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Abstract

A new, binary-based technique is presented for finding

dependency/association rules called the Boolean Analyzer 

(BA). With initial guidance from a domain user or domain 

expert, BA is given one or more metrics to partition the entire 

data set.  This leads to analyzing the implicit domain 

knowledge and creating weighted rules in the form of boolean 

expressions. To augment the analysis of the rules produced, 

we can additionally apply a probabilistic interestingness 

measure (PIM) to order the generated rules based on event 

dependency, where events are combinations of primed and 

unprimed variables. 

Following our discussion of the basic BA algorithm, 

our paper will present a case study on clinical head trauma 

data. BA able to find rules, where the most significant rules 

were those that had a high PIM. 

We believe that BA has broad applicability in the 

medical domain, and hope that our presentation here can 

stimulate other creative applications of the technique.

Keywords: association rules, dependency rules, 
interestingness, intelligent data analysis, head trauma

Introduction

Knowledge discovery in databases had been defined as, " The 
non-trivial process of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data.” [5] 
One method for identifying these patterns is through 
association rule algorithms.[1][2]  Association rule algorithms 
find rules that show the associations between  a dataset's 
variables. 

Given a set of items  I , an association rule is an 
implication X ⇒ Y where X and Y are subsets of  I and  X � Y 

= I .[2]  Interesting association rules are identified using two 
metrics, support and confidence.  Support is a measure of a 
rule's significance with respect to the database.  It is the 
number of times X ∪ Y  occurs with respect to the number of 
observations in the  database.  Confidence is a measure of the 
rule's strength.  Confidence denotes the number of times X 

occurs with respect to the occurrence of  X ∪ Y .  Agrawal et. 
al. [1] [2] have defined interesting association rules as having 
support above a minimum, minsup, and  confidence above a 
minimum minconf. Note, the Boolean operation used to 
connect attributes is conjunction.  Attributes in the 
implication are only allowed a value of one, hence only 
inclusion of variables is considered, not exclusion. 

Silverstein et al argue [12] that the 
support/confidence measured association rules that Agrawal 
et al described could not discover rules that described 
negative dependencies.  For example, these algorithms would 
not discover rules such as “People who buy diapers do not 

buy prune juice."  Therefore association rules were not 
adequate for domains that need to mine these types of rules.  
Silverstein et al differentiate between variable dependency 
and event dependency.  A dataset will have a set of variables 
or attributes.  An event is an instantiation of these variables.  
Each variable can have a value of zero or one.  A value of 
zero indicates the absence of the variable, and a value of one 
indicates its presence in the event.  This algorithm tests for 
dependency between variables, and then looks at 
instantiations of the events that are defined by the variables to 
see which events define strong rules.  For example, given that 
I1 and I2 are two variables from the set of attributes I  = I1, I2, 
... Im, then the events associated with these two variables are I1

I2,   I1I2’,   I1’I2,   I1’I2’ .  
Dependency rules were defined as an implication, X

⇒ Y where X and Y are subsets of I, the attributes of set X are 
dependent to the attributes of set Y, and X � Y = I . 
Instantiations of X and Y, such that any attribute Ix ∈ X and 



any attribute Iy ∈ Y can have values of one or zero, denoting 
presence or absence in the observation. 

Dependency rules better describe relationships 
between variables in the medical domain than association 
rules.  Most times physicians are interested in not only 
positive associations, i.e. high LDL cholesterol  = yes ⇒ risk 
of heart disease = yes., but combinations of positive and 
negative variable associations, i.e.   high HDL cholesterol  = 
yes ⇒ risk of heart disease = no.  In addition to finding these 
dependency rules, physicians are interested in which rules are 
more or less significant.  

In this paper we discuss an algorithm, Boolean 

Analyzer (BA), first defined by Orchard[8]  and later 
extended by Domanski[4] and further by Imberman[6].  In 
addition to finding dependency rules of the type defined 
above, BA uses a probabilistic interestingness measure (PIM) 
to order the rule set based on event dependency.  The 
algorithm has successfully been implemented in the domain 
of Computer Performance Evaluation.  In this paper we 
discuss the algorithm and results from the analysis of a 
clinical head trauma study.  

