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Abstract

We describe a method for improving the classi-
fication of short text strings using a combination
of labeled training data plus a secondary corpus
of unlabeled but related longer documents. We
show that such unlabeled background knowledge
can greatly decrease error rates, particularly if
the number of examples or the size of the strings
in the training set is small. This is particularly
useful when labeling text is a labor-intensive job
and when there is a large amount of information
available about a particular problem on the World
Wide Web. Our approach views the task as one
of information integration using WHIRL, a tool
that combines database functionalities with tech-
niques from the information-retrieval literature.

1. Introduction

The task of classifying textual data that has been culled
from sites on the World Wide Web is both difficult and in-
tensively studied (Cohen & Hirsh, 1998; Joachims, 1998;
Nigam et al., 1999). Applications of various machine learn-
ing techniques that attempt to solve this problem include
categorization of Web pages into sub-categories for search
engines, and classification of news articles by subject. Ma-
chine learning programs, such as C4.5 (Quinlan, 1993) and
RIPPER (Cohen, 1995) have the limitation that they learn
based solely upon previously classified data. It is often both
impractical and extremely tedious and expensive to hand-
label a sufficient number of training examples to achieve
the high accuracy that is needed for a given task. Given
the huge proliferation of data on the Web, only a tiny per-
centage of which can realistically be classified and labeled,
these programs are unable to exploit this information to
achieve higher accuracy when faced with new unlabeled ex-
amples.

Various researchers in text learning and mining have recog-
nized that although there might be very few labeled exam-
ples, there can be a tremendous amount of unlabeled exam-
ples. Nigam et al. (in press) have done work on this using
Expectation Maximization (EM) and a naive Bayes classi-
fier. The parameters of the naive Bayes classifier are set us-
ing labeled examples. The learned model is then used by
EM to probabilistically classify unlabeled documents, with
the resulting collection of classified documents used to es-
timate a new set of parameters for naive Bayes. The EM al-
gorithm iterates until there is no change in the naive Bayes
parameters. Nigam et al. present a number of experimen-
tal results that show that error rates can be reduced signifi-
cantly using unlabeled examples in this way. Other related
algorithms are described by McCallum and Nigam (1999)
and Jones et al. (1999).

Blum and Mitchell’s (1998) co-training algorithm also uses
unlabeled data to improve learning. Their algorithm applies
to problems where the target concept can be described in
two redundantly sufficient ways (such as through two dif-
ferent subsets of attributes describing each example). Each
view of the data is used to create a predictor, and each pre-
dictor is used to classify unlabeled data which are then used
to further train the other learner. Blum and Mitchell prove
that under certain conditions, the use of unlabeled examples
in this way is sufficient to PAC-learn a concept given only
an initial weak learner. Lewis and his colleagues (Lewis &
Gale, 1994; Lewis & Catlett, 1994) also make use of unla-
beled data in learning, but focus on asking for labels from
a human labeler for only a modest subset of the data, those
whose class membership is most undecided given the result
of learning on the data that has been labeled thus far.

This paper also describes a method that uses a corpus of un-
labeled data to assist in the classification task. However,
unlike the preceding approaches, we do not attempt to clas-
sify the data, and, indeed, do not even require that it be of a
form comparable to that of the training data. In many cases
it is not even possible to classify the data using the classi-
fication schema of the labeled instances. Instead, we use
the unlabeled corpus as “background knowledge” for the



learner, to aid it in its decision task. Rather than directly
comparing a new unlabeled example directly to elements
of the labeled training corpus, we use the unlabeled back-
ground knowledge as a “bridge”, to connect the new exam-
ple with labeled examples. A labeled training example is
useful in classifying an unknown test instance if there exists
some set of unlabeled background knowledge that is simi-
lar to both the test example and the training example. We
call this a “second-order” approach to classification, in that
data are no longer directly compared but, rather, are com-
pared one step removed, through an intermediary.

