
 i

COMPARATIVE STATISTICAL ANALYSES OF AUTOMATED

BOOLEANIZATION METHODS FOR DATA MINING PROGRAMS

by

SUSAN P. IMBERMAN

A dissertation submitted to the Graduate Faculty in Computer Science in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, The City
University of New York

1999

 ii

 1999

SUSAN PHYLLIS IMBERMAN

All Rights Reserved

 iii

This manuscript has been read and accepted for the Graduate Faculty in Computer
Science in satisfaction of the dissertation requirement for the degree of Doctor of
Philosophy.

_________________________________ ________________________________
Date Chair of Examining Committee

________________________________ _________________________________
Date Executive Officer

 Dr. Bernard Domanski______________

 Dr. Charles Giardina ___

 Dr. Joesph Hellerstein_______________
 Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

 iv

Abstract

COMPARATIVE STATISTICAL ANALYSES OF AUTOMATED

BOOLEANIZATION METHODS FOR DATA MINING PROGRAMS

by

Susan P. Imberman

Advisor: Professor Michael Kress, Professor Bernard Domanski

KDD (Knowledge Discovery in Databases) is the automated discovery of patterns

and relationships in large databases. Data mining is one step in the KDD process. Many

data mining algorithms and methods find data patterns using techniques such as neural

networks, decision trees, statistical analysis, deviation detection, etc. The Boolean

Analyzer is a data mining method that finds dependency rules of the form X ⇒ Y. Data

is Booleanized with regard to values in a threshold set. That is each data

transaction/observation is transformed into a vector of 0's and 1's. Each vector defines a

state for that transaction/observation. Vector states can be organized into a state

occurrence matrix. From this matrix we can compute a measure of event dependency. A

new matrix can be formed called a state linkage matrix that consists of the measures of

the event dependency represented by a row and a column in the state occurrence matrix.

The values of the state linkage matrix can be used to find the measures of more complex

relationships. In turn complex relationships can define rule systems where the measure

of a rule system is the value of the complex rule from which the rule system was derived.

Rule systems can be more easily implemented that the complex rule.

A significant step in the above process is the Booleanization step. It is this step

that most directly affects the statistical significance and strength of the rules generated by

 v

the algorithm. In the past expert in the domain where the data analysis was being done

determined threshold sets. There is a basis for automating the formation of the threshold

set. Rules generated by the Boolean Analyzer algorithm using an expert threshold set

were compared with rules generated with threshold sets formed using the mean, mode,

median, and clustering of variable values. This yields the conclusion that threshold

automation using mean and median values was a valid alternative to threshold formation

by an expert. Subsequent analysis using mean and median thresholds on synthetic data

with known relationships produced excellent results.

 vi

Acknowledgements

This doctoral thesis is dedicated to:

My husband Steven. I thank you for encouraging me to complete the process known as a
doctorate. You are my love, my life, my soul mate. I love you.

Dr. Bernie (Bernie Domanski). There are few people who would extend themselves to
invest the time and energy needed to help a friend in the way that you helped me. Words
can't express the gratitude I feel towards you. I look forward to our continuing friendship
and professional collaboration.

Mike Kress. In every project there is one person who lays the path for the others to follow
and keeps them focused on that path. I am glad you were the person to focus me. Thank
you so much for stepping in and helping me finish my doctorate.

Charlie Giardina. Your confidence in me was greatly appreciated. I considered it high
praise. Thank you for making sure my mathematics was sound.

Joe Hellerstein, thank you for taking the time to be on my doctoral committee.

Scott, Matthew, and Adam, my three sons. Thank you for not complaining too much
when I didn't have the time to do everything you wanted me to do. In spite of what you
may have thought at times, you guys were always my first priority. I love you all.

My parents, who have always been supportive of whatever I do. Thank you for your
encouragement, love, and support. You are the best.

My husband's parents, who are no longer with us. We miss you.

My friends, colleagues, and mentors of the Computer Science Department, College of
Staten Island. Thank you for your encouragement and support. You taught me
everything I needed to know.

My friends and family. I took my inspiration from all of you.

 vii

Table of Contents

Copyright ...pg. ii

Approval page ..pg. iii

Abstract..pg. iv

Acknowledgements ..pg. vi

List of Tables ...pg. x

List of Figures ..pg. xi

Chapter 1 Knowledge Discovery in Databases...pg. 1

 1.1 KDD defined...pg. 2

 1-2 The KDD Process ..pg. 4

Chapter 2 Data Mining ..pg. 8

2.1 Data Mining Models and Methods ...pg. 8

 2.1.1 Predictive Algorithms..pg. 9

 2.1.2 Descriptive Algorithms..pg. 12

 2.1.3 Evaluation ...pg. 13

2.2 Data Mining Applications ..pg. 14

 2.2.1 SKICAT ..pg. 15

 2.2.2 Health Kefir...pg. 17

 2.2.3 JARtool ...pg. 18

 2.2.4 ILP applications...pg. 20

 2.2.5 Market Analysis ..pg. 21

 2.2.6 Investment Forecasting ..pg. 22

 2.2.7 Other Applications...pg. 23

 viii

2.3 How to compare KDD systems ..pg. 24

2.4 Ethical Issues ...pg. 24

Chapter 3 Algorithms That Generate Association Rulespg. 26

 3.1 AIS ..pg. 28

 3.2 Apriori, AprioriTid, and AprioriHybrid....................................pg. 29

 3.3 A Dependency Rule Algorithm ..pg. 31

Chapter 4 Boolean Analyzer ..pg. 35

 4.1 The Algorithm ...pg. 35

 4.1.1 Relationships in Matrix Formpg. 40

 4.1.2 Meaningful Dependency Relationshipspg. 42

 4.1.3 The State Linkage Matrix ..pg. 45

 4.1.4 The meaning of the State Linkage Matrixpg. 47

 4.1.5 Finding High Measure Dependency Relationshipspg. 48

Chapter 5 Extensions to the Boolean Analyzer Algorithmpg. 51

 5.1 Rule Types ..pg. 51

 5.2 Rule Generation ...pg. 53

 5.3 Discussion..pg. 57

Chapter 6 Boolean Thresholds...pg. 60

 6.1 Testing on Synthetic data ...pg. 61

 6.2 Oil Futures Data...pg. 63

 6.3 Methods for Finding Boolean Thresholds.................................pg. 65

 6.4 Statistical Methods...pg. 66

 6.5 Correlation Results...pg. 69

 ix

 6.6 Conclusions ...pg. 74

 6.7 Future Research ...pg. 74

Appendix A Source Code for Boolean Analyzer Program..........................pg. 76

Appendix B SAS  code for finding Correlation Coefficientspg. 88

Appendix C Synthetic Dataset ...pg. 89

Bibliography ..pg. 92

 x

List of Tables

Table 1 Contingency Table For Event Dependenciespg. 32

Table 2 The State Occurrence Matrix ..pg. 38

Table 3 State Occurrence Matrix Showing X1 : X4pg. 39

Table 4 State Occurrence Matrix showing X1X3:X4X6pg. 41

Table 5 The State Linkage Matrix..pg. 46

Table 6 State Linkage Matrix Showing m = -70 + 30 -40 -40 = -120......pg. 46

Table 7 Hill Climb Showing Significant Rows ..pg. 49

Table 8 Hill Climb Showing Significant Columnspg. 50

Table 9 The Hill Climb to Highest PMSR..pg. 50

Table 10 Sample Crude Oil Data ...pg. 64

Table 12 Rules and Rule Measures ..pg. 67

Table 13 Results of Expert vs. Mean, Mode, and Clusteringpg. 70

Table 14 Results of 5 Variable Comparison of Expert vs. Mean, Median, Mode, and

 Clustering ...pg. 71

Table 15 Six Variable Results with Fuzzy Threshold Replaced..................pg. 73

 xi

List of Figures

Figure 1 The KDD Process...pg. 4

Figure 2 Decision Trees...pg. 10

Figure 3 Neural Networks ...pg. 11

Figure 4 The Boolean Activity Matrix ...pg. 36

 1

Chapter 1

Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is the automated discovery of patterns

and relationships in large databases. Large databases are not uncommon. Cheaper and

larger computer storage capabilities have contributed to the proliferation of such

databases in a wide range of fields. Scientific instruments can produce terabytes and

petabytes of data at rates reaching gigabytes per hour. Point of sale information,

government records, medical records and credit card data, are just a few other sources for

this information explosion. It is much easier to store data than it is to make sense of it.

Being able to find relationships in large amounts of stored data can lead to enhanced

analysis strategies in fields such as marketing, computer performance analysis, and data

analysis in general. For example, in marketing, retail data can yield insight into

relationships between the sale of specific items and certain demographic groups.

Not only are the numbers of large databases growing, but also the databases

themselves are getting larger. The number of fields in large databases can approach

magnitudes of 102 to 103. Record numbers in these databases approach magnitudes of

109. The problem is trying to find a pattern in the data, given millions of records with

tens or hundreds of fields. Traditionally data has been analyzed manually, but there are

human limits. Large databases offer too much data to analyze in any conventional

manner.

SQL queries can be inadequate when it comes to handling information from large

databases. The type of information needed from these databases can also be hard to

 2

formulate in SQL. For example, it is not uncommon to query the database for answers to

questions such as, find me all calling card irregularities, find me a stock that will do well,

or what are the buying preferences of people who buy Barbie dolls. KDD methods are

attempts to handle these types of problems.

1.1 KDD defined

KDD employs methods from various fields such as machine learning, artificial

intelligence, pattern recognition, database management and design, statistics, expert

systems, and data visualization. It is said to employ a broader model view than statistics

and strives to automate the process of data analysis, including the art of hypothesis

generation.

 KDD can be more formally defined as �the non-trivial process of identifying valid,

novel , potentially useful, and ultimately understandable patterns in data.� (Fayyad, U.

M., G. Piaetsky-Shapiro, and P. Smyth, 1996)

Given the above definition:

• Let F be a set of facts or data

• E is an expression in some language L

• Given Fg ⊆ F

• Then E is a pattern if it is simpler then Fg

 Patterns are valid if they fall within certain bounds of certainty. Let certainty be

some function C that maps expressions E in L to a partially or totally ordered set of

measurements M c where each element c of M c can be defined by c = C(E,F).

 3

 Now let us define what is meant by a novel pattern. When we speak of novel

patterns, novelty refers to the system in which we are currently working, not the world at

large. Therefore, define a function N(E,F). Novelty is some function N that maps

expressions E in L to a partially or totally ordered set of measurements M n where each

element n of M n can be defined by n = N(E,F). Essentially, if you haven�t already

discovered the pattern, then it is novel.

 For a pattern to be �potentially useful�, it must have the potential of resulting in

some useful action. Let U be a utility function that measures this potential. U maps

expressions E in L to a partially or totally ordered set of measurements M u where each

element u of M u can be defined by u = U(E,F).

 An �ultimately understandable pattern�, is one that is understandable to the end

user. Understandability is a hard parameter to measure. Let�s assume a pattern is

understandable if it is �simple�. Then we can define a simplicity function S where S

maps expressions E in L to a partially or totally ordered set of measurements M s , where

each element s of M s can be defined by s = S (E,F). Simplicity is a user-defined

function. What might appear simple and understandable to one individual may not be

simple and understandable to another.

It is not enough to generate understandable, useful, novel, valid patterns. We may

not be interested in all the patterns. Hence we define the concept of �interestingness� as

the ability to measure how interesting a pattern may be. Let I be an interestingness

function that maps expressions E in L to a partially or totally ordered set of

measurements M I where each i of M I can be defined as i = I(E,F,C,N,U,S) . This

 4

means that interestingness is some function of expressions, facts, certainty, novelty,

usefulness, and simplicity. Interestingness can be either measure explicitly or implicitly.

Our goal is to ultimately gain knowledge. Given a pattern E ∈ L, E is knowledge

if for some user specified interestingness measure i ∈ M I , I(E,F,C,N,U,S) > i. This is

not an absolute measure and very much user defined. For example, as an instantiation of

this we might have some thresholds c ∈ Mc , s ∈ Ms and u ∈ Mu, then a pattern E is

knowledge IFF C(E,F) > c and S(E,F) > s and U(S,F) > u.

1-2 The KDD Process

 The KDD Process is a highly iterative, user involved, multistep process.

Figure 1 The KDD Process

KDD Process

Organizational
Data

Data

ITERATIVE

Clean
Data

Preprocessin
g

Transformed
Data

Reduction

Coding

Patterns

Data

Mining

Report
Results

Visualiza
tion

Knowledge

Interpretation

Target
Data

Selection

 5

1. Organizational Data - Initially, we have organizational data. This data is the

operational data gathered either in one or in several locations. All operational data is

collected and brought to some central location. These central locations are sometimes

called Data Warehouses or Data Marts. Data transformation may be performed on

the raw data before it is placed in the data warehouse. There may be inconsistencies

between the data of one location from that of another. These inconsistencies may

consist of differences in data type for the same information and different field names

for the same data field. Data warehouses hold both detailed and summary data.

Detailed data is used for more pattern analysis. Summarized data may hold the

results of previous analyses so that work need not be redone. They also contain

historical data whereas operational data is usually current.

2. Selection - Once the data is organized, a selection process occurs where some subset

of this data becomes the target data and further analysis is performed. It is important

when creating this target data, the data analyst understand the domain, the end user�s

needs, and what the data mining task might be.

3. Data Cleaning and Preprocessing � Sometimes data is collected in an ad hoc manner.

Data entry mistakes can occur and/or the data may have missing or unknown entries.

In this stage noise is removed from the data. Outliers and anomalies in the data pose

special problems for the data analyst during this process. Since the goal is to find rare

patterns in the data, the outliers and anomalies may be representations of these rare

patterns. Care must be taken not to remove these types of outliers and anomalies.

Time sequence changes are also handled in this phase.

 6

4. Data Reduction and Coding � Transformation techniques are used to reduce the

number of variables in the data by finding useful features to use to represent the data.

Time stamped data is difficult to store in databases. Time dependent data may need

to be transformed to be made usable

5. Data Mining � The transformed data is used in the data mining step. It is in this step

that the actual search for patterns of interest is performed. The search for patterns is

done within the context of the data mining task and the representational model under

which the analysis is being performed. It is important at this stage to decide on the

appropriate data mining algorithm for the data mining task. The data mining task

itself can be a classification task, linear regression analysis, rule formation, or cluster

analysis. This is the most researched step in the process.

6. Visualization � Patterns generated in the data mining step may not be new or

interesting, therefore these redundant and irrelevant patterns are removed from the set

of useful patterns. Once a set of �good� patterns have been discovered, they then

have to be reported to the end user. This can be done can be done textually by way of

reports or visually using graphs, spreadsheets, diagrams, etc.

