
Computing Interest Using MFC

Much of the user friendly software we see today has a graphical user

interface (GUI, pronounced gooey). This is the windows desktop that we

have become familiar with. If we supply a GUI, users can click on buttons

and enter text into boxes for input. The steps below will help you to

complete the Interest Computation Program using GUIs.

a) Open a new project choosing CLR (Microsoft’s Common Language
Runtime protocols) as the Project type. Choose Windows Forms
Application under Templates. Below it is called compute interest.

b) If you wish your interface to be set up differently, you may use the

view menu to open the solution explorer, properties, and the toolbox.

You can then dock all three windows. (See My first GUI example to

get help with this).

c) Your screen should then look like this:

d) You may link and run your program. When you run your program, an

empty form comes up. Click on the close button at the corner to close

that window.

e) You can see the Toolbox at the right hand side of the screen above.

Looking at part a) of the problem as described for the console

application in Part 1) above, we wish to create input boxes for our

three known variables in the interest computation program. This will

allow the user to enter values. Drag three labels (A) and three text

boxes (ab|) onto the form.

f) For each of the label boxes: Select the label, then change the text of

the label using the Properties window.

a) Place another text box, and label box for the output variable,

changing the caption of the label box as above.

Click on each of the text boxes, and change the name in the

properties window. This will allow you to use a meaningful name in your

program.

Right click on each button, changing one caption to compute and one to

clear. For these buttons, you should also change the ID to something

more meaningful.

The compute button will be used to calculate the final result, and the

clear button will be used to clear all input values.

b) Drag two buttons from the Toolbox onto the form. Change the Text

properties and the name of each of these buttons. You may “Run

without Debugging” again to see your program Compile, Link and

Execute.

c) Double click on the Clear button to go to the code of the event

handler to enter the C++ commands below.

d) Double click the compute button to create the event handler for

compute. You wish the calculation of interest to be performed each

time the user clicks on the compute button. Modify your code from

Part I of this assignment to use the user’s input to set the value of

the edit box that has not been filled in. Hint: First write the code

that allows the user to place the starting amount, interest rate and

years and have your program fill in the final balance. Then change your

code so that the user can input ANY of the three variables, and have

the fourth computed. Remember, to place a value from a text box into

a double variable, you must use the TryParse function. For example:

double initialDeposit;

Double::TryParse(deposit->Text,initialDeposit);

//this function takes the text from the deposit textbox,

/

/con

vert

s it

to a

doub

le,

and

plac

es

/

/

i

t

i

n

t

o

t

h

e

v

a

r

i

a

b

l

e

i

n

i

t

i

a

l

D

e

p

o

s

i

t

(

s

e

e

t

h

e

a

d

d

5

e

x

a

m

p

l

e

f

o

r

/

/

m

o

r

e

h

e

l

p

o

n

t

h

i

s

)

How can you check to see which of the boxes is empty and must be

computed?

You can compare a textbox to the empty string to see if it is empty:

if (deposit->Text == "")

but to avoid errors instead use:

if (deposit->Text->Trim() == "")

The expression above uses the Trim() function to remove all leading

white spaces and ending white spaces from the text that is in deposit,

before it compares the text to the empty string. This way, a use

cannot enter spaces (looks empty but is not!) and cause the program to

fail.

NOTE: TO CALCULATE THE ABOVE YOU SHOULD HAVE e DECLARED AS

A const double, AND YOU MUST #include <cmath>. BOTH THESE

LINES CAN BE PLACED AT THE BEGINNING OF THE MAIN HEADER

FILE OF YOUR APPLIATION (LOOK UNDERTHE FILES TAB OF THE

WORKSPACE WINDOW AND CHOOSE THE HEADER FILE WITH THE

NAME OF YOUR APPLICATION).

e) Allow the user to choose one of two options: compounded continuously

(as above) or compounded monthly. (total =). You can do this with a

few more buttons as above, or explore the help files to use radio

buttons.

