
Mining for Features to Improve Classification

Sarah Zelikovitz

College of Staten Island of CUNY

2800 Victory Blvd

Staten Island, NY 10314

Abstract When first faced with a learning task,

it is often not clear what a satisfactory represen-

tation of the training data should be, and we are

often forced to create some set of features that ap-

pear plausible, without any strong confidence that

they will yield superior learning. Moreover, we of-

ten do not have any prior knowledge of what learn-

ing method is best to apply, and thus often try mul-

tiple methods in an attempt to find the one that

performs best. This paper describes a method called

Feature-mine, that takes a set of features and aug-

ments them with macro-features that test for the

occurrence of combinations of values on the origi-

nal features. Our approach uses associations that

are mined from the data to create these new fea-

tures. Importantly, the method is independent of

any learning method, with the creation and selec-

tion of new features based simply on the relation-

ship between the attributes and the class labels in

the data.

Keywords: constructive induction, data mining,

classification

1 Introduction

Inductive learning problems are often formu-
lated as a set of examples for which the class
is known, where each example is a vector of
feature-values and the class that it belongs to
[1]. Different supervisory learning algorithms
use the example set of vectors to create a con-
cept that represents the known set of examples,
as well as unknown ones in different ways. The
bias of the learning algorithm, in part deter-
mines how closely it can approximate the true

target concept from the set of examples. Dis-
tinct learning algorithms, therefore, are often
useful for different classes of target concepts.

Often the set of original features that is
given with the training examples is not the
ideal one [2, 3]. In this work we are concerned
with the relationships between features in con-
junction with their relationships to the target
concept. We exploit the relationships among
features, or the partial redundancies between
features to create new features. These features
are closer to the target concept than the origi-
nal set of feature. Therefore, with the addition
of these features, learners can overcome initial
biases and hypotheses are closer to the true
target concept; hence error rates on unseen ex-
amples improve. This is a data driven method
of constructive induction [4].

2 Feature-mining Algorithm

2.1 Notation

Our approach assumes a two-class classifica-
tion problem, with boolean feature values.
Each training and test instance is denoted by
an n dimensional vector of 0s and 1s, where
n is the number of features used to describe
each example. Each position i in the vector
gives the value of the feature number i for that
instance. We will represent features by up-
per case letters (A,B,etc.) As is the case for
many machine-learning algorithms, Feature-
mine trains on only a portion of the training
data, leaving the rest for a pruning set. Fol-
lowing the example of previous learners, only
two thirds of the training set is used for deter-



mining relationships and the creation of new
features. For the rest of this discussion we will
refer to this two-thirds as the training set, and
the remaining one-third as the pruning set.

Feature-mine determines the relationships
among different features for the positive class,
as well as the negative class. This is done by di-
viding the training examples into two groups,
one containing all positive instances and one
containing all negative instances. Relation-
ships between features are then computed sep-
arately for each of these two groups of data.

2.2 Association-finding

Feature mine determines the relationships be-
tween features by borrowing the concept of as-
sociation rules from data-mining [5, 6]. For
every pair of features, say A and B , four asso-
ciation rules are formed:
A = 0 =⇒ B = 0,

A = 1 =⇒ B = 0,
B = 0 =⇒ A = 0,
B = 0 =⇒ A = 1.

These association rules have both a confi-
dence factor and support associated with them,
where the support refers to the number of times
that the right-hand side of the association is
true, and the confidence factor refers to the
percent of time that the entire association is
true (given that the right-hand side is true).
If we set the support to be s, and the confi-
dence factor to be c then the first rule in the
sequence above can be interpreted as follows:
In the positive set of examples (alternatively in
the negative set, as these are done separately)
A has the value of 0 s times, and out of these
times c percent of them have B with a value of
0. Alternatively, we can just say simply that A

= 0 implies that B = 0, in the positive corpus
with support s and confidence c.

This data-mining is done on both the pos-
itive set of examples and on the negative set
of examples. The set of associations that is
mined on the positive set can be looked at in
two ways. One is that it is a way of represent-
ing the target concept, or piece of the target
concept. As a simple, extreme example if the

target concept is XOR of A and B, we would
have A = 0 =⇒ B = 1, with a confidence factor
of 100%. The second way that these associa-
tion rules can be interpreted is by representing
the level of redundancy between the two fea-
tures. A simple example of this would be: if A

= 1 always implies that B = 1, then feature B

is redundant once feature A is known to be 1.

Feature-mine then creates a set S+ that con-
tains all the associations that are true for the
positives, but are not true for the negative set.
Since all associations are actually ”true” for
both sets, but at different levels of support
and confidence, the levels of support and confi-
dence are used to determine which associations
to add to this set.