7. Interpretation � Reported results are interpreted into knowledge. Interpretation may

require that we resolve possible conflicts with previously discovered knowledge.

New knowledge may even be in conflict with knowledge that was believed before the

process began. When this is done to user satisfaction, the knowledge is documented

and reported to any interested parties. This again may involve visualization. These

parties then have the option of making use of the discovered knowledge.

 7

It is important to stress that the KDD process is not linear. Results from one phase in

the process may be fed back into that phase or into another phase. Current KDD systems

have a highly interactive human component. Humans are involved with many if not each

step in the KDD process. Hence, KDD is highly interactive and iterative. One

controversy in the KDD community centers around how much human interaction there

should be in the process. On one side researchers argue that human involvement can

either implicitly or explicitly add domain knowledge into the process. Others argue that

needed domain knowledge may be implicit in the data. To date there are no totally

autonomous systems for KDD.

 8

Chapter 2

Data Mining

 Data mining is one step in the KDD process. It is the most researched phase of

the process. Data mining can be thought of as �a search through a space of possibilities".

The more possibilities, the more chance of finding some useful information. Hence, data

mining is synonymous with big databases.

More formally given a set of facts F, data mining results in an enumeration Ej of

expressions, using a set of data mining algorithms. Data mining determines patterns from

large amounts of data by fitting models, not necessarily statistical models, within

computational limits such as time (answers should be found within a finite amount of

time) and hardware. This is a goal defined process. Data mining can be used to verify a

hypothesis or use some discovery method to find new patterns in the data that can be used

to predict on new data.

The term data mining is a somewhat recent one. Other terminology for data

mining in the literature include knowledge extraction, information discovery, information

harvesting, exploratory data analysis, data archeology, data pattern processing, and

functional dependency analysis.

2.1 Data Mining Models and Methods

 Each data mining algorithm can be thought of as having three components, model

representation, model evaluation, and some search methodology. Model representation is

the language L use to represent the expressions(patterns) E in. It is related to the type of

 9

information that is being discovered. The language can also dictate the types of patterns

discovered. The importance here is to choose the correct representation. If too

descriptive a language is chosen there is a danger of over fitting the data.

Notwithstanding, the model has to be complex enough to explain the data but restrained

enough to be able to generalize over new data. Model evaluation refers to the scoring

methods used to see how well a pattern or model fits into the KDD process. Search

methods include algorithms such as greedy search, gradient descent, etc. that are used

during the KDD process.

 Data mining algorithms can be thought of as falling into two categories,

predictive and descriptive algorithms. Predictive data mining algorithms result in the

ability to predict future events from historical data. Algorithms that fall into this category

include classification algorithms such as decision trees, neural networks, and inductive

logic programming (ILP) along with regression algorithms. Descriptive algorithms find

some human interpretable rules, relationships, and/or patterns. These include algorithms

that do deviation detection, clustering, database segmentation, summarization and

visualization, and dependency modeling

2.1.1 Predictive Algorithms

The model representation for decision trees is a tree data structure. As in diagram 2 each

node in the tree represents an attribute. Node attribute labels are chosen by some

entropy/information gain function. The attribute that best classifies the training examples

is the one that labels the node. Each attribute value points to a child node. Nodes

become leaves when its highest measured attribute classifies all training examples at that

 10

node or all attributes have labeled nodes. An attribute will appear only once along any

path.

 Each path in the tree represents a conjunction of attributes. The tree is a

disjunction of each conjunctive path. Cross validation, where examples are randomly and

repeatedly partitioned into test and train sets, and significance tests such as Chi Square

are used as evaluation methods for decision trees. Search in decision trees is a greedy hill

climb through the space of all possible decision trees. There can be many decision trees

that can describe a given training set.

Figure 2 - Decision Trees

Different decision tree algorithms differ as to the functions used to in determining

how to assign attributes. They also differ as to how to split the values. ID3 splits values

as above whereas GID3 allows each child to have a subset of values. One of the

drawbacks of decision trees is that they can tend to overfit the data. Different algorithms

employ different methods of pruning trees.

D e c is io n T r e e s

A 1

A 4A 3A 2

v 1 1
v 1 2

v 1 3

A 5 A 3 A 2 A 7A 6

v 2 1 v 2 2 v 4 1 v 4 2 v 4 3
Y E S

Y E S Y E S

v ij = v a lu e j o f A t tr ib u te i
A i = A ttr ib u te i

 11

Figure 3 - Neural Networks

Neural Networks are a graphical model based on the human neural system. It consists of

a system of connected nodes that are analogous to human neurons. Each input is

associated with a weight. The result of some function of these weights is the output

value from that is forwarded to the next layer of nodes. Backpropagation algorithms

allow for the adjusting of weights in an iterative process. The result is that the neural

network itself represents a learned function that can be used to predict on new examples.

The representational model of neural networks is difficult to interpret since we don�t

always known what is happening in hidden nodes. Search is a gradient descent through

the space of all possible functions that can be represented using weights applied to

networks of interconnected nodes. Neural networks are evaluated using standard squared

error functions and cross entropy loss functions.

 The representational model for inductive logic programming (ILP) is first order

logic. ILP algorithms learn concepts that describe patterns rather than just identifying

N eural N etw orks

inputs ou tpu ts

h idden un its

o w xi i
i

n

=
=
∑

0 σ

w0 x0

w1x1

w2x2

wnxn

 12

them. Concepts are learned from examples and domain knowledge, which is represented

in predicate form. Learned concepts are also predicates. ILP algorithms that use

empirical methods will find multiple or single predicate rules using large numbers of

examples and domain knowledge. Interactive ILP systems are supervised learners that

can learn from small numbers of examples and queries to the expert involved. Examples

of empirical ILP programs are FOIL and GOLEM. Interactive ILP programs include

MIS and CLINT. ILP algorithms use highly computational search methods. Evaluation

is done through logical methods. This usually entails evaluation of how the learned rules

predict over new data.

 Regression analysis results in some function F that will take a data item d and

map it to some real valued number. Regression algorithms result in a function. Time

series applications are viewed as a special type of regression problem.

2.1.2 Descriptive Algorithms

 Given a set of data, deviation detection determines if significant changes have

occurred from previously measured values of the data. It concentrates on abnormal data

changes. Methods used by these types of algorithms are significance testing, standard

deviation, and means analysis.

 Clustering is a computer automated method by which the data is partitioned into

subsets such that within each partition the data is most similar, and between partitions the

data is most dissimilar. Partitions form clusters which may or may not overlap depending

on the algorithm. Within each cluster, similarity of data points may be with respect to

more than one variable. Both Euclidean distance measures and Bayesian techniques have

 13

been employed. The automated nature of this methodology classifies it as an

unsupervised learner. Database segmentation is sometimes viewed as a special case of

clustering. The database is partitioned into subsets. Data items are grouped according to

a single feature.

 Human pattern recognition abilities exceed that of any known automated method.

Summarization and visualization techniques make use of these abilities. In an effort to

couple machine analysis with human pattern recognition, data is encoded with respect to

color, position, size, etc. In essence, the data is condensed to a simpler form.

Summarization and visualization may offer different views of the data allowing for drill

down into different segments of the data. Results are provided in a way that may lead to

knowledge discovery.

Dependency modeling are methods that describe variable dependencies. The

results of these algorithm are what is known as association rules or dependency rules. An

association rule can be defined as being of the form X ⇒ Y where X and Y are disjoint

sets of items.[Agrawal, R., T. Imielinsk, and A. Swami, 1993] Rules have a true or false

value associated with them, along with an associated confidence measure. In this

definition, variables are connected with conjunction and no negations were allowed.

More recently, the concept of an association rule was extended to include negations.

[Silverstein, C., Sergey Brin, and Rajeev Motwani, 1998]

2.1.3 Evaluation

It is important that these data mining algorithms not be used in an ad hoc manner.

This has come to be known as data dredging. The fear is that doing so, one might

 14

discover patterns with no meaning. In fact at one time KDD in the statistics community

was considered a �dirty word�. It has been shown that if one looks hard enough in a

sufficiently large database, even a randomly generate one, statistically significant patterns

can be found.

 We also have to be careful as to how we interpret the patterns presented to us by

data mining algorithms. One classic data mining legend centers around a major retailer

finding the relationship, �Men who buy beer, buy diapers!!� The retailer , might assumed

that harried dads, going to the store to pick up some diapers, were picking up something

for themselves as well. To capitalize on this, store stock was rearranged so that beer and

diapers were near each other. This resulted in increased sales of both beer and diapers.

In another example, Wal-Mart found a relationship that people who bought Barbie dolls

also bought a certain candy bar. Suggested ways of capitalizing on this relationship

ranged from shaping the candy like a Barbie doll to placing food coupons for the candy

bar inside Barbie Doll packages.

2.2 Data Mining Applications

 Data Mining applications fall into two categories. They are either generic or

domain specific. Generic tools can be used across multiple, possibly unrelated, domains.

The goal is to be able to use the tool without too much domain specific customization.

Generic single task tools are used mainly in the mining step of the KDD process. These

tools usually require a great deal of pre and post processing. Generic multitask tools may

combine a variety of data mining methods and may even incorporate some visualization

techniques. Domain specific applications do discovery in a single domain. The user

 15

doesn�t need to know about the discovery process. All data mining systems are different.

To date there is not one program that addresses knowledge discovery for all domains.

2.2.1 SKICAT

SKICAT , Sky Image Cataloging and Analysis Tool, was used by astronomers to

classify and catalog sky objects from astronomical data.[Fayyad, U. M., S. G.

Djorgovski, and N. Weir, 1996] It was used on images obtained from the Second

Palomar Observatory Sky Survey (POSS-II). Three thousand digitized images of 23,040

X 23,040 16 bit pixels comprising a total of 3 terabytes were collected in this survey.

The object was to catalog sky objects such as galaxies, and stellar objects including

quasars. The survey covered the entire northern sky. The main goal of the project was to

more accurately catalog sky objects in an automated , timely manner than has previously

been done in former surveys. As a subgoal, the project tried to detect images from these

photographic plates that were too faint for visual recognition. The objects detected by the

survey were one order of magnitude fainter than in previous surveys. The size of the

dataset and the difficulty of visual interpretation necessitated some automated means for

the interpretation of the data.

SKICAT used decision tree supervised learning. Astronomers using high

resolution data from telescopic CCD images classified faint objects. CCD images have a

higher resolution and a higher signal to noise ratio than the photographic images. This

allowed the recognition and classification of faint objects by astronomers. This dataset

only coincided with a small subset of the data obtained with POSS II. The labeled low

 16

resolution images of the classified objects was used to train the decision tree. Multiple

decision trees were generated on randomly generated test and train sample sets.

Additional classification learning algorithms such as neural nets and unsupervised

Bayesian learning (AutoClass) were also investigated. Results with neural nets were

almost as good as that with decision trees. When AutoClass was used as the learner, 10

new high red shift quasars were discovered. These were found to correspond to rare

clusters in the data. Research still continues with regard to AutoClass.

RULER was a subsystem that was used to obtain a minimal set of rules that cover

the examples from the rules generated by the decision trees. In RULER, the decision

trees were pruned with regard to a statistical measure of a rule�s conditions, correlated

with the class by chance. Rules with probabilities above a certain threshold (.01) were

pruned from the tree. A greedy covering algorithm was then applied to find a minimal

set of rules that cover all the training examples. The result was a set of rules that was

smaller than any of the rules in the decision trees that created this set.

SKICAT was able to find objects that were one order of magnitude fainter than

previous with above 90% accuracy. The accuracy of SKICAT�s algorithm was evaluated

in two ways. The first was to compare classifications made by SKICAT on photographic

images to those classified by astronomers on CCD images. The same images may appear

in more than one plate. Another measure of accuracy was to measure the number of

times the classification of these multiple type images conflicted.

 17

2.2.2 Health Kefir

Health-KEFIR (Key Findings Reporter) analyzes healthcare observations in an

effort to control costs and improve quality.[Matheus, C. J., G. Piatsky-Shapiro, and D.

McNeil, 1996] KEFIR looks for deviations in the database from previous measurements

or from the accepted norm for a particular attribute. These deviations indicate interesting

patterns in the data since they differ from what is expected. Deviations are ranked

according to a measure of interestingness. In the domain of health-care analysis,

interestingness is measured by the impact of a prescribed response. This is the benefit,

such as financial gain, obtained by a set course of action. A number of user defined key

deviations are explained relative to their related deviations, and in some instances a

recommended action is offered. In healthcare key deviations are those that indicate

problems that can be remedied.

The search space in Health-KEFIR is divided into three components. The

population group is the first component. This group is defined by characteristics such as

employee group, geographical region, employee status, etc. The second component is the

medical study area. This consists of the medical problem along with treatments

associated with this problem. A set of relevant measures comprise the third area. These

measures are independent of the population group, but related to the study area. For

example, the medical admissions study area can have measurements describing the length

of stay. Deviations are obtained for intersections of populations and study areas (defined

as a sector). The top sector is the sector containing all instances of that category. The

computed deviations define subsectors, which in turn have their deviations computed.

This recursive process continues until the search space is exhausted or the sectors become

 18

too small for further splitting. Deviations, along with sector information, and related

deviations are stored in a structure called a finding. Findings are ordered according to the

interestingness measure and the top N, where N is user defined, are denoted as key

findings. These are reported by KEFIR along with any recommendations.

Recommendations are coded into KEFIR as production rules. These recommendations

are obtained from domain experts. Reports are presented in HTML and based on a

template that mimics natural language. They include all findings and relevant and related

deviations. The findings can be shown in graph form.

KEFIR runs on a Sun SPARCstation 20 with an Informix DBMS. KEFIR took

the equivalent of two Full Time-Employee man (FTE) years to complete. An additional

6 month FTE was required to build KEFIR�s knowledge base.

KEFIR was field tested. No formal data was presented as to its effectiveness.

Statements were made indicating that user feedback was such that KEFIR reported the

same deviations as those reported by health care analysts, along with some findings that

were not determined by these analysts. KEFIR is being modified to work in other

domains such as market analysis.

2.2.3 JARtool

JARtool, Jet Propulsion Laboratory Adaptive Recognition tool, was used to

detect small volcanoes on the planet Venus[Burl, M. C, et. al. 1998]. Data came from

the Magellan spacecraft, which over a period of five years, mapped the surface of Venus.

The data set used was a set of 30,000 images of 1,000 X 1,000 pixels each. Large

volcanoes were mapped manually. It was found that humans got tired after cataloging

 19

50 � 100 images over a period of a few days. Because of this, it was estimated that small

volcano cataloging would take 10 � 20 man years. There was a need for an automated

cataloging system.

Feature selection was a major problem in the classification process. It was hard to

distinguish volcanoes from the background. There were no clear set of feature vectors.

