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Abstract

We describe a method for improving the classi-
fication of short text strings using a combination
of labeled training data plus a secondary corpus
of unlabeled but related longer documents. We
show that such unlabeled background knowledge
can greatly decrease error rates, particularly if
the number of examples or the size of the strings
in the training set is smal. Thisis particularly
useful when labeling text is alabor-intensivejob
and when there is alarge amount of information
available about a particular problem ontheWorld
Wide Web. Our approach views the task as one
of information integration using WHIRL, atool
that combines database functionalitieswith tech-
nigques from the information-retrieval literature.

1. Introduction

The task of classifying textua data that has been culled
from sites on the World Wide Web is both difficult and in-
tensively studied (Cohen & Hirsh, 1998; Joachims, 1998;
Nigamet al., 1999). Applicationsof variousmachinelearn-
ing techniques that attempt to solve this problem include
categorization of Web pages into sub-categories for search
engines, and classification of news articles by subject. Ma-
chinelearning programs, such as C4.5 (Quinlan, 1993) and
RIPPER (Cohen, 1995) have the limitation that they learn
based solely upon previoudly classified data. It isoften both
impractical and extremely tedious and expensive to hand-
label a sufficient number of training examples to achieve
the high accuracy that is needed for a given task. Given
the huge proliferation of data on the Web, only atiny per-
centage of which can redlistically be classified and labeled,
these programs are unable to exploit this information to
achieve higher accuracy when faced with new unlabel ed ex-
amples.

Variousresearchers intext learning and mining have recog-
nized that although there might be very few labeled exam-
ples, there can be atremendous amount of unlabel ed exam-
ples. Nigam et d. (in press) have done work on this using
Expectation Maximization (EM) and a naive Bayes classi-
fier. The parameters of thenaive Bayes classifier are set us-
ing labeled examples. The learned model is then used by
EM to probabilistically classify unlabeled documents, with
the resulting collection of classified documents used to es-
timate a new set of parametersfor naive Bayes. The EM al-
gorithm iterates until there is no change in the naive Bayes
parameters. Nigam et al. present a number of experimen-
tal results that show that error rates can be reduced signifi-
cantly using unlabeled examplesin thisway. Other related
algorithms are described by McCallum and Nigam (1999)
and Jones et d. (1999).

Blum and Mitchell’s(1998) co-training algorithmal so uses
unlabeled datatoimprovelearning. Their algorithmapplies
to problems where the target concept can be described in
two redundantly sufficient ways (such as through two dif-
ferent subsets of attributes describing each example). Each
view of thedatais used to create a predictor, and each pre-
dictor isused to classify unlabel ed datawhich are then used
to further train the other learner. Blum and Mitchell prove
that under certain conditions, the use of unlabel ed examples
in thisway is sufficient to PAC-learn a concept given only
aninitial weak learner. Lewis and his colleagues (Lewis &
Gale, 1994; Lewis & Catlett, 1994) also make use of unla
beled datain learning, but focus on asking for labels from
ahuman labeler for only a modest subset of the data, those
whose class membership ismost undecided giventheresult
of learning on the data that has been |abeled thusfar.

This paper also describes amethod that uses a corpus of un-
labeled data to assist in the classification task. However,
unlikethe preceding approaches, we do not attempt to clas-
sify thedata, and, indeed, do not even requirethat it be of a
form comparable to that of thetraining data. In many cases
it isnot even possible to classify the data using the classi-
fication schema of the labeled instances. Instead, we use
the unlabeled corpus as “background knowledge” for the



learner, to aid it in its decision task. Rather than directly
comparing a new unlabeled example directly to e ements
of the labeled training corpus, we use the unlabeled back-
ground knowledgeas a“bridge’, to connect the new exam-
ple with labeled examples. A labeled training example is
useful in classifyingan unknown test instanceif thereexists
some set of unlabeled background knowledge that is simi-
lar to both the test example and the training example. We
cal thisa" second-order” approach to classification, in that
data are no longer directly compared but, rather, are com-
pared one step removed, through an intermediary.

