Chapter 12: File System Implementation

· File System Structure

· File System Implementation

· Directory Implementation

· Allocation Methods

· Free-Space Management

· Efficiency and Performance

· Recovery

· Log-Structured File Systems

· NFS
Disk Characteristics
· rewritten in place, blocks can be read, modified and then placed back in same location

· direct access to any given block.

· files are accessed sequentially or randomly

· transfers from memory to disk are done in units of blocks

· blocks are made up of sectors

File Systems

· allows data to be stored, located and retrieved easily
· Most OS's allow for multiple types of file systems
· i.e. CD - High Sierra format, Unix file system (UFS), Windows: FAT, FAT32, NTFS (Windows NT File System)
File-System Structure

· File structure

· Logical storage unit

· Collection of related information

· File system resides on secondary storage (disks).

· File system organized into layers.

· File control block – storage structure consisting of information about a file.

Layered File System
· I/O control - consist of device drivers.
· device driver "translates" high level commands such as retrieve block 123 to low level hardware-specific instructions.
· basic file system - issues commands to device driver to read and write physical blocks on disk
· file-organization module - takes logical block addresses and translates these to physical block addresses. Also contains free space module which tracks available blocks on disk
· logical file system - manages metadata information. all file-system structure except actual files themselves. Manages directory structure. Maintains file structure using FCB (file control blocks)
· FCB - contains info about file, including ownership, permissions, and location of the file contents.

[image: image31.png]
A Typical File Control Block

[image: image2]
Disk Structure
boot control block - info need by system to boot OS. first block of partition

UFS - boot block, NTFS partition boot sector

partition control block - info on number of blocks in partition, size of blocks, free-block count and free-block pointers, free FCB count and FCB pointers UFS - superblock, NTFS Master File Table
In-Memory File System Structures
in-memory partition table with info on mounted partitions.
system-wide open-file table - copy of FCB of open files

per-process open-file table - pointers to appropriate files in open file table.
Create a file: application program calls logical file system. LFS allocates new FCB, gets appropriate directory and updates it with new file name and FCB. Writes this directory back to disk.
· The following figure illustrates the necessary file system structures provided by the operating systems.
· Figure 12-3(a) refers to opening a file.
· search directory for file name
· copy FCB into system-wide open file table
· make entry in per process open file table, can include pointer to next read or write operation.
· entry called file descriptor in UNIX

· called file handle in windows.

· Close file -
· entry removed from per process open file table
· count in system wide table decremented

· when all users of file have closed the file, updated file information is written to disk directory and FCB removed from system-wide open file table
· Figure 12-3(b) refers to reading a file.
In-Memory File System Structures

[image: image3]
Partitions and Mounting
· raw disk - contains no file system. used when file system not needed such as a swap space.

· used in raid systems to indicate which blocks are mirrored and which have changed and need to be mirrored.

· Boot information stored in separate partition - at boot time disk doesn't have file system.

· root partition containing OS kernel and other system files is mounted at boot time.
Virtual File Systems

· Virtual File Systems (VFS) provide an object-oriented way of implementing file systems.
· VFS allows the same system call interface (the API) to be used for different types of file systems.
· The API is to the VFS interface, rather than any specific type of file system.
Schematic View of Virtual File System

[image: image4]
File System interfaced - implements - open, rad, write, and close calls, and file descriptors.
Virtual File System (VFS) - distinguishes local files from network files

· interfaces between generic file system operations to the implementation of these.

· vnode - file representation structure. contains numerical designator for network- wide unique file, Allows for support of NFS (network file system) One vnode is maintained by the kernel for each file directory.
Directory Implementation

· Linear list of file names with pointers to the data blocks.

· simple to program

· time-consuming to execute - need to search entire list when want to add or delete a file

· Hash Table – linear list with hash data structure.

· decreases directory search time

· collisions – situations where two file names hash to the same location

· main disadvantage is the fixed size and dependence of hash function on size.
· solution - increase bins by changing hash function. Then have to reorganize table based on new hash function

· can use linked lists to chain files that collide into same bin. This can slow down lookups

Allocation Methods

· An allocation method refers to how disk blocks are allocated for files:

· Contiguous allocation

· Linked allocation

· Indexed allocation

Contiguous Allocation

· Each file occupies a set of contiguous blocks on the disk. Minimal disk seeks, therefore good performance.

· Simple – only starting location (block #) and length (number of blocks) are required.