JARtool used principal component analysis to reduce the dimensionality of the problem.

The reduced feature vector was used to train the classifier. The system developed a

classifier using a subset of approximately 30 � 40 images on which planetary geologists

labeled small volcanoes. JARtool was able to match the scientists� performance with

regard to classifying certain types of volcanoes (high probability volcanoes vs. those

scientists are not sure of). It was more successful on homogeneous image sets, (sets of

images that are in close proximity to each other), than on heterogeneous image sets,

(images taken from random areas of the planet).

JARtool is an example of a train by example approach. This approach lends itself

to data mining in the image processing range since it allows for the discovery of patterns

that answer the query, �Find me stuff that looks like this�.

Data mining in the scientific domain offers different problems than those of the

business domain. Domain knowledge is used to a greater extent since it is usually well

documented and available in papers, texts, etc. On the down side, in scientific domains,

there is a need for higher levels of accuracy than in business. There are issues of

scalability since there can be large amounts of sensor data generated. This might

necessitate the use of highly parallel supercomputers in data analysis. As opposed to the

business domain where the search is for frequently occurring events, in the scientific

 20

domain we may have to be able to detect low probability classes such as those found in

SKICAT. What we want may to find are rare occurrences of some phenomena.

2.2.4 ILP applications

GOLEM and CLAUDIEN were two ILP applications that was used to look at

biological classification of river quality[Dzeroski, S., 1996]. The presence of different

family classifications of benthic macro-invertebrates in rivers, is indicative of the extent

of pollution found in these rivers. Different families of these invertebrates are sensitive

to different pollutants including biodegradable pollutants such as sewage, and toxic

pollutants such as heavy metals and pesticides. In this study, CLAUDIEN and GOLEM

learned rules that would classify water quality based on the presence of these types of

benthic macro-invertebrates. Training examples were gotten from a database of 292 field

samples collected from British rivers and classified by an expert. An expert in the field

evaluated the generated rules. GOLEM found 35 rules, 25 of which were found to be

acceptable by the expert. CLAUDIEN found 79 rules two thirds of which were found to

be of acceptable by the expert.

GOLEM has also been used to predict the secondary structure of proteins. The

secondary structure of proteins is where in three dimensional space you would find a

particular amino acid.. The sequence of amino acids is the primary structure of a protein.

The problem was simplified to finding if an amino acid resided an alpha helix protein

structure. GOLEM was able to induce rules that were 78% accurate on the training set

and 81% accurate on the test set.

 21

2.2.5 Market Analysis

Retailers, to predict the buying patterns of their customers, use data mining

applications in this domain. Wal-Mart created one of the largest databases in the world

using transaction/observation1 data. Customer databases are analyzed and searched for

customer buying patterns and preferences. These applications use techniques such as

segmentation, interactive querying, and predictive modeling. The results allow retailers

to select customers in a more precise and targeted manner. Rules generated by these

systems help market analysts make better marketing decisions.

Two examples of marketing programs are Coverstory and Spotlight [Matheus, C.

J., G. Piatsky-Shapiro, and D. McNeil, 1996]. They analyzed supermarket sales data.

Patterns were found relating changes in product volume and share. These answered

questions of the type, �Where do we ship those cans of beans?�

Opportunity Explorer was another application that found business relationships

for sales representatives of consumer packaged goods with their retailers. The results

were presented as advantageous protocols for retailers. They were advised with regard to

stocking of additional products or the running of special promotions to enhance sales.

Market basket analysis is a significant area where data mining has taken place.

Market basket analysis uses point of sale information to describe relationships between

retail stock movement. The information is used to determine shelf space allocation, store

layout, product location and promotions. Most data mining algorithms that do market

basket analysis use some type of dependency modeling. Some examples of data mining

1 On transactions and observations: the data mining community defines a transaction as a measurement,
while the computer science community defines such a measurement to be an observation. In either case,

 22

tools in this domain are IBM Data Miner, Lucent Technology�s Niche Works, and a

future version of KEFIR.

2.2.6 Investment Forecasting

 Many investment companies use data mining to manage stock portfolios. The

methods employed by these companies tend to be proprietary and not usually described

in the literature. Investment companies are competitive and don�t tend to publish their

methods. Most packages in this category use regression, neural networks.

 Fidelity Stock Selector used a neural network to select investments. Results are

presented to a fund manager who makes final decisions. The system did well up to a

point. It is uncertain whether the system was at fault or the human, and fidelity is not

telling who is responsible.

Other examples of data mining in the financial markets include LBS Capital

Management which manages funds worth $600 million. It uses a system of expert

systems, neural networks and genetic algorithms. Since its inception in 1993, it has

outperformed the stock market. Carlberg & Associates use a neural network for

predicting Standard and Poor�s 500 Index. It used interest rates, oil prices, earnings,

dividends, and the dollar index as inputs and was able to explain 96% of the variation in

S&P from 1986 to 1995. [Brachman, R. J., et. al. 1994]

this is simply a row in a table of a database. For the purpose of consistency, we will adopt the term
observation for this thesis.

 23

2.2.7 Other Applications

 PRISM and FALCON are programs that detect credit card fraud. FALCON uses

a neural network to detect suspicious credit card observations. Banks use these

programs.

FAIS [Brachman, R. J., et. al. 1994] is used by the U.S. Treasury Financial

Crimes Enforcement Network to detect money laundering. Information to this system

comes from government forms. FAIS is a combination of off the shelf components with

some customization. One of the problems it had to contend with was that much of the

data it used was in the form of handwritten notes.

AT&T detects calling fraud by using visualization techniques to display call

activity in a way that picks up on unusual patterns [Cox, K. C., S. G. Eick, G. J. Wills,

and R. J. Brachman, 1997]. Clonedetector by GTE finds cellular phone clones by using

deviation detection to see how calling patterns differ from a customer�s calling profile.

In addition, the IRS has developed a pilot system to be used for selecting returns

for audit. Problem detection and prediction in Boeing 737�s are analyzed by CASSIOPE.

MERGE PURGE was used to eliminate duplicate claims in the Washington State Welfare

System.

Even the sports world uses data mining. IBM�s ADVANCED SCOUT analyzes

data from NBA games. It helps coaches to organize and interpret this data. SCOUT

finds patterns of play and has been used successfully by the Seattle Supersonics in the

1996 NBA finals. As can be seen there are a wide breadth of applications with new

applications being brought into the market each day.

 24

2.3 How to compare KDD systems

 With the wide variety of KDD systems and the equally diverse number of domain

applications, it is difficult to compare systems. Nonetheless, there are some guidelines

that can be used when deciding between systems.

1. Who is the user of the KDD systems?

2. What types of tasks are supported by the KDD systems?

3. What tools are associated with each supported task?

4. Are tools integrated with each other? Are there various steps in the process? Do these

address user needs?

5. In what manner does the system allow for incorporation of background knowledge?

6. How is discovered information presented to the end user?

7. Are the results of the KDD system able to be used in some applicable way by a user

other then the data engineer, i.e. some businessperson looking for a market trend,

etc.?

These are questions that are relevant to all KDD systems.

2.4 Ethical Issues

 It is important to address the ethical issues raised by data mining. Invasion of

privacy issues are at stake. Government and business databases contain a lot of personal

information. These problems have been addressed more directly in Europe. The

Organization for Economic Cooperation and Development (OECD) addressed these

issues for the European Union nations. OECD has said that data analysis on living

individuals should not be done without their consent. There are movements in this

 25

country for legislation that follows in the same vein. Much of the argument against

regulation contends that, especially in the medical domain, getting individual consent

might not be feasible, resulting in the loss of potential knowledge advances. On the other

hand, most data mining deals with discovering patterns with regard to groups and not

individuals. As long as the results don�t point to any one individual, regulations are not

necessary. Alternately, this can be a problem in small databases where combinations of

group patterns can point to individuals. There are definite Orwellian overtones to the

KDD process. As individuals, it is important to be aware of the potential abuses of this

process and to temper that with its potential benefits.

 26

Chapter 3

Algorithms That Generate Association Rules

 Association rules are implications of the form X ⇒ Y. The thick arrow is used to

differentiate the probabilistically defined implications of these rules from logical

implication. Constraints on which operators, the numbers of variables that can be placed

in X or Y, and the values for these variables have changed as algorithms became better

able to generate more complex rules. Initially, association rules were defined in the

following way [Agrawal, R., T. Imielinsk, and A. Swami, 1993]:

Let I = I1, I2, ... Im a set of binary attributes.

Given X is some subset of I and T a database which is a set of observations t.

Each observation in t ∈ T can be thought of as a binary vector of 0�s and 1�s.

A tuple t is said to satisfy X if for each value t(k) in tuple t, t(k) = 1 for all attributes Ik in

X.

An association rule is an implication X ⇒ Ij where Ij is an item in I that is not in X.

Note, here the constraints on the antecedent of the association rule are such that

the only Boolean operation allowed to connect attributes is conjunction. Attributes in the

 27

antecedent are only allowed a value of one, hence no negations are allowed. The

consequent can contain only one attribute. Also, attributes of values of the consequent

are only allowed a value of one. I shall define rules of this genre as Type I rules.

In later algorithms by the above authors, the constraints on the antecedent were

relaxed to allow for more than one attribute. These algorithms defined an association

rule as an implication X ⇒ Y where X and Y are subsets of I and X ∩ Y = φ .

Constraints still existed on the attribute values. Attributes could not be negated and

could only be connected with conjunction. Define these rules as Type II rules.

Constraints on association rules were further relaxed and these types of rules

were redefined as dependency rules.(Silverstein, C., Sergey Brin, and Rajeev Motwani,

1998) Dependency rules are defined as an implication X ⇒ Y where X and Y are subsets

of I, the attributes of set X are dependent to the attributes of set Y, and X ∩ Y = φ .

Instantiations of X and Y such that any attribute Ix ∈ X and any attribute Iy ∈ Y can have

values of one or zero, denoting presence or absence in the observation. The constraint

whereby all attributes can only be connected by conjunction still holds. Define these as

Type III rules.

Orchard's algorithm, Boolean Analyzer (Orchard, Robert A., 1975) - later

extended by Domanski (Domanski, B., 1996), is also based on dependence. In the hill-

climbing phase of the algorithm, complex dependency rules are determined. These rules

are similar to those defined by Silverstein, Brin, and Motwani, but also allow for

attributes to be connected with the disjunction in addition to conjunction. We define

these as Type IV rules.

 28

3.1 AIS

 AIS (Agrawal, R., T. Imielinsk, and A. Swami, 1993) is an algorithm that finds

association rules of Type I. Rules are generated within boundaries set by the confidence

of a rule and by its support. The parameters of confidence and support denote the

strength and statistical significance of a rule respectively.

Given a rule X ⇒ Y

Let N be the number of observations in T.

Let S1 be the number of observations in T that satisfy X.

Let S2 be the number of observations in T that satisfy the vector X ∪ Y where

X∩Y is null

Then the confidence c of a rule is S2 / S1

The support s of a rule is S2 / N

Note if we divide the support of a rule, S2 / N, by the support of the antecedent,

S1 / N, we can also obtain its confidence.

The goal of AIS is to find all combinations of attributes that are above a threshold

value for support, defined as minsupport. Combinations of attributes whose support is

above minsupport are called large itemsets. From these large itemsets, AIS generates

rules that are above a threshold value for confidence, defined as minconf.

Once large itemsets are identified, rules can be generated. Rules are generated by

looking at various combinations of attributes for the consequent and antecedent of the

rule X ⇒ Y such that X and Y are subsets of the large itemset and X ∩ Y = φ . If the ratio

r of the support of X ∪ Y divided by the support of X (the actual confidence of the rule

 29

X ⇒ Y) is greater than minconf then that rule holds with at least a confidence of

minconf.

The major portion of the algorithm finds large itemsets. To do this the algorithm

makes many passes over the data. In a particular pass the algorithm creates candidate

itemsets from observations in the data and from itemsets contained in a frontier set,

created from previous passes. The frontier set consists of itemsets that have been

extended during a pass. Observations are compared to the frontier itemsets. If extending

a frontier set can create an itemset, it is added to the list of candidate itemsets. For

example, if a frontier set contains items I1 I2I3 and the observation codes for I1I2I3I7I9

then candidate itemsets would be I1 I2 I3 I7, I1 I2 I3 I9, I1 I2 I3 I7 I9. Candidate itemsets are

associated with counters that keep track of their support. As the algorithm passes over

the data an estimation of support is calculated. If the estimated support is larger than

minsupport the itemset can be extended further. Those that are expected to be small are

not extended. So candidate itemset I1 I2 I3 I7 would not be extended to I1 I2 I3 I7 I9 if I1 I2

I3 I7 were expected to be small. The frontier set contains those itemsets that were

expected to be small but in actuality were large. These are placed in the frontier set since

their extensions were not considered in previous passes. The algorithm ends when the

frontier set is empty. Large itemsets are maintained and used for rule generation.

3.2 Apriori, AprioriTid, and AprioriHybrid

Apriori, AprioriTid, and AprioriHybrid algorithms improved upon the above

algorithm[Agrawal, R., H. et. al., 1996]. The problem with AIS was that it would

generate and count too many small itemsets. In Apriori, AprioriTid, and AprioriHybrid,

 30

the observations in the database were not used for candidate itemset calculation. Rather,

the large itemsets found in a previous pass were used to generate new candidate itemsets.

AprioriTid used an encoding that captured information as to which observations

corresponded to that itemset.

In Apriori, the first pass through the data finds the support for itemsets consisting

of one attribute. Those itemsets that are above minsupport, form the set of large itemsets.

The k � 1 sized candidate itemsets are used in the next pass to find large itemsets for the

kth pass. This is done by forming the union of two k � 1 itemsets such that these itemsets

share k � 2 items. Candidate itemsets are pruned from this set if any k � 1 subset of the k

candidate itemset in question was not a previously found to be a large k � 1 itemset.

Once the new candidate sets for pass k are formed they are checked against the data to

determine their support, and in consequence which are above minsupport. These large

itemsets form the set of large itemsets for pass k. This is repeated until the set of large

itemsets for a pass becomes null.

AprioriTid is similar to Apriori. Candidate itemset creation is the same but

instead of determining support from the database, support is calculated from a new set,

C�k which contains a observation�s ID number associated with the set of all large k

itemsets that are supported by that observation. Observations that don�t match large

itemsets are not contained in this set.

For small sized itemsets, C�k has the potential of being larger than the data itself.

When itemsets become large, C�k will be much smaller. AprioriTid performed better than

Apriori when C�k was able to fit in memory. AprioriHybrid uses the Apriori algorithm

 31

until C�k fits into memory and then switches to the AprioriTid algorithm. AprioriHybrid

was shown to perform better than Apriori and AprioriTid.

