USING BACKGROUND KNOWLEDGE TO IMPROVE TEXT
CLASSIFICATION

BY SARAH ZELIKOVITZ

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of
Haym Hirsh
and approved by

New Brunswick, New Jersey

October, 2002



ABSTRACT OF THE DISSERTATION

Using Background Knowledgeto I mprove Text Classification

by Sarah Zelikovitz
Dissertation Director: Haym Hirsh

Automatic text categorizers use a corpus of labeled textua strings or documents to assign the
correct label to previously unseen stringsor documents. Oftenthegiven set of label ed examples,
or “training set”, isinsufficient to solvethis problem. Our approach to this problem has been to
incorporate readily available information into the learning process to allow for the creation of

more accurate classifiers. We term this additional information “ background knowledge.”

We provide aframework for the incorporation of background knowledge into three distinct
text classification learners. In the first approach we show that background knowledge can be
used as a set of unlabeled examples in a generative model for text classification. Using the
methodol ogy of other researchersthat treat the classes of unlabel ed examples as missing val ues,
we show that although this background knowledge may be of adifferent form and typethan the
training and test sets, it can still be quite useful. Secondly, we view thetext classificationtask as
one of information integration using WHIRL , atool that combines database functionalitieswith
techniquesfrom theinformation-retrieval literature. We treat thelabel ed data, test set and back-
ground knowledge as three separate databases and use the background knowledgeas a bridgeto
connect el ements from thetraining set to the test set. In thisway, training examples are related
to atest example in the context of the background knowledge. Lastly, we use Latent Seman-
tic Indexing in conjunction with background knowledge. In this case background knowledgeis

used with thelabeled examplesto create anew spacein which thetraining and test examplesare



redescribed. Thisallowsthe systemtoincorporateinformationfrom the background knowledge

in the similarity comparisons between training and test examples.
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Chapter 1

I ntroduction

1.1 Text Categorization

The abundance of digital information that is available has made the organization of that infor-
mation into a complex and vitally important task. Automated categorization of text documents
plays acrucia rolein the ability of many applicationsto sort, direct, classify, and provide the
proper documentsin atimely and correct manner. With the growing use of digital devices and
the fast growth of the number of pages on the World Wide Web, text categorization is a key
component in managing information.

For the purposes of thisthesis, text categorization (or alternatively, text classification) can
be defined simply asfollows: Given aset of documents D, and a set of m classes (or |abels) C,
define afunction F' that will assign avalue from the set of C' to each document in D. For ex-
ample, D might consist of the set of all classified advertisementsin a newspaper, and C' would
therefore be the set of headingsin the classified section of that same newspaper. If an element

of D (taken from http://classifieds.dailyrecond.com/cv3/dailyrecord) is:

CARPENTRY All homeimprovementsincluding decks, siding,
wood restoration, waterprfg, roofs, kitch/bath remod
& repairs, etc. 973-328-6876

then it would be assigned the value of Business & Service from the set C',

In many text classification problems, multiple classes may actually be assigned to one spe-
cific document. For example, if the set D consists of the set of titles of papers on mathematics,
one paper might belong to the three classes: number theory, classical analysis, and numerical

analysis. In that case, the definition above on text classification would still apply, if a separate



classification problem was designed for each class, where C' in each new problem would simply
consistof theset < ¢, f >, t signifying that the document belongsin theclassand f that it does
not.

Problems in text classification vary widely in many aspects. Some documents to be classi-
fied are very short text strings such as titles of Web pages, titles of papers or articles, or even
simply namesof companies. Othersmay consist of entire\Web pages, email contents, or newsar-
ticles, sometimes spanning many pages. There are document cl assification problems with many
possibleclasses that possibly even overlap. Other problemsmay have only two or three classes
with clear and unique definitionsfor the classes.

Some examples of the current uses and research interests of automatic text categorization

are:

e TopicDetectionand Tracking: Streams of datasuch asnewsstoriesor broadcastsare used
to detect new topics, or to track old topicsin the news[1]. Thisallowsinteresting stories
to be flagged, or stories on a topic of interest to be sent to a user with a notice of high

priority (http://www.ldc.upenn.edu/Catal og/L DCI8T25.html).

e Personalizing approaches to providing information: This area includes personalizing fil-
ters, and detecting spam mail [41, 32, 42, 56, 25]. With users of news services and email
inundated with information, it is often important to rank or present those pieces of data
that are most important to the user. These systemstypically make use of previous actions

or input by the user to learn user needs and preferences.

e Document organization: There are many applications for which documents that are ob-
tained must be placed into one of many categories for the purpose of easy indexing or
access. Examples of thisinclude placing the abstracts of submitted papers to a confer-
ence under a correct keyword or subtopic, or placing classified advertisements under the
correct heading in a newspaper [64, 51, 17]. Thiswould aso include categorizing Web
pagesinto hierarchies. It isdifficult, if notimpossible, for the large number of Web pages
that exist to be manually classified into the proper area of a search engine hierarchy. Au-

tomatic text categorization methods are typically used for this purpose[27].

Some of thefirst approaches to automatic text classification were rule-based [29], where aset of



ruleswas manually devel oped and applied to documentsto determine document classes. For ex-
ample, an abstract from atechnical paper in a physicsjournal might be determined to be about
the subfield astro-physicsif it contains the words planet or galaxy or stars. These rules must
be formed for each domain where classification is needed. This method is extremely labor in-
tensive and not easily amenable to changes and updates. Instead of hand-crafting rules, the
machine learning community approachestext-categorization problemsas* supervised” learning
problems. In this case the human expert simply hasto label aset of examples with appropriate
classes. Once a corpus of correctly labeled documents is available, there are a variety of tech-
niquesthat can be used to create a set of rulesor amodel of the datathat will allow future docu-
mentsto be classified correctly. The techniques can be optimized and studied independently of

the domains and specific problemsthat they will be used to address.

The problem with the supervised learning approach to text classification is that often very
many labeled examples (or “training examples’) must be used in order for the system to cor-
rectly classify new documents. These training examples must be hand-label ed, which might be

quite a tedious and expensive process.

1.2 Beyond Supervision

Suppose we have atext classification problem with an insufficient number of training examples
to create a classifier that has a reasonably low error rate on unseen test examples. Thereare a

number of approaches that may be taken to aid in the creation of amore correct classifier.

e The simplest approach would be to insist upon being provided with many more labeled
training examples before creating an accurate classifier. Thisisoften an unrealistic possi-
bility. A large numbers of examples may be unavailable, or it may be merely atoo expen-
sive and labor intensive project to obtain the number of training examples that are nec-
essary. An approach that has been taken by a number of researchers has been to choose,
in some smart way, a small number of additional training examples that should be hand-
labeled in the hope that this selection will improve learning. Uncertainty sampling has
been used in thisway [40] where specific examples are chosen out of alarge pool of unla-

beled examplesto be given to humansto be classified. These hand label ed examplesthen



becomepart of thetraining corpus. These examplesare chosen based upontheinability of
the current classifier to label them with high confidence. In thisway fewer examples must

be given to an expert to be labeled than if the examples were simply randomly sampled.

Many researchers have noted that althoughit is often the case that there are very few la
bel ed exampl es, there are often many unlabel ed examplesreadily available[2, 40, 6, 51, 5,
28]. Evenif wedo not wish to give these unlabel ed examplesto expertsto label, they can
beusedinvariouswaysand in conjunctionwith avariety of classifierstoimprove classifi-
cation. Current work using naive Bayes text classifiers use the labeled training examples
to assign probabilistic classes to many unlabeled examples. These newly classified ex-
amplesare then used in the classifier creation process[51, 66]. Unlabeled examples have
also been used to create new features for the set of labeled examples. In thisway the set
of labeled examples is enhanced by the information provided in the set of unlabeled ex-
amples [58]. When asmall set of training examples can be re-expressed using different
views [6, 50, 15], or if two distinct learning algorithms can be used on the same small
set of training data [28], the combination of the labeled and unlabel ed sets can be used to
achieveahighly accurate classifier. Empirically it hasbeen shown that combining label ed
and unlabeled examples can improve accuracy on unseen test sets quite dramatically in

certain situations|[6, 48, 51, 31, 65, 7, 66].

In general, the model of text classification that we have described only assumes the ex-
istence of a corpus of labeled examples. Once the model is created it is then applied to
the test examples. However, if the test examples are available during the model creation
process, they can sometimes be exploited to improve learning. The test examples them-
selves can be looked at as unlabeled examples, and often they are even more useful than
arandom corpus of unlabeled examples. Since we wish to achieve high accuracy on ex-
actly thistest corpus, it has been realized that it can be used within the classifier creation
process. Transduction, as defined by Vapnik [61], as opposed to induction, isthe creation
of aclassifier that takes into account the test set to which it will be applied. Transduction
has been applied to the text categorization problem using support vector machines [33],

where the test examples are used to choose between classifiers that perform comparably



on the training data alone.

e Our approach to solving the problem of limited training dataiis different in some impor-
tant aspects from those three described above. We do not assume the existence of either
unlabeled examples or test examples. Rather we focus on using some related corpus of
datain addition to the labeled training set. The question that we address is as follows:
Given atext categorization task, can we possibly find some other datathat can be incor-
porated into thelearning processthat will improve accuracy on test exampleswhilelimit-
ing the number of labeled training examples needed? We believe that the answer is most
often “yes’. For example, suppose that we wish to classify the names of companies by
the industry that it is part of. A company such as Watson PharmaceuticalsInc would be
classified with thelabel drug, and the company name Walmart would be classified astype
retail. Although we many not have numerous training examples, and the training exam-
ples are very short, we can find other data that is related to this task. Such data could be
articles from the business section of an on-line newspaper or information from company
home pages. Asaresult of the explosion of the amount of digital datathat is available,
it is often the case that text, databases, or other sources of knowledge that are related to
atext classification problem are easily accessible. We term this readily available infor-
mation “background knowledge’. Some of this background knowledge can beused in a
supervised learning situation to improve accuracy rates, while keeping the hand-labeled

number of training examples needed to a minimum.

1.3 What isBackground Knowledge?

Suppose that you were maintaining a Web site about veterinary issues and resources. One of
your design decisionshas been to divide Web pages according to theanimal sthat they are about.
You might have a site devoted to primates, and one for cows, one for dogs, etc., each of which
has a list of Web page titles that are associated with that particular animal. In thisway, a per-
son browsing your site would have access to many different pages on his/her topic of inter-
est. A text classification problem related to this task might be placing Web page titles in the

appropriate list. For example, the Web page entitled “Mad Cow Panic Goes Beyond Europe”



(http://archive.nandotimes.com/newsroom/nt/morecow.html), would clearly fit under the cate-
gory “cow”.

