A Brief History of Computer Graphics

1885 - CRT (Cathode Ray Tube)

1887 - Edison patents motion picture camera

1888 - Edison and Dickson record motion picture photos on a wax cylinder

1926 – J.L. Baird invents the television.

30 line vertical, black and red scan
A Brief History of Computer Graphics

1962
- Sketchpad developed by Ivan Sutherland
 - Lightpen used to create engineering drawings directly on the CRT.
 - Memory structures to store objects.
 - Rubber-banding of lines
 - Zoom in and out on the display
 - And the ability to make perfect lines, corners, and joints.
 - PDP-1 (DEC)

1962
- SpaceWar created by Steve Russell
 - First computer game
 - Multiplayer game
 - The "a", "s", "d", "f" keys control one of the spaceships.
 - The "k", "l", ",", "" keys control the other.
 - The controls are spin one way, spin the other, thrust, and fire.

1963
- IBM creates the 360 models
 - One of the first general purpose mainframes
- SRI develops the mouse.

1966
- Ralph Baer creates the 1st consumer CG product: Odyssey Pinball

1967
- GE introduces first full color real time flight simulator for NASA

1968
- John Whitney: Permutations
 In "Permutations," (1968) he delineates a marvellous and exciting new world. One senses a choreographer. The movements are reminiscent of traditional ballet. The shapes follow the dictates of formal geometry more than those of abstract painting. Movement is three-dimensional and the ambition for a more polished three-dimensional shaded space is apparent.
A Brief History of Computer Graphics

1972
- ATARI
- Pong

1973
- Michael Crichton’s “Westworld” uses 2D graphics
- First time computer is used for image manipulation.
- Featured scenes that showed audiences the world viewed by the eye circuitry of a synthetic human (played by a very real Yul Brenner) in a future Western theme park. This effect was achieved with 2D computer graphics tools mostly derived from image processing techniques.

1974
- Intel develop the 8080 processor.

1975
- Mandelbrot plots fractals
- Bill Gates starts Microsoft

1976
- Steve Jobs and Steve Wozniak start Apple.

1977
- Academy of Motion Pictures Art and Sciences introduces Visual Effects category for Oscars.
- Star Wars wins Oscar for special effects.
- Superman wins Oscar for special effects.

1979
- Alien wins Oscar for visual effects.

1980
- The Empire Strikes Back wins Oscar for visual effects.
1980
- Disney’s TRON is the first live action film with over 20 mins of computer animations.
- Seagate Technology releases the HDD for PCs.

1981
- IBM introduces the first IBM PC (16 bit 8088 chip)
 - Raiders of the Lost Ark wins an oscar for visual effects.

1982
- The Genesis Effect (ILM) for Star Trek II is the first all computer animated visual effects shot for film.

1983
- First Coke Polar Bears Commercial

1984
- PIXAR Opens

1985
- The Last Starfighter is the first live action feature film with realistic computer animation of highly detailed models.
A Brief History of Computer Graphics

1989
- The Abyss is the first movie to include convincing 3D character animation.

1990
- Windows 3.0 ships

1993
- Myst

1994
- Playstation and N64 released

A Brief History of Computer Graphics

1995
- Quake Released by Id Software
- The first fully 3D computer animation feature film is released.
 - Can you remember what it was?
 - Toy Story

1996
- Independence Day wins Oscar for visual effects.

A Brief History of Computer Graphics

1997
- Titanic wins Oscar for visual effects.
- Pixar wins Oscar for best short film: Geri’s Game

1998
- Armageddon
- Mouse Hunt
- Bugs Life

1999
- The Matrix
- Star Wars: The Phantom Menace
- Disney’s Tarzan
A Brief History of Computer Graphics

2000
- Sony Playstation II
- Walking with Dinosaurs

A Brief History of Computer Graphics

2002
- Microsoft's XBOX

A Brief History of Computer Graphics

2002
- Academy of Motion Pictures introduces a category for BEST ANIMATED FEATURE.
- ...and the winner was...
 - Shrek!!

