Learning proceeds first one after another.

Thus, it's important to succeed deeply.

Designing limited search - and don't stop

Unfold Search (L,R) - Information Studies
in the bottom level

Problem has most nodes

Since an expansion

This is not so bad

be repeated

States may

is where these meet

Goal state. Solution step

and back work from

from initial step

Search for a goal

0: Directed Search
$O(b^{d/2})$ since each search has to go only halfway.

Downside - to search backwards, we need a predecessor function. Sometimes calculating 1 predecessor can be difficult.
I feel confused. The goal is to clear our path. However, I don't know how to start and search for the answer. We need to know the goal.
General methodology & Best First Search

When dealing with partial order terminologies, nodes to expand and use recursion or termination.

Diagram of partial order and search paths:

- Nodes labeled 1, 2, 3, 4, 5, 6, 7, 8
- Search paths indicated by solid and dashed lines
- Search prioritization represented by numerical values
path from node n to the goal state

Given estimated costs of the search

to shortest search for node n that uses known knowledge

to the goal

from the is closest

informative function helps us to

and with the best evaluation value.

From an evaluation function to pick the
Greedy best-first search

First, find the node with the closest SLD

Expand the node with the closest SLD

To p first

@ final cost is 10

(©)
Not optimal
Finds a solution quick
Memory O(n^2) vs. Space O(log n), \(w = \text{mm} \),
First, endeavor to recalculate the First.

...can lead to infinite searches.
...If we don't test for rejected steps...

...goal.
...may depend on a graph that does not lead
...can be successful if it fails this single if...
\(f(0) = g(0) + h(0) \)

Let us expand the path with shortest cost.

Thus, this form cost search - expand shortest.
The best solution moves the actual cost of
overestimating the goal is a misnomer
than f(n) never

Calculating the true cost of
Estimating the worst case of the cost of
Complete proof takes long time

Note that solution found
cheaply cost the cost of
f(n) - estimated cost + f(n)
A^* is optimal.