L et usformulatethisclassificationtask asasupervisedlearning problem. Givenalist of Web
pagetitlesthat have been hand classified (these are the training examples), wewish to create a
classifier that will automatically classify new titles. A schematic view of thethisproblemwitha
few training exampl es (taken from http://netvet.wustl.edu) can beseenin Figure 1.1. If thereare
not many training examples, this problem becomes onethat isvery difficult. Thisisbecausethe
training examples are quite short, and do not contain very many informative words. It is often
the case that a new test exampl e containswordsthat do not occur inthetraining examplesat all.
Anautomatic classifier based solely on the given set of training examples can not use these new

wordsin the classification decisions.

Training set Model Test set
Jersy Canac, cow I—
| Lily Pad, frog — 7
| Cat Breed Pictures, cat l/ 1

American Kennel Club, dog

Figure 1.1: The NetVet classification problem

However, we can assume that the World Wide Web contains much information about all
the topics and classes that we are dealing with. We can use some of thisinformation as back-
ground knowledge for the task. An example of a piece of background knowledge for thistask
isin Figure 1.2. ThisWeb page, which advertisesa pillow for pets, isclearly related to our text
classification problem. However, it isimportant to note that it does not fit clearly into any one
of our predefined categories. What then can a piece of background knowledge such as this one
add to to the text classification task? Background knowledge can give usinformation about the
co-occurrences of words, as well as the frequency of different words in the domain. For ex-
ample, from the Web page discussed above, we might learn that the word “pet” is often used
in conjunction with “cat” or “dog”, but not with “primate” or “cow”. The background know!-
edge can a so enhance the sometimes meager vocabulary of the domain that has been created

by using only thetraining examples. Especialy when there are very few training examples, the



size of thevocabulary that is created from thetraining examplesis small aswell, and the chance
that test exampleswill contain words that have not been seen by thelearning algorithm, and are
hence not part of the model, is very high. In this case the background knowledge enriches the
domain model. Depending upon the supervised learning algorithm that is used to classify new
test instances, theinformation gleaned from the background knowledge may be potentially used

to improve classification accuracy.

B

BRI

IFYOU THINK ALL
PET BEDSARE ALIKE,

YOUDONT KNOW BEANS
The Patented Ortho-Bean® Pet Bed is
the purr-fect bed for your pet. The dogand

ca pictured above know that. But if you
don't know it offers your pet morethan just

Figure 1.2: An example of background knowledge for the NetVet classification problem

1.4 Contributions

In thisthesis we explore three different methods of automatic text classification that have been
widely used and have been shown to be competitive techniques in the machine learning and
information retrieval literature. For each of these procedures we provide a framework for the
inclusion of background knowledge. The methods makes different assumptionsabout the back-
ground knowledge and use the added knowledge in qualitatively different ways.

For the first method, we simply borrow the approach that others have taken [51] in using
unlabeled examples to improve text classification. We then broaden their results by applying
their method to exploit background knowledge. We create a naive Bayes classifier based upon
thetraining examplesalone. Thisclassifier isthen usedto classify the background knowledgeby
providingthe probability that each piece of background knowledgebelongsto each class. These
pieces of background knowledge are then treated as training examples and are added into the

original set to create anew classifier. Thismethod had been used with unlabel ed examples, with



the implicit assumption that each unlabel ed exampl e definitely fitsinto one of the classes of the
problem. Our observationis that background knowledge from the same domain can be helpful
in this framework aswell. Thisis the case even when the pieces of background knowledge do

not clearly correspond to any one of the classesthat are used to label the training and test sets.

The next two systems present new and different uses of background knowledge. For the
second method we incorporate background knowledge into anearest neighbor classification al-
gorithm. Without background knowledge, the algorithm finds those training examples that are
closest in proximity (using information retrieval metrics) to a new test example. These close
neighborsthen vote to determine the class of thetest example. With the addition of background
knowledge, we once again find those training examples that are closest to the test example.
However, we do so by finding the pieces of background knowledge that are closest to the test
example, and comparing those background piecesto the training corpus. In thisway, atraining
and test example are not compared directly but are considered closeif there existsa background
piece of knowledgethat is closeto both thetraining and test example. Many such closetraining
examples are found, and they vote for the final classification result. To accomplish thisindirect
comparison we use the text database tool WHIRL [11, 12], and formulate our comparisons as

gueriesinits SQL-type language.

Lastly, we use background knowledge with Latent Semantic Indexing [18, 21] to enhance
the corpus of training dataand produce areduced space that modelsaricher set of semantic de-
pendencies. Once again a nearest neighbor paradigm is used. When background knowledgeis
not available, singular value decomposition is used to re-express the space that is represented
by thetraining examples. Test examples are expressed in this same reduced space and are then
compared to the training examples. Thosetraining examplesthat are closest to the test example
in this new space vote to obtain the final results of classification. We incorporate background
knowledge by using it in the singular value decomposition process. We add the background
knowledge to the training data before the space reduction is performed. Thisresultsin the re-
expression of both training and test datain a space that was created using the information con-
tained in the background knowledge. They can then be compared asif background knowledge
was not used. Since the purpose of Latent Semantic Indexing is to find relationships between

words in the corpus, the inclusion of background knowledge allows us to model relationships



that cannot be found in the training set aone.

15 Outline

Theremainder of thisthesisis organized in the following manner:

Chapter 2 presents our experimental methodology, and introduces the data sets that we use
for evaluation. We discuss the sources of the data and the background knowledge and provide
examples and descriptions of each of them.

The next three chapters present the supervised learning methods that we use, and describe
how background knowledge is incorporated into the learning process. Chapter 3 reviews the
work on naive Bayes and expectation maximization and shows that it can be used with back-
ground knowledge aswell as with unlabeled examples. We provide a discussion of some of the
related work in thisfield.

Chapter 4 presentsour work onincorporating background knowledgeinto anearest-neighbor
text classification system that is built off the data-base tool WHIRL [11, 12, 14]. We give ade-
tailed description of WHIRL and discuss its adaptation to text classification with and without
the use of background knowledge.

Chapter 5 describes Latent Semantic Indexing [18], our method of using it for text classi-
fication, and the inclusion of background knowledge into the learner. Once again, we use the
same data-sets to compare learning with and without background knowledge.

We provide a comparison of the three different systems and an analysis of where and when
each performs most credibly in Chapter 6. Chapter 7 includes a discussion of related work. We

then conclude with a summary of our contributionsand directionsfor futurework in Chapter 8.
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Chapter 2

Data Sets and Methodology

2.1 Data Sets

We have tested the systems that we present with numerous different text-categorization prob-
lems, which vary in many of their characteristics, as well as in the nature of the background
knowledge that is used to aid the task. In this section we give a description of all of the data
sets that we have used, including the source of the dataand background knowledge, size of the
data sets, average length of examples, and previoususes of the data setsin the machine learning

community.

2.1.1 20 Newsgroups

Two of the datasetsthat we have used have been widely studied by other researchersin machine

learning, the 20 Newsgroupsdataand the WebK b dataset (http://www.cs.cmu.edu/~ textlearning).

The 20 Newsgroup data set consists of articlesfrom 1993 that were collected by Ken Lang
from 20 distinct newsgroups on UseNet [35]. It is hard to distinguish between some of these
newsgroups, because some of their topics are very related. There are three newsgroups that
discusspolitics(talk.politics.mideast, talk.politics.miscand talk.politics.guns), five newsgroups
that are computer related (comp.os.ms-windows.misc, comp.sys.ibm.ps.hardware, comp.sys.-
mac.hardware, comp.windows.x), four science newsgroups (sci.crypt, sci.electromics, sci.med,
scip.space), three about religion (alt.atheism, soc.religion.christian, talk.religion.misc), four on
recreational activities (rec.autos, rec.motorcycles, rec.sport.hockey, rec.sport.baseball) and one

mi scellaneous newsgroup (misc.forsale). The vocabulary consists of 62258 wordsthat are each
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used more than onetime [51, 49]. Although it might sometimes be easy for an automated ma-
chine learning system to distinguish between newsgroupsthat are dissimilar, this problem be-
comes very hard when trying to determine which of a few related newsgroups an article falls
into. This problem is particularly challenging when there are very few labeled examples, as

that makesit even harder to distinguish between classes.

Thetraining set and test set consist of articlesfrom the 20 newsgroups, and the set of back-
ground knowledge consists of individual articles from the 20 newsgroups as well. This back-
ground knowledgeis therefore exactly of the same form and from the same source as both the
training and test data. In this case we can adternatively use a more common term for the back-
ground knowledge, “unlabeled examples’. Althoughthisisavery limited form of background
knowledge, and we must make the assumption that unlabeled examples are readily available,
this data set is a good test bed for the comparison of our work to that of other researchers. An

example can befound in Figure 2.1.

file software software lord fax de output montreal
montreal quebec time postscript

voice box canada station kind rs pd produce produce

future travel hardcopy ecole

hpgl polytechnique gaetan lasetjet

Figure 2.1: Example from 20 newsgroups

For this data set, we followed the exact train/test/unlabeled example split that Nigam et al.
[51, 49] have used. The UseNet headers of al examplesthat have the name of the correct news-
group posting are of course removed before any learningisdone. A list of stop-wordswas also
removed from all the examples. The latest 200 examplesin each group were taken for the test
set, to create atest set of 4000 examples. Thiswould closely mimic anatural scenario of training
on older articles and testing on current ones. An unlabeled set of 10000 examples was created
by randomly choosing these from the 80% remaining examples. Training setsof sizes20 (1 per
class), 40 (2 per class), 60, 100, 200 and 400 were created by randomly choosing from the re-
maining exampl es. Ten sets of non-overl apping trai ning examples of the same sizewereformed
and the results that we report are the averages of all of these runs. The results that we present

on this data set are done on exactly the same splitsasin [51, 49].
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2.1.2 WebKb

The WebKb data set consists of pages that are part of computer science departmentsfrom many
different universities and are placed in one of seven categories. student, faculty, staff, course,
project, department, and other. Following the methods of other researchers our data consists of
only the 4199 pages that are in the four most common (excluding other) categories of faculty,
course, student, and project [51, 33]; our text-categorization problemisto place aweb pageinto
oneof tl

sothatr

be seen

office rainbowthreedigit rainbowthreedigit
rainbowthreedigit hours rainbowonedigit
rainbowonedigit rainbowonedigit note this for
and of information homework homework
homework isisis class lecture notes exams
grading description rainbowfourdigit fall
assignment welcome general syllabus
assignments project project announcements it
solutions know systems systems me current

Figure 2.2: A piece of datafrom WebKb

For purposes of training and testing the datais divided by the department that the web page
is associated with. There are five tota sets: pages from Cornell, Washington, Texas, Wiscon-
sin and a miscellaneous group that includes many other universities. In thisway, four test sets
are formed by taking pages from each of the four universities. Thetest set for Cornell consists
of 226 pages, Wisconsin has 308, Washington has 255 and Texas has 251. For each test set,
thetraining and unlabel ed sets are taken from the pages of all the other universities. For exam-
ple, the training and unlabeled examples used with the Wisconsin test set come from Cornell,
Washington, Texas and the miscellaneous group. This helps avoid learning parameters that are
specific to a university and testing on that same university, as opposed to learning parameters
that are specific to the classes.

