Csc744 Homework 3 Answer

Fall 2008
 assigned on 11/12/2008
 due on 11/26/2008
Problem 1. Give an CREW algorithm for solving the problem of multiplying an n×n matrix A and vector X in O(lg n) time. How many processors does your algorithm require? How much work does it require? Comparing your algorithm to its sequential counterpart, what is its efficiency and speedup? (Use O(.) notation to describe various results).
Ans:

· Sequential algorithm: the running time is O(n2).

· Parallel algorithm: A simple algorithm for multiplying n × n matrix A and vector X on a CREW PRAM with time complexity T = O(lg n) and P = n2 follows. Processors are indexed as triples (i, j), where i, j = 1, . . . , n. In the first step processor (i, j) concurrently reads aij from matrix A and concurrently reads bj from vector X and performs the multiplication aij*bj. In the following steps, for all i the results (i, j) are combined, using the parallel sum algorithm to form ci = (j aijbj. After lgn steps, the result ci is thus computed.

CREW

1. aij to all (i,j) procs

O(1)

 bj to all (*,j) procs

O(1)

2. aij*bj at (i,j) proc

O(1)

3. parallel sumj aij *bj (i,*) procs

O(lgn) n procs participate

4. ci = sumj aij*bj

O(1)

T=O(lgn),P=O(n2) W=O(n2 lgn) W2 = O(n2), S=O(n2)/O(lgn)= O(n2/lgn).

Problem 2. Make the algorithm in Problem 1 to work on an EREW PRAM. What is its running time?

Ans:

· processors are indexed as triples (i, j), where i, j = 1, . . . , n. In the first step processor (i, j) concurrently reads aij from matrix A and concurrently reads bj from vector X and performs the multiplication aij*bj. In the following steps, for all i the results (i, j) are combined, using the parallel sum algorithm to form ci = (j aijbj. After lgn steps, the result ci is thus computed.

EREW

1. aij to all (i,j) procs

O(1)

 bj to all (*,j) procs

O(lgn)

2. aij*bj at (i,j) proc

O(1)

3. parallel sumj aij *bj (i,j) procs

O(lgn) n procs participate

4. ci = sumj aij*bj

O(1)

T=O(lgn),P=O(n2) W=O(n2 lgn) W2 = O(n2), S=O(n2)/O(lgn)= O(n2/lgn).

Problem 3.

We have an array of n elements. Attached to its element is a tag with a value of 0 or 1. We want to group the elements in the array in such a way that the 0-tagged elements come before the 1-tagged ones and the order of same-tagged elements must be preserved. So if element A is in position 5 and B is in position 8 and both A and B are tagged 0 we want in the output A to precede B. Give an O(lg n)-time algorithm that uses n processors on an EREW PRAM. Can you solve the problem with only n= lg n processors?
Ans:

Reviewing parallel prefix (ppf).

In parallel prefix of x1, …, xn (assume + as the associative operator), all x1 +…+xi, i = 1, …, n are computed; one of them is also x1 +: : :+xn. In the tree implementation of parallel prefix this is computed in step lg n by the root processor. If the root processor broadcasts it to the remaining processors, then all processors will receive it after

lg n additional steps. From now on, every time we perform a ppf the sum x1 + … + xn will also be computed and made available to all processors.

Input conventions.

We assume that each item i, has a single item A[i]. A flag attached to item A[i] that is either 1 or 0 will drive the compaction. We call that flag f[i] for item i.
The items are going to be moved in an output array B[1.. n].
Suppose we have a 0's and n-a 1's. An item A[k] whose flag f[k] is 0 will occupy one of the position B[1..a]; items with flag 1 will occupy B[a + 1 .. n].

We show first an unoptimized version of our proposed compaction algorithm

Compact (A[1..n],f[1...n],n,B[1..n])

1. if (f[i] == 0) c[i]=1; // if f[i]=0

 else c[i]=0; // if f[i]=1

2. Parallel_Prefix (c[1..n],d[1..n],n);

3. if (f[i]==0) // i.e. c[i]==1/f[i]==0 processors participate in step 4

4.
B[d[i]] = A[i]; // d[i] is destination address for item i.

// Broadcast d[n] (number of zeroes) everywhere.

5. Broadcast(n,d[n],Total) //Proc n broadcasts d[n] into variable Total (one copy per processor)

// Do the same for f[i]=1 items.