· Supports sequential and Random access. (Next block read is b + 1, to read block i read block b + i)

· Wasteful of space (dynamic storage-allocation problem - just like memory allocation, how to satisfy a request of size n with a list of free holes).
· First fit and best fit algorithms used

· Hard to find space for new file

· External fragmentation

· run compacting algorithms - time consuming

· when compacting done, system was down, no other work could be done on system

· Files cannot grow.
· Hard to determine apriori how much space you nee for a file

· program is terminated and then rerun with more space

· overestimate space needed, wasteful

· suspend execution, copy program to new larger hole and resume execution. Still time consuming but user not aware of problem.
Contiguous Allocation of Disk Space

[image: image5]
Extent-Based Systems

· Many newer file systems (I.e. Veritas File System) use a modified contiguous allocation scheme.

· Extent-based file systems allocate disk blocks in extents.
· when one contiguous block is filled we allocate another contiguous block called an extent.
· An extent is a contiguous block of disks. Extents are allocated for file allocation. A file consists of one or more extents.
· can have both internal (extent is too large) and external fragmentation
Linked Allocation

· Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk. Directory contains pointer to first and last block of file.
[image: image1]
Linked Allocation (Cont.)

· Simple – need only starting address

· Free-space management system – no waste of space, don't need to declare size of file at creation, any free block can satisfy request for more space
· No random access, to find ith block of a file we have to follow the pointers
· Each file needs to have space to accommodate pointers.

· collect blocks into clusters and allocate clusters instead of blocks, i.e. four blocks to a cluster and the cluster becomes the new unit of allocation.

· now less space needed for pointers

· logical to physical space mapping still simple

· improves throughput, less disk head seeks

· decreases the space needed for block allocation and free-list management

· more internal fragmentation

· Can have problems with reliability, bug in OS causes pointer to be lost. Can use doubly linked lists to restore pointers but this involves increase in overhead
Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Displacement into block = R + 1

Linked Allocation

[image: image6]
File-allocation table (FAT) – disk-space allocation used by MS-DOS and OS/2. Section of disk at beginning of each partition set aside to hold table.
· table has entry for each block, indexed by block number, contains the next block following the indexed block

· directory contains block number of first block of file.

· last block in file indicated with eof marker in file table.

· Allocating new block means finding first 0 block in table

· Unless table is cached, can have more disk head seeks

· disk head reads start of partition for FAT

· then moves to block

· Search of file table for ith block faster, random access time improved

File-Allocation Table

[image: image7]
Indexed Allocation

· Brings all pointers together into the index block. Each file has its own index block
· Index block is an array of disk block addresses, ith entry in array is ith block of file
· Each file has its own index block
· directory contains pointers to file index blocks
· supports random access without external fragmentation because any free block on disk an satisfy a request or more space
· pointer overhead greater than linked allocation
· suffers from wasted space, one block is always needed to store pointers. If small file, linked allocation method may use less space to store pointer information. Mapping from logical to physical in a file of maximum size of 256K words and block size of 512 words. We need only 1 block for index table and 1 block for file.

· Logical view.

[image: image8]
[image: image19.png]
Example of Indexed Allocation

[image: image9]
[image: image20.png]
[image: image10]
[image: image21.png]

[image: image11]

[image: image12]
Combined Scheme: UNIX (4K bytes per block)

[image: image13]
· First twelve blocks point directly into file. Small files can be pointed to directly.

· Next block points to index block with pointers into data

· Next block is a double indirect block which points to a single indirect block which points to index blocks which point to the blocks of the file.

· There can be a triple indirect block

· If we have 32 bit pointers we can access 4 GB of disk space. 64 bit pointers can allow file systems to be terabytes in size.

Free-Space Management
· Free space list used to keep track of available space. Lists all free blocks.

· Bit vector (n blocks)

[image: image14]
Given blocks 2,3,4,5,8,9,10,11, 12, 13, 17, 18, 25, 26, and 27 are free:

00111100111111000110000001110000….

Can simply and efficiently find the first free block.
Apple Macintosh - scan for first word with nonzero value, find first bit in word that contains a bit, therefore:

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit
Bit Vectors can take up large amounts of room in memory for large disks. Bit Vectors most effective when kept in memory.
Free-Space Management (Cont.)

· Bit map requires extra space. Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

· Easy to get contiguous files

· Linked list (free list) - link together all free disk blocks, ieeping a pointer to the first free block in a special location on the disk and caching it in memory.
Linked Free Space List on Disk

[image: image15]
· Traversing list can be time consuming, but not done often. Mostly need to find first fee block

· Cannot get contiguous space easily

· No waste of space

· Grouping - store addresses of n free blocks in first free block. addresses of large numbers of free blocks can be found quickly.
· Counting - contiguous blocks may be allocated and freed simultaneously. keep address of first free block and the number n of free contiguous blocks that follow the first block. Each entry in the free space list consist of a disk address and a count.
Free-Space Management (Cont.)

