Operating Systems Lecture Notes 1 - What is an operating system?

Operating System -

Why learn about operating systems?

By knowing how an operating system works, we can exploit this knowledge when designing applications.

Computer System - consists of hardware and software

hardware - central processing unit, memory, and input/output (I/O) devices

software -

1) application software - defines ways in which resources are used to solve user problems. solves a specific problems (medical office database system) or provides tools for end users (Microsoft office).

2) end users view their computer based on the application software.

a) bank teller's view

b) CSI computer student view

c) CSI English student view

d) Intel employee view

3) system software - provides the programming environment used to create application software

a) programming tools - compilers, editors

b) abstractions - resources not associated with any specific hardware component Ex. files and objects.

c) allows application programs to share hardware.

d) operating system - system software that manages the use of the hardware by other system software and application software. Software closest to the hardware.

operating systems -

1) provides an interface with the hardware used by other system programs and application programs

2) domain independent, supports wide range of application programs.

3) provides "resource abstractions" for application programs to use

4) allows application to share hardware resources.

5) maximizes resource utilization

6) one program running all the time on a computer system (kernel)

Resource Abstraction - means of hiding from the user the nuts and bolts details of how the hardware operates

cout << "stuff";

prints stuff on standard output device. iostream library contains code that talks to the operating system. operating system has code (drivers) that will write stuff to the standard output device (screen).

Resource Sharing - Dedicated computer running one process at a time.

We have two processes. One, a DBMS, does a lot of disk access. The other, a CAD program, does more memory access. How might these two programs be executed to maximize computer resources?

What is the difference between the time needed to access memory as opposed to disk? Why is it desirable to keep as much data in memory as possible when running an application?

concurrent execution (concurrency) - when the OS gives the appearance that two processes are operating at the same time.

parallel execution - two processes are actually executing simultaneously

In order to do concurrent or parallel execution, the OS must allow for some way to share resources among processes.

Transparent sharing - User is not aware that resources are being shared. Multiple program executions running on an abstract machine which is a simulation of a real computer. Programs executing on abstract machines are called processes.

1) space-multiplexed sharing - processes "occupy" different parts of the computer, i.e. one is doing disk reads while another executes in memory

2) time-multiplexed sharing - each process gets a set time period within which to use the resource, when the process' time finishes, the process relinquishes the resource to some new process.

Explicit resource sharing - processes use their own strategy for sharing resources.

Operating system strategies over the years -

MAINFRAME SYSTEMS

Batch Systems - early computer systems. OS job was to transfer control of the computer from one "job" to the next.

job - a computer program, its data, and control information about the job

Computer operators would "batch" jobs that had similar needs together and then run them through the computer as a group.

This scheme resulted in much idle I/O time. "Old days" I/O time was on the order of about 3 orders of magnitude slower than the CPU. Even though today I/O devices are faster, the CPU's have also gotten faster. The discrepancy between CPU and I/O times has increased.

As disk drive technology progressed, jobs were able to be kept on disk. This allowed direct access to jobs. They no longer needed to be sequentially read from a card reader.

multiprogramming - OS maintains multiple abstract machines by space-multiplexing memory and time-multiplexing the processor. Processes are scheduled so that the CPU always has a job to execute. A job holds the processor until it needs to do

1) Suppose we have n processes, p1, p2, p3, …, pn that take time t1, t2, t3, …, tn for execution.

a) What would be the total execution time on a system without multiprogramming?

b) What would be the maximum amount of time needed if the system were able to schedule its I/O and memory use perfectly? (i.e. each process uses a different component of the computer at a different time)

Let the time to execute N processes be equal to T. In a multiprogramming system, maximum(t1, t2, t3, …, tn) <= T and T <= t1 + t2 + t3, + …+ tn
Time sharing (multitasking) systems - CPU executes jobs by switching among them. Switching occurs so frequently that the user can interact with a program while it is running.

direct communication between the user and the operating system or program

allows for many users to share the same computer simultaneously

Uses CPU scheduling and multiprocessing schemes. No longer have jobs. Now a program that is loaded into memory and is executing is called a process.

