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Abstract: - In this paper we provide a summary of results and applications pertaining a Diameter-constrained
Network reliability model. Classical network reliability models measure the probability that there exist end-to-
end paths between network nodes, not taking into account the length of these paths. For many applications this is
inadequate because the connection will only be established or attain the required quality if the distance between
the connecting nodes does not exceed a given value.
The Diameter-constrained reliability of a network (DCR) introduced recently considers not only the underlying
topology, but also imposes a bound on the diameter, which is the maximum distance between the nodes of the
network.
We present a synopsis of the known results and applications of the DCR for networks that can either be modeled
by directed as well as undirected graphs.
Moreover important combinatorial and computational properties of this reliability measure are discussed. As
the DCR subsumes the classical reliability measure (i.e., where no distance constraints are imposed on the paths
connecting the nodes), as a by-product we prove well-known classical results.
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1 Introduction
The purpose of this paper is to present a summary
of results obtained hitherto regarding a network re-
liability model, the Diameter-constrained reliability
(DCR) originally introduced in 2001 (see [6, 19]).
Even though the proofs of the results appear else-
where, here we present a brief explanation of the tech-
niques used to prove them.

The components of a communication network
(e.g. nodes, communication links) may be subject
to random failures. Failures may arise from natural
catastrophes (e.g. hurricanes), component wearout,
or action of intentional enemies.

A communication network can be modeled by a
graph (or digraph) G = (V,E) where V and E are
the set of vertices and edges (arcs) respectively of G.
Moreover the probabilities of failure of the network
components could be represented by assigning prob-
abilities of failure to the vertices and/or edges (arcs)
of its underlying graph (digraph).

A widely used probabilistic model is the one
where the edges (arcs) fail randomly and indepen-

dently with known probabilities, and where the ver-
tices are always operational.

A path (dipath) P between two vertices
u and v is a sequence of distinct vertices
< u1 = u, u2, . . . , ur = v > where (ui, ui+1) is an
edge (arc) of G, 1 ≤ i ≤ r − 1. Moreover the length
of P is r − 1. We also represent a cycle (dicycle) as
a sequence of vertices < u1, u2, . . . , ur+1 = u1 >,
where (uj , uj+1) ∈ E, and where all the vertices are
distinct with the exception of the first and last vertices
of the sequence, and we say that a graph (digraph) is
cyclic if it contains a cycle (dicycle), otherwise it is
acyclic.

Let G = (V,E) be a undirected graph with a dis-
tinguished set K ⊆ V . We define the K-diameter
of G as the maximum distance between any pair of
vertices of K. If the edges fail randomly and inde-
pendently with known probabilities, in [6] and [19]
the Diameter-constrained K-terminal reliability of G,
RK(G,D), was defined as the probability that surviv-
ing edges span a subgraph whose K-diameter does

WSEAS TRANSACTIONS on COMMUNICATIONS
 

Louis Petingi

ISSN: 1109-2742 574 Issue 6, Volume 7, June 2008



not exceed D, or equivalently, as the probability that
for each pair of vertices {u, v} ⊆ K, there exists an
operating path between u and v of at most D edges.

As real networks are subject to failures, the
diameter-constrained reliability can be useful in
different contexts. For example, this measure gives
an indicator of the suitability of an existing network
topology to support good quality voice over IP
applications between a pair of terminals. In the case
of a videoconference, we take K to be the set of the
participating nodes, and the Diameter-constrained
reliability gives the probability that we can find short
enough paths between all of them. Another potential
case of interest are a number of protocols which, in
order to avoid congestion by looping data, assign
a timeout date or a maximum number of hops to
each data packet, to control information. That is the
case for some peer-to-peer (P2P) networks, such as
Freenet, Gnutella or others [9, 13, 18, 22, 28], in
which a fixed maximum number of hops are allowed
for communication between nodes. In these cases,
the diameter-constrained unreliability (the comple-
ment to one of the reliability) gives the probability
that, due to failed links, there are some nodes of
the network which are not mutually reachable using
these protocols.

Similarly a network can be modeled by a digraph
G = (V,E) where V and E are the set of vertices
and arcs respectively of G. In particular we study the
case where we want to model the connection between
a source-vertex s and a set of terminal vertices K (for
example to model a video multi-cast application). We
denote the s,K-diameter as the maximum distance
between s and any of the vertices of K. Then the
Diameter-constrained s,K-terminal reliability of a
network G, Rs,K(G,D), is defined as the probability
that the surviving arcs span a subgraph whose s,K-
diameter does not exceed D ([6, 19]).