· Need to protect:

· Pointer to free list

· Bit map

· Must be kept on disk

· Copy in memory and disk may differ.

· Cannot allow for block[i] to have a situation where bit[i] = 1 in memory and bit[i] = 0 on disk.

· Solution:

· Set bit[i] = 1 in disk.

· Allocate block[i]

· Set bit[i] = 1 in memory

Efficiency and Performance

· Efficiency dependent on:

· disk allocation and directory algorithms

· types of data kept in file’s directory entry

· Performance - Using main memory to improve performance
· disk cache – separate section of main memory for frequently used blocks

· free-behind and read-ahead – techniques to optimize sequential access

· improve PC performance by dedicating section of memory as virtual disk, or RAM disk.

Various Disk-Caching Locations

[image: image16]
Page Cache

· A page cache caches pages rather than disk blocks using virtual memory techniques caches data as [ages rather than file system-oriented blocks.
· Memory-mapped I/O uses a page cache.

· Routine I/O through the file system uses the buffer (disk) cache.

· This leads double caching when doing memory-mapped I/O. Slows performance because of extra CPU and I/O cycles to writ file system data twice.
I/O Without a Unified Buffer Cache

[image: image17]
Unified Buffer Cache

· A unified buffer cache uses the same page cache to cache both memory-mapped pages and ordinary file system I/O. Avoids double caching and virtual memory system can manage file-system data.
I/O Using a Unified Buffer Cache

[image: image18]
LRU algorithm used for page or block replacement.
Sometimes LRU not efficient algorithm for files written sequentially. Most recently used page will be used last or maybe never again.

· Free behind - remove page from buffer as soon as next page is being read

· Read ahead - requested page and several subsequent pages are read into memory.

· RAM disks - (virtual disk) - RAM disk device driver accepts all the standard disk operations but performs those operations on the memory section, instead of on a disk. All disk operations can be done on RAM disk, since in memory, high speed.

Recovery

Files and directories are kept both in memory and disk. Need to insure that system failure doesn't result in loss of data of data inconsistency.

Directory info in memory is more up to date than that on disk. System crash can cause the table of opened files to be lost and any directory changes for these files to be lost as well.
· Consistency checking – compares data in directory structure with data blocks on disk, and tries to fix inconsistencies.
· allocation and free space management algorithms determine what types of problems can occur.

· linked allocation - reconstruct directory by following links in file

· indexed allocation - loss of directory very bad!! - reads are cached but writes to directory are done synchronously. (synchronous writes are not buffered but placed directly to disk)

· Use system programs to back up data from disk to another storage device (floppy disk, magnetic tape).

· Recover lost file or disk by restoring data from backup.

Log Structured File Systems
· Log structured (or journaling) file systems record each update to the file system as a transaction.

· All transactions are written to a log. A transaction is considered committed once it is written to the log. However, the file system may not yet be updated.

· The transactions in the log are asynchronously written to the file system. When the file system is modified, the transaction is removed from the log.

· If the file system crashes, all remaining transactions in the log must still be performed.

block =

pointer

Q2 = displacement into block of index table

R2 displacement into block of file:

R2

Q2

index table

R1 / 512

Q1 = displacement into outer-index

R1 is used as follows:

R1

Q1

LA / (512 x 512)

Two-level index (maximum file size is 5123)

Indexed Allocation – Mapping (Cont.)

Q2 = displacement into block of index table

R2 displacement into block of file:

R2

Q2

R1 / 512

Q1 = block of index table

R1 is used as follows:

R1

Q1

LA / (512 x 511)

To accommodate larger size files we can link together several blocks. Mapping from logical to physical in a file of unbounded length (block size of 512 words).

Linked scheme – Link blocks of index table (no limit on size). Last entry in block points to next index block.

A variation on this is to use a two level index where the first index points to other index blocks. With blocks of 4MB, we can store 1,024 4 byte pointers which can address. This means we can address 4,294,967,296 or 4GB of space.

Adding more layers can allow us to address larger spaces.

Indexed Allocation – Mapping (Cont.)

Q = displacement into index table

R = displacement into block

R

Q

LA/512

Need index table

Random access

Dynamic access without external fragmentation, but have overhead of index block.

Mapping from logical to physical in a file of maximum size of 256K words and block size of 512 words. We need only 1 block for index table.

How large should we make the index block? We need blocks not to take up too much space for small files, but large enough to handle large files.

Indexed Allocation (Cont.)

…

0

1

2

n-1

bit[i] =

{

0 (block[i] free

1 (block[i] occupied

[image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png][image: image29.png][image: image30.png]