In more detail, in this paper we look at improving the clas-
sification of short text stringsby using unlabel ed but related
longer documents. A concrete example of the useful ness of
our approach can be seen in the task of assigning topic la-
belsto technical papers. In labelingthetitleof aphysicsar-
ticlewith its sub-specialty, any title containing aword such
as galaxy should easily be classified correctly as an astro-
physics paper, even if there are few training articlesin that
domain. However, an article on a less common topic, as
for example old white dwarfs, would only be classified cor-
rectly if atitlewith thesewordsappearsin thelabeled train-
ing examples. Although the training set does not contain
thewordsold white dwarf in our experimenta data, our sys-
tem is able to correctly classify a title with these words as
astrophysics, by utilizing a corpus of unlabeled paper ab-
stracts from the same field, which is naturally available on
the Web. In our “second-order” approach, our system finds
those unlabel ed paper abstractsthat are most similar to both
old white dwarfs and to various training titles. These train-
ingtitlesarethen usedto classify old white dwarfscorrectly,
although each of these titlesis quite dissimilar to it when
compared directly.

In order to achieve our goal, we use WHIRL (Cohen,
1998a; Cohen, 1998b) which is a conventiona database
system augmented with special operators for text compar-
ison. Its use as a text classification program is a near-
est neighbor approach (Cohen & Hirsh, 1998), with text
documents specified as TFIDF vectors, and similarity be-
tween text documents measured as cosinesimilarity (Salton
1989). WHIRL makes it possibleto pose SQL-like queries
on databases with text-valued fields. If we consider the
training examples asatabl e, the background knowledgeasa
table, and atest exampleasatableaswell, WHIRL provides
a framework in which we can easily specify and explore
“second-order” similarity classification. It alows for suc-
cinct queries that specify the combination of training simi-
larity and background similarity to a new test example.

In the next section we give a brief review on WHIRL and
adiscussion on how we use it for classification with unla-
beled data. We then describe four distinctly different do-
mai ns on which wetested our system. The domain descrip-

tionsarefollowed by aset of resultsfor each of thedomains
for varied data sets. We conclude with a discussion of the
various possible dimensionsthat our choices a ong the way
can take and directionsfor current and future research.

2. Our Approach
2.1 WHIRL for Text Classification

WHIRL (Cohen 1998a; Cohen 1998b) isan informationin-
tegration tool that is specifically designed to query and inte-
grate varied textual sources from the Web. WHIRL's SQL-
type queries can search and retrieve textua sources based
upon specified conditions. Assume that we have acorpusof
training examples with labels, and atest example that must
be assigned a label. The training examples can be viewed
as atable with the field instance, to hold the textual data,
and field label to hold the class label. The test exampleis
aonelinetable, with smply the textual field instance. An
example of aWHIRL query (Cohen & Hirsh, 1998) is:

SELECT Test.instance, Train.label
FROM Train AND Test
WHERE Train.instance SIM Test.instance

Given auser-specified parameter K, thisquery will first gen-
erate an intermediate table containing the K tuples

(Test.instance, Train.instance, Train.label)

that maximize the similarity score between Test.instance
and Train.instance. Unlike traditional SQL queries,
the result of this is a set of tuples ordered by score,
with the highest score representing the closest
Train.instance, Test.instance pair, using WHIRL's SIM op-
erator to computethe similarity of these textual documents.

To compute similarity WHIRL computes a moddl of each
text document by representing each document as a vector
in avector space. Thisrepresentation iscomputed by pass-
ing each document through a stemmer (Porter, 1980) and
by then computing weights for each term using the TFIDF
(Salton, 1989) weighting method. Distances between vec-
torsare computed using the cosine metric, which represents
the statistical similarity between documents.

