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ABSTRACT

This paper presentswork that uses Latent Semantic Indexing (LSI)
for text classification. However, in addition to relying on labeled
training data, we improve classification accuracy by also using un-
labeled data and other forms of available “background” text in the
classification process. Rather than performing LSI’s singular value
decomposition (SVD) process solely on the training data, we in-
stead use an expanded term-by-document matrix that includes both
the labeled data as well as any available and relevant background
text. We report the performance of this approach on data sets both
with and without the inclusion of the background text, and compare
our work to other efforts that can incorporate unlabeled data and
other background text in the classification process.

1. INTRODUCTION

The task of classifying textual datais both difficult and intensively
studied [11, 16, 14]. Traditional machine learning programs use a
training corpusof often hand-labeled datato classify new test exam-
ples. Training sets are sometimes extremely small, due to the diffi-
cult and tedious nature of labeling, and decisions can therefore be
difficult to make with high confidence.

Given the huge number of unlabeled examples, articles, Web sites,
and other sourcesof information that often exist, it would be useful
to take advantage of this additional information in some automatic
fashion. These sources can belooked at as background knowledge
that can aid in the classification task. For example, a number of re-
searchershaveexploredthe useof large corporaof unlabeled datato
augment smaller amounts of labeled data for classification (such as
augmenting acollection of labeled Web-pagetitles with largeamounts
of unlabeled Web-pagetitles obtained directly from the Web). Nigam
et al. [14] use such background examples by first [abeling them us-
ing a classifier formed on the original labeled data, adding them to
the training data to learn a new classifier on the resulting expanded
dataand then repeating anew the labeling of the originally unlabeled
data. This approach yielded classification results that exceed those
obtained without the extra unlabeled data.
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Blum and Mitchell’s [3] co-training algorithm also appliesto cases
where there is a source of unlabeled data [13], only in caseswhere
the target concept can be described in two redundant ways (such as
through two different subsets of attributes describing each exam-
ple). Each view of the datais used to create a predictor, and each
predictor isusedto classify unlabeled data. The datalabeled by one
classifier can then be used to train the other classifier. Blum and
Mitchell prove that under certain conditions, the use of unlabeled
examplesin thisway is sufficient to PAC-learn aconcept given only
an initial weak learner.

A second example of background knowledge concerns caseswhere
the datato which thelearned classifier will be applied isavailableat
the start of learning. For such learning problems, called transduc-
tivelearning [12], these unlabeled examplesmay also prove helpful
in improving the results of learning. For example, in transductive
support vector machines[12, 1] the hyperplanethat is chosen by the
learner is based on both the labeled training data and the unlabeled
test data. Joachims shows that this is a method for incorporating
priors in the text classification process and performs well on such
tasks.

Zelikovitz and Hirsh [18] consider an even broader range of back-
ground text for use in classification, where the background text is
hopefully relevant to the text classification domain, but doesn’t nec-
essarily take the same general form of the training data. For exam-
ple, a classification task given labeled Web-page titles might have
accessto large amounts of Web-page contents. Rather than viewing
these as items to be classified or otherwise manipulated as if they
were unlabeled examples, the pieces of background knowledge are
used as indicesinto the set of labeled training examples. If apiece
of background knowledge is close to both a training example and
atest example, then the training exampleis considered close to the
test example, evenif they do not share any words. The background
text provides a mechanism by which a similarity metric is defined,
and nearest neighbor classification methods can be used. Zelikovitz
and Hirsh [18] show that their approachisespecially useful in cases
with small amounts of training data and when each item in the data
has few words.

This paper describes yet another way of using this broader range of
background knowledgeto aid classification. It neither classifiesthe
background knowledge, nor doesit directly compareit to any train-
ing or test examples. Instead, it exploits the fact that knowing that
certain words often co-occur may be helpful in learning, and that
thiscould bediscovered from large collectionsof textin thedomain.