Our approach encodes the original dataset into a 
matrix format that is at most as large as the original dataset, 
but usually much smaller.  In addition, we use variable 
partitioning to implicitly capture domain knowledge. By 
doing this we are able to essentially "query" the dataset for 
specific rule sets.  Variable partitioning is demonstrated to 
prune the search space in skewed data. In addition, the matrix 
organization allows us to find disjunctive rules as well. 

This paper is organized as follows.  Section 2 
describes the algorithm.  Section 3 presents results on a 
clinical head trauma study where we have successfully used 
this algorithm to find interesting and meaningful patterns.  
We discuss the algorithm and results in section 4.  Section 5 
follows with our conclusions and directions for future 
research.

2.   Boolean Analyzer Algorithm

Boolean Analyzer takes boolean data, and then calculates a 
probabilistic dependency measure (PIM) indicating the 

strength of the events in a dependency relationship.  Positive 
and negative values of this measure indicate if the 
relationship is direct or indirect, respectively.  We summarize 
the algorithm as follows:
1. Create the State Occurrence Matrix from the dataset.
2. Derive the State Linkage Matrix from the State 

Occurrence matrix 
3. For the variable partition defined by the State Linkage 

Matrix, generate all dependency rules that have at least 
minimum support, minimum confidence and minimum 
PIM.

2.1   The State Occurrence Matrix

Boolean Analyzer views each row of data as an observation 
in a boolean activity matrix. Each 0/1 vector represents a
single entry in this matrix as can be seen in Figure 1. 

Figure 1 - Boolean Activity Matrix

We partition the variables into two sets X and Y where X ∩
Y is ∅ and X ∪ Y is the set of all variables in the dataset.  
From this we calculate a State Occurrence Matrix where each 
entry is the support of X ⇒ Y, where X is a set of row 
variables, and Y is a set of column variables. An example of a 
State Occurrence Matrix for a six variable, 100 observation 
dataset is shown in Table 1.  Primed variables indicate a 
negative dependency, unprimed variables a positive one.  

X1 X2 X3 X4 X5 X6

observation 1 0 1 1 1 0 1
observation 2 1 0 1 1 1 1
observation 3 1 1 1 0 1 0

• •
• •
• •

X4X5X6 X4X5X6’ X4X5 ‘X6 X4X5 ‘X6’ X4 ’X5X6 X4’X5X6’ X4’X5’X6 X4’X5’X6’

X1X2X3 0 1 0 0 4 2 1 2

X1X2X3’ 2 0 1 0 3 0 2 2

X1X2 ‘X3 1 0 0 1 5 1 0 2

X1X2 ‘X3’ 3 0 0 0 3 5 2 2

X1 ‘X2X3 1 0 1 1 3 1 2 1

X1 ‘X2X3’ 0 2 0 1 0 3 5 4

X1 ‘X2 ‘X3 0 0 0 1 5 3 4 2

X1‘X2 ‘X3’ 0 1 2 1 0 5 4 2

Table I. - State Occurrence Matrix



Using the State Occurrence Matrix, we can observe 
relationships between the variables. Assume “:” stands for 
“related to”.  If we wanted to view the relationship X1 : X4, 
we look at how many times X1 and X4 are both high, X1 is 
high when X4 is low, X1 is low when X4 is high, and both X1

and X4 are low.  Using the State Occurrence Matrix above, 
we can form the following contingency table:
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X1' 44
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State Occurrence Matrix.  

Y Y’

X a b
X’ c d

Then we have:

(p(Y)p(X))-(1
p(X)p(Y)

=

d

b

c

a
= (2)
9
11
es in the shaded area of the State 
s us the upper left hand entry in the 

X1 and X4 are both high”.  Similarly, 
 3 values in the contingency table by 
ing quadrants in the State Occurrence 

also form contingency tables for more 
ch as X1X3 : X4X6

bilistic Interestingness Measure 

iven a 2 x 2 contingency table as 
 X and X’ stand for a group of rows 
espectively, and Y and Y’ stand for a 
nd their complement respectively.  
e independent.  

of event X be p(X). Therefore the 
ility of X' is 1 - p(X).
of event Y be p(Y).  Therefore the 
ility of Y' is 1 - p(Y).

pendent, then the number of times X 
 with respect to Y is:
 p(X)p(Y).  We also have:
Y') = p(X) (1- p(Y))
Y) = (1 - p(X)) p(Y)
') = (1- p(X)) (1 - p(Y))
e in a contingency table similar to the 
ssed previously we get:

