Process Synchronization

Two processes/threads are synchronized when they execute the same block of code at the same time.

Finding ways to effectively synchronize processes is a fundamental OS problem.

· Value of concurrency – speed & economics

· But few widely-accepted concurrent programming languages (Java and C# do, C and C++ don't)

· Few concurrent programming paradigm

· Each problem requires careful consideration

· There is no common model

· OS tools to support concurrency tend to be “low level
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What can happen?

Assume we have a bank with an account in which the deposit code and the withdrawal code both use a shared variable called balance.

shared double balance;
Code for p1 


 

Code for p2
  . . .




 . . .

balance = balance + amount;
balance = balance - amount;

 . . .




 . . .
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	Assembly code for P1
	Assembly Code for P2

	load        R1,   balance
	

	Load       R2,   amount
	

	-------------------------------Interrupt------------------------------

	
	load         R1,   balance

	
	Load        R2,   amount

	
	subtract    R1,    R2

	
	store         R1,    balance

	-------------------------------Interrupt------------------------------

	add          R1,   R2
	

	store        R1,   balance
	


There is a race condition between P1 and P2.  Outcome of computation depends on relative timing of the two processes.  

· Race condition: The situation where several processes access – and manipulate shared data concurrently. The final value of the shared data depends upon which process finishes last.

· To prevent race conditions, concurrent processes must be synchronized.

Mutual exclusion: Only one process can be in the critical section at a time.  

Without mutual exclusion, results of multiple execution are not determinate.  

Determinate execution is when the execution of two programs on the same data produces the same result.  

Need an OS mechanism so programmer can resolve races

Solution - either thread can enter critical section whenever it wants to unless other process/thread is in the critical section.

Problem:  How do we implement this solution?  In the intersection problem we add a traffic light.  

Possible - disable interrupts when a process enters its critical section.  Can affect the I/O system since interrupts can be disabled for an arbitrary long time.  

Shared data


#define BUFFER_SIZE 10

typedef struct {


. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

Producer process 


item nextProduced;



while (1) {



while (counter == BUFFER_SIZE)




; /* do nothing */



buffer[in] = nextProduced;



in = (in + 1) % BUFFER_SIZE;



counter++;


}

Consumer process 


item nextConsumed;



while (1) {



while (counter == 0)




; /* do nothing */



nextConsumed = buffer[out];



out = (out + 1) % BUFFER_SIZE;



counter--;


}

· The statements

counter++;
counter--;

must be performed atomically.

· Atomic operation means an operation that completes in its entirety without interruption.

· The statement “count++” may be implemented in machine language as:

register1 = counter


register1 = register1 + 1
counter = register1


· The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

· If both the producer and consumer attempt to update the buffer concurrently, the assembly language statements may get interleaved.

· Interleaving depends upon how the producer and consumer processes are scheduled.

Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)



//counter = 4 if we execute the next two statements


// in the order given, reverse order counter equals 6


producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)


The value of counter may be either 4 or 6, where the correct result should be 5.

Solution to Critical-Section Problem

1.
Mutual Exclusion.  If process Pi is executing in its critical section, then no other processes can be executing in their critical sections.

2.
Progress.  A thread or process that is executing outside its critical section cannot prevent another process from executing inside its critical section.

3.
Bounded Waiting.  A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.

· Assume that each process executes at a nonzero speed 

· machine instructions such as load and store are executed atomically.  This means that if two of these instructions are executed concurrently then they execute in sequence in some arbitrary order.

· No assumption concerning relative speed of the n processes.

Dijkstra's Implementation of Dekker's Algorithm

Only 2  processes, P0 and P1

General structure of process Pi (other process Pj)



do {



entry section





critical section




exit section
reminder section



} while (1);

Processes may share some common variables to synchronize their actions.