In more detail, in this paper we look at improving the clas-
sification of short text strings by using unlabeled but related
longer documents. A concrete example of the usefulness of
our approach can be seen in the task of assigning topic la-
bels to technical papers. In labeling the title of a physics ar-
ticle with its sub-specialty, any title containing a word such
as galaxy should easily be classified correctly as an astro-
physics paper, even if there are few training articles in that
domain. However, an article on a less common topic, as
for example old white dwarfs, would only be classified cor-
rectly if a title with these words appears in the labeled train-
ing examples. Although the training set does not contain
the words old white dwarf in our experimental data, our sys-
tem is able to correctly classify a title with these words as
astrophysics, by utilizing a corpus of unlabeled paper ab-
stracts from the same field, which is naturally available on
the Web. In our “second-order” approach, our system finds
those unlabeled paper abstracts that are most similar to both
old white dwarfs and to various training titles. These train-
ing titles are then used to classify old white dwarfs correctly,
although each of these titles is quite dissimilar to it when
compared directly.

In order to achieve our goal, we use WHIRL (Cohen,
1998a; Cohen, 1998b) which is a conventional database
system augmented with special operators for text compar-
ison. Its use as a text classification program is a near-
est neighbor approach (Cohen & Hirsh, 1998), with text
documents specified as TFIDF vectors, and similarity be-
tween text documents measured as cosine similarity (Salton
1989). WHIRL makes it possible to pose SQL-like queries
on databases with text-valued fields. If we consider the
trainingexamples as a table, the background knowledge as a
table, and a test example as a table as well, WHIRL provides
a framework in which we can easily specify and explore
“second-order” similarity classification. It allows for suc-
cinct queries that specify the combination of training simi-
larity and background similarity to a new test example.

In the next section we give a brief review on WHIRL and
a discussion on how we use it for classification with unla-
beled data. We then describe four distinctly different do-
mains on which we tested our system. The domain descrip-

tions are followed by a set of results for each of the domains
for varied data sets. We conclude with a discussion of the
various possible dimensions that our choices along the way
can take and directions for current and future research.

2. Our Approach

2.1 WHIRL for Text Classification

WHIRL (Cohen 1998a; Cohen 1998b) is an information in-
tegration tool that is specifically designed to query and inte-
grate varied textual sources from the Web. WHIRL’s SQL-
type queries can search and retrieve textual sources based
upon specified conditions. Assume that we have a corpus of
training examples with labels, and a test example that must
be assigned a label. The training examples can be viewed
as a table with the field instance, to hold the textual data,
and field label to hold the class label. The test example is
a one line table, with simply the textual field instance. An
example of a WHIRL query (Cohen & Hirsh, 1998) is:

SELECT Test.instance, Train.label
FROM Train AND Test

WHERE Train.instance SIM Test.instance

Given a user-specified parameter K, this query will first gen-
erate an intermediate table containing the K tuples

〈Test.instance, Train.instance, Train.label〉

that maximize the similarity score between Test.instance
and Train.instance. Unlike traditional SQL queries,
the result of this is a set of tuples ordered by score,
with the highest score representing the closest
Train.instance, Test.instance pair, using WHIRL’s SIM op-
erator to compute the similarity of these textual documents.

To compute similarity WHIRL computes a model of each
text document by representing each document as a vector
in a vector space. This representation is computed by pass-
ing each document through a stemmer (Porter, 1980) and
by then computing weights for each term using the TFIDF
(Salton, 1989) weighting method. Distances between vec-
tors are computed using the cosine metric, which represents
the statistical similarity between documents.