For each of these four test sets, aset of 2500 unlabeled examplesis randomly chosen from
all documents of every other university. Once again, for each of the four test sets, from the
remai ning documents, training setsof size4 (1 per class) 8 (2 per class), 12, 20, 40, 80, 120, 160,

200 are formed. The resultsthat are reported in thisthesis are averages of the 40 runs (10 per
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dataset size per 4 departments). Preprocessing of the datafollowsother previous methodol ogy,
numbers and phone numbers are converted into tokens, and feature sel ection isdone by keeping
only the 300 words that have highest mutual information with the classes.

For thisdataset aswell, our split of thearticlesintothetrain, test and unlabel ed setsisexactly
that of [51, 49].

2.1.3 Advetisements

Following the methodol ogy of the 20 Newsgroupsand WebK b data sets, we created adata set of
short classified advertisements off the World Wide Web. In this set, and other descriptionsthat
follow, the background knowledge no longer consists simply of unlabeled examples. For the
labeled set of examples, we downloaded the classified advertisements from one day in January
2001 from the Courier Post at http://www.southjerseyclassifieds.com. The Courier Post online
advertisements are divided into 9 main categories: Employment, Real Estatefor Sale, Real Es-
tate for Rent, Dia-A-Pro, Announcements, Transportation, Pets, Employment, and Business
Opportunity. Asin the 20-Newsgroups and WebK b dataset, we created 10 random training sets
with 1 per class, 2 per class, 5, 10, 20, 50, and 100 per class. The Courier Post online did not
containthe same number of advertisementsin each of these classes. For thelarger datasetsthere
were not necessarily the same number of examplesin each classes as there were not enough ad-
vertisements in some of the classes to fit the quota. For example, the class “ Announcements’
had only 4 advertisementsin total, so that class was less represented in the data setswith 5, 10,
20, 50 and 100 examples per class. This mimics the natural world a bit better than having all
classes artificially made to contain the same number of examples, so it did not concern us. For
testing we simply downl oaded adverti sementsfrom the same paper, from one day amonth later,
taking approximately 1000 (25%) of the examplesfor our test set. In this set the most popul ous
class was Employment with 453 examples, Transportation had 171, Real Estate for Rent 105,
Real Estatefor Sale 61, Dial-A-Pro 41, Pet 38, and the class Announcementshad no examples.

The background knowledge from the problem came from another online newspaper — The
Daily Record (http://classifieds.dailyrecord.com). The Daily Record advertisementsonlineare
divided into 8 categories: Announcements, Business and Service, Employment, Financial, In-

structions, Merchandise, Real Estate and Transportation. We treated the union of the articles
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from each one of these categories as a separate piece of background knowledge. The average
length of the training and test datais 31 words; the background information had an average of
2147 words each. Thevocabulary size of thefull set of datawithout the background was 5367
with the background it became 6489. A sample example can be seen in Figure 2.3. A portion
of one piece of background knowledge (preprocessing has been doneto stem and change phone
numbers) can beseenin Figure 2.4. Here, the background knowledgeisaseguence of numerous

different single ads, all about transportation.

ACCOUNTANT/ Tax Preparer, F/T, exp in Quick books helpful.
Computer exp a must.

Exc. comp with oppty for quartly & yr end bonuses
856-232-0958 or fax: 856-232-7421

Figure 2.3: An example from the advertisement data

2 cadillac 93 eldorado tour coup
north star system polo green w beig
Ithr int bose stereo cd ex cond

ask 7900 phonenum

cadillac 90 sedan devill 1 owner 163k
runwell 1295 phonenum

chevi 95 cavali auto ac 4 cyl p pb

tilt rr def amfm  stereo cd 88 736

mi stk 13823A vin s7145937 499
Olictax mv feeex trasaturn of
denvill phonenum

chevi 93 corsicav6 4dr auto 79k load
1 owner like new 2975 phonenum

Figure 2.4: Part of a piece of background knowledge from the advertisement data

214 ASRS

The Aviation Safety Reporting System (http://asrs.arc.nasa.gov/) is a combined effort of the
Federal Aviation Administration (FAA) and the National Aeronauticsand Space Administration
(NASA). The purpose of the system isto provide aforum by which airline workers can anony-
mously report any problems that arise pertaining to flights and aircraft. The incident reports
are read by analysts and classified and diagnosed by them. The analystsidentify any emergen-

cies, detect situations that compromise safety, and provide actions to be taken. These reports
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are then placed into a database for further research on safety and other issues. We obtained the
datafrom http://nasdac.faa.gov/asp/ and our database containstheincident reportsfrom January
1990 through March 1999.

Sinceweareinterestedin text categori zationtasks, there aretwo parts of each incident report
that we deal with, the “narrative” and the “synopsis’. The “narrative” is along description of
theincident, ranging in our training and test data set from 1 to 1458 words with amedian length
of 171words. The“synopsis’ isamuch shorter summary of theincident with thelength ranging
from 2 to 109 with a median length of 24. It isinteresting to note that many of these words are

someti mes abbreviated which makes the text classification task even harder.

The are many different categorization problemsthat can be taken from this data set. A fea-
turethat is associated with each incident isthe consegquence of theincident that the analyst adds
to the report. This can take on the values: aircraft damaged, emotional trauma, FAA investi-
gatory follow-up, FAA assigned or threatened penalties, flight control/aircraft review, injury,
none, and other. If more than one consequence was present we removed that incident from our
training and test data. We also removed from the training and test data all those incidents that

had categories of none and other. Thisthen became a six class classification problem.

We chose the training and test setsto consist of the synopsis part of each incident. The test
set consistsof datafrom theyear 1999 for atotal of 128 examples. Theclassreview had the most
number of examples at 56, and the class FAA assigned or threatened penalties had the fewest
a only 2 examples. Thetraining set consists of all datafrom 1997 and 1998, for atotal of 591
examples. For the background knowledge, wechoseall narrativesfrom 1990-1996. Inthiscase
we did not remove any exampl es; thusthe background knowledge contai nsthose reports whose
categories were other and none as well asthe six that are found in our training and test set. For
thisdata set, therefore, the training and test examples are shorter than the background pieces of
knowledge, and the background pieces do not all fit into the categories of the text classification
problem. The total vocabulary size of the training and test data combined was 1872; when the
background knowledge was added the vocabulary had atotal of 3771 words. An example of a
training or test instance can be seen in Figure 2.5, and a piece of background knowledge can be
seen in Figure 2.6. Once again, as in the 20-Newsgroups and WebKb dataset, we created from

our training data 10 random training sets with 1 per class, 10 sets with 2 per class, and 10 sets
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with 5, 10, 20, and 50 per class.

A DC10 ENTERS AN AREA OF PRECIPITATION
AND TURB WITH ALL PAX AND FLT ATTENDANTS
STRAPPED IN. 5 PAX LATER COMPLAIN OF BACK
INJURIES

Figure 2.5: An example from the ASRS data

| WASON LOW LEVEL FLT FOR THE PURPOSE OF
OBSERVING PORPOISE AND SEALS ALONG THE
SHORELINE AND THE OCEAN, ACCORDING WITH
THEFAR 9179 POINT A AND C

FLYING CROSS-COUNTRY IN MVFR ABOUT 10 Ml

SW OF DEST, CEILING STARTED TO DROP AN

D SODID VISIBILITY NAVIGATION WASBEING
ACCOMPLISHED BY FOLLOWING MAJOR ROADS
DUETOVISIBILITY LIMITATIONS, | MISSED AN INTXN
TURN AFTER DISCOVERING PROBLE

M, | STOPPED CRUISE AND HOVERED TO READ

LARGE INTERSTATE OVER THE ROAD SIGN
GEARUPLNDG CAUSE: PLT SMOMENTARY DISTR

IN LNDG PHASE OF FLT | WASINSTRUCTING IN A VFR
ACFT AT AN UNCONTROLLED ARPT AND CALLED THE
ACFT WHILE JUST TOOK OFF TO ASK FOR CEILING ACFT
RPTED 1000 | TOOK OFF AND DETERMINED

THE CEILING WAS 1000 MSL, A TRUE CEILING OF 300 AG
| HAD TO DECLARE AN EMER BECAUSE OF LOW
CEILING AND RAPIDLY DECLINING VISIBILITY

Figure 2.6: A piece of background knowledge from the ASRS data

215 PhysicsPapers

One common text categorization task is assigning topic labels to technical papers. We created
a data set from the physics papers archive (http://xxx.lanl.gov), where we downloaded the ti-
tlesfor all technical papersin the first three areas in physics (astrophysics, condensed matter,
and general relativity and quantum cosmology) for the month of March 1999. As background
knowledge we downloaded the abstracts of all papers in these same areas from the two pre-
vious months — January and February 1999. In total there were 1701 pieces of knowledgein
the background set, and 1066 in the training-test set combined. The distribution of classeswas
skewed, however, as there were 493 titles in astrophysics, 460 in condensed matter, and only

113 in quantum cosmol ogy. These background knowledge abstracts were downl oaded without
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their 1abels(i.e., without knowledge of what sub-disciplinethey were from) so that our learning
programs had no access to them. We created two problems from this set; a two-class problem
where weincluded only thosetitlesand abstracts from thefirst two areas (astrophysicsand con-
densed matter). These two classes had amost the same number of training and test examples.
Thethree-class problem included the titles and abstracts from the third category (quantum cos-
mology) as well.

