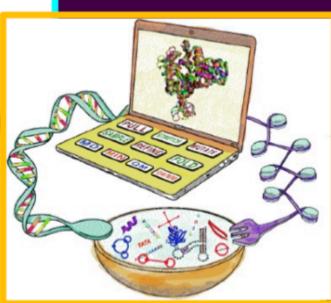
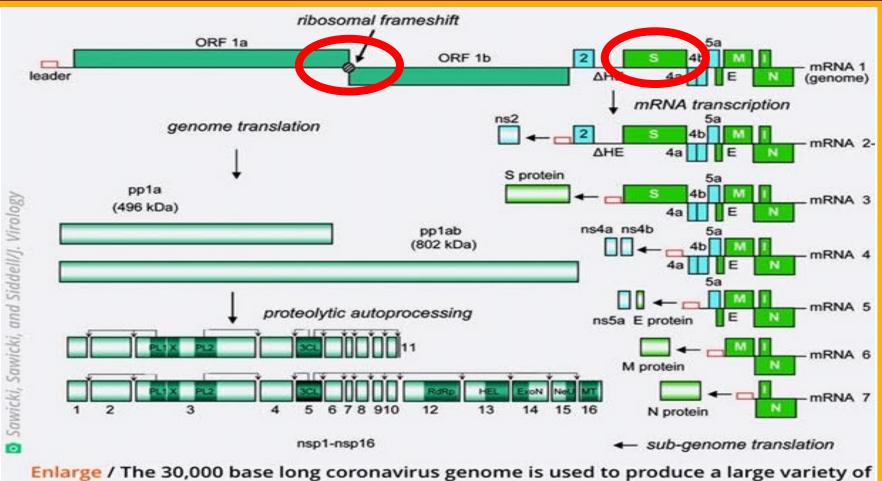

Tamar Schlick's Research Team New York University (Courant/Chemistry) COVID-19 (bad news wrapped inside proteins)



Infectious agent is a single 30,000 nucleotide-long RNA molecule that uses host cell machinery to copy itself and make all the proteins essential to its life cycle and thus rapidly multiply and overtake host organs


Exploring COVID-19 RNA Viral Genome Targets by Graph-Theory Based Modeling

- RNA itself may be able to replicate even when proteins are dismantled
- Highly conserved RNA genomes offer opportunities to block viral replication (HIV, HCV)
- CRISPR gene editing technology may be applicable
- Need long-term mechanistic understanding of entire virus (future waves, other coronavirus)
- We aim to determine structures and drug binding potential for 2 RNA regions

Build 2D and 3D Structures of Two RNA Gene Regions Using Graph-Theory Machinery

proteins.

- ORF1ab makes a chain of NSPs involved in replication
 NSP1 has key role early in infection (suppresses cell's natural defenses)
- Spike protein assembles and releases new virus copies

Project Outline

(1) Frame-Shifting Pseudoknot

S1

(a), (b) 2D+3D Modeling

(homology, various programs,

literature and consensus)

