
An Efficient Method For Finding Emerging Large Itemsets
Susan P. Imberman
College of Staten Island

The Graduate Center
City University of New York

2800 Victory Blvd.
Staten Island, NY 10314

Imberman@postbox.csi.cuny.edu

Abdullah Uz Tansel
Baruch College

The Graduate Center
151 East 25th Street

New York, NY 10010
tansel@baruch.cuny.edu

Eric Pacuit
The Graduate Center

City University of New York
365 Fifth Avenue

New York, NY 10016
e_pacuit@hotmail.com

ABSTRACT
The incremental mining of association rules has been shown to be
more efficient than rerunning standard association rule algorithms
such as Apriori. As each increment is processed, we see the
emergence of some itemsets. An itemset that has emerged is one
that was small and is large in the current increment. An emergent
large itemset is a small itemset that has the potential to become
large, and will do so with high probability. In this paper we
modify an existing incremental algorithm, UWEP, so that it can
identify emergent large itemsets. We show that, on average, 65%
of the emergent large itemsets identified by the algorithm actually
do emerge.

General Terms
Algorithms, Experimentation

Keywords
Incremental Algorithms, Association Rules, Negative Border,
Temporal Association Rules, Emergent Large Itemsets.

1. INTRODUCTION
The use of association rules to find the co-occurrence between
variables in large datasets is a well researched technique for data
mining. Association rules have been used in many domains, most
notably market basket data. Here, mined associations between
store products have been used for product shelf placement and
customer marketing. In the banking industry association rules are
used to find the characteristics of high risk credit customers.
The problem of finding association rules can be decomposed into
two steps. The first step involves finding all large itemsets. This
step is the most difficult. Algorithms that accomplish this, such as
Apriori [1,2], are exponential in the worst case. Once the large
itemsets are found, generating association rules is straightforward.
and can be accomplished in linear time.

When a database is expanded with an incremental increase in the
number of transactions, we can either rerun an algorithm such as
Apriori, or use the knowledge obtained from the "original"
database to reduce the processing time for finding small itemsets
that have become large or any large itemsets that have become
small. Several incremental algorithms have been proposed that
can efficiently find large itemsets. [4,5,6,7,9,11]. UWEP (Update
With Early Pruning) has been shown to be an efficient algorithm
that addresses the incremental association rule problem. UWEP
gains its efficiency by pruning from consideration, those large
itemsets in DB (the original database), that are not present in db

(the increment) and become small due to the change in the overall
number of transactions in the combined "new" database, DB+db.
UWEP scans DB at most once and db exactly once. It has been
shown to generate and count the minimum number of candidates
in order to determine the new set of association rules. [4,5]
The negative border has been defined as the set of minimal small
itemsets, closed with respect to set inclusion, and whose subsets
are all large. [12] The negative border is a subset closed
collection of itemsets. Thomas, Bodagala, Alsabti, and Ranka
[11] used the negative border set to see which itemsets have
changed status from large to small and vice versa. Dong and Li
[8] use interval closed borders to find emergent patterns. They
define an emergent pattern as an itemset whose support increases
significantly between databases.

If we look at emergent patterns with respect to the negative border
we can see whether a small itemset is becoming large. In this
paper we use this property of the negative border, in a modified
version of UWEP called NUWEP (Negative border Update With
Early Pruning), to find these emergent large itemsets. We view
emergent large itemsets as a special case of the emergent patterns
described by Dong and Li. An emergent large itemset (ELI) can
be thought of as an itemset that is currently small in the combined
database but has increased its support such that it will eventually
become large. ELI are particularly interesting emergent patterns.
For example, in the market basket domain, if we define an interval
as the time between wholesale purchases, recognizing that a set of
items will emerge or become large in the next time period, can
allow the storekeeper to order these items much earlier than usual.
Thus the storekeeper can avoid being short these items and losing
the income their sales could have generated. Finding emergent
large itemsets does not add a lot of increased overhead to the
standard incremental algorithm. Our contribution in this paper is
to show how an incremental approach allows us to find ELIs
efficiently. We can identify ELIs that have the potential to
Permission to make digital or hard copies of all or part of thi s work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TDM ’04, August 22, 2004, Seattle, Washington.

emerge with results that are better than random. Moreover, our
incremental approach allows us to identify the time an itemset
becomes large before waiting for the next batch cycle.