The Diameter-constrained network reliability is
a special case of coherent system models, where the
domination invariant has played an important role,
both theoretically and for developing of efficient
algorithms for the reliability computation.

In Section 2 we introduce some basic nota-
tion and definitions for the Diameter-constrained
K-terminal reliability of an undirected graph G,
RK(G,D), and we present RK(G,D) as a general-
ization of the classical reliability measure RK(G), al-
lowing us to conclude that in general the complexity
of evaluating RK(G,D) is NP-hard. In addition, we
show that calculation of the DCR remains an NP-hard
problem, even for a fixed number of terminal vertices
and for fixed diameter bound D. We also present
a backtracking algorithm to compute the DCR if an

undirected topology.
In Section 3 we discuss the Diameter-constrained

s,K-terminal reliability of a digraph G, Rs,K(G,D),
and we completely characterize the domination
of diameter-constrained network models, giving a
simple rule for computing its value: if the digraph
either has an irrelevant arc, includes a directed cycle
or includes a dipath from s to a node in K longer than
D, its domination is 0; otherwise, its domination is -1
to the power |E| − |V | + 1. In particular this charac-
terization yields the classical Source-to-K-terminal
reliability domination obtained by Satyanarayana
[24]. Based on these theoretical results, we present
an algorithm for computing the reliability.

2 Undirected model
In this section we present several results pertaining
the Diameter-constrained K-terminal reliability of an
undirected graph G, RK(G,D). We first introduce
basic notation and definitions that will be used in the
sequel:

◦ Let G = (V,E,P(E)) be a probabilistic graph with
a distinguished set K ⊆ V , |K| ≥ 2, and D ∈ Z+,
with 1 ≤ D ≤ n − 1, where n = |V |, and where
P : E �→ [0, 1] are the operational probabilities of
the set of edges E. For ease of notation, we repre-
sent the operational probability of an edge e ∈ E as
p(e) = 1 − q(e) (q(e) is the probability of failure).

◦ Let the sample space Ω represent the set of all pos-
sible subsets of E, corresponding to sets of opera-
tional edges (i.e. Ω = 2E).

◦ Under the assumption of independent edge failures,
each H ∈ Ω has occurrence probability

P (H) =
∏
e∈H

p(e)
∏
e/∈H

q(e).

◦ H ∈ Ω is a pathset or operating state if H spans a
subgraph whose K-diameter is at most D.

◦ Let OD
K(E) = {H ∈ Ω : H is a pathset}.

◦ An operating state H of OD
K(E) is called a minpath

if H − {ei} /∈ OD
K(E), for all ei ∈ H .

◦ H ∈ Ω is a failure state if H spans a subgraph
whose K-diameter is greater than D (if H spans
a subgraph where two vertices of K belong to dif-
ferent connected components, then its K-diameter
is infinite).

◦ Let OD
K(E) = {H ∈ Ω : H is a failure state}.

From the definition of RK(G,D) and the previous
definitions one gets

RK(G,D) =
∑

H∈OD
K

(E)

∏
e∈H

p(e)
∏
e/∈H

q(e). (1)
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Similarly equation (1) can be rewritten in terms of the
failure states:

RK(G,D) = 1 − QK(G,D) = 1 −∑
H∈OD

K(E)

∏
e∈H

p(e)
∏
e/∈H

q(e). (2)

2.1 Computational Complexity and DCR as
a generalization of the classical reliabil-
ity model

A widely used probabilistic measure (see [5, 10, 23,
26]) is the classical K-terminal reliability of a graph
G, RK(G), defined on the same probabilistic model
(i.e., edges fail randomly and independently with
known probabilities and the vertices are always oper-
ational). The measure RK(G) is the probability that
for every pair of vertices u, v ∈ K, there exists an
operating path between u and v. In this case there
are not length restrictions of the paths joining the ver-
tices of K, and by noting that the maximum length of
a path joining a pair of vertices is of at most n − 1
edges, where n is the number of vertices of G, then

RK(G) = RK(G,n − 1). (3)

This generalization of the classical reliability parame-
ter allows us to reflect more stringent performance ob-
jectives by restricting the maximum length of a path
in a network.