To do thiswe use Latent Semantic Indexing (LSI) [6]. LS| isan au-
tomatic method that re-describes textual datain a new smaller se-
mantic space. LS| assumesthat there exists some inherent seman-
tic structure between documents and terms in a corpus. The new
spacethat is created by L S| places documentsthat appear related in
close proximity to each other. LSI is believed to be especially use-
ful in combating polysemy (one word can have different meanings)
and synonymy (different words are used to describe the same con-
cept), which can make classification tasks more difficult. The key
idea here is to use the background text in the creation of this new
re-description of the data, rather than relying solely on the training
datato do so.

In the next section we give a brief review of LSI, and describe how
we useit for traditional text classification as well asfor classifica-
tion in the presence of background text. We then present and de-
scribe the results of the system on four different data sets, compar-
ing those results to other systems that incorporate unlabeled data.
We concludewith adiscussion of our current and ongoing work in
this area.

2. OUR APPROACH

2.1 Latent Semantic Indexing

Latent Semantic Indexing[8] isbased uponthe assumptionthat there
is an underlying semantic structure in textual data, and that the re-

lationship between terms and documents can be re-described in this
semantic structure form. Textual documentsare represented asvec-

tors in a vector space. Each position in a vector represents a term

(typically aword), with the valueof apositioni equal to Qif theterm

does not appear in the document, and having a positive value other-

wise. Based upon previous research we represent the positive val-

ues asthe log of the total frequency in that document [7] weighted

by the entropy of theterm. Asaresult, the corpus can be looked at

as alarge term-by-document (¢t x d) matrix X, with each position

x5 corresponding to the presence or absence of aterm (arow ¢) in

a document (a column 7). This matrix is typically very sparse, as
most documents contain only a small percentage of the total num-

ber of terms seenin the full collection of documents.

Unfortunately, in this very large space many documentsthat are re-
lated to each other semantically might not share any words and thus
appear very distant, and occasionally documentsthat are not related

to each other might sharecommonwordsand thus appear to be closer.

Thisis dueto the nature of text, where the same concept can be rep-
resented by many different words, and words can have ambiguous
meanings. LS| reduces this large space to one that hopefully cap-
tures the true relationships between documents.

The singular value decomposition (SVD) of thet x d matrix, X, is
the product of three matrices: TSDT, whereT and D arethe matri-
cesof theleft and right singular vectorsand .S isthe diagonal matrix
of singular values. The diagonal elementsof .S are ordered by mag-
nitude, and therefore these matrices can be simplified by setting the
smallest k valuesin S to zero.! Thecolumnsof T and D that corre-
spond to the values of .S that were set to zero are deleted. The new
product of these simplified three matrices is amatrix X that is an
approximation of the term-by-document matrix. This new matrix
represents the original relationships as a set of orthogonal factors.

1The choice of the parameter k can be very important. Previous
work has shown that a small number of factors (100-300) often
achieves effective results. We discussthis further in our section on
current work.

We can think of these factors as combining meanings of different
terms and documents; documents are then re-expressed using these
factors.

When LSl is used for retrieval, a query is represented in the same
new small spacethat the document collectionisrepresentedin. This
is done by multiplying the transpose of the term vector of the query
with matrices 7" and S~". Once the query is represented this way,
the distance between the query and documentscan be computed us-
ing the cosine metric, which represents a numerical similarity mea-
surement between documents. L SI returns the distance between the
query and all documents in the collection. Those documents that
have higher cosine distance value than some cutoff point can be re-
turned as relevant to the query.