C in SARS

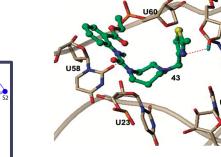
Stem 2

PKNOTS Prediction

13454

Stem 3

Stem 1


AUUU

(c) Destroy Pseudoknot/Stem 2

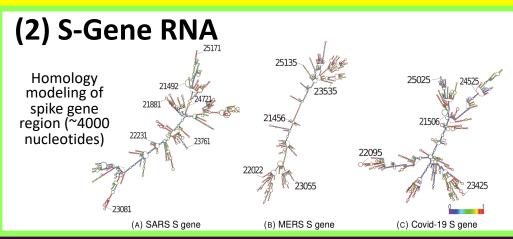
52

RAG.IF

Binding of 1,4-diazepam derivative 10 in the active site of SARS-pseudoknot

(d) Drug Binding

Studies

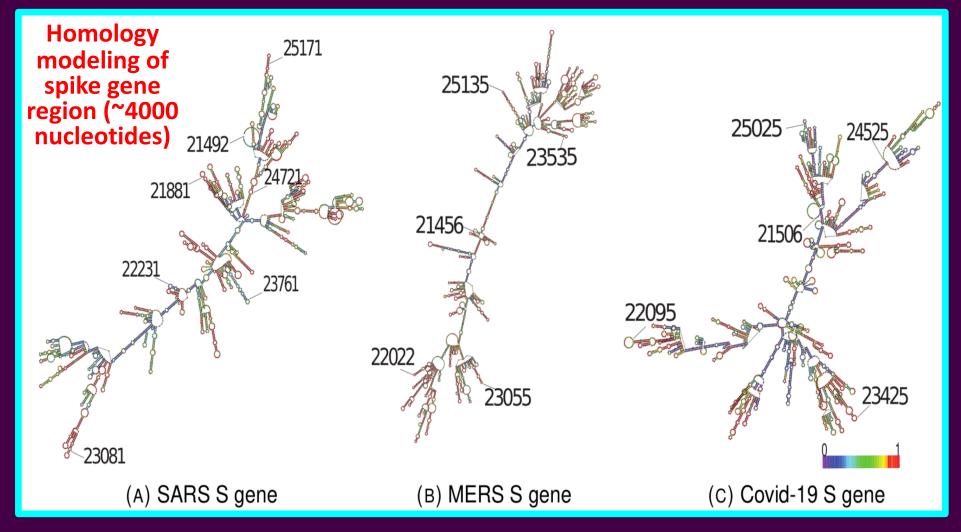

June-July (Steps a,b)

Aug-Sep (Step c)

graph

araph

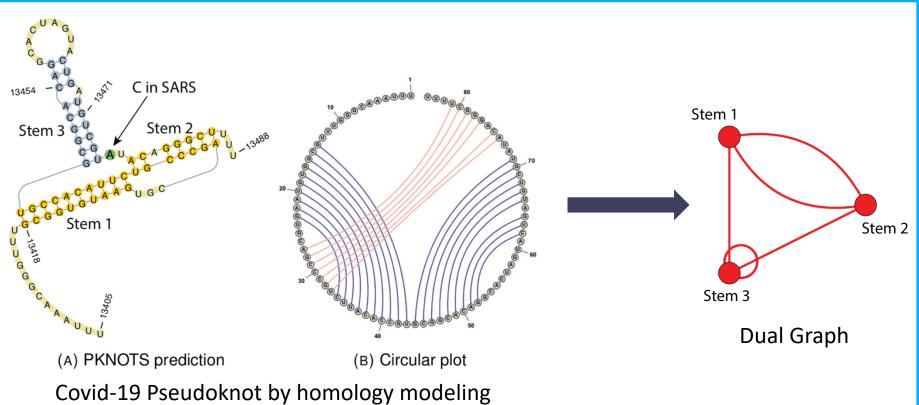
Oct-Nov (Step d)

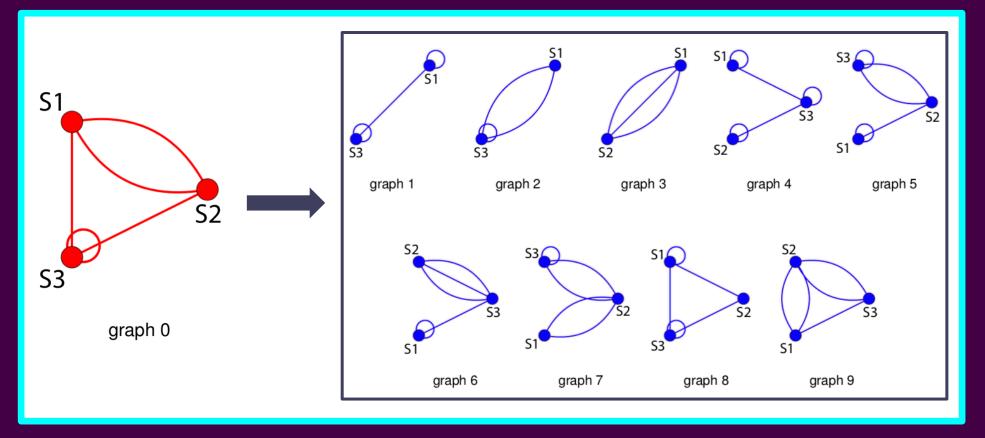


Shuting Yan & Lucille Tsao

Qiyao Zhu & Swati Jain

- **Identify self-folding subdomains** (a)
- 2D + 3D modeling **(b)**
- **Mutation Analysis (Eterna) (c)**
- **Drug Binding Studies** (d)