Algorithm 1 - Lockstep Synchronization and Busy Wait

Shared variables: 

· int turn;
initially turn = 0

· turn - i ( Pi can enter its critical section

Process Pi


do {




while (turn != i) ;





critical section




turn = j;





remainder section



} while (1);

Satisfies mutual exclusion by doing lockstep synchronization.  Processes take turns at the critical section

Problem: uses busy wait to prevent processes from entering critical section.  Not good for uniprocessor systems.  Idea of multitasking is for increased process utilization.  Processors use CPU cycles to do work that is not useful.   Notwithstanding the overhead of the busy wait is not too large because it is only for the short time when processes or threads are in contention.

Violates progress requirement.  Assume  turn is set to 0 initially and Process 0 is executing in its entry section.  Process 1 decides it needs to execute in its critical section.  Since turn is set to 0, process 1 will loop until process 0 proceeds to and finishes its critical section.

Algorithm 2 - 

· Shared variables

· boolean flag[2];
initially flag [0] = flag [1] = false.

· flag [i] = true ( Pi ready to enter its critical section

· Process Pi


do {




flag[i] := true;


while (flag[j]) ;





critical section




flag [i] = false;





remainder section



} while (1);

· Satisfies mutual exclusion, but not progress requirement.

Algorithm 3

· Combined shared variables of algorithms 1 and 2.

· Process Pi


do {




flag [i]:= true;


turn = j;


while (flag [j] and turn = j) ;





critical section




flag [i] = false;





remainder section



} while (1);

Satisfies mutual exclusion 

Progress violated!  It is possible for both Process 0 and Process 1 to set flag[i] to true.  If this happens both processes loop inside entry section forever!!  If we were to switch the statements that set flag[i] and test flag[j] then we violate mutual exclusion

Lamport’s Bakery Algorithm
for n Process Synchronization

· Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section.

· If processes Pi and Pj receive the same number (they appear at the same exact time), if i < j, then Pi is served first; else Pj is served first.

· The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...


Lamport's Bakery Algorithm

//Shared Variables

boolean choosing[n];

int ticket[n];

//Code for process/thread[i]

void main()

{

x = threadNumber();  // store current thread number

while (! done)

// take a ticket

choosing[x] = true; //begin ticket selection 

ticket[x] = maxValue(ticket) + 1;

choosing[x] = false; //end ticket selection 

//wait for event to be called by comparing 

// current ticket value to thread's ticket value

for (int i = 0; i < n; i++)

{


if (i ==x)


{




//no need to check own ticket



continue;

  
}

//busy wait while thread[i] is choosing

while (choosing[i] != false);

//busy wait while current ticket value is lowest

while (ticket[i] != 0 && ticket[i] < ticket[x];

//tie-breaker code favors smaller thread id

if (ticket [i] == ticket[x] && i < x

//loop until thread[i] 

//leaves its critical section

while (ticket[i] != 0); //busy wait

) end for

//critical section

ticket[x] = 0;

//remainder section

}

}


Hardware Solutions


Special Hardware Instructions that are executed atomically

· Test and modify the content of a word atomically
.



boolean TestAndSet(boolean &target) {




boolean rv = target;




tqrget = true;




return rv;



}

Special Hardware Instructions that are executed atomically

2. Test-and-Set

· Shared data: 

boolean lock = false;


· Process Pi


do {




while (TestAndSet(lock)) ;





critical section




lock = false;





remainder section



}

Synchronization Hardware 

· Atomically swap two variables.




void Swap(boolean &a, boolean &b) {




boolean temp = a;




a = b;




b = temp;



}

Mutual Exclusion with Swap

· Shared data (initialized to false): 

boolean lock;



boolean waiting[n];


· Process Pi


do {




key = true;




while (key == true) 






Swap(lock,key);





critical section




lock = false;





remainder section



}

Semaphores

· Synchronization tool that does not require busy waiting.

· Semaphore S – integer variable

· can only be accessed via two indivisible (atomic) operations



wait (S):  




while S( 0 do no-op;



S--;




signal (S): 




S++;
A Semaphore

Critical Section of n Processes

· Shared data:


   semaphore mutex; //initially mutex = 1


· Process Pi: 

do {
    wait(mutex);
        critical section

 
    signal(mutex);
        remainder section
} while (1);

Semaphore Implementation

· Define a semaphore as a record



typedef struct {



   int value;

   struct process *L;

} semaphore;

· Assume two simple operations:

· block suspends the process that invokes it.

