Memory Management

Program on disk - binary executable file that needs to be brought into memory for its execution.

Where in memory to put a process??

Memory addresses start at 000000. User processes can start anywhere in memory.

When are the absolute addresses of memory bound to a process?

Compile time - if at compile time you know where a program will reside in physical memory, then addresses can be assigned to generate absolute code. If the program's location changes the code needs to be recompiled.

Load time - compiler generates relocatable code. Final binding of addresses is done at load time. Changes in starting addresses means we need only to reload user code.

Execution time - used when process can be moved during its execution, binding is done at run time.

Logical addresses - addresses generated by the CPU

Physical addresses - addresses that can be loaded into the memory address register.

Compile time an load time address binding generates the same logical and physical addresses.

Execution time binding generates different logical and physical addresses. In this instance logical addresses are sometimes referred to as virtual addresses.

Run time mapping of addresses is done by the memory management unit. (MMU)

Relocation register - used to map logical addresses to physical addresses. Contains offset needed to do translation. This amount is added to the logical address to obtain the physical address.

Therefore logical addresses range from 0 to max, and physical addresses range from R+0 to R+max where R is the value of the relocation register.

Dynamic Loading - If program and data can't fit into memory, we only load the routines being used. Hence a routine isn't loaded into memory unless it is being called. Programs are kept on disk in relocatable load format.

Advantage - infrequently used routines are not loaded, program size can be larger than memory size.

dynamically linked libraries (dll) vs. static linking

static linking - system language libraries are combined into the binary program at load time. In dynamic linking, linking is done at execution time. Used with system libraries and language subroutine libraries. Allows for saving of space and memory since otherwise each would need a copy of these for their execution.

In dynamic linking a stub is placed in the program for each library routine referenced. The stub indicates where in memory this library is or where it can be found to be loaded. All processes executing a language library execute only one copy of the code.

Using this scheme, if a library has a bug, and that bug is fixed in an update, then once installed, all programs will be using the new library.

SWAPPING
Processes are swapped out of memory to a backing store. (round robin scheduling, priority scheduling)

Which address space is the process swapped back into?

Depends on method of address binding.

If binding is done at compile or load time then it has to go back into the same memory location. Execution time binding can be relocated to a different memory location.

Backing store - usually very fast disk, needs enough room for memory images of all users and direct access to these images. When CPU decides to run a process, then it calls the dispatcher. The dispatcher finds if the process is in memory or on the backup. If on the backup it swaps out one process and swaps in the new process.

 High context switch time. Most of this time is spent in the transfer. Transfer time is directly proportional to the size of the process being swapped. Try to limit memory for a process by allocating enough memory only for what it actually needs other than what it might need.

Swapping can only occur if process is idle. Problems can occur when processes are waiting for I/O. If process is waiting for an I/O to finish, if the process where to be swapped out, when the I/O finishes, the I/O device may write to a memory location now occupied by a new process.

Contiguous Memory Allocation - Main memory accommodates the operating system and user programs. Memory needs to be allocated in the most efficient way possible. The partition for user programs can have several processes in it. The problem becomes how to allocate memory for those processes in the input queue waiting to be brought into memory.

Assume each process occupies a contiguous piece of memory.

Memory Protection - relocation register contains value of smallest physical address. limit register contains the range of logical addresses. Each logical address must be less than the limit register. Physical addresses are found by adding the logical address to the relocation register. Thus programs can't access outside their bounds and the OS and user programs are protected.

How can we fit several processes into one contiguous memory space?

Divide the space into fixed-size partitions where each partition fits exactly one process. Amount of multiprogramming is bounded by the number of partitions. When a partition becomes available a process is swapped into it. This method not used anymore.

Variable partitions - OS has a table showing which parts of memory are available and which are occupied. Each empty space is called a hole. When a process needs space the OS looks to see if a hole is available that will fit the process. If so, the process is assigned into that hole. . When a process is allocated space it is loaded into memory. When it terminates it releases memory.