In WHIRL's final step it takes this table of K tuples and
projects it onto the fields specified in the SELECT state-
ment. Notethat thiscan mean that there may be many train-
ing examples among the K with the same labdl (i.e., multi-
ple nearby examplesinthetraining set), and these are com-
bined into asingletuplein thefinal result table. The com-
bination of scoresis performed by treating scores as proba-
bility and the combinationasa“noisy or.” If theindividual
scores of thetupleswithagivenlabe are {s1, ..., s, }, the
fina score for that label is1 — []_, (1 — s;). Whichever
label hasthe highest scorein the resulting projected tableis



returned asthelabel for thetest instance. Thismethod bears
many similarities to the nearest-neighbor method of Yang
and Chute (1994), which has been shown to perform quite
well ontext classification tasks (Cohen & Hirsh, 1998). In-
deed, based on thesetwo paperswe aso useavalueof K =
30 in our experiments.

2.2 WHIRL with Background Knowledge

The question we now ask is; How can we use alarge body
of unlabeled data, or “background knowledge”, to aid clas-
sification? Although these pieces of information need not
belabeled, and indeed may have no rel ationshi pwhatsoever
to the classification task, we would hopeto |earn something
from the word combinationsin these examples. Such back-
ground knowledgemay provideuswith acorpusof text that
contains information both about importance of words (in
terms of their TFIDF valuesin thislarge corpus), and joint
probability of words (what percentage of the time do two
words coexist in a document?). This gives us alarge con-
text inwhichtotest thesimilarity of atrainingexamplewith
anew test example. We can use this context in conjunction
with the training examples to label a new example.

Because of WHIRL's expressive language, and the ability
to create conjunctive queries ssimply by adding conditions
to a query, WHIRL's queries for text classification can be
expanded to alow for the use of “background knowledge”
on asubject. In the example of the classification of physics
paper titles discussed earlier, suppose that we had a fairly
small set of labeled paper titles, and also avery large set of
unlabeled titles, papers or abstracts (or Web pages resulting
fromasearch), inarelation called Background withasingle
field, value. We can create the following query for classifi-
cation
SELECT Test.instance, Train.label
FROM Train AND Test AND Background

WHERE Train.instance SIM Background.value
AND Test.instance SIM Background.value

Here each of the two similarity comparisons in the query
computes a score, and WHIRL multipliesthem together to
obtain afina scorefor each tuplein theintermediate-results
table. This table is then projected onto the Test.instance
and Train.label fields as discussed before. Whichever label
gives the highest score is returned as the label for the test
example.

One way of thinking about thisis that rather than trying to
connect a test example directly with each training exam-
ple, it instead triesto bridge them through the use of an ele-
ment of the background table. Notethat WHIRL combines
the scores of tuplesgenerated from different matches to the
background table. Our use of WHIRL in this fashion thus
essentially conducts a search for a set of itemsin the back-
ground knowledge that are close neighbors of the test ex-

ample, provided that there exists atraining example that is
a neighbor of the background knowledge as well. Train-
ing neighborsof atest example are defined differently when
background knowledge is incorporated. If wordsin atest
example are found in some background knowledge, then
other wordsthat arein that background knowledge can con-
nect thistest example to dissimilar (in terms of word over-
lap and direct cosine difference) training examples. The fi-
nal classification thusintegratesinformation from multiple
training examples and the multiple “bridge” examples that
lie between them in the background text.

Note that this approach does not concern itself with which
class (if any!) a background item belongsto. We instead
simply use the text directly as part of the decision-making
process. Thisisin contrast to an approach that would ex-
plicitly usethetraining set to classify the background items
asif they were true examples, and then add them to thela-
beled set. Our method alows for more sophisticated use
and combination of the training instances and background
knowledge. A background instance that is close to numer-
oustraininginstances can beincluded morethan onceinthe
table returned by the WHIRL query — even if the training
examplesthat it iscloseto have different classes. Similarly,
atraining example can also beincludedin thetable multiple
times, if itiscloseto numerous background instances. Sup-
posethat our classification task consists of labeling thefirst
few words of anews article with atopic. If atest example
belongsto the category sports, for instance, the cosine dis-
tance between the few wordsin the test example and each
of the small number of training examples might be large.
However, we would hope that given alarge corpus of unla-
beled newsarticles, itislikely that therewill be one or more
articlesthat containsboth the few words of thetest example
and the words of one of the training examples.

