Virtual Memory

Virtual memory is a technique that allows a process to be larger than memory. Process need not be entirely in memory to be executed.

Why can we do this?

code to handle error conditions - not used often

Arrays, lists, tables are allocated more memory than they usually use.

Certain program subroutines may not be used often. (End of year check book reconciliation??)

Virtual memory – separation of user logical memory from physical memory.

Logical address space can therefore be much larger than physical address space.

[image: image1.png]page n

virtual

memory

memory
map

physical
memory

Allows address spaces to be shared by more processes by page sharing

The amount of physical space taken up by any one program would be less.

increase in CPU utilization and throughput

no increase in response or turnaround time.

Less I/O needed for swapping process in and out of memory. programs run faster

Virtual memory can be implemented via:

Demand paging

Demand segmentation - paged segmentation scheme where segments are partitioned into pages. segment-page replacement algorithms complex (For your advanced grad OS courses)

Demand Paging -

· Processes are in secondary memory (disk)

· When process is swapped into memory, only the page that is needed is swapped into memory.

· Uses a lazy swapper or pager to determine which pages get swapped in.

[image: image2.png]program
A

program
B

main
memory

swap out

swap in

Valid-Invalid Bit

· With each page table entry a valid–invalid bit is associated
(1 (in-memory, 0 (not-in-memory, either invalid logical address or on disk)

· Initially valid–invalid but is set to 0 on all entries.

· During address translation, if valid–invalid bit in page table entry is 0 (page fault.

[image: image3.png]logical
memory

frame

valid—invalid
bit

N
4 |v

\

page table

1

12

13

14

15

physical memory

Page Fault - access to a page marked invalid

· If there is ever a reference to a page, first reference will trap to
OS (page fault

· OS looks at another table to decide:

· Invalid reference (abort.

· Just not in memory.

· Get empty frame.

· Swap page into frame.

· Reset tables, validation bit = 1.

· Restart instruction

[image: image4.png]page is on
backing store

operating
system

®

reference

restart page table
instruction

free frame

O) ®

reset page bring in
table missing page

physical
memory

We save the state of the process before paging. After page is brought in process can resume at the same place where it left off.

Pure Demand paging - start a process with no pages in memory. Process page faults, bringing new pages into memory. Eventually the process will no longer page fault and can execute continuously. Here we never bring a page into memory until it is needed.

Performance of Demand Paging

Let memory access time = ma
Let p be the probability of a page fault. Then 1 - p is the probability that a page is in memory.

If there are no page faults then the eat (effective access time) is
equal to the memory access time.

With page faults then

eat = (1-p)ma + p(page fault time)

Page fault time:

1. Trap to OS

2. Save process state

3. check if interrupt was page fault

4. check to see if page fault (not logical address error

5. read from disk to free frame

6. allocate CPU to some other process

7. Interrupt from disk (I/O completed)

8. save registers and state of other process

9. determine interrupt was from disk

10. correct tables to indicate page is now in memory

11. wait for process to be reallocated CPU

12. restore registers, process state, and new page table and resume instruction execution

Assume an average page fault time of 25 milliseconds, and ma of 100 nanoseconds then we have:

eat = (1-p)100 + p(25,000,000)

 = 100 + 24,999,900p

Essential eat is proportional to page fault rate.

if 1/1,000 pages causes a page fault, the eat time is 25

(1 - .001)100 + .001(25,000,000)

(1 - .1) + 25,000 ~ = 25,000

Compared to a memory access time of 100, demand paging slows the system 250 times.

If we wanted degradation of no more than 10%

110 > 100 + 25,000,000p

10 > 25,000,000p

p < 0.0000004

Page Replacement

· Prevent over-allocation of memory by modifying page-fault service routine to include page replacement.

· Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk.

· Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory.

Need frame allocation algorithm. How many frames does each process get?

Page replacement algorithm. Experimental. Try with a string of page references called a reference string.

random generation

use info from real system

[image: image5.png]valid—invalid

frame
y

bit

y

3
4
5

A
A
A

logical memory
for user 1

page table
for user 1

valid—invalid

frame
\

bit

y

6

A

D

E

2

A

7

A

logical memory
for user 2

page table
for user 2

monitor

}

E

physical
memory

Basic Page Replacement
1.Find the location of the desired page on disk.