3.3 Dependency Rule Algorithm

 It was argued [Silverstein, C., Sergey Brin, and Rajeev Motwani, 1998] that the

support/confidence measured association rules that Agrawal et. al. described could not

discover rules that described negative dependencies. For example, AIS, and the Apriori

algorithms would not discover rules such as �People who buy diapers do not buy

Geritol." Therefore association rules were not adequate for domains that need to mine

these types of rules.

 Silverstein et al differentiate between variable dependency and event dependency.

A dataset will have a set of variables or attributes. An event is an instantiation of these

variables. Each variable can have a value of zero or one. A value of zero indicates the

absence of the variable, and a value of one indicates its presence in the event. This

algorithm tests for dependency between variables, and then looks at instantiations of the

events that are defined by the variables to see which events define strong rules. For

example, given that I1 and I2 are two variables from the set of attributes I = I1, I2, ... Im,

then the events associated with these two variables are I1 I2, I1I2�, I1�I2, I1�I2� .

 The algorithm tries to find itemsets of variables that are minimally dependent. A

minimally dependent itemset is a dependent itemset whose subsets are not dependent.

The significance of a minimally dependent itemset stems from the property of variable

dependency as being upward-closed in the lattice of all itemsets. If a set I from the set of

all itemsets is upward-closed in property P, then each superset of I in this set of itemsets

 32

contains property P. A set I is downward-closed for property P if each subset of I has

property P. All the itemsets that are minimally dependent form a border in the itemset

lattice, which defines a boundary for the space of all dependent itemsets.

 Dependency was measured using a Chi-Square statistic. A contingency table was

created where each cell in the table is labeled with the Cartesian product of the variables

and their negations. The values in the cells were the counts of the observations in the

database that matched the cell label. A sample contingency table for variables I1 and I7 is

as shown.

 I7 I7 � row-sum

I1 4 2 6

I1 � 6 8 14

col-sum 11 7 38

Table 1 - Contingency Table For Event Dependencies

The above table indicates that there are 4 observations with I1 and I 7 together, 6

observations of observations where I1 was present and I 7 was not, etc. The Chi-Square

statistic was given as:

Where O(r) stands for the observed value for a variable and E(r) is the expected value.

For the contingency table above the Chi-Square value would be:

χ 2
2

=
−

∈
∑ (() ())

()
O r E r

E rr R

 33

This equals 16.002. There is one degree of freedom since values are Boolean. A Chi-

Square value of 3.84 denotes a p value of 0.05. This that the above variables are

independent with at the 95% confidence level.

 To find which cells of the contingency table were most dependent, a measure of

interestingness was defined. This measure for the two events denoted by a cell r in the

contingency table was defined as follows:

Maximizing | I(r) � 1| finds the cell in the contingency table that most contributes to the

Chi-Square value of the contingency table. Values of interestingness although

comparable within a contingency table, are not comparable between contingency tables.

 Given a contingency table for a set of items S. The contingency table support

(CT-support) is the value p, where p is the percentage of cells in the contingency table

having a support value of s. Significant itemsets are those that are CT-supported and

minimally dependent.

 The algorithm for finding the dependency border, first defines a minimum Chi-

Square significance level, a minimum support, and a minimum CT-support. Each item in

the database is counted to find their support. Those items whose support in the dataset is

larger than minimum support are paired with each other. Item pairs are added to a

candidate set for dependency analysis. Each itemset in the candidate has their

contingency table created. Those itemsets whose CT-support is greater than the defined

(* /)
* /

(* /)
* /

(* /)
* /

(* /)
* /

4 6 11 38
6 11 38

2 6 7 38
6 7 38

6 14 11 38
14 11 38

8 14 7 38
14 7 38

2 2 2 2−
+

−
+

−
+

−

I r
p xy

p x p y
()

()
() ()

=

 34

minimum are evaluated for their Chi-Square values. Those that have significant Chi-

Square values are placed in a set of significant itemsets. Those that are not are added to

the set of insignificant itemsets. The significant and insignificant sets were initially set to

null. All itemsets in the candidate set are tested in this manner. Once this is finished a

new candidate set is formed from the insignificant set. The new sets in the candidate set

have cardinality S such that each |S-1| subset is in the insignificant set. The algorithm

ends when the candidate set is empty. The result in the significant set is a list of all

minimally dependent itemsets.

 35

Chapter 4

Boolean Analyzer

Boolean Analyzer is an algorithm developed by Dr. Robert Orchard (Orchard, Robert A.,

1975) and expanded upon by Dr. Bernard Domanski (Domanski, B., 1996). Boolean

Analyzer (BA) takes data, Booleanizes the data, then calculates a dependency measure

indicating the strength of the events in a dependency relationship. Positive and negative

values of this measure indicate if the relationship is direct or indirect, respectively.

4.1 The Algorithm

Given a database T , define an activity matrix as a set of variables with their

corresponding values, possibly over time.

 The values are obtained from a dataset T where each observation t ∈ T is one

instantiation of the set X = {X1, ..., Xn} where X1, ..., Xn represent the variable attributes

in T. Values for X1, ..., Xn can be numeric, categorical or Boolean. There are no data

type restrictions.

Define a threshold set H = { h1, ..., hn} such that each hi represents a Boolean boundary

on the variables of X.

We Booleanize the matrix of n variables, X1, ..., Xn as follows.

X
if Value X h

if Value X h
i

i i

i i

=
<

≥









0

1

(}

()

 36

The threshold set H is determined using the domain knowledge of an expert. Once each

value is changed to its Boolean equivalent, we can form a Boolean activity matrix.

THE BOOLEAN ACTIVITY MATRIX

 X1 X2 X3 X4 X5 X6

observation 1 0 1 1 1 0 1

observation 2 1 0 1 1 1 1

observation 3 1 1 1 0 1 0

 � �

 � �

 � �

Figure 4 - The Boolean Activity Matrix

Rows represent the state of each variable during a single observation. Each row of this

Boolean activity matrix can be in any of 2n possible states. Each of these states defines

an equivalence class on the set of observations in the activity matrix. Based on these

equivalence classes we can create from the Boolean activity matrix another matrix called

the State Occurrence matrix.

The 2n possible states can be organized into a State Occurrence matrix (SO matrix) by

partitioning the variables X1 to Xn into two disjoint groups, X1 to Xj and Xj + 1 to Xn

Label each row with j-tuples, <X1, ..., Xj> such that each j-tuple forms a distinct class.

The total number of row classes are thus 2j.

 37

Label each column with (n-j)-tuples, <Xj + 1, ..., Xn > such that each (n-j)-tuple forms a

distinct class. The total number of column classes are thus 2n-j.

Let Xi represent an unprimed (value 1) variable.

Let Xi� represent a primed (value 0) variable

Then each row or column class can be labeled using this notation.

With no loss of generality, consider the following example

Assume we have dataset T of sample size, | t | = n = 100. Then let :

X1 = 1 CPU Active X1 = 0 CPU Idle

X2 = 1 System state X2 = 0 User State

X3 = 1 Online workload X3 = 0 Batch workload

X4 = 1 Tape activity significant X4 = 0 Tape not significant

X5 = 1 Disk activity significant X5 = 0 Disk not significant

X6 = 1 High Paging X6 = 0 Expected Paging

 38

Further assume that the State Occurrence Matrix in Table 2 was calculated from the

activity matrix:

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6�

X1X2X3 0 1 0 0 4 2 1 2
X1X2X3� 2 0 1 0 3 0 2 2
X1X2 �X3 1 0 0 1 5 1 0 2
X1X2 �X3� 3 0 0 0 3 5 2 2
X1 �X2X3 1 0 1 1 3 1 2 1
X1 �X2X3� 0 2 0 1 0 3 5 4
X1 �X2 �X3 0 0 0 1 5 3 4 2
X1�X2 �X3� 0 1 2 1 0 5 4 2

Table 2 - The State Occurrence Matrix

Note, the intersection between a row and a column forms an equivalence class on the

activity matrix. Matrix values indicate the support for that state in the activity matrix as

defined by the Boolean threshold set H. For example, given state X1�X2�X3X4�X5X6, this

implies that

• the CPU is idle

• the system is in user state

• running an online workload

• with low tape activity, and high paging activity

This state occurs 5 times in the activity matrix. This corresponds to the event 001011.

Just by inspecting the State Occurrence matrix we can observe some interesting

relationships.

 39

1. The CPU was active in system state processing online workload 10 times. Of these, 5

times there was a high paging rate.

2. The next-to-rightmost column, (X4�X5�X6) shows that high paging activity, no disk or

tape activity occurred 20 times. Of these, the CPU was idle in 15 of them.

3. To find out the support for CPU activity and tape activity (X1X4) we look at the upper

left quadrant of the State Occurrence matrix and sum the values in each cell that is

labeled with X1 and X4. This is shown in Table 3.

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6�

X1X2X3 0 1 0 0 4 2 1 2

X1X2X3� 2 0 1 0 3 0 2 2
X1X2 �X3 1 0 0 1 5 1 0 2
X1X2 �X3� 3 0 0 0 3 5 2 2
X1 �X2X3 1 0 1 1 3 1 2 1
X1 �X2X3� 0 2 0 1 0 3 5 4
X1 �X2 �X3 0 0 0 1 5 3 4 2
X1�X2 �X3� 0 1 2 1 0 5 4 2

Table 3 - State Occurrence Matrix Showing X1 : X4

 40

4.1.1 Relationships in Matrix Form

We can think of dependency relationships between two variables as being in one of four

possible event states, Xi and Xj are both high, Xi is high when Xj is low, Xi is low when Xj

is high, and both Xi and Xj are low. If we define �:� to stand for a the dependency

relationship of an event, then we have:

 Xi : Xj

 Xi : Xj�

 Xi�: Xj

 Xi� : Xj�

The above can be represented by a 2 x 2 contingency table.

Using X1 : X4 as an example we have:

 X4 X4'

X1 9 36

X1' 11 44

We define these types of contingency tables as a relationship matrix. Each cell is

computed by finding their support from the State Occurrence matrix

 41

We can represent more complex dependency relationships as well.

X1X3:X4X6 (CPU active processing the online workload vs. tape and high paging

activity).

The entries in the State Occurrence matrix corresponding to this relationship are:

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6

X1X2X3 0 1 0 0 4 2 1 2
X1X2X3� 2 0 1 0 3 0 2 2
X1X2 �X3 1 0 0 1 5 1 0 2
X1X2 �X3� 3 0 0 0 3 5 2 2
X1 �X2X3 1 0 1 1 3 1 2 1
X1 �X2X3� 0 2 0 1 0 3 5 4
X1 �X2 �X3 0 0 0 1 5 3 4 2
X1�X2 �X3� 0 1 2 1 0 5 4 2

Table 4 - State Occurrence Matrix showing X1X3:X4X6

Looking at the relationship matrix we find:

 X4X6 (X4X6)'

X1X3 1 19

(X1X3)' 10 70

Values in each cell are calculated as in the previous example. The value in the upper left

cell is the result of summing all values found in the State Occurrence matrix that

correspond to entries where the rows contain both X1X3 and the columns contain X4X6.

The lower left cell is calculated by summing values in the State Occurrence matrix for

rows that contain either X1� or X3� along with X4 and X6.

 42

4.1.2 Meaningful Dependency Relationships

The number of ways that we can partition the rows into two disjoint sets is equal to the

recurrence relation S(n,k), which is the number of partitions of a set S of cardinality n

into k partitions where:

S(n,1) = 1 S(n,n) = 1

S(n,k) = S(n-1,k-1) + k(S(n-1), k) 2 ≤ k ≤ n � 1

We are looking for dependencies between sets of column variables to sets of row

variables. The number of dependency relations is S(n,k) + 1 for the rows, multiplied by

S(n,k) + 1 for the columns. We add one to the number of 2-partitions since the 1-partition

containing all the rows or all the columns is a valid consideration. For our example this

equals:

(S(8,2) + 1) (S(8,2) + 1) = 128 * 128 = 16,384 possible dependency relationships

.

Define a PMSR as a possibly meaningful state dependency relationship. Our problem is

to determine which of these 16,384 possible state dependency relationships are

meaningful. Let�s say we are given a 2 x 2 matrix where X and X� stand for a group of

rows and their complement respectively, and Y and Y� stand for a group of columns and

their complement respectively. Assume that X and Y are independent.

Then let the probability of event X be p(X).

 Therefore the probability of X' is 1 - p(X).

Let the probability of event Y be p(Y).

Therefore the probability of Y' is 1 - p(Y).

 43

Since X and Y are independent then the number of times X occurs with respect to Y is

p(X ∧ Y) = p(X)p(Y). We also have:

p(X ∧ Y') = p(X) (1- p(Y))

p(X' ∧ Y) = (1 - p(X)) p(Y)

p(X' ∧ Y') = (1- p(X)) (1 - p(Y))

Representing the above in a contingency table

 Y Y'

X p(X)p(Y) p(X) (1- p(Y))

X' (1 - p(X)) p(Y) (1- p(X)) (1 - p(Y))

We see that the column ratio of the number of times X occurs with respect to Y to the

number of times X� occurs with respect to Y is equal to the ratio of the number of times

X occurs with respect to Y� to the number of times X� occurs with Y�.

We find the same if we look at the row ratio.

p(X)p(Y)
(1 - p(X)) p(Y)

p(X) (1- p(Y))
(1- p(X)) (1- p(Y))

=

 44

Let a, b, c and d represent the values in each quadrant of the above contingency table.

The values for a, b, c, and d are the occurrences of the joint events, which can be read

from the State Occurrence Matrix.

 Y Y�

X a b

X� c d

Then we have:

Therefore, when a, b, c and d are independent we find

0 = ad � bc

Define events that are not independent as being dependent. Then using the above

equation we can write m = ad � bc where m is a measure on the type and extent of the

dependency of the event X to Y. Large negative values show that X has a strong inverse

dependency relationship to Y. Large positive values indicate a strong direct dependency

relationship. Values close to or equal to zero indicate that the variables are independent

and not related. For example, the measure of X1 : X4 is m = 0, X1X3 : X4X6 m = -120.

a
c

b
d

=

 45

4.1.3 The State Linkage Matrix

Generalizing from the State Occurrence matrix, the relationship matrix defined by a

single row i and a single column j would be:

 column j (column j)�

 row i aij ri - aij

(row i)� cj - aij N - ri - cj + aij

where:

 aij = entry at row I, column j of the SO matrix

 N = total sample size of the activity matrix

 ri = sum of the entries in row i of the SO matrix

 cj = sum of the entries in column j of the SO matrix

Taking the measure and combining terms we get:

mij = aij N - ri cj

We can use the above measure to form the state linkage matrix whose entries show the

measure value for the simple dependency relationship of a single row with a single

column.