The organization of this paper is as follows: Section 2 gives the
definition of the emergent large itemset problem. Section 3
outlines our approach for solving the emergent large itemset
problem. In section 4 we show experimental results derived from
synthetic data. Section 5 is our discussion and section 6 our
conclusions.

2. STATEMENT OF PROBLEM

Define the support of an itemset I, as the number of transactions
containing that itemset, divided by the number of transactions in
the dataset. Itemsets with support above a user defined threshold
called minsup are called large itemsets [1,2,3]. Given a set of
items I, such as products in a store, an association rule is an
implication X�Y where X and Y are subsets of I and X � Y=I.
Interesting association rules are defined by two metrics, support
and confidence. Support is a measure of a rule's significance with
respect to the database, and confidence is a measure or the rule's
strength.
More formally, let N be the number of transactions in a database
DB. Given an association rule X ⇒ Y, let S1 be the number of
transactions in DB that satisfy X. X satisfies a transaction t in DB

if the items contained in X are also in t. Let S2 be the number of
observations in T that satisfy the vector X ∪ Y. The support s of
X⇒Y is S2 /N and the confidence c of X ⇒ Y is S2 /S1 . An
interesting association rule has support above or equal to a user
defined parameter called minsup, and confidence equal to or
above a user defined parameter called minconf. Large itemsets
can generate interesting association rules. Finding large itemsets
is difficult and costly, most times exponential. Finding rules from
a large itemset is linear. Therefore most methods for finding
association rules concentrate on efficiently finding large itemsets.
Many association rule algorithms have been formulated to address
this problem. [1,2,3]. The problem increases in cost when one
wishes to find large itemsets in a database that is increasing in
size. Rerunning the association rule algorithm is costly,
especially since much of the cost in processing large datasets lies
in parsing the data. Incremental algorithms take advantage of the
knowledge gained from the previous increment, to reduce
iterations over the entire database. UWEP (Update With Early
Pruning) is an efficient incremental algorithm, that counts the
original database at most once, and the increment exactly once. In
addition the number of candidates generated and counted is
minimum. [4,5].
As time progresses, we see many interesting patterns with regard
to the change in status of individual itemsets. An itemset that was
small can become large, large itemsets can become small, or an
itemsets may remain large or small. We define small itemsets that
are moving toward large as emerging. Conversely, large itemsets
moving toward small are submerging. A small (large) itemset that
becomes large, i.e. support is above (below) minsup, is said to
have emerged (submerged). The problem we address in this paper
is, can we identify itemsets that are currently emerging
(submerging). Next, which of these itemsets have the potential to
emerge (submerge) within the next increment. Or, more

generally, can this happen within n intervals. For this paper we
talk about emergence, but the solution for the submergence
problem is analogous.
For the remainder of this paper we use the following notation:

DB is the set of old transactions (where transactions denote the
records in the original database)
db is the set of new coming transactions (the increment)
DB+db is the set of old and new coming transactions
supportDB (X) is the support of itemset X in DB

supportdb (X) is the support of X in db,
supportDB + db (X) is the support of X in DB+ db

tidlist DB (X) is the transaction list of X in DB

tidlist db (X) is the transaction list of X in db

tidlist DB+db (X) is the transaction list of X in DB + db
k

dbC is the set of candidate k-itemsets in db, where k is the
number of items in that itemset.

k

dbL is the set of large k-itemsets in db

k

DBL is the set of large k-itemsets in Db

LDB+db is the set of large itemsets in DB + db.

2.1 Emergent Large Itemsets
In Figure1 we have modified the formalizations given by Dong
and Li in [8] for the special case of ELI. Figure1 partitions the
space of itemsets. It can also be visualized as all the possible
transitions for an itemset X from DB to DB + db.

Definition 2.1.1: The support count (SC) of an itemset is the
number of transactions that an itemset satisfies.

Assume that db is of constant size and is smaller than DB. Even
though we place constraints on the problem, the following easily
generalizes to the case where db varies. Figure1 plots the support
count in DB (denoted as SCDB) against the support count in db

(denoted as SCdb). Each point in the graph depicts an ordered pair
(SCdb, SCDB) where the sum of SCdb and SCDB is an itemset's
support count in DB+db at some increment interval.

Figure 1 Emergent Itemsets

Definition 2.1.2 minSCDb+db is the minimum number of
transactions needed to be large in DB+db.