Let G = (V,E) and K be a set of terminal
vertices of G. For the classical reliability measure,
computations of the K-terminal reliability (see [21]),
and the specific cases when |K| = 2 (see [27]),
and K = V (see [16, 20]) , were shown to be NP-
hard. From these results and the fact that RK(G) =
RK(G,n − 1), R{s,t}(G) = R{s,t}(G,n − 1), and
RV (G) = RV (G,n − 1), where n is the number of
vertices of the graph G, and by restricting D = n−1,
then

Theorem 1 For the Diameter-constrained reliabil-
ity, the computational complexity of computing
RK(G,D), R{s,t}(G,D), and RV (G,D) is NP-
hard.

Even though is very unlikely that RK(G,D) can be
evaluated efficiently, we can not preclude that is the
case when fixed values of the diameter parameter D
are under consideration. We address this question in
Section 2.2 and Section 2.3.

2.2 Evaluating RK(G, D) when |K| = 2, and
when D is a constant value

In this section we establish the computational
complexity of computing RK(G,D), when K is
composed of two terminal vertices s and t, and for
fixed values of diameter parameter D.

In [19], an efficient formulation was given for the
evaluation of Diameter-constrained Two-terminal Re-
liability of a network when terminals s and t should
be connected by operating paths of at most two edges
(i.e. D = 2).

Theorem 2 Let G = (V,E) be a simple graph where
each edge (u, v) ∈ E operates independently with
probability p(u,v), and let N{s,t} = {u1, u2, . . . , ul}
be the common neighborhood of terminal nodes s and
t, then

R{s,t}(G, 2) =

{
1 − R′ : (s, t) /∈ E
1 − (1 − p(s,t))R′ : (s, t) ∈ E

where

R′ =
l∏

i=1

(1 − p(s,ui)p(ui,t)).

Even though R{s,t}(G, 2) can be computed in
time linear on the number of vertices of G, we next
show that the complexity of evaluating R{s,t}(G,D),
for fixed values of D, is NP-hard.

For ease of notation instead of representing a
state (operational or failure) as a set of edges of a
graph G, we represent it as a subgraph of G spanned
by this set.

Theorem 3 Evaluating R{s,t}(G,D), for fixed D ≥
3, is NP-hard.

An instance of the Bipartite Vertex Cover con-
sists of a bipartite graph G = (V,E); let X and Y
be the classes in the bipartition of V . A vertex cover
is a set of vertices C = CX ∪ CY , CX ⊆ X and
CY ⊆ Y , such that every edge of E has at least one
end-point in C . The problem of counting the number
of vertex covers of a bipartite graph was shown to be
#P-complete by Provan and Ball [20]. In [7] a graph

PATH ON d+1 VERTICES

s s s1 td

BIPARTITE GRAPH

Figure 1: Graph G′ constructed from bipartite G, and
constant D = d + 3.

G′ with terminal vertices K = {s, t} and diameter
D = d + 3 is constructed from a bipartite G and it is
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shown that counting the number of vertex covers of a
bipartite graph is polynomial time Turing reducible
to counting the number of failure states of G′ (see
Figure 1).

2.3 Evaluating RK(G, D) for any fixed
number of terminal vertices K, and
when D is a constant value, D ≥ 3

As in the previous section, it can be shown that the
complexity of calculating RK(G,D) is NP-hard,
even for a fixed number of terminal vertices and for
fixed diameter bound D, D ≥ 3:

Theorem 4 Evaluating RK(G,D) for a fixed num-
ber of terminal vertices, and for fixed D, D ≥ 3, is
NP-hard.

To prove Theorem 4 (see [7]) a graph G′′ is con-
structed by adding |K| − 2 terminal vertices to graph
G′ mentioned in the previous section (i.e., G′′ has |K|
terminal vertices). Moreover we make each of these
new terminal vertices adjacent to s, and to the termi-
nal vertex t by a path of length D (see Figure 2).

  

s s s1 td

BIPARTITE GRAPH

u

u

PATH OF LENGTH D

1
1

k−2
1

Figure 2: Graph G′′ constructed from bipartite graph
G.

As in the proof of Theorem 3, is easy to show
that the number of vertex covers of the bipartite G
is polynomial time Turing reducible to counting the
number of failure states of G′′.

2.4 Algorithm to compute the DCR
The simplest way to exactly evaluate RK(G,D)
for a graph G = (V,E) with diameter bound D is
to enumerate all possible states (i.e., subgraphs) of
E, and determine the ones whose K-diameter is at
most D (i.e., the pathsets), and then sum the pathsets
probabilities of being operative (see Equation 1).

The K-diameter of a state can be determined
by application of Floyd algorithm [11] for determin-
ing the distance between every pair of vertices of the

graph, and a state, is a pathset, if the distance between
every pair of vertices of the terminal set K is D or
less.
The drawback of this approach is that there are 2|E|
possible states to be analized, however, by introduc-
ing a backtracking technique, many states could be
avoided.

