
EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR
COMPUTER PERFORMANCE PROFESSIONALS

Susan P. Imberman Ph.D.
College of Staten Island, City University of New York

Imberman@postbox.csi.cuny.edu

Abstract - The KDD (Knowledge Discovery in Databases) paradigm is a
step by step process for finding interesting patterns in large amounts of
data. Data mining is one step in the process. This paper defines the KDD
process and discusses three data mining algorithms, neural networks,
decision trees, and association/dependency rule algorithms. The
algorithms' potential as good analytical tools for performance evaluation is
shown by looking at results from a computer performance dataset.

1. Introduction

Knowledge Discovery in Databases (KDD) is
the automated discovery of patterns and relationships
in large databases. Large databases are not
uncommon. Cheaper and larger computer storage
capabilities have contributed to the proliferation of
such databases in a wide range of fields. Scientific
instruments can produce terabytes and petabytes of
data at rates reaching gigabytes per hour. Point of
sale information, government records, medical records
and credit card data, are just a few other sources for
this information explosion. Not only are there more
large databases, but the databases themselves are
getting larger. The number of fields in large databases
can approach magnitudes of 102 to 103. Record
numbers in these databases approach magnitudes of
109. [7] Computer performance data has also
increased in size and dimensionality.

It is much easier to store data than it is to
make sense of it. Being able to find relationships in
large amounts of stored data can lead to enhanced
analysis strategies in fields such as marketing,
computer performance analysis, and data analysis in
general.

The problem addressed by KDD is to find
patterns in these massive datasets. Traditionally
data has been analyzed manually, but there are

human limits. Large databases offer too much data to
analyze in the traditional manner.

The focus of this paper is to first summarize
exactly what the KDD process is. This paper attempts
to identify parts of the process that are currently being
practiced by performance analysts and those parts
that are not practiced, but may be useful in analyzing
performance data The paper is organized as follows:
Section 2 defines the KDD process. Section 3
discusses three data mining algorithms that are not
commonly used by performance analysts. The paper
concludes with a discussion in section 4.

2. KDD defined

KDD employs methods from various fields
such as machine learning, artificial intelligence, pattern
recognition, database management and design,
statistics, expert systems, and data visualization. It is
said to employ a broader model view than statistics
and strives to automate the process of data analysis,
including the art of hypothesis generation.
 KDD has been more formally defined as �the
non-trivial process of identifying valid, novel ,
potentially useful, and ultimately understandable
patterns in data.� [7]
 The KDD Process is a highly iterative, user
involved, multistep process, as can be seen in figure 1.

Figure 1 The KDD Process

From figure 1 we see that initially, we have

organizational data. This data is the operational data
gathered either in one or several locations. All
operational data is collected and brought to some
central location. These central locations are
sometimes called Data Warehouses or Data Marts.
Data transformation may be performed on the raw
data before it is placed in the data warehouse. Data
transformation resolves inconsistencies between the
data of one location from that of another. For
example, inconsistencies may be differences in data
type for the same information and different field names
for the same data field. Data warehouses hold both
detailed and summary data. Detailed data is used for
pattern analysis, where summarized data may hold the
results of previous analyses. Data warehouses also
contain historical data whereas operational data is
usually current. Efficient organization of the data
warehouse is essential for efficient data mining.

Once the data is organized, a selection process
occurs where some subset of this data becomes the
target data upon which further analysis is performed.
It is important when creating this target data that the
data analyst understand the domain, the end user�s
needs, and what the data mining task might be.

Sometimes data is collected in an ad hoc manner.
Data entry mistakes can occur and/or the data may
have missing or unknown entries. During the data
cleaning and preprocessing stage noise is removed
from the data. Outliers and anomalies in the data can
pose special problems for the data analyst during the

data cleaning process. Since the goal is to find rare
patterns in the data, the outliers and anomalies may
be representations of these rare patterns. Care must
be taken not to remove these types of outliers and
anomalies. This step in the process can be the most
time consuming.

Data Reduction and Coding step employs
transformation techniques that are used to reduce the
number of variables in the data by finding useful
features with which to represent the data.