The average length of the technical paper titles was 12.4 words while the average length
of the abstracts was 141 words. The number of words in the vocabulary taken from the full
set of titles was 1716; with the abstracts it went up to 6950. Two examples of titles from the
training/test set arein Figure 2.7, and an abstract from the background knowledge can be seein

Figure 2.8.

Stellar populationsin the Phoenix dwarf galaxy
M4-18: The planetary nebulaand its WC10 central star

Figure 2.7: Examples from the physicsdomain

We consider high-temperature expansions for the free energy of zero-

field Ising models on planar quasiperiodic graphs. For the Penrose and

the octagonal Ammann-Beenker tiling, we compute the expansion coefficients
up to 18th order. As aby-product, we obtain exact vertex-averaged numbers of
self-avoiding polygons on these quasiperiodic graphs. In addition, we analyze
periodic approximants by computing the partition function via the Kac-Ward
determinant. For the critical properties, we find complete agreement with the
commonly accepted conjecture that the models under consideration belong to
the same universality class as those on periodic two-dimensional |attices

Figure 2.8: Background example from the physics domain

216 NetVet

Two of the data sets that we have used are taken from the work of Cohen and Hirsh [14]. They
created these data setsfrom sites on the World Wide Web, to test the WHIRL database system as
anearest neighbor classification system. Thefirst dataset, NetVet (http://www.netvet.wustle.edu)
included the Web page headingsfor the pages concerning cows, horses, cats, dogs, rodents, birds
and primates. The text categorization task was to place a web page title into the appropriate

class. For example, atraining examplein the class birdsmight have been: “Wild Bird Center of
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Walnut Creek”. Each of these titleshad a URL that linked thetitle to its associated Web page.
For thetraining/test corpus, we randomly chose half of thesetitleswiththeir |abels, intotal 1789
examples. Of these examples, 280 were of class horse, 289 of class bird, 518 of class dog, 241
of class cat, 136 of class rodent, 252 of class cow, and 73 of class primate. We discarded the
other half of thetitles, with their labels, and simply kept the URL to the associated Web page.
We used these URL s to download the first 100 words from each of these pages, to be placed
into a corpus for background knowledge. Those URLSs that were not reachable were ignored
by the program that created the background knowledge. In total there were 1158 entriesin the

background knowledge database.

In this case, the background data consisted of much longer entries than the training and test
data. Thetitleshad an average length of 4.9 words, while each piece of background data contain
100 words. The total vocabulary size of the titles was 1817 words; it jumped to 10399 words
when the background data was added. However, the words in the background data were not as
informative as the shorter title strings, because people tend to place important words in their
titles. Many of the background pieces had words unrelated to the task at all. For example, a
number of them began with thewords: “Welcome to the site”, which is not specific to any cate-
gory, or thedomain at all. Training and test examples can be seen in Figure 2.9 and Figure 2.10

shows an exampl e of a piece of background knowledge.

Cornell Univeristy Equine Research
Disease of Primates

Figure 2.9: Training and test examples from the NetVet domain

Friendsdon't let friends runin wire wheels.

Transoniq doffers three exercise wheels, Wodent Wheels(TM), for
small critters. Wodent Wheels feaure a unique design with a safe
more natura running surface and a support stand without
dangerous pinch areas. Available in threesizes. 8-inch dameter,

11-inch diameter, and 12-inch diameter. The only excersise whed
recommended and approved by the ASFCA. Rodents are dtracted
to the wheds entry holes which dff ersthem areal nifty effed when
watching them run. Even rats love wheelsif they don’t get their
feet hurt and their tail s whacked by unsafe axle support.

Figure 2.10: Background example from the NetVet domain
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2.1.7 Business Names

The second of Cohen and Hirsh's data sets consisted of atraining set of company names, 2472
in all, taken from the Hoover Web site (http://www.hoovers.com) labeled with one of 124 in-
dustry names. The class retail had the most business names associated with it; at 303 exam-
ples, and there were afew classes with only one example each (coal). The average number of
examples per class is 20. We created background knowledge from an entirely different Web
site, http://biz.yahoo.com. We downloaded the Web pages under each business category in the
Yahoo! business hierarchy to create 101 pieces of background knowledge. The Yahoo! hier-
archy had a different number of classes and different way of dividing the companies, but this
was irrelevant to our purposes since we treated it solely as a source of unlabeled background
text. Each piece of background knowledge consisted of the combination of Web pagesthat were
stored under a sub-topic in the Yahoo! hierarchy. Each example in the training and test set had
an average of 4 words (for example: Midland Financial Group, Inc). Theinstancesin thetable
of background knowledge had an average length of 6727 words and each one was thus a much
longer text string than thetraining or test examples. Vocabulary sizefor the businessnameswas
2612 words; with the background knowledgeit was 22,963 words.

A few training/test examplesfrom thisdomain arein Figure 2.11. A small part of one of the
very large pieces of background knowledgeisin Figure 2.12. Each single piece of background

knowledge consists of a discussion of many businesses such asthe onein Figure 2.12.

Yae Univeristy
Xerox Corporation
Abbot Laboratories

Figure 2.11: Training/test examples from the business name data

2.1.8 Clarinet News

Another data set that we created was obtained from Clarinet news. We downloaded all articles
under the sports and banking headings on November 17, 1999, using the most recent ones for
training and test sets and the older ones for background knowledge. In total, our background

knowledge consisted of a corpus of 1165 articles. The background knowledgein this problem
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CET Environmental Service (AMEX : ENV) ENV provides
avariety of consulting and technical servicesto

resolve environmenta and health risk problems

in the air, water and soil with an expertise in environmental
remediation and water treatment techniques. For the three months
ended 3/99, revenues rose 13 percent to $12.9 million. Net income
applicable to Common totalled $346 thousand vs. aloss of $666
thousand. Revenues reflect higher revenue provided EPA by
contracts. Earnings reflect a continued focus on cost control.

Figure 2.12: A part of apiece of background knowledge from the business name data

consisted of the first 100 words of each of these articles. Informal studies showed us that in-
cluding the entire articles did not improve accuracy substantially, probably because the most
informative part of an articleisusually thefirst few paragraphs. Our training-test datahad 1033
data pointsof which 637 belonged to the sports category, and 406 bel onged to banking category.
Wetook thefirst ninewordsof each newsarticleto create the 1033 examplesin thetraining and
test set. The resultsthat we present are on these short text strings. The size of the vocabulary
of the training and test set is 1984, but when the background knowledge is included there are
7381 words. Two short text strings from the training data can be seen in Figure 2.13; a piece of

background knowledgeisin Figure 2.14.

The Baseball Writer's Association o America postseason award Monday
From national championship game to consolation gamein just

Figure 2.13: Training/test examples from the Clarinet data

The New Y ork Knicks hope to recover from their fourth
quarter fold in Minnesota on Thursday night when they
visit the Fleetcenter tonight to battle the Boston Celtics.
Allan Houston scored points but the Knicks blew
apoint fourth quarter lead and Latrell Sprewell

missed a potential tie pointer at the buzzer in aloss

to the Timberwolves. New Y ork led throughout and
opened a cushion with to play before Kevin Garnett
took over to score for acareer high point for Minnesota.

Figure 2.14: A piece of background knowledge from the Clarinet data
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219 Thesaurus

Roget’s thesaurus places all words in the English language into one of six major categories:
space, matter, abstract relations, intellect, volition, and affection. For example, aword such as
“superiority” fallsinto the category abstract relations, whiletheword “love” is placed into the
category affection. Following the six links, one for each of these categories, from http://www.-
thesaurus.com, we created alabel ed set of 1000 words, with each word associ ated with one cate-
gory. Thesmallest category contained 135 |abel ed exampl es and the largest class contained 222
examples. The training and test sets had a combined vocabulary size of 1063 words (as most
examples had only one word each), but when the background knowledge was added the total
vocabulary size became 11607 words.

We obtained our background knowledge via http://www.thesaurus.com as well, by down-
loading the dictionary definitions of all 1000 words in the labeled set. We cleaned up the dic-
tionary definitions by removing the sources that were returned (i.e. which dictionary the infor-
mation was gleaned from) as well as other miscellaneous information (such as how many def-
initions were found). Each of these dictionary definitions became an entry in our background
knowledge database. An interesting point about this data set is that the background knowledge
containsinformation directly about thetest set, i.e. definitionsof thewordsin thetest set. Since
these definitionsare not directly rel ated to the classificationtask at hand, thisposes no contradic-
tion. Asamatter of fact, wecan look at new test examplesgiven tothe systemasfollows: Given
aword and its definition, placethe definition into the background knowledge data base, and then
categorize the word using the total background knowledge. Some words from the training and

test set are in Figure 2.15, and a definition from the background knowledgeisin Figure 2.16.

Existence
Imitation

Figure 2.15: Training/test examples from the thesaurus data

2.2 Testing Methodology

For the first two domains that we described in Sections 2.1.1-2.1.2 our testing methodol ogy
followedthat of Nigamet al. [51]. We obtained our train/test/unlabeled splitsdirectly fromtheir
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dear dr adj dearer dearest aloved
and cherished my dearest friend b Greatly valued
precious lost everything dear tothem  Highly
esteemed or regarded Used in direct

address especialy in salutations Dear

Lee Dawson aHighpriced expensive
b Charging high prices  Earnest ardent
This good man was a dear lover and constant
practicer of angling 1zaak Walton
Obsolete Noble worthy  Heartfelt

It ismy dearest wish n Onethatis

greatly loved  An endearing lovable or kind person

adv  With fondness affectionately
At ahigh cost sold their wares dear

interj Used as a polite exclamation
chiefly of surprise or di

stress oh dear dear me Middle English dere from
Old English dore dearly adv  dearnessn

Figure 2.16: Background knowledge from the thesaurus data

work, and the accuracy results that we graph for the first method (presented in Chapter 3) for
thesetwo datasetsthe same asthosein [51]. For thedata setsthat are describedin Section 2.1.3
and Section 2.1.4we usethesame method of obtainingthetest and train sets. Thetest setistaken
randomly from later examples, and different sizetraining setsare created by randomly choosing
an equal number of examples from each class. Ten different training sets are created for each

size; the results of these ten sets are averaged together to arrive at afinal results.