Y'
) p(X) (1- p(Y))
(Y) (1- p(X)) (1 - p(Y))

 ratio of the number of times X occurs 
he number of times X’ occurs with 
to the ratio of the number of times X 
Y’ to the number of times X’ occurs 

Therefore, when a, b, c and d are independent we find:    

0 = ad – bc        (3)

Define events that are not independent as being dependent.  
Then using the above equation we define the probabilistic 
interestingness measure (PIM) has a value m where

m = ad – bc              (4)

The PIM is a measure on the type and extent of the 
dependency of the event X to Y.    Large negative values show 
that X has a strong inverse dependency relationship to Y.  
Large positive values indicate a strong direct dependency 
relationship.  Values close to or equal to zero indicate that the 
variables are independent and not related.  For example, the 
measures of  X1 : X4 is m =(9)(44) - (11) (36) =  0 (from the 
contingency table in section 2.1), and X1X3 : X4X6 is           
m = -120.

2.3 The State Linkage Matrix

Generalizing from the State Occurrence matrix, the 
relationship matrix defined by a single row i and a single 
column j would be:

column j ( column j )’
row i aij ri - aij

( row i )’ cj - aij N - ri - cj + aij

where:

• aij= entry at row I, column j of the SO matrix
• N =  total sample size of the activity matrix (the 

dataset)
• ri = sum of the entries in row i of the SO matrix
• cj = sum of the entries in column j of the SO matrix

)1(
p(Y))-(1p(X))-1

p(Y))-(1p(X)



Taking the PIM and combining term

mij =  aij N  - ri cj

We can use the above PIM to derive
state linkage matrix whose entries a
dependency relationship of a single 
We show this in Table II.

From the state linkage m
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Table III - PIM values

PIM(X1X2X3 : X5) =  -70 + 60 + 1
PIM(X1X2X3’ : X5) = 130 - 40 + 7
PIM(X1X2’X3 : X5) =  30 - 40 + 27
PIM(X1X2’X3’ : X5) = 195 - 60 - 4
PIM(X1’X2X3 : X5) = 30 - 40 +70 
PIM(X1’X2X3’ : X5) = -105 + 140 
PIM(X1’X2’X3 : X5)  = -105 - 60 +
PIM(X1’X2’X3’ : X5) =  -105 + 40 

X4X5X6 X4X5X6’ X4X5 ‘X6 X4X5 
'
X6’ X4 ’X5X6 X4’X5X6’ X4’X5’X6 X4’X5’X6’

X1X2X3 - 70 60 - 40 - 50 170 0 - 100 30
X1X2X3’ 130 - 40 60 - 50 70 - 200 0 30
X1X2 ‘X3 30 - 40 - 40 50 270 - 100 - 200 30

X1X2 ‘X3’ 195 - 60 -60 - 75 - 45 200 -100 - 55
X1 ‘X2X3 30 - 40 60 50 70 - 100 0 - 70
X1 ‘X2X3’ - 105 140 - 60 25 - 345 0 200 145

X1 ‘X2 ‘X3 -105 -60 - 60 25 155 0 100 - 55
X1‘X2 ‘X3’ -105 40 140 25 - 345 200 100 - 5
Table II - State Linkage Matrix
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If we combine with disjunction the relationships that 
have positive PIMs in the Table III, we form a composite 
state X1X2X3 v X1X2’X3 v X1X2’X3’ with a PIM of 610.  The 
PIM for this composite state is found by summing the 
measures of each component dependency relationship, 

PIM(X1X2X3 : X5) + PIM(X1X2’X3 : X5)  + 
PIM(X1X2’X3’ : X5) = 160 + 160 + 290 = 610    (5)

X1X2X3 v X1X2’X3 v X1X2’X3’ is equivalent to  (X1 (X2’ v 
X3)).  Therefore, the PIM of the more complex dependency 
relationship (X1 (X2’ v X3)) : X5 is 610.  Taking a look at the 
values for this relationship from the State Occurrence matrix 
we get:

X5 X5’

X1 (X2’ v X3) 25 10
( X1 (X2’ v X3) )’ 29 36

It is more complicated to derive this contingency table from 
the State Occurrence matrix. The State Linkage matrix gives 
a more direct way for finding complex relationships.   Hence, 
by combining terms, and summing their PIMs, we can find 
disjunctive relationships as well as conjunctive ones.  Often 
disjunctive relationships are interesting and useful because 
they can express relationships more succinctly.  We have 
used this property to formulate a hill climbing phase that 
finds a disjunctive rule for the partition, that has a higher PIM 
than the conjunctive rules in the partition.  Details can be 
found both in Domanski[4] and Imberman[6].

