© Copyright 2005 Susan P. Imberman. All rights reserved

» I
Incremental Association Rules

m \What are our options when databases are
Increasing in size?
Rerun Apriori on the “new” database

Costly and inefficient. Most of the cost in processing
large databases is in scanning the data

m Incremental Association Rule Algorithms

Use information gained from the previous increment
to reduce database scans

" A
Notation

m DB is the set of old transactions (where
transactions denote the records in the original
database)

m db is the set of new coming transactions (the
increment)

m DB+db is the set of old and new coming
transactions

m support,g (X) is the support of itemset X in
DB

m support,, (X) is the support of X in db,

m supportyg ., 4 (X) is the support of X in DB+
db

Notation — cont.

m SCpg X support count of Xin DB

m SC,, X support count of X in db

m S, minimum support for itemset X in db

m Sy Minimum support for itemset X in DB
m S minimum support for itemset X in DB+db
m | - transaction in DB or db

B Minsupp, is the minimum support threshold for
database/increment A

= S
Plotting Support Count in DB + db
[db] < |DB]

DB

Support
Count
in DB

. |dD|
Support Count in db

" S
For each point (SC,, , SCpg)
SCq, * SCpg = SCpa.ap

|DB|

I’l’lll’lSCDB + I’l’lll’lSCdb

Support
Count
in DB

minSCpp

minSC y, db|

Support Count in db

" J
minSC,, = minium # transactions to be large in db
minSCyz = minium # transactions to be large in DB

For all points G on line HC SCg, + SCpg = minSCpg,4s

|DB|

I’l’lll’lSCDB + I’l’lll’lSCdb H .. .

Support
Count minSCpp F
in DB

minSCDB + minSCdb_ |db| E |

o A B

minSC y, db|

Support Count in db

.'.L_

ine HC patrtitions the space of itemsets.
All itemsets above and including HC are large.
All below HC are small. Incremental itemset problem,
find all itemsets in the red area

\DB|
minSC oy + minSCy H
Support
Count minSC; F
in DB

minSC p + minSC 4, - |db| E

O A B

minSC 4 db)|

Support Count in db

The possibilities

Large in DB Small in DB

Large indb |Large in DB + db |77

Smallindb [|?? Smallin DB + db

" A
FUP — David W. Cheung, Jiawei Han,

Vincent T. Ng, C.Y. Wong
m Based on Apriori and DHP

m |teration 1 — Find large 1 itemsets

For all itemsets in L,z check support in db and
update

Remove “losers™ . Place winners in L,pg.q4p-

while scanning db, find all 1-itemsets in db that are
not in L,p5. These are candidate 1 — itemsets and are
placed in C,

Prune from C, all itemsets that have support below
threshold s in db. These have no chance of being
large.

Find count of each remaining itemset X in C, from
DB. If supportyg.q,(X) > s then place in Lpg.q4p-

Reduce database

" N
K - iteration

Remove k - superset of any small 1-itemset
For all items in L, ,g check support in db.
Remove losers. Winners are in L, pg.q4

C = apriorigen (L, 4 pg+ab) = Lxps

Scan db for support of all Xin C,

While scanning reduce db

Remove X from C, if support, (X) < s, and place X in
P

m For remaining X in C, scan DB and update support.
= |f support pg.qp (X) in Cy > Spp, 4 then X 0 Ly pg.gp
m Any items in DB that are notin C, or L, 5.4, Can be

pruned from DB when scanning for support g, 4, (X)

" A
FUP and database reduction

m From DHP - An itemset | at level k+1 has k+1
subsets at level k

m Any one item / [J/ will appear in only k of those
subsets.

m Therefore if we look at each item /in a
transaction T from db, and count the subsets in

T relative to C, and L, pg.4, in Which j appears, if
I is in fewer than k sets, it can’t be in any k+1

itemsets.

The Lattice (Again!)