Definition 2.1.3 minSCDB is the minimum number of transactions
needed to have to have been large in DB.

Definition 2.1.4 minSCdb is the minimum number of transactions
needs to have been large in db.

If the increment adds no transactions to an itemset's support
count, then in order to achieve minSCDb+db it's support count in
DB has to be equal to minSCDB + minSCdb. This is point H in
Figure1. Alternately, if an itemset's SC is equal to |db| in db, then
to be large it's support in DB has to be some SC = n , where n >0,

and n = minSCDB+db - |db| . This is point C in Figure 1.

Lemma 2.1.1: All points G = (SCdb, SCDB), where SCdb + SCDB =
minSCDb+db lies on line HC.

Proof: : Proof directly follows from the definition of the line
HGC. At point H, SCDB of an itemset X has sufficient support at
DB to become large at DB+db without any contribution from db,
i.e., SCDB = minSCDb+db. From point H to point G, SCDB declines,
however the decline is compensated by SCdb and their sum (SCDB

+ SCdb) equals to minSCDb+db. At point G, an itemset X has the
exact support count at both DB and db and hence G is on the line
HC. For any point on GC, the increase in SCdb compensates the
decrease in SCDB and their sum still equals, SCDB + SCdb =

minSCDb+db. □

Lemma 2.1.2 For all points G described in Lemma 2.1.1on the
line HC, (SCdb, SCDB) where SCdb + SCDB = minSCDb+db

Proof: Proof directly follows from the Lemma 2.1.1. (SCdb, SCDB)
= minSCDb+db is true by the definition of line HC and minSCDB +

minSCdb = minSCDb+db holds by the definition of minsup over DB

+ db. □

Line HC partitions the space of all itemsets in DB+db into large
and small. The shaded area in Figure1 represents all the large
itemsets and it includes Line HC. In fact, using defined values for
minSCDb+db,, minSCDB, ,and minSCdb we can further partition the
itemset space as shown in Figure1. Each partition exhibits some
interesting properties with respect to itemsets in DB, db, and
DB+db. Specific partitions under HC contain itemsets that are
emerging in the current increment. For example, the area defined
by ΔHFG represents those itemsets that were large itemsets in DB,
small itemsets in db, and now are small in DB+db. These
itemsets have therefore submerged. ΔGIC represents itemsets that
were small in DB and large in db. These itemsets have emerged.

Lemma 2.1.3: An itemset that is small over DB with support n,

and large in db with support >= minsup, has support in DB+db

>n.

Proof: : Let n = SCDB / |DB|. SCdb / |db| >= minsup is given.
Since the itemset is small in DB, n < minsup. We can break SCdb

into j + k such that j / SCdb = n. It is shown that (SCDB + j) / (|DB|

+ |db|) = n [11]. Clearly adding a positive value to the numerator
increases the value of the fraction, i.e., (SCDB + j + k) / (|DB| +
|db|) > n. □

Lemma 2.1.4: An itemset that is small DB with support n, and
small in db with support < n < minsup, has support in DB+db < n.

Proof: Proof is analogous to the proof of Lemma 2.1.3. □

Therefore, according to Lemma 2.1.3 and 2.1.4, all itemsets in
area ABCG are emerging in the current interval and all itemsets in
area OAGH are submerging. To find all ELI's in the current
interval, we need to identify all itemsets in ABCG.

2.2 Interesting Emerging Itemsets
Finding interesting ELI's can be both a subjective or objective
problem. For example, if we look at an itemset, that contains
gardening tools such as hoe, rake, and spade, an ELI containing
these items wouldn't be interesting if it were emerging during the
spring/summer seasons. It would be interesting if it were
emerging in the winter season. This would be a subjectively
interesting ELI. Subjectively interesting ELI are domain and user
dependent.
Definition 2.2.1 The growth rate of an ELI is the average gain in
support over n increments.
By definition, ELI's that continue to remain ELI's will eventually
become large. If the ELI is growing at a very small rate, then it
will become large at some time far into the future. ELI's with
faster growth rates will emerge sooner. Therefore, one type of
objectively interesting ELI is one that will emerge within the next
increment, or within the next N increments.