Data Mining constitutes one step in the KDD
process. The transformed data is used in the data
mining step. It is in this step that the actual search for
patterns of interest is performed. The search for
patterns is done within the context of the data mining
task and the representational model under which the
analysis is being performed. It is important at this
stage to decide on the appropriate data mining
algorithm (linear/logistic regression, neural networks,
association rules, etc.) for the data mining task
(classification, database segmentation, rule
generation, etc). The data mining task itself can be a
classification task, linear regression analysis, rule
formation, or cluster analysis.

Patterns generated in the data mining step may
not be new or interesting. It is therefore necessary to
remove redundant and irrelevant patterns from the set
of useful patterns. Once a set of �good� patterns have
been discovered, they then have to be reported to the
end user. This can be done can be done textually, by

KDD Process

Organizational
Data

Data

ITERATIVE

Clean
Data

Preprocessin
g

Transformed
Data

Reduction

Coding

Patterns

Data

Mining

Report
Results

Visualiza
tion

Knowledge

Interpretation

Target
Data

Selection

way of reports or using visualizations such as graphs,
spreadsheets, diagrams, etc.

The interpretation step takes the reported results
and interprets this into knowledge. Interpretation may
require that we resolve possible conflicts with
previously discovered knowledge since new
knowledge may even be in conflict with knowledge that
was believed before the process began. When this is
done to user's satisfaction, the knowledge is
documented and reported to any interested parties.
This again may involve visualization.

It is important to stress that the KDD process is
not linear. Results from one phase in the process may
be fed back into that phase or into another phase.
Current KDD systems have a highly interactive human
component. Humans are involved with many if not
each step in the KDD process. Hence, the KDD
process is highly interactive and iterative.

3. Data Mining

 Data mining is one step in the KDD process.
It is the most researched part of the process. Data
mining algorithms find patterns in large amounts of
data by fitting models that are not necessarily
statistical models. This is done within computational
limits such as time (answers should be found within a
finite amount of time) and hardware. Data mining can
be used to verify a hypothesis or use a discovery
method to find new patterns in the data that can do
predictions with new, unseen data.

The term data mining is a somewhat recent
one. In the past data mining has been known in the
literature as knowledge extraction, information
discovery, information harvesting, exploratory data
analysis, data archeology, data pattern processing,
and functional dependency analysis.

Performance analysts employ many of the
same methods that data miners use when analyzing
data. These include statistical models such as linear
and logarithmic regression, cluster analysis, graphical
analysis, and visualizations. There are some
algorithms employed by data miners that are not
usually used by performance analysts. Decision tree
algorithms, neural networks, and
association/dependency rule algorithms can be useful
analytical tools for the performance analyst. Rather
than discuss techniques that are often used by
performance analysts, the remainder of this paper will
elaborate upon these three algorithms. A performance
dataset will be used to describe these algorithms and
their use in performance analysis. The dataset
contains data collected over a period of several
months. A summary dataset was created that
aggregates the measurements collected every 15
minutes into daily summary points. Our simple dataset
contains 6 metrics:

• Date,
• Total Number of transactions,
• CPU busy %,
• Disk busy %,
• Average Response Time, and
• Average Network Busy %

The reader can observe from cursory data

analysis (see the Figure 2 below) that the key
relationships inherent in the data is as time moves
forward, the number of transactions increases, and
network busy percent decreases. Although this is a
simplistic dataset in that the patterns in the dataset are
quite obvious, because of this, the dataset is well
suited for demonstration of the data mining techniques
in the following sections.

Figure 2 - Data Relationships

M e trics By D a te

0 .0 0

20 .0 0

40 .0 0

60 .0 0

80 .0 0

100 .0 0

120 .0 0

10
/1

/9
3

10
/1

5/
93

10
/2

9/
93

11
/1

2/
93

11
/2

6/
93

12
/1

0/
93

12
/2

4/
93

1/
7/

94

1/
21

/9
4

2/
4/

94

2/
18

/9
4

D a te

tra n s

c pu b u s y

d is k b u s y

re s p o n s e

 n e tw o rk
b u s y

3.1 Association/Dependency Rule Algorithms

Dependency modeling uses methods that

describe variable dependencies and associations.
The results of these algorithm are what is known as
association or dependency rules. [1] [2] [3] Association
rule algorithms were developed to analyze market
basket data. They identified groups of market items
that customers tended to buy in association with each
other. For example, customers tend to buy soap,
shampoo, and hairspray at the same time. Because of
their origins, much association rule terminology stems
from this domain.