{1,2,3,4}

1. Notice set {1,3,4} at level 3 has 3 subsets

2. Each item 1, 3, and 4 only occurs in 2 subsets of
{1,3,4} at level 2

An FUP Example

DB db
TID Items TID Items
1 A,C,D,E.F 1 AF
2 B.D.F 2 B,C.F
3 A,D.E 3 A,C
4 A,B.D.E.F 4 B.F
5 A,B.C.F 5 A,B.C
6 B.F 6 A,C.D
7 A,D.E.F
3 A.,B,D.F
9 A,D.F
Lets=30%

Thus SpB — 30 * |DB| =3
Sdp = .30 * |db| =2
s=.30 * [DB+db| =5

L1 Lo L3 L4
ltemset | Support | Itemset | Support | ltemset | Support | ltemset | Support
{A} 7 {AB} 3 {ABF} 3 {ADEF} |3
{B} 5 {AD} 6 {ADE} 4
{D} 7 {AE} 4 {ADF} 5
{E} 4 {AF} 6 {AEF} 3
{F} 8 {BD} 3 {BDF} 3

{BF} 5 {DEF} 3
{DE} 4
{DF} 6
{EF} 3

Update support from db

L1
ltemset | Support pg+dp
{A} 11
{B} 8
{D} /
{E} 4
{F} 11

L1 pB+db
ltemset | Support
{A} 11
{B} 8
{D} /

{F} 11
{C} 6

C1
ltemset | Supportqy
{C} 4
C1
ltemset | Supportpg+dp
{C} 6

Remove 2 - supersets of any small 1-itemset
Lo

ltemset
{AB}
{AD}

AR

" A=

{AF}
{BD}
{BF}
{DE}
{DF}
{EH

n
C
i®)
O
O
-1

WP OAANWO|AO|W

For all items in L, pg check support in db and update for DB+db.

Place "Winners" in L, pg+db.

Lo L2 pB+db
ltemset | Support ps+gp | Itemset | Support
{AB} 4 {AD} 7
{AD} 7 {AF} 7
{AF} 7 {BF} 7
{BD} 3 {DF} 6
{BF} 7
{DF} 6

C, = apriorigen (L1 pg+db) - Lo pB
Scan db for support of all X in C,
| Support DB+db (X) N C2 > S DB+db then X € L 2 DB+db

Co L2 pB+db
ltemset | Supporty, | Supportpg+db ltemset Support
{AC} 3 5 {AD} 14
{BC} 2 2 {AF} 7
{CD} 1 1 {BF} 7
{CF} 1 3 {DF} 6

{AC} 3

Remove 3 - supersets of any small 1-itemset

L3
ltemset | Support
{ABF}

3
(ADE} |4
{(ADF} |5

3
3
3

J AN == I:TL

Ll Ve

{BDF}

rn|:|:1L

LI—II—

For all items in Lz pg check support in db and update for DB+db.
Place "Winners" in L3 pg+db.

Ls L3 pB+db
Itemset | Support pe+db Itemset | Support
{ABF} 3 {ADF} 5
{ADF} 5
{BDF} 3

Cs = apriorigen (L2 pg+db) - L3 DB

Scan db for support of all Xin C3

| Support DB+db (X) N C3 > S DB+db then X e L 3 DB+db

L3 pB+db

ltemset | Support

Cs
ltemset | Supporty, | Support pg+dp
{ACF} 0 2
{ACD} 1 2

{ADF}

5

Remove 4 - supersets of any small

1-itemset
L4
ltemset | Support
{ADEF} | 3

" S
Why are deletions harder than

insertions”?
support = itemset count in database/ number records in database
Large in DB Small in DB
Large in db+ Large in DB + db ??
(need not rescan DB)
Small in db+ ?7? Small in DB + db
(need not rescan DB)
Large in DB Small in DB
Large in db- ?7? ?7?
Small in db- ?7? ?7?

FUP2 _David Cheung, S. D. Lee, Benjamin Kao
Generalization of FUP

Notation:
A- deletions where db- 1 DB

At insertions
DB+db = (DB - A") U At

. support count | Large -
datalase of atenset U | itemnsets
A b —
-I::I_ — —
i ey —
D=AUuD- 7y Ly
D'=D"UA g Ie

Talde 1z Dehnbtzons of s=veral srmboks

" S
Deletions Only db* = &

m L1 is found by checking support of all items |

m An efficiency — Partition Ck into P and Q where
P= Ck nLk . Therefore to find support in DB+db,
you need only to update with the support of the
itemset in the increment.

m Q, contains all itemsets that were previously
small. If an itemset from Q, is large in the
increment, then it can’t be large in the updated

database.

T+ > 97| ;oren g
"% % || < Ko mpra o]

10N Won Y s1epIpired 3801} T 01 PPY 2

"Iy > X sepip

-red SUTITeurar H17) Jo 4.0 N0 PUY 0 _(T 1Tedg
("7 eurm Jo uotyeatpddy) (s x || € X

2I0TM YT SO1RpIpIeD 2801} YH) WIOAT 9397

‘X0 oyemaTe) fig 3 X es 10

Iy YT S Y TPeD I0f X9 Ino pur o} %7 meag
g =D =10 pme ATU YD

= g M i) pue g o) uonmred
— um_..mw.