Figure 2 Potentially Emergent Large Itemsets

Maintaining our assumptions about a constant increment size and
|db| < |DB|, we can establish a lower bound on the support count
needed by an itemset in the current increment interval to achieve
emergence in the next increment. The largest possible gain in
support count in the next increment is equal to |db|. This occurs
when an itemset is contained in every transaction in the
increment. To have the potential to emerge in the next increment,
the support count of the itemset in DB+db needs to be greater
than or equal to 2minSCdb + minSCDB - |db| in the current
increment. All points with this value are represented by line RS
in Figure 2. For example, if we have a |DB| = 10,000, |db| = 1,000

and minsup = .20, then the minimum support count for the current

increment is 2,200 (2,000 from DB + 200 from db). If an itemset
can add the maximum support incremental support count, a total
of 1,000 from db, in the next increment, it would need a support
count of at least 1,400 in the current increment to be able to attain
the minimum support count of 2,400 needed to become large.
The band of itemsets between line RS and line HC are all itemsets
that have the potential to become large in the next increment, by
this formula. If we use only information from the current
increment to determine which ELI's have the potential to become
large in the next increment, then all itemsets that are in this band
and are emerging have the highest probability of emerging in the
next increment. Therefore, itemsets in GDSC are most likely to
emerge in the next increment.

Figure 3 Growth in Support of Itemsets
In large datasets this can be a large group. We can bound this set
even further by looking at an itemset's growth rate. If we were to
plot the support count of an itemset over time, we see that in order
to maintain minimum support, an itemset has to have a constant
growth rate. Line AB in Figure 3 represents the minimum
support count, in the cumulative database (DB+db), in order for
that itemset to remain at exactly minsup. If a small itemset's
support count increases at the same rate as AB, i.e. its support in
db is minsup for each interval, then that itemset will never become
large. This is shown by line CF. Note the slope of CF in the graph
is the same as AB. Those itemsets whose growth decreases with
time, as shown by ED have slope less that of line AB. Emergent
large itemsets, such as CB have slope greater than AB. Thus,
even though an itemset is emerging, it may not emerge in the next
increment or within the next n increments. Those itemsets whose
growth rates allow them to become large in the next interval are
potentially emergent large itemsets. Therefore these itemsets are
those itemsets whose rate of growth is larger than that of an
itemset maintaining minsup.

3. NUWEP, AN ALGORITHM FOR

FINDING INTERESTING EMERGING

LARGE ITEMSETS
Keeping track of all small itemsets' growth rates can be
exponentially large in both time cost and memory cost. The
negative border is a concise way to represent larger sets of small
itemsets. The negative border is the set of small itemsets whose
supersets are large [12]. Thomas, Bodagala, Alsabti, and Ranka
[11] proved that an itemset X that was previously small in the
original dataset and large in the "new" or original plus
incremental dataset, has either moved from the negative border set
to the set of large itemsets in the new dataset, or some subset of X

has moved from the negative border set to the set of large itemsets
in new dataset.

Lemma 3.1: An itemset in the negative border will emerge at the
same time or before any of its supersets.

Proof: Let X, Y be itemsets, X is in the negative border and Y be
an immediate superset of X. Lets assume that Y becomes large and
X is not large. Apparently, supportDB (X) < minsup and
supportDB+db(X) but supportDB (Y) > minsup. This is a
contradiction since all the subsets (i.e., X) of a large itemset (Y)
are also large [8]. □

Lemma 3.2 The growth rate of an itemset in the negative border
will be equal to or greater than any of its supersets.

Proof: Let X, Y be itemsets, X is in the negative border and Y be
an immediate super set of X. Lets assume that growth rate of Y is
larger that the growth rate of X, i.e. supportDB+db(Y) >
supportDB+db (X). From the definition of support, this implies
SCDb+db (Y) > SCDb+db (X) and it is clearly a contradiction. □

If we keep track of the growth rate of an itemset in the negative
border, and that itemset has the potential to emerge in the next
increment, then we can easily find the supersets that will also
emerge.