2.2 LSl for Text Classification

We are using L Sl for text classification, so we can henceforth refer
to the document collection asthetraining examplesandthe query as
atest example.? Given that a single example to be labeled may be
judged by this method as similar to arange of different training ex-
amples, it is necessary to decide how the different examples*“vote”
on the label of the new example. To do this we take an approach
used by Cohen and Hirsh [4]. We can look at the result of the LS|
query as atable containing the tuples

(train-example, train-class, cosine-distance)

with one line in the table per document in the training collection.
Therearemany linesin thetablewith the sametrain-classvaluethat
must be combined to arrive at one score for each class. Cohen and
Hirsh [4] usethe noisy-or operation to combinethe similarity values
that arereturned by L Sl to arrive at onesingle value per class. If the
cosine valuesfor documentsof agiven classare {s1,... ,sn}, the
final scorefor that classis1 — []7"_, (1 — s;). Whichever classhas
the highest score isreturned asthe answer to the classification task.
Based upon [17, 4] only the thirty closest neighbors are kept and
combined.

2.3 Incorporating Background Knowledge
The power of LS| liesin the fact that it can place documents that
do not share any wordsin close proximity to each other. However,
whenthereislittle dataL Sl can suffer drastically. With few training
examples, thereare many termsthat occur only once, hencelimiting
the power of LS| to create aspacethat reflectsinteresting properties
of the data.

What is most interesting to us about the singular value decompo-
sition transformation is that it does not deal with the classes of the
training examplesat all. Thisgivesusanextremely flexiblelearner,

for which the addition of background knowledgeis quite easy. In-

stead of simply creating theterm-by-document matrix from thetrain-
ing examples alone, we combine the training examples with other
sourcesof knowledgeto create a much larger term-by-* document”

matrix, X,,.

LS isrun on this new term-by-document matrix to obtain X,,. X,
isamodel of the space that was unobtainable with the training ex-
amples alone. The larger matrix containswords that did not occur
in the training examples at all; it also provides us with richer and

2Thisisin contrast to other uses of LSI for classification [10, 8, 9],
in which onecentroid vector is formed for each class, and anew ex-
ampleislabeled by those classeswhose vector is sufficiently close
toit.



more reliable patterns for data in the given domain. To classify a
test example incorporating the background knowledge in the deci-
sion process, the test exampleis re-described in the new spaceand
then compared only to the columns of X,, that correspond to the
original training examples. The scores that are obtained from this
comparison are combined with the noisy-or operation, to return a
final classfor classification. Clearly, it is important for the back-
ground knowledge to be similar in content to the original training
set that it is combined with. If the background knowledgeis totally
unrelated to the training corpus, for example, LS| might success-
fully model the background knowledge, but the features would be
unrelated to the actual classification task.

To give a concrete example of how LSI with background can help,

wecanlook at onetest exampleinthe NetVet domain [4]. Thetrain-

ing andtest examplesaretitles of Web pagesfrom http://netvet.wustl.
edu, and each piece of background knowledge consists of the first

100 words of the contents of Web pages that are not in the train-

ing or test set. The training data in the example below consists of

277 documents. Removing all terms that occur only once creates
at x d matrix with 109 terms. With the added 1158 entriesin the

background knowledge the matrix grows to 4694 x 1435.

For the test example

british mule

of class horsethe three closest training document returned were:

livestock nutrient manag univers
manag of the foal mare purdu univers
avitech exot

which are of class cow, horse, and bird. (In this example stemming
[15] is usedto find the morphological roots of the wordsin the doc-
uments). Since LSI createsatotally new spaceit is not unusual to
find, asin this sample, that none of the original words from the test
example are found in the three closest training examples. This test
exampleismisclassified by L Sl without backgroundknowledge. This
is not surprising since the word mule in the test example does not
occur in the training examplesat all. With the addition of the back-
ground knowledge, the three closest training examplesreturned are:

british columbia cattlemen
donkei
sicilian donkei preserv

of classescow, horse, and horse. The correct classisreturned. No-
tice that two of the closest training examples have the word donkei
which is related to both mule and horse. The addition of the back-
ground knowledge allowed the learner to find this association.

3. EMPIRICAL RESULTS

To evaluate our approach we use four datasets previously used by
work on text classification in the presence of background text [4, 5,
12, 14, 18]. We first describe the data sets, and then the results that
we obtained.

