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Abstract -  The KDD (Knowledge Discovery in Databases)  paradigm is a 
step by step process for finding interesting patterns in large amounts of 
data.  Data mining is one step in the process.  This paper defines the KDD 
process and discusses three data mining algorithms, neural networks, 
decision trees, and association/dependency rule algorithms.   The 
algorithms'  potential as good analytical tools for performance evaluation is 
shown by looking at results from a computer performance dataset. 

 
 
 

1. Introduction 
 

Knowledge Discovery in Databases (KDD) is 
the automated discovery of patterns and relationships 
in large databases.  Large databases are not 
uncommon.  Cheaper and larger computer storage 
capabilities have contributed to the proliferation of 
such databases in a wide range of fields.  Scientific 
instruments can produce terabytes and petabytes of 
data at rates reaching gigabytes per hour.  Point of 
sale information, government records, medical records 
and credit card data, are just a few other sources for 
this information explosion.   Not only are there more 
large databases,  but the databases themselves are 
getting larger.  The number of fields in large databases 
can approach magnitudes of 102 to 103.  Record 
numbers in these databases approach magnitudes of  
109. [7]   Computer performance data has also 
increased in size and dimensionality.   

It is much easier to store data than it is to 
make sense of it.  Being able to find relationships in 
large amounts of stored data can lead to enhanced 
analysis strategies in fields such as marketing, 
computer performance analysis, and data analysis in 
general.   

The problem addressed by KDD is to find 
patterns in these massive  datasets.   Traditionally 
data has been analyzed manually, but there are 

human limits.  Large databases offer too much data to 
analyze in the traditional manner.   

The focus of this paper is to first summarize 
exactly what the KDD process is.   This paper attempts 
to identify parts of the process that are currently being 
practiced by performance analysts and those parts 
that are not practiced, but may be useful in analyzing 
performance data   The paper is organized as follows:  
Section 2 defines the KDD process.  Section 3 
discusses three data mining algorithms that are not 
commonly used by performance analysts.  The paper 
concludes with a discussion in section 4. 

 
 

2. KDD defined 
 

KDD employs methods from various fields 
such as machine learning, artificial intelligence, pattern 
recognition, database management and design, 
statistics, expert systems, and data visualization.  It is 
said to employ a broader model view than statistics 
and strives to automate the  process of data analysis, 
including the art of hypothesis generation.   
 KDD has been more formally defined as �the 
non-trivial process of identifying valid, novel , 
potentially useful, and ultimately understandable 
patterns in data.�  [7 ]  
 The KDD Process is a highly iterative, user 
involved, multistep process, as can be seen in figure 1. 



 
Figure 1  The KDD Process 

 
 

 
From figure 1 we see that initially, we have 

organizational data.  This data is the operational data 
gathered either in one or several locations.  All 
operational data is collected and brought to some 
central location.  These central locations are 
sometimes called Data Warehouses or Data Marts.  
Data transformation may be performed on the raw 
data before it is placed in the data warehouse.  Data 
transformation resolves  inconsistencies between the 
data of one location from that of another.  For 
example,   inconsistencies may be differences in data 
type for the same information and different field names 
for the same data field.  Data warehouses hold both 
detailed and summary data. Detailed data is used for 
pattern analysis, where summarized data may hold the 
results of previous analyses.   Data warehouses also 
contain historical data whereas operational data is 
usually current.   Efficient organization of the data 
warehouse is essential for efficient data mining.    

Once the data is organized, a selection process 
occurs where some subset of this data becomes the 
target data upon which further analysis is performed.  
It is important when creating this target data that the 
data analyst understand the domain, the end user�s 
needs,  and what the data mining task might be. 

Sometimes data is collected in an ad hoc manner.  
Data entry mistakes can occur  and/or the data may 
have missing or unknown entries. During the data 
cleaning and preprocessing stage noise is removed 
from the data.  Outliers and anomalies in the data can 
pose special problems for the data analyst during the 

data cleaning process.  Since the goal is to find rare 
patterns in the data, the outliers and anomalies may 
be representations of these rare patterns.  Care must 
be taken not to remove these types of outliers and 
anomalies.  This step in the process can be the most 
time consuming. 