Feature-mine takes the two distinct sets of
association rules from the positive set and neg-
ative set, and extracts those associations that
are statistically more significant in the positive
set than in the negative set. We use a chi-
squared test of independence to determine the
probability that each combination of two fea-
tures comes from the same distribution. If this
probability is lower than a threshold t, then
we can say with some certainly that the as-
sociation rule more accurately represents the
positive corpus than the negative corpus. This
association is then added to the set S+.

However, the discussion above fails to take
an important point into account [7]. Suppose
that the association A = 0 =⇒ B = 0 is added
to the set S+. This means that with high prob-
ability this association captures a property of
the positive set, but does not capture a prop-
erty of the negative set. However, this might
be true only because of the right-hand side of
the associations. For example, if B is always 0
in the positive corpus (or never 0 in the nega-
tive corpus) then the association above would
capture a property of the positive set. This is
not because of the redundancy relationship be-
tween A and B, or because of the relationship
of both A and B to the target concept, but
rather only because of the relationship of B to
one of the classes. Before adding an association
to the set S+ therefore, two more one-sided sta-
tistical tests must be performed. In the above



example, this would correspond to comparing
the associations A = 0 =⇒ B = 0 with A = 1
=⇒ B = 0 in the positive set of associations.
This would have to be checked in the negative
set as well. Only if all three of these tests are
passed, we can safely say that:

1. The association represents the positive
set, but not the negative set.

2. The combinations of features is what
causes the association to represent the
positive set, not the value of the left hand
side features in the positive corpus.

3. The combination of features is what
causes the association to represent the
positive set, not the value of the left hand
side feature in the negative corpus.

If this is the case, then the association is
added to S+.

2.3 Feature creation

Combinations of the original boolean features
are then formed using this set S+ of association
rules. Both conjunctions and disjunctions of
features are created by combining associations
that are proof of the utility of the combination
of a specific set of features. a disjunction is
added if both associations that imply this dis-
junction are in the set S+. For example: if
A = 1 =⇒ B = 0,

and
B = 1 =⇒ A = 0
are both in S+, both implications can be in-
terpreted as A = 0 or B = 0, and therefore
this feature would be added to the original set
of features. It is important that both of these
implications be present in S+ in order for the
disjunctive feature to be added to the origi-
nal set. As in all feature creation programs
we must be concerned with adding too many
features. Too many features can degrade the
learners [3], so we want to be certain that the
features we add are the correct ones and ac-
curately describe the positive data. A way of

looking at this set of associations is by think-
ing of them as experts describing the positive
class, and a new feature is created only if there
are two experts that suggest that it should be
added.

Conjunctive features are formed in the same
way as disjunctive ones. If both
A = 1 =⇒ B = 1

and
B = 1 =⇒ A = 1
we would add A = 1 and B = 1. Each one of

these associations individually tells us that the
combination A = 1, B = 1 is more prevalent
in the positive set than in the negative, when
both of them are in S+, the feature is actually
added.

The original dataset is then re-described us-
ing the original set of features as well as this
new set of features. The process is then it-
erated. Associations are formed between the
set of new features and all other features, and
more new features are created. This process
continues until no new features are created, or
a limit on the number of iterations is reached.

3 Empirical results

We wished to test the utility of the new fea-
tures that were created using the feature-
mining algorithm. Since this feature creation
process did not tailor itself to any specific
learner, it would be best if all learners were im-
proved by the addition of these new features. If
the new features do indeed capture properties
of the positive data (which is actually a clue
to the target concept) many different learning
algorithms should be improved. This does in-
deed turn out to be the case.

3.1 Evaluation Methodology

To evaluate Feature-mine we use three diverse
learning methods that have been often used
for classification. C4.5 [8] is a decision tree
learner that uses a greedy divide-and-conquer
approach. Ripper [9] is a rule induction system
that heuristically builds a set of rules to pre-



dict class. A nearest-neighbor learner, PEBLS
[10], classifies an example by finding which
examples in the training set are close to it,
learning weights on the features to reflect their
relative importance in the classification task.
C4.5 and Ripper themselves bottom out at an
information-theoretic metric for selecting fea-
tures, whereas PEBLS uses features “holisti-
cally”, allowing all to weigh in when classifying
an example.

