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ABSTRACT
The incremental mining of association rules has been shown to be 
more efficient than rerunning standard association rule algorithms 
such as Apriori.  As each increment is processed, we see the 
emergence of some itemsets.  An itemset that has emerged is one 
that was small and is large in the current increment.  An emergent 
large itemset is a small itemset that has the potential to become 
large, and will do so with high probability.  In this paper we 
modify an existing incremental algorithm, UWEP, so that it can 
identify emergent large itemsets.  We show that, on average, 65% 
of the emergent large itemsets identified by the algorithm actually 
do emerge.

General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
The use of association rules to find the co-occurrence between 
variables in large datasets is a well researched technique for data 
mining.  Association rules have been used in many domains, most 
notably market basket data.  Here, mined associations between 
store products have been used for product shelf placement and 
customer marketing.  In the banking industry association rules are 
used to find the characteristics of high risk credit customers.   
The problem of finding association rules can be decomposed into 
two steps.  The first step involves finding all large itemsets.  This 
step is the most difficult. Algorithms that accomplish this, such as 
Apriori [1,2], are exponential in the worst case.  Once the large 
itemsets are found, generating association rules is straightforward. 
and can be accomplished in linear time.

When a database is expanded with an incremental increase in the 
number of transactions, we can either rerun an algorithm such as 
Apriori, or use the knowledge obtained from the "original" 
database to reduce the processing time for finding small itemsets 
that have become large or any large itemsets that have become 
small.  Several incremental algorithms have been proposed that 
can efficiently find large itemsets. [4,5,6,7,9,11].  UWEP (Update 
With Early Pruning) has been shown to be an efficient algorithm 
that addresses the incremental association rule problem.  UWEP 
gains its efficiency by pruning from consideration, those large 
itemsets in DB (the original database), that are not present in db

(the increment) and become small due to the change in the overall 
number of transactions in the combined "new" database, DB+db.  
UWEP scans DB at most once and db exactly once. It has been 
shown to generate and count the minimum number of candidates 
in order to determine the new set of association rules.  [4,5]
The negative border has been defined as the set of minimal small 
itemsets, closed with respect to set inclusion, and whose subsets 
are all large.  [12]  The negative border is a subset closed 
collection of itemsets.   Thomas, Bodagala, Alsabti, and Ranka 
[11] used the negative border set to see which itemsets have 
changed status from large to small and vice versa.  Dong and Li 
[8] use interval closed borders to find emergent patterns.  They 
define an emergent pattern as an itemset whose support increases 
significantly between databases.

If we look at emergent patterns with respect to the negative border 
we can see whether a small itemset is becoming large.  In this 
paper we use this property of the negative border, in a modified 
version of UWEP called NUWEP (Negative border Update With 
Early Pruning), to find these emergent large itemsets.  We view 
emergent large itemsets as a special case of the emergent patterns 
described by Dong and Li.  An emergent large itemset (ELI) can 
be thought of as an itemset that is currently small in the combined 
database but has increased its support such that it will eventually 
become large.  ELI are particularly interesting emergent patterns.   
For example, in the market basket domain, if we define an interval 
as the time between wholesale purchases, recognizing that a set of 
items will emerge or become large in the next time period, can 
allow the storekeeper to order these items much earlier than usual.  
Thus the storekeeper can avoid being short these items and losing 
the income their sales could have generated.  Finding emergent 
large itemsets does not add a lot of increased overhead to the 
standard incremental algorithm.  Our contribution in this paper is 
to show how an incremental approach allows us to find ELIs 
efficiently.  We can identify ELIs that have the potential to 
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emerge with results that are better than random.  Moreover, our 
incremental approach allows us to identify the time an itemset 
becomes large before waiting for the next batch cycle.

The organization of this paper is as follows: Section 2 gives the 
definition of the emergent large itemset problem.  Section 3 
outlines our approach for solving the emergent large itemset 
problem.  In section 4 we show experimental results derived from 
synthetic data.  Section 5 is our discussion and section 6 our 
conclusions.

