where

support db+ ≤ (|db+|- |db-|) * s%

UWEP An Incremental

Association Rule Algorithm
� Scan db and find counts for all 1-itemsets

� Pruning – for all itemsets in DB that are found
small we prune the supersets of that itemset
from DB.

� Check the large itemsets in DB whose items
are absent in db supportDB (X) = supportDB + db

(X)

� Check large itemsets in db to see if they are
large in DB, these are large by definition

� For all large itemsets that are large in DB and
have not been checked, check to see if they
are large in DB + db

QUESTIONS????????

K - iteration
� Remove k - superset of any small 1-itemset

� For all items in Lk DB check support in db.

� Remove losers. Winners are in Lk DB+db

� Ck = apriorigen (Lk-1 DB+db) - Lk DB

� Scan db for support of all X in Ck

� While scanning reduce db

� Remove X from Ck if supportdb(X) < s
db

and place X in
P

� For remaining X in Ck scan DB and update support.

� If support DB+db (X) in Ck > s
DB+db

then X ∈ Lk DB+db

� Any items in DB that are not in Ck or Lk DB+db can be
pruned from DB when scanning for support DB+db (X)

K - iteration
� Remove k - superset of any small 1-itemset

� For all items in Lk DB check support in db.

� Remove losers. Winners are in Lk DB+db

� Ck = apriorigen (Lk-1 DB+db) - Lk DB

� Scan db for support of all X in Ck

� While scanning reduce db

� Remove X from Ck if supportdb(X) < s
db

and place X in P

� For remaining X in Ck scan DB and update support.

� If support DB+db (X) in Ck > s
DB+db

then X ∈ Lk DB+db

� Any items in DB that are not in Ck or Lk DB+db can be
pruned from DB when scanning for support DB+db (X)

	The Incremental Association Rule...
	Incremental Association Rules
	What are our options when databa...
	Rerun Apriori on the “new” datab...
	Costly and inefficient. Most of...
	Incremental Association Rule Alg...
	Use information gained from the ...

	Notation
	DB is the set of old transaction...
	db is the set of new coming tran...
	DB+db is the set of old and new ...
	supportDB (X) is the support of ...
	supportdb (X) is the support of ...
	supportDB + db (X) is the suppor...

	Notation – cont.
	SCDB X support count of X in DB
	SCdb X support count of X in db
	sdb minimum support for itemset...
	sDB minimum support for itemset...
	s minimum support for itemset X...
	T - transaction in DB or db
	minsuppA is the minimum support ...

	Plotting Support Count in DB + d...
	For each point (SCdb , SCDB) �SC...
	minSCdb = minium # transactions...
	Line HC partitions the space of ...
	The possibilities
	FUP – David W. Cheung, Jiawei Ha...
	Based on Apriori and DHP
	Iteration 1 – Find large 1 items...
	For all itemsets in L1DB check s...
	Remove “losers” . Place winners...
	while scanning db, find all 1-it...
	Prune from C1 all itemsets that ...
	Find count of each remaining ite...
	Reduce database

	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

	FUP and database reduction
	From DHP - An itemset I at level...
	Any one item i I will appear i...
	Therefore if we look at each ite...

	The Lattice (Again!)
	Notice set {1,3,4} at level 3 ha...
	Each item 1, 3, and 4 only occur...

	An FUP Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Why are deletions harder than in...
	FUP2 - David Cheung, S. D. Lee,...
	Deletions Only db+ = Ø
	L1 is found by checking support ...
	An efficiency – Partition Ck int...
	Q,k contains all itemsets that ...

	Optimize – we need not find, in ...
	Supersets of a small itemsets ar...
	Don’t scan the increment for tho...

	FUP2 Insertions and Deletions
	Use Lk-1 DB+db to generate candi...
	Partition Ck into Pk and Qk
	We know supportDB of the itemset...
	Add itemsets with sufficient upd...
	Prune from Qk those itemsets tha...

	More Optimizations
	For X Y , support X ≤ support ...
	The k-1 subset of a k-itemset Y ...
	Therefore, the minimum support o...
	Prune from Qk those itemsets whe...
		b +x ≤ (|db+| - |db-|) * s%
	Prune from Pk those itemsets, X ...
		supportDB + (b +x) < (|DB+db|)...
	Prune from Qk those itemsets whe...
		b +x – support db- x ≤ (|db+|- ...
	Prune from Pk those itemsets, X ...
		supportDB + b +x – support db- ...
	if |db-| < |db+| place into Rk ...
		b +x – b -x ≤ (|db+|- |db-|) * ...
	You can prune from Rk those item...
		support db+ ≤ (|db+|- |db-|) * ...

	Slide 31
	UWEP An Incremental Association ...
	Scan db and find counts for all ...
	Pruning – for all itemsets in DB...
	Check the large itemsets in DB w...
	Check large itemsets in db to se...
	For all large itemsets that are ...

	QUESTIONS????????
	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