Our testing methodol ogy for the other data setsthat we used to test our systemswas slightly
different [64, 65]. In each of the cases, we either obtained from other researchers or created
from the Web alabeled set (from which we created both the training and the test set) and a set
of background knowledge. All reported results are five-fold cross-validated. Thelabeled set is
divided into atraining set and atest set by choosing a random 80% of the labeled data for the
training set, and the remainder of thelabeled datafor thetest set. The codethat we used to create
these sets came from the shell script associated with the C4.5 program by R. Quinlan[53]. This
set creation is done five times to obtain five non-overlapping test sets, and our final results are
the averages across thesefive runs. For each of thesefiveruns, we tested our system using 20%,
40%, 60%, 80% and 100% of the current training set. This givesus afeeling of the usefulness

of background knowledge as the size of the training set is varied.
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2.3 Summary

We have presented nine different data sets on which wetested our systems. All the problemsare
text classification problems to be used with background knowledge. However, the background
knowledge that we used for these tasks vary greatly. For two of the data sets, 20 newsgroups
and WebKb, the background knowledgeissimply a set of unlabeled examples. Two of the data
sets, business names and advertisements, have background knowledgethat is of avery different
structure than thetraining and test sets. For these two data setsas well asfor the ASRS data set,
the background knowledge piecesdo not fit clearly into any of the classes of thetext categoriza-
tion task. The physics, NetVet, and thesaurus data sets have background knowledge that is of
adifferent type than the training and test set, but that can fit into the classes of the text classi-
fication task. The Clarinet newsgroup data set contains background knowledge that isfrom the

same source and of the same form as the training and test set, but is just much longer.
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Chapter 3

A Generative M odel with Background Knowledge

Generative modelsfor text categorization assume that some statistical process has produced the
documentsthat are availablefor the classification task. Given a set of training documents, each
of which has an assigned class, generative model s estimate the parameters of the generative pro-
cess[51, 39]. These parameters are chosen based upon the set of training dataso that itislikely
that the generator could have created these exact pieces of training data. If, in addition to the
classified training data, we have data of the same typethat is unlabeled, there are methods that
can be used to estimate the parameters of the generative model s while incorporating these un-
labeled examples [51]. We show in this chapter that these unlabel ed examples need not be ex-
actly of the same type and form asthetraining set. We can substitute more general background
knowledge for the unlabeled examples, and using the methods of other researchers, obtain im-
provementsin accuracy on text classifiersthat are created using both the training set and the set
of background knowledge. In essence, we empirically show that background knowledge can be

used to improve accuracy in a generative model.

3.1 NaiveBayes

One such generative moded isthe naive Bayes method. Thislearning method has been studied
quitecarefully in both theinformation retrieval and machinelearning communities, and in prac-
tice performs very well on text classification tasks [55, 38, 41, 39, 43, 37, 34, 47, 36, 45, 51].
Given a set of training documents, {z1, ..., x,}, each of which is assigned one of m classes
{c1,...,cm}, the probability of any word occuring given class c; can be estimated from the
training data. Thisistypically the number of times that the word occursin this class divided by
the total number of wordsin thisclass. Laplace smoothing is often used to prevent zero proba

blilitiesof unseen eventswhere oneisadded to the numerator and the number of termsis added



25

to thedenominator. Thetraining examples can therefore be used to compute the probability that
agiven document (or a sequence of words), xj, will occur given the class ¢;. If the document
xy, consist of the words wy, 1, . . ., wg, 4, then assuming that all words are independent of each
other, the equation to compute the probability that this document will occur given theclass c;,

can be given asfollows:
P(zy|cj) = TTEy P(wiles) (3.1)

The probability of a class c; occuring can also be estimated from thetraining data. Thisistyp-
ically the number of documentsin class c; divided by the total number of documents. Once
again Laplace smoothing can be used, adding one to the numerator and the number of classes
to the denominator. The important point to noteis that these values are estimated directly from
the word counts and class counts of the training data.

Using Bayesrulewe can then specify the probability that a specific example, x5 isamember

of theclass, c;:

P(cjlar) = 71[)(%);(55)%'%) (3.2

If we substitute the numerator of Equation 3.2 with Equation 3.1 we have:

P(c; 4 plw iles
P(cjlur) = (”Xnﬁgk)( kiles) (33

During classification time this equation is used on atest document to compute the probabil-
ities of class membership in all classes. We are interested in finding argmaax ; P(c;|xy), or to
use Equation 3.3:

argmax; P(C])XHPZ;E;( k.i1¢) (34

In practice, thisreduces to argmaz; P(c;) x [1%, P(wy|c;). Thisthe classwith the highest
probability and is returned as the final classification result. The independence assumption is
clearly violated in text because based upon common usage of the English language as well as
grammar rules we know that some words are more likely to occur with other words, but this
does not seem to harm performance. Althoughit isoften the case that thefinal probabilitiesthat

arereturned by the Bayes classifier are not accurate, misclassification error is often minimized.
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There has been some theoretical work on the optimality of Bayes classifiers, which has shown

that classification accuracy is not highly affected by the independence assumptions[20, 26].

3.2 NaiveBayes and Expectation M aximization

For amodel that is created using only labeled data, we have just seen from Equation 3.3 that
naive Bayes can be used for classifying text documents. However, when unlabeled examples
are available to aid the classification task numerical methods can be used to approximate the
valuesthat can no longer be obtained directly from the data.

Dempster has presented an iterative hill-climbing techni que, Expectation Maximization, for
problemswithmissing data[19]. Thelabelsof the unlabel ed examples can belooked at asmiss-
ing data [19] and they can be approximated via thisagorithm. Thisagorithm is the one most
commonly used for this type of application where data is incomplete [4], and most recently it
has been applied to the label ed-unlabeled data problem in text classification [16, 7, 51]. Nigam
[49] presents the use of the EM algorithm with anaive Bayes classifier for text classification as

follows:

e Computetheinitial parameters of the classifier by using only the set of 1abeled examples.

e E step: Compute the probabilities of class membership for each of the unlabeled docu-
ments given the current classifier parameters. Thisis done by using the current version

of the naive Bayes classifier.

e M step: Using the probabilitiesthat were computed in the E step, recompute the param-

eters of the naive Bayes classifier.

The E step givesthe probahility that each unlabeled examplesis classified by each class.
To reestimate the probability that a class ¢, occurs using both the training (labeled) set
and the newly label ed exampl es (which were the unl abel ed set) we no longer cal culate the
total number of documentsin the classdivided by thetotal number of documents. Rather,
we calcul ate the sum of the probabilitiesthat all documents belong in ¢, divided by the
total number of documents. For adocument in thetraining corpus, thisprobability isequal

to oneif the document belongsto the class ¢, and zero otherwise. For documentsin the
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newly labeled set this probability is equivalent to the results of the E step. To reestimate
the probability that a word will occur given a specific class it is not enough to compute
the number of times that the word occurs in each document that belongs to that class,
but rather the number of times that the word occurs in each document multiplied by the
probability that the document belongs to that class. If an unlabeled example has a non-
zero probability of belonging to aspecific class, itisused in the cal culationsfor that class.
In thisway unlabeled examples are actually used numerous times in the recal cul ation of

the model parameters.

The E and M steps are repeated iteratively. Nigam et a. [51] stop the process when there
isno change in the model parameters. A tuning set could aso be used to decide when to stop
the evaluation of parameters of the classifier. Our version of the algorithm iterates for a fixed
number of times (seven) that was found to be useful in text classification.? For the basis of com-
parison with the other algorithms that we present in Chapters 4 and 5, we report the highest
classification accuracy from among those seven iterations. This skewstheresultsdightly infa-
vor of the EM algorithm as compared to the results that we report in later chapters. In cases
where thefirst few iterations of EM help classification, but there is a subsequent degradationin
accuracy asthe iterative process continues, we report that as well. We used the rainbow pack-
age (http://www.cs.cmu.edu/~ mecal lum/bow/rainbow/) [46] to preprocess and tokenizethedata

and to run naive Bayes and EM.

3.2.1 Unlabeed Examplesvs. Background Knowledge

At first glance it would seem that although EM might be a useful technique for aiding the clas-
sification task via unlabeled exampl es, the same technique would be useless when dealing with
the much broader problem of using background knowledge. Thisis because the assumptions
that the naive Bayes classifier makes is that examples (both labeled and unlabel ed) have been
generated by a mixture model that has a one-to-one correspondence with classes. Even if this
assumptionistrue for the labeled data and the test data, by itsvery nature, background knowl-

edge should not fit this assumption at all. Background knowledge often comes from a source

We chose the number 7 based on discussionswith Nigam (personal communication).
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that differs from that of the training and test data and is of a different form and different size
than the training and test data.

Consider, for instance, the text categorization problem of placing advertisements into the
correct areain the classified section of a newspaper. If we have avery large number of previ-
ously classified advertisements, this might be a task that is not very difficult for an automated
machinelearning program. However, if thelabel ed dataisscarce, thisbecomesamuch moredif-

ficult problem. For example, a piece of test data might be (taken from http://www.courierpost):

toyota’ 99 tacoma 4x4 x cab load
must sell 21 000 nego call joe

and belong to the class truck. If the set of training data is small, and the term “toyota’ is not
part of the training set vocabulary, this advertisement might be misclassified. If we have a set
of unlabeled examples of advertisementsthen perhaps naive Bayes and EM could correctly ap-
proach the classification problem. However, suppose that our background knowledge consists
of sectionsof advertisementsfrom some other newspaper, where each sectionisa piece of back-
ground knowledge. One piece of background knowledge consistsof al advertisements under a
specific categorization in the second newspaper. Moreover, the grouping in the second newspa-
per isvery different than thefirst. For example, the second newspaper has one category called
transportation that combines three categories of the first newspaper — cars, trucks and boats.
This piece of background knowledge should be helpful, but it clearly violates all assumptions
about the generative model, and it does not fit into the classification problem that we wish to
learn.

On the other hand, there are many examples where, athough the form of the background
knowledgeis different than the training and test data, the background knowledge may still fol-
low the same classification scheme as the training and test data. Consider the problem of clas-

sifyingthetitlesof technical papersin physicsby sub-fields. For example, atitle (xxx.lanl.gov):

The Nature of Galaxy Bias and Clustering
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would beplaced inthe category astro physics. Suppose, aso, that for background knowledgewe
have numerous abstracts of technical papers available. Although it isthe case that these pieces
of background knowledge are not short title strings, we can still ook at them as possibly falling
into one of the categoriesfor classification. Sinceitisthecasethat intext categorizational data
is represented in the same way, as vectors of terms, in that sense we can still 1ook at the back-
ground abstracts as examples with missing class information. Therefore, perhaps naive Bayes
and EM would help in a case such as this. The interesting observation that we make is that to
gain leverage out of unlabeled examples, the unlabeled data that we have need not be specifi-
cally and accurately unlabeled examples. Aslong asthe vocabulary and classification structure
closely resembles the training/test data, background knowledge can improve classification ac-

curacy in textual data using the EM agorithm.