2. STATEMENT OF PROBLEM

Define the support of an itemset I, as the number of transactions 
containing that itemset, divided by the number of transactions in 
the dataset.  Itemsets with support above a user defined threshold 
called minsup are called large itemsets [1,2,3]. Given a set of 
items I, such as products in a store, an association rule is an 
implication X�Y where X and Y are subsets of I and X � Y=I.  
Interesting association rules are defined by two metrics, support 
and confidence.  Support is a measure of a rule's significance with 
respect to the database, and confidence is a measure or the rule's 
strength.  
More formally, let N be the number of transactions in a database 
DB. Given an association rule X ⇒ Y, let S1 be the number of 
transactions in DB that satisfy X. X satisfies a transaction t in DB

if the items contained in X are also in t.  Let S2 be the number of 
observations in T that satisfy the vector X ∪ Y. The support s of 
X⇒Y is S2 /N and the confidence c of X ⇒ Y is S2 /S1 . An 
interesting association rule has support above or equal to a user 
defined parameter called minsup, and confidence equal to or 
above a user defined parameter called minconf.  Large itemsets 
can generate interesting association rules.   Finding large itemsets 
is difficult and costly, most times exponential.  Finding rules from 
a large itemset is linear.  Therefore most methods for finding 
association rules concentrate on efficiently finding large itemsets.
Many association rule algorithms have been formulated to address 
this problem. [1,2,3].  The problem increases in cost when one 
wishes to find large itemsets in a database that is increasing in 
size.  Rerunning the association rule algorithm is costly, 
especially since much of the cost in processing large datasets lies 
in parsing the data.  Incremental algorithms take advantage of the 
knowledge gained from the previous increment, to reduce 
iterations over the entire database.   UWEP (Update With Early 
Pruning) is an efficient incremental algorithm, that counts the 
original database at most once, and the increment exactly once.  In 
addition the number of candidates generated and counted is 
minimum.  [4,5].  
As time progresses, we see many interesting patterns with regard 
to the change in status of individual itemsets.  An itemset that was 
small can become large, large itemsets can become small, or an 
itemsets may remain large or small.  We define small itemsets that 
are moving toward large as emerging.  Conversely, large itemsets 
moving toward small are submerging.  A small (large) itemset that 
becomes large, i.e. support is above (below) minsup, is said to 
have emerged (submerged).  The problem we address in this paper 
is, can we identify itemsets that are currently emerging 
(submerging).  Next, which of these itemsets have the potential to 
emerge (submerge) within the next increment.  Or, more 

generally, can this happen within n intervals.  For this paper we 
talk about emergence, but the solution for the submergence 
problem is analogous. 
For the remainder of this paper we use the following notation:

DB is the set of old transactions (where transactions denote the 
records in the original database)
db is the set of new coming transactions (the increment)
DB+db is the set of old and new coming transactions
supportDB (X) is the support of itemset X in DB

supportdb (X) is the support of X in db,
supportDB + db (X) is the support of X in DB+ db

tidlist DB (X) is the transaction list of X in DB

tidlist db (X) is the transaction list of X in db

tidlist DB+db (X) is the transaction list of X in DB + db
k

dbC is the set of candidate k-itemsets in db, where k is the 
number of items in that itemset.

k

dbL is the set of large k-itemsets in db

k

DBL is the set of large k-itemsets in Db

LDB+db is the set of large itemsets in DB + db.

2.1 Emergent Large Itemsets
In Figure1 we have modified the formalizations given by Dong 
and Li in [8] for the special case of ELI.  Figure1 partitions the 
space of itemsets. It can also be visualized as all the possible 
transitions for an itemset X from DB to DB + db.

Definition 2.1.1:  The support count (SC) of an itemset is the 
number of transactions that an itemset satisfies.  

Assume that db is of constant size and is smaller than DB.  Even 
though we place constraints on the problem, the following easily 
generalizes to the case where db varies.  Figure1 plots the support 
count in DB (denoted as SCDB) against the support count in db

(denoted as SCdb).  Each point in the graph depicts an ordered pair 
(SCdb, SCDB) where the sum of SCdb and SCDB is an itemset's 
support count in DB+db at some increment interval. 

Figure 1 Emergent Itemsets



Definition 2.1.2 minSCDb+db is the minimum number of 
transactions needed to be large in DB+db.

