
1 The Sleeping-Barber Problem.

A barbershop consists of a waiting room with n chairs and the barber room containing the
barber chair. If there are no customers to be served, the barber goes to sleep. If a
customer enters the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits in one of the
free chairs. If the barber is asleep, the customer wakes up the barber.

(1) Write a program to coordinate the barber and the customers.

Answer:

We use 3 semaphores. Semaphore customers counts waiting customers; semaphore
barbers is the number of idle barbers (0 or 1); and mutex is used for mutual exclusion. A
shared data variable customers1 also counts waiting customers. It is a copy of customers.
But we need it here because we can’t access the value of semaphores directly. We also
need a semaphore cutting which ensures that the barber won’t cut another customer’s
hair before the previous customer leaves.

// shared data
semaphore customers = 0;
semaphore barbers = 0;
semaphore cutting = 0;
semaphore mutex = 1;
int customer1 = 0;

void barber() {
 while(true) {
 wait(customers); //sleep when there are no waiting customers
 wait(mutex); //mutex for accessing customers1
 customers1 = customers1 - 1;
 signal(barbers);
 signal(mutex);
 cut_hair();
 }
}

void customer() {
 wait(mutex); //mutex for accessing customers1
 if (customers1 < n) {
 customers1 = customers1 + 1;
 signal(customers);
 signal(mutex);

wait(barbers); //wait for available barbers
 get_haircut();
 }

 else { //do nothing (leave) when all chairs are used.
 signal(mutex);

}
}
cut_hair(){
 waiting(cutting);
}
get_haircut(){
 get hair cut for some time;
 signal(cutting);
}

(2) Consider the Sleeping-Barber Problem with the modification that there are k barbers
and k barber chairs in the barber room, instead of just one. Write a program to coordinate
the barbers and the customers.

Answer:

// shared data
semaphore waiting_room_mutex = 1;
semaphore barber_room_mutex = 1;
semaphore barber_chair_free = k;
semaphore sleepy_barbers = 0;
semaphore barber_chairs[k] = {0, 0, 0, …};
int barber_chair_states[k] = {0, 0, 0, …};
int num_waiting_chairs_free = N;

boolean customer_entry() {

// try to make it into waiting room
wait(waiting_room_mutex);
if (num_waiting_chairs_free == 0) {

signal(waiting_room_mutex);
return false;

}

num_waiting_chairs_free--; // grabbed a chair
signal(waiting_room_mutex);

// now, wait until there is a barber chair free
wait(barber_chair_free);

// a barber chair is free, so release waiting room chair
wait(waiting_room_mutex);
wait(barber_room_mutex);
num_waiting_chairs_free++;
signal(waiting_room_mutex);

// now grab a barber chair
int mychair;
for (int I=0; I<k; I++) {

if (barber_chair_states[I] == 0) { // 0 = empty chair
mychair = I;
break;
}

}
barber_chair_states[mychair] = 1; // 1 = haircut needed
signal(barber_room_mutex);

// now wake up barber, and sleep until haircut done
signal(sleepy_barbers);
wait(barber_chairs[mychair]);

// great! haircut is done, let’s leave. barber
// has taken care of the barber_chair_states array.
signal(barber_chair_free);
return true;

}

void barber_enters() {

while(1) {
// wait for a customer
wait(sleepy_barbers);
// find the customer
wait(barber_room_mutex);
int mychair;
for (int I=0; I<k; I++) {

if (barber_chair_states[I] == 1) {
mychair = I;
break;

}
}
barber_chair_states[mychair] = 2; // 2 = cutting hair
signal(barber_room_mutex);

// CUT HAIR HERE
cut_hair(mychair);

// now wake up customer
wait(barber_room_mutex);
barber_chair_states[mychair] = 0; // 0 = empty chair
signal(barber_chair[mychair]);
signal(barber_room_mutex);

// all done, we’ll loop and sleep again
}

}

2. The Cigarette-Smokers Problem. Consider a system with three smoker processes and
one agent process. Each smoker continuously rolls a cigarette and then smokes it. But to
roll and smoke a cigarette, the smoker needs three ingredients: tobaccor, paper, and
matches. One of the smoker processes has paper, another has tobacco, and the third has
matches. The agent has an infinite supply of all three materials. The agent places two of
the ingredients on the table. The smoker who has the remaining ingredient then makes
and smokes a cigarette, signaling the agent on completion. The agent then puts out
another two of the three ingredients, and the cycle repeats. Write a program to
synchronize the agent and the smokers.

Answer:

We use 5 semaphores. Semaphore smoker_tobacco, smoker_match, smoker_paper,
agent are binary semaphores; and lock is used for mutual exclusion.

// shared data
Semaphore smoker_match=0;
Semaphore smoker_paper=0;
Semaphore smoker_tobacco=0;
Semaphore agent=0;
Semaphore lock=1;

void agent{

while(1){
wait(lock);
randNum = rand(1, 3); // Pick a random number from 1-3
if (randNum == 1) {

// Put tobacco on table
// Put paper on table
signal(smoker_match); // Wake up smoker with match

} else if (randNum == 2) {
// Put tobacco on table
// Put match on table
signal(smoker_paper); // Wake up smoker with paper

} else {
// Put match on table
// Put paper on table
signal(smoker_tobacco); // Wake up smoker with tobacco

}
signal(lock);
wait(agent); // Agent sleeps

}
}

void Smoker1{

while(1){
wait(smoker_tobacco); // Sleep right away
wait(lock);
// Pick up match
// Pick up paper
signal(agent);
signal(lock);
// Smoke (but don't inhale).

}
}

void Smoker2{

while(1){
wait(smoker_ match); // Sleep right away
wait(lock);
// Pick up tobacco
// Pick up paper
signal(agent);
signal(lock);
// Smoke (but don't inhale).

}
}

void Smoker3{

while(1){
wait(smoker_ paper); // Sleep right away
wait(lock);
// Pick up match
// Pick up tobacco
signal(agent);
signal(lock);
// Smoke (but don't inhale).

}
}

The smoker immediately sleeps. When the agent puts the two items on the table, then the
agent will wake up the appropriate smoker. The smoker will then grab the items, and
wake the agent. While the smoker is smoking, the agent can place two items on the table,
and wake a different smoker (if the items placed aren't the same). The agent sleeps
immediately after placing the items out. This is something like the producer-consumer
problem except the producer can only produce 1 item (although a choice of 3 kinds of
items) at a time.