Preliminary RNA Model of Spike Protein Gene


COVID-19 RNA is 89% similar to SARS-Cov and 50% similar to MERS-Cov

ORF1ab Frame Shifting Pseudoknot

- Ribosomal frame shifting is a strategy to translate overlapping reading frames—used in HIV, SARS, and others
- Frame shifting mechanisms rely on specific fold motifs and associated structural transitions
- These regions and/or transitions are potential anti-infective targets
- In SARS, the key fold motif is a 3-stem pseudoknot (intertwined base pairs) region

Destroy This Pseudoknot by Mutations or Drugs

- Use our graph-based genetic algorithm (RAG-IF) to destroy stem and/or pseudoknot
- Identify fragile residues for mutations or drug binding

Structural Repertoire Available from RAG Analysis

2-1	3-1	4-1 4-2	/ 5-1	5-2	\sim	6-1	6-2	6-3	10-1	10-2 1	0-3 10-4	10-5	10-6	10-7	10-8	10-9 1	10-10		11-3	$\frac{1}{\sqrt{1}}$	1-5 11-4		11-8		/ 7	\sim	3				
	1	: -	V 1	×.	\sim	1	\sim	~	10.11					10.17	10.10	Y- 1	N. 10	11-11 11-	12 11-13	11-14 11	1-15 11-1	6 11-17	11-18	11-19 11	-20 11-13	31 11-132	11-1	EXI	stir	Ig	
6-4	6-5	6-6 7-1	7-2	7-3	7-4	7-5	7-6	7.7	10-11	10-12 10	10-13	4 10-15	10-16		10-18	10-19	10-20	TI	~~/	6/1	1 4	$\sim T$	Y	1-1-	Г +	. +-	4				
X	×	6-6 7-1	\sim	5	1	X.	K	X	1	74 D	< K	• K	1.	1	¥-	1×1	Le.	11-21 11-	22 11-23	11-24 11	1-25 11-2	6 11-27	11-28	11-29 11	-30 11-14	41 11-142	11-1	RN	A-li	ke	
7-8	7-9	7-10 7-1	8-1	8-2	8-3	8-4	8-5	8-6	10-21	10-22 10	0-23 10-24	4 10-25	10-26	10-27	10-28	10-29 1	10-30	$T \checkmark$		Ka	エル	1 12	\mathcal{X}	木い	とーシ	KK.	ネ				
{	+.	7-10 7-1		~ 1		~/ .	m.	\mathcal{V}		K.	1.2		1	~	X+ .	X	X	11-31 11-	32 11-33	11:34 11	1-35 11-3	6 11-37	11-38	11-39 11	-40 11-15	51 11-152	11-1	Нул	h	hati	ical
0.7		8.0 8.1		0.12	0.13	0.14	0.15	0.16	10-31	10-32 10	-33 10-3	4 10-35	10-36	10-37	10-38	10-39	10-40	イン	ィン	$\langle \cdot \rangle$	$\Upsilon \lambda$	$\cdot \mathcal{X}$	士	とい	< 7. A	4	×	ועיי	500	ICU	Cai
~	1.	8-9 8-10 		~	5	14		Ŝ	75	5.	Ϋ́	. 14	- -	~	-F. '	75.	Y.	11-41 11-	42 11-43	11-44 11	1-45 11-4	6 11-47	11-48	11-49 11	-50 11-16	51 11-162	11-1				
1	14.	γ \sim	\sim	\sim	1	*	7	-	10-41	10-42 10	-43 10-4i	4 10-45	10-46	10-47	10-48	10-49 1	10-50	1/	イチ	K)	$\vee \prec$	へ	Y	V_{7}	たた	-4	~ -	Ϋ́κ	X X	4大、	¥Χ
8-17	8-18	8-19 8-2	8-21	8-22	8-23	9-1	9-2	9-3	14	XY	¥Х	K	¥.	Yr.	不	Y. 1	X-	11.51 11.	52 11.53	11.54 11	1.55 11.5	6 11.57	11.58	11.50 11	-60 11-17	71 11-172	11-173 11-	174 11-175	11-176 11-1	77 11-178	11-179 11-18
14	ホワ	★ ↓	: X	×-	\times		\sim									10-59 1	10-60	なた	- 4<	λ_{λ}	k =	、ズ	~¥	τŀ	くぼ	- XF	-¥-7	- ×	×1	ЧX.	$\langle X X \rangle$