Data Reduction and Coding step employs 
transformation techniques that are used to reduce the 
number of variables in the data by finding useful 
features with which to represent the data.  

Data Mining constitutes one step in the KDD 
process.  The transformed data is used in the data 
mining step.  It is in this step that the actual search for 
patterns of interest is performed.  The search for 
patterns is done within the context of the data mining 
task and the representational model under which the 
analysis is being performed.  It is important at this 
stage to decide on the appropriate data mining 
algorithm (linear/logistic regression, neural networks, 
association rules, etc.) for the data mining task 
(classification, database segmentation, rule 
generation, etc).  The data mining task itself can be a 
classification task, linear regression analysis,  rule 
formation, or cluster analysis.   

Patterns generated in the data mining step may 
not be new or interesting. It is therefore necessary to 
remove redundant and irrelevant patterns from the set 
of useful patterns.  Once a set of �good� patterns have 
been discovered, they then have to be reported to the 
end user.  This can be done can be done textually, by 
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way of reports or using visualizations such as graphs, 
spreadsheets, diagrams, etc.   

The interpretation step takes the reported results 
and interprets this into knowledge.   Interpretation may 
require that we resolve possible conflicts with 
previously discovered knowledge since new 
knowledge may even be in conflict with knowledge that 
was believed before the process began.    When this is 
done to user's satisfaction, the knowledge is 
documented and reported to any interested parties.  
This again may involve visualization.   

It is important to stress that the KDD process is 
not linear.  Results from one phase in the process may 
be fed back into that phase or into another phase.  
Current KDD systems have a highly interactive human 
component.  Humans are involved with many if not 
each step in the KDD process.  Hence, the KDD 
process is highly interactive and iterative.   
 
 
3. Data Mining 
 
 Data mining is one step in the KDD process.  
It is the most researched part of the process.  Data 
mining algorithms find patterns in large amounts of 
data by fitting models that are not necessarily 
statistical models.  This is done  within computational 
limits such as time (answers should be found within a 
finite amount of time) and hardware.  Data mining can 
be used to verify a hypothesis or use a discovery 
method to find new patterns in the data that can do 
predictions with new, unseen data. 

The term data mining is a somewhat recent 
one.  In the past data mining has been known in the 
literature as knowledge extraction, information 
discovery, information harvesting, exploratory data 
analysis, data archeology, data pattern processing, 
and functional dependency analysis.   

Performance analysts employ many of the 
same methods that data miners use when analyzing 
data.  These include statistical models such as linear 
and logarithmic regression, cluster analysis, graphical 
analysis, and visualizations.  There are some 
algorithms employed by data miners that are not 
usually used by performance analysts.  Decision tree 
algorithms, neural networks, and 
association/dependency rule algorithms can be useful 
analytical tools for the performance analyst.  Rather 
than discuss techniques that are often used by 
performance analysts, the remainder of this paper will 
elaborate upon these three algorithms.  A performance 
dataset will be used to describe these algorithms and 
their use in performance analysis.  The dataset 
contains data collected over a period of several 
months. A summary dataset was created that 
aggregates the measurements collected every 15 
minutes into daily summary points. Our simple dataset 
contains 6 metrics: 
 

• Date,  
• Total Number of transactions,  
• CPU busy %,  
• Disk busy %,  
• Average Response Time, and   
• Average Network Busy % 
 
The reader can observe from cursory data 

analysis (see the Figure 2 below) that the key 
relationships inherent in the data is as time moves 
forward,  the number of transactions increases,  and 
network busy percent decreases.  Although this is a 
simplistic dataset in that the patterns in the dataset are 
quite obvious, because of this, the dataset is well 
suited for demonstration of the data mining techniques 
in the following sections. 