3.1 Data Sets

Technical papers. One common text categorization task is assign-
ing discipline or sub-discipline namesto technical papers. We cre-
ated adata set from the physicspapersarchive (http://xxx.lanl.gov),
where we downloaded the titles for all technical papersin two ar-
eas in physics (astrophysics, condensed matter) for the month of
March 1999 [18]. As background knowledge we downloaded the
abstracts of all papers in these same areas from the two previous
months — January and February 1999. In total there were 1530
pieces of knowledgein the background set, and 953 in the training-
test set combined. Since we performed five-fold cross validation,
for each run 80% of these 953 exampleswere used fro training and
20% were held for testing. The 1530 background knowledge ab-
stracts were downloaded without their labels (i.e., without knowl-
edge of what sub-discipline they were from) so that our learning
program had no accessto them.

Web pagetitles. Asdiscussedabove, the NetVet site (http://netvet-
wustl.edu) includes the Web page headings for pages concerning
cows, horses, cats, dogs, rodents, birds and primates [4]. Each of
thesetitleshad aURL that linked thetitle to its associated Web page.
For thelabeled corpus, we chosehalf of thesetitleswith their |abels,
in total 1789 examples. Once again, five-fold cross-validation was
used on this half of the titles to divide it into training and test sets.
Wediscarded the other half of thetitles, with their labels, and simply
kept the URL to the associated Web page. We used these URLsto
download thefirst 100 words from each of these pages, to be placed
into acorpusfor backgroundknowledge. Those URL sthat were not
reachablewere ignored by the program that created the background
knowledge database.

WebK B. The WebK B dataset [5] containsacollection of Web pages
from computer science departments. As in [14, 12] we use only
those of the categoriesstudent, faculty, course, and project. For this
data set the background knowledge is simply unlabeled examples.
Usinginformation-gain asthe criterion, only thetop 300 wordswere
kept. Thisvaluewas used to be consistent with the datasetsusedin
[14]; it was optimized for their EM code, and is not clear that it was
the best valueto usefor LS. Four test sets, from four different uni-
versities were used, and training was performed on pagesfrom the
other three universities, and results that are reported are averages
acrossall these sets. Our divisions of the datainto training and test
setsareidentical to that of [14], with the test data set, dependingon
the specific university, ranging from 225 to 307 examples and the
training setsranging from only four examples, one per class, to two
hundred examples, fifty per class. The size of the background text
remains steady at 2500 examples.

20 Newsgroups. The 20 Newsgroups data set consists of articles
from 20 different newsgroups. The latest 4000 articles are used for
testing, and a random 10000 are used for the background text. As
in the WebKB data, training and test set divisions are the same as
in [14]. Resultsthat are reported are averages across ten runs, and,
asdescribed shortly, the training set sizesthat we report range from
twenty examples, with oneper class, to four hundred examples, with
twenty per class.

3.2 Reaults

3.2.1 The Utility of Background Knowledge with LS
We obtained the Latent Semantic Indexing Package from Telcor-
diaTechnologies, Inc. (http:/Isi.research.telcordia.com/) and all re-
sults are with use of this LS| package. We report the classification
accuracy for text classificationusing L SI both with and without back-



ground knowledgefor the physicsdatain Figure 1 and for the NetVet
datain Figure 2. We label LSI with background knowledgeas L SI-
bg. In each casewereport error ratesaswe vary the number of train-
ing examples given to the learner. Each point represents an aver-
age of five cross-validated runs. For each cross-validated run, four-
fifths of the dataisused asthetraining set and one-fifthisused asthe
test set. Holding this test set steady, the number of examplesin the
training set was varied. Each data set was tested with both LS| and
L Sl-bg using 20, 40, 60, 80, and 100 percent of the data [18]. For
both of these domains the incorporation of background knowledge
aided the classificationtask for training setsof all sizes. In each case
thereduction of error increased asthetraining size decreased. Also,
although accuracy for both L SI and L SI-bg decreased asthetraining
set size decreased, the accuracy when using L SI-bg changed very
little, as can be seen by the flatness of the lines. Thisleadsusto be-
lievethat the utility of backgroundknowledgeisthat it compensates
for the limited training data.
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Figurel: LSl and L SI-bg for the two class paper title problem