In WHIRL’s final step it takes this table of K tuples and
projects it onto the fields specified in the SELECT state-
ment. Note that this can mean that there may be many train-
ing examples among theK with the same label (i.e., multi-
ple nearby examples in the training set), and these are com-
bined into a single tuple in the final result table. The com-
bination of scores is performed by treating scores as proba-
bility and the combination as a “noisy or.” If the individual
scores of the tuples with a given label are {s1, . . . , sn}, the
final score for that label is 1 − ∏n

i=1(1 − si). Whichever
label has the highest score in the resulting projected table is



returned as the label for the test instance. This method bears
many similarities to the nearest-neighbor method of Yang
and Chute (1994), which has been shown to perform quite
well on text classification tasks (Cohen & Hirsh, 1998). In-
deed, based on these two papers we also use a value ofK =
30 in our experiments.

2.2 WHIRL with Background Knowledge

The question we now ask is: How can we use a large body
of unlabeled data, or “background knowledge”, to aid clas-
sification? Although these pieces of information need not
be labeled, and indeed may have no relationshipwhatsoever
to the classification task, we would hope to learn something
from the word combinations in these examples. Such back-
ground knowledge may provide us with a corpus of text that
contains information both about importance of words (in
terms of their TFIDF values in this large corpus), and joint
probability of words (what percentage of the time do two
words coexist in a document?). This gives us a large con-
text in which to test the similarityof a training example with
a new test example. We can use this context in conjunction
with the training examples to label a new example.

Because of WHIRL’s expressive language, and the ability
to create conjunctive queries simply by adding conditions
to a query, WHIRL’s queries for text classification can be
expanded to allow for the use of “background knowledge”
on a subject. In the example of the classification of physics
paper titles discussed earlier, suppose that we had a fairly
small set of labeled paper titles, and also a very large set of
unlabeled titles, papers or abstracts (or Web pages resulting
from a search), in a relation called Background with a single
field, value. We can create the following query for classifi-
cation

SELECT Test.instance, Train.label
FROM Train AND Test AND Background

WHERE Train.instance SIM Background.value
AND Test.instance SIM Background.value

Here each of the two similarity comparisons in the query
computes a score, and WHIRL multiplies them together to
obtain a final score for each tuple in the intermediate-results
table. This table is then projected onto the Test.instance
and Train.label fields as discussed before. Whichever label
gives the highest score is returned as the label for the test
example.

One way of thinking about this is that rather than trying to
connect a test example directly with each training exam-
ple, it instead tries to bridge them through the use of an ele-
ment of the background table. Note that WHIRL combines
the scores of tuples generated from different matches to the
background table. Our use of WHIRL in this fashion thus
essentially conducts a search for a set of items in the back-
ground knowledge that are close neighbors of the test ex-

ample, provided that there exists a training example that is
a neighbor of the background knowledge as well. Train-
ing neighbors of a test example are defined differently when
background knowledge is incorporated. If words in a test
example are found in some background knowledge, then
other words that are in that background knowledge can con-
nect this test example to dissimilar (in terms of word over-
lap and direct cosine difference) training examples. The fi-
nal classification thus integrates information from multiple
training examples and the multiple “bridge” examples that
lie between them in the background text.

Note that this approach does not concern itself with which
class (if any!) a background item belongs to. We instead
simply use the text directly as part of the decision-making
process. This is in contrast to an approach that would ex-
plicitly use the training set to classify the background items
as if they were true examples, and then add them to the la-
beled set. Our method allows for more sophisticated use
and combination of the training instances and background
knowledge. A background instance that is close to numer-
ous training instances can be included more than once in the
table returned by the WHIRL query – even if the training
examples that it is close to have different classes. Similarly,
a training example can also be included in the table multiple
times, if it is close to numerous background instances. Sup-
pose that our classification task consists of labeling the first
few words of a news article with a topic. If a test example
belongs to the category sports, for instance, the cosine dis-
tance between the few words in the test example and each
of the small number of training examples might be large.
However, we would hope that given a large corpus of unla-
beled news articles, it is likely that there will be one or more
articles that contains both the few words of the test example
and the words of one of the training examples.