2.6 Rule Generation

We see that the PIM of a relationship is bi-directional 
because the PIM of X : Y is equal to the PIM of Y : X.  We 
modify Silverstein et al's [12] definition of dependency rules 
to be the probabilistic implication X  ⇒ Y  where X is some 
subset of row or column attributes and if X is a proper subset 
of row attributes then Y is a proper subset of column 
attributes.  Also, if X is a proper subset of column attributes 
then Y is a proper subset of row attributes.  

70 + 0 = 160
0 – 200 = -40
0 - 100 = 160
5 + 200 = 290
- 100 = -40
- 345 + 0 = -310
 155 + 0 = -10
- 345 + 200 = -210
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criteria were 100% sensitive, i.e. there were no positive CT 
missed.  The results are summarized in Table IV.

In addition to the seven criteria, the dataset included 
variables for sex (male/female), result (indicating a positive 
or negative CT) and for a history of blood coagulation 
problems.  Some records had missing values for sex.  Since 
BA cannot handle missing values we removed these records 
from consideration.  In addition, the number of positive CTs 
for blood coagulation problems (only one record) was not 
significant enough to be used in the analysis. Therefore the 
variable for blood coagulation problems was removed from 
consideration.  The resulting dataset resulted in 1,339 records 
representing that number of patients.  

BA was run on the cleaned dataset using a partition 
of result vs. sex, vomiting, age over 60, drug or alcohol 
intoxication, deficiency in short term memory (confusion), 
trauma above clavicles (trauma), and post-traumatic seizure 
(PTS).  The generated rules were ordered by their PIMs.  
Rules that showed dependencies for a positive CT were 
examined.  The highest PIM rule showed a dependency with 
positive drug or alcohol intoxication and negative confusion.   
Looking at the data, all but one patient having a positive drug 
or alcohol intoxication and a negative confusion value had 
positive CT results.  This showed that the PIM was a good 
measure for finding significant dependencies.  However, the 
goal of this study was to find criteria that had 100% 
sensitivity for a positive CT result.  Further investigation of 
the top ten rules showed that positive drug or alcohol 
intoxication and negative confusion were also associated with 
age below 60, no vomiting, and being male.   At this point we 
reduced the original seven criteria to five.  The new criteria 
was 100% sensitive for a positive CT.  Unfortunately, this 
criteria did not reduce unnecessary CT.  



Positive Result  ⇒ Positive Alcohol/Drug Negative 
Confusion 

Positive Result  ⇒ Positive Alcohol/Drug 
Positive Result  ⇒ Positive Alcohol/Drug Negative 

Age60 Negative Confusion 
Positive Result  ⇒ Positive Alcohol/Drug            

Negative Age60 
Positive Result  ⇒ Positive Sex Positive Alcohol/Drug 

Negative Confusion 
Positive Result  ⇒ Positive Sex Positive Alcohol/Drug 
Positive Result  ⇒ Negative Nausea/Vomit Positive 

Alcohol/Drug  Negative Confusion 
Positive Result  ⇒ Negative Nausea/Vomit        

Positive Alcohol/Drug 
Positive Result  ⇒ Negative PTS Positive Alcohol/Drug 

Negative Age60 Negative Confusion 
Positive Result  ⇒ Negative PTS Positive Alcohol/Drug  

Negative Age60 

Table V - Top Ten Rules For Positive Result

We looked at rules with dependencies for negative 
CT and found dependencies with low headache, low post-
traumatic seizure, and low trauma.  Combining these 
dependencies and the ones found with positive CT we 
deduced a disjunctive set of five criteria that included positive 
drug or alcohol intoxication, male sex, positive headache, 
positive post-traumatic seizures, and positive trauma.  This 
criteria were 100% sensitive for CT and reduced unnecessary 
CT by 11% 

In order to compare BA to Haydel, we needed to 
recalculate Haydel's performance on the cleaned data.  
Haydel's seven criteria, in addition to classifying all positive 
CT, was able to reduce unnecessary CT by 28%.   BA's 
performance for lowering unnecessary CT was not as 
impressive as Haydel's. Notwithstanding, estimates indicate 
that even a 10% reduction in CT scans can result in savings of 
millions of health care dollars [9].  