Figure 3 presents the results on the WebKB classification task. We
report the classification accuracy of nine different size training sets
ranging from 4 examples(1 per class) to 200 examples(50 per class).
Each accuracy number is an average across multiple runs, ranging
from 7 to 10, depending upon training set size. The horizontal axis
represents this on a log scale. In this domain LSI-bg only outper-
forms LS| on small training sets. Astraining classsize grows, LSI-
bg degradesand actually hurts learning. Since unlabeled examples
are used as background knowledge, coming from the same distri-
bution as the training examples, we are not quite sure of why thisis
so. It would seemthat the model of the data should be moreaccurate
with L SI-bg than with LSI. Thisis a question that we are currently
exploring in our ongoing work.

Theresultsfor the 20 Newsgroupsdataaregraphedin Figure 4. The
horizontal axisis once again alog scale, and results are graphed for
training set size varying from 20 (1 per class) to 400 (20 per class).
Each of these numbers are averages across ten unique runs. Even
with much larger training sets (150 per class) the addition of back-
ground knowledge does not cause degradation in accuracy. How-
ever, once again, the unlabeled examplesare most useful with small
training sets. Interestingly, on this dataset L S| without the addition
of the unlabeled examples performed extremely poorly.
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Figure2: LSl and L SI-bgfor the NetVet problem
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Figure3: LSl and L SI-bg for WebK B four class problem
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Table1: Accuracy rateson physicsdata

Percent of Data EM LSl-bg
20 95.49 92.8
40 95.49 935
60 95.8 93.3
80 96 92.7
100 96.3 92.9

Table2: Accuracy rateson NetVet data

Percent of Data EM LSl-bg
20 4958  60.90
40 56.12 61.12
60 57.86 6224
80 59.48  62.02
100 6143 61.23

3.22 Comparisonof LS and EM

One successful method for incorporating unlabeled datain the clas-
sification task isthe Expectation Maximization (EM) approach[14].
Using naive Bayes, aclassifier istrained with only the labeled train-
ing examples. Thisclassifierisin turn used to probabilistically label
theunlabel ed exampl es; these newly labeled examplesare then used
to retrain the classifier, and obtain more accurate parametersfor the
learner. This processiterates until it converges. Although in some
of the problems that we present, the background text is not really
of the same form as the data (such as Web-page titles for data and
Web-page contents for background), methods such as EM can still
be applied, since they treat every text item as a“bag” of the terms
that occur in the item. We therefore present results that compare
the accuracy of our LS| approach for using background text to the
approach for using naive Bayes and EM to learn from labeled and
unlabeled data[14]. We used the rainbow package (http://www.cs-
.cmu.edu/~ mecallum/bow/rainbow/) to run EM on both the physics
set and the NetVet data. EM was run with 7 iterations and sincethis
number of iterations was not maximized for these data sets we re-
port the highest results out of the seven iterations.® Although this
skewsthe results slightly in favor of EM, we can till get afair pic-
ture of the comparative valuesof these programs. Theseresults can
be seenin Table 1 and Table 2. Theresults reported on WebKB and
20 Newsgroupsin Table 3 and Table 4 were obtained directly from
[14]. On all tablesthe highest accuracy rate is shown in bold.