An input queue exists for all processes waiting to be assigned memory. If process can't fit into memory, OS can wait until there is a hole large enough or go down input queue to find a process that fits into the existing hole. Processes on the input queue can be ordered by some scheduling algorithm.

Holes

Any given time there are many holes in memory.

Hole too big for process is split into two.

Holes that are released by process, if near another available hole is merged into that hole to form a larger hole.

Question - How do we satisfy a request of size n from a list of available holes? dynamic storage-allocation problem.

First fit - Place process in first hole that is big enough. Stop searching list of available holes as soon as we find one.

Best fit - Place process in smallest hole that is big enough. Need to search entire list unless list is ordered (maintaining a sorted list entails expense too) Produces smallest leftover hole

Worst fit - Give process largest hole. Need to search entire list unless list is ordered (maintaining a sorted list entails expense too) Produces largest leftover hole which may be more useful than the smaller leftover hole.

Which method to choose? best fit, first fit better than worst fit in terms of storage utilization. First fit and best fit equal for storage utilization, first fit is faster.

All these algorithms have external fragmentation. Phenomena when free space is broken into many small holes. Sum of holes can fit a process, but each individual hole can't.

Internal fragmentation - Given a 18,464 byte space, by placing a 18,462 byte process into it leaves a hole of 2 bytes. Overhead to keep track of such a small hole is larger than the hole itself. OS solution is to allocate memory in blocks. Hence a process can be smaller than the memory allocated to it. The left over space results in internal fragmentation.

Compaction - move processes to one end of memory, holes to other end. Can't be done if static addressing is used. Only can be done with dynamic addressing. Expensive.

Other solution - allow for noncontiguous assignment of memory to a process.

Paging -

physical memory is broken into fixed size blocks called frames.

logical memory is broken into same size blocks called pages.

backing store is also broken into same size frames.

Upon execution, a process is loaded from the backing store frames into physical memory frames.

Each address generated by the CPU has two parts, page number (p) and a page offset (d).

The page number is an index into a page table. The page table contains the base address of each page in physical memory. Each memory address is the base address plus the offset.

Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available.

Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 16MB).

Divide logical memory into blocks of same size called pages.

Keep track of all free frames.

To run a program of size n pages, need to find n free frames and load program.

Set up a page table to translate logical to physical addresses.

Address generated by CPU is divided into:

Page number (p) – used as an index into a page table which contains base address of each page in physical memory.

Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit.

If logical address space is size 2m and page size is 2n then there are 2m / 2n pages. p is represented by the m - n higher order bits and the offset d is represented by the n lower order bits.

[image: image1.png]
[image: image2.png]

[image: image3.png]
paging example with 32 byte memory with a 4 byte pages

May have internal fragmentation but no external fragmentation.

· Internal fragmentation is due to the last page not being completely filled.

· on average have 1/2 page per process of internal fragmentation.

· suggests smaller page size

· each page table entry requires some overhead which decreases with increased page size

· Typically today page sizes range from 4MB to 8 MB, sometimes higher

[image: image4.png]
 before allocation

after allocation

When a process arrives we see if enough frames are available in memory. Then each page is allocated to a frame and its location is recorded in the page table for that process. The user view of memory is different from physical memory.

Implementation of Page Table

Page table is kept in main memory. Page-table base register (PTBR) points to the page table.

Page-table length register (PRLR) indicates size of the page table.

In this scheme every data/instruction access requires two memory accesses. One for the page table and one for the data/instruction.

The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

Associative Memory

Associative memory – parallel search

[image: image5.png]
Address translation (A´, A´´)

If A´ is in associative register, get frame # out.

Otherwise get frame # from page table in memory

[image: image6.png]
Effective Access Time

Associative Lookup = (time unit

Assume memory cycle time is 1 microsecond

Hit ratio – percentage of times that a page number is found in the associative registers; ration related to number of associative registers.

Hit ratio = (
Effective Access Time (EAT)

EAT = (1 + () (+ (2 + ()(1 – ()

= 2 + (– (
Ex. 80% hit ratio

20 nanosecond Associative lookup

100 nanoseconds to access memory

Finding page in associative memory takes 100 + 20 = 120 nanoseconds.