Finally, note that, our use of “background knowledge’ in
a WHIRL query isin a sense a form of query expansion
(Buckley et a., 1995). Instead of directly searching for
the training examples that are closest to a test example
we search for the training examples that are closest to the
“background knowledge” expansion of the the test exam-
ple. However, unlike standard query expansion, and be-
cause of our conjunctiveconditions, the background know!-
edge expansion itsdf is chosen with respect to the training
example that it is close to. This means that each query has
multiple expansions, and al those that maximize the score
of the conjunctive condition are combined.

3. Experimentsand Results

We have tested our system on four distinct text-
categorization tasks that we have taken from the World
Wide Web. In each case, the training and test examples
are short text strings, a problem that is prevalent in red-



world applications and for which WHIRL was especially
designed. For each of our four problems, the source of our
background knowledge varies, sometimes originating at
the same site from which we obtained the | abeled data, and
sometimes from unrel ated sites also found on the Web.

3.1 Data Sets

Technical papers One common text categorization task
is assigning discipline or sub-discipline names to techni-
cal papers. We created a data-set from the physics papers
archive (http://xxx.lanl.gov), where we downl oaded the ti-
tlesfor all technical papersinthefirst threeareasin physics
(astrophysics, condensed matter, and genera relativity and
guantum cosmology) for the month of March 1999. As
background knowl edge we downl oaded the abstracts of all
papers in these same areas from the two previous months
— January and February 1999. In total there were 1701
pieces of knowledgein the background set, and 1066 in the
training-test set combined. The distribution of classes was
skewed, however, as there were 493 titles in astrophysics,
460 in condensed matter, and only 113 in quantum cosmol -
ogy. These background knowledge abstracts were down-
loaded without their | abel s (i.e., without knowl edge of what
sub-disciplinethey were from) so that our learning program
had no access to them.

News Another data set that we created was obtained from
ClariNet news. We downloaded all articlesunder the sports
and banking headings on November 17th 1999, using the
most recent ones for training and test sets and the older
ones for background knowledge. In total, our background
knowledgeconsisted of acorpusof 1165 articles. The back-
ground knowledgein this problem consisted of thefirst 100
words of each of these articles. Informal studies showed
us that including the entire articles did not improve accu-
racy substantially, and degraded the efficiency of WHIRL.
Our training-test datahad 1033 data pointsof which 637 be-
longed to the sports category, and 406 bel onged to banking
category. We present four sets of resultsin connection with
the 1033 data points, called 3-words, 5-words, 7-wordsand
9-words, corresponding to the test and training set consist-
ing of thefirst 3, 5, 7, or 9wordsof each articlerespectively.

Web page titles To determine the usefulness of WHIRL
as a nearest neighbor classification tool, Cohen and Hirsh
(1998) used two data sets taken from the World Wide Web.
The first, NetVet (http://www.netvet.wustle.edu) included
the Web page headings for its pages concerning cows,
horses, cats, dogs, rodents, birds and primates. For exam-
ple, atraining example in the class birds might have been:
“Wild Bird Center of Walnut Creek”. Each of these ti-
tles had a URL that linked the title to its associated Web
page. For the labeled corpus, we chose half of thesetitles
with their labels, in total 1789 examples. We discarded the

other half of thetitles, with their labels, and simply kept the
URL to the associated Web page. We used these URLSs to
download the first 100 words from each of these pages, to
be placed into a corpus for background knowledge. Those
URL sthat were not reachable were ignored by the program
that created the background knowledge. Intotal therewere
1158 entries in the background knowl edge database.

Companies The second of Cohen and Hirsh’sdatasets con-
sisted of atraining set of company names, 2472in al, taken
from the Hoover Web site (http://www.hoovers.com) la
beled with one of 124 industry names. We created back-
ground knowledge from an entirely different Web site —
http://biz.yahoo.com. We downloaded the Web pages un-
der each business category in the Yahoo! business hierar-
chy to create 101 pieces of background knowledge. The
Yahoo! hierarchy had adifferent number of classes and dif-
ferent way of dividing the companies, but thiswas irrele-
vant to our purposes since we treated it solely as a source
of unlabeled background text. Each piece of background
knowledge consisted of the combination of Web pages that
werestored under asub-topicinthe Yahoo! hierarchy. Each
instance in the table of background knowledge was thus a
much longer text string than the training or test examples.

