DATA CLUSTERING WITH SPIKING NEURONS

NATACHA GUEORGUIEVA
Computer Science
CSI/City University of New York
2800 Victory Blvd.
Staten Island, NY 10314

IREN VALOVA
Computer and Information Sciences
University of Massachusetts
Dartmouth
285 Old Westport Rd.,
North Dartmouth, MA 02747

GEORGI GEORGIEV
Computer Science
University of Wisconsin Oshkosh
800 Algoma Blvd.,
Oshkosh, WI 54901

ABSTRACT
A spiking neuron is a simplified model of the biological neuron as the input, output and internal representation of information, which is the relative timing of individual spikes, is more closely related to that of a biological network. In this paper we present a biologically plausible unsupervised learning rule for clustering data with spiking neurons based on the idea presented in [2] that a radial basis function (RBF) neuron encodes a particular input spike pattern in the delays available across its synapses. We develop an algorithm for learning the delays by using locally available information as the time difference between the pre- and post- synaptic spike. The computer simulations were performed for RBF neural networks with 20 inputs and the delay interval of 15 ms.