Starting with the original graph G, at a particular
state we determine if it is a pathset by application of
Floyd’s algorithm (of complexity O(|V |3)), and then
making recursive calls of states with one edge less.
Once we have reached a state whose K-diameter is
more than D, it is not necessary to consider any of its
subgraphs since any subgraph of this state has also
K-diameter exceeding D.

Bactracking Algorithm

Input: Graph G = (V,E), edges prob. of survival
function P : E → [0, 1], terminal set K ⊆ V , and
D ∈ Z+, 1 ≤ D ≤ |V | − 1.
Output: Diameter-Constrained K-terminal Relia-
bilty RK(G,D).
Global variables:

• edges binary vector ē =
[m1,m2, . . . ,m|E|],mi = 1, 1 ≤ i ≤ |E|;

• edges probabilities vector p̄ =
[p1, p2, . . . , p|E|], pi = P (ei), ei ∈ E;

• distance matrix [di,j]nXn, n = |V |;
• reliability R = 0;

1. Call Backtrack (0);
2. Print R;

Backtrack (int i )
1. Construct distance matrix [di,j ] from vector ē;
2. Call Floyd( [di,j ]); determine if ē is a pathset
3. If (ē is a pathset)

3.1 Let R = R +
∏

mi=1 pi
∏

mi=0(1 − pi);
3.2 For (int j = i + 1, j <= |E|; j + +)

3.2.1 Let mj = 0 in ē; delete edge ej

3.2.2 Backtrack (j);
3.2.3 Let mj = 1 in ē; add edge back

In step 1 of the Backtrack procedure, the distance
matrix [di,j ] is constructed from the binary vector ē
by letting di,j = 1 if (i, j) ∈ ē, di,j = ∞ if (i, j) /∈ ē,
and di,i = 0. A state is determined to be a pathset
(step 3) if the distance returned between every pair of
vertices of the terminal set K is D or less (Floyd’s
procedure).
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3 Directed Model
In this section we present several results pertaining
the Diameter-constrained s,K-terminal reliability
of a digraph G, Rs,K(G,D). We first introduce
basic notation and definitions that will be used in the
sequel:

◦ We denominate indG(v) (or indegree of vertex v)
the number of arcs directed into a vertex v of the
digraph G.

◦ Let outdG(v) (or outdegree of vertex v) be the num-
ber of arcs emanating from a vertex v of the digraph
G.

◦ Let G = (V,E,P(E)) be a probabilistic digraph
with a distinguished set K ⊆ V , vertex s ∈ K, and
D ∈ Z+, with D ≥ 0, where n = |V |, and where
P : E �→ [0, 1] are the operational probabilities
of the arcs in set E. We represent the operational
probability of an arc (or arc reliability) x ∈ E as
p(x) = 1− q(x) (q(x) is the probability of failure).

◦ Let the sample space Ω represent the set of all pos-
sible subsets of E, corresponding to sets of opera-
tional arcs (i.e. Ω = 2E).

◦ Under independent failures assumption each H ∈ Ω
has occurrence probability

P (H) =
∏
x∈H

p(x)
∏
x/∈H

q(x).

◦ H ∈ Ω is a pathset or operating state if H spans a
subgraph whose s,K-diameter is at most D.

◦ Let OD
s,K(E) = {H ∈ Ω : H is a pathset }.

◦ An operating state H of OD
s,K(E) is called a min-

path if H − {xi} /∈ OD
s,K(E), for all xi ∈ H (i.e, a

minpath is a minimal operating state).

◦ A K-tree T of a digraph G is a tree, rooted at s (i.e.,
indT (s) = 0), covering all the vertices of K, and
such that any pendant vertex u (i.e., indT (u) = 1
and outdT (u) = 0) of T belongs to K. In addition,
a K-tree whose s,K-diameter is at most D is called
a D,K-tree.

◦ G is called a D,K-digraph, if every arc of G lies in
some D,K-tree of G. We know that if G is a D,K-
digraph, then node s has indegree 0; and every arc
of G belongs to a dipath from s to some node in K;
we say that G is rooted at s.

The following lemma gives a characterization of
the minpaths M of OD

s,K(E):

Lemma 5 For a digraph G = (V,E), terminal set
K , vertex s ∈ K, and bound D, then M is a minpath
of G if and only if M is a D,K-tree.