 46

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6�

X1X2X3 -70 60 -40 -50 170 0 -100 30
X1X2X3� 130 -40 60 -50 70 -200 0 30
X1X2 �X3 30 -40 -40 50 270 -100 -200 30
X1X2 �X3� 195 -60 -60 -75 -45 200 -100 -55
X1 �X2X3 30 -40 60 50 70 -100 0 -70
X1 �X2X3� -105 140 -60 25 -345 0 200 145
X1 �X2 �X3 -105 -60 -60 25 155 0 100 -55
X1�X2 �X3� -105 40 140 25 -345 200 100 -55

Table 5 - The State Linkage Matrix

From the state linkage matrix (SL matrix) we can determine the measures of more

complex relationships. To calculate the measure for a relationship X vs. Y, where X

represents a set of rows and Y a set of columns, sum the measures of the entries that

correspond to those rows and columns combined

Example X1X3 vs. X4X6

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6�

X1X2X3 - 70 60 - 40 - 50 170 0 - 100 30
X1X2X3� 130 - 40 60 - 50 70 - 200 0 30
X1X2 �X3 30 - 40 - 40 50 270 - 100 - 200 30
X1X2 �X3� 195 - 60 -60 - 75 - 45 200 -100 - 55
X1 �X2X3 30 - 40 60 50 70 - 100 0 - 70
X1 �X2X3� - 105 140 - 60 25 - 345 0 200 145
X1 �X2 �X3 -105 -60 - 60 25 155 0 100 - 55
X1�X2 �X3� -105 40 140 25 - 345 200 100 - 5

Table 6 - State Linkage Matrix Showing m = -70 + 30 -40 -40 = -120

 47

4.1.4 The meaning of the State Linkage Matrix

By looking at the State Linkage matrix we can see the dominant values for

relationships defined by all row variables vs. all column variables. Those relationships

with high negative or high positive values are dominant.

We can use the State Linkage matrix to find the highest measure relationship for

any one variable such as disk activity(X5) and the row states. To do this we calculate

m(row: X5)

m(X1X2X3 : X5) = -70 + 60 + 170 + 0 = 160

m(X1X2X3� : X5) = 130 - 40 + 70 � 200 = -40

m(X1X2�X3 : X5) = 30 - 40 + 270 - 100 = 160

m(X1X2�X3� : X5) = 195 - 60 - 45 + 200 = 290

m(X1�X2X3 : X5) = 30 - 40 +70 - 100 = -40

m(X1�X2X3� : X5) = -105 + 140 - 345 + 0 = -310

m(X1�X2�X3 : X5) = -105 - 60 + 155 + 0 = -10

m(X1�X2�X3� : X5) = -105 + 40 - 345 + 200 = -210

From the above we find that X1X2�X3� : X5 is the system state that contributes most to

disk activity.

To find the relationship for the set of system states that, in general contribute to

disk activity we merely combine with disjunction the states that have a positive measure

to form a composite system state. X1X2X3 v X1X2�X3 v X1X2�X3� which reduces to (X1

(X2� v X3)). The measure of the more complex dependency relationship (X1 (X2� v X3)) :

 48

X5 is 610. This is found by summing the measures of each component dependency

relationship.

 m(X1X2X3 : X5) + m(X1X2�X3 : X5) + m(X1X2�X3� : X5) = 160 + 160 + 290 = 610.

Taking a look at the values for this relationship from our original State Occurrence matrix

we get:

 X5 X5�

 X1 (X2� v X3) 25 10

(X1 (X2� v X3))� 29 36

This confirms our measure of 610. Notice that 5 out of 7 times the CPU is active and we

are not in system state processing batch, there is disk activity. This seems to verify our

previous conclusion.

4.1.5 Finding High Measure Dependency Relationships

We found from the previous section that by combining the variables in rows that

contained positive measures for variable X5 with disjunction, we were able to find a

complex dependency relationship with a higher measure than the semisimple dependency

relationships for X5. We can use the same methodology to formulate a hill-climbing

technique that can find complex relationships for the entire system.

Define a significant row or column in the State Linkage Matrix as a row or

column whose measure is positive. From the previous section we have the rows denoted

by X1X2X3, X1X2�X3, and X1X2�X3� as significant rows. If we sum, by column, the

measures for each significant row we get Table 7.

 49

 X4X5X6 X4X5X6� X4X5 �X6 X4X5 �X6� X4 �X5X6 X4�X5X6� X4�X5�X6 X4�X5�X6�

X1X2X3 - 70 60 - 40 - 50 170 0 - 100 30

X1X2X3� 130 - 40 60 - 50 70 - 200 0 30

X1X2 �X3 30 - 40 - 40 50 270 - 100 - 200 30

X1X2 �X3� 195 - 60 -60 - 75 - 45 200 -100 - 55

X1 �X2X3 30 - 40 60 50 70 - 100 0 - 70

X1 �X2X3� - 105 140 - 60 25 - 345 0 200 145

X1 �X2 �X3 -105 -60 - 60 25 155 0 100 - 55

X1�X2 �X3� -105 40 140 25 - 345 200 100 - 5

 PMSR

Sum of
pmsr's of
significant
rows

155 -40 -140 -75 395 100 -400 5 655

Table 7 - Hill Climb Showing Significant Rows

The sum of the positive measures for each column gives us the measure of the complex

dependency relationship X1X2X3 v X1X2�X3 v X1X2�X3� : X4X5X6 v X4�X5X6 v X4�X5X6�

v X4�X5�X6� which equals 655. This relationship has a higher measure than previous.

 50

Next, continuing in the same vein, sum the measures for each significant column as is

shown in Table 8.

X4X5X6

X4X5X6�

X4X5 �X6

X4X5 �X6�

X4 �X5X6

X4�X5X6�

X4�X5�X6

X4�X5�X6�

Sum of

pmsr's of

significant

X1X2X3 - 70 60 - 40 - 50 170 0 - 100 30 130

X1X2X3� 130 - 40 60 - 50 70 - 200 0 30 30

X1X2 �X3 30 - 40 - 40 50 270 - 100 - 200 30 230

X1X2 �X3� 195 - 60 -60 - 75 - 45 200 -100 - 55 295

X1 �X2X3 30 - 40 60 50 70 - 100 0 - 70 -70

X1 �X2X3� - 105 140 - 60 25 - 345 0 200 145 -305

X1 �X2 �X3 -105 -60 - 60 25 155 0 100 - 55 -5

X1�X2 �X3� -105 40 140 25 - 345 200 100 - 5 -305

 PMSR 685

Table 8 - Hill Climb Showing Significant Columns

The sum of the measures is 685. The positive valued rows denote the significant rows for

the next calculation. If we continue, we find the complex relationship X1 v X3 : X5X6

with a measure of 900.

System
State

Direction of
Derivation

I/O State PMSR

X1(X2�vX3) ← X5 610
X1(X2�vX3) → (X5X6 v X4�X6�) 655

X1 ← (X5X6 v X4�X6�) 685
X1 → (X5X6 v X4�X5�X6�) 785

X1 v X2X3 ← (X5X6 v X4�X5�X6�) 815
X1 v X2X3 → X5X6 850

X1 v X3 ← X5X6 900
X1 v X3 → X5X6 900

Table 9 - The Hill Climb to Highest PMSR

 51

Chapter 5

Extensions to the Boolean Analyzer Algorithm

Up to now the algorithm only identified strong dependency relationships for

dependent events. One major contribution of this thesis is to extend the Boolean

Analyzer algorithm to do rule generation. In the process, a rule system is defined that has

the potential of being stronger than the complex rule from which it was derived.

5-1 Rule Types

Define a simple relationship X : Y as the relationship defined by the intersection of a row

and a column of the State Linkage matrix where X is the j - tuple <X1, ..., Xj > for that

row and Y is the (n-j)-tuple, <Xj + 1, ..., Xn > for that column. Ex. X1X2X3� : X4 X5 X6.

Define a semisimple relationship as a relationship X : Y where X is the conjunction of

any set of row attributes such that X ⊆ {X1, ..., Xj} and Y is the conjunction of any set of

column attributes such that Y ⊆ {Xj + 1, ..., Xn }. Note simple relationships are also

semisimple. Ex. X1 X2X3� : X4 X5 X6 , X1X2X3� : X5 Define a complex relationship as

a relationship X : Y where X is the conjunction and/or disjunction of any set of row

attributes such that X ⊆ {X1, ..., Xj} and Y is the conjunction and/or disjunction of any set

of column attributes such that Y ⊆ {Xj + 1, ..., Xn }. Note simple and

semisimple relationships are complex.

Ex. X1X2X3� : X4 X5 X6 , X1X2X3� : X5, X1 (X2� v X3) : X5X6

 52

 Although the complex relationship X1 v X3 : X5X6 is easy to interpret, in the

previous example we were only working with six variables. Real word datasets, such as

market basket data, can have upwards of 1000 variables. Most researchers have shied

away from complex relationships because they can be hard to interpret.

We can decompose the complex relationship into a system of several semisimple

relationships. For example we can decompose X1 v X3 : X5X6 into the following set of

semisimple relationships.

X1 : X5X6 m = 750

X3 : X5X6 m = 550

Notice that the measure of each individual semisimple relationship is smaller than

the measure of the set of semisimple relationships combined. We also can decompose

the complex relationship into a set of simple ones. For the example this set would be:

 53

X1X2X3 : X4X5X6 m = -70

X1X2X3� : X4X5X6 m = 130

X1X2 �X3 : X4X5X6 m = 30

X1X2 �X3� : X4 ' X5X6 m = 195

X1X2X3 : X4 ' X5X6 m = 170

X1X2X3� : X4 ' X5X6 m = 70

X1X2 �X3 : X4 ' X5X6 m = 270

X1X2 �X3� : X4 ' X5X6 m = -45

X1 ' X2 X3 : X4 ' X5X6 m = 70

X1 ' X2 ' X3 : X4 ' X5X6 m = 155

X1 ' X2 ' X3 : X4 X5X6 m = -105

X1 ' X2 X3 : X4 X5X6 m = 30

This set of simple relationships have a combined event dependency which is higher than

a single simple relationship. In fact the hill climb phase of the Boolean Analyzer

algorithm gave us a set of easily interpretable relationships that are higher in measure

than the individual rules that make up the complex relationship on which they are based.

5.2 Rule Generation

 The measure of a relationship is bi-directional in that the measure of X : Y is

equal to the measure of Y : X. We define a dependency rule as the probabilistic

implication X ⇒ Y where X is some subset of row or column attributes and if X is a

 54

proper subset of row attributes then Y is a proper subset of column attributes also if X is a

proper subset of column attributes then Y is a proper subset of row attributes.

According to this definition, each relationship matrix represents two possible

dependency rules, X ⇒ Y and, Y ⇒ X. Obviously, X ⇒ Y is not the same as Y

⇒ X. For example, the strength of the statement, "People who buy Barbie dolls are

likely to buy candy bar brand X.", tells us nothing about people who buy candy bar brand

X and their affinity for Barbie dolls. We can use the confidence measure defined in

chapter 3 to see which of the two rules is stronger. In actuality in order to decide which

possible dependency rule is best we need only look at the support of the antecedent and

use the rule with the smaller value since the rule support is the same for both

implications.

 We also have to be mindful of the support for the generated rule. Rules that have

the same dependency measure might have different levels of support in the dataset.

Define an interesting dependency rule as one that has support above a threshold s,

confidence above a threshold c, and dependency above measure m.

 For the results of the hill climb, which yields a rule that can be decomposed into a

rule system of dependency relationships, we can also find the support and confidence of

these rule systems. Rule system support is equal to the support of the complex

relationship from which the system is derived. Given R1 ... Rn represents a system

relationship, where Ri represents rule i, we can calculate the support of the system by

finding the sum of the support of all the rules, making sure we count their intersection

only once.

S(R ... Rn) = S(R) - S(R R) + i i j
 i < j n i n

1
11

∩
≤ ≤≤ ≤
∑∑

S(R R R) ...+(-) (S(R R ... R)i j k
 i < j < k n

 n
n +

∩ ∩ − ∩ ∩ ∩
≤ ≤
∑

1
1 2

1
1

 55

 The question that remains is when we decompose complex relationships, which of

the two implications do we use, X ⇒ Y or Y ⇒ X, for each rule. A complex

relationship defines a rule system where all row variables are either in the rule antecedent

or the rule consequent for all rules in the system. We can therefore define the system

confidence as the support of all the rules divided by the support of all the rule

antecedents.

For a system, choose X ⇒ Y such that system confidence is maximized. Or where rule

system antecedent support is minimal.

This may not be the maximum confidence for all the possible rule combinations

derivable from the complex relationship. If we choose Ri = X ⇒ Y such that confidence

is maximized for each Ri then we can obtain a rule system which has the potential of

having higher confidence than the system defined by the complex rule. The following

example shows a complex rule that can be decomposed into a rule system whose

confidence is greater than the complex rule from which it was derived.

Given the complex dependency relationship : x1x2' v x1x3 : x5x6 v x4'x5'x6'

From the state occurrence matrix, the confidence of x1x2' v x1x3 ⇒ x5x6 v x4'x5'x6' is

22/35 or .6286 and the confidence of x5x6 v x4'x5'x6' ⇒ x1x2' v x1x3 is 22/47 or .4681.

Therefore the more confident rule for this dependency relation is:

x1x2' v x1x3 ⇒ x5x6 v x4'x5'x6'

We can define a rule system based on this rule as follows:

x1x2' ⇒ x5x6

C(R ... R) =
S(R ... Rn)
S(R ... R)

1 n
1

1 j

 56

x1x2' ⇒ x4'x5'x6

x1x3 ⇒ x5x6

x1x3 ⇒ x4'x5'x6

This rule system has the same support and confidence as the complex rule

5.3 Discussion

 Most association or dependency rule algorithms do a greedy search through the

hypothesis space of all rules. Boolean Analyzer does both greedy and exhaustive search

through a reduced space of all rules. One major advantage to Boolean Analyzer is that it

uses the domain knowledge of an expert to prune the hypothesis space. The incorporation

of expert knowledge into Boolean Analyzer is unique among this class of algorithms.

Domain knowledge introduction occurs during two separate steps of the algorithm. The

partition step explicitly uses the domain knowledge of the expert to split the set of

variables into column variables and row variables. By doing this we reduce our search

space considerably. To get a sense of how reduced our search space becomes, for the

example discussed, the number of possible variable partitions is equal to the C(6,3) +

C(6,2) + C(6,1) = 41, where C(n,k) is the combination of n items taken k at a time. This

represents the creation of 3 X 3, 2 X 4, and 5 X 2 partitions respectively. By recognizing

that this dataset has one significant partition, we have reduced our search space for

simple rules by a factor of 40.