Definition 2.1.3 minSCDB is the minimum number of transactions 
needed to have to have been large in DB.

Definition 2.1.4 minSCdb is the minimum number of transactions 
needs to have been large in db.  

If the increment adds no transactions to an itemset's support 
count, then in order to achieve minSCDb+db it's support count in 
DB has to be equal to minSCDB + minSCdb.  This is point H in 
Figure1. Alternately, if an itemset's SC is equal to |db| in db, then 
to be large it's support in DB has to be some SC = n , where n >0, 

and n = minSCDB+db - |db| .  This is point C in Figure 1.

Lemma 2.1.1:  All points G = (SCdb, SCDB), where SCdb + SCDB = 
minSCDb+db lies on line HC.  

Proof: : Proof directly follows from the definition of the line 
HGC. At point H, SCDB of an itemset X has sufficient support at 
DB to become large at DB+db without any contribution from db, 
i.e., SCDB = minSCDb+db.  From point H to point G, SCDB declines, 
however the decline is compensated by SCdb and their sum  (SCDB

+ SCdb ) equals to minSCDb+db.  At point G, an itemset X has the 
exact support count at both DB and db and hence G is on the line 
HC. For any point on GC, the increase in SCdb compensates the 
decrease in SCDB and their sum still equals, SCDB + SCdb = 

minSCDb+db.  □

Lemma 2.1.2 For all points G described in Lemma 2.1.1on the 
line HC, (SCdb, SCDB)  where SCdb + SCDB = minSCDb+db

Proof: Proof directly follows from the Lemma 2.1.1.  (SCdb, SCDB) 
= minSCDb+db is true by the definition of line HC and minSCDB + 

minSCdb = minSCDb+db holds by the definition of minsup over DB

+ db. □

Line HC partitions the space of all itemsets in DB+db into large 
and small.  The shaded area in Figure1 represents all the large 
itemsets and it includes Line HC.  In fact, using defined values for 
minSCDb+db,, minSCDB, ,and minSCdb we can further partition the 
itemset space as shown in Figure1.  Each partition exhibits some 
interesting properties with respect to itemsets in DB, db, and 
DB+db. Specific partitions under HC contain itemsets that are 
emerging in the current increment.  For example, the area defined 
by ΔHFG represents those itemsets that were large itemsets in DB, 
small itemsets in db, and now are small in DB+db.  These 
itemsets have therefore submerged.  ΔGIC represents itemsets that 
were small in DB and large in db.  These itemsets have emerged.

Lemma 2.1.3: An itemset that is small over DB with support n, 

and  large in db with support >= minsup, has support in DB+db 

>n.  

Proof: : Let n = SCDB /  |DB|. SCdb /  |db| >= minsup is given.  
Since the itemset is small in DB, n < minsup.  We can break SCdb

into j + k such that j / SCdb = n. It is shown that (SCDB + j) / (|DB|

+ |db|) = n [11].  Clearly adding a positive value to the numerator 
increases the value of the fraction, i.e., (SCDB + j + k) / (|DB| + 
|db|) > n.  □

Lemma 2.1.4: An itemset that is small DB with support n, and  
small in db with support < n < minsup, has support in DB+db < n.  

Proof:  Proof is analogous to the proof of Lemma 2.1.3.  □

Therefore, according to Lemma 2.1.3 and 2.1.4, all itemsets in 
area ABCG are emerging in the current interval and all itemsets in 
area OAGH are submerging.    To find all ELI's in the current 
interval, we need to identify all itemsets in ABCG.

2.2 Interesting Emerging Itemsets
Finding interesting ELI's can be both a subjective or objective 
problem.  For example, if we look at an itemset, that contains 
gardening tools such as hoe, rake, and spade, an ELI containing 
these items wouldn't be interesting if it were emerging during the 
spring/summer seasons.  It would be interesting if it were 
emerging in the winter season.  This would be a subjectively 
interesting ELI.  Subjectively interesting ELI are domain and user 
dependent.
Definition 2.2.1 The growth rate of an ELI is the average gain in 
support over n increments.  
By definition, ELI's that continue to remain ELI's will eventually 
become large.  If the ELI is growing at a very small rate, then it 
will become large at some time far into the future.  ELI's with 
faster growth rates will emerge sooner.  Therefore, one type of 
objectively interesting ELI is one that will emerge within the next 
increment, or within the next N increments.