3.1 UWEP to NUWEP
UWEP is an incremental association rule algorithm that has been
shown to efficiently solve the incremental association rule
problem. It has been shown to generate and count the minimum
number of candidates in order to determine the new set of
association rules. [4,5]. To find ELI, we can modify UWEP so
that in addition to counting and keeping track of large itemsets, it
keeps track of the negative border.
Appendix 1 contains UWEP with the additional steps necessary to
maintain the negative border. We call the modified algorithm,
NUWEP (Negative border Update With Early Pruning).
Lemma 3.1.1: The number of candidates generated and counted
by NUWEP algorithm is minimum.
Proof: Candidate generation is driven by the increment database,
db. Therefore it would suffice to show that we generate and count
minimum number of candidates in db at each level since NUWEP
is a level wise algorithm. 1

dbC contains only the itemsets whose
support is greater than zero and it is a minimum bound. At level k
only the itemsets that are large in db and DB + db are placed into

k

dbL . Itemsets in k

dbL are used in generating 1+k
dbC . Clearly this

is the minimum possible number of candidate itemsets. The

candidates counted in db are minimum, since itemsets that are
large in DB or db are only considered.
The number of itemsets counted over DB is also a minimum since
only itemsets that are small in DB and large in db need to be
counted over DB. If the itemset is in k

dbNB we do not need to

count it. However, if k
DBNB expands, itemsets need to be counted.

There are two possibilities:
1) Any small itemset whose subsets are large over DB+ db

is in 1+
+

k
dbDBNB , and it needs to be counted if it is small

in DB.
2) 2) Consider an itemset X that is large in DB+db and

large in db, but small in DB. Consider an itemset Y that
is small over db but large over DB+db and DB. An
immediate superset of X made up of the items in XY is
in the 1+

+
k

dbDBNB . An algorithm that considers only
counting these itemsets when generating the negative
border is minimal. Since NUWEP generates the
negative border and counts only itemsets that are of the
two possibilities mentioned above, NUWEP is minimal.
□

Of course maintaining the negative border adds cost with respect
to time and memory. The memory cost of the negative border is
much smaller than maintaining the same information on all small
itemsets since the memory required to maintain both large and
small itemsets is exponential with respect to the dimensionality of
the dataset. This is not tractable for most large datasets.

As for time costs, we ran several experiments comparing
execution time of NUWEP to UWEP with synthetic data
generated as per [3]. We generated a 10,000 transaction dataset
where the average transaction was 5 items, the average large
itemset was 4 items, and the total number of items was 10
(T5.I4.D10). The results of these experiments on this dataset are
in Figure 4. We see that that as we increase the size of db the
difference between UWEP and NUWEP's execution time is
constant. In fact for low levels of support the difference is
negligible. In addition overall execution time increases at a
logarithmic rate. As we increase the size of DB, holding db

constant, we see that the difference between NUWEP and UWEP
is also constant. Hence the cost in maintaining the negative
border is related to increases in size of db rather than DB. We
repeated these experiments with a dataset T5.I2.D10 with similar
results. The largest negative border equals C(n, n/2), which is the
combination of n items taken n/2 at a time, and n is equal to the
total number of items. Therefore there is a bound on how large
the constant difference between the two algorithms can be.

3.2 Finding potentially Emergent Large

Itemsets.
Modifications were made to NUWEP that allow the calculation of
growth rate for itemsets in the negative border. These
modifications were minor. Itemsets were always stored in data
structures that include their support count. Therefore, because of
this, we know the support count of the negative border itemset in
DB for the current interval. The algorithm update finds the
updated value of the support count in DB+db. From these two
values we calculate the growth rate, which is the slope of the line

that connects these two points. Note that the additional memory
required for this approach is a numeric variable to record the
growth rate. Additional memory is needed only for those itemsets
in the negative border.

More formally, given an itemset whose support count in DB is
SCDB and its support count in DB+db is SCDB+db , then the
growth rate of that itemset is SCDB+db - SCDB. The growth rate of
an itemset that maintains minimal support is, minSCDb+db -

minSCDB. An itemset where 1
minmin

>
−
−

+

+

DBdbDB

DBdbDB

SCSC

SCSC is an

emerging itemset. An itemset needs a support count of at least
minSCDb+2db to emerge in the next increment. A potentially
emerging large itemset is one that is emerging and SCDB+db +
(SCDB+db - SCDB) > minSCDb+2db. Once an itemset in the negative
border is identified as a potential ELI, then we can easily find all
supersets that are also potentially emerging large itemsets.

4. EXPERIMENTAL RESULTS

We used the two synthetic market basket datasets that was created
in for the UWEP/NUWEP comparison in section 3. NUWEP was
run in turn on each of the datasets. In addition to the negative
border, we kept track of the set of potential ELI, and those
itemsets that actually emerged in the next increment. Table 1

shows the results of these experiments.