JTITeH "S196TIaT JO 7 198 D1epIpired v m.aEn. "T

T .

ﬂ*".**d*h‘.: t:-'

o

. prlmlze — we need not find, in the

increment, the support of some

small itemsets
m Supersets of a small itemsets are small

m Don’t scan the increment for those
itemsets from Q, that contain a small
1-itemset.

"
FUP, Insertions and Deletions

m Use L, | pg.q, tO generate candidates C,
m Partition C, into P, and Q,

m \We know supportyg of the itemsets in P, ,
therefore only scan db* and db- to update
support

m Add itemsets with sufficient updated support to

I—k DB+db

m Prune from Q, those itemsets that are small in
db* + db-. Since these were previously small,
they can't be in L, pg.qp

"
More Optimizations

m For XOY, support y < support ,

m The k-1 subset of a k-itemset Y will have the smallest support of all
subsets of Y of size < k.

m Therefore, the minimum support of all k-1 itemsets gives us an
upper bound (b *,) on the support of Y in db* and an upper bound
(b -,) on the support of Y in db-.

m Prune from Q, those itemsets where
b*, < (Jdb* -|db) * s%

m Prune from P, those itemsets, X where
SUpPOrtyg + (b *,) < (IDB+db)) * s%

m Prune from Q, those itemsets where
b *, — support 4, < (|db*]- |db7|) * s%

m Prune from P, those itemsets, X where
supportpg + b *, — support 4, _, < (|DB+db|) * s%

m if |[db’| <|db*| place into R, from Q those itemsets where
b*,—b- = (|db*|-|db) * s%

m You can prune from R, those itemsets where
support 4., < (|[db*|- |db7|) * s%

T+% > [77] 3 yel

%8 X |,@l < %0 e0um Yy

NN woxy X seyepipued 850y} ¥7 03 ppy
‘X0 198 03 Xg 03 yunoo suyy ppe ‘ueyy, Yy
NG 3 X Yo Jo 3unod ay3 303 pue _(7 uedg
s %5 x (|| - |,9])
> 19 3 X 999p Ty 5 X 91¥pIPURd [oed 104
%8 x (|-vl = 14w) 5 X¢

— X9 Jt X o1pp) 5 X oyeprpued yore 104
‘X 0 ayenored ‘47 > Y 9yepIpued yoed 104
MY NIHNY 3 X Yoee 10§ X¢ pug 0} | wedg
%8 x (|v| =149 5 %o

— Xq g3 seyeprpued 950y} ¢ woly PP
%8 x |,al > X9 - Xq

+ X0 a19ym Y Sa)RpIpURD 9S0Y} ¥ WOI} 939
“IH NI 3 X yoes 10§ Xg yno puy 0y _y wedg
X9 03 Xg

uSisse pue ¥y 0} 31 dnowt ‘%s x (|_v| - |,v)
< Xq— Xq ppue 49 > x yoee 10§ Xq oyemo
-fed ‘esmmIsyi0 ‘P = Y 91 |4l S | VI I
'%s x (|-v

- 1.v]) S %Xq j1 31 enower ‘Y > x yoed 107

'%¢ x |al
> Xq + Xo p 31 eaowax ‘7 3 X Yoo 10§

91
2 g
h4!
€1
4!
1
01
6

'8
L

R4

1) pue g ot 1) woniyeq °¢
193 X 18 10} ¥q aveqnopep) 7
=%
JLIRE "SI98Ta)! J0 1) 196 AYRPIPIE) © TRIA(Q) ']

" I
UWEP An Incremental
Association Rule Algorithm

m Scan db and find counts for all 1-itemsets

m Pruning — for all itemsets in DB that are found
small we prune the supersets of that itemset
from DB.

m Check the large itemsets in DB whose items
are absent in db support,g (X) = supportyg . 4
(X)

m Check large itemsets in db to see if they are
large in DB, these are large by definition

m For all large itemsets that are large in DB and
have not been checked, check to see if they
are large in DB + db

" N
K - iteration

Remove k - superset of any small 1-itemset
For all items in L, ,g check support in db.
Remove losers. Winners are in L, pg.q4

C = apriorigen (L, 4 pg+ab) = Lxps

Scan db for support of all Xin C,

While scanning reduce db

Remove X from C, if support, (X) < s, and place X in
P

m For remaining X in C, scan DB and update support.
= |f support pg.qp (X) in Cy > Spp, 4 then X 0 Ly pg.gp
m Any items in DB that are notin C, or L, 5.4, Can be

pruned from DB when scanning for support g, 4, (X)

» I
K - 1teration

Remove K - superset of any small 1-itemset

For all items in L, 5 check support in db.