Medicine

- Bimaxillary Osteotomy

Simulation/Training

- Flight

Simulation/Training

- Haul Truck Driving
Polylines

A polyline is a connected sequence of straight lines.

Polylines (2)

- A polyline can appear to the eye as a smooth curve. This figure shows a magnification of a curve revealing its underlying short line segments.

Polylines (3)

- Simplest polyline: a single straight line segment.
 - A line segment is specified by its two endpoints, say \((x_1, y_1)\) and \((x_2, y_2)\). A drawing routine for a line might look like `drawLine(x1, y1, x2, y2);`
- Dot: `drawDot(x1, y1);`

Polylines (4)

- When there are several lines in a polyline, each one is called an edge, and two adjacent lines meet at a vertex.
- The edges of a polyline can cross one another. A polyline does not have to be closed.
- Polylines are specified as a list of vertices, each given by a coordinate pair: \((x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\).

Polylines (5)

- A polygon has its first and last points connected by an edge.
- If no two edges cross, the polygon is called simple. Only A) and D) are simple.
Polyline Attributes

• Color, thickness and stippling of edges, and
 the manner in which thick edges blend
 together at their endpoints.
• Typically all the edges of a polyline are given
 the same attributes.

Polyline Attributes (2)

• Joining ends: “butt-end”, rounded ends,
 mitered joint, and trimmed mitered joint.

Text

Text is the written form of language.

Textual symbols are represented on the computer screen as characters.

Raster Image

A raster image is a picture made up of pixels of differing shades and colours.

Raster Image

A raster image is stored in a computer as an array of numerical values.

The array is known as a pixel map or bitmap.

Raster Image

3 Principal Sources of raster images:

1. Hand-Designed Images
2. Computed Images
3. Scanned Images
Raster Graphics

- Image produced as an array (the raster) of picture elements (pixels) in the frame buffer

Raster Graphics cont’d

- A raster image is made up of many small cells (pixels, for “picture elements”), in different shades of gray. (Right: magnified image showing pixels.)

Raster Graphics cont’d

- Allows us to go from lines and wireframe images to filled polygons

Raster Images

- Common in Computer Graphics
 - incorporate images in scenes (texture mapping)
 - result of generated scene
- Bi-level image
 - pixels can have one of two values (0 and 1)
 - requires one bit to represent the intensity of each pixel
 - 0: no intensity (black)
 - 1: full intensity (white)

Pixmaps and Bitmaps

- A raster image is stored in a computer as a rectangular array of numerical values.
- The array has a certain number of rows and a certain number of columns.
- Each numerical value represents the value of the pixel stored there.
- The array as a whole is often called a pixel map or bitmap.

A Bilevel Image and its Bitmap
Pixmaps and Bitmaps Example

• The numbers show the values in the upper left 6 rows x 8 columns of the image.

```
2 2 2 2 2 2 2
2 2 2 2 2 2 7
2 2 2 2 7 7 7
2 2 2 2 7 1 1
2 2 2 7 1 1 1
2 2 2 7 1 1 7
```

Creating Pixmaps and Bitmaps

• Hand designed images, created by person.
• Computed images, using an algorithm.
• Scanned images.

Grayscale Images

• Two pixel values in an image is called bi-
 level, or a 1 bit per pixel image. Colors are
 black and white.
• 2^n pixel values in an image requires n bits per
 pixel and gives 2^n shades of gray.
 – Most commonly, n is 2, 4, or 8, producing 4, 16, or
 256 shades of gray.

Gray-scale Images

• Quantization
 – number of bits representing gray-scale values
 – more bits
 • more gray-scale values
 • higher gray-scale resolution
 • larger image size
 – useful in examining pixels within different
 ranges, so called window and level

Pixel/Colour Depth

Number of bits used to represent the colour/shade of each pixel.