There has been some theoretical work on using unlabel ed examples with generative classi-
fiers. The provable usefulness of these unlabeled examplesis unclear. Castelli and Cover [9]
have shown that | abel ed exampl es are much more useful than unlabel ed examples, and Cozman
and Cohen [16] present work that showsthat that unlabel ed examples can sometimesin fact de-
grade learning. For generative modeling of classifiers, if the structure of the classifier that is
automatically learned isidentical to that of the generator of thetraining, test and unlabeled doc-
uments then it has been shown that unlabeled documents will most definitely be helpful [66].
However, this assumptionis often unprovable or untrue, even when dealing with unlabeled ex-
amplesthat are extremely “similar” to the labeled data. Certainly with background knowledge
that comes from a different source than the training/test data we cannot rely on this theoretical
result. Empirically we show in the next section that background knowledge can aid classifica-

tion.

3.3 Reaults

Figures 3.1-3.10 present the results of running naive Bayes (with no background knowledge)
and EM on the data setsthat we described in Chapter 2. Each graph depictsthe accuracy (y axis)

curvefor naive Bayes and for the EM a gorithm, as the number of original training examplesis
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varied (x axis). For thegraphsinFigures 3.1, 3.2, 3.3 and 3.4 thex axisrepresentsthe number
of examplesin thetraining set. The x axis of the other graphs gives the total percentage of the
training examples that are used (varying from 20% to 100%, as we discussed in Chapter 2).
The graphs on the 20 Newsgroup dataset (Figure 3.1) and the WebKb data set (Figure 3.2)
are taken from Nigam et a. [51], and the background knowledgeis simply the set of unlabeled

examples.
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Figure 3.1: Naive Bayes and EM for 20 newsgroups
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Figure 3.2: Naive Bayes and EM for Webkb

Inamost all of thedatasetstheinclusion of background knowledgehel psboost accuracy on
the unseen test examples. Thisimprovement isespecially noticeablewhenthere arefewer train-
ing examples. In general, as the number of training examplesincrease, background knowledge

givesmuch lessleverage. Thisisconsistent with the analysisof other researchers [49, 16], who
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Figure 3.3: Naive Bayes and EM for the advertisements problem
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Figure 3.4: Naive Bayes and EM for the ASRS problem
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show that additional unlabeled examples are most hel pful when the training examples are few.
Our interesting observationisthat theseimprovementshol d even though the background knowl -
edge is sometimes of avery different form than the training and test example. For the business
name data (Figure 3.8) and the advertisement data (Figure 3.3) the classes of the background
knowledge are known to be different than the training/test data, yet classification accuracy still
improves. The generative model that EM finds need not model the domain properly, aslong as

the probabilitiesthat it findsis correlated with accuracy.

Isthere asignificant difference between the accuracy obtained with and without background
knowledge? Each x valuethat is plotted in Figures 3.1-3.10 represents a different data set or
size of data set on which naive Bayes and EM was run. To seeif EM with background knowl-
edge obtains higher accuracy than naive Bayes, we ran apaired t-test, treating each dataset asa
seperatetrial, with an accuracy associated with it for naive Bayes, and one for EM. The paired
t-test deals with the difference between the numbers of each pair of data and the p value gives
the probablility that the mean differenceisconsistent with zero. In thiscasetheresulting pvalue
wasless than .01 so we were able to conclude that thereis a significant difference in accuracies

with and without background knowledge.
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Figure 3.5: Naive Bayes and EM for the 2-class physicstitle problem

It has been shown that although EM with unlabel ed exampl es can sometimes hel p accuracy,

it can sometimes hurt it as well [49, 16]. Our point to note is not that EM always helps, but



100

§ 60 -
5
8
< 10
20
0
20

Figure 3.6: Naive Bayes and EM for the 3-class physicstitle problem
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Figure 3.8: Naive Bayes and EM for the business name data
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rather that it can help even when broad background knowledgeis used instead of unlabeled ex-
amples. In particular, the physics paper title problem in Figures 3.5-3.6 and the Clarinet news-
group problemin Figure 3.9 arereally hel ped by the addition of the background knowledge. We
expected thisbecause the background knowledgefollowsthe exact form and classesof thetrain-
ing and test data. However, it was a greater surprise when the thesaurus data set in Figure 3.10

performed quite credibly as well.
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Figure 3.9: Naive Bayes and EM for the Clarinet 9 words problem
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Figure 3.10: Naive Bayes and EM for the thesaurus problem

We mentioned in the previous section of this chapter that the accuracy rates that we have
graphed for EM in this chapter correspond to the best value out of the seven EM iterations. In
two of the data sets, thisvalue consistently isin thefirst iteration of EM, and the accuracy onthe

unseen test examples sharply degradesin thefollowingiteration. These were the advertisement
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and business name data (Figures 3.8 and 3.3). For example, with 40% of the business name
training data, naive Bayes achievesan accuracy of 19.5%. Inthefirst EM iteration, thisaccuracy
jumpsto 26%; by the seventh iteration it fall to 23.3%. Sinceit is precisely these two data sets
that have background knowledge that isill matched to the classification classes as well as the
training and test set data, as EM attemptsto usethe parameters of the classifier that were created
with the background knowledge through more than one iteration the naive Bayes assumptions

are severdy violated.

34 Summary

We have substituted the use of background knowledgefor unlabel ed examplesin an expectation
maximization algorithm. Although at first glance this might seem to be counter-intuitive, we
have shown empirically that even background knowledge that is not of the same form as the
training data can provide information that allows the learner to improve accuracy on the test

Set.
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Chapter 4

| ncor por ating Background Knowledgeusng WHIRL

Inthe previous chapter we approached the inclusion of background knowledgeas simply adding
a set of unlabeled examples to the text classification task. We then classified the background
knowledge, and used them to enhance the model of the data. In this chapter we look at back-
ground knowledge from an entirely different angle. Our approach now views the task as one
of information integration using WHIRL [11, 12], atool that combines database functionalities
with techniquesfrom theinformation-retrieval literature. Unlikethe preceding approach, we do
not attempt to classify the background knowledge and indeed, definitely do not require that it
be of aform comparable to that of the training data. We use the background knowledge as an
extracorpus for thelearner, to aid it in its decision task. Rather than directly comparing a new
test example to elements of the labeled training corpus, we use the background knowledge as
a“bridge’, to connect the test example with labeled examples. A labeled training example is
useful in classifying an unknown test instance if there exists some part of the unlabeled back-
ground knowledgethat issimilar to both the test example and the training example. We call this
a " second-order” approach to classification, in that training and test data are no longer directly

compared but, rather, are compared one step removed, through an intermediary.

A concrete example of the usefulness of our approach can be seen in the task of assigning
topic labels to technical papers. Assuming a machine learning supervised model, we are given
a corpus of titles of papers, each with an associated label. The only information available to
the learner is contained in this labeled corpus. Thislabeled corpus might be insufficient or in-
complete. For example, in labeling thetitle of a physics article with its sub-specialty, any title
containing a word such as galaxy should easily be classified correctly as an astro physics pa-
per, even if there are few training articlesin that domain. Thisis the case because galaxy isan

extremely common word that appears quite often in papers about astro physics. However, an
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article on amore unusual topic, as for example old white dwarfs, would only be classified cor-
rectly if atitlewith these words appearsin the label ed training examples. Althoughthetraining
set does not contain the words old white dwarfs in our experimental data, our system is able
to correctly classify atitle with these words as astrophysics, by utilizing a corpus of unlabeled
paper abstracts from the same field, which is naturally available on the Web. In our second-
order approach, our system finds those unlabeled paper abstracts that are most similar to both
old white dwarfs and to various training titles. These training titles are then used to classify
old white dwarfs correctly, although each of thesetitlesis quite dissimilar to it when compared

directly.

In order to achieve our goa, we use WHIRL [11, 12] which isa conventional database sys-
tem augmented with special operators for text comparison. Words in text documents stored in
the system are stemmed using Porter’s stemming a gorithm [52]. WHIRL is used as a nearest
neighbor text classification program [14], with text documents specified as TFIDF vectors, and
similarity between text documents measured as cosine similarity [57]. WHIRL makes it pos-
sible to pose SQL-like queries on databases with text-valued fields. We transform the training
corpus, the test examples and the background knowledge into a database format and WHIRL
provides aframework in which we can easily specify and explore second-order similarity clas-
sification. It allowsfor succinct queries that specify the combination of training similarity and

background similarity to a new test example.

In the rest of this chapter we will give areview on WHIRL, and a discussion of how it is
used for the text classification task. We will then provide the framework for our inclusion of
background knowledge into the text classification task, including various options and design
decisions. Result graphs on the same data sets and using the same methodology as those in

Chapter 3 will then be presented.

41 WHIRL

WHIRL [11, 12] isaninformationintegration tool that is specifically designed to query andinte-
gratetextual sourcesfrom theWeb that do not necessarily conform to strict database conventions

and formats.
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411 Limitationsof Conventional Databases

Assumethat we have adatabase, A that hastwo fields, onewhich containstitlesof papersand the
other containing authors. A second database, B also has two fields, one that contains an author
name and the other that contains the institution (company, university, etc.) that the author is
affiliated with. These fields are al filled with free text, so that if a paper title has more than
one author, the author field will contain alist of all the names. Suppose that we are searching
for al papers where at least one of the authorsis from Rutgers, the State University of NJ. A
conventional database systemwith aSQL query capabilitieswould find thisan impossibletask.
Althoughwewishtojoinonthefield “author” from both databases, we cannot assume that these
two fields use the same set of object identifiers.

Asasimple straight-forward example, suppose database A has an entry:

Title Author
| Joins that Generalize: Text Categorization Using WHIRL | William Cohen and Haym Hirsh|

and database B has entries;

Author Affiliation
William W. Cohen Whizbang! Labs, inc.
Haym Hirsh Rutgers, the State University of NJ

The SQL query would ideally be:

SELECT Adtitle
FROM A and B
WHERE A .author = B.author
AND B.affiliation = Rutgers, the State University of NJ

However, B.author is equal to Haym Hirsh, but A.author is equal to William Cohen and
HaymHirsh. Database systemscannot join on thesetwo unequal values. Conventional databases
deal with this problem by forcing the author fields to use the same set of object identifiers, and
would not allow one author field to hold individual names and the other hold a sequence of

names. However, when databases are filled in an automatic fashion based upon parsing Web
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pages, these restrictions are unredlistic. This makes the querying and joining of databases that
have textual fields an aimost impossible problem for database programs, without human inter-

vention.