Figure 2 Potentially Emergent Large Itemsets

Maintaining our assumptions about a constant increment size and 
|db| < |DB|, we can establish a lower bound on the support count 
needed by an itemset in the current increment interval to achieve 
emergence in the next increment.  The largest possible gain in 
support count in the next increment is equal to |db|.  This occurs 
when an itemset is contained in every transaction in the 
increment.  To have the potential to emerge in the next increment, 
the support count of the itemset in DB+db needs to be greater 
than or equal to 2minSCdb + minSCDB - |db| in the current 
increment.   All points with this value are represented by line RS 
in Figure 2. For example, if we have a |DB| = 10,000, |db| = 1,000 

and minsup = .20, then the minimum support count for the current 



increment is 2,200 (2,000 from DB + 200 from db).  If an itemset 
can add the maximum support incremental support count, a total 
of 1,000 from db, in the next increment, it would need a support 
count of at least 1,400 in the current increment to be able to attain 
the minimum support count of 2,400 needed to become large.  
The band of itemsets between line RS and line HC are all itemsets 
that have the potential to become large in the next increment, by 
this formula.   If we use only information from the current 
increment to determine which ELI's have the potential to become 
large in the next increment, then all itemsets that are in this band 
and are emerging have the highest probability of emerging in the 
next increment.  Therefore, itemsets in GDSC are most likely to 
emerge in the next increment.

Figure 3 Growth in Support of Itemsets
In large datasets this can be a large group.  We can bound this set 
even further by looking at an itemset's growth rate.  If we were to 
plot the support count of an itemset over time, we see that in order 
to maintain minimum support, an itemset has to have a constant 
growth rate.  Line AB in Figure 3 represents the minimum 
support count, in the cumulative database (DB+db), in order for 
that itemset to remain at exactly minsup.  If a small itemset's 
support count increases at the same rate as AB, i.e. its support in 
db is minsup for each interval, then that itemset will never become 
large. This is shown by line CF. Note the slope of CF in the graph 
is the same as AB.  Those itemsets whose growth decreases with 
time, as shown by ED have slope less that of line AB.  Emergent 
large itemsets, such as CB have slope greater than AB.   Thus, 
even though an itemset is emerging, it may not emerge in the next 
increment or within the next n increments.   Those itemsets whose 
growth rates allow them to become large in the next interval are 
potentially emergent large itemsets.   Therefore these itemsets are 
those itemsets whose rate of growth is larger than that of an 
itemset maintaining minsup.

3. NUWEP, AN ALGORITHM FOR 

FINDING INTERESTING EMERGING 

LARGE ITEMSETS
Keeping track of all small itemsets' growth rates can be 
exponentially large in both time cost and memory cost.  The 
negative border is a concise way to represent larger sets of small 
itemsets.    The negative border is the set of small itemsets whose 
supersets are large [12]. Thomas, Bodagala, Alsabti, and Ranka 
[11] proved that an itemset X that was previously small in the 
original dataset and large in the "new" or original plus 
incremental dataset, has either moved from the negative border set 
to the set of large itemsets in the new dataset, or some subset of X 

has moved from the negative border set to the set of large itemsets 
in new dataset.  

Lemma 3.1: An itemset in the negative border will emerge at the 
same time or before any of its supersets.  

Proof: Let X, Y be itemsets, X is in the negative border and Y be 
an immediate superset of X. Lets assume that Y becomes large and 
X is not large. Apparently, supportDB (X) < minsup and 
supportDB+db(X) but supportDB (Y) > minsup. This is a 
contradiction since all the subsets (i.e., X) of a large itemset (Y) 
are also large [8]. □

Lemma 3.2 The growth rate of an itemset in the negative border 
will be equal to or greater than any of its supersets. 