Finally, note that, our use of “background knowledge” in
a WHIRL query is in a sense a form of query expansion
(Buckley et al., 1995). Instead of directly searching for
the training examples that are closest to a test example
we search for the training examples that are closest to the
“background knowledge” expansion of the the test exam-
ple. However, unlike standard query expansion, and be-
cause of our conjunctive conditions, the background knowl-
edge expansion itself is chosen with respect to the training
example that it is close to. This means that each query has
multiple expansions, and all those that maximize the score
of the conjunctive condition are combined.

3. Experiments and Results

We have tested our system on four distinct text-
categorization tasks that we have taken from the World
Wide Web. In each case, the training and test examples
are short text strings, a problem that is prevalent in real-



world applications and for which WHIRL was especially
designed. For each of our four problems, the source of our
background knowledge varies, sometimes originating at
the same site from which we obtained the labeled data, and
sometimes from unrelated sites also found on the Web.

3.1 Data Sets

Technical papers One common text categorization task
is assigning discipline or sub-discipline names to techni-
cal papers. We created a data-set from the physics papers
archive (http://xxx.lanl.gov), where we downloaded the ti-
tles for all technical papers in the first three areas in physics
(astrophysics, condensed matter, and general relativity and
quantum cosmology) for the month of March 1999. As
background knowledge we downloaded the abstracts of all
papers in these same areas from the two previous months
– January and February 1999. In total there were 1701
pieces of knowledge in the background set, and 1066 in the
training-test set combined. The distribution of classes was
skewed, however, as there were 493 titles in astrophysics,
460 in condensed matter, and only 113 in quantum cosmol-
ogy. These background knowledge abstracts were down-
loaded without their labels (i.e., without knowledge of what
sub-discipline they were from) so that our learning program
had no access to them.

News Another data set that we created was obtained from
ClariNet news. We downloaded all articles under the sports
and banking headings on November 17th 1999, using the
most recent ones for training and test sets and the older
ones for background knowledge. In total, our background
knowledge consisted of a corpus of 1165 articles. The back-
ground knowledge in this problem consisted of the first 100
words of each of these articles. Informal studies showed
us that including the entire articles did not improve accu-
racy substantially, and degraded the efficiency of WHIRL.
Our training-testdata had 1033 data points of which 637 be-
longed to the sports category, and 406 belonged to banking
category. We present four sets of results in connection with
the 1033 data points, called 3-words, 5-words, 7-words and
9-words, corresponding to the test and training set consist-
ing of the first 3, 5, 7, or 9 words of each article respectively.

Web page titles To determine the usefulness of WHIRL
as a nearest neighbor classification tool, Cohen and Hirsh
(1998) used two data sets taken from the World Wide Web.
The first, NetVet (http://www.netvet.wustle.edu) included
the Web page headings for its pages concerning cows,
horses, cats, dogs, rodents, birds and primates. For exam-
ple, a training example in the class birds might have been:
“Wild Bird Center of Walnut Creek”. Each of these ti-
tles had a URL that linked the title to its associated Web
page. For the labeled corpus, we chose half of these titles
with their labels, in total 1789 examples. We discarded the

other half of the titles, with their labels, and simply kept the
URL to the associated Web page. We used these URLs to
download the first 100 words from each of these pages, to
be placed into a corpus for background knowledge. Those
URLs that were not reachable were ignored by the program
that created the background knowledge. In total there were
1158 entries in the background knowledge database.

Companies The second of Cohen and Hirsh’s data sets con-
sisted of a training set of company names, 2472 in all, taken
from the Hoover Web site (http://www.hoovers.com) la-
beled with one of 124 industry names. We created back-
ground knowledge from an entirely different Web site –
http://biz.yahoo.com. We downloaded the Web pages un-
der each business category in the Yahoo! business hierar-
chy to create 101 pieces of background knowledge. The
Yahoo! hierarchy had a different number of classes and dif-
ferent way of dividing the companies, but this was irrele-
vant to our purposes since we treated it solely as a source
of unlabeled background text. Each piece of background
knowledge consisted of the combination of Web pages that
were stored under a sub-topic in the Yahoo! hierarchy. Each
instance in the table of background knowledge was thus a
much longer text string than the training or test examples.