412 TheUsefulnessof WHIRL

WHIRL alows usto look at these fields as holding text, as opposed to holding specific values
from a set of object identifiers. In WHIRL's terminol ogy, the information we wish to storeis
placedin STIR (Simple Text in Relations) format, wherefields can hold arbitrary textual values.
WHIRL's approach to this problem allows these textual fields to be queried directly via new
operatorsthat are introduced into the SQL -type queries.

We can look at the example of a corpus of physics technical paper titles, labeled with sub-
specialties, that was mentioned in the introduction to this chapter. If we wish to place the cor-
pusof physicspaper titles (without authors) into a STIR relation, we can create aSTIR relation
named Titleswith arity of 1, where each tuple of Titles contains one element that is adocument
vector, thetitleitself. Some elementsin the relation (before stemming and TFIDF is computed)

might therefore look as follows:

( Asymmetry in Microlensing-Induced Light Curves )
( A Tully Fisher Relation for SO Galaxies)

( Large Thermopower in a Layered Oxide NaCo20)

It might be useful to hold more information than just the title of a paper in each of the en-
tries of arelation. Suppose we are filling up this STIR relation from the physics paper e-print
archives (http://xxx.lanl.gov), where each paper is placed into a specific area of physicsand is
specified by a title, authors, and some additiona comments about the paper. STIR relations
can hold conventiona data types as well as vectors, so if we have a corpus of physics paper
titles, with associated authors and a small set of comments about the paper, aswell asthe area
of physicsto which it is assigned, we can create a STIR relation called Paper of arity 4 where

each tuple in Paper contains a vector holding the title, a vector holding the authors, a vector
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representing some small comments and a string that names the class of that particular title. The
strings that specify the classes are predefined and can be joined and compared in conventional
database manners. An example of some tuplesin this new relation would be (actually taken

from http://xxx.lanl.gov/list/):

( The Impact of Cooling and Feedback on Disc Galaxies, Frank C. van den Bosch, 20 pages
12 figures To be published in MNRAS, astrophysics )

( An AGN ldentification for 3EG J2006-2321, P. M. Wallace J. P. Halpern A. M. Magalhaes D.
J. Thompson, 22 pages 6 figures To appear in ApJ v569 n1 10 April 2002, astrophysics )

The STIR database can be accessed viaan SQL -type language with queries of the form:

SELECT (elements)
FROM (relations)
WHERE (conditions).

In the above query (elements) and (relations) are defined to be the field names and the
names of tablesasinall SQL queries. (conditions) includethe conditionsthat must be satisfied
by the results that are returned and these conditions are also the same as in SQL queries with
oneadditional operator allowed. WHIRL introducesthe operator SIM which isused to compare
elements that are document vectors. Instead of assuming that keys must be exactly identical in
order for relations to be joined, this introduces the concept of a “soft join”, which pairs ele-
ments with similar values, rather than equal ones. When the SIM operator is used, distances
between vectors are computed using the cosine metric, which represents the statistical similar-
ity between documents. An element that isa document, x5, is represented as a vector of terms
weights (wj1, . .., w; ), where T' is the set of termsiin all the documents. These weights are
generated using the standard TFIDF method [57], where w;; equalslog(T'F ;1) x log(I DFy).
T'F;;+ corresponds to the number of times that term ¢ occurs in document z; and IDF is theto-
tal number of documents divided by the number of documents that contain the term ¢. If two
elements that are document vectors, z; and ; are compared viathe SIM operator the value of

the scorethat iscomputedis >, x4 x ;. Sinceal vectors are made to be of unit length this
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value is always between 0 and 1. WHIRL allows the user to specify a parameter k, that indi-
cates how many documents are to be returned in answer to a query. Those & documents with

the highest score are returned.

Suppose that we have alarge corpus of documents, and we wish to find some k& documents
that are most similar to a specific document d. Thisisan information retrieval problem that can
be addressed by WHIRL. Suppose we have a new physics paper title (the document d in this
case) and we wish to find titles that we have stored (the large corpus of documents) that share

one or more of the authors of this new paper. We can use WHIRL in the following manner:

e Create anew relation, New, that has one element containing the new title and new author

e Query therelation New and the relation Paper with an SQL type query

SELECT Paper-title
FROM New AND Paper
WHERE New.author SIM Paper.author

This query will return all those titles from the relation Paper that have an author value that is
similar to the author value of the new title that we have obtained. Unlike conventiona SQL, we
cannot say that the tuples returned by the WHIRL system make the query “true’ in the Datalog
sense of substitution of variables, but rather, each tuple returned hasa score associated with it to
tell us how similar the clausein the WHERE is. If the new paper shares all authors (and al are
spelled the same way, with the same initializations) with a paper in Paper then this score will

be 1; as fewer authors are shared the score approaches 0.

4.2 WHIRL for Text Classification

Assume that we have a corpus of training examples that are free text with labels, and atest ex-
ample that must be assigned a label. The training examples can be viewed as a table with the
field instance, to hold the textual data, and field label to hold the class label. The test example
isaonelinetable, with simply the textual field instance. An example of aWHIRL query [14]

is:



SELECT Test.instance, Train.label
FROM Train AND Test

WHERE Train.instance SIM Test.instance
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Given a user-specified parameter £, thisquery will first generate an intermediate table con-

taining the & tuples

(Test.instance, Train.instance, Train.label)

that maximizethe similarity score between Test.instance and Train.instance. Unliketraditiona

SQL queries, theresult of thisisaset of tuplesordered by score, withthe highest score represent-

ing the closest Train.instance Test.instance pair, using WHIRL's SIM operator to compute the

similarity of thesetextual fields. Anexample of thisintermediatetablecan be seeninFigure4.1.

Here the columns correspond to the score, the test example which was input using standard in-

put, thelabel of the training examplethat is close to the test example, and the training example

that is close to the test example (written as afile name and offset). This example comes from

the NetVet domain.

score

0.758169
0.569772
0.569772
0.569772
0.516987
0.514894
0.50018

0.50018

0.50018

0.498727
0.498727
0.471873
0.471061
0.411263
0.408616
0.408616

Figure 4.1: Example of resultsreturned by a WHIRL query

test

-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin
-1+stdin

|abel

horse
horse
horse
horse
horse
horse
horse
cow
dog
dog
cat
horse
cow
rodent
cat
dog

train

12172+train.data
8485+train.data
8654+train.data
8700+train.data
3693+train.data
12067+train.data
2982+train.data
40573+train.data
75432+train.data
62567+train.data
78135+train.data
4815+train.data
43540+train.data
32151 +train.data
86408+train.data
62445+train.data

In WHIRL’ s final step it takes this table of % tuples and projectsit onto the fields specified

in the SELECT statement. Note that this can mean that there may be many training examples

among the & with the same label (i.e., multiple nearby examplesin the training set), and these
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are combinedinto asingletuplein thefinal result table. The combination of scoresisperformed
by treating scores as probability and the combination asa“noisy or.” If theindividual scores of
thetupleswithagivenlabel are {s1, ..., s, }, thefinal scorefor that label is1 — [/ (1 — s;).
Whichever label has the highest score in the resulting projected tableisreturned as the label for
the test instance. This method bears many similaritiesto the nearest-neighbor method of [63],
which has been shown to perform quite well on text classification tasks [14]. Indeed, based on
these two paperswe aso useavaueof £ = 30 in our experiments. An example of aprojection
tablethat usesthe scoretablethat isshownin Figure4.1 (but usesthetop 30 results) can be seen
in Figure 4.2. In thistable, thereis only one line per label, and the score for each label isthe

combination of scores from the larger table.

n score class

0  0.999901 horse

1 0.929449 dog

2  0.8395%4 cow

3 0.824687 cat

4 0573973 bird

5 0.411263 rodent
6 0.272381 primate

Figure 4.2: Example of a projection as done by WHIRL

4.3 Comparison of WHIRL for Text Classification with Other Methods

Before we inject background knowledge into thistext classification process, because a number
of the data sets are being used for the first time in this body of research, we start by compar-
ing the core WHIRL method for text classification without background knowledge (which we
label WHIRL-nn), to some other traditional methods for these types of problems. We present
accuracy results for WHIRL-nn, RIPPER [10], and naive Bayes. Accuracy ratesin Table 4.1
represent average accuracy of five cross-validated runs on the full training set. Since WHIRL
uses the Porter’'s stemming algorithm when it creates the TFIDF representation, we used it as
well, before giving the data to the other learners. Ascan be seen from thistable, WHIRL-nnis
comparableto other methods, and thusany improvements above and beyond WHIRL -nnthat we

Now report represent even stronger classification performance than this credible state-of -the-art



Table4.1: Accuracy: Comparison of Text Learning Algorithms

Data Set RIPPER WHIRL-nn Naive Bayes
20-News 285 60.7 55.5
WebKb 82.3 79.5 88.8
adverti sements 62.1 90.1 88.8
ASRS 64.5 64.4 60.6
2class physics 69.5 91.2 94.3
3class physics 60.0 86.2 88.3
NetVet 55.7 60.8 59.7
Business Names 221 30.1 235
Clarinet 88.3 95.2 95.6
thesaurus 245 47.9 35.6

method.

44 WHIRL with Background Knowledge

A WHIRL query can have an arbitrary conjunctionin its WHERE clause. Thefinal scorefor a
returned tupleis the product of all the scores of all the individual components of the WHERE
clause. Inthisway, each of these component scores can be viewed asindependent probabilities
that are combined to produce a final probability that the returned tuple accurately answers the
guery. Thisgivesagreat amount of flexibility in the formulation of queries and the addition of

aternativetables, or sources of knowledge, into the queries.

Such aternative sources of knowledge may provideuswith acorpusof text that containsin-
formation both about importance of words (in terms of their TFIDF valuesin thislarge corpus),
and joint probability of words (what percentage of the time do two words coexist in a docu-
ment?). Thisgives us alarge context in which to test the similarity of atraining example with
anew test example. We can use this context in conjunction with the training examples to label
anew example.