From the definition of Rs,K(G,D) and the pre-
vious definitions one gets

Rs,K(G,D) =
∑

H∈OD
s,K(E)

∏
e∈H

p(e)
∏
e/∈H

q(e). (4)

As in the undirected case, the Diameter-
constrained s,K-terminal reliability measure of
a digraph G subsumes the classical Source-to-K-
terminal reliability where no assumptions are made
with regard to the lengths of the dipaths connecting
the source vertex s to the terminal vertices of K.
This equivalence allow us to conclude that in general
to compute Rs,K(G,D) is NP-hard, as the classical
measure belongs to this computational class. In the
next section we discuss the computational complexity
of evaluating the Diamater-constrained s,K-terminal
reliability.

3.1 Computational Complexity and DCR as
a generalization of the classical reliabil-
ity model

The classical Source-to-K-terminal reliability also
known in the literature as Reachability of a digraph
G, Rs,K(G), is defined on the same probabilistic
model (i.e., arcs fail randomly and independently
with known probabilities and the vertices are always
operational). The measure Rs,K(G) is the probability
that after the removal of the failing arcs there exists
a dipath between the source-vertex s and v, for each
v ∈ K. In this case there are not length restrictions
of the dipaths joining s to the vertices of K, and by
noting that the maximum length of a dipath joining a
pair of vertices is of at most n − 1 edges, where n is
the number of vertices of G, then

Rs,K(G) = Rs,K(G,n − 1). (5)

This generalization of the classical reliability parame-
ter allows us to reflect more stringent performance ob-
jectives by restricting the maximum length of a path
in a network.

Let G = (V,E) and K be a set of terminal ver-
tices of G. For the classical reliability measure, com-
putations of the s,K-terminal reliability for K =
V (known as the Source-to-all-terminal reliability)
was shown to belong to the NP-hard computational
class (see [20]). From these results and the fact that
Rs,V (G) = Rs,V (G,n−1), where n is the number of
vertices of the graph G, and by restricting D = n−1,
then

Theorem 6 For the Diameter-constrained reliabil-
ity, the computational complexity of computing
Rs,V (G,D) is NP-hard.
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Unlike the undirected case, at the present it is
not known the computational complexity of evaluat-
ing Rs,K(G) for arbitrary K or when |K| = 2, thus
these problems also remain open for the diameter-
constrained case.

In the next sections we discuss the definition
of the domination invariant in the case of general
coherent systems, and in the case of the diameter-
constrained network reliability. The domination
plays an important role in simplifying the calculation
of the reliability for the directed case which it is
nevertheless, as mentioned before, an intractable
problem.

3.2 Domination
A graph invariant called the reliability domination
of a graph G was introduced by Satyanarayana and
Prabhakar [25] for the classical network reliability
models, and has since been explored by several
researchers in reliability theory [1, 2, 3, 14, 15].
The reliability domination plays an important role,
allowing to efficiently implement the principle of
Inclusion-Exclusion of probability theory applied
to the evaluation of reliability measures for general
reliability systems.

Let E be a finite set, and P (E) be the power set
of E. A nonempty subset C ⊆ P (E) is called a clut-
ter of E if for any two elements C1, C2 ∈ C, when-
ever C1 ⊆ C2, then C1 = C2. A pair (E, C) will
be referred to as a system and a system is coherent if
each element of E is contained in some element of
C. A formation of (E, C) is a collection of elements
of C whose union yield E. The signed domination of
the system (E, C), denoted d(E, C), is defined as the
number of odd formations minus the number of even
formations of E, where a formation is said to be odd
or even if it is of odd or even cardinality respectively.
Trivially by the previous definitions, a non-coherent
system has no formations, so its signed domination is
0.

The clutters associated with the operation and
failure of a specific element x ∈ E are defined as
follows. Let C − x = {C − x : C ∈ C} and
C−x = {C ∈ C : x /∈ C}. Now C−x is clearly a
clutter but C − x may not be one. We define C+x to
be the collection of elements of C − x which are not
proper supersets of some element of C − x. For an
element x ∈ E, C−x and C+x are called the minors
with respect to x of C. Huseby [14, 15] showed the
following result:

Theorem 7 If (E, C) is a system, with x ∈ E, and
minors C−x and C+x of C, then d(E, C) = d(E −
{x}, C+x) − d(E − {x}, C−x).