3.2 Results

We present a series of results and graphs that show that
WHIRL incorporating background knowledge most often
performs better than WHIRL without the supplementary
knowledge. This improvement is most dramatic when there
are fewer labeled examples, and when the labeled examples
are shorter strings.

However, since a number of the data sets are being used for
the first time in this paper, we start this section by compar-
ing the core WHIRL method without background knowl-
edge (which we label WHIRL-nn), to a more traditional
method, RIPPER (Cohen 1995), to demonstrate that our im-
provements are on top of already strong classification per-
formance. Error rates in Table 1 represent average error of
five cross-validated runs on the full training set. The “best”
value for each problem is shown in bold. Since WHIRL
uses the Porter’s stemming algorithm when it creates the
TFIDF representation, we used it as well, before giving the
data to RIPPER. As can be seen from this table, in all data
sets, WHIRL-nn outperforms RIPPER, and thus any im-
provements above and beyond WHIRL-nn that we now re-
port represent even stronger classification performance than
this credible state-of-the-art method.

The remainder of our results, presented in a series of fig-
ures, report error rates for the baseline WHIRL approach
WHIRL-nn to our new approach, which we label WHIRL-
bg. In each case we report error rates as we vary the num-
ber of training examples given to the learner. Each point



Table 1. Error rates: RIPPER vs WHIRL-nn

Data Set RIPPER WHIRL-nn
3-words 20.23 12.36
5-words 14.98 7.11
7-words 13.07 5.55
9-words 11.71 4.77
netvet 44.26 39.20
hoovers 77.95 70.90
2class physics 30.50 7.89
3class physics 39.96 16.90

represents an average of five cross-validated runs. For each
cross-validated run, four-fifths of the data is used as the
training set and one-fifth is used as the test set. Holding this
test set steady, the number of examples in the training set
was varied. Each data-set was tested with both WHIRL-nn
and WHIRL-bg using 20, 40, 60, 80, and 100 percent of the
data.

We present two sets of results on the physics data in Fig-
ure 1 and Figure 2. Figure 1 is a two-class problem, where
only the titles of papers in the astrophysics and condensed
materials classes were used. These classes had nearly the
same number of training examples. Figure 2 is a three class
problem, where a class with a fewer number of training ex-
amples was added to the previous problem. Figure 1 clearly
shows the effect that background knowledge can have on
text data sets. The line representing WHIRL-bg remains al-
most horizontal as fewer training examples were used, indi-
cating that the background knowledge compensated for the
lack of data. In contrast, WHIRL-nn sharply degraded as
fewer training examples are used. The helpfulness of the
background knowledge, therefore, also increased as fewer
training examples were used. When the third class was
added, error rates of both WHIRL-nn and WHIRL-bg went
up. However, the same effect of background knowledge can
be seen in Figure 2 as well.

Results on the ClariNet data set are presented in Figures 3–
6. The training and test set for these figures vary in terms
of number of words in each example, ranging from the first
three words in each article, to the first nine words. As ex-
pected, the smaller the number of words in each training
and test example, the worse both WHIRL-nn and WHIRL-
bg performed. The addition of background knowledge was
most useful with the shorter strings in the test and training
data as well. This is represented in Figures 3–6 by the point
at which the two lines intersect. For strings of length 3,
background knowledge reduced the error rates, even when
the entire set of training data was used. As the number
of words in the training-test examples increased, the point
at which background knowledge became helpful changed.
For strings of length 9, background knowledge reduced er-
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Figure 1. WHIRL-bg and WHIRL-nn for the two class paper title
problem
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Figure 2. WHIRL-bg and WHIRL-nn for the three class paper title
problem
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Figure 3. WHIRL-bg and WHIRL-nn for 3-word News
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Figure 4. WHIRL-bg and WHIRL-nn for 5-word News
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Figure 5. WHIRL-bg and WHIRL-nn for 7-word News
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Figure 6. WHIRL-bg and WHIRL-nn for 9-word News
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Figure 7. WHIRL-bg and WHIRL-nn for NetVet

ror rates only when less than 60 percent of the data was
used. This gives empirical evidence that the less informa-
tive the training data is, the greater the advantage in having
a corpus of background knowledge available for use dur-
ing classification. The size of the reduction in error rate ob-
tained by running WHIRL-bg was also greater when there
were fewer words in each example.