Proof: Let X, Y be itemsets, X is in the negative border and Y be 
an immediate super set of X. Lets assume that growth rate of Y is 
larger that the growth rate of X, i.e. supportDB+db(Y) > 
supportDB+db (X).  From the definition of support, this implies 
SCDb+db (Y) > SCDb+db (X) and it is clearly a contradiction.  □

If we keep track of the growth rate of an itemset in the negative 
border, and that itemset has the potential to emerge in the next 
increment, then we can easily find the supersets that will also 
emerge.

3.1 UWEP to NUWEP
UWEP is an incremental association rule algorithm that has been 
shown to efficiently solve the incremental association rule 
problem.  It has been shown to generate and count the minimum 
number of candidates in order to determine the new set of 
association rules.  [4,5].  To find ELI, we can modify UWEP so 
that in addition to counting and keeping track of large itemsets, it 
keeps track of the negative border.  
Appendix 1 contains UWEP with the additional steps necessary to 
maintain the negative border.  We call the modified algorithm, 
NUWEP (Negative border Update With Early Pruning).  
Lemma 3.1.1: The number of candidates generated and counted 
by NUWEP algorithm is minimum.
Proof: Candidate generation is driven by the increment database, 
db. Therefore it would suffice to show that we generate and count 
minimum number of candidates in db at each level since NUWEP 
is a level wise algorithm. 1

dbC contains only the itemsets whose 
support is greater than zero and it is a minimum bound. At level k 
only the itemsets that are large in db and DB + db are placed into 

k

dbL .  Itemsets in k

dbL are used in generating 1+k
dbC .  Clearly this 

is the minimum possible number of candidate itemsets. The 



candidates counted in db are minimum, since itemsets that are 
large in DB or db are only considered. 
The number of itemsets counted over DB is also a minimum since 
only itemsets that are small in DB and large in db need to be 
counted over DB. If the itemset is in k

dbNB we do not need to 

count it. However, if k
DBNB expands, itemsets need to be counted. 

There are two possibilities: 
1) Any small itemset whose subsets are large over DB+ db

is in 1+
+

k
dbDBNB , and it needs to be counted if it is small 

in DB.   
2) 2) Consider an itemset X that is large in DB+db and 

large in db, but small in DB. Consider an itemset Y that 
is small over db but large over DB+db and DB. An 
immediate superset of X made up of the items in XY is 
in the 1+

+
k

dbDBNB .  An algorithm that considers only 
counting these itemsets when generating the negative 
border is minimal.  Since NUWEP generates the 
negative border and counts only itemsets that are of the 
two possibilities mentioned above, NUWEP is minimal.  
□

Of course maintaining the negative border adds cost with respect 
to time and memory.  The memory cost of the negative border is 
much smaller than maintaining the same information on all small 
itemsets since the memory required to maintain both large and 
small itemsets is exponential with respect to the dimensionality of 
the dataset.  This is not tractable for most large datasets.  

As for time costs, we ran several experiments comparing 
execution time of NUWEP to UWEP with synthetic data 
generated as per [3].  We generated a 10,000 transaction dataset 
where the average transaction was 5 items, the average large 
itemset was 4 items, and the total number of items was 10 
(T5.I4.D10). The results of these experiments on this dataset are 
in Figure 4.  We see that that as we increase the size of db the 
difference between UWEP and NUWEP's execution time is 
constant.  In fact for low levels of support the difference is 
negligible.  In addition overall execution time increases at a 
logarithmic rate.  As we increase the size of DB, holding db

constant, we see that the difference between NUWEP and UWEP 
is also constant.  Hence the cost in maintaining the negative 
border is related to increases in size of db rather than DB.  We 
repeated these experiments with a dataset T5.I2.D10 with similar 
results.  The largest negative border equals C(n, n/2), which is the 
combination of n items taken n/2 at a time, and n is equal to the 
total number of items.  Therefore there is a bound on how large 
the constant difference between the two algorithms can be. 