Given a set of items I , (or a set of variables
from each transaction or record) an association rule is
a probabilistic implication X ⇒ Y where X and Y are
subsets of I and X ∩ Y = φ . Interesting association
rules are defined by two metrics, support and
confidence. Support is a measure of a rule's
significance with respect to the database, and
confidence is a measure or the rule's strength.[1]

CPU
busy

Network
Busy

Response
Time High

Network
Busy High

1 0 1 0
1 1 0 0
1 1 0 1
1 0 1 1
0 1 0 0
1 0 1 1
1 1 0 0
1 1 1 1
0 1 1 1
1 1 0 1

Table 1 Sample Dataset

More formally, let N be the number of

transactions (records) in a database. A set of items is
said to satisfy a transaction if that transaction contains
those items. For example, given N = 10 as in Table 1,
if our item set were {CPU busy = 1, Network busy = 1},
then all records containing values that match the
itemset for CPU busy and Network busy would satisfy
that set. In Table 1, there are 5 transactions that
satisfy the itemset {CPU busy = 1, Network busy = 1}.
Given an association rule X ⇒ Y , let S1 be the
number of transactions that contain or satisfy X. Let
S2 be the number of observations in T that contain or
satisfy X ∪ Y. The support s of X ⇒ Y is S2 / N (or
the s% of the transactions/records that contain X ∪ Y)
and the confidence c of X ⇒ Y is S2 / S1 (the c% of
all transactions N that contain X which also contain Y).
For example, if we were to look at Table 1, given the
association rule CPU busy = 1 ⇒ Network Busy = 1,
then the support would be 5/10 or 50%. Since there
are 8 transactions that contain CPU busy = 1, the
confidence for this association rule would be 5/8 or
63%. Note if the association rule we were looking at

was Network Busy = 1 ⇒ CPU busy = 1, the support
would still be 50% but the confidence would be 5/7 or
72% since there are seven transactions with Network
Busy = 1. The support of a rule is the rule's statistical
significance in the dataset. The confidence is a
measure of the rule's strength relative to the dataset.
A rule that has a support above a user defined
threshold, minsup, and confidence above a user
defined threshold minconf, is an interesting association
rule.

The problem of finding interesting association
rules was first explored by Agrawal et. al. [1] [2] [3].
Agrawal et. al. decomposed the problem of finding
association rules into two parts. The first focuses on
finding large itemsets. A large itemset is a set of
database items in that have support in the database
greater than the user specified minimum (minsup).
Once the set of large itemsets is found, the second
part of the problem, uses these itemsets to generate
rules that have confidence above a user defined
minimum (minconf). Finding rules from large itemsets
is straightforward. Finding the large itemsets
themselves is an exponential problem, and hence
computationally expensive to solve. Agrawal et. al.
proposed the Apriori algorithm to find large itemsets
and the association rules based on these large
itemsets. [1] [2] [3].

In order to use Apriori with the computer
performance data, we needed to "booleanize" the
data. Association rule algorithms evaluate data that
has either a zero or one value. This evolved from their
origins which was the analysis of market basket data.
A customer bought an item (value = 1) or didn't buy
the item (value = 0). Booleanizing numeric data
involves finding a threshold, above which every data
point becomes a one, and below which it becomes
zero. Since mean has been shown to yield a good
threshold, it was used to booleanize the computer
performance data. [10] The results given by Apriori
with minsup set to 50% and minconf set to 80% on the
booleanized computer performance data yielded the
following two rules:

transactions ⇒ date
(support = 51.0%, confidence = 98.7%)

date ⇒ # transactions
(support = 50.3%, confidence = 100.0%)

Note that association rule algorithms only find positive
dependencies. In computer performance, negative
dependencies are also significant. Silverstein, Brin,
and Motwani proposed a modification of Apriori that
finds negative dependencies. [14] Domanski,
Imberman, and Orchard have proposed the Boolean
Analyzer algorithm that also finds these negative
dependencies. The resulting rules are ordered based
on a probabilistic interestingness measure (PIM). [6]
[10] [14] Results from Boolean Analyzer on the

booleanized computer performance data are shown in
table2.

