Central Processing Unit

CPU - made up of ALU and control unit

ALU is part that performs computations

CU (control unit) part that decides the sequence in which instructions should be executed, decodes the instruction for the ALU to execute

Arithmetic Logic Unit

· function unit part performs arithmetic and logical operations

· general registers - hold operands that are used by function unit

· registers are loaded from primary memory using a LOAD instruction

· status registers - stores information on current computation

Control Unit

· cause a sequence of instructions stored in executable memory to be retrieved and executed

· contains a fetch component that gets instruction from memory, decode component to interpret instruction, and one component to signal other parts of computer when done

[image: image1.png]
Modern computer - CPU and device controllers connected to a system bus

each device controller controls a specific device.

In the beginning…

· Initial program that is loaded into the computer is the bootstrap program.

· Knows how to load the operating system and to start executing it.

· After starting the OS waits for an even to take place.

· Events are signaled by the hardware or software by interrupts.

Interrupts

· Interrupts transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.

· Interrupt architecture must save the address of the interrupted instruction.

· Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.

· A trap is a software-generated interrupt caused either by an error or a user request.

· divide by zero

· invalid memory access

· An operating system is interrupt driven.

Interrupt handling

· The operating system preserves the state of the CPU by storing registers and the program counter.

· Determines which type of interrupt has occurred:

· polling

· vectored interrupt system

· Separate segments of code determine what action should be taken for each type of interrupt

I/O Structure

· After I/O starts, control returns to user program only upon I/O completion. - synchronous I/O

· one way to implement wait is with a Wait instruction that idles the CPU until the next interrupt

· Also use Wait loop (contention for memory access).

· At most one I/O request is outstanding at a time, no simultaneous I/O processing.

· After I/O starts, control returns to user program without waiting for I/O completion. - asynchronous I/O

· System call – request to the operating system to allow user to wait for I/O completion.

· Device-status table contains entry for each I/O device indicating its type, address, and state.

· Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

Two I/O Methods

Device-Status Table

Direct Memory Access Structure

· Used for high-speed I/O devices able to transmit information at close to memory speeds.

Slow devices: 9600 may need transfer a character every 1000 microseconds

CPU time needed to write to a buffer 2 microseconds.

Therefore, 998 microseconds for CPU processing if using asynchronous I/O

Fast devices can transfer characters every 4 microseconds. Hence less time for CPU to do other things.

DMA - Direct Memory Accesss.

· Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.

· Only one interrupt is generated per block, rather than the one interrupt per byte.

Storage Structure

· Main memory (RAM random access memory) – only large storage media that the CPU can access directly.

memory composed ot memory words, each with its own address.

load instruction moves word from memory to CPU

store instruction moves word from CPU to memory

fetch-execute cycle (instruction-execute) get an instructin from memory, store in IR (instruction register) may need operands fetched, then execute instruction, store results back in memory.

Main memory not large enough to hold all programs and data

Volatile, info goes away when electrical is turned off.

Need secondary storage

All secondary storage devices will store data and maintain it for retrieval at a later time. Differences between storage devices lie in their cost, capacity and speed.

· Secondary storage – extension of main memory that provides large nonvolatile storage capacity.

· Magnetic disks – rigid metal or glass platters covered with magnetic recording material

· Disk surface is logically divided into tracks, which are subdivided into sectors.

· The disk controller determines the logical interaction between the device and the computer.

Moving-Head Disk Mechanism

Storage Hierarchy

· Storage systems organized in hierarchy.

· Speed

· Cost

· Volatility

· Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.

Storage-Device Hierarchy

Caching

· Use of high-speed memory to hold recently-accessed data.

· Requires a cache management policy.

· Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent.

Migration of A From Disk to Register

Hardware Protection

· Need for protection stems from

multitasking and sharing of resources.

Programs shouldn't destroy other programs or their data

Error in a program can cause problems for other running programs. (infinite loop takes up CPU time)

· Dual-Mode Operation

· I/O Protection

· Memory Protection

· CPU Protection

Dual-Mode Operation

· Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly.

· Provide hardware support to differentiate between at least two modes of operations.

1.
User mode – execution done on behalf of a user.

2.
Monitor mode (also kernel mode or system mode or Supervisor mode) – execution done on behalf of operating system.

Dual-Mode Operation (Cont.)

· Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1).

· When an interrupt or fault occurs hardware switches to monitor mode.

Any instruction that might cause some harm is a privileged instruction

If a user wants to execute a privileged instruction, it needs to make this request to the OS which will execute the instruction on their behalf.

I/O Protection

· All I/O instructions are privileged instructions.

· Must ensure that a user program could never gain control of the computer in monitor mode (I.e., a user program that, as part of its execution, stores a new address in the interrupt vector).

Use of A System Call to Perform I/O

Memory Protection

· Must provide memory protection at least for the interrupt vector and the interrupt service routines.

· In order to have memory protection, add two registers that determine the range of legal addresses a program may access:

· Base register – holds the smallest legal physical memory address.

· Limit register – contains the size of the range

· Memory outside the defined range is protected.

Use of A Base and Limit Register

Hardware Address Protection

Hardware Protection

· When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory.

· The load instructions for the base and limit registers are privileged instructions.

CPU Protection

· Timer – interrupts computer after specified period to ensure operating system maintains control.

· Timer is decremented every clock tick.

· When timer reaches the value 0, an interrupt occurs.

· Timer commonly used to implement time sharing.

· Time also used to compute the current time.

· Load-timer is a privileged instruction.

Network Structure

· Local Area Networks (LAN)

· Wide Area Networks (WAN)

Local Area Network Structure

Wide Area Network Structure