Table 1 Potentially Emergent Large Itemsets

As can be seen from Table 1, for each increment, a large
percentage of the itemsets that did emerge were correctly
identified. The significance is that these itemsets were identified
in the period prior to the one in which they actually did become
large.

INCREMENT

#Potentially
Emergent

Large Itemsets

That
Emerged In

Next
Increment

Percent Of
Actual Large
Itemsets That
Were Potential

1 62 51 82
2 44 33 75
3 56 49 87
4 48 37 77
5 76 70 92
6 43 39 90
7 51 48 94
8 38 37 99

Comparison of Execution time Between UWEP and NUWEP for

Support = .1 T5.I4.D10

Increase Size Of db

0

1

2

3

4

5

6

7

1 2 3 4 5

Increment

Ex
e

cu
ti

o
n

 T
im

e
 in

 S
e

co
n

d
s

Execution Time In
Seconds NUWEP

Execution Time In
Seconds UWEP

Comparison of Execution time Between UWEP and NUWEP

for Support = .2 T5.I4.D10

Increase Size Of db

0

1

2

3

4

5

6

1 2 3 4 5

Increment

E
x

e
c

u
ti

o
n

 T
im

e
 in

S

e
c

o
n

d
s

Execution
Time In
Seconds
NUWEP
Execution
Time In
Seconds
UWEP

Comparison of Execution time Between UWEP and NUWEP

for Support = .3 T5.I4.D10

Increase Size Of db

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Increment

E
x

e
c

u
ti

o
n

 T
im

e
 In

S

e
c

o
n

d
s

Execution Time In
Seconds NUWEP

Execution Time In
Seconds UWEP

Comparison of Execution time Between UWEP and NUWEP for

Support = .1 T5.I4.D10

Increase size of DB

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

Increment

Ex
e

cu
ti

o
n

 T
im

e
 in

 S
e

co
n

d
s

Execution Time In
Seconds NUWEP

Execution Time In
Seconds UWEP

Comparison of Execution time Between UWEP and NUWEP

for Support = .2 T5.I4.D10

Increase size of DB

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

Increment

E
x

e
c

u
ti

o
n

 T
im

e
 in

S
e

c
o

n
d

s

Execution
Time In
Seconds
NUWEP
Execution
Time In
Seconds
UWEP

Comparison of Execution time Between UWEP and NUWEP

for Support = .3 T5.I4.D10

Increase size of DB

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9

Increment

E
x

e
c

u
ti

o
n

 T
im

e
 In

S

e
c

o
n

d
s

Execution Time In
Seconds NUWEP

Execution Time In
Seconds UWEP

Figure 4 Comparison of UWEP to NUWEP

5. DISCUSSION

In the past, the incremental association rule algorithms were
created to gain efficiency over standard association rule
algorithms when finding large itemsets. Our approach shows that
at the risk of losing some efficiency, we can gain more
information about itemset behavior. By watching an itemset and
its supersets move from the negative border to large, and possibly
back indicate that there are patterns that can yield interesting
information. For example, it is quite possible that a group of
itemsets will oscillate between being large and ΔHFG in Figure 2.
If this happens often, to a significant number of itemsets, one
could conclude that support may be set either too high or too low.
Since support is a user defined parameter, this oscillation behavior
may give a heuristic for fine tuning this parameter.

Although we have shown how we can predict, with reasonable
accuracy, which itemsets will emerge in the next increment, it is
only natural to ask how one might predict if an itemset will
emerge within the next n increments. If we use only the
information available to us in the current increment, then this can
be easily determined by adjusting the calculation of an emerging
itemset. An itemset that will potentially emerge within n

increments, is an itemset that is currently emerging and SCDB+db +
n(SCDB+db - SCDB) > minSCDb+ndb . Of course, the larger n is, the
less accurate our predictions.