 

Figure 2  - Data Relationships
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3.1 Association/Dependency Rule Algorithms  
 
Dependency modeling uses methods that 

describe variable dependencies and associations.  
The results of these algorithm are what is known as 
association or dependency rules. [1] [2] [3] Association 
rule algorithms were developed to analyze market 
basket data.  They identified groups of market items 
that customers tended to buy in association with each 
other.  For example, customers tend to buy soap, 
shampoo, and hairspray at the same time.  Because of 
their origins, much association rule terminology stems 
from this domain.    

Given a set of items I , (or a set of variables 
from each transaction or record) an association rule is 
a probabilistic implication X ⇒ Y where X and Y are 
subsets of  I  and  X ∩ Y = φ .  Interesting association 
rules are defined by two metrics, support and 
confidence.  Support is a measure of a rule's 
significance with respect to the database, and 
confidence is a measure or the rule's strength.[1]   

 
CPU 
busy 

Network 
Busy 

Response 
Time High 

Network 
Busy High 

1 0 1 0 
1 1 0 0 
1 1 0 1 
1 0 1 1 
0 1 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
0 1 1 1 
1 1 0 1 

Table 1 Sample Dataset 
 
More formally, let N  be the number of 

transactions (records)  in a database. A set of items is 
said to satisfy a transaction if that transaction contains 
those items.  For example, given N = 10 as in Table 1, 
if our item set were {CPU busy = 1, Network busy = 1}, 
then all records containing values that match the 
itemset for CPU busy and Network busy would satisfy 
that set.  In Table 1, there are 5 transactions that 
satisfy the itemset {CPU busy = 1, Network busy = 1}. 
Given an association rule X ⇒ Y , let S1  be the 
number of transactions that contain or satisfy X.  Let 
S2  be the number of observations in T that contain or 
satisfy X ∪  Y.   The support  s  of X ⇒ Y is S2 / N (or 
the s% of the transactions/records that contain X ∪  Y) 
and the confidence  c of  X ⇒ Y is     S2 / S1 (the c% of 
all transactions N that contain X which also contain Y).  
For example, if we were to look at Table 1, given the 
association rule CPU busy = 1   ⇒ Network Busy = 1, 
then the support would be 5/10 or 50%.  Since there 
are 8 transactions that contain CPU busy = 1, the 
confidence for this association rule would be 5/8 or 
63%.  Note if the association rule we were looking at 

was Network Busy = 1 ⇒ CPU busy = 1, the support 
would still be 50% but the confidence would be 5/7 or 
72% since there are seven transactions with Network 
Busy = 1.  The support of a rule is the rule's statistical 
significance in the dataset.  The confidence is a 
measure of the rule's strength relative to the dataset.  
A rule that has a support above a user defined 
threshold, minsup, and confidence above a user 
defined threshold minconf, is an interesting association 
rule. 

The problem of finding interesting association 
rules was first explored by  Agrawal et. al. [1] [2] [3].  
Agrawal et. al. decomposed the problem of finding 
association rules into two parts.  The first focuses on 
finding large itemsets.  A large itemset is a set of 
database items in that have support in the database 
greater than the user specified minimum (minsup).  
Once the set of large itemsets is found, the second 
part of the problem, uses these itemsets to generate 
rules that have confidence above a user defined 
minimum (minconf).  Finding rules from large itemsets 
is straightforward.  Finding the large itemsets 
themselves is an exponential problem, and hence 
computationally expensive to solve.  Agrawal et. al. 
proposed the Apriori algorithm to find large itemsets 
and the association rules based on these large 
itemsets. [ 1] [ 2] [3].    