Rule Interpretation

date = 0 ⇒ # transactions = 0 As time decreases, Number of Transactions
decreases

 date = 1 ⇒ # transactions = 1 As time increases, Number of Transactions
increases

date = 0 ⇒ network busy = 1 As time decreases, network busy increases

date = 1 ⇒ network busy = 0 As time increases, network busy decreases

date = 0 ⇒ # transactions = 0 && network busy = 1 As time decreases, Number of Transactions
decreases and network busy increases

date = 1 ⇒ # transactions = 1 && network busy = 0 As time increases, Number of Transactions
increases and network busy decreases

Table 2 - Results From Boolean Analyzer

Here we not only see the positive dependencies but
the negative dependency between the date and
network busy.

3.2 Decision Trees

The model representation for decision trees is a tree
data structure. As in figure 3 each node in the tree
represents an attribute. Node attribute labels are
chosen by a function which can separate the attributes
such that values within a node are most similar and
between nodes are dissimilar. Different decision tree
algorithms use different functions to label each node.
The algorithm C4.5 uses information gain to decide
which attribute labels a node.[11] CART uses the Gini
index. [4] CHAID uses a chi square statistic to make
this determination. The attribute that best classifies the
training examples is the one that labels the node.
Each attribute value points to a child node. Nodes
become leaves when its highest measured attribute
classifies all training examples at that node or all
attributes have labeled nodes. In Figure 3, Ai stands
for an attribute or variable in the dataset, where vij are
the specific values the decision tree algorithm found as
good splitting values for this attribute. The input to a
decision tree is a set of training examples. Training
examples are records from the dataset where one
attribute, the target variable, is correctly classified. In
Figure 3, training examples were classified with the
values yes or no. The tree algorithm learns and
generalizes this classification and therefore can
classify unseen examples. One of the drawbacks of
decision trees is that they can tend to overfit the data.
Different algorithms employ different methods of
pruning the trees to compensate for this.

 Each path in the tree represents a conjunction
of attributes. The tree is a disjunction of each
conjunctive path. There can be many decision trees
that can describe a given training set. Usually
decision tree algorithms generate multiple trees and
recommend the "more accurate" tree as a classifier.
Another method for "deciding" between trees is to use
these multiple trees as a "committee of experts" for
classification.

C4.5 requires that the target variable be categorical.
To use the performance data with C4.5, the target
variable, number of transactions, was booleanized. A
value of 1 meant a high number of transactions, and 0
described a low number of transactions. For the
performance dataset, C4.5 yielded the following
results:

 Decision Trees

A1

A4 A3 A2

v11
v12

v13

A5 A3 A2 A7 A6

v21 v22 v41 v42 v43
YES

YES YES

v ij = value j of Attribute i
Ai = Attribute i

Figure 3 - Decision Trees

Class specified by attribute `num transactions'

Read 152 cases (6 attributes) from
430DATA2.data

Decision tree:

network busy <= 45: 1 (77)
network busy > 45: 0 (75)

 Results from the Salford Systems' version of
CART on the performance data with a booleanized
target variable (number of transactions) is shown in
figure 4.

Figure 4 - CART Decision Tree

CART chose date as the splitting attribute as opposed
to the network busy attribute chosen by C4.5. Actually
both attributes are almost identical in their ability to
classify the data with only hundredths of a percent
difference between the two. The choice differences
displayed by the two methods can be attributed to the

different functions used by each algorithm to
distinguish between attributes.

CART can also evaluate data using a numeric
target variable, thus creating a regression tree. The
regression tree for the performance data using the
original numeric values for number of transactions is
shown below.

Figure 5 - CART Regression Tree

Figure 4 - Neural Networks

Each path in the tree can be interpreted into a rule.
For example the far left (first) path yielded the rule:

if (DATE <= 34249.5)
{
 terminalNode = -1;
 mean = 190.571; //average number of transactions
}

The second path yielded the rule:

if (DATE > 34249.5 && DATE <= 34254.5)
{
 terminalNode = -2;
 mean = 505.4; //average number of transactions

}

Decision trees are good classifiers with easily
interpreted results.