Since the size of the dataset was not very large, and 
contained a relatively low number of positive CT (93 out of 
1429 in the original dataset), there was a good chance for 
overfit. This meant these sets of criteria might not perform 
well on unseen data.  A valid method for comparing BA's five 
criteria to Haydel's seven was to analyze them using  a 
discriminant function derived from discriminant analysis of 
the data.  This type of analysis takes into account the problem 
of overfit.  Sensitivity and specificity values based on a 
discriminant function, statistically, provide a realistic and 
practical comparison between criteria of this type.  
Discriminant analysis is a multivariate statistical method for 
classifying or separating distinct sets of observations. The 
goal is to find a set of multipliers or weights that, when 
multiplied by the values of the variables in an observation, 
result in a discriminant function that enables the calculation 

of a discriminant score.  This score can then be used to 
determine whether an observation lies in one group or 
another. The groups to be discriminated between here are the 
need for a head CT or not, as indicated by the positive head 
CT.  For a conservative estimate of the performance of the 
discriminant function, we report the sensitivities and 
specificities based on classification of a 25% hold out data 
subset, or test data.  The test data was randomly chosen from 
the cleaned data set and not used in discriminant function 
creation. These estimates are more likely to describe how a 
rule would perform if it were applied to other datasets not 
used in the computation of the discriminant function.  

A discriminant function was derived for the seven 
Haydel criteria (the 25% random test data, as described 
above, was used for all evaluations that follow).   The results 
for the seven criteria were, sensitivity= 42%, specificity= 
79%.  Specificity measures are defined as the proportion of 
true negatives = (number of true negatives) / (number of true 
negatives + number of false positives). Whereas sensitivity 
measures are defined as the proportion of true positives = 
(number of true positives / (number of true positives + 
number of false negatives). The results of the same analysis 
on the criteria identified by BA was sensitivity= 79%, 
specificity= 58%.  Specificity and sensitivity results from the 
discriminant function are summarized in Table IV. 

Besides the chi-square partitioning used by Haydel, 
and BA's methodology, another statistical method that could 
identify criteria that would be less likely to overfit is stepwise 
discriminant analysis.  This method is useful in selecting 
variables that may be effective in creating discriminant 
functions for distinguishing between classes of observations. 
It works by choosing variables that maximize the squared 
partial correlation of each variable and the class variable 
(positive CT), controlling for the effects of the variables 
already selected for inclusion in the model. We applied a 
stepwise discriminant analysis on the entire dataset. This 
method chose 6 criteria: trauma, drug or alcohol intoxication, 
vomiting, headache, age over 60, and sex. When these 6 
criteria were used on the same random 25% test data subset as 
described above, the test data gave sensitivity = 71%, 
specificity = 61%.  The 6 criteria only reduced unnecessary 
CT by 9%. (Table IV)

Additional experiments were performed using 
Salford Systems CART.  The CART decision tree identified 
four criteria needed to classify positive CT.  These criteria 
were drug or alcohol intoxication, headache, age over 60, and 
male sex.  When applied to the dataset, two positive CT's 
were missed by this criteria.  Inspection of the two records 
showed that trauma was the only criteria that both records 
were positive for.  We thus included trauma into the criteria 
set.  The resulting criteria was 100% sensitive for positive CT 
and reduced unnecessary CT by 10%.  Sensitivity and 
Specificity measures based on the discriminant function were 
79% and 58% respectively. CART and BA produced similar 
results.   Sensitivity and Specificity measures were equivalent 



with BA performing slightly better in reducing unnecessary 
CT.  

If sensitivity is our major consideration, then the rule 
set produced by BA is superior or equivalent to the other 
methods when evaluated with a discriminant function. Also, 
the specificity of the discriminant function produced by BA 
selected variables is only slightly less (58%) than that 
produced by stepwise discriminant analysis (61%). By this 
discriminant function criteria then, the criteria chosen by the 
BA method are equal or superior in sensitivity and specificity 
to criteria chosen by stepwise discriminant analysis, and 
superior to the criteria chosen by recursive partitioning of chi-
square values. 