· wakeup(P) resumes the execution of a blocked process P.

Implementation

Semaphore operations now defined as 



Semaphore S;



wait(S):



S.value--;




if (S.value < 0) { 







add this process to S.L;





block;




}




signal(S): 


S.value++;




if (S.value <= 0) {







remove a process P from S.L;





wakeup(P);




}

Deadlock and Starvation

· Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes.

· Let S and Q be two semaphores initialized to 1



P0

P1


wait(S);
wait(Q);



wait(Q);
wait(S);



 (
 (


signal(S);
signal(Q);



signal(Q)
signal(S);

Suppose that P0 executes wait(S) and then P1 executes wait(Q).   When P0 executes wait(Q) it must wait until P1 executes signal(Q).  Similarly, when P1 executes wiat(S), it must wait unitl P0 execues signal(S).  Since these signal operations cannot be executed, P0 and P1 are deadlocked.

Starvation  – indefinite blocking.  A process may never be removed from the semaphore queue in which it is suspended.

Two Types of Semaphores

· Counting semaphore – integer value can range over an unrestricted domain.

· Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement.

· Can implement a counting semaphore S as a binary semaphore.

Implementing S as a Binary Semaphore

· Data structures:



binary-semaphore S1, S2;



int C:  

· Initialization:



S1 = 1



S2 = 0



C = initial value of semaphore S

Implementing S
· wait operation



wait(S1);



C--;



if (C < 0) {





signal(S1);





wait(S2);



}



signal(S1);

· signal operation



wait(S1);



C ++;



if (C <= 0)




signal(S2);



else




signal(S1);

Classical Problems of Synchronization

· Bounded-Buffer Problem


· Readers and Writers Problem 

· Dining-Philosophers Problem

Dining-Philosophers Problem

Dining Philosophers

Very hard concurrency problem.

 

How can we solve this with semaphores?  

 

Create a semaphore for each of the five chopsticks.  

Dining-Philosophers Problem 

· Shared data 



semaphore chopstick[5];

Initially all values are Philosopher i:



do {




wait(chopstick[i])




wait(chopstick[(i+1) % 5])





 …





eat





 …




signal(chopstick[i]);




signal(chopstick[(i+1) % 5]);





 …





think





 …




} while (1);

What would happen if all the philosophers got hungry at the same time?  Each would grab one chopstick, and wait on a P operation for each of the others to release the resource.  DEADLOCK and STARVATION

 

Some solutions to deadlock:

1)      Allow at most 4 philosophers to sit simultaneously at the table

2)      Philosopher can pick up chopsticks only if two are available (done in a critical section)

3)      Odd philosophers pick up first the left chopstick and then the right, even philosophers pick up right and then the left.

 

Still doesn't guarantee that a particular philosopher won't starve.

 

Bounded-Buffer Problem

· Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Bounded-Buffer Problem Producer Process


do { 





…




produce an item in nextp





 …




wait(empty);




wait(mutex);





 …




add nextp to buffer





 …




signal(mutex);




signal(full);



} while (1);

Bounded-Buffer Problem Consumer Process



do { 




wait(full)




wait(mutex);





 …




remove an item from buffer to nextc





 …




signal(mutex);




signal(empty);





 …




consume the item in nextc





 …



} while (1);

Readers-Writers Problem

A data object is shared amoung several concurrent processes.  Can be a file.  Some processes only want to read the file, others may want to update it.  (read and write)  Two readers can acess the data without problem.  If a writer and some other process, be it reader or writer, wishes to access the data, concurrency problems can occur.

Writers need exclusive control of the shared object.

Readers-Writers Problem


balance



balance -=amount



balance+=amount



















		//Writer Proceess

		wait(wrt);

				 …

		writing is performed

				 …

		signal(wrt);



		//Reader Process

		wait(mutex);

		readcount++;	

		if (readcount == 1)

				wait(rt);

		signal(mutex);

				 …

			reading is performed

				 …

		wait(mutex);

		readcount--;

		if (readcount == 0)

			signal(wrt);

		signal(mutex):





