THREADS

Sometimes called a lightweight process (LWP)

Basic Unit of CPU utilization

Contains: Thread ID, program counter, register set and a stack. Shares with other threads code section and other OS resources such as signals and open files.

[image: image2.png]yojedsia

(waiting

sleeping

<’ dead) <blocked)

Modern process - part of classical process that is the framework where threads execute. Threads keep track of code execution within the process framework

Classic process = Modern process with one thread

Multiple threads of control allows a process to do more than one task at a time.

Motivation for Threads
Threads have become prominent due to trends in

· Software design

· More naturally expresses inherently parallel tasks

· software contains code segments that can be run independent of each other

· allows for parallel tasks to be coded as parallel tasks

· Performance

· Scales better to multiprocessor systems

· memory and resource allocation are costly. more economical to create and context switch threads. i.e. Solaris 2 process creation is 30 times slower than thread creation. To context switch a process is 5X slower
· Threads allow multiprocessor architecture to be better utilized. Threads can run on different processors. Single processes can only run on one processor, no matter how many are available
· code executing on multiple processors concurrently finishes faster that single threaded tasks on single processes
· ready threads can execute while others are blocked (i.e. waiting for I/O) Increases responsiveness to user in an interactive environment - if part of application is blocked rest can continue to run
· Cooperation

· Shared address space incurs less overhead than IPC (interprocess communication)
· threads share memory and resources of parent process. Code sharing allows for several threads of execution using the same address space.

Thread State Transitions (Based on Java threads)

[image: image1.wmf]Ó

2004 Deitel & Associates, Inc. All rights reserved.

Figure 4.1

Thread Relationship to Processes.

4.2 Definition of Thread

Thread states

· Born state - thread is created (some systems threads are started at creation, thus eliminating the born state)

· Ready state (runnable state) - thread starts execution

· Running state - thread has processor

· Dead state - thread completes task or is terminated. Thread's resources are released back into the system

· Blocked state - Thread is waiting for I/O completion

· Waiting state - Thread is waiting for an event (mouse click, signal from another thread) Goes to ready state after being awakened or notified by some other thread

· Sleeping state - Threads enter this state when they have no work to perform. Sleep interval specifies for how long a thread will sleep. Ex. automatic backup by a word processor. If thread didn't sleep it would need processor cycles for a wait loop and to check to see if it should back up.
Threads and processes have common operations

· Create

· Exit (terminate)

· Suspend

· Resume

· Sleep

· Wake

Thread operations do not correspond precisely to process operations

· Cancel

· Indicates that a thread should be terminated, but does not guarantee that the thread will be terminated

· Threads can mask the cancellation signal

· Join

· A primary thread can wait for all other threads to exit by joining them

· The joining thread blocks until the thread it joined exits

Threading models

Threads can be created at the user level or the kernel level (user threads vs. kernel threads)

User Threads - executed in user mode. Implemented in special libraries. Library handles all thread functions such as creation, scheduling and management. Kernel is not aware of thread. Positive - fast to create and manage. Negative - if kernel is single threaded then blocking a thread causes the entire process to become blocked. Ex. POSIX Pthreads

Many to One - Many user threads to one kernel thread. Thread management in user state, entire process blocks if a thread blocks. Only one thread can access kernel at a time, therefore threads can't run in parallel.

Kernel Threads - directly supported by the OS. executed in supervisor mode with kernel implementing creation scheduling and management. Negative - Slower to create and manage. Positive - if thread is blocked kernel can assign another thread to execute, in multiprocessor systems threads can execute on multiple processors.

One to One - Each user thread is mapped to one kernel thread. Allows for concurrent execution. Downside, have added overhead of creating threads in user and supervisor space. Ex. Windows

Systems that have both User and Kernel threads Ex. Solaris

Many to Many - User threads multiplexed onto a smaller or equal set of kernel threads. Number of kernel threads is usually specific to an application or specific machine hardware. Has none of the drawbacks of the other methods. Can have concurrency, user can create as many threads as they like, threads can run in parallel

Problems associated with Threads

What happens when a thread decides to fork? Does fork cause only one thread to be created or are all current threads duplicated. UNIX has fork system calls for both these scenarios.

Thread Cancellation - termination of a thread before it has completed. Ex. multiple threads search database for item x, one thread finds it, then all other threads need to be terminated. User initiated, push stop button on a web page browser.

target thread is thread to be cancelled

Asynchronous cancellation - A thread terminates the target thread, can cause problems if thread has system resources. All may not be returned upon termination. Other problems if thread is in middle of updating data shared by other threads.

Deferred cancellation - target thread checks to see if it has to terminate and then does so in an orderly fashion.

UNIX Signal Handling (Interrupt a type of signal)

signal used to indicate an event has occurred. Delivered to a process and then must be handled.

Synchronous signal - illegal memory access, divide by zero, delivered to process that caused the signal (why called synchronous)

asynchronous. - generated by event outside of process. (control - C keystroke to terminate a process) These types of signals usually sent to some other process.

Signals handled by default signal handler or user defined one.

Single threaded process, signals delivered to process. Multithreaded ??

You can:

deliver to thread that the signal refers to

deliver to all threads in process

deliver to some threads in process

have a thread that just handles signals

Signal handling usually depends on the type of signal issued. i.e. synchronous signals sent to generating process

Asynchronous not clear. Ex. Control - C should be given to all threads. Some UNIX implementations allows a thread to state which signals it will accept and which it won't. In this case the signal is sent to the first thread that doesn't block that signal. Why not all threads not blocking? Most signals need only be handled once.

Threads that use the POSIX threading API are called Pthreads
· a POSIX standard (IEEE 1003.1c) API for thread creation and synchronization.

· API specifies behavior of the thread library, implementation is up to development of the library.

· Common in UNIX operating systems.

· POSIX states that processor registers, stack and signal mask are maintained individually for each thread

· POSIX specifies how operating systems should deliver signals to Pthreads in addition to specifying several thread-cancellation modes

_1157729212.ppt
 2004 Deitel & Associates, Inc. All rights reserved.

4.2 Definition of Thread

Figure 4.1 Thread Relationship to Processes.

Information global
to all threads
in a process

Information local
to each thread

Heavyweight process

Address space
Other global process data

Registers

Registers

Registers