4. Discussion

Most association rule programs such as Apriori[1][2] 
and dependency rule algorithms[12] use support to reduce the 
search space.  In BA the partition step explicitly uses the 
domain knowledge of an expert to split the set of variables 
into column variables and row variables.  By doing this we 
reduce our search space considerably.  To get a sense of how 
reduced our search space becomes, for a dataset of 6 
variables, the number of possible variable partitions is equal 
to C(6,3) + C(6,2) + C(6,1)  = 41, where C(n, k) is the 
combination of n items taken k at a time.  This represents the 
creation of 3 X 3, 2 X 4, and 5 X 1 partitions respectively. By 
recognizing that this dataset has one significant partition of 
interest, we have reduced our search space by a factor of 
forty.  

The number of positive CT in the cleaned head 
trauma data was 88 out of 1,339 records.  For medical data, 
this skew is not unusual.  Most people are negative for a 
disease or a set of symptoms.  Using support based algorithms 
on data this skew would require the user to set minsup at a 
near zero value.  The closer minsup is to zero, the larger the 
search space is.  When minsup equals zero, we search the 
entire space.  Variable partitioning, as implemented in BA, 
allows one to find interesting patterns in skewed data, while 
pruning the search space.  

Although variable partitioning works well with 
datasets where there is a finite, small number of partitions, in 
datasets where there is no delineation, it is necessary to look 
at all partitions.  This can be a computationally expensive 
procedure, and in fact is NP - complete.  

Boolean Analyzer makes only one pass through the 
dataset in order to create the State Occurrence matrix. For 
this paper the State Occurrence matrix is shown fully 
expanded. In reality it is a sparse vector that is at most as 
large as the dataset, but most times smaller than the dataset.  
The State Linkage matrix tends to have more entries then the 
State Occurrence matrix and is therefore more bound by the 
dimensionality of the dataset. Therefore in Boolean Analyzer 
there is a tradeoff between size and dimensionality.  If the 
number of variables is n, then Boolean Analyzer is most 

efficient when the number of records in the dataset is larger 
than 2n

.

The PIM is an objective interestingness measure that 
imposes an order on the set of rules.  Objective 
interestingness measures are calculated based on a rule's 
structure and the underlying data used. [11]  The PIMs 
associated with each rule are contiguous within the interval -
(n/2)2 < 0 <  (n/2)2 , where n is the number of observations in 
the dataset.  Since the PIM is dependent on the distribution of 
the underlying data, we cannot generalize about the form of 
this contiguous distribution.   Therefore the types of statistics 
used with the PIM are usually non-parametric. 

Dependency/Association rule algorithms tend to 
generate a lot of rules.  Even though BA looks at one data 
partition, for the head trauma data described in Section 3, BA 
generated 13,120 rules which is orders of magnitude larger 
that the dataset! The PIM rule order allowed us to find a 
significant criteria set by only examining 60 of these rules.  

Other methods for ranking rules have been cited in the 
literature.  These include metrics such as confidence, added 
value, mutual information, [10] and conviction measures [3].  
Sahar and Mansour [10] showed that objective interestingness 
measures seem to cluster into three groups when support and 
confidence levels are low.  Interestingness measures in the 
same cluster produce similar rule orders.  For future work, to 
see how the PIM compares to these interestingness measures, 
an empirical study similar to that done by Sahar and Mansour 
is indicated.  

Association rules do well in many domains.  There are 
some domains, such as the medical domain,  where 
dependency rules are a better choice.  As evidenced in this 
paper, the most interesting information was gleaned from 
those rules that could not have been found using traditional 
association rule algorithms.  In these domains, the 
probabilistic interestingness measure was significant for 
finding interesting dependency rules.  The PIM was able to 
yield good results in a clinical medical study.  

5. Conclusions and Future Work

Boolean Analyzer like all algorithms of this genre is an 
exponential algorithm.  It gains efficiency by pruning the 
search space by using domain knowledge to partition the 
variable set into row variables and column variables.  BA 
uses a probabilistic interestingness measure to order the rules 
according to the event dependencies between the variables.  
We have shown that in a clinical head trauma dataset, the 
PIM was able to find significant rules allowing us to find a 
five variable criteria set for identifying patients needing CT.

If there is no good way to partition the variables, all 
partitions need to be searched.  For the future we want to 
identify a heuristic for finding partitions that might yield high 
PIM dependent relationships.  In addition, we intend to apply 
BA to a clinical ophthalmology dataset.  This dataset has 
10,000 records and 40 variables.  We will be using BA and 
other techniques to find risk factors for surgery.
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