Besides extending our view from one increment to n increments,
we can also utilize the knowledge obtained about itemset behavior
from past increments, including the current increment, to predict
emergence. The problem here is that processing large databases
requires substantial amounts of memory to store just the
information on large itemsets and the small itemsets in the
negative border. Maintaining too much information from past
increments can be very memory intensive. If memory is not an
issue, then we can remember the support counts of each itemset in
the negative border, for each increment. These points may
contain a rich set of interesting patterns. This allows us to apply
standard statistical prediction techniques to these points to find
the growth rate of an itemset. By doing this, we can avoid
labeling itemsets that have spikes in support count as being
potentially emergent. Thus, we may see an increase in the
accuracy of prediction. Since memory is usually an issue, we can
get a "dirtier" picture of an itemset's potential by time stamping
the itemset with the increment number within which it enters the
negative border, remembering the support count of the itemset
when this happens, and use this information with the information
in the current interval to determine the growth rate. The
experimental results showed that we could predict, within the
current period, a significant number of itemsets that would
become large in the next period. The number of itemsets
identified as being potential, and did emerge was less significant.
We feel that if we were to use more past history, as outlined
above, we could reduce the number of potentially large itemsets
while still predicting well for the next increment.

6. CONCLUSIONS

In this paper we discussed a method that identifies small itemsets
that have the potential to become large in the next increment. Our
method makes use of an incremental approach, and by doing this
decreases the time needed for processing if standard association
rule algorithms did the same. Our results indicate that a good
percentage of the itemsets that we predict to emerge actually do
emerge. Our methodology easily extends to predicting emergence
within a set number of increments. For the future, we would like
to investigate using more history to identify potentially emergent
large itemsets and compare them to the approach used in this
paper.

7. REFERENCES

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.
Mining association rules between sets of items in large
databases. In Proceedings of 1993 ACM SIGMOD Intl.
Conf. on Management of Data, pages 207--216, Washington,
D. C., May 1993.

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant,
Hannu Toivonen, and A. Inkeri Verkamo. Fast discovery of
association rules. In Usama Fayyad, Gregory
Piatetsky-Shapiro, Padhraic Smyth, and Ramaswamy
Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 307--328. AAAI/MIT Press, 1996.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms
for mining association rules. In Proceedings of 20 th Intl
Conf. on Very Large Databases (VLDB'94), pages 487--499,
Santiago, Chile, 1994.

[4] N.F. Ayn, A.U. Tansel, and E. Arun. An efficient algorithm
to update large itemsets with early pruning. Technical
Report BU-CEIS-9908 Dept of CEIS Bilkent Uniiversity ,
June 1999.

[5] N.F. Ayn, A.U. Tansel, and E. Arun. An efficient algorithm
to update large itemsets with early pruning. Proceedings of
the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, August
1999.

[6] David Wai-Lok Cheung, Jiawei Han, Vincent T. Ng, and C.
Y. Wong. Maintenance of discovered association rules in
large databases: An incremental update technique. In
Proceedings of Intl. Conf. on Data Engineering (ICDE'96),
New Orleans, Louisiana, February 1996.

[7] David Wai-Lok Cheung, Sau Dan Lee, and Benjamin Kao. A
general incremental technique for maintaining discovered
association rules. In Proceedings of the 5 th Intl. Conf. on
Database Systems for Advanced Applications (DASFAA'97),
Melbourne, Australia, April 1997.

[8] Guzhu Dong, Jinyan Li. Efficient Mining of Emerging
Patterns: Discovering Trends and Differences. Proceedings
of the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Diego, August
1999.

[9] N. L. Sarda and N. V. Srinivas. An adaptive algorithm for
incremental mining of association rules. In Proceedings of
DEXA Workshop'98, pages 240--245, 1998.

[10]A. Savasere, Edward Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proceedings of 21 st Intl. Conf. on Very Large
Databases (VLDB'95), Zurich, Switzerland, September 1995.

[11] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and
Sanjay Ranka. An efficient algorithm for the incremental
updation of association rules in large databases. In
Proceedings of the 3rd Intl. Conf. on Knowledge Discovery
and Data Mining (KDD'97), New Port Beach, California,
1997.

[12] Hannu Toivonen. Sampling large databases for association
rules. In Proceedings of 22nd Intl. Conf. on Very Large
Databases (VLDB'96), Mumbay, India, September 1996.

