© Copyright 2005 Susan P. Imberman. All rights reserved



» I
Incremental Association Rules

m \What are our options when databases are
Increasing in size?
Rerun Apriori on the “new” database

Costly and inefficient. Most of the cost in processing
large databases is in scanning the data

m Incremental Association Rule Algorithms

Use information gained from the previous increment
to reduce database scans



" A
Notation

m DB is the set of old transactions (where
transactions denote the records in the original
database)

m db is the set of new coming transactions (the
increment)

m DB+db is the set of old and new coming
transactions

m support,g (X) is the support of itemset X in
DB

m support,, (X) is the support of X in db,

m supportyg ., 4 (X) is the support of X in DB+
db



Notation — cont.

m SCpg X support count of Xin DB

m SC,, X support count of X in db

m S, minimum support for itemset X in db

m Sy Minimum support for itemset X in DB
m S minimum support for itemset X in DB+db
m | - transaction in DB or db

B Minsupp, is the minimum support threshold for
database/increment A
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Plotting Support Count in DB + db
[db] < |DB]

DB
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in DB
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For each point (SC,, , SCpg)
SCq, * SCpg = SCpa.ap
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" J
minSC,, = minium # transactions to be large in db
minSCyz = minium # transactions to be large in DB

For all points G on line HC SCg, + SCpg = minSCpg,4s
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ine HC patrtitions the space of itemsets.
All itemsets above and including HC are large.
All below HC are small. Incremental itemset problem,
find all itemsets in the red area
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The possibilities

Large in DB Small in DB

Large indb |Large in DB + db |77

Smallindb [|?? Smallin DB + db




" A
FUP — David W. Cheung, Jiawei Han,

Vincent T. Ng, C.Y. Wong
m Based on Apriori and DHP

m |teration 1 — Find large 1 itemsets

For all itemsets in L,z check support in db and
update

Remove “losers™ . Place winners in L,pg.q4p-

while scanning db, find all 1-itemsets in db that are
not in L,p5. These are candidate 1 — itemsets and are
placed in C,

Prune from C, all itemsets that have support below
threshold s in db. These have no chance of being
large.

Find count of each remaining itemset X in C, from
DB. If supportyg.q,(X) > s then place in Lpg.q4p-

Reduce database



" N
K - iteration

Remove k - superset of any small 1-itemset
For all items in L, ,g check support in db.
Remove losers. Winners are in L, pg.q4

C = apriorigen (L, 4 pg+ab) = Lxps

Scan db for support of all Xin C,

While scanning reduce db

Remove X from C, if support, (X) < s, and place X in
P

m For remaining X in C, scan DB and update support.
= |f support pg.qp (X) in Cy > Spp, 4 then X 0 Ly pg.gp
m Any items in DB that are notin C, or L, 5.4, Can be

pruned from DB when scanning for support g, 4, (X)



" A
FUP and database reduction

m From DHP - An itemset | at level k+1 has k+1
subsets at level k

m Any one item / [J/ will appear in only k of those
subsets.

m Therefore if we look at each item /in a
transaction T from db, and count the subsets in

T relative to C, and L, pg.4, in Which j appears, if
I is in fewer than k sets, it can’t be in any k+1

itemsets.



The Lattice (Again!)

{1,2,3,4}

1. Notice set {1,3,4} at level 3 has 3 subsets

2. Each item 1, 3, and 4 only occurs in 2 subsets of
{1,3,4} at level 2



An FUP Example

DB db
TID Items TID Items
1 A,C,D,E.F 1 AF
2 B.D.F 2 B,C.F
3 A,D.E 3 A,C
4 A,B.D.E.F 4 B.F
5 A,B.C.F 5 A,B.C
6 B.F 6 A,C.D
7 A,D.E.F
3 A.,B,D.F
9 A,D.F
Lets=30%

Thus SpB — 30 * |DB| =3
Sdp = .30 * |db| =2
s=.30 * [DB+db| =5



L1 Lo L3 L4
ltemset | Support | Itemset | Support | ltemset | Support | ltemset | Support
{A} 7 {AB} 3 {ABF} 3 {ADEF} |3
{B} 5 {AD} 6 {ADE} 4
{D} 7 {AE} 4 {ADF} 5
{E} 4 {AF} 6 {AEF} 3
{F} 8 {BD} 3 {BDF} 3

{BF} 5 {DEF} 3
{DE} 4
{DF} 6
{EF} 3




Update support from db

L1
ltemset | Support pg+dp
{A} 11
{B} 8
{D} /
{E} 4
{F} 11

L1 pB+db
ltemset | Support
{A} 11
{B} 8
{D} /

{F} 11
{C} 6

C1
ltemset | Supportqy
{C} 4
C1
ltemset | Supportpg+dp
{C} 6




Remove 2 - supersets of any small 1-itemset
Lo

ltemset
{AB}
{AD}
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For all items in L, pg check support in db and update for DB+db.

Place "Winners" in L, pg+db.