2.Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement algorithm to select a victim frame.

3.Read the desired page into the (newly) free frame. Update the page and frame tables.

4.Restart the process.

[image: image6.png]valid—invalid bit

frame\‘ f

swap out
change victim

to invalid @ F‘iJe/
—
=
@ victim
reset page
table for @ -

new page

page table

swap
desired

page in

physical
memory

Page Replacement Algorithms

· Want lowest page-fault rate.

· Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string.

· In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

First-In-First-Out (FIFO) Algorithm

· Associate with each page the time it was brought into memory (can use a fifo queue)

· Oldest page is replaced first.

· Easiest to program but not very efficient.

· What if oldest page contains a variable that is used early and often?

· Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

· 3 frames (3 pages can be in memory at a time per process)

[image: image7.png]reference string

7 0 1 2 o0 3 0 4 2 8 0 8 2 1t 2 o0 1 7 0 1
2| (2] [4] 4] [4] [© o 19
L] 1 (o) EERE
HR N K R CRCRERERE

page frames

[image: image8.png]reference string

7 o 1 2 o0 3 0 4 2 3 0 3 2 1 2 o0 1
EREE R . B B
HNRERE

page frames

· [image: image9.png]reference string

7 o0 1 2 o0 3 O 4 2 383 0 3 2 1 2 0 1 7 0 1
ERERER
HC R N C R C R EYE o |9
HRNRERE

page frames

4 frames

[image: image10.png]reference string

4 7 0 7

stack before a stack after b

· FIFO Replacement – Belady’s Anomaly

· more frames (less page faults, empirically this may not be the case.

Optimal Algorithm

· Replace page that will not be used for longest period of time.

· 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

[image: image11.png]g
5
3

8

b=l

§

£

s

5

page numbers

s e u

T

!
\‘\ H‘ulu y

1l | ‘\L

H w\ L il

T e

‘1‘ \‘ l"“\” A ‘u il

‘ ‘MM H"‘;\‘H“H‘Uh\\HU‘M L sy

el

S . b I

(RIN
i

w\i ‘UWMHH Wmuw\Hml” ‘WWH iy HH”
. |

umm\Hmnwummuuum\l “ LA LA
i Ll

T
HHUH Ll HMIHH Ty

wl‘uWﬂ I

S

AR ‘ i ‘y et

" g ¢ o

R

execution time ———

[image: image12.png]| thrashing

c
Q
©
N
=
)
o
O

degree of multiprogramming

[image: image13.png]page reference table
...2615777751623412344434344413234443444...

WS(t,) = {1,2,5,6.7} WS(t,) = {34}

· How do you know this? Optimal page replacement difficult to implement since you need prior knowledge of page requests.

· Used for measuring how well your algorithm performs.

FIFO

Optimal

Least Recently Used (LRU) Algorithm

Use recent past as an approximation to the future.

FIFO vs. OPT FIFO uses time page was brought into memory. OPT uses time the page was will be used.

LRU - Replace the page that was has not been used for the longest amount of time.

· Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

LRU Page Replacement

LRU Algorithm (Cont.)

Difficulty with LRU is how to implement it.

· Counter implementation

· Every page entry has a counter;

· implement a clock register that gets incremented for each page reference

· every time page is referenced through this entry, copy the clock into the counter.

· When a page needs to be changed, look at the counters to determine which are to change.

· Need to search the page table to find LRU page

· need write to memory for counter each time you have a memory access
· Stack implementation – keep a stack of page numbers in a double link form:

· Page referenced:

· move it to the top

· requires 6 pointers to be changed

· No search for replacement

High overhead for LRU. Hardware support needed because update of clock fields and stack needs to be done for each memory access.

LRU Approximation Algorithms

Most computer systems offer some hardware support for LRU but not enough.

Can approximate LRU using minimal hardware by:

· Reference bit

· With each page associate a bit, initially = 0

· When page is referenced bit set to 1.

· Replace the one which is 0 (if one exists). We do not know the order, however.