3.3 Neural Networks

Neural Networks are a graphical model based
on the human nervous system. [11] It consists of a
system of connected nodes arranged in multiple
layers. In Figure 4 we see that there is an input layer,
a hidden layer (there can be several hidden layers),
and an output layer. Inputs to the neural network are
the same types of training examples that decision
trees take as their input. Each node is associated with
an input value and a weight. The weights are
multiplied by their respective input values and
summed. The result of some function of this sum is

the output value from the node that is forwarded to the
next layer of nodes. [5] [11]. The outputs of a neural
network is a set of weights that are the coefficients in a
linear regression equation.

One method for determining the network
weights is back propagation. Back propagation looks
at the error between the networks' output value and
the observed value and then adjusts the weights on
each node so that this error is reduced. This is
repeated for each example fed into the network and
repeated multiple times for the entire dataset. Thus it
is a highly iterative process. This process is called
"training" the neural network.

The neural network itself represents a learned
function that can be used to predict on new examples.
The representational model of neural networks is
difficult to interpret, as opposed to decision trees since
we don�t always known what is happening in hidden
nodes. Neural nets result in a linear regression
equation rather than a set of rules. Although neural
networks can be slow to train, once trained and
implemented, neural networks can classify inputs very
quickly.
 Nnmodel, a neural net program, was used to
evaluate the performance data. [12] For this analysis,
20 randomly selected records were withheld as a test
set. The neural net was trained on the remaining 132
records. This is a common practice done when
training classifiers. The withheld data is used to
benchmark the classifiers ability to predict on unseen
data. Figure 5 shows the results of the neural
network's predications as compared to the actual
values on the withheld test set. Notice that the two are
very similar, thus showing that the neural networks did
a good job of predicting the number of transactions.

N eural N etw orks

inputs ou tpu ts

h idden un its

o w xi i
i

n

=
=
∑

0 σ

w0 x0

w1x1

w2x2

wnxn

Figure 5 Neural Network Results vs. Observed Results

4. Discussion

 The KDD process is a good paradigm for data
analysis. One may wonder what the differences
between traditional statistical analyses and the KDD
process are. Hand [8] discusses these differences.
He maintains that methods employed by KDD use
statistical approaches that have the same rigor one
usually employs in statistics, but many KDD methods
tend to be more experimental and less conservative
than those used in statistics. Thus they are more
suited for a "discovery approach" to data analysis.
 Of the data mining techniques discussed in
this paper, there are situations that favor one over the
other. In addition each method has their drawbacks.
Neural networks and decision trees are similar in that
they are both classifiers. The classifier model is built
and is then used to predict the target class for future
unseen data. The advantage that decision trees have
over neural networks is that the classification rules are
directly readable from the model. Many data analysts
don't like the "black box" model built by neural
networks. This is because the result of a neural
network model is a set of linear regression equations,
thus making the reasons for classification difficult to
interpret.

Decision tree models are faster to build. It can
take a long time to train a neural net. Notwithstanding,
once built, the execution of a neural net model can be
faster than that of a decision tree. In terms of
accuracy, studies have revealed that one method is

not necessarily more accurate on the other. Accuracy
tends to depend on the actual data involved.

Association/Dependency rule algorithms show

concurrence of variables. They tend to generate many
more rules than what is seen in decision trees. The
advantage is that these algorithms give us the ability to
find rare and less obvious patterns in the data. There
have been attempts to use the rules generated by
association/dependency rule algorithms for
classification but using association/dependency rules
in this manner has met with mixed results.

It is important that these data mining
algorithms not be used in an ad hoc manner. This has
come to be known as data dredging. The fear is that
doing so, one might discover patterns with no
meaning. In fact at one time KDD in the statistics
community was considered a �dirty word�. It has been
shown that if one looks hard enough in a sufficiently
large database, even a randomly generated one,
statistically significant patterns can be found.
 We also have to be careful as to how we
interpret the patterns presented to us by data mining
algorithms. One classic data mining legend centers
around a major retailer finding the relationship, �Men
who buy diapers, buy beer!!� The retailer , might
assume that harried dads, going to the store to pick up
some diapers, were picking up something for
themselves as well!
 Notwithstanding, the KDD process, and
specifically the data mining step in the process, offer

Measured and Predicted (num transactions) N = 20

num
transactions
per day

the performance analyst additional approaches for
data analysis.