3.2 Finding potentially Emergent Large 

Itemsets.
Modifications were made to NUWEP that allow the calculation of 
growth rate for itemsets in the negative border. These 
modifications were minor.   Itemsets were always stored in data 
structures that include their support count.  Therefore, because of 
this, we know the support count of the negative border itemset in 
DB for the current interval.  The algorithm update finds the 
updated value of the support count in DB+db.  From these two 
values we calculate the growth rate, which is the slope of the line 

that connects these two points.   Note that the additional memory 
required for this approach is a numeric variable to record the 
growth rate.  Additional memory is needed only for those itemsets 
in the negative border.

More formally, given an itemset whose support count in DB is 
SCDB and its support count in DB+db is SCDB+db ,  then the 
growth rate of that itemset is SCDB+db - SCDB.    The growth rate of 
an itemset that maintains minimal support is, minSCDb+db -

minSCDB.  An itemset where 1
minmin

>
−
−

+

+

DBdbDB

DBdbDB

SCSC

SCSC is an 

emerging itemset.  An itemset needs a support count of at least 
minSCDb+2db to emerge in the next increment.  A potentially 
emerging large itemset is one that is emerging and SCDB+db + 
(SCDB+db - SCDB) > minSCDb+2db.  Once an itemset in the negative 
border is identified as a potential ELI, then we can easily find all 
supersets that are also potentially emerging large itemsets.

4. EXPERIMENTAL RESULTS

We used the two synthetic market basket datasets that was created 
in for the UWEP/NUWEP comparison in section 3.  NUWEP was 
run in turn on each of the datasets.  In addition to the negative 
border, we kept track of the set of potential ELI, and those 
itemsets that actually emerged in the next increment.  Table 1 

shows the results of these experiments.

Table 1 Potentially Emergent Large Itemsets

As can be seen from Table 1, for each increment, a large 
percentage of the itemsets that did emerge were correctly 
identified.  The significance is that these itemsets were identified 
in the period prior to the one in which they actually did become 
large.  

INCREMENT

#Potentially 
Emergent 

Large Itemsets

# That 
Emerged In 

Next 
Increment

Percent Of 
Actual Large 
Itemsets That 
Were Potential 

1 62 51 82
2 44 33 75
3 56 49 87
4 48 37 77
5 76 70 92
6 43 39 90
7 51 48 94
8 38 37 99
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5. DISCUSSION

In the past, the incremental association rule algorithms were 
created to gain efficiency over standard association rule 
algorithms when finding large itemsets.  Our approach shows that 
at the risk of losing some efficiency, we can gain more 
information about itemset behavior.  By watching an itemset and 
its supersets move from the negative border to large, and possibly 
back indicate that there are patterns that can yield interesting 
information.  For example, it is quite possible that a group of 
itemsets will oscillate between being large and ΔHFG in Figure 2.  
If this happens often, to a significant number of itemsets, one 
could conclude that support may be set either too high or too low.  
Since support is a user defined parameter, this oscillation behavior 
may give a heuristic for fine tuning this parameter.

Although we have shown how we can predict, with reasonable 
accuracy, which itemsets will emerge in the next increment, it is 
only natural to ask how one might predict if an itemset will 
emerge within the next n increments.  If we use only the 
information available to us in the current increment, then this can 
be easily determined by adjusting the calculation of an emerging 
itemset.  An itemset that will potentially emerge within n

increments, is an itemset that is currently emerging and SCDB+db + 
n(SCDB+db - SCDB) > minSCDb+ndb . Of course, the larger n is, the 
less accurate our predictions.

Besides extending our view from one increment to n increments, 
we can also utilize the knowledge obtained about itemset behavior 
from past increments, including the current increment, to predict 
emergence.  The problem here is that processing large databases 
requires substantial amounts of memory to store just the 
information on large itemsets and the small itemsets in the 
negative border.  Maintaining too much information from past 
increments can be very memory intensive.  If memory is not an 
issue, then we can remember the support counts of each itemset in 
the negative border, for each increment.  These points may 
contain a rich set of interesting patterns. This allows us to apply 
standard statistical prediction techniques to these points to find 
the growth rate of an itemset.  By doing this, we can avoid 
labeling itemsets that have spikes in support count as being 
potentially emergent.  Thus, we may see an increase in the 
accuracy of prediction.  Since memory is usually an issue, we can 
get a "dirtier" picture of an itemset's potential by time stamping 
the itemset with the increment number within which it enters the 
negative border, remembering the support count of the itemset 
when this happens, and use this information with the information 
in the current interval to determine the growth rate.  The 
experimental results showed that we could predict, within the 
current period, a significant number of itemsets that would 
become large in the next period.   The number of itemsets 
identified as being potential, and did emerge was less significant.  
We feel that if we were to use more past history, as outlined 
above, we could reduce the number of potentially large itemsets 
while still predicting well for the next increment.

