Chapter 3: Operating-System Structures

· System Components

· Operating System Services

· System Calls

· System Programs

· System Structure

· Virtual Machines

· System Design and Implementation

· System Generation

Common System Components of OS

· Process Management

· Main Memory Management

· File Management

· I/O System Management

· Secondary Management

· Networking

· Protection System

· Command-Interpreter System

Process Management

· A process is a program in execution. A process needs certain resources, including CPU time, memory, files, and I/O devices, to accomplish its task.

A program is not a process, Why?

program - file on a disk

process - active entity with a program counter indicating the next instruction to execute.

Process is a unit of work with regards to the OS

· The operating system is responsible for the following activities in connection with process management.

· Process creation and deletion.

· process suspension and resumption.

· Provision of mechanisms for:

· process synchronization

· process communication

Main-Memory Management

· Memory is a large array of words or bytes, each with its own address. It is a repository of quickly accessible data shared by the CPU and I/O devices.

· Main memory is a volatile storage device. It loses its contents in the case of system failure.

· The operating system is responsible for the following activities in connections with memory management:

· Keep track of which parts of memory are currently being used and by whom.

· Decide which processes to load when memory space becomes available.

· Allocate and deallocate memory space as needed.

File Management

· A file is a collection of related information defined by its creator. Commonly, files represent programs (both source and object forms) and data.

· The operating system is responsible for the following activities in connections with file management:

· File creation and deletion.

· Directory creation and deletion.

· Support of primitives for manipulating files and directories.

· Mapping files onto secondary storage.

· File backup on stable (nonvolatile) storage media.

I/O System Management

· The OS abstracts the particulars of device control from the user

· The I/O system consists of:

· A buffer-caching system

· A general device-driver interface

· Drivers for specific hardware devices - contains the info for controlling I/O devices

Secondary-Storage Management

· Since main memory (primary storage) is volatile and too small to accommodate all data and programs permanently, the computer system must provide secondary storage to back up main memory.

· Most modern computer systems use disks as the principle on-line storage medium, for both programs and data.

· The operating system is responsible for the following activities in connection with disk management:

· Free space management

· Storage allocation

· Disk scheduling

Networking (Distributed Systems)

· A distributed system is a collection processors that do not share memory or a clock. Each processor has its own local memory.

· A distributed system collects physically separate, possibly heterogeneous systems into a coherent system that provides the user with access to the various resources the system maintains

· The processors in the system are connected through a communication network.

· Communication takes place using a protocol.(FTP, NFS, HTTP)
· A distributed system provides user access to various system resources.

· Access to a shared resource allows:

· Computation speed-up

· Increased data availability

· Enhanced reliability

Protection System

· Protection refers to a mechanism for controlling access by programs, processes, or users to both system and user resources.

· The protection mechanism must:

· distinguish between authorized and unauthorized usage.

· specify the controls to be imposed.

· provide a means of enforcement.

Command-Interpreter System

· Many commands are given to the operating system by control statements which deal with:

· process creation and management

· I/O handling

· secondary-storage management

· main-memory management

· file-system access

· protection

· networking

Command-Interpreter System (Cont.)

· The program that reads and interprets control statements is called variously:

· command-line interpreter

· shell (in UNIX)

 Its function is to get and execute the next command statement.

Operating System Services

· Program execution – system capability to load a program into memory and to run it. Need to be able to end program normally or abnormally (error)

· I/O operations – since user programs cannot execute I/O operations directly, the operating system must provide some means to perform I/O.

· File-system manipulation – program capability to read, write, create, and delete files.

· Communications – exchange of information between processes executing either on the same computer or on different systems tied together by a network. Implemented via shared memory or message passing.

· Error detection – ensure correct computing by detecting errors in the CPU and memory hardware, in I/O devices, or in user programs.

Additional Operating System Functions

Additional functions exist not for helping the user, but rather for ensuring efficient system operations.

· Resource allocation – allocating resources to multiple users or multiple jobs running at the same time.

· Accounting – keep track of and record which users use how much and what kinds of computer resources for account billing or for accumulating usage statistics.

· Protection – ensuring that all access to system resources is controlled.

· a process shouldn't interfere with other processes or the OS.

· security of the system from outsiders.

System Calls

· System calls provide the interface between a running program and the operating system.

· Generally available as assembly-language instructions.

· Languages have been defined to replace assembly language for systems programming allow system calls to be made directly through function calls(e.g., C, C++, Perl)

· Three general methods are used to pass parameters between a running program and the operating system.

· Pass parameters in registers.

· Store the parameters in a table in memory, and the table address is passed as a parameter in a register. (Linux)

· Push (store) the parameters onto the stack by the program, and pop off the stack by operating system.

Passing of Parameters As A Table

[image: image1.png]
Types of System Calls

· Process control

· File management

· Device management

· Information maintenance

· Communications

MS-DOS Execution - single task OS

[image: image2.png]
OS is written over to give memory space to executing program. When execution halts due to program end, error, I/O, etc. the command interpreter starts executing, and loads rest of command interpreter back into memory.

UNIX Running Multiple Programs

[image: image3.png]
Command interpreter runs as another process simultaneously with the other processes. New processes are created via the fork command. Processes terminate with an exit command and an exit code is returned to the calling process.