Results for the NetVet domain are graphed in Figure 7. Re-
ductions in error rate increased as the number of training
examples decreased. The NetVet domain is unlike the two
previously discussed in that there was overlap in topics in
the background knowledge. A Web page that could be use-
ful in classifying a test example as belonging to the cate-
gory of Dogs was quite likely to discuss Cats and vice versa.
Some of the training and test examples, too, could have
caused confusion. There were titles of Web pages on pet
stores or animal care that were placed under one topic, but
could just have easily been placed in many other different
categories. We therefore were not surprised to see that the
error rate did not decrease by a large percentage.

The results for the Companies data set are graphed in Fig-
ure 8. Once again, WHIRL-bg outperformed WHIRL-nn.
Using 100 percent of the data, the decrease in error rate is
substantial. However, when the percent of training exam-
ples that was used is lower, the difference in error rate be-
tween the two systems is reduced. This is unlike the results
of the previous three domains. This might have been due to
the fact that the training and test examples were company
names, which often consisted of words that occured only
once (for example, Xerox) so that reducing the number of
training examples actually reduced the dictionary of words
in the training corpus substantially. There were therefore
fewer words that could be used to find bridges in the back-
ground knowledge.
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Figure 8. WHIRL-bg and WHIRL-nn for Companies

4. Final Remarks

We have presented a method to reduce error rates in text
classification by using a large body of potentially uncoordi-
nated background knowledge. In all four domains to which
the system was applied, we saw substantial reductions in er-
ror rates, particularly when the set of labeled examples was
small. The use of background knowledge allowed for only
a small degradation in accuracy in almost all cases, even
when only twenty percent of the data was used.

There are a number of limitations of this work that we still
have to address. Efficiency of our queries will be an issue
that we have to deal with. WHIRL itself is very efficient,
yet our approach is essentially a nearest neighbor one, and
our “second-order” query with more than one condition has
a combinatorial search space.

Since the word combinations in the background knowledge
are crucial to the success of this method, another area of fu-
ture research is the effect of the source and nature of the
information in the background knowledge data base. Of
the four experimental data sets that we presented, the back-
ground knowledge in three of them came from the same site
as the training and test sets. Even in our fourth data set,
although the background knowledge comes from an unre-
lated Web site, all the background knowledge is from the
same Web site. Ideally, the background knowledge should
be culled from a combination of many different sites, and
be automatically created through a Web search.

In future work we plan to explore further refinements to
the WHIRL-bg approach. We are currently exploring a dis-
junction of the WHIRL-bg and WHIRL-nn queries. This
would allow for correct classification of a test example that
is close to the training examples, where appropriate back-
ground bridges might not exist. It can also help the issue

of efficiency, if useless search is pruned early. We will also
begin to look at further extensions of our approach. For ex-
ample, consider the query:

SELECT Test.instance, Train.label
FROM Train AND Test AND Background as B1

AND Background as B2
WHERE Train.instance SIM B1.value

AND Test.instance SIM B2.value
AND B1.value SIM B2.value

This type of query provides a different way for background
knowledge to bridge gaps between a training example and
the test example. Given that the test and training examples
only have a small bit of knowledge about the class to which
they belong, this query allows each small bit of knowledge
to be mapped to larger pieces of background knowledge
that are similar to each other. We are also investigating
the possibilityof incorporatingweights into the conjunctive
clauses of WHIRL to adjust the impact of training and test
data similarity.
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