3.2 Reaults

We present a series of results and graphs that show that
WHIRL incorporating background knowledge most often
performs better than WHIRL without the supplementary
knowledge. Thisimprovement ismost dramatic when there
arefewer |abel ed examples, and when thelabel ed examples
are shorter strings.

However, since anumber of the data sets are being used for
thefirst timein this paper, we start this section by compar-
ing the core WHIRL method without background knowl-
edge (which we label WHIRL-nn), to a more traditiona
method, RIPPER (Cohen 1995), to demonstratethat our im-
provements are on top of aready strong classification per-
formance. Error ratesin Table 1 represent average error of
five cross-validated runson the full training set. The*“best”
value for each problem is shown in bold. Since WHIRL
uses the Porter’s stemming algorithm when it creates the
TFIDF representation, we used it aswell, before giving the
datato RIPPER. As can be seen from thistable, in all data
sets, WHIRL-nn outperforms RIPPER, and thus any im-
provements above and beyond WHIRL-nn that we now re-
port represent even stronger classification performance than
this credible state-of -the-art method.

The remainder of our results, presented in a series of fig-
ures, report error rates for the baseline WHIRL approach
WHIRL-nn to our new approach, which we label WHIRL -
bg. In each case we report error rates as we vary the num-
ber of training examples given to the learner. Each point



Table 1. Error rates. RIPPER vs WHIRL-nn

Data Set RIPPER WHIRL-nn
3-words 20.23 12.36
5-words 14.98 7.11
7-words 13.07 5.55
9-words 11.71 4.77
netvet 44.26 39.20
hoovers 77.95 70.90
2class physics 30.50 7.89
3class physics 39.96 16.90

represents an average of five cross-validated runs. For each
cross-validated run, four-fifths of the data is used as the
training set and one-fifthisused asthetest set. Holdingthis
test set steady, the number of examples in the training set
was varied. Each data-set was tested with both WHIRL-nn
and WHIRL-bg using 20, 40, 60, 80, and 100 percent of the
data

We present two sets of results on the physics datain Fig-
ure 1 and Figure 2. Figure 1 isatwo-class problem, where
only the titles of papers in the astrophysics and condensed
materials classes were used. These classes had nearly the
same number of training examples. Figure2 isathreeclass
problem, where a class with afewer number of training ex-
ampleswas added to the previousproblem. Figurel clearly
shows the effect that background knowledge can have on
text datasets. Thelinerepresenting WHIRL-bg remainsa-
most horizontal as fewer training exampleswere used, indi-
cating that the background knowledge compensated for the
lack of data. In contrast, WHIRL-nn sharply degraded as
fewer training examples are used. The helpfulness of the
background knowledge, therefore, also increased as fewer
training examples were used. When the third class was
added, error rates of both WHIRL-nn and WHIRL-bg went
up. However, the same effect of background knowledgecan
be seen in Figure 2 as well.

Results on the ClariNet data set are presented in Figures 3—
6. The training and test set for these figures vary in terms
of number of wordsin each example, ranging from thefirst
three words in each article, to the first nine words. As ex-
pected, the smaller the number of words in each training
and test exampl e, the worse both WHIRL-nn and WHIRL -
bg performed. The addition of background knowledgewas
most useful with the shorter stringsin the test and training
dataaswell. Thisisrepresented in Figures 3—6 by the point
at which the two lines intersect. For strings of length 3,
background knowledge reduced the error rates, even when
the entire set of training data was used. As the number
of words in the training-test examples increased, the point
at which background knowledge became helpful changed.
For strings of length 9, background knowledge reduced er-
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Figure 3. WHIRL-bg and WHIRL-nn for 3-word News
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Figure 5. WHIRL-bg and WHIRL-nn for 7-word News
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Figure 6. WHIRL-bg and WHIRL-nn for 9-word News
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Figure 7. WHIRL-bg and WHIRL-nn for NetVet

ror rates only when less than 60 percent of the data was
used. This gives empirical evidence that the less informa-
tivethetraining datais, the greater the advantage in having
a corpus of background knowledge available for use dur-
ing classification. The size of thereductionin error rate ob-
tained by running WHIRL-bg was a so greater when there
were fewer wordsin each example.