6. CONCLUSIONS

In this paper we discussed a method that identifies small itemsets 
that have the potential to become large in the next increment.  Our 
method makes use of an incremental approach, and by doing this 
decreases the time needed for processing if standard association 
rule algorithms did the same.  Our results indicate that a good 
percentage of the itemsets that we predict to emerge actually do 
emerge.  Our methodology easily extends to predicting emergence 
within a set number of increments.  For the future, we would like 
to investigate using more history to identify potentially emergent 
large itemsets and compare them to the approach used in this 
paper.

7. REFERENCES

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. 
Mining association rules between sets of items in large 
databases. In Proceedings of 1993 ACM SIGMOD Intl. 
Conf. on Management of Data, pages 207--216, Washington, 
D. C., May 1993. 

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, 
Hannu Toivonen, and A. Inkeri Verkamo. Fast discovery of 
association rules. In Usama Fayyad, Gregory 
Piatetsky-Shapiro, Padhraic Smyth, and Ramaswamy 
Uthurusamy, editors, Advances in Knowledge Discovery and 
Data Mining, pages 307--328. AAAI/MIT Press, 1996. 

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms 
for mining association rules. In Proceedings of 20 th Intl 
Conf. on Very Large Databases (VLDB'94), pages 487--499, 
Santiago, Chile, 1994. 

[4] N.F. Ayn, A.U. Tansel, and E. Arun.  An efficient algorithm 
to update large itemsets with early pruning.  Technical 
Report BU-CEIS-9908 Dept of CEIS Bilkent Uniiversity , 
June 1999.

[5] N.F. Ayn, A.U. Tansel, and E. Arun.  An efficient algorithm 
to update large itemsets with early pruning.  Proceedings of 
the Fifth ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, San Diego, August 
1999.

[6] David Wai-Lok Cheung, Jiawei Han, Vincent T. Ng, and C. 
Y. Wong. Maintenance of discovered association rules in 
large databases: An incremental update technique. In 
Proceedings of Intl. Conf. on Data Engineering (ICDE'96), 
New Orleans, Louisiana, February 1996. 

[7] David Wai-Lok Cheung, Sau Dan Lee, and Benjamin Kao. A 
general incremental technique for maintaining discovered 
association rules. In Proceedings of the 5 th Intl. Conf. on 
Database Systems for Advanced Applications (DASFAA'97), 
Melbourne, Australia, April 1997.

[8] Guzhu Dong, Jinyan Li.  Efficient Mining of Emerging 
Patterns:  Discovering Trends and Differences.  Proceedings 
of the Fifth ACM SIGKDD International Conference on 



Knowledge Discovery and Data Mining, San Diego, August 
1999.

[9] N. L. Sarda and N. V. Srinivas. An adaptive algorithm for 
incremental mining of association rules. In Proceedings of 
DEXA Workshop'98, pages 240--245, 1998.

[10]A. Savasere, Edward Omiecinski, and S. Navathe. An 
efficient algorithm for mining association rules in large 
databases. In Proceedings of 21 st Intl. Conf. on Very Large 
Databases (VLDB'95), Zurich, Switzerland, September 1995.

[11] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and 
Sanjay Ranka. An efficient algorithm for the incremental 
updation of association rules in large databases. In 
Proceedings of the 3rd Intl. Conf. on Knowledge Discovery 
and Data Mining (KDD'97), New Port Beach, California, 
1997.

[12] Hannu Toivonen. Sampling large databases for association 
rules. In Proceedings of 22nd Intl. Conf. on Very Large 
Databases (VLDB'96), Mumbay, India, September 1996. 