In order to use Apriori with the computer 
performance data, we needed to "booleanize" the 
data.  Association rule algorithms evaluate data that 
has either a zero or one value.  This evolved from their 
origins which was the analysis of market basket data.  
A customer bought an item (value = 1) or didn't buy 
the item ( value = 0).  Booleanizing numeric data 
involves finding a threshold, above which every data 
point becomes a one, and below which it becomes 
zero.  Since mean has been shown to yield a good 
threshold, it was used to booleanize the computer 
performance data. [10] The results given by Apriori 
with minsup set to 50% and minconf set to 80% on the 
booleanized computer performance data yielded the 
following two rules: 

 
# transactions ⇒  date   
(support = 51.0%, confidence = 98.7%) 
 
date ⇒  # transactions   
(support = 50.3%, confidence = 100.0%) 
 
Note that association rule algorithms only find positive 
dependencies.  In computer performance, negative 
dependencies are also significant.  Silverstein, Brin, 
and Motwani proposed a modification of Apriori that 
finds negative dependencies. [14]  Domanski, 
Imberman, and Orchard have proposed the Boolean 
Analyzer algorithm that also finds these negative 
dependencies.  The resulting rules are ordered based 
on a probabilistic interestingness measure (PIM).  [6] 
[10] [14]    Results from Boolean Analyzer on the 



booleanized computer performance data are shown in 
table2. 

 
 

Rule Interpretation 

date = 0 ⇒   # transactions = 0 As time decreases, Number of Transactions 
decreases 

 date = 1 ⇒   # transactions = 1 As time increases, Number of Transactions 
increases 

date = 0 ⇒   network busy = 1 As time decreases, network busy increases 

date = 1 ⇒   network busy = 0 As time increases, network busy decreases 

date = 0 ⇒  # transactions = 0 && network busy = 1 As time decreases, Number of Transactions 
decreases and network busy  increases 

date = 1 ⇒  # transactions = 1 &&  network busy = 0 As time increases, Number of Transactions 
increases and network busy decreases 

 
Table 2 - Results From Boolean Analyzer 

 
 
Here we not only see the positive dependencies but 
the negative dependency between the date and 
network busy.   
 
 
3.2 Decision Trees 
 
The model representation for decision trees is a tree 
data structure.  As in figure 3 each  node in the tree 
represents an attribute.  Node attribute labels are 
chosen by a function which can separate the attributes 
such that values within a node are most similar and 
between nodes are dissimilar.  Different decision tree 
algorithms use different functions to label each node.  
The algorithm C4.5 uses information gain to decide 
which attribute labels a node.[11]  CART uses the Gini 
index. [4]  CHAID uses a chi square statistic to make 
this determination. The attribute that best classifies the 
training examples is the one that labels the node.  
Each attribute value points to a child node.  Nodes 
become leaves when its highest measured attribute 
classifies all training examples at that node or all 
attributes have labeled nodes.  In Figure 3, Ai stands 
for an attribute or variable in the dataset, where vij are 
the specific values the decision tree algorithm found as 
good splitting values for this attribute.  The input to a 
decision tree is a set of training examples.  Training 
examples are records from the dataset where one 
attribute, the target variable, is correctly classified.  In 
Figure 3, training examples were classified with the 
values yes or no.  The tree algorithm learns  and 
generalizes this classification and therefore can 
classify unseen examples.  One of the drawbacks of 
decision trees is that they can tend to overfit the data. 
Different algorithms employ different methods of 
pruning the trees to compensate for this. 
 

 
 Each path in the tree represents a conjunction 
of attributes.  The tree is a disjunction of each 
conjunctive path.    There can be many decision trees  
that can describe a given training set.  Usually 
decision tree algorithms generate multiple trees and 
recommend the "more accurate" tree as a classifier.  
Another method for "deciding" between trees is to use 
these multiple trees as a "committee of experts"   for 
classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

C4.5 requires that the target variable be categorical.  
To use the performance data with C4.5, the target 
variable, number of transactions, was booleanized.  A 
value of 1 meant a high number of transactions, and 0 
described a low number of transactions.  For the 
performance dataset, C4.5 yielded the following 
results: 
 

 Decision Trees 

A1 

A4 A3 A2 

v11 
v12 

v13 

A5 A3 A2 A7 A6 

v21 v22 v41 v42 v43 
YES 

YES YES 

v ij  =  value j of Attribute i  
Ai = Attribute i

Figure 3 - Decision Trees



Class specified by attribute `num transactions' 
 
Read 152 cases (6 attributes) from 
430DATA2.data 
 
Decision tree: 
 
network busy <= 45: 1 (77) 
network busy > 45: 0 (75) 

 
 
      Results from the Salford Systems' version of 
CART on the performance data with a booleanized 
target variable (number of transactions) is shown in 
figure 4. 