Resultsfor the NetVVet domain are graphed in Figure 7. Re-
ductions in error rate increased as the number of training
examples decreased. The NetVet domain is unlike the two
previoudly discussed in that there was overlap in topicsin
the background knowledge. A Web page that could be use-
ful in classifying a test example as belonging to the cate-
gory of Dogswasquitelikely to discuss Catsand vice versa.
Some of the training and test examples, too, could have
caused confusion. There were titles of Web pages on pet
stores or animal care that were placed under one topic, but
could just have easily been placed in many other different
categories. We therefore were not surprised to see that the
error rate did not decrease by alarge percentage.

The results for the Companies data set are graphed in Fig-
ure 8. Once again, WHIRL-bg outperformed WHIRL-nn.
Using 100 percent of the data, the decrease in error rate is
substantial. However, when the percent of training exam-
plesthat was used is lower, the difference in error rate be-
tween the two systemsisreduced. Thisisunliketheresults
of the previousthree domains. This might have been dueto
the fact that the training and test examples were company
names, which often consisted of words that occured only
once (for example, Xerox) so that reducing the number of
training examples actually reduced the dictionary of words
in the training corpus substantially. There were therefore
fewer words that could be used to find bridges in the back-
ground knowledge.
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4. Final Remarks

We have presented a method to reduce error rates in text
classification by using alarge body of potentially uncoordi-
nated background knowledge. In all four domainsto which
the system was applied, we saw substantial reductionsin er-
ror rates, particularly when the set of labeled examples was
small. The use of background knowledge alowed for only
a small degradation in accuracy in amost all cases, even
when only twenty percent of the data was used.

There are a number of limitationsof thiswork that we still
have to address. Efficiency of our queries will be an issue
that we have to deal with. WHIRL itself is very efficient,
yet our approach is essentially a nearest neighbor one, and
our “second-order” query with more than one condition has
acombinatorial search space.

Since the word combinationsin the background knowl edge
are crucial to the success of thismethod, another area of fu-
ture research is the effect of the source and nature of the
information in the background knowledge data base. Of
the four experimental data sets that we presented, the back-
ground knowledgeinthree of them came fromthe same site
as the training and test sets. Even in our fourth data set,
although the background knowledge comes from an unre-
lated Web site, dl the background knowledge is from the
same Web site. Idedlly, the background knowledge should
be culled from a combination of many different sites, and
be automatically created through a Web search.

In future work we plan to explore further refinements to
the WHIRL-bg approach. We are currently exploring adis-
junction of the WHIRL-bg and WHIRL-nn queries. This
would alow for correct classification of atest example that
is close to the training examples, where appropriate back-
ground bridges might not exist. It can also help the issue

of efficiency, if useless search ispruned early. We will aso
begin to look at further extensions of our approach. For ex-
ample, consider the query:

SELECT Test.instance, Train.label
FROM Train AND Test AND Background as B1
AND Background as B2
WHERE Train.instance SIM Bl.value
AND Test.instance SIM B2.value
AND B1l.value SIM B2.value

Thistype of query providesadifferent way for background
knowledge to bridge gaps between a training example and
the test example. Given that the test and training examples
only haveasmall bit of knowledge about the classto which
they belong, this query alowseach small bit of knowledge
to be mapped to larger pieces of background knowledge
that are similar to each other. We are also investigating
the possibility of incorporatingwei ghtsinto the conjunctive
clauses of WHIRL to adjust the impact of training and test
data similarity.
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