Lo L2 pB+db
ltemset | Support ps+gp | Itemset | Support
{AB} 4 {AD} 7
{AD} 7 {AF} 7
{AF} 7 {BF} 7
{BD} 3 {DF} 6
{BF} 7
{DF} 6




C, = apriorigen (L1 pg+db) - Lo pB
Scan db for support of all X in C,
| Support DB+db (X) N C2 > S DB+db then X € L 2 DB+db

Co L2 pB+db
ltemset | Supporty, | Supportpg+db ltemset Support
{AC} 3 5 {AD} 14
{BC} 2 2 {AF} 7
{CD} 1 1 {BF} 7
{CF} 1 3 {DF} 6

{AC} 3




Remove 3 - supersets of any small 1-itemset

L3
ltemset | Support
{ABF}

3
(ADE} |4
{(ADF} |5

3
3
3
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For all items in Lz pg check support in db and update for DB+db.
Place "Winners" in L3 pg+db.

Ls L3 pB+db
Itemset | Support pe+db Itemset | Support
{ABF} 3 {ADF} 5
{ADF} 5
{BDF} 3




Cs = apriorigen (L2 pg+db) - L3 DB

Scan db for support of all Xin C3

| Support DB+db (X) N C3 > S DB+db then X e L 3 DB+db

L3 pB+db

ltemset | Support

Cs
ltemset | Supporty, | Support pg+dp
{ACF} 0 2
{ACD} 1 2

{ADF}

5




Remove 4 - supersets of any small

1-itemset
L4
ltemset | Support
{ADEF} | 3




" S
Why are deletions harder than

insertions”?
support = itemset count in database/ number records in database
Large in DB Small in DB
Large in db+ Large in DB + db ??
(need not rescan DB)
Small in db+ ?7? Small in DB + db
(need not rescan DB)
Large in DB Small in DB
Large in db- ?7? ?7?
Small in db- ?7? ?7?




FUP2 _David Cheung, S. D. Lee, Benjamin Kao
Generalization of FUP

Notation:
A- deletions where db- 1 DB

At insertions
DB+db = (DB - A") U At

. support count | Large -
datalase of atenset U | itemnsets
A b —
-I::I_ — —
i ey —
D=AUuD- 7y Ly
D'=D"UA g Ie

Talde 1z Dehnbtzons of s=veral srmboks



" S
Deletions Only db* = &

m L1 is found by checking support of all items |

m An efficiency — Partition Ck into P and Q where
P= Ck nLk . Therefore to find support in DB+db,
you need only to update with the support of the
itemset in the increment.

m Q, contains all itemsets that were previously
small. If an itemset from Q, is large in the
increment, then it can’t be large in the updated

database.
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. prlmlze — we need not find, in the

increment, the support of some

small itemsets
m Supersets of a small itemsets are small

m Don’t scan the increment for those
itemsets from Q, that contain a small
1-itemset.



"
FUP, Insertions and Deletions

m Use L, | pg.q, tO generate candidates C,
m Partition C, into P, and Q,

m \We know supportyg of the itemsets in P, ,
therefore only scan db* and db- to update
support

m Add itemsets with sufficient updated support to

I—k DB+db

m Prune from Q, those itemsets that are small in
db* + db-. Since these were previously small,
they can't be in L, pg.qp



"
More Optimizations

m For XOY, support y < support ,

m The k-1 subset of a k-itemset Y will have the smallest support of all
subsets of Y of size < k.

m Therefore, the minimum support of all k-1 itemsets gives us an
upper bound (b *, ) on the support of Y in db* and an upper bound
(b -, ) on the support of Y in db-.

m Prune from Q, those itemsets where
b*, < (Jdb* -|db) * s%

m Prune from P, those itemsets, X where
SUpPOrtyg + (b *, ) < (IDB+db)) * s%

m Prune from Q, those itemsets where
b *, — support 4, < (|db*]- |db7|) * s%

m Prune from P, those itemsets, X where
supportpg + b *, — support 4, _, < (|DB+db|) * s%

m if |[db’| <|db*| place into R, from Q those itemsets where
b*,—b- = (|db*|-|db) * s%

m You can prune from R, those itemsets where
support 4., < (|[db*|- |db7|) * s%
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" I
UWEP An Incremental
Association Rule Algorithm

m Scan db and find counts for all 1-itemsets

m Pruning — for all itemsets in DB that are found
small we prune the supersets of that itemset
from DB.

m Check the large itemsets in DB whose items
are absent in db support,g (X) = supportyg . 4
(X)

m Check large itemsets in db to see if they are
large in DB, these are large by definition

m For all large itemsets that are large in DB and
have not been checked, check to see if they
are large in DB + db






" N
K - iteration

Remove k - superset of any small 1-itemset
For all items in L, ,g check support in db.
Remove losers. Winners are in L, pg.q4

C = apriorigen (L, 4 pg+ab) = Lxps

Scan db for support of all Xin C,

While scanning reduce db

Remove X from C, if support, (X) < s, and place X in
P

m For remaining X in C, scan DB and update support.
= |f support pg.qp (X) in Cy > Spp, 4 then X 0 Ly pg.gp
m Any items in DB that are notin C, or L, 5.4, Can be

pruned from DB when scanning for support g, 4, (X)



» I
K - 1teration

Remove K - superset of any small 1-itemset

For all items in L, 5 check support in db.

Remove losers. Winners are in L, yg..45

Cy = apriorigen (L, pp.qp) - Ly pp

Scan db for support of all X in C,

While scanning reduce db

Remove X from C, if support, (X) <s, and place X in P
For remaining X in C, scan DB and update support.

If support g, 4, (X) in C, > 555, 4 then X L Ly pg. g

Any items in DB that are not in C, or L, 5.4, can be
pruned from DB when scanning for support 5,4, (X)
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