5. Conclusions

 In this paper, a very simplistic computer
performance dataset was used to demonstrate three
data mining algorithms. The reasons for using such a
simplistic set was to give the reader a "taste" for the
methods discussed. Usually these algorithms are
used on highly dimensional, larger, complex datasets.
It was my hope that in demonstrating the functional
abilities of association/dependency rules, neural
networks, and decision trees on a simple set, the
reader would be encouraged to try these methods on
their own data.
 There are many resources available that
implement these algorithms. A nice implementation of
Apriori was coded by Christian Borgelt and can be
found at:

http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori/

Along with a discussion of the algorithm, there is also
downloadable code. Borgelt's version of Apriori was
implemented in SPSS's data mining suite, Clementine.

Another good site is:

http://www.cs.waikato.ac.nz/ml/weka/

This site contains Weka 3 which is a suite of machine
learning and data mining algorithms written in Java
with a decent GUI.

http://www.kdnuggets.com/ is a site that has many
links to software, both commercial and free, along with
other interesting links relating to the field of data
mining.

For those interested in reading more on the topic of
data mining, [7] is a collection of papers that give a
nice overview of the field. [11] is a good text on
machine learning. [6] Gives a good introduction to
Neural Networks. A recent text by Jiawei Han and
Micheline Kamber titled, Data Mining Concepts and
Techniques, Academic Press 2001, gives a good
introduction to the field in general.

Acknowledgements: I would like to thank Bernie
Domanski for his help on this paper and keeping me
focused on the needs of the computer performance
professional.

6. References:

1. Agrawal, R., T. Imielinsk, and A. Swami.
"Mining Association Rules between Sets of
Items in Large Databases." Proceedings of the
ACM SIGMOD International Conference on
the Management of Data, 207-216, 1993.

2. Agrawal, R. Mannila, H., Srikant, R.

Toivonen, H. and Verkamo, A. I., Fast
Discovery Of Association Rules. In Usama
Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramaswamy Uthurusamy, editors,
Advances in Knowledge Discovery and Data
Mining, pages 307--328. AAAI/MIT Press,
1996.

3. Agrawal, R. and Srikant, R. Fast Algorithms

For Mining Association Rules. In Proceedings
of 20 th Intl. Conf. on Very Large Databases
(VLDB'94), pages 487--499, Santiago, Chile,
1994

4. Breiman, L., Friedman, J. H. , Olshen, R. A. ,

Stone, Charles J. Classification and Regresion
Trees, Chapman and Hall/CRC, 1984.

5. Domanski, B., A Neural Net Primer, Journal of

Computer Resource Management, Issue 100,
Fall 2000.

6. Domanski, B., 1996. Discovering the

Relationships Between Metrics. The
Proceedings of the 1996 Computer
Measurement Group. December 1996, San
Diego California, 309 � 313.

7. Fayyad, U., Piatetsky-Shapiro, G., and

Smyth, P. From data mining to knowledge
discovery: An overview. In Usama Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth,
and Ramaswamy Uthurusamy, editors,
Advances in Knowledge Discovery and Data
Mining, pages 1--31. AAAI/MIT Press, 1996.

8. Hand D. J., Statistics and Data Mining:

Interesting Disciplines, Association for
Computers and Machinery SIGKDD
Explorations, June 1999 Vol. 1 Issue1, pgs 16
- 19.

9. Imberman, S. 1999. Comparative Statistical

Analyses Of Automated Booleanization
Methods For Data Mining Programs (Doctoral
dissertation, City University of New York,
1999). UMI Microform, 9924820.

10. Imberman, S.P., Domanski, B., Orchard, R.,
1999. Using Booleanized Data To Discover
Better Relationships Between Metrics.,
CMG99 Proceedings, 1999.

11. Mitchell, T. M., Machine Learning, WCB

McGraw-Hill 1997.

12. Nnmodel, http://www.cyberave.com/~carlb/

13. Orchard, R. A. On the Determination of
Relationships Between Computer System
State Variables. Bell Laboratories Technical
Memorandum, January 15, 1975

14. Silverstein, C., Sergey Brin, and Rajeev Motwani.

Beyond Market Baskets: Generalizing Association
Rules to Dependence Rules. Data Mining and
Knowledge Discovery, 2(1):39-68, 1998