Domain knowledge is implicitly introduced in the Booleanization step. This step

is very significant in determining the strength of the rules produced by this algorithm.

 57

What is also significant about the Booleanization process is that it allows us to mine rules

notwithstanding different variable data types.

One major drawback to this algorithm also lies in the partition step. Although this

works well with datasets where there is a finite, small number of possible partitions, in

datasets where there is no delineation, it is necessary to look at all partitions. This can be

a computationally expensive procedure. An improvement to the algorithm might lie in

finding some method that searches possible partitions to identify those that might yield

high measure dependent relationships.

Boolean Analyzer makes only one pass through the dataset since Booleanization

and the creation of the State Occurrence matrix can be done in one step. Subsequent

search is done by looking at the State Occurrence matrix and the State Linkage matrix.

Therefore, Boolean Analyzer is not bound by the size of the dataset, but by its

dimensionality. Most other algorithms of this type are bound by both the size of the

dataset and its dimensionality since they need to make several passes over the data. In

Boolean Analyzer there is a tradeoff between size and dimensionality. If the number of

variables is n, then Boolean Analyzer is most efficient when the number of records in the

dataset is larger than 2n .

In conclusion, Boolean Analyzer is an exponential algorithm. It gains efficiency

by pruning the search space by using domain knowledge to partition the variable set into

row variables and column variables. It can also find rule systems that can have a higher

dependency, support, and confidence than any single rule that is in the rule system. A

rule system may even be more confident than any of the semisimple rules that are

commonly generated by association rule/dependency rule algorithms.

 58

Chapter 6

Boolean Thresholds

 The next major focus of this thesis will be on the Booleanization step of the

algorithm. As was pointed out in Chapter 4, this is a very significant step in the

algorithm. It is this step that most directly affects the statistical significance and strength

of the rules generated by the algorithm. By using an expert to create the threshold set H

we implicitly input expert knowledge into the algorithm. This is very much desired, but

there are problems with using an expert.

1. It is well documented that experts do not always agree.

2. The domain knowledge we seek may already be implicit in the data.

3. Experts may be able to set thresholds for the world at large, which may not

accurately reflect the world of the data.

4. Given a dataset with high dimensionality, determining thresholds by hand can be

time consuming.

5. The system end user may not be an expert.

6. There may not be an expert for the domain that we are looking at.

7. Experts may be fuzzy on the what the exact Boolean boundary may be, making it

difficult to elicit Boolean thresholds from the expert.

In light of all these drawbacks, automated methods of Booleanization are a viable

alternative or an adjunct to Booleanization by an expert.

 There are many different ways of Booleanizing data. The focus will be on

determining the threshold set using the mean of the values of each data attribute, the

 59

median of these values, the mode, and by partitioning the values into two groups using

clustering techniques. Values above the threshold will take on a Boolean value of 1, and

below it a value of 0. The rules generated by automated methods will be compared to the

rules generated by Boolean Analyzer using an expert defined threshold set. An analysis

of the difference between rule measures will be done using standard statistical analysis.

6.1 Testing on Synthetic data

Once mean, median, mode and clustering were identified as possible good methods of

automated Boolean threshold determination mean, mean, and mode were looked at to see

how well they performed on a dataset where there was no expert, and the relationships

within the dataset were known. A synthetic dataset was created consisting of 152 records

and 6 variables. Values for variable1 ascending values of dates (mm-dd-yy). Variable2

were numeric and also increased over time. Variable6 values decreased over time.

Variables three, four, and five, were numeric and random. Partitioning was done

between variable one and the rest of the variables. (How do the variables change over

time?) The known dependency relationships can be expressed as follows:

 60

X1' : X2'

X1 : X2

X1' : X6

X1 : X6'

X1' : X2'X6

X1 : X2X6'

From the synthetic dataset a random sample of 20 records was withheld. Mean was used

to find Boolean thresholds in the remaining 132 record dataset. This was done so that

each trial would be done using a slightly different dataset with different valued

thresholds. This data was Booleanized and the fed into the Boolean Analyzer algorithm.

The 20 record sample was used to see if the generated rules would predict well over

"new" data. This was repeated 10 times. In 10 out of 10 trials the first six rules found by

the Boolean Analyzer algorithm were the six known relationships and the rules were able

to predict relationships in the test sample data. The same process was repeated using the

median for the Boolean thresholds. Again, in 10 out of 10 trials the first six rules found

by the Boolean Analyzer algorithm were the six known relationships and the rules were

able to predict relationships in the test sample data.. Mode failed in this dataset as an

automated method. Each record of variable1 contained a unique date value. Therefore

no frequency was able to be found. The conclusion reached is that in the absence of an

expert, mean and median Boolean thresholds can find known relationships. There are

problems with mode as an automated method.

 61

6.2 Oil Futures Data

Once it was determined how automated methods work in a dataset where there was no

expert, these methods were then used to compare the simple rules generated in a dataset

where there was an expert available. The data used for this project was real data obtained

from Hudson Capital Group2, a Wall Street futures firm. The data describes crude oil

prices, trading volume, and crude oil stockpiles. Data selection applied to this dataset,

resulted in a subset of the original data which was selected according to criteria defined

by the expert. Although the original data had entries for crude oil for several named

months, the data that was significant in relating stock volume to price were the front

crude oil future and the prompt/second month. According to the expert, the interest for

the front month future is greater than that for prompt/second month The exception was

for those times when the second month interest was greater than that of the first. In this

case the second month is in actuality the front month and the third is the prompt/second

month. Using this rule, the target data consisted of all front and prompt/second month

observations.

2 Permission granted for use of the company name Hudson Capital Group was granted by Mr. Todd Gross,
company president.

 62

Table 10 - Sample Crude Oil Data

 After data selection the next step was to clean the data. Although the data was in

an Excel spreadsheet, all date related data was not entered in standard Excel format. In

addition, the spreadsheet was not organized to facilitate its use with Boolean Analyzer.

Each week a report is issued documenting stock quantities of crude oil at various

locations throughout the country. The data on crude oil prices and volume traded for

each commodity is reported daily. Boolean Analyzer needs all attributes, with their

associated values, to be present in each observation. This necessitated associating the

correct report entry with the appropriate crude oil entry.

 The Boolean Analyzer algorithm itself needed to be updated. The algorithm

previously did not incorporate the support and confidence measures outlined in Chapters

2 and 3. Current versions of the algorithm were prototype versions and only able to

handle a small number of variables. The Boolean Analyzer program needed to be able to

address these deficiencies. In addition, current versions of the Boolean Analyzer

program do not do rule generation. The rule generation algorithm outlined in chapter 5

were incorporated as well.

Interest
Settlement

Price Volume
PADD 1 TOT
CRUDE INV

PADD 2 TOT
CRUDE INV

PADD 3 TOT
CRUDE INV

33093 12.38 14346 17283 70552 151514
29961 12.26 10029 17283 70552 151514
30225 11.99 12165 17283 70552 151514
33050 11.96 13188 17283 70552 151514
29223 11.19 10052 17589 71204 151391
31621 11.16 12340 17589 71204 151391
27327 11.22 13011 17589 71204 151391
33379 11.28 13458 17589 71204 151391
27993 10.77 12070 17589 71204 151391

 63

6.3 Methods for Finding Boolean Thresholds

The decision to use mean, median, mode and clustering for finding the threshold set

was based on the inclination to use methods that are easily calculated, and are fairly

standard and accepted means of partitioning data. Also, packages that do these are widely

available.

The idea behind automation was to try to partition the variables' values in a way that

most closely matched the way an expert might partition them. Mean had intuitive appeal.

Most people generalize by using an estimate of average value. In fact when the oil

futures expert was asked to define a threshold set, his verbalizations indicated that he was

thinking in terms of an average value. The disadvantage to using a mean for the

threshold set is that mean is sensitive to outliers. In statistics, one way around the effects

of outliers on the mean, is to consider them as errors and to disregard them. In data

mining this is sometimes not desirable. While looking for rare patterns in the data,

outliers may be the very information that leads to these patterns. Hence, the median

offered a solution to this problem. The median is an accepted method of determining an

average value, and is less sensitive to outliers. Mode offers a different intuitive appeal.

People tend to remember things that are repetitive. If a particular value repeats itself,

then it is this value that might be expressed by an expert when defining a threshold set.

Mean, median, and mode all operate under the assumption that data is normally

distributed. If the data is not normally distributed, and possibly multimodal, then

clustering algorithms can capture this data distribution.

6.4 Statistical Methods

 64

Boolean Analyzer attaches to each discovered rule a measure of dependency. This

measure imposes an order on the set of rules. We can use this order to compare the

measures of the rules generated by Boolean Analyzer using an expert defined threshold

set, and the rules generated by Boolean Analyzer using rules generated by automated

means. The measures associated with each rule are contiguous within the interval - (n/2)2

< 0 < (n/2)2 , where n is the number of observations in the database. We cannot make

any assumptions about the form of this contiguous distribution. Therefore the type of

statistic used should be non-parametric.

 65

Below is a sample of the top positively valued simple rules where expert thresholds were

used for Booleanization.

Table 11 - Rules and Rule Measures

In the above table each symbol stands for the following:

I - Open Interest high I' - Open Interest low

P - Price high P' - Price low

V - Volume high V' - Volume low

P1 - Padd 1 Inventory high P1' - Padd 1 Inventory low

P2 - Padd 2 Inventory high P2' - Padd 2 Inventory high

P3 - Padd 3 Inventory high P3' - Padd 3 Inventory high

For example the first rule, IPV : P1'P2'P3', can be interpreted as saying, "High Interest,

High Price, and High Volume has a direct dependency to Padd 1 Low Inventory, Padd 2

low Inventory and Padd3 Low Inventory.

IPV : P1'P2'P3' 614734
I'P'V' : P1P2P3' 460722
IP'V : P1'P2P3' 382098
IPV' : P1'P2'P3' 256496
I'PV' : P1P2'P3' 213114
I'P'V' : P1P2'P3' 202268
IP'V' : P1'P2P3' 146260
I'PV : P1'P2P3' 116230
IP'V : P1P2P3 108212
I'PV' : P1'P2'P3' 86874
IP'V : P1'P2P3 71904

 66

Two different non-parametric statistical tests were used, the Spearman Rank-Order

Correlation Coefficient and the Kendall Tau b Correlation Coefficient. The Spearman

Rank-Order Correlation Coefficient uses the magnitude of the differences between one

ranking to another to get a measure on the association between the two rankings. The

Kendall Rank-Order Correlation Coefficient uses the number of agreements and

disagreements in the ordering of the two variables' rankings to find a measure of

association between the two. These two correlation coefficients can quantify the

differences between the variables. Each of these tests enables us to have different

insights into the differences between each of the rankings.

 Since, theoretically, we can create an infinite set of rules from one dataset, which

subset of these rules should be included in the statistical analysis? Consider first rules

that are not simple or semisimple, and that there could be an inginite set of rules that fall

into this class. But due to the underlying principle that these rules are created by

partitioning the state occurrence matrix and subsequently applying Boolean reduction,

this set is finite. It was shown that these types of rules define a rule system of semisimple

rules. Therefore semisimple rules are the building blocks of these more complex rules.

In turn, rules that are semisimple but are not simple are equivalent to rule systems of

simple rules. Hence, the simple rules are the building blocks of the other types of rules.

In comparing the rules generated by Boolean Analyzer, we need only compare the

simple rules. There is also a statistical basis for limiting the analysis to this set. The

simple rules represent an independent set of rules

 67

whose measurements are not dependent on the measurement of other rules in this set.

The measures of more complex rules are dependent on the values of these simple rules.

The simple rules are the rules that are defined by the intersection of a row and column

of the state linkage matrix. Deciding on one or more partitions of the variable set creates

the state linkage matrix. The oil futures dataset had a natural partition between the

reported oil stock data and the crude oil price/volume data. It was not necessary to look

at all the simple rules since it is only the ones generated by this one partition that was

considered significant by the expert. The resulting dataset had 5,782 entries and 6

variables.

6.5 Correlation Results

Boolean thresholds elicited from the expert were applied to the target data resulting in a

Booleanized data set. The same was done for mean thresholds, median thresholds and

thresholds determined by mode. When the mode for open interest variable was found,

the mode value was zero. Since open interest shouldn't have a zero value, errors in the

data were suspected. This suspicion was confirmed with the domain expert. Hence,

mode is sensitive to errors in the data, making it less attractive for threshold automation

than methods using mean and median. In addition, when the value for each occurrence of

a variable is unique, such as date values, mode fails as an automated method. There were

four records having this erroneous data. These were deleted from the dataset, with the

resulting dataset having 5,878 records, and all further analyses were done on this data.

 In order to cluster the data, each value was transformed into its z- score. The

transformed data was clustered using the FASTCLUS procedure in the SAS statistical

 68

package. FASTCLUS uses a K-means algorithm to do clustering. Clusters

corresponding to high values in the original target data were assigned a value of one,

clusters with low values a zero.