6. if (f[i] == 1) c[i]=1; // if f[i]=1

 else c[i]=0; // if f[i]=0

7. Parallel_Prefix (c[1..n],d[1..n],n);

8. if (f[i]==1) // i.e. c[i]==1/f[i]==0 processors participate in step 4

9.
B[Total[i] + d[i]] = A[i]; // d[i] is destination address for item i.
Lines 1-2. Every processor i is assigned one element of the input, i.e. an A[i] and f[i]. If f[i] is an 0, a variable c[i] is set to one, otherwise it is set to zero. This step seems superuous and it is. In essence step 1 is c[i] = 1- f[i].

A parallel prefix operation is initiated on the c[1.. n] and the output is a d[1.. n] array.

Lines 3-4. Processors i has input c[i] and output d[i]. What is d[i]? d[i] is the number of zeroes found in the subarray f[1.. i]. Therefore d[i] is the destination position for item A[i].

Line 5 The d[n] the number of items with f[i] = 0 is also computed in the ppf by processors n and this value is broadcast in line 5. We assume that variable Total (one copy per processor) has this value. The copy of processor i is Total[i].

Lines 6-9. The same thing is repeated for the items with f[i] = 1. Note that these items will be stored in B not in B[1 .. Total[i]] but in B[Total[i] + 1 .. n]. Therefore in the destination address computed in line 9, we must include Total[i] (i.e compute the right offset).

2,5,7 Suppose we use P = n processors. The running time of steps 1,3,4,6,8,9 all require O(1) and steps 2,5,7 require O(lg n) steps (parallel prefix or broadcasting). The work is that of ppf or broadcasting.

If however we use P = n/lg n processors both ppf and broadcasting can still be done in O(lg n) with work W = W2 =θ(n). Steps 1,3,4,6,8,9 however will be done in O(lg n) time as each processor i will work on lg n items. The running time and work-load remains the same.
Question. Can we do better? We can shave off one parallel prefix operation.
Compact2(A[1..n],f[1...n],n,B[1..n])

1. if (f[i] == 1) c[i]=1; // if f[i]=1

 else c[i]=0; // if f[i]=0

2. Parallel_Prefix (c[1..n],d[1..n],n);
// Broadcast n-d[n] (number of zeroes) everywhere.

3. Broadcast(n,n-d[n],Total);

4. if (f[i]==1) // i.e. c[i]==1/f[i]==0 processors participate in step 4

5.
B[Total[i] + d[i]] = A[i]; // d[i] is destination address for item i.

6. if (f[i]==0)

7.
B[i-d[i]]= A[i];

Compact2 does one less parallel prefix. Lines 1 and 2 are a copy of lines 6 and 7 and line 3 does the same thing as line 5 of Compact. Lines 4 and 5 move the items with flags f[i] that are 1 similarly to lines 8 and 9 of Compact. The new thing is lines 6 and 7 of the code that move the items with flags f[i] that are zeroes. After the parallel prefix of line 2, the value d[i] for an item i with f[i] = 0 shows the number of 1's in A[1.. i]. If we have d[i] items with flags 1's in A[1.. i], then we must have i - d[i] items with flags zeroes in A[1.. i]. One of these is of course A[i]. Show what is the destination address for A[i] in B[]? It is just i - d[i]! That's what we do in line 7 of Compact2.

The asymptotics of Compact2 are those of Compact1.
Problem 4*.
Computer Fn, the nth Fibonacci number, given an integer n as input. Show how to solve this problem in time O(lg n) on an EREW PRAM with n processors. Assume that one word of memory is long enough to hold Fn. All arithmetic operations (add, subtract, multiply) take constant time. Recall that Fn is defined by the following recurrence: F0 = 0; F1 = 1, and Fn = Fn-1 + Fn-2 for n >= 2.
Ans:

We note that
[image: image1.wmf]ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

-

-

-

2

1

1

0

1

1

1

n

n

n

n

F

F

F

F

and thus by unfolding the recurrence n-1 times by similarly expanding the vector of Fn-1, Fn-2 we obtain that

[image: image2.wmf]ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

-

-

0

1

1

1

0

1

1

1

F

F

F

F

n

n

n

We know F1, F0 by the base case. Thus applying problem 2 (for a matrix, not a number) we can find
[image: image3.wmf]1

0

1

1

1

-

ú

û

ù

ê

ë

é

n

in O(lg n) time and then multiply this matrix to the
[image: image4.wmf]ú

û

ù

ê

ë

é

0

1

F

F

vector in O(1) time to find Fn in O(lg n) overall time.
_1254150196.unknown

_1254150229.unknown

_1254150225.unknown

_1254147674.unknown