Because of WHIRL's expressivelanguage, and the ability to create conjunctivequeries sim-
ply by adding conditionsto aquery, WHIRL's queries for text classification can be expanded to
allow for the use of background knowledge on a subject. In the example of the classification

of physics paper titles discussed earlier, suppose that we had afairly small set of labeled paper
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titles, and also a very large set of unlabeled titles, papers or abstracts (or Web pages resulting
from a search), in a relation called Background with a single field, value. We can create the

following query for classification:

SELECT Test.instance, Train.label
FROM Train AND Test AND Background
WHERE Train.instance SIM Background.value
AND Test.instance SIM Background.value

Given aquery of thisform WHIRL will first find the set of & tuples (X;, Y}, Z, L;) from the
Cartesian product of Train and Test and Background such that SIM (Y}, Zi) x SIM(X;, Z)
ismaximal. Here each of the two similarity comparisonsin the query computes a score, and
WHIRL multiplies them together to obtain the final score for each tuple in the intermediate-
resultstable. Theintermediate resultstable has the elementsfrom all three of thetablesthat are

in the FROM statement and the score;

(Test.instance, Train.label, train.instance, Background.value, score).

This table is then projected onto the Test.instance and Train.label fields as discussed before.

Whichever label givesthe highest score isreturned as the label for the test example.

One way of thinking about thisisthat rather than trying to connect a test example directly
with each training example, it instead tries to bridge them through the use of an e ement of the
background table. Note that WHIRL combines the scores of tuples generated from different
matches to the background table. A schematic view of this can be seen in Figure 4.3. Therect-
anglesin Figure 4.3 represent individual documents in each of the corpora. If aline connects
two documentsthen it represents the fact that those two documents are similar using the cosine
similarity metric. If a path can be followed from the test document to a training document via
a piece of background knowledge then then those two documents are considered to be similar
in our scheme. Our use of WHIRL in thisfashion thus essentially conducts a search for a set of
itemsin the background knowledge that are close neighbors of the test example, provided that
there existsatraining example that is a neighbor of the background knowledge as well. As can

be seen from Figure 4.3, trai ning exampl es can be used multipletimeswith different background
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knowledgeand a piece of background knowledgecan be used multipletimesaswell, with differ-
ent training examples. Training neighbors of atest example are defined differently when back-
ground knowledge is incorporated. If wordsin atest example are found in some background
knowledge, then other wordsthat arein that background knowledge can connect thistest exam-
pletodissimilar (in terms of word overlap and direct cosine difference) training examples. The
final classification thusintegratesinformation from multipletraining examples and the multiple

“bridge” examplesthat lie between them in the background text.

Training Background Test

=—x

Figure 4.3: Schematic view of WHIRL with background knowledge

Note that thisapproach doesnot concern itself withwhich class (if any!) abackgrounditem
belongsto. Weinstead simply use thetext directly as part of the decision-making process. This
isincontrast to the approach discussedin Chapter 3 that explicitly usesthetraining set to classify
the background items as if they were true examples, and then adds them to the labeled set. Our
method allows for more sophisticated use and combination of the training instances and back-
ground knowledge. A background instance that is close to numerous training instances can be
included morethan oncein the tablereturned by the WHIRL query —even if the training exam-
plesthat it is closeto have different classes. Similarly, atraining example can also beincluded
in the table multiple times, if it is close to numerous background instances. Suppose that our
classification task consists of labeling thefirst few words of anews article with atopic. If atest
example belongsto the category sports, for instance, the cosine distance between the few words
in thetest example and each of the small number of training examples might belarge. However,
wewould hope that given alarge corpus of unlabeled news articles, it islikely that there will be

one or more articles that contains both the few words of the test example and the words of one
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of the training examples.

To make our classification system more robust, if the background query that we presented
does not provide a classification label for a given test example, we then allow the simple text
classification query (WHIRL-nn) to attempt to classify the test example. If this query fails as
well, then the mgjority classis chosen as afinal attempt at classification. Consider the test ex-

amplein the NetVet domain:
Steller’seider (USFW)

USFW isan acronym for the U.S. Fish and Wild Life Service, whichis not referred to thisway
in the background corpus. Theword eider, which isatype of duck does not appear in the back-
ground corpus either. WHIRL-bg therefore does not return anything. However, the training set

containsthe example:
Migratory Birds and Waterfowl — USFWS

so0 once WHIRL-nn is used, the correct classis returned.
We termthismethod of using background knowledgefor thetext classificationtask, WHIRL -

bg.

44.1 Resultsfor WHIRL-nn and WHIRL-bg

Theaccuracy resultsfor the 20 Newsgroups data, the WebK b data, the advertisementsdata, and
the ASRS data are graphed in Figures 4.4-4.7. The y axis represents the accuracy rate, and
the z axis is the number of labeled examples given to the learner. In the first three of these
graphs the same phenomenon is apparent: with few labeled examples per class the background
knowledgeisvery helpful, but asthe number of labeled examplesincrease, the usefulnessof the
background knowledge goes down, and even causes the accuracy to degrade. Inthe ASRS data,
background knowledge hel ps most when there are more than 2 examples per class, becauseitis
sometimesthe case that the very small training sets do not provide enoughinformation (in terms
of vocabulary in each class) to utilize the background knowledge fully.

We present two sets of resultson the physicsdatain Figure 4.8 and Figure 4.9. Figure4.8is

atwo-class problem, where only thetitles of papersin the astrophysicsand condensed materials
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classes were used. These classes had nearly the same number of training examples. Figure 4.9
is a three class problem, where a class with a fewer number of training examples was added
to the previous problem. Figure 4.8 clearly shows the effect that background knowledge can
have on text data sets. The line representing WHIRL-bg remains ailmost horizontal as fewer
training examples were used, indicating that the background knowledge compensated for the
lack of data. In contrast, WHIRL-nn sharply degraded as fewer training examplesare used. The
hel pfulness of the background knowledge, therefore, also increased as fewer training examples
were used. When thethird classwas added, error rates of both WHIRL -nn and WHIRL -bg went

up. However, the same effect of background knowledge can be seen in Figure 4.9 aswell.

100 T T T T T T T T

WHIRL-nn <—
WHIRL-bg —-

Accuracy

0 | | | | | | | |

0 50 100 150 200 250 300 350 400
Number of Training Documents

Figure 4.4: WHIRL-nn and WHIRL-bg for 20 Newsgroups

100 T T T T

Accuracy

WHIRL-nn <—
WHIRL-bg —-
20 | -

0 1 1 1 1
0 50 100 150 200
Number of Training Documents

Figure 4.5: WHIRL-nn and WHIRL-bg for WebKb

Resultsfor the NetVet domain are graphed in Figure4.10. Reductionsin error rateincreased
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Figure 4.6: WHIRL-nn and WHIRL-bg for the advertisements problem
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Figure 4.7: WHIRL-nn and WHIRL-bg for the ASRS problem
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Figure 4.8: WHIRL-nn and WHIRL-bg for the 2-class physicstitle problem
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Figure 4.9: WHIRL-nn and WHIRL-bg for the 3-class physicstitle problem
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Figure 4.10: WHIRL-nn and WHIRL-bg for the NetVet data
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Figure 4.11: WHIRL-nn and WHIRL-bg for the business names data
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as the number of training examples decreased. The NetVet domain is unlike some of the other
sets previously discussed in that there was overlap in topics in the background knowledge. A
Web pagethat could be useful in classifying atest example as belonging to the category of Dogs
was quite likely to discuss Cats and vice versa. Some of the training and test examples, too,
could have caused confusion. There were titles of Web pages on pet stores or animal care that
were placed under onetopic, but could just have easily been placed in many other different cat-
egories. We therefore were not surprised to see that the error rate did not decrease by a large

percentage.

Theresultsfor the businessname data set are graphed in Figure 4.11. Once again, WHIRL -
bg outperformed WHIRL-nn. Using 100 percent of the data, the decrease in error rate is sub-
stantial. However, when the percent of training examples that was used is lower, the difference
in error rate between the two systemsisreduced. Thisisunlikethe results of the previousthree
domains. Thismight have been dueto thefact that thetraining and test exampl es were company
names, which often consisted of words that occured only once (for example, Xerox) so that re-
ducing the number of training examples actually reduced the dictionary of wordsin thetraining
corpus substantially. There were therefore fewer words that could be used to find bridgesin the
background knowledge. Thissame trend can be seen in Figure 4.13, which graphs accuracy on
the thesaurus data. Here too, the label ed data consists of single words, so with only 20% of the
data, the usefulness of background knowledgeis not as apparent as when more labeled datais

added, although there are still substantial improvementsin accuracy rates.

Resultsfor the Clarinet news problemisin Figure4.12. The addition of background knowl-
edge was useful when thetraining set size was small. When lessthan 60% of the datawas used,
background knowledge reduced the error rate. As the amount of training data increased the

background knowledge no longer added enough new vocabulary to improve performance.

Once again wewishedto determinewhether thedifferencein accuracy obtained using WHIRL
vsusing WHIRL-bg is statistically significant. From Figures 4.4-4.13 we can obtain 72 pairs
of numbers. For each x valuethat is plotted on one of these graphs, the corresponding two y
values create a pair of numbers. The first number in each pair represents the accuracy of run-
ning WHIRL while the second number is the accuracy of running WHIRL-bg on the same set.

We used a paired t-test on these 72 pairs of numbersto determineif the addition of background
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Figure 4.12: WHIRL-nn and WHIRL-bg for the Clarinet problem
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Figure 4.13: WHIRL-nn and WHIRL-bg for the thesaurus problem
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knowledge caused a significant improvement in the accuracies. Testing the hypothesisthat the
differencein accuracieswassimply theresult of chance, the p valuewaslessthan .01, and hence
wewere ableto concludethat significant improvementsin accuracy are expected if background

knowledgeis added to the WHIRL query.

442 Unrelated Background Knowledge

It isstill the case that the conjunctive query that we presented incorporates background knowl-
edge in away that overlooks the direct comparison between training and test examples. De-
pending upon the type of data, and the strength of the background knowledge, this might be
a dangerous approach. One of the strengths of WHIRL as a dataretrieval engineisthat if the
test example exists in the training corpus, and the SIM function compares the test example to
the training examples, the training examplethat isidentical to the test example will be returned
with a score equal to one. Our “second order” approach weakens WHIRL so that this quality
isno longer true. If the conjunctive background query returns a set of results then the test ex-
ample is never directly compared to the training examples and we can no longer access their
direct similarity. If atraining example isidentica to the test example, but is not close to