Remove losers. Winners are in L, yg..45

Cy = apriorigen (L, pp.qp) - Ly pp

Scan db for support of all X in C,

While scanning reduce db

Remove X from C, if support, (X) <s, and place X in P
For remaining X in C, scan DB and update support.

If support g, 4, (X) in C, > 555, 4 then X L Ly pg. g

Any items in DB that are not in C, or L, 5.4, can be
pruned from DB when scanning for support 5,4, (X)

	The Incremental Association Rule...
	Incremental Association Rules
	What are our options when databa...
	Rerun Apriori on the “new” datab...
	Costly and inefficient. Most of...
	Incremental Association Rule Alg...
	Use information gained from the ...

	Notation
	DB is the set of old transaction...
	db is the set of new coming tran...
	DB+db is the set of old and new ...
	supportDB (X) is the support of ...
	supportdb (X) is the support of ...
	supportDB + db (X) is the suppor...

	Notation – cont.
	SCDB X support count of X in DB
	SCdb X support count of X in db
	sdb minimum support for itemset...
	sDB minimum support for itemset...
	s minimum support for itemset X...
	T - transaction in DB or db
	minsuppA is the minimum support ...

	Plotting Support Count in DB + d...
	For each point (SCdb , SCDB) �SC...
	minSCdb = minium # transactions...
	Line HC partitions the space of ...
	The possibilities
	FUP – David W. Cheung, Jiawei Ha...
	Based on Apriori and DHP
	Iteration 1 – Find large 1 items...
	For all itemsets in L1DB check s...
	Remove “losers” . Place winners...
	while scanning db, find all 1-it...
	Prune from C1 all itemsets that ...
	Find count of each remaining ite...
	Reduce database

	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

	FUP and database reduction
	From DHP - An itemset I at level...
	Any one item i  I will appear i...
	Therefore if we look at each ite...

	The Lattice (Again!)
	Notice set {1,3,4} at level 3 ha...
	Each item 1, 3, and 4 only occur...

	An FUP Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Why are deletions harder than in...
	FUP2 - David Cheung, S. D. Lee,...
	Deletions Only db+ = Ø
	L1 is found by checking support ...
	An efficiency – Partition Ck int...
	Q,k contains all itemsets that ...

	Optimize – we need not find, in ...
	Supersets of a small itemsets ar...
	Don’t scan the increment for tho...

	FUP2 Insertions and Deletions
	Use Lk-1 DB+db to generate candi...
	Partition Ck into Pk and Qk
	We know supportDB of the itemset...
	Add itemsets with sufficient upd...
	Prune from Qk those itemsets tha...

	More Optimizations
	For X  Y , support X ≤ support ...
	The k-1 subset of a k-itemset Y ...
	Therefore, the minimum support o...
	Prune from Qk those itemsets whe...
		b +x ≤ (|db+| - |db-|) * s%
	Prune from Pk those itemsets, X ...
		supportDB + (b +x) < (|DB+db|)...
	Prune from Qk those itemsets whe...
		b +x – support db- x ≤ (|db+|- ...
	Prune from Pk those itemsets, X ...
		supportDB + b +x – support db- ...
	if |db-| < |db+| place into Rk ...
		b +x – b -x ≤ (|db+|- |db-|) * ...
	You can prune from Rk those item...
		support db+ ≤ (|db+|- |db-|) * ...

	Slide 31
	UWEP An Incremental Association ...
	Scan db and find counts for all ...
	Pruning – for all itemsets in DB...
	Check the large itemsets in DB w...
	Check large itemsets in db to se...
	For all large itemsets that are ...

	QUESTIONS????????
	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

	K - iteration
	Remove k - superset of any small...
	For all items in Lk DB check sup...
	Remove losers. Winners are in L...
	Ck = apriorigen (Lk-1 DB+db) - L...
	Scan db for support of all X in ...
	While scanning reduce db
	Remove X from Ck if supportdb(X)...
	For remaining X in Ck scan DB an...
	If support DB+db (X) in Ck > sDB...
	Any items in DB that are not in ...