 The Kendall Tau b and Spearman rank order correlation coefficients were

calculated, using the SAS CORR procedure on the simple rules generated by the above

methods of Booleanization. The results were as follows:

Table 13 - Results of Expert vs. Mean, Mode, and Clustering

Looking at the Spearman correlation coefficient we see a 72% and 70% correlation for

mean and median respectively. Although not very strong, there is a good correlation to

the Expert's rules. The values for the Kendall Tau b where not high enough to show even

good correlation. One possible explanation for these results could be attributed to a poor

Boolean threshold set by the expert for the variable associated with padd3 crude oil

stockpiles. For the other five variables the expert was able to give concrete Boolean

S p e a rm a n C o rr C o e ff ic ie n t

E x p e rt

M E A N 0 .7 1 8 3 2
p v a lu e m e a n 0 .0 0 0 1

M E D IA N 0 .7 0 3 3 6
p v a lu e m e d ia n 0 .0 0 0 1

M O D E 0 .6 6 9 3 7
p v a lu e m o d e 0 .0 0 0 1

C L U S T E R 0 .2 1 1 9 7
p v a lu e c lu s te r 0 .0 9 2 7

E x p e r t

M E A N 0 .5 2 9 4 8
p v a lu e m e a n 0 .0 0 0 1

M E D IA N 0 .5 0 8 5
p v a lu e m e d ia n 0 .0 0 0 1

M O D E 0 .4 8 7 5 2
p v a lu e m o d e 0 .0 0 0 1

C L U S T E R 0 .1 4 7 8 6
p v a lu e c lu s te r 0 .0 8 6

K e n d a l l T a u b

 69

thresholds. For padd3, the expert was not sure what an exact boundary should be. The

next step was to test to see if this fuzzy boundary affected the correlation coefficients

between the expert rules and the automated ones. The variable for padd3 was removed

from the dataset and the same analysis was repeated on the remaining five variables. The

results of the five variable analysis were as follows:

Table 14 - Results of 5 Variable Comparison of Expert vs. Mean, Median, Mode, and

Clustering

Results improved tremendously with the removal of this variable. Both correlation

coefficients showed high correlation between the expert and the automated methods of

mean and median, a lower correlation between the expert and mode, and a poor

correlation between the expert and the clustering technique. Results were encouraging,

but the question remained, did things get better because the problem was reduced to five

variables or was there really a significant correlation between the expert and these

automated methods. The variable for padd3 was reintroduced into the dataset. Since

E x p e r t

M E A N 0 .9 6 1 8 8
p v a lu e m e a n 0 .0 0 0 1

M E D IA N 0 .9 7 9 8 4
p v a lu e m e d ia n 0 .0 0 0 1

M O D E 0 .8 4 8 2 4
p v a lu e m o d e 0 .0 0 0 1

C L U S T E R 0 .3 7 9 4
p v a lu e c lu s te r 0 .0 3 2 2

S p e a r m a n C o r r e la t io n
C o e f f ic ie n t s

E x p e r t

M E A N 0 . 8 5 4 8 4
p v a lu e m e a n 0 . 0 0 0 1

M E D I A N 0 . 8 9 5 1 6
p v a lu e m e d ia n 0 . 0 0 0 1

M O D E 0 . 6 9 7 5 8
p v a lu e m o d e 0 . 0 0 0 1

C L U S T E R 0 . 2 6 2 1
p v a lu e c lu s t e r 0 . 0 3 5

K e n d a l l T a u b
C o r r e l a t i o n

 70

mean seemed to be good method of automation, the expert Boolean threshold for that

variable was replaced with the mean Boolean threshold. The analysis were repeated.

The same was done with replacement of the expert Boolean threshold with the median

Boolean threshold.

 71

The results were as follows:

Table 15 - Six Variable Results with Fuzzy Threshold Replaced

 The above correlation coefficients indicate that the previous high coefficients were not

due to the reduction in the number of variables. In fact, the substitution of a mean or

median Boolean boundary for a fuzzy boundary given by an expert can yield good

S p e a r m a n
C o rr e la t io n
C o e ff ic e n t

E x p e r t v a r ia b le
re p la c e d w ith

m e a n th re s h o ld

E x p e r t v a r ia b le
re p la c e d w ith

m e d ia n th re s h o ld

M E A N 0 .9 8 1 1 8 0 .9 7 2 7 6
p v a lu e m e a n 0 .0 0 0 1 0 .0 0 0 1

M E D IA N 0 .9 7 0 8 8 0 .9 5 8 6 1
p v a lu e m e d ia n 0 .0 0 0 1 0 .0 0 0 1

M O D E 0 .8 6 8 0 9 0 .8 6 0 1 2
 p v a lu e m o d e 0 .0 0 0 1 0 .0 0 0 1

C L U S T E R 0 .2 7 6 4 7 0 .3 0 8 6 5
p v a lu e c lu s te r 0 .0 2 7 0 .0 1 3 1

K en d a ll T au b
C o rre la tio n
C o effic ie n t

E xpe rt va ria b le
rep lace d w ith

m ean th re sh o ld

E xpe rt va riab le
re p la ced w ith

m ed ian th re sho ld

M E A N 0 .91369 0 .875
p va lue m e an 0 .0001 0 .0001

M E D IA N 0 .85417 0 .82738
p va lue m e d ia n 0 .0001 0 .0001

M O D E 0 .69444 0 .68155
p va lue m e d ia n 0 .0001 0 .0001

C LU S T E R 0 .19841 0 .22718
p va lue c luste r 0 .0205 0 .008

 72

results. Mean and Median look like good methods of automated Boolean threshold

determination, with mode not as strong a method, and clustering a poor one.

6.6 Conclusions

1. The rules generated using Boolean thresholds elicited from an expert correlate well

with the rules generated using automated methods of mean and median. The expert

rules correlate less significantly with rules found by Boolean thresholds using mode,

and poorly with those found using clustering.

2. Mean and median thresholds can be used in combination with expert defined

thresholds when an expert is fuzzy about a specific variable's threshold.

3. Mean and median thresholds yield excellent results in the absence of an expert.

4. Mode is not as good an automated method since

a) it is more sensitive to errors

b) it can't capture thresholds for unique data values such as date values

c) it doesn't correlate as well to an expert's knowledge as mean and median.

6.7 Future Research

1. Each method of finding rules produced a somewhat different rule set. Further

investigation can be done to see which method of Booleanization, expert, mean,

mode, or clustering, produces acceptable rules to the domain expert.

2. Mean and Mode seem to be acceptable automated Booleanization methods in the oil

futures domain, but would they hold in other domains? This question will be

 73

investigated using a dataset of clinical opthamology data provided by a clinical study

done by Dr. Irene Ludwig, Louisiana State University School of Medicine.

3. Boolean Analyzer works well when there are a small number of identifiable partitions

on the variable set. When there is no logical partitioning of the variable set, Boolean

Analyzer becomes computationally expensive. Here, research can center on finding

an algorithm that will identify partitions that can lead to high measure dependency

relationships.

4. Boolean Analyzer can not work with missing values. Rectifying this deficiency can

be another avenue of research.

5. The hill climb step of the Boolean Analyzer algorithm yields one complex

relationship that defines the highest measure system dependency relation. If we use a

genetic algorithm to investigate multiple starting points in this hill climb, and then

look at the complex rules generated at the penultimate step in the climb. This may

generate a set of complex rules that have higher measure than the set of semi-simple

rules.

 74

Appendix A - Source Code for Boolean Analyzer Program

//The following code will Booleanize an N row dataset according to given //boundaries.
// It will then find the dependency relationships in the Booleanized dataset

#include <iostream.h>
#include <math.h>
#include <stdlib.h>
#include <fstream.h>

#define N 5778 //# of rows in data file
#define M 5 //# of columns in data file (number of variables
#define RV 3
#define CV 2
#define R 8
#define C 4

#define MAXSTACK 32
#define MAXRULES 32

 int exp2(int);

 void generaterowtable (int tbl[R][RV],int r,int rv);
 void generatecoltable (int tbl[C][CV], int col, int cv);
 void nextrowbinval(int rowvl [RV], int, int);
 void nextcolbinval(int colvl [RV], int, int);
 void boolzrpt ();

int
main (int)
{

 float actmtrx [N] [M];// activity matrix,
 // data reduced to their binary mappings

 float SO [R] [C]; // State occurence matrix
 float SL [R] [C]; //State Linkage matrix
 unsigned long int r = 0, c = 0;
 int i, j, k,countr, countc, count = 0;
 float ri= 0, cj = 0, aij;

 75

 float SRTARRAY [MAXRULES];
 unsigned int rules[MAXRULES][2];

 int l,m,n,p,q,s;
 int rowmatch, colmatch;

 int rowtable [R][RV];
 int coltable [C][CV];

 int rowvar[RV];
 int colvar[CV];

 int rowvalue[RV];
 int colvalue[CV];
 float measure;

 //boolzrpt();
 fstream InStream("boolcl50.prn", ios::in);

 if (InStream.fail())
 {
 cerr << "File that failed to open was" << "boolxprt.txt"
 << "\n\n";
 };

 fstream OutStream("output.out", ios::out);

 if (OutStream.fail())
 {
 cerr << "File that failed to open was" << "output.out"
 << "\n\n";
 };

 //Input Boolean data
 for (i = 0;i < N;++i)
 for (j = 0;j < M; ++j)
 InStream >> actmtrx [i] [j];

 //print activity matrix
 for (i = 0; i < N; ++i)
 {
 for (j = 0; j < M; ++j)
 {
 cout<< actmtrx [i][j] << ' ';

 76

 OutStream << actmtrx [i][j] << ' ';
 }
 cout<<'\n';
 OutStream << '\n';
 }

 //Initialize SO and SL matrice
 for (i = 0; i < R; ++i)
 for (j = 0; j < C; ++j)
 SO[i][j] = 0;

 for (i = 0; i < R; ++i)
 for (j = 0; j < C; ++j)
 SL[i][j] = 0;

//Calculate SO martrix

 countr = RV;
 countc = M - countr;
 for(i = 0;i < N; ++i)
 {
 for (j = 0; j < M; ++j)
 {
 if (count < RV)
 {
 // r <<= 1;
 if (actmtrx[i][j] == 1)
 r = r + exp2(countr - 1);
 countr--;
 }
 else
 {
 // c <<= 1;
 if (actmtrx[i][j] == 1) c = c + exp2(countc -1) ;
 countc--;
 }

 ++count;
 }

 SO[r][c] = SO[r][c] + 1;
 r = 0;
 c = 0;
 count = 0;
 countr = RV;

 77

 countc = M - countr;
 }

 //Calculate SL matrix
 for (i = 0; i < R; ++i)
 {

 for (k = 0; k < C; ++k)
 ri += SO [i][k];

 for (j = 0; j < C; ++j)
 {
 aij = SO[i][j];

 for (k = 0;k < R; ++k)
 cj += SO[k][j];

 SL[i][j] = (aij * N) - (ri * cj);
 cj = 0;
 }
 ri = 0;

 }

//Print State Occurence Matix

 cout<<'\n'<<"State Occurence Matrix";
 cout <<'\n';
 OutStream << '\n' << "State Occurence Matrix" << '\n';

 for (i = 0; i < R; ++i)
 {
 for (j = 0; j < C; ++j)
 {
 cout<< SO [i][j] << ' ';
 OutStream << SO [i][j] << '\t';
 }
 cout<<'\n';
 OutStream << '\n';
 }

 //Print SL matrix

 cout <<'\n'<<"State Linkage Matrix"<<'\n';

 78

 OutStream <<'\n'<<"State Linkage Matrix"<<'\n';
 for (i = 0; i < R; ++i)
 {
 for (j = 0; j < C; ++j)
 {
 cout.setf(ios::left);
 cout.width(8);
 OutStream.setf(ios::left);
 OutStream.width(8);
 cout << SL [i][j];
 OutStream << SL [i][j];
 }
 cout<<'\n';
 OutStream << '\n';
 }

 cout<<'\n';
 OutStream << '\n';

 k = 0;
 for (i = 0; i < R; ++i)
 {
 for (j = 0; j < C; ++j)
 {
 rules [k] [0] = i;
 rules [k] [1] = j;
 SRTARRAY [k] = SL[i] [j];
 ++k;
 }

 }

 //generate truth table for pattern matching and for choosing variables
 generaterowtable (rowtable, R, RV);
 generatecoltable (coltable, C, CV);

 countr = 0;
 countc = 0;
 k = 0;
 l = 0;

 //find row half of relationship
 for (i = (R-1); i < R; ++i)

 79

 {
 while (k < RV)
 {
 if (rowtable[i][k] == 1)
 {
 rowvar[countr] = k + 1;
 ++countr;
 }

 ++k;
 }

 //find column half of relationship
 for (j = (C-1); j < C; ++j)
 {
 while (l < CV)
 {
 if (coltable[j][l] == 1)
 {
 colvar[countc] = l + 1;
 ++countc;
 }

 ++l;
 }

 //Now rowvar has numbers of which variables are in column
 //half of relationship. colvar has column variables.
 //Now assign values to these variables.

 //Find measures for all Boolean combinations of these variables

 //intitialize first Boolean value for row and column

 for (q = 0; q < (exp2(countr)); ++q)
 {
 nextrowbinval(rowvalue, q, countr);

 for (s = 0; s < (exp2(countc)); ++s)
 {
 nextcolbinval(colvalue, s, countc);
 measure = 0;

 80

 //print out relation name
 for (m = 0;m < countr; ++m)
 {
 OutStream << 'X' << rowvar[m];
 if (rowvalue[m] == 0) OutStream << '\'';
 }

 OutStream << " : ";

 for (m = 0;m < countc; ++m)
 {
 OutStream << 'X' << colvar[m]+RV;
 if (colvalue[m] == 0) OutStream << '\'';
 }

 OutStream << "\t\t";
 //find rows in SL that match row half of relation
 rowmatch = 1;
 colmatch = 1;
 for (m = 0; m < R; ++m)
 {
 for (p = 0; p < countr; ++p)

 if (rowvalue[p] != rowtable[m][rowvar[p]-1])
 rowmatch = 0;

//if we find a matching row, then find all columns that //
match

 //and add the SL entry to measure.
 if (rowmatch)
 {
 for (n = 0; n < C; ++n)
 {
 for (p = 0; p < countc; ++p)
 if (colvalue[p] !=

 coltable[n][colvar[p]-1])
 colmatch = 0;

if (colmatch) measure +=
 SL[m][n];

 colmatch = 1;
 }//endn
 }//endif
 rowmatch = 1;

 81

 }//endm
 OutStream << "\t\t"<< measure<<'\n';
 measure = 0;
 }//endr
 }//endq
 l = 0;
 countc = 0;
 } //end j loop
 k = 0;
 countr = 0;
 } // end i loop

 InStream.close();
 OutStream.close();
 return(0);

 }

 void
generaterowtable (int tbl[R][RV], int r, int rv)
{
 int i, value, num;

 unsigned c, displayMask = 1 << (rv - 1);

 value = 0;
 num = 0;
 for (i = 0;i < r; ++i)
 {
 for (c = 1; c <= rv; c++)
 {
 tbl[i][c-1] = (value & displayMask ? 1 : 0);
 value <<= 1;

 }
 ++num;
 value = num;
 }

 82

}

void
generatecoltable (int tbl[C][CV], int col, int cv)
{
 int i, value, num;

 unsigned c, displayMask = 1 << (cv - 1);

 value = 0;
 num = 0;
 for (i = 0;i < col; ++i)
 {
 for (c = 1; c <= cv; c++)
 {
 tbl[i][c-1] = (value & displayMask ? 1 : 0);
 value <<= 1;

 }
 ++num;
 value = num;
 }

}

void
nextrowbinval(int rowvl[RV], int rowbin, int count)
{
 unsigned displayMask = 1;
 int c, value;

 displayMask = 1;// << count;
 value = rowbin;

 for (c = (count-1); c >=0; c--)
 {
 rowvl[c] = (value & displayMask ? 1 : 0);
 value >>= 1;
 }

}

void
nextcolbinval(int colvl[RV], int colbin, int count)

 83

{
 unsigned displayMask = 1;
 int c, value;

 displayMask = 1; //<< count;
 value = colbin;

 for (c = (count - 1); c >= 0; c--)
 {
 colvl[c] = (value & displayMask ? 1 : 0);
 value >>= 1;
 }

}

 int exp2 (int x)