We look now at the case of the diameter-
constrained s,K terminal reliability of a digraph G =

(V,E) with K ⊆ V , s ∈ K , and diameter bound D.
The system underlying our model is (E,FD,K(G)),
where E is the set of arcs of G, and where FD,K(G)
is the collection of D,K-trees of G. A formation F of
G is then a collection of D,K-trees of G whose union
is E, the set of arcs of G. The signed domination of
a digraph G = (V,E), denoted d(E,FD,K(G)), with
respect to a given subset K ⊆ V , s ∈ K, and bound
D, is the number of odd minus the number of even
formations of G.

For brevity, in what follows we will use the
standard notation C to represent FD,K(G), which
is the clutter set in the diameter-constrained model.
Also we denote the domination d(E,FD,K(G)) as
dD,K(G). In addition, we observe that if x is an arc of
G, then T is a D,K-tree of G such that x 
∈ T iff T is
a D,K-tree of G− x. Therefore d(E − {x}, C−x) =
dD,K(G − x). Using this notation, the equation in
Theorem 7 can be re-written as

dD,K(G) = d(E − {x}, C+x) − d(E − {x}, C−x)
= d(E − {x}, C+x) − dD,K(G − x) (6)

We next state the main results of this section,
which are a characterization of the domination for
diameter-constrained reliability models, and we
discuss how these results can be used to compute the
reliability of a network.

3.3 Characterization of the domination,
application to reliability evaluation

Let G = (V,E) be a digraph with terminal set K,
e = |E| arcs, n = |V | vertices, and let D be the
diameter bound. We define the following operation:

• LP(G, s,K). If G is s,K connected (i.e., there
exists a dipath from s to any vertex u ∈ K in G),
this operation returns the length of the longest
dipath from s to any vertex u ∈ K; otherwise it
returns ∞.

The computation of LP(G, s,K) is in the NP-
complete class; but it is of polynomial complexity if
G is an acyclic digraph.

We observe that if G is not a D,K-digraph, there
are some arcs in E which are not covered by any
D,K-tree; so that the corresponding system is non-
coherent, and there are no formations over the clutter
FD,K(G) able to cover E. As a result, the domination
is zero. Consequently, from now on, we will restrict
ourselves to the case of D,K-digraphs. For these di-
graphs, the domination is completely characterized by
the following theorems (see [8]):

Theorem 8 Let G = (V,E) be a cyclic D,K-
digraph with terminal set K, n = |V | vertices, n > 2,
and let D be the diameter bound. Then dD,K(G) = 0.
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Theorem 9 Let G = (V,E) be a acyclic D,K-
digraph with terminal set K, e = |E| arcs, n = |V |
vertices, and let D be the diameter bound, then

dD,K(G) =

{
(−1)e−n+1 : LP(G, s,K) ≤ D
0 : otherwise

Both theorems can be proved by complete induc-
tion over the number of edges of the digraph, and us-
ing two different reductions, which preserve the exis-
tence of directed cycles and the relation of the length
of the longest dipath and the diameter bound. One
reduction is applied when all the nodes adjacent to s
have indegree 1; in this case, we can “contract” all
the arcs leaving s, and obtain a new digraph G∗ with
diameter bound D − 1 and with the same domina-
tion value as G. The other reduction is used when
there is at least one node adjacent to s with indegree
greater than 1; if x = (s, u), then it can be proved
that d(E − {x}, C+x) = 0, and by Equation 6 we
have dD,K(G) = −dD,K(G − x).

When D = n−1, we obtain the classical Source-
to-K-terminal reliability model as a particular case.
As all dipaths are of length smaller than n, then
LP(G, s,K) ≤ D unless the graph is not s,K-
connected. Then the characterization reduces to the
results in [24], i.e. that the domination is 0 if there is
a directed cycle in G or G is not a D,K-digraph, and
(−1)e−n+1 otherwise.

These results are useful for computing the re-
liability of a given network. For a digraph G =
(V,E), terminal set K, and vertex s ∈ K , let
M = {M1,M2, . . . ,Ml} be the set of minpaths of
OD

s,K(E). Define Ei to be the event that all the arcs
of Mi operate. By Inclusion-Exclusion we obtain

Rs,K(G,D) = Pr

(
l⋃

i=1

Ei

)
=

∑
i Pr(Ei) −∑i<j Pr(EiEj) + . . . +

(−1)l+1Pr(E1E2 . . . El), (7)

where the event EiEj . . . Em is the event that all
the arcs of the subgraph obtained by the union of
Mi,Mj , . . . ,Mm are operating.