3.2 Pruning Set

As mentioned in the introduction, different
heuristics and/or biases are used in different
machine learning algorithms. Hence, on the
original feature set the three different algo-
rithms that we used often chose features sets
that were distinct from each other, to be in-
cluded in the final target concept. This has
ramifications in our constructive induction pro-
cess. Since our feature creation is an iterative
process, it is sometimes unclear when to end
the iterations. We placed an external limit on
the number of iterations; using empirical tests
to determine when to stop the iterative pro-
cess, we have set the limit to be ten iterations.
Most often, in the domains that we have stud-
ied the process ends before the tenth iteration
is reached. This is because no new features are
created, and the process of feature creation is
halted.

However, it is unclear which set of features
to choose for the final evaluation of the test
set. It would seem at first glance that the final
set of features from the last iteration should be
chosen; but this is not always the best choice.
Even if it is the best choice for one learner, it
is often not the best for another. We use the
pruning set to determine which set of features
to use in redescribing the test set of the unseen
examples. One third of the original training set
is not used for training, but at each iteration is
redescribed with the new set of features. For
each loop l through the iterative process, we
then have a set of examples with known classes
that represents the algorithm halting at itera-
tion l. Let us call this set of pruning examples

P (l). The error rate at iteration l can then
be estimated for any of the three learners de-
scribed above, by running the learner with the
set of examples P (l). If this is done for l vary-
ing from 0 to the final number of iterations,
and the l that provides the minimum value is
chosen, then we are using the pruning set to
determine which iteration to use to describe
the test set of examples.

The pruning set is used separately with each
learner; it turns out that often a different l is
chosen for the different learners. This does not
contradict our original assertion about our al-
gorithm that it is learner independent. The ac-
tual creation of the new set of features is inde-
pendent of any learning algorithm; the learning
algorithm is only used in the analysis of where
to stop the feature creation process. Hopefully,
this combines two advantages in the following
sense. Our features are representative of the
data itself, as opposed to massaging the data
into useful form for a specific algorithm. At the
same time, the algorithm that will eventually
be used for testing can provide input to deter-
mine how much feature creation that algorithm
finds necessary for specific problem.

50

55

60

65

70

75

80

85

90

95

100

50 55 60 65 70 75 80 85 90 95 100

A
cc

ur
ac

y 
w

ith
 f

ea
tu

re
-m

in
e

Accuracy with original feature set

Figure 1: C4.5 vs C4.5 with Feature-mine

3.3 Data Sets

To explore the performance of Feature-mine
with these three algorithms we use 16 datasets



50

55

60

65

70

75

80

85

90

95

100

50 55 60 65 70 75 80 85 90 95 100

A
cc

ur
ac

y 
w

ith
 f

ea
tu

re
-m

in
e

Accuracy with original feature set

Figure 2: Ripper vs Ripper with Feature-mine

50

55

60

65

70

75

80

85

90

95

100

50 55 60 65 70 75 80 85 90 95 100

A
cc

ur
ac

y 
w

ith
 f

ea
tu

re
-m

in
e

Accuracy with original feature set

Figure 3: PEBLS vs PEBLS with Feature-mine

arising from three domains that were specifi-
cally selected because of their use in previous
constructive-induction research [11, 12].

3.3.1 DNF Functions

This domain consisted of four functions taken
directly from [11]. The datasets are generated
randomly, and vary with regard to the number
of features in the data set, number of features
in the target concept, and monotonicity. How-
ever, we diverge from Pagallo and Haussler in
the use of a training set that is one third the
size that they considered. The reason for this
is that Pagallo and Haussler were evaluating

the ability of their learning method to even-
tually converge to the correct target concept.
Here, instead, we want to have more limited
amounts of data, to leave room for a range of
result quality for learning — indeed, Ripper
was able to learning the target functions with
100% accuracy on datasets of that larger size.

3.3.2 English text

Our second domain concerns problems in text
categorization, where features correspond to
the presence or absence of words in a docu-
ment. Since such a representation ignores co-
occurrences of words, it is often thought to
be a domain where combinations of words, if
correctly identified, should aid in the learning
task. This domain had two classes of problems.
The first is Email topic spotting, and the sec-
ond is newsgroup topic spotting, using datasets
taken from [12]. There are four different sets
of email data, from four different users, where
the target class is to recognize that a message
is a talk announcement. There are four dif-
ferent newsgroup datasets. All correspond to
the same set of data, selected from four news-
groups. In each case the postings to one news-
group is considered positive and the others are
collectively labeled negative. Data are gener-
ated by keeping all words in the header sections
of each example (e.g., To: and From: in email),
but only the one hundred most common words
in the body of the text of the email messages
or news postings were kept.