Appendix I - NUWEP algorithm

DB is the set of old transactions (where transactions denote the records in the original database)
db is the set of new coming transactions (the increment)
DB+db is the set of old and new coming transactions
supportDB (X) is the support of itemset X in DB

supportdb (X) is the support of X in db,
supportDB + db (X) is the support of X in DB+ db

tidlist DB (X) is the transaction list of X in DB

tidlist db (X) is the transaction list of X in db

tidlist DB+db (X) is the transaction list of X in DB + db
k

dbC is the set of candidate k-itemsets in db, where k is the number of items in that itemset.
k

dbL is the set of large k-itemsets in db

k

DBL is the set of large k-itemsets in Db

LDB+db is the set of large itemsets in DB + db.
NDB, is the negative border of DB

NBDB+db is the negative border of DB+db

N
k

dbDBC + are the candidate k- itemsets for the negative border

NUWEP(DB, db, NDB, LDB, |DB|, |db|, minsup);
1 1

dbC = all 1-itemsets in db whose support is greater than 0
1a NDB+db = Ø; BorderSet = Ø // Initialize NDB+db

2 PruneSet = 1
DBL - 1

dbC

3 while PruneSet ≠ Ø do begin

4 X = first element of PruneSet

5 if supportDB (X) < minsup * | DB + db | then begin

6 remove X and all supersets from LDB and PruneSet

6a remove all of X’s supersets from NDB

6b add X to NDB+db

6c end

7 else

8 begin

9 add the supersets of X in LDB to the PruneSet

10 add X to LDB+db

11 remove X from LDB

12 end

13 remove X from PruneSet

14 end

15 k = 1

16 while
k

dbC ≠ Ø or k

DBL ≠ Ø or BorderSet ≠ Ø do begin

17 Unchecked = k

DBL

18 for all X ∈ k

dbC do

19 if supportdb (X) < minsup * | db| then // X is small in db

20 if X ∈ k

DBL then begin // X is large in DB

21 remove X from Unchecked

22 if supportDB + db (X) < minsup * |DB + db| then begin

// X is small in DB + db

23 remove all supersets of X from LDB

23a remove all supersets of X from NBDB

23b add X to NDB+db

23c end

24 else // X is large in DB + db

25 add X to LDB+db

26 end

26b else add X to NBDB+db

27 else // X is large in db

28 if X ∈ k

DBL then begin // X is large in DB

29 remove X from Unchecked

30 add X to LDB+db

31 add X to k

dbL

32 end

33 else begin // X is small in DB

34 find supportDB (X) using tidlists if not in NDB

35 // X is large in DB + db

36 if supportDB + db (X) >= minsup * | DB + db| then begin

37 add X to LDB+db

38a add X to BorderSet // X became large and the negative
// border expands

38c remove X from NDB

38d end

38e else add X to NBDB+db

40 end

41 for all X ∈Unchecked do begin // X is large in DB but not counted in db

42 find supportdb (X) using tidlists
43 if supportDB + db (X) < minsup * |DB + db| then begin // X is small in DB + db

44 remove all supersets of X from LDB

44a add X to NDB+db

44b remove all subsets supersets of X from NDB

44c end

45 else // X is large in DB + db

46 add X to LDB+db

47 end

47a for all X ∈ BorderSet do begin // X is large in db but not combined with small itemsets in
DB that are large in DB+db

47b N
k

dbDBC + = Generate all k + 1 supersets of X //Candidate itemsets for Negative
//Border.

47b2 remove X from BorderSet

47b3 end

47c for all X ∈ N
k

dbDBC +

47d if X has subsets in NDB+db remove X from N k

dbDBC +

47e else if supportDB + db (X) < minsup * |DB + db| do begin
47f add X to NDB+db

47g remove X from N k

dbDBC +

47h end

47i else do begin

47j add X to LDB+db

47k add X to BorderSet

47k2 remove X from N k

dbDBC +

47l end

47m end

48 k = k + 1
49 k

dbC = generate_ candidate (1−k

dbL) //generate candidate k - itemsets
50 end

50a for all X ∈ NDB do begin

50b // X is small in DB and db since large itemsets of db are already considered
50c add X to NDB+db

50d end

	1. INTRODUCTION
	2. STATEMENT OF PROBLEM
	2.1 Emergent Large Itemsets
	2.2 Interesting Emerging Itemsets

	3. NUWEP, AN ALGORITHM FOR FINDING INTERESTING EMERGING LARGE ITEMSETS
	3.1 UWEP to NUWEP
	3.2 Finding potentially Emergent Large Itemsets.

	4. EXPERIMENTAL RESULTS
	5. DISCUSSION
	6. CONCLUSIONS
	7. REFERENCES