In Equation (7), the terms correspond to sub-
graphs obtained by the union of minpaths. As dis-
cussed previously, for the Diameter-constrained s,K-
terminal reliability of a digraph G, with terminal set
K , vertex s ∈ K, and diameter bound D, the min-
paths are D,K-trees, the formations are sets of min-
paths, and the subgraphs are D,K-digraphs. The
same D,K-digraph can be obtained from different
formations; this means that it may appear more than
once, sometimes with positive sign, and sometimes
with negative sign, depending if the corresponding

formation has an odd or or an even number of D,K-
trees. In fact, its net contribution will be exactly the
number of odd minus the number of even formations
of the graph, i.e., its domination invariant. Thus using
these facts and the above definitions, we can rewrite
Equation (7) as

Rs,K(G,D) =
∑

H∈H
dD,K(H)Pr(H), (8)

where H is the class of all D,K-digraphs of G,
and Pr(H) is the probability that the arcs of H are
operative.

3.4 Algorithm
In this section we present an algorithm for the com-
putation of the Diameter-constrained s,K-terminal
reliability based upon Equation 8 and the character-
ization of the domination stated in Theorem 8 and
Theorem 9 [8].

It is easy to see that a digraph with parallel arcs
{e1, e2, . . . , em} emanating from a node u, and di-
rected into a node v, and with corresponding reliabil-
ities {p(e1), p(e2), . . . , p(em)}, can be replaced by a
single arc e = (u, v) with reliability

p(e) = 1 −
m∏

i=1

(1 − p(ei)), (9)

without affecting the reliability; thus we are only con-
cerned with digraphs without parallel arcs.

For a digraph G = (V,E), with terminal set K ⊆
V , and distinguished vertex s ∈ K , we say that G is
s,K-connected if there exists in G a s, u-dipath for
every u ∈ K. If indG(s) = 0, we will denominate
this graph s-rooted, and from this point on we will be
only concerned with s-rooted digraphs, since if that
is not the case, then dD,K(G) = 0, as stated in the
following claim:

Claim 10 Suppose that G = (V,E) is a digraph with
terminal set K ⊆ V , and vertex s ∈ K . If indG(s) >
0 then dD,K(G) = 0.

We next need to define irrelevant arcs:

Definition 11 Given a digraph G = (V,E), with ter-
minal set K ⊆ V , vertex s ∈ K , an arc e = (u, v) ∈
E is an irrelevant arc if at least one of the following
is true:

(a) The arc e belongs to a connected component
G′ = (V ′, E′) of G, where V ′ ⊆ V − K.

(b) The vertex u ∈ V − K has indG(u) = 0.

(c) The vertex v ∈ V − K has outdG(v) = 0.
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According to Theorem 8 and Theorem 9, the algo-
rithm should only be concerned in identifying acyclic
D,K-digraphs whose longest s, u-dipath, u ∈ K, is
of length at most D. The following Lemma gives a
sufficient condition for such digraphs.

Lemma 12 Given a digraph G = (V,E), with ter-
minal set K, and vertex s ∈ K, suppose that G is
an acyclic, s,K-connected digraph, with no irrele-
vant arcs, and LP(G, s,K) ≤ D, then G is a D,K-
digraph.

We now an algorithm for efficiently generating
precisely all these digraphs having non-null domina-
tion.

As a first step, we assume that G is s-rooted. If
this is not the case we can simply delete any arc di-
rected into s, obtaining a s-rooted digraph. Moreover
parallel arcs are replaced by a single arc with relia-
bility obtained as explained at the beginning of the
section.

The algorithm has five stages.

(a) Determine of G has irrelevant arcs. If that is
the case, generate a digraph from G by deleting
these arcs, and any isolated vertex u ∈ V − K
obtained from this deletion.

(b) Determine if G is s,K-connected. If G is not
s,K-connected, then we do not generate any
subgraphs from G.

(c) If G contains a dicycle, generate acyclic sub-
graphs of G.

(d) If G is acyclic, determine if LP(G, s,K) > D.
If that is the case, generate all possible acyclic
subgraphs G′ of G such that LP(G′, s,K) ≤ D.

(e) If G is acyclic and LP(G, s,K) ≤ D, then gen-
erate all possible subgraphs of G.

Generation of duplicate subgraphs at all stages is
completely avoided by a simple check.
The algorithm grows a rooted directed tree with the
following properties:

1. Vertices represent nonempty subgraphs of G, the
root vertex being G itself. Any vertex, say r,
corresponds one-to-one with the subgraph Gr

which is of one of the following five types:
a) Gr contains irrelevant arcs, b) Gr is not
s,K-connected, c) Gr is s,K-connected and
cyclic, d) Gr is s,K-connected, acyclic, and
LP(G, s,K) > D, e) Gr is s,K-connected,
acyclic, and LP(G, s,K) ≤ D.