3.3.3 Biological Sequences

Our final domain concerns tasks of DNA-
sequence classification [12]. Of the four
datasets used, one is a collection of data la-
beled by whether they are promoters. A sec-
ond consists of data labeled as to whether it is
a fragment of human or phage DNA. The final
two arise from DNA structure classification. In
one case the task labels DNA fragments as pos-
itive if they are in the A-DNA structural class,
and negative if they are in the B-DNA or Z-
DNA class. The second case labels B-DNA as



positive and the rest as negative. (We don’t
consider the third case of Z-DNA as positive
due to the severe sparsity of such data.) Since
Feature-mine deals with Boolean data, each
feature corresponds to the presence or absence
of some particular n-gram, for all possible n-
grams of size 1, 2, or 3.

4 Results

Our results for all datasets are averages of 10
runs. For the DNF datasets, ten different ran-
dom sets of training and test data were gener-
ated. For the text and DNA datasets, 10-fold-
cross-validation was used.

This can be seen by plotting these results
in scatter plots, as is done in Figures 1-
3. Each point corresponds to the error on
a dataset when used with Feature-mine com-
pared to the method without Feature-mine.
Points above the y = x line thus represent
datasets for which the use of Feature-mine
yielded improved learning results. Our origi-
nal motivation for building Feature-mine was
to find multi-attribute features that overcome
the greedy nature of learners such as C4.5 and
Ripper, and indeed for both learners, Feature-
mine creates features that often help learning.
Notably, even though C4.5 consistently finds
classifiers with low error rates, Feature-mine’s
features still help learning. Finally, the results
with PEBLS show that Feature-mine can be of
help even with learning algorithms not based
on the greedy use of an information-theoretic
measure.

5 Final Remarks

We presented a method of preprocessing a col-
lection of training data before passing it on to a
learning method in order to form new features
that can improve the results of learning. Our
method determines new features by manipulat-
ing both the positive and negative examples in
the training set to determine co-occurences of
feature values. In ongoing work we are explor-
ing other methods for recognizing patterns in

data that can be used to form macro-features
that help across a range of learning methods.

In other work we have explored using un-
labeled examples and background knowledge
to aid in the classification task [13]. We plan
to incorporate some of these ideas of exter-
nal knowledge into the feature creation task
as well.

References

[1] Tom Mitchell. Machine Learning.
McGraw-Hill, New York, 1997.

[2] R. S. Michalski. A theory an methodology
of inductive learning. In R.S. Michalski,
J.G. Carbonell, and T.M. Mitchell, edi-
tors, Machine Learning: An Artificial In-

telligence Approach. Morgan Kaufmann,
1983.

[3] Ron Kohavi and George H. John. Wrap-
pers for feature subset selection. Artificial

Intelligence, 97(1-2):273–324, 1997.

[4] E. Bloedorn and R. S. Michalski. Data-
driven constructive induction. IEEE In-

telligent Systems, Special Issue on Fea-

ture Transformation and Subset Selection,
1998.

[5] T. Imielinski and A. Virmani. MSQL: A
query language for database mining. Data

Mining and Knowledge Discovery, 3:373–
408, 1999.

[6] T. Imielinski, A. Virmani, and A. Ab-
dulghani. DataMine: Application pro-
gramming interface and query language
for database mining. In In proceedings of

KDD, 1996.

[7] Sergey Brin, Rajeev Motwani, and Craig
Silverstein. Beyond market baskets: gen-
eralizing association rules to correlations.
In In proceedings of SIGMOD, pages 265–
276, 1997.

[8] J. Ross Quinlan. C4.5: Programs for Ma-

chine Learning. Morgan Kauffmann, San
Mateo, CA, 1993.



[9] William Cohen. Fast effective rule in-
duction. In Proceedings of the Tenth

National Conference on Artificial Intelli-

gence, 1992.

[10] Scott Cost and Steven Salzberg. A
weighted nearest neighbor algorithm for
learning with symbolic features. Machine

Learning, 1:57–78, 1993.

[11] Giulia Pagallo and David Haussler.
Boolean feature discovery in empirical
learning. Machine Learning, 5:71–100,
1990.

[12] Daniel Kudenko and Haym Hirsh. Feature
generation for sequence categorization. In
Proceedings of the Fifteenth National Con-

ference on Artificial Intelligence, 1998.

[13] S. Zelikovitz and H. Hirsh. Integrat-
ing background knowledge into nearest-
Neighbor text classification. In Advances

in Case-Based Reasoning, 6th European

Conference, ECCBR 2002 Aberdeen, Scot-

land, UK, September 4-7, 2002, Proceed-

ings, volume 2416 of Lecture Notes in

Computer Science. Springer, 2002.