If page is not in associative memory (20 nanoseconds) - access memory for page table and frame number = 100 nanoseconds

access desired byte in memory = 100 nanoseconds

EAT is sum of weighted probabilities.

0.80 * 120 + .20 *
 220 = 140 nanoseconds.

Memory Protection

Memory protection implemented by associating protection bit with each frame.

Valid-invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process’ logical address space, and is thus a legal page.

“invalid” indicates that the page is not in the process’ logical address space.

[image: image7.png]
Page Table Structure

· Hierarchical Paging

· Hashed Page Tables

· Inverted Page Tables

Hierarchical Page Tables

· Break up the logical address space into multiple page tables.

· A simple technique is a two-level page table.

Two-Level Paging Example

· A logical address (on 32-bit machine with 4K page size) is divided into:

· a page number consisting of 20 bits.

· a page offset consisting of 12 bits.

· Since the page table is paged, the page number is further divided into:

· a 10-bit page number.

· a 10-bit page offset.

· [image: image8.png]Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page of the outer page table.

[image: image9.png]
Address-translation scheme for a two-level 32-bit paging architecture

[image: image10.png]

Hashed Page Tables

· Common in address spaces > 32 bits.

· The virtual page number is hashed into a page table. This page table contains a chain of elements hashing to the same location.

· Virtual page numbers are compared in this chain searching for a match. If a match is found, the corresponding physical frame is extracted.

[image: image11.png]
Inverted Page Table

· One entry for each real page of memory.

· Entry consists of the virtual address of the page stored in that real memory location, with information about the process that owns that page.

· Decreases memory needed to store each page table, but increases time needed to search the table when a page reference occurs.

· Use hash table to limit the search to one — or at most a few — page-table entries.

[image: image12.png]
Shared Pages

· Shared code

· One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems).

· Shared code must appear in same location in the logical address space of all processes.

· Private code and data

· Each process keeps a separate copy of the code and data.

· The pages for the private code and data can appear anywhere in the logical address space.

[image: image13.png]
Segmentation

· Memory-management scheme that supports user view of memory.

· A program is a collection of segments. A segment is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

User’s View of a Program

[image: image14.png]
Logical View of Segmentation

[image: image15.png][image: image16.png]
Segmentation Architecture

· Logical address consists of a two tuple:

<segment-number, offset>,

· Segment table – maps two-dimensional physical addresses; each table entry has:

· base – contains the starting physical address where the segments reside in memory.

· limit – specifies the length of the segment.

· Segment-table base register (STBR) points to the segment table’s location in memory.

· Segment-table length register (STLR) indicates number of segments used by a program;

 segment number s is legal if s < STLR.

Segmentation Architecture (Cont.)

· Relocation.

· dynamic

· by segment table

· Sharing.

· shared segments

· same segment number

· Allocation.

· first fit/best fit

· external fragmentation

Segmentation Architecture (Cont.)

· Protection. With each entry in segment table associate:

· validation bit = 0 (illegal segment

· read/write/execute privileges

· Protection bits associated with segments; code sharing occurs at segment level.

· Since segments vary in length, memory allocation is a dynamic storage-allocation problem.

· A segmentation example is shown in the following diagram

Segmentation Hardware

[image: image17.png]
Example of Segmentation

Sharing of Segments

Segmentation with Paging – MULTICS

· The MULTICS system solved problems of external fragmentation and lengthy search times by paging the segments.

· Solution differs from pure segmentation in that the segment-table entry contains not the base address of the segment, but rather the base address of a page table for this segment.

MULTICS Address Translation Scheme

Segmentation with Paging – Intel 386

· As shown in the following diagram, the Intel 386 uses segmentation with paging for memory management with a two-level paging scheme.

Intel 30386 Address Translation

Frame #

Page #

d

p2

pi

12

10

10

page offset

page number

user space

4

2

3

1

physical memory space

3

2

4

1