 {
 int i, result = 1;

 if (x == 0) return 1;
 else for (i = 1; i <= x; i++)
 result = result * 2;

 return result;

 }

 void boolzrpt ()
 {
 int i;

 float crude[M]; // holds one record of the crude oil data

 //boundaries for interest, settlement price, volume, padd1,
 // padd2, padd3, padd4, padd5, total crude
 float boundary [] = {66830,19.42,29808,15308, 72927};

 // open input and output files
 fstream Incrude("crud5no0.prn", ios::in);

 if (Incrude.fail())
 {

 84

 cerr << "File that failed to open was " << "crudrpt.prn"
 << "\n\n";
 exit(1);
 };

 fstream OutStream("x6160.txt", ios::out);

 if (OutStream.fail())
 {
 cerr << "File that failed to open was" << "crudbool.out"
 << "\n\n";
 };

 i = 1;
 Incrude >> crude[0];

 while (!Incrude.eof())
 {
 // if value is lower than boundary value is replaced by 0 else 1

 if (crude[0] < boundary[0])
 OutStream << '0' << '\t';
 else OutStream << '1' << '\t';

 while (!Incrude.eof() && (i < 5))
 {
 Incrude >> crude[i];
 if (crude[i] <= boundary[i])
 OutStream << '0' << '\t';
 else OutStream << '1' << '\t';
 ++i;
 }

 // Incrude >> crude[9];
 OutStream << endl;

 i = 1;

 Incrude >> crude[0];

 }

 85

 Incrude.close();
 OutStream.close();
 return;

 }

 86

Appendix B - SAS  code for finding Correlation Coefficients.

data thesis;
 infile 'c:\datathes\rl6.prn';
 input rulename $ 1-30
 expert
 mean
 mode
 median
 cluster;

proc print data = thesis;
 title 'Thesis';
 var rulename
 expert
 mean
 mode
 median
 cluster;

proc corr data = thesis spearman kendall;
 var expert;

 with mean
 mode
 median
 cluster;
run;

 87

Appendix C - Synthetic Dataset

10/1/93,28,3,9,71,99
10/2/93,140,80,6,90,98
10/3/93,156,87,4,12,98
10/4/93,187,95,7,69,97
10/5/93,226,40,0,16,97
10/6/93,288,16,5,40,96
10/7/93,309,10,2,64,96
10/8/93,449,84,4,18,95
10/9/93,453,89,3,32,94
10/10/93,481,77,2,44,92
10/11/93,535,23,8,61,91
10/12/93,609,37,3,86,90
10/13/93,658,58,9,51,90
10/14/93,739,33,8,25,87
10/15/93,776,25,1,34,86
10/16/93,807,0,7,84,83
10/17/93,896,27,7,40,83
10/18/93,1030,81,7,43,82
10/19/93,1044,7,4,33,82
10/20/93,1063,71,3,79,80
10/21/93,1073,15,5,95,80
10/22/93,1154,24,9,11,79
10/23/93,1499,98,6,59,79
10/24/93,1503,90,5,24,78
10/25/93,1556,86,0,43,78
10/26/93,1617,75,2,37,77
10/27/93,1628,39,5,27,76
10/28/93,1860,58,2,7,76
10/29/93,1919,89,1,65,75
10/30/93,2026,90,2,94,75
10/31/93,2060,84,4,49,75
11/1/93,2167,76,8,38,75
11/2/93,2177,19,3,41,75
11/3/93,2232,15,6,9,75
11/4/93,2237,20,6,50,74
11/5/93,2277,18,9,47,72
11/6/93,2352,0,4,28,71
11/7/93,2438,75,8,82,71
11/8/93,2439,17,1,1,70
11/9/93,2546,15,3,18,70
11/10/93,2566,97,8,58,70
11/11/93,2572,72,1,25,69
11/12/93,2637,2,8,78,68
11/13/93,2697,79,3,45,67
11/14/93,2729,55,8,56,67
11/15/93,2782,20,2,36,65
11/16/93,2844,57,3,52,64
11/17/93,2896,42,5,5,64
11/18/93,2957,54,2,96,62
11/19/93,3009,93,9,83,62
11/20/93,3019,40,8,98,62
11/21/93,3024,25,1,69,61
11/22/93,3297,1,3,69,59
11/23/93,3316,11,1,29,58

 88

11/24/93,3477,39,5,31,58
11/25/93,3534,29,8,30,56
11/26/93,3565,37,4,84,54
11/27/93,3634,40,7,65,54
11/28/93,3649,40,9,64,54
11/29/93,3735,51,2,58,54
11/30/93,3958,74,4,90,54
12/1/93,3989,28,6,89,53
12/2/93,4018,28,3,1,53
12/3/93,4019,29,9,76,53
12/4/93,4100,58,6,26,53
12/5/93,4229,50,7,85,52
12/6/93,4275,9,5,41,50
12/7/93,4284,7,4,69,50
12/8/93,4438,49,4,94,48
12/9/93,4542,98,5,53,48
12/10/93,4596,61,0,18,48
12/11/93,4635,28,0,15,47
12/12/93,4687,42,5,55,46
12/13/93,4780,78,0,40,46
12/14/93,4799,5,3,60,46
12/15/93,4898,51,5,32,45
12/16/93,4921,90,7,57,44
12/17/93,4943,43,7,16,43
12/18/93,4952,5,2,75,43
12/19/93,4970,95,3,68,43
12/20/93,5033,79,0,79,43
12/21/93,5060,48,2,60,41
12/22/93,5137,90,9,65,41
12/23/93,5172,1,6,96,41
12/24/93,5180,0,9,7,41
12/25/93,5248,29,5,80,41
12/26/93,5330,4,0,56,40
12/27/93,5382,31,4,51,40
12/28/93,5420,73,4,32,40
12/29/93,5429,7,4,57,39
12/30/93,5476,76,5,65,39
12/31/93,5575,80,4,79,38
1/1/94,5610,72,6,73,37
1/2/94,5751,19,7,6,37
1/3/94,5795,24,9,81,37
1/4/94,5886,21,1,23,37
1/5/94,5891,92,2,25,36
1/6/94,5897,71,6,77,35
1/7/94,5960,75,3,82,34
1/8/94,6139,71,8,22,34
1/9/94,6226,35,5,35,34
1/10/94,6317,20,5,62,33
1/11/94,6331,13,0,63,33
1/12/94,6343,83,6,42,32
1/13/94,6345,18,4,97,32
1/14/94,6459,76,3,48,32
1/15/94,6570,54,6,3,29
1/16/94,6572,64,8,34,29
1/17/94,6724,11,4,77,29
1/18/94,6761,35,4,74,28
1/19/94,6779,43,7,50,28

 89

1/20/94,6840,17,2,8,27
1/21/94,6929,97,2,61,27
1/22/94,6951,30,8,31,27
1/23/94,6952,79,1,30,27
1/24/94,6961,7,4,45,26
1/25/94,7055,59,0,31,22
1/26/94,7127,13,3,76,21
1/27/94,7344,62,9,82,21
1/28/94,7460,55,6,19,20
1/29/94,7463,90,3,60,20
1/30/94,7560,59,7,71,19
1/31/94,7844,68,7,25,18
2/1/94,7852,54,5,56,17
2/2/94,7901,28,4,35,17
2/3/94,7931,97,5,58,16
2/4/94,8144,46,0,37,16
2/5/94,8146,13,6,15,15
2/6/94,8274,19,3,9,15
2/7/94,8298,61,7,43,14
2/8/94,8472,42,3,70,13
2/9/94,8626,21,0,88,13
2/10/94,8714,4,4,73,12
2/11/94,8725,75,8,20,12
2/12/94,8866,46,8,82,11
2/13/94,9057,41,4,34,11
2/14/94,9109,24,8,54,10
2/15/94,9137,53,6,8,10
2/16/94,9161,71,2,5,9
2/17/94,9234,27,9,32,9
2/18/94,9276,64,3,36,9
2/19/94,9278,32,2,21,8
2/20/94,9287,42,6,24,8
2/21/94,9385,68,5,60,8
2/22/94,9449,7,0,15,8
2/23/94,9495,24,3,58,6
2/24/94,9592,28,8,89,6
2/25/94,9604,52,3,0,5
2/26/94,9798,25,1,64,5
2/27/94,9853,98,3,24,5
2/28/94,9937,87,1,56,4
3/1/94,9967,60,6,69,3

 90

Bibliography
Adriaans, P. and D. Zantinge, 1996. Data Mining, Addison Wesley Longman Limited

Agrawal, R., H. Mannila, S. Ramakrishnan, H. Toivonen, and I. Verkamo, 1996 Fast
Discovery of Association Rules. In Advances In Knowledge Discovery and Data Mining.
AAAI/MIT Press, Cambridge Mass

Agrawal, R., T. Imielinsk, and A. Swami, 1993. Mining Association Rules between Sets
of Items in Large Databases. Proceedings of the ACM SIGMOD International
Conference on the Management of Data, 207-216

Biggs, N. L. 1989. Discrete Mathematics, Oxford University Press

Brachman, R. J., and T. Anand, 1996. The Process of Knowledge Discovery in
Databases. In Advances In Knowledge Discovery and Data Mining. AAAI/MIT Press,
Cambridge Mass.

Brachman, R. J., T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro, E. Simoudis, 1994
Mining Business Databases. Communications of the ACM 39(11) : 42-48.

Buntine, W. 1996. Graphical Models for Discovering Knowledge. In Advances In
Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge Mass.

Burl, M. C., L. Asker, P. Smyth, U. M. Fayyad, P. Perona, L. Crumpler, and J. Aubele
1998, Learning to Recognize Volcanoes on Venus. Machine Learning, 30(2/3):165-192.

Cheeseman, P., and J. Stutz, 1996. Bayesian Classification (AutoClass); Theory and
Results. In Advances In Knowledge Discovery and Data Mining. AAAI/MIT Press,
Cambridge Mass

Cody, R. P., and J. K. Smith 1997, Applied Statistics and the SAS Programming
Language, Prentice Hall

Cox, K. C., S. G. Eick, G. J. Wills, and R. J. Brachman, 1997. Visual Data Mining:
Recognizing Telephone Calling Fraud. Data mining and Knowledge Discovery. 1(2):225-
231.

Domanski, B., 1996. Clustering Still the Right Technique for Studying Workloads, ICCM
Capacity Management Review, 24(4) : 1-5.

Domanski, B., 1996. Discovering the Relationships Between Metrics. The Proceedings of
the 1996 Computer Measurement Group. December 1996, San Diego California, 309 �
313.

Dubois, D. And H. Prade, 1980. Fuzzy Sets and Systems Theory and Applications,
Academic Press, Inc..

 91

Dzeroski, S., 1996. Inductive Logic Programming and Knowledge Discovery in
Databases. In Advances In Knowledge Discovery and Data Mining. AAAI/MIT Press,
Cambridge Mass.

Elder, J.F. IV, and D. Pregibon, 1996. Statistical Perspective on Knowledge Discovery in
Databases, In Advances In Knowledge Discovery and Data Mining. AAAI/MIT Press,
Cambridge Mass.

Fayyad, U. M., D. Haussler, and P. Stolorz, 1994. Mining Scientific Data.
Communications of the ACM 39(11) : 27-34.

Fayyad, U. M., G. Piaetsky-Shapiro, and P. Smyth, 1994. The KDD Process for
Extracting Useful Knowledge form Volumes of Data. Communications of the ACM
39(11):27-34.

Fayyad, U. M., G. Piaetsky-Shapiro, and P. Smyth, 1996. From Data Mining to
Knowledge Discovery in Databases. AI Magazine, 17(3):37 � 54.

Fayyad, U. M., G. Piaetsky-Shapiro, and P. Smyth, 1996. From Data Mining to
Knowledge Discovery: An Overview. In Advances In Knowledge Discovery and Data
Mining. AAAI/MIT Press, Cambridge Mass.

Fayyad, U. M., S. G. Djorgovski, and N. Weir, 1996. Automating the Analysis and
Cataloging of Sky Surveys. In Advances In Knowledge Discovery and Data Mining.
AAAI/MIT Press, Cambridge Mass.

Freund, J. E., and G. A. Simon, 1997. Modern Elementary Statistics Prentice Hall Inc

Glymour, D. M.; Pregibon, D.; Smyth P.; Statistical Inference and Data Mining.
Communications of the ACM 39(11):27-34.

Inmon, W.H., 1994. The Data Warehouse and Data Mining. Communications of the
ACM 39(11):49-50.

Klir, G., and B. Yuan 1995. Fuzzy Sets and Fuzzy Logic Prentice Hall PTR

Klir, G, U. H. St. Clair, and B. Yuan, 1997. Fuzzy Set Theory, Foundations and
Applications, Prentice Hall PTR

Langley, P. 1996. Elements of Machine Learning, Morgan Kaufman Publishers Inc.

Matheus, C. J., G. Piatsky-Shapiro, and D. McNeil, 1996. Selecting and Reporting What
is Intersting:The KEFIR Applications to Healthcare Data. In Advances In Knowledge
Discovery and Data Mining. AAAI/MIT Press, Cambridge Mass.

 92

Mitchell, T. 1997. Machine Learning, McGraw Hill Publishers Inc.

Noether, G. E, 1967. Elements of Nonparametric Statistics John Wiley & Sons Inc.

Orchard, Robert A., 1975. On the Determination of Relationships Between Computer
System State Variables. Bell Laboratories Technical Memorandumi, January 15, 1975

Rosen, K. H. 1995. Discrete Mathematics and Its Applications, McGraw-Hill, Inc.

SAS Institute Inc, 1989. SAS/STAT User's Guide, Version 6, Fourth Edition Volumes 1
and 2, SAS Institute Inc.

Schlotzhauer, S. D., and R. C. Litell 1997. SAS System for Elementary Statistical
Analysis, SAS Institute Inc.

Siegel, S., and J. N. Castellan, 1988. Nonparametric Statistics For the Behavioral
Sciences, McGraw Hill Inc.

Silverstein, C., Sergey Brin, and Rajeev Motwani, 1998. Beyond Market Baskets:
Generalizing Association Rules to Dependence Rules. Data Mining and Knowledge
Discovery, 2(1):39-68.

Weiss, S. M., and N. Indurkhya ,1998. Predictive Data Mining A Practical Guide,
Morgan Kaufman Publishers Inc.

Yule, G. U., and M.G. Kendall, 1968. An Introduction to the Theory of Statistics, Hafner
Publishing Co.

Internet Sites Used in the Preparation of this Thesis

http://www.ics.uci.edu/AI/ML/Machine-Learning.html
 UCI Machine Learning, University of California Irvine

http://www.kdnuggets.com/index.html
 KDNuggets� Directory: Data Mining and Knowledge Discovery Resources