File Management

· create file, delete file

· open close

· read, write, reposition

· get file attributes, set file attributes

Device Management

· request device, release device

· read, write, reposition

· get device attributes, set device attributes

· logically attach or detach devices

Information maintenance

· get time or date, set time or date

· get system data, set system data

· get process, file, or device attributes

· set process, file, or device attributes

Communication Models

Communication may take place using either message passing or shared memory.
[image: image4.png]
	Msg Passing - interprocess communication program maintained by the OS.
	
	Shared Memory - used by threads

System Programs

· System programs provide a convenient environment for program development and execution. Most are interfaces to the system calls.

· The can be divided into:

· File manipulation - pgms create delete, copy, rename, print, dump, list, and manipulate file and directories

· Status information - supplies status info such as time date, cpu usage, available memory or disk space, user info, etc.

· File modification - text editors

· Programming language support - compilers, assemblers, interpreters

· Program loading and execution - pgms that place programs into memory for execution

· Communications - allows users processes, users, and different computer systems to exchange files, text, etc.

· Application programs - everything else!!

· Most users’ view of the operation system is defined by system programs, not the actual system calls.

Operating System Structure.

Monolithic approach - everything implemented without modularization. (UNIX)
Modularization of process manager, file manager, memory manager and device manager- make OS code easier to maintain but because of interactions between diff managers, less efficient. Approach - no modularization one large piece of code to implement all managers (UNIX) Changes to one manager can adversely affect some other manager. (monolithic kernel approach)

microkernel approach - previous kernels too large, only necessary OS functions are implemented in the kernel. Everything else is executed in user mode. i.e. thread management, hardware device management, basic protection in kernel

rest of management tasks outside kernel

MS-DOS System Structure
· MS-DOS – written to provide the most functionality in the least space - limited hardware

· not divided into modules

· Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated

MS-DOS Layer Structure

[image: image5.png]
UNIX System Structure

UNIX - monolithic kernel implements process management , file management, memory management, but device management is implemented as a separate function. allows devices to be added to the system more easily.

· UNIX – limited by hardware functionality, the original UNIX operating system had limited structuring. The UNIX OS consists of two separable parts.

· Systems programs

· The kernel

· Consists of everything below the system-call interface and above the physical hardware

· Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level.

UNIX System Structure

[image: image6.png]
Layered Approach - One approach to modularization

· The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

· An OS layer is an abstraction - contains data and the operations that operate on that data.
· With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers.

· easier debugging

· lower layers debugged before upper layers.

· problems with layered approach is that it isn't always obvious which function should be above another function in a layer.

· Ex. backing store driver above CPU? May need to wait for I/O and CPU can be utilized in the meantime. But CPU determines when processes are swapped in and out of memory. This argues for the CPU being above the backing store.

An Operating System Layer

[image: image7.png]
OS/2 Layer Structure - Extension of DOS, more layers. Users do not have direct access to low level functions. This allows OS to better manage resources among all processes.

[image: image8.png]
Microkernel System Structure
· Moves as much from the kernel into “user” space.

· Communication takes place between user modules using message passing.

· Benefits:

· easier to extend a microkernel

· smaller kernel means needs fewer changes

- easier to port the operating system to new architectures

- more reliable (less code is running in kernel mode) if service fails, OS is still running.

- more secure

Windows NT Client-Server Structure

Virtual Machines

· A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the operating system kernel as though they were all hardware.

· A virtual machine provides an interface identical to the underlying bare hardware.

· The operating system creates the illusion of multiple processes, each executing on its own processor with its own (virtual) memory.

Virtual Machines (Cont.)

· The resources of the physical computer are shared to create the virtual machines.

· CPU scheduling can create the appearance that users have their own processor.

· Spooling and a file system can provide virtual card readers and virtual line printers.

· A normal user time-sharing terminal serves as the virtual machine operator’s console.

System Models

Advantages/Disadvantages of Virtual Machines

· The virtual-machine concept provides complete protection of system resources since each virtual machine is isolated from all other virtual machines. This isolation, however, permits no direct sharing of resources.

· A virtual-machine system is a perfect vehicle for operating-systems research and development. System development is done on the virtual machine, instead of on a physical machine and so does not disrupt normal system operation.

· The virtual machine concept is difficult to implement due to the effort required to provide an exact duplicate to the underlying machine.

Java Virtual Machine

· Compiled Java programs are platform-neutral bytecodes executed by a Java Virtual Machine (JVM).

· JVM consists of

- class loader

- class verifier

- runtime interpreter

· Just-In-Time (JIT) compilers increase performance

Java Virtual Machine

[image: image9.png]
System Design Goals

· User goals – operating system should be convenient to use, easy to learn, reliable, safe, and fast.

· System goals – operating system should be easy to design, implement, and maintain, as well as flexible, reliable, error-free, and efficient.

Mechanisms and Policies

· Mechanisms determine how to do something, policies decide what will be done.

· The separation of policy from mechanism is a very important principle, it allows maximum flexibility if policy decisions are to be changed later.

System Implementation

· Traditionally written in assembly language, operating systems can now be written in higher-level languages.

· Code written in a high-level language:

· can be written faster.

· is more compact.

· is easier to understand and debug.

· An operating system is far easier to port (move to some other hardware) if it is written in a high-level language.

System Generation (SYSGEN)

· Operating systems are designed to run on any of a class of machines; the system must be configured for each specific computer site.

· SYSGEN program obtains information concerning the specific configuration of the hardware system.

· Booting – starting a computer by loading the kernel.

· Bootstrap program – code stored in ROM that is able to locate the kernel, load it into memory, and start its execution.