Appendix I - NUWEP algorithm

DB is the set of old transactions (where transactions denote the records in the original database)
db is the set of new coming transactions (the increment)
DB+db is the set of old and new coming transactions
supportDB (X) is the support of itemset X in DB

supportdb (X) is the support of X in db,
supportDB + db (X) is the support of X in DB+ db

tidlist DB (X) is the transaction list of X in DB

tidlist db (X) is the transaction list of X in db

tidlist DB+db (X) is the transaction list of X in DB + db
k

dbC is the set of candidate k-itemsets in db, where k is the number of items in that itemset.
k

dbL is the set of large k-itemsets in db

k

DBL is the set of large k-itemsets in Db

LDB+db is the set of large itemsets in DB + db.
NDB, is the negative border of DB

NBDB+db is the negative border of DB+db

N
k

dbDBC + are the candidate k- itemsets for the negative border

NUWEP(DB, db, NDB, LDB,  |DB|,  |db|, minsup); 
1 1

dbC = all 1-itemsets in db whose support is greater than 0 
1a NDB+db = Ø; BorderSet = Ø // Initialize NDB+db

2 PruneSet = 1
DBL - 1

dbC

3 while PruneSet ≠ Ø do begin

4 X = first element of PruneSet

5 if supportDB (X) < minsup * | DB + db | then begin

6 remove X and all supersets from LDB and PruneSet

6a remove all of X’s supersets from NDB

6b add X to NDB+db

6c end

7 else

8 begin

9 add the supersets of X in LDB to the PruneSet

10 add X to LDB+db

11 remove X from LDB

12 end

13 remove X from PruneSet

14 end

15 k = 1 



16 while
k

dbC ≠ Ø or k

DBL ≠ Ø or BorderSet ≠ Ø do begin

17 Unchecked = k

DBL

18 for all X ∈ k

dbC do

19 if supportdb (X) < minsup * | db|   then // X is small in db

20 if X ∈ k

DBL then begin // X is large in DB

21 remove X from Unchecked

22 if supportDB + db (X) < minsup * |DB + db|  then begin

// X is small in DB + db

23 remove all supersets of X from LDB

23a remove all supersets of X from NBDB

23b add X to NDB+db

23c end

24 else // X is large in DB + db

25 add X to LDB+db

26 end

26b else add X to NBDB+db

27 else // X is large in db

28 if X ∈ k

DBL then begin // X is large in DB

29 remove X from Unchecked

30 add X to LDB+db

31 add X to k

dbL

32 end

33 else begin // X is small in DB

34 find supportDB (X) using tidlists if not in NDB

35 // X is large in DB + db

36 if supportDB + db (X) >= minsup * | DB + db| then begin

37 add X to LDB+db

38a add X to BorderSet // X became large and the negative 
// border expands

38c remove X from NDB

38d end

38e else add X to NBDB+db

40 end

41 for all X ∈Unchecked do begin // X is large in DB but not counted in db

42 find supportdb (X) using tidlists 
43 if supportDB + db (X) < minsup * |DB + db| then begin // X is small in DB + db 

44 remove all supersets of X from LDB

44a add X to NDB+db

44b remove all subsets supersets of X from NDB

44c end

45 else // X is large in DB + db

46 add X to LDB+db

47 end

47a for all X ∈ BorderSet do begin // X is large in db but not combined with small itemsets in   
DB that are large in DB+db

47b                      N
k

dbDBC + = Generate all k + 1 supersets of X  //Candidate itemsets for Negative 
//Border.

47b2 remove X from BorderSet



47b3 end

47c for all X ∈ N
k

dbDBC +

47d if X has subsets in NDB+db remove X from N k

dbDBC +

47e else if supportDB + db (X) < minsup * |DB + db| do begin
47f add X to NDB+db

47g remove X from N k

dbDBC +

47h end

47i else do begin

47j add X to LDB+db

47k add X to BorderSet

47k2 remove X from N k

dbDBC +

47l end

47m end

48 k = k + 1 
49 k

dbC = generate_ candidate ( 1−k

dbL ) //generate candidate k - itemsets
50 end

50a for all X ∈ NDB do begin

50b // X is small in DB and db since large itemsets of db are already considered
50c add X to NDB+db

50d end
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