(1) several processes kept in main memory - memory management and protection

(2) processes swapped in and out of memory using the disk as a backup. Uses virtual memory

(a) technique that allows the execution of a job that may not be completely in memory

(b) programs can be larger than physical memory

(3) concurrent execution of processes - CPU scheduling

(4) job synchronization and communication

(5) process management

DESKTOP SYSTEMS - Goal is not to maximize CPU and peripheral use, but for ease of use by users.

Examples of desktop OS - MACOS, windows, MS-DOS, OS/2, Linux, MacOS X,

Needs of desktop systems different from mainframe systems since individuals have sole use of the computer i.e. CPU utilization and sharing not as much a factor. Do have virtual memory and multitasking.

Initially, file protection was not an issue, but now that many PCs are on LANs there is need for file protection. Without good file protections, worms or viruses can destroy files.

MULTIPROCESSOR SYSTEMS

Sometimes known as parallel systems or tightly coupled systems.

Advantages over multiple single processor systems:

1) increase number of processes executed, Use more than one processor to execute a process.

2) more economical, share peripheral devices and other resources

3) more reliable - if a processor fails, the system can still function

a) graceful degradation - performance of a system is a function of the level of the currently working hardware

b) fault tolerant system - have graceful degradation

Tandem systems - one processor is primary the other is backup. Process is run on both processors. At specific intervals the state of the process, including memory is copied to disk.. OS checks for failure of processor. If failure execution resumes from last disk backup.

symmetric multiprocessing (SMP) - OS runs on each processor. Processors communicate with each other. N processes can run on N processors simultaneously. I/O needs to be monitored so that data reaches the correct processor. To avoid having any one processor overloaded while another sits idle, certain resources such as memory is shared among processors. Windows NT, Linux, Solaris, some UNIX, OS/2 have support for SMP

asymmetric multiprocessing - Master processor controls system, slave processors "ask" master for instructions or are assigned a specific task by the master.

because of low cost processors, now see slave processors controlling "back-end" operations such as disk system management.

DISTRIBUTED SYSTEMS

Networking allows different systems to be connected and communicate with one another. Differences between distributed systems or networks depends on the distance between nodes (LAN - local area network, WAN - wide area network) and the network protocol used (TCP/IP, ATM …)

Client - Server Systems - centralized system called a server systems handles requests made by client systems. Each client handles the user interface. Server systems can be thought of as being either computer-server systems, clients request a task to be performed by the server and the client receives the results, or file server system where the server holds the file system which the client can use to create, delete, rename, read, etc. files.

Peer-to-Peer Systems - first PC's were stand alone systems. That view has changed with the WWW. Computers now are connected via telephone, cable modems, DSL, etc. into a loosely coupled system. Each processor on this system has its own set of resources including memory. Network operating systems allows for file sharing, and communication between these varied systems.

CLUSTERED SYSTEMS
Two or more systems connected by LAN/WAN networking. Cluster software runs on each cluster node. Nodes are monitored and the task of a failed node is quickly taken up by another node on the system. Inexpensive way of gaining mainframe like computing power.

REAL-TIME SYSTEMS
Specialized systems when there is a critical time issue with delivery of computed results. Specific time constraints. System depends on the domain use. Computations are based on sensor input. Defense, appliances, car fuel injection systems, industrial control systems, medical imaging, robotics

HANDHELD SYSTEMS
PDA, cellular phones with internet connectivity, OS works with limitations of small memory, slow processors, small displays

· efficient memory management - no virtual memory, applications must be able to fit in memory

· fast processors need larger heavier batteries, therefore slow processors, OS and applications can't overwork processor

· small display leads to web clipping (small portion of web page is displayed)