 

 
 

Figure 4 - CART Decision Tree 
   
CART chose date as the splitting attribute as opposed 
to the network busy attribute chosen by C4.5.  Actually 
both attributes are almost identical in their ability to 
classify the data with only hundredths of a percent 
difference between the two.  The choice differences 
displayed by the two methods can be attributed to the 

different functions used by each algorithm to 
distinguish between attributes. 

CART can also evaluate data using a numeric 
target variable, thus creating a regression tree.  The 
regression tree for the performance data using the 
original numeric values for number of transactions is 
shown below. 

 
 

Figure 5 - CART Regression Tree 



 
Figure 4 -  Neural Networks 

 
 
 
Each path in the tree can be interpreted into a rule.  
For example the far left (first) path yielded the rule:    
 
if  (DATE <= 34249.5) 
{ 
    terminalNode = -1; 
    mean = 190.571;  //average number of transactions 
} 

 
The second path yielded the rule: 
 
if  (    DATE > 34249.5 &&    DATE <= 34254.5 ) 
{ 
    terminalNode = -2; 
    mean = 505.4;   //average number of transactions 
 
} 
 
 
Decision trees are good classifiers with easily 
interpreted results. 
 
3.3 Neural Networks 
 

Neural Networks are a graphical model based 
on the human nervous system. [11] It consists of a 
system of connected nodes arranged in multiple 
layers.  In Figure 4 we see that there is an input layer, 
a hidden layer (there can be several hidden layers), 
and an output layer.    Inputs to the neural network are 
the same types of training examples that decision 
trees take as their input.  Each node is associated with 
an input value and a weight.   The weights are 
multiplied by their respective input values and 
summed.  The result of some function of this sum is 

the output value from the node that is forwarded to the 
next layer of nodes.  [5] [11].  The outputs of a neural 
network is a set of weights that are the coefficients in a 
linear regression equation.   

One method for determining the network 
weights is back propagation.    Back propagation looks 
at the error between the networks' output value and 
the observed value and then adjusts the weights on 
each node so that this error is reduced.  This is 
repeated for each example fed into the network and 
repeated multiple times for the entire dataset.  Thus it 
is a highly iterative process.  This process is called 
"training" the neural network. 

The neural network itself represents a learned 
function that can be used to predict on new examples.  
The representational model of neural networks is 
difficult to interpret, as opposed to decision trees since 
we don�t always known what is happening in hidden 
nodes.  Neural nets result in a linear regression 
equation rather than a set of rules.  Although neural 
networks can be slow to train, once trained and 
implemented, neural networks can classify inputs very 
quickly.   
 Nnmodel, a neural net program, was used to 
evaluate the performance data. [12]   For this analysis, 
20 randomly selected records were withheld as a test 
set.  The neural net was trained on the remaining 132 
records.  This is a common practice done when 
training classifiers.  The withheld data is used to 
benchmark the classifiers ability to predict on unseen 
data.  Figure 5 shows the results of the neural 
network's predications as compared to the actual 
values on the withheld test set.  Notice that the two are 
very similar, thus showing that the neural networks did 
a good job of predicting the number of transactions. 
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Figure 5 Neural Network Results vs. Observed Results 
 
 

 
 