To summarize the results in the tables, on small data sets in both
the NetVet domain and the 20 Newsgroupsdomain, L SI-bg outper-
forms EM. As more training examples are added to the these prob-
lemsL Sl-bg doesnot perform aswell. Thishasbeen aphenomenon
that has occurred across all data sets, and is a focus of our current
work. On the physicsdata, EM isfar superior in all cases. It is not
surprising that EM does so well on the physicsdata. Zelikovitz and
Hirsh [18] showed that in this domain the simple processof labeling
the background text using the training data and then adding the re-
sulting datato the training data, without any further processing, gets
extremely high accuracy aswell. Although the background knowl-
edgeisnot of the sametype asthetraining examples(paper abstracts
versus paper titles), they are from the same source, and abstract and

3We chosethe number 7 based on discussionswith Nigam (personal
communication).

Table 3: Accuracy rateson WebKB

Training Documents EM LSl-bg
4 5514 4691
8 56.99 5593
12 62.03 61.12
20 6722 64.77
40 7458  69.60
80 76.39 7255
120 79.14 7393
160 7873 7532
200 788 7556

Table 4: Accuracy rateson 20 Newsgroups

Training Documents EM LSl-bg
20 35.34  40.29
40 4308 47.39
60 4923 5155
100 554 5475
200 62.96  59.86
400 68.21 62.78

titles overlap in many words.

4. FINAL REMARKS

We have presented a method for incorporating background know!-
edgeintext classificationusing LSI. Thesingular value decomposi-
tion is performed on a term-by-document matrix that includes both
thetraining examplesand background knowledge. This allowstest
examples to be compared to the training examples in a new space
that reflects patternsin the text in the domain that may not be found
when confronted solely with training data. We have shown empiri-
cally that thisincreasestheaccuracy ratesin classificationonarange
of benchmark problems used in previous work.

Therearemany different dimensionsalongwhich avariety of choices
may be madeto explorethe useof L S| with backgroundknowledge.
Our empirical results have shown what other researchers have al-
ready discovered: background knowledgeis most useful when the
training setissmall. However there are anumber of open questions,
both in the exploration of the use of background knowledge and in
the use of LSl for this purpose.

For example, we are currently studying issues on how the choice
of the number of dimensions to use with SVD affects the useful-
nessof unlabeled data. Some preliminary results show that running
SVD with many factorslimits the usefulnessof background knowl-
edge. For example, without background knowledge, if we use 300
factors instead of 100 factors on 20% of the NetVet data, accuracy
rises from 50% to 55%. However, accuracy for LSI-bg essentially
remains the same. This same phenomenon is observablein larger
and other data setsaswell. We aredoing further studiesin this area.

Another issue relevant to LSI specifically is that if the training set
is small compared to the background text, it may be sufficient to
use only the background text, without training data, in X,,. SVD
could be performed on the background text alone; both the train-
ing and test examples can be re-described in terms of the new space



using X .. Thismethod of updating SV Dsby “folding-in” new doc-
uments, has been studied by the LSl community [2]. Although this
SVD will not beidentical to the one of the training and background
examples combined, our initial tests have shown that classification
accuracy does not significantly change. This might then provide a
mechanism by which incremental learning is achievable — where
a new example can be added without requiring a new SVD calcu-
lation. In this paper we have primarily focused on the information
value of backgroundtext using L SI, without concern for the poten-
tial run-timesinvolved. Such amethod for avoiding the often costly
SVD calculation would be one way to manage the otherwise costly
work that would be necessary in obtaining new training datain in-
cremental learning scenarios.

Finally, the nature and type of background knowledge that is used
toimprovelearningis of central interest to us. The data setsthat we
used had background knowledge of different types. Are unlabeled
examplesmore hel pful than background knowledgethat comesfrom
a different source? For unlabeled examplesthe size of each piece
of background knowledge is generally well-defined (being similar
to that of the training and test data), but for other sources of data
thisis an openissue. The“cleanliness’ of backgroundtext can also
vary greatly, from encyclopediaentries at one end of the spectrum
to ad hoc collections obtained from uncoordinated Web sites or text
obtained through speech recognition technology. These are some of
the topics we are currently exploring.
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