2. A link directed from vertex i to vertex j of the
tree is labeled X, where X represents the set of
arcs deleted from Gi to obtain Gj .

Additional Definitions (directed tree generation):
Father (Child): Vertex i(j) is the father (child) of
j(i) when there exists an link directed from i to j.

Ancestor: Vertex i is the ancestor to j when i is
contained in the path from the root vertex to j (i 
= j).

Brother: Vertices having the same father are
termed brothers.

Younger (Elder) Brother: A vertex i is the younger
(elder) brother of vertex j, if the algorithm generates
the children of vertex i later (earlier) than the children
of vertex j.

Rooted Directed Tree Generation:
Starting from the root vertex, the algorithm grows the
tree progressively generating children, if any, of every
vertex. There are five rules for generating the children
of vertex r, depending on the nature of Gr.

Rule 1 Gr has irrelevant arcs. Let X′ be the label cor-
responding to the set of irrelevant arcs of Gr . In
this case generate a new node representing the
digraph obtained from Gr by deleting these arcs
(and possibly any isolated vertices obtained from
this deletion), provided X′∩X = ∅, where X is
the label of the link incident into the elder broth-
ers of r or elder brothers of an ancestor of r; oth-
erwise do not generate any children from Gr.

Rule 2 Gr is not s,K-connected. In this case Gr does
not generate any children.

Rule 3 Gr is s,K-connected and cyclic. Consider a di-
cycle C in Gr containing the arcs e1, e2, . . . , ec.
Then Grj = Gr−ej , (j = 1, 2, . . . , c), is a child
of Gr, provided {ej} ∩ X = ∅, where X is the
label of a link incident into the elder brothers of r
or elder brothers of an ancestor of r. Determina-
tion of a dicycle is determined by application of
Depth First Search (applied in Rule 2). Clearly
a state Gr − ej where ej does not belong to the
dicycle C , contains also C , thus by Theorem 8,
dD,K(Gk − ej) = 0, so it is not necessary to
generate this state.

Rule 4 Gr is s,K-connected, acyclic, and
LP(Gr, s,K) > D. Consider a longest s, u-
dipath L in Gr containing the arcs e1, e2, . . . , el.
Then Grj = Gr − ej , (j = 1, 2, . . . , l), is a
child of Gr, provided {ej} ∩ X = ∅, where
X is the label of a link incident into any elder
brother of r or elder brother of an ancestor of
r. Determination of a longest s, u-dipath is
determined by application of a longest path
algorithm (as used in CPM and PERT applica-
tions for example, see [17]) which can execute
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in time complexity O(|V | + |E|) for acyclic
digraphs. It is not necessary to consider a state
Gr − ej where ej does not belong to the dipath
L, because Gr − ej is either not s,K-connected
and its domination is 0, or it is s,K-connected
and contains the path L of length greater than
D, and by Theorem 9 its domination is also 0.

Rule 5 Gr is s,K-connected, acyclic, and
LP(Gr, s,K) ≤ D. Let Gr = (Vk, Ek).
Assuming that Gr does not have irrelevant
arcs, it follows from Lemma 12 that Gr is a
D,K-digraph, therefore contributing to the
total reliability by (−1)|Er |−|Vr|+1∏

e∈Ek
p(e).

Moreover let Grj = Gr − ej , ej ∈ Er be a child
of Gr, provided {ej} ∩ X = ∅, where X is the
label of a link incident into any elder brother of
r or elder brother of an ancestor of r.

Of the possible 2|E| states (i.e., digraphs) to
be evaluated, rules 1, 3, and 4 of the above al-
gorithm represent a significant reduction on the
total number of executable operations performed,
since many states are avoided, especially when the
digraphs contain irrelevant arcs, they contain sev-
eral directed cycles, or the diameter bound D is small.

4 Conclusions
In this paper we presented a summary of combi-
natorial as well as computational properties of the
Diameter-constrained network reliability where we
extended well-known properties of the classical
network reliability measure.

As the computational complexity of evaluating
the DCR is NP-hard, several problems are still open,
as it is for example application of meta-heuristics
(e.g., Monte Carlo techniques) to obtain an approx-
imation of this measure and determination of classes
of graphs (e.g., series-parallel graphs) for which poly-
nomial time algorithms for determination of the reli-
ability exist.
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