- 4 bits/pixel = 16 levels of grey
Reduced Image to 6 bits/pixel and 5 bits/pixel
(pixel value 01110100 is replaced with 0111)

The Image Reduced to 4 bits/pixel and to 3 bits/pixel

The Image Reduced to 2 bits/pixel and 1 bit/pixel

Grayscale Image Example

- An image with 8 bits per pixel may be reduced to fewer bits per pixel by truncating values.
- Gradations of gray may change to a uniform shade of gray.
- Below: 6, 3, 2, and 1 bit per pixel.

Pixel/Colour Depth

Number of bits used to represent the colour/shade of each pixel.

- One bit/pixel = 2 grey/colour levels
- Two bits/pixel = 4 grey/colour levels
- Four bits/pixel = 16 grey/colour levels
- Eight bits/pixel = 256 grey/colour levels

Color Images

- Pixel value represents a color, RGB and Color Index (color lookup table)
 - RGB: each pixel is an ordered triple representing the intensity (amount) of red, green, and blue that are summed together (R,G,B)
 - color depth of a pixel is the total number of bits representing red, green, and blue
 - **true-color** images have a depth of 24 bits
 - 8-bits per color
Color Images

- Color is usually described as a combination of red, green, and blue light.
- Each pixel is a 3-tuple: e.g., (23, 14, 51), for red (R), green (G), and blue (B).
- The total number of bits allowed for R, G, and B values is the color depth.
 - A color depth of 8 is often used: 3 bits each for R and G, and 2 bits for B.

<table>
<thead>
<tr>
<th>color value</th>
<th>displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>black</td>
</tr>
<tr>
<td>0,0,1</td>
<td>blue</td>
</tr>
<tr>
<td>0,1,0</td>
<td>green</td>
</tr>
<tr>
<td>0,1,1</td>
<td>cyan</td>
</tr>
<tr>
<td>1,0,0</td>
<td>red</td>
</tr>
<tr>
<td>1,0,1</td>
<td>magenta</td>
</tr>
<tr>
<td>1,1,0</td>
<td>yellow</td>
</tr>
<tr>
<td>1,1,1</td>
<td>white</td>
</tr>
</tbody>
</table>

Graphic Display Devices

- Line Drawing Displays
 - Pen Plotter
 - Flatbed plotters
 - Drum plotters
 - Video Displays
 - Vector Displays

- Raster Displays
 - Video Displays (Cathod-Ray Tube CRT)
 - Flat Panel Displays (LCD & Plasma)
 - Hard Copy
 - Laser Printers
 - Dot Matrix Printers
 - Ink-Jet Printers

Graphics Display Devices

- Graphics displays are either line-drawing devices or raster displays.
- Line-drawing devices:
 - Pen plotter, which moves an ink pen across a (large) sheet of paper. (E.g., seismic wave plotters.)
 - Vector video device, which moves a beam of electrons across the screen from any one point to any other point, leaving a glowing trail.

Raster Display

- Display Surface
 - Image is represented by pixels
 - Display Capture is stored in a frame buffer
 - Pixel value stored in the frame buffer is used to colour a spot on the display surface.
- Scan Process
 - Cathod Ray Tube (CRT)
Graphical Models. Raster Graphics

- Raster: the images are represented as matrices of colored points (pixels).
- Modern monitors, printers

Graphics Display Devices cont’d

- Raster displays:
 - Computer monitor: moves a beam of electrons across the screen from left to right and top to bottom.
 - Printer: does the same thing with ink or toner.
 - Coordinate system used:

Graphics Display Devices cont’d

- Raster displays are always connected to a frame buffer, a region of memory sufficiently large to hold all the pixel values for the display.
 - The frame buffer may be physical memory onboard the display or in the host computer.
 - Alternatively, a graphics card installed in a personal computer might house the frame buffer.