0.4	0.5	0.6 0.7	0.8	0.0	9-10	9.11	9-12	9-13	士	エト	之 大 大	: ~	The	÷.	セ	T.	. V	11.61 11.	11.63	11.64 11	1.65 11.6	6 11.67	11.60	11.60 11	70 11.10	11.102	11.103 11.	104 11.105	11.106 11.1	07 11 100	11,100 11,10
~/	V -	ΥT	112	λ	12	~	Y									10-69 1	10-70	主人	< Y.	Xex	$< \pi$	- 4-	K	\mathcal{K}	ĽЖ	- 74-	XI	- 16	そう	(火)	$\frac{1}{2}$
0.14	0.15	0.16 0.1	0.18	0.10	0.20	0.31	0.22	0.22	×	アノ	× ····	K.	÷.	1	Ke.	¥.	- L	• •		•		-			• • • •						
\rightarrow	- <u>-</u> -	1. 5	~ ~~	1		1	متر		10-71	10-72 10)-73 10-74	4 10-75	10-76	10-77	10-78	10-79 1	10-80	ケス	- K<	Дa	ビム	< X<	15	ネー	ΕŽ	The	本ら	E Xe	**	F - X	× *
2	\sim	Ķ.Ž	• .	\sim	\sim	\sim	· >-	÷	X	Ϋ́́́́́́	をそ	. 34	X	4	4	Y.	× 6	11 01 11	0.0 11.00	33.04 33	1 05 11 0	4 11 07	33.00	13 00 33	00 11 20	0.11.000	11 202 11	104 11 205	11 306 11 3	07 11 200	11 200 11 21
9.24	9.75 4	9.26 9.2	7 9.28	9.79	0.30	9.31	0.32	9-33			• •		-	•	•		10.00	КĄ	<)\F	イド	손그	\sim	T.	$f_{\rm F}$	$F \not\leftarrow$: 24	₩.	ビギ		- *	\mathbf{k}
X.	XY	$\tilde{\langle}$	< X	<u>-</u>	X		K	×	10-81		10.0		10-80	10-07	10-66	.V.	X.	11-91 11-	92 11-93	11-94 11	1-95 11-9	6 11-97	11-98	11-99 11	100 11-21	11 11-212	11-213 11	214 11-215	11-216 11-2	17 11-218	11-219 11-22
0.24	0.00	0.26 0.2	0.00	0.20	0.40	0.43	0.40	0.45	\sim	+ ·	$\leftarrow \nabla$	44	1	÷	\times	\mathcal{K}	.l≪-	ΥY	$\langle \mathcal{H} \rangle$	ホア	< /F		Y.	生り	\prec	**	***	< ₩<	74-2	≤ +{<-	$\star \star$
1	Y.	<u>}</u>	<	J.	4	\times	ж	J.	10.91	10-92 10	0-93 10-94	4 10-95	10-96	10-97	10-98	10-99 1	0-100	11-101 11-1	02 11-103	11-104 11	-105 11-1	06 11-107	11-108	11-109 11	110 11-22	21 11-222	11-223 11-	224 11-225	11-226 11-2	27 11-228	11-229 11-23
	7-1		- 15-	1-	4	7	15	4	\sim	7.	$ \in X $	• . K-	Y-	.4.	\mathcal{H}	1	\star	K: , k	く不	*	(* ^3	-7-	Tr.	Ŧ-	1-7	- 74	**	- X.	ネネ	- *-	* *
1	\sim	14 V	Tre	~ 7	0		.		10-101	10-102 10	-103 10-10	4 10-105	5 10-106	10		wt a															
÷	\sim	₩.	Ire	e 2	-9	vel		es	T	*	* *	• **-	*	IU	ve	rie	X	エオ	: X -	K. 7	÷ż	: 7	不	₩.	Ľ.∦	- X-	- X *	€*	11	ver	τех

http://www.biomath.nyu.edu/rna

Drug Exploration: Screen for Compounds to Bind Fragile Mutations

- SARS drug ... already known to inhibit pseudoknot: "1,4-diazepam derivative 10" inhibits translational frame shifting in cell models
 - Chemical structures of 1,4-diazepam derivative 10 Binding in the active site of SARSpseudoknot
- Virtual drug screening for related compounds that bind fragile regions will identify potential candidates

Park, Kim, and Park, JACS 133(26):10094 (2011)

Tamar Schlick's NYU Team