4. Discussion 
 
 The KDD process is a good paradigm for data 
analysis.   One may wonder what the differences 
between traditional statistical analyses and the KDD 
process are.  Hand [ 8 ] discusses these differences. 
He maintains that methods employed by KDD use 
statistical approaches that have the same rigor one 
usually employs in statistics, but many  KDD methods 
tend to be more experimental and less conservative 
than those used in statistics.   Thus they are more 
suited for a "discovery approach" to data analysis. 
 Of the data mining techniques discussed in 
this paper, there are situations that favor one over the 
other.  In addition each method has their drawbacks.  
Neural networks and decision trees are similar in that 
they are both classifiers.  The classifier model is built 
and is then used to predict the target class for future 
unseen data.  The advantage that decision trees have 
over neural networks is that the classification rules are 
directly readable from the model.  Many data analysts 
don't like the "black box" model built by neural 
networks. This is because the result of a neural 
network model is a set of linear regression equations, 
thus making the reasons for classification difficult to 
interpret.   

Decision tree models are faster to build.  It can 
take a long time to train a neural net.  Notwithstanding, 
once built, the execution of a neural net model can be 
faster than that of a decision tree.  In terms of 
accuracy, studies have revealed that one method is 

not necessarily more accurate on the other.  Accuracy 
tends to depend on the actual data involved.   

 
Association/Dependency rule algorithms show 

concurrence of variables.  They tend to generate many 
more rules than what is seen in decision trees.  The 
advantage is that these algorithms give us the ability to 
find rare and less obvious patterns in the data.  There 
have been attempts to use the rules generated by 
association/dependency rule algorithms for 
classification but using association/dependency rules 
in this manner has met with mixed results.   

It is important that these data mining 
algorithms not be used in an ad hoc manner.  This has 
come to be known as data dredging.  The fear is that 
doing so, one might discover patterns with no 
meaning.  In fact at one time KDD in the statistics 
community was considered a �dirty word�.  It has been 
shown that if one looks hard enough in a sufficiently 
large database, even a randomly generated one, 
statistically significant patterns can be found.   
 We also have to be careful as to how we 
interpret the patterns presented to us by data mining 
algorithms.  One classic data mining legend centers 
around a major retailer finding the relationship, �Men 
who buy diapers, buy beer!!�  The retailer , might 
assume that harried dads, going to the store to pick up 
some diapers, were picking up something for 
themselves as well!   
 Notwithstanding,  the KDD process, and 
specifically the data mining step in the process, offer 

Measured and Predicted (num transactions) N = 20 

num 
transactions 
per day 



the performance analyst  additional approaches for 
data analysis.   
 
 
 
 
5. Conclusions 
 
 In this paper, a very simplistic computer 
performance dataset was used to demonstrate three 
data mining algorithms.  The reasons for using such a 
simplistic set was to give the reader a "taste" for the 
methods discussed.  Usually these algorithms are 
used on highly dimensional, larger, complex datasets.   
It was my hope that in demonstrating the functional 
abilities of association/dependency rules, neural 
networks, and decision trees on a simple set, the 
reader would be encouraged to try these methods on 
their own data.   
 There are many resources available that 
implement these algorithms.  A nice implementation of 
Apriori was coded by Christian Borgelt and can be 
found at: 
 
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori/ 
 
Along with a discussion of the algorithm, there is also 
downloadable code.  Borgelt's version of Apriori was 
implemented in SPSS's data mining suite, Clementine.   
 
Another good site is: 
 
http://www.cs.waikato.ac.nz/ml/weka/ 
 
This site contains Weka 3 which is a suite of machine 
learning and data mining algorithms written in Java 
with a decent GUI.   
 
http://www.kdnuggets.com/  is a site that has many 
links to software, both commercial and free, along with 
other interesting links relating to the field of data 
mining.   
 
For those interested in reading more on the topic of 
data mining, [7] is a collection of papers that give a 
nice overview of the field.  [11] is a good text on 
machine learning.  [6] Gives a good introduction to 
Neural Networks.  A recent text by Jiawei Han and 
Micheline Kamber titled, Data Mining Concepts and 
Techniques, Academic Press 2001, gives a good 
introduction to the field in general.   
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