Raster Displays

- Graphics systems produce raster images primarily because they will be displayed with a raster display
 - common display device on computers
- display surface composed of pixels
 - 480 rows, each containing 640 pixels for a total of 307,000 pixels
 - 1024 rows, each containing 1280 pixels for a total of 1,310,720 pixels

Raster Displays

- More pixels representing a given size screen
 - higher resolution
 - larger amount of memory representing a scene
- built in coordinate system
 - relates a given pixel to a physical location on the screen

Frame buffer

- memory containing pixel and other values
- frame buffer commonly part of the graphics card
- frame buffer must be connected to the raster display device (monitor)
- pixel values are related to displayed intensity
Display Scanning

- **Frame Buffer**
 - 2 dimensional matrix
 - Each cell of the matrix represents a pixel on the display
 - The matrix needs to be of sufficient size to hold the colour depth of the display across all pixels.
 - \(Fb[x][y] \) has the colour for pixel \(x, y \)
 - E.g. A display 1024 x 1280 with a colour depth of 24 bits (~16 million colours) needs storage space of around 4 Mb.

- **Frame Buffer with Look-up Table (LUT)**
 - Frame buffer stores index values of colours in a look up table.
 - LUT stores all colours in an array LUT[0]..LUT[63].
 - LUT for 24 bit colour depth requires on 768 bytes of memory (256 for each red, green and blue).
 - Frame buffer can then be smaller. E.g. only has to store an index into the LUT in the 2d matrix.
 - However as the frame buffer becomes smaller not all colours in the LUT can be displayed all the time.

Scan Converter

- changes digital pixel values to an analog voltage (intensity) values
- converts memory address into a physical location on the display screen

Graphics Display Devices

- Each instruction of the graphics program (stored in system memory) is executed by the central processing unit (CPU), storing an appropriate value for each pixel into the frame buffer.
- A scan controller (not under program control) causes the frame buffer to send each pixel through a converter to the appropriate physical location on the display surface.
- The converter takes a pixel value such as 01001011 and converts it to the corresponding color value quantity that produces a spot of color on the display.

Function of Scan Controller

- CPU
- System memory
- Frame buffer
- Converter
- Display surface
Function of Scan Controller

A scan controller connects the CPU, system memory, frame buffer, and display surface. The system bus facilitates communication between these components.

Graphics Display Device Operation

The scan controller receives logical addresses and converts pixel values to geometric positions on the display surface. The process is repeated 60 times each second to prevent flicker.

Video Monitor Operation

- Based on cathode ray tube (CRT).

 - The digital frame buffer value is converted to an analog voltage for each of R, G, and B by the DAC. Electron guns for each color are deflected to the appropriate screen location.
 - The process is repeated 60 times each second to prevent flicker.

Flat Panel Displays

- Flat panel displays: use a mesh of wires to set color of a pixel.

Hard Copy Raster Devices

- In graphics, to reproduce a scene with colors we want a color laser or inkjet printer.
- Printers equipped to use PostScript (a page description language) can generate high quality text and graphics on a printed page.
- A **film recorder** uses a strip of photographic film, exposed by the electron beam as it sweeps over it (once) in a raster pattern. Film recorders are frequently used to make high-quality 35-mm slides, or movies.
Graphics Input Devices

• **Keyboard**: strings of characters;
 – Some keyboards have cursor keys or function keys, which can be used to produce pick input primitives.
• **Buttons**: Sometimes a separate bank of buttons is installed on a workstation. The user presses one of the buttons to perform a pick input function.

Graphics Input Devices

• **Mouse**: changes in position.
 • Software keeps track of the mouse's position and moves a **graphics cursor** — a small dot or cross — on the screen accordingly.
 • The mouse is most often used to perform a locate function. There are usually buttons on the mouse that the user can press to trigger the action.

Graphics Input Devices

• **Tablet**: locate input primitives. A **tablet** provides an area on which the user can slide a stylus. The tip of the stylus contains a micro switch. By pressing down on the stylus the user can trigger the locate.

Graphics Input Devices

• **Joystick and Trackball**: locate and valuator devices.

3-D Graphics Input Devices

• A laser beam scans over the solid object in an x, y raster pattern, measuring the distance between the image capture device and the object.

3-D Graphics Input Devices

• Capturing motion: a device that can track the position of many points on a moving body in real-time, saving the motion for animation or data analysis.