Processes

Classic process - A program in execution.

The Classic Process

Definition of Process

· A program in execution

· A process has its own address space consisting of:

· Text region

· Stores the code that the processor executes

· Stack region

· Stores instructions and local variables for active procedure calls

Program in execution

Process contains:

· text section - program code

· program counter - encapsulates current activity (has address of next instruction)

· Data region - Stores variables and dynamically allocated memory

· process stack - temporary and global data, Stores instructions and local variables for active procedure calls

Process can be in one of several different states:

[image: image1.png]Request

Wait by
parent Done .
Running
zombie Schedule
Sleepin
pne . Start
Runnable
Resume
Uninterruptible Traced or Stopped

Sleep

A process that is first created is ready to run on the processor. It waits for the scheduler or process manager to determine when it gets the processor.

Once a process gests the processor, it is in the running state.

process in running state when makes a request for resource is either given the resource or must wait for it . If it needs to wait it becomes blocked

Only one process can be running on any processor at any given time. Multiple processes can be ready or suspended

Process State

· As a process executes, it changes state
· new: The process is being created.

· running: Instructions are being executed.

· waiting: The process is waiting for some event to occur.

· ready: The process is waiting to be assigned to a process.

· terminated: The process has finished execution.

UNIX State Diagram

[image: image2.png]System Lall
fork

exec
wait
signal

exit

nice

Pescriplion

Spawns a child process and allocates to that process a copy of
its parent’s resources.

Loads a process's instructions and data into its address space
from a file.

Causes the calling process to block until its child process has
terminated.

Allows a process to specify a signal handler for a particular sig-
nal type.

Terminates the calling process.

Modifies a process’s scheduling priority.

Process Control Block - information about a process

· Processes are represented in the OS by a PCB.

· Process state - running, blocked, ready, done

· Program counter - contains address of next instruction to be executed

· CPU registers - accumulators, general registers, index registers, etc. all form the state information of the process

· CPU scheduling info (such as priority)

· Memory management info (info on primary memory allocated to process)

· Accounting information - amount of CPU time used, time limits, account numbers, process id, etc.

· I/O status information - I/O devices allocated to process, list of open files, etc.

[image: image3.png]admitted interrupt

) scheduler dispatch
I/0 or event completion I/O or event wait

Process Scheduling Queues

· Job queue – set of all processes in the system.

· Ready queue – set of all processes residing in main memory, ready and waiting to execute.

· Device queues – set of processes waiting for an I/O device. Each device has its own device queue

· Processes migrate between the various queues.

Representation of Process Scheduling

[image: image4.png]pointer process

process number

program counter

registers

memory limits

list of open files

· New process is placed on ready queue. Once dispatched to the CPU it can:

· issue an I/O request - placed on I/O queue

· kicked out of CPU because allocated time has expired - goes to ready queue

· create a child process and wait for its termination - zombie queue

· interrupt occurs - process goes to ready queue

Schedulers - selects processes from the queues for CPU execution

· Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue from disk storage (batch systems)

· Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU.

Addition of Medium Term Scheduling

Schedulers (Cont.)

· Short-term scheduler is invoked very frequently (milliseconds) ((must be fast).

· Long-term scheduler is invoked very infrequently (seconds, minutes) ((may be slow).

· The long-term scheduler controls the degree of multiprogramming.

· Processes can be described as either:

· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts.

· CPU-bound process – spends more time doing computations; few very long CPU bursts.

Long term scheduler needs to select jobs so that there is a good mix of I/O bound and CPU bound jobs.

What would happen if there were too many I/O bound jobs? CPU bound jobs?

UNIX - no long term scheduler. Process mix determined by hardware limitations (i.e. number of terminals) Human factors - people will quit when system is slow.

Medium Term scheduler - In some OS. Removes processes from memory. Reduces the degree of multi programming. Not enough memory for some process to run, need to free up memory.

The context of a process is represented by its PCB. During a context switch the contents of a process' PCB is copied into secondary storage and the new process' PCB is loaded into memory. The time used for context switching is pure overhead for an OS, since no process work is being done.

Processes can create other processes.

Creating process is the parent, the created process is the child.