Additional reference bits

Use an 8 bit byte

At a specified time interval the bits shift right.

Smallest number is the LRU page (00000000) 00110111 used less recently than 11000111

Can have FIFO ordering among pages with same number.

· Second chance - basically a FIFO replacement

· Need reference bit.

· Clock replacement.

· If page to be replaced (in clock order) has reference bit = 1. then:

· set reference bit 0.

· leave page in memory.

· replace next page (in clock order), subject to same rules.

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

· Keep a counter of the number of references that have been made to each page.

· LFU Algorithm: replaces page with smallest count. Actively used pages should have large count. Problem, page can be actively used in beginning and then remain in memory. Partial solution is to shift bits at time intervals.

· MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used.

Allocation of Frames

· Each process needs minimum number of pages. As number of frames allocated to a process decreases, page fault rate increases Minimum set of frames defined by instruction set architecture.

· page faults that occur before an instruction is complete necessitates the instruction to be restarted

· Need enough frames for any single instruction to execute.

· Example: IBM 370 – 6 pages to handle Storage to Storage MOVE instruction:

· instruction is 6 bytes, might span 2 pages.

· 2 pages to handle from.

· 2 pages to handle to.

· Two major allocation schemes.

· fixed allocation

· priority allocation

Fixed Allocation

· Equal allocation – e.g., if 100 frames and 5 processes, give each 20 pages.

· Proportional allocation – Allocate according to the size of process.

No differentiation between high priority and low priority processes.

High priority process might want to allocate more frames so that it can finish faster.
Priority Allocation

· Use a proportional allocation scheme using priorities rather than size.

· If process Pi generates a page fault,

· select for replacement one of its frames.

· select for replacement a frame from a process with lower priority number.

Global vs. Local Allocation

· Global replacement – process selects a replacement frame from the set of all frames; one process can take a frame from another.

process can increase the number of frames allocated it.

processes can't control it's own page fault rate. Page fault rate depends not only on the process' behavior but the behavior of other processes.

· Local replacement – each process selects from only its own set of allocated frames.

number of frames allocated to a process doesn't change.

set of pages in memory determined by paging behavior of process.

downside, infrequently used pages in memory are not available.

Thrashing

· If a process does not have “enough” pages, the page-fault rate is very high. This leads to:

· low CPU utilization.

· operating system thinks that it needs to increase the degree of multiprogramming.

· another process added to the system

· Global page replacement --> other process pages replaced which may need pages causing page faults and the cycle continues

· page fault rate increases

· throughput decreases

· effective memory access time increases

· Use local page replacement

· even though a thrashing process can't steal frames from another process, process is in queue for paging device, causing effective access time will increase even for a process that is not thrashing.

· Thrashing (a process is spending more time paging than executing.

Thrashing

· Why does paging work?
Locality model

· Process migrates from one locality to another.

· Localities may overlap.

· Why does thrashing occur?
(size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model

· ((working-set window (a fixed number of page references
Example: 10,000 instruction

· WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ((varies in time)

· if (too small will not encompass entire locality.

· if (too large will encompass several localities.

· if (= ((will encompass entire program.

· D = (WSSi (total demand frames

· if D > m (Thrashing

· Policy if D > m, then suspend one of the processes.

Working-set model

Keeping Track of the Working Set

· Approximate with interval timer + a reference bit

· Example: (= 10,000

· Timer interrupts after every 5000 time units.

· Keep in memory 2 bits for each page.

· Whenever a timer interrupts copy and sets the values of all reference bits to 0.

· If one of the bits in memory = 1 (page in working set.

· Why is this not completely accurate?

· Improvement = 10 bits and interrupt every 1000 time units.

Page-Fault Frequency Scheme

Set upper and lower bounds on the page fault rate. Rate above upper bound process gains frames, below lower bound looses frames.

· Establish “acceptable” page-fault rate.

· If actual rate too low, process loses frame.

· If actual rate too high, process gains frame.

4

3

5

1

4

3

2

1

3

2

1

2

3

4

4

5

4

2

1

5

3

2

1

3

2

1

9 page faults

10 page faults

5

4

6 page faults

4

3

2

1

5

3

4

4

5

3

2

1

