Scheduling

Objective multiprogramming - have some process running at all times

Processes execute in a cycle of CPU execution and I/O wait. Basic premise, process has CPU until it needs to do an I/O. It then relinquishes the processor to another process.

CPU bursts -> I/0 burst -> …-> CPU bursts -> I/0 burst -> CPU bursts -> terminate

If there are a number of processes in the ready queue, in what order do they get the CPU?

Short term scheduler is in charge of this decision.

Dispatcher - module that gives control of the CPU to the process selected by the short term scheduler. It's function involves switching context, switching to user mode, and branching to proper execution point in new process.

Four types of events leading to CPU scheduling decisions:

1. process transits from running state to waiting state (I/O request)

2. process transits from running state to ready state (interrupt)

3. process transits from waiting state to ready state (I/O completion)

4. process terminates

nonpreemptive scheduling - processes can run to completion once getting the processor or it relinquishes the CPU voluntarily (1 & 4)

preemptive scheduling - process may not run to completion once allocated the CPU, need for a more active scheduling mechanism (2 & 3)

How do we measure whether a scheduling strategy is effective?

· CPU utilization - percent time CPU is in use

· Throughput - number or processes completed per time unit, i.e. 1 process/hour or 10 processes per second.

· Turnaround time - total time for a process to complete. Time from when a process first enters the ready state to the time it exits the running state for the last time.

· Service time - time process needs to be in the running state

· Waiting time - total time spent in the ready queue

· Response time - for interactive systems, time from submission of request to first response produced.

Nonpreemptive scheduling algorithms

First-Come, First-Served Scheduling - ready queue is implemented as a FIFO queue. Processes are scheduled according to the time they are put into the queue. Easy to implement, easy to code, average waiting time is long.

Ex.

	Process
	Burst Time

	P1
	24

	P2
	3

	P3
	3

What is the waiting time if the processes arrive in the order P1, P2, P3?

	P1
	P2
	P3

0 24 27 30

Avg waiting time = (0 + 24 + 27)/3 = 17 milliseconds

What if order were P2, P3, P1?

	P2
	P3
	P1

0 3 6 30

Avg waiting time = (0 + 3 + 6) / 3 = 3 milliseconds.

Assume we use a FCFS scheduling algorithm. We have 1 CPU bound process and several I/O bound process. What will happen? Convoy effect. I/O processes finish and wait for CPU. CPU process does I/O, I/O processes get CPU , I/O processes finish quickly and then CPU process hogs the CPU again.

FCFS not good for timesharing systems. Don't want any one process delaying everyone else.

Shortest Job Next - processes are scheduled with job having minimum service time next. If two processes have same service time then FCFS is used to break tie.

	Process
	Burst Time

	P1
	6

	P2
	8

	P3
	7

	P4
	3

Given the above ready queue, compare SJN to FCFS with regards to waiting time. Each process arrived at time 0.

Problem - How to determine length of next CPU burst.

Have users estimate process service time. If user underestimates, job will be kicked off CPU (time limit exceeded error). Lower estimates yield higher priority.

Use probability estimates based on past performance to approximate service time.

SJN can be preemptive or nonpreemptive. Preemptive version - what if a process gets placed onto ready queue that has a service time that is less than the remaining time of current process? Shortest remaining time first scheduling.

	Process
	Arrival Time
	Burst Time

	P1
	0
	8

	P2
	1
	4

	P3
	2
	9

	P4
	3
	5

Compare preemptive and nonpreemptive SJN. Show Gantt chart.

Preemptive ((10 - 1) + (1-1) + (17 - 2) (5 - 3)) /4 = 6.5

Nonpreemptive = 7.75

Priority Scheduling - Priority is associated with each process, CPU is allocated to the process with the highest priority. (SJN is priority where lowest CPU burst has highest priority)

Priorities can be assigned by user/administrator (externally assigned)

Cam be some measured entity such as #open files, time limits, memory requirements, ration of CPU to I/O time. (internally assigned)

Preemptive version - new process arrives that has higher priority than current process will get CPU. Nonpreemptive, process is put at head of queue.

MAJOR PROBLEM - indefinite blocking (starvation) Heavily loaded system a stream of high priority processes can prevent lower priority ones from obtaining the CPU. Rumor: When the IBM 7094 was shut down at MIT in 1973 they found a low priority process from 1967 that hadn't been run yet.

Aging is a solution to starvation. As a process sits in the system its priority increases.

Round Robin Scheduling - FCFS for time sharing systems. preemptive. A time slice or a time quantum is defined. Each process has the CPU for this time slice or until they relinquish it via I/O request or termination. The ready queue is treated as a circular queue.

Waiting time in RR is usually long.

RR - have overhead due to context switches. The smaller the quantum, the more context switching. Need to have a large quantum relative to context switch time.

If quantum is very large RR degrades to FCFS. If quantum is small we have processor sharing. Given n processes it looks to users that we have n processors running at 1/n the speed of the processor.

Multilevel Queue Scheduling - used when processes can be classified into different groups. i.e. foreground (interactive) and background (batch) processes. Different response time needs, different scheduling needs.

· Ready queue is partitioned into several queues.

· Processes permanently assigned to queue based on some criteria such as priority, memory size, CPU burst time, type.

· each queue has own scheduling algorithm. Foreground process queue scheduled with RR, background FCFS

· queues are also scheduled, usually according to some preemptive fixed priority algorithm.

Multilevel Feedback Queue Scheduling - above scheme low scheduling overhead. Processes don't move between queues.

In multilevel feedback queue scheduling process can move between queues. Here processes are separated according to CPU-burst times. Processes that use too much CPU time are moved to lower priority queues, thus leaving more I/O bound processes in higher priority queues. A process waiting too long in a low priority queue is moved to a higher one. This aging process prevents starvation.

Parameters for multilevel feedback queue scheduler:

number of queues

scheduling algorithm for each queue

method for upgrading processes to higher queues

method for designating a processes' queue

Most general CPU scheduling algorithm, but most complex. Many parameters to initialize.

Problem:

	Process
	Burst Time
	Priority

	P1
	10
	3

	P2
	1
	1

	P3
	2
	3

	P4
	1
	4

	P5
	5
	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at item 0.

a) Draw four Gantt charts illustrating the execution of these process using FCFS, SJN, a nonpreemptive priority (a smaller priority number implies a higher priority, and a RR(quantum = 1) scheduling.

b) What is the turnaround time of each process for each of the scheduling algorithms in part a?

c) What is the waiting time of each process for each of the scheduling algorithms in part a?

d) Which of the schedules in part a results in the minimal average waiting time (over all processes)?