Child resource allocation -

· get directly from operating system

· get some subset of parent's resources

· parent can partition its resources among children

· parent can share resources with children

· restricting a process to parent's resources prevents any one process from overloading the system

· besides resources process may inherit data from parent

Parent process, after creating child can execute concurrently with child or wait for some or all child processes to finish execution

Address space of child can be a duplicate of parent process or has some other program loaded into it.

Process Termination

Process terminates when finished executing and sends OS the exit system call. OS can delete system, causing process to send data back to parent (via the wait system call) Process resources are returned to the system

Other reasons for termination

· Other process terminates it

· done by parent process

· parent must know child pid

· reasons

· child exceeds use of resources allocated it

· child's task no longer needed

· parent is exiting, OS does not allow existence of children without parent (cascading termination)

Interprocess Communication (IPC)

· Mechanism for processes to communicate and to synchronize their actions.

· Message system – processes communicate with each other without resorting to shared variables.

· IPC facility provides two operations:

· send(message) – message size fixed or variable

· receive(message)

· If P and Q wish to communicate, they need to:

· establish a communication link between them

· exchange messages via send/receive

· Implementation of communication link

· physical (e.g., shared memory, hardware bus)

· logical (e.g., logical properties)

–Popular implementation is a pipe

•A region of memory protected by the OS that serves as a buffer, allowing two or more processes to exchange data

Implementation Questions

· How are links established?

· Can a link be associated with more than two processes?

· How many links can there be between every pair of communicating processes?

· What is the capacity of a link?

· Is the size of a message that the link can accommodate fixed or variable?

· Is a link unidirectional or bi-directional?

Direct Communication

· Processes must name each other explicitly:

· send (P, message) – send a message to process P

· receive(Q, message) – receive a message from process Q

· Properties of communication link

· Links are established automatically.

· A link is associated with exactly one pair of communicating processes.

· Between each pair there exists exactly one link.

· The link may be unidirectional, but is usually bi-directional.

Indirect Communication

· Messages are directed and received from mailboxes (also referred to as ports).

· Each mailbox has a unique id.

· Processes can communicate only if they share a mailbox.

· Properties of communication link

· Link established only if processes share a common mailbox

· A link may be associated with many processes.

· Each pair of processes may share several communication links.

· Link may be unidirectional or bi-directional.

Indirect Communication

· Operations

· create a new mailbox

· send and receive messages through mailbox

· destroy a mailbox

· Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Indirect Communication

· Mailbox sharing

· P1, P2, and P3 share mailbox A.

· P1, sends; P2 and P3 receive.

· Who gets the message?

· Solutions

· Allow a link to be associated with at most two processes.

· Allow only one process at a time to execute a receive operation.

· Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

· Message passing may be either blocking or non-blocking.

· Blocking is considered synchronous

· Non-blocking is considered asynchronous

· send and receive primitives may be either blocking or non-blocking.

· blocking send - sending process is blocked unitl the message is received by the receiving process or by the mailbox

· Nonblocking send - sending process sends the message and resumes operation

· Blocking receive receiver blocks until a message is available

· Nonblocking receive - receiver retrieves either a valid message or a null

Buffering

messages exchanged by communicating processes reside in a temporary queue

Queue of messages attached to the link; implemented in one of three ways.

1.
Zero capacity – 0 message length, link has no messages waiting in it
Sender must wait for receiver (rendezvous). sender blocks

2.
Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

zero capacity - no buffering, bounded and unbounded capacity called buffered

 Case Study: UNIX Processes

· UNIX processes

· All processes are provided with a set of memory addresses, called a virtual address space

· A process’s PCB is maintained by the kernel in a protected region of memory that user processes cannot access

· A UNIX PCB stores:

· The contents of the processor registers

· PID

· The program counter

· The system stack

· All processes are listed in the process table

 Case Study: UNIX Processes

· UNIX processes continued

· All processes interact with the OS via system calls

· A process can spawn a child process by using the fork system call, which creates a copy of the parent process

· Child receives a copy of the parent’s resources as well

· Process priorities are integers between -20 and 19 (inclusive)

· A lower numerical priority value indicates a higher scheduling priority

· UNIX provides IPC mechanisms, such as pipes, to allow unrelated processes to transfer data

Case Study: UNIX Processes

[image: image5.png]ready queue

B

I/0 queue

f——

1/0 request

child
executes
interrupt
occurs

time slice
expired

fork a
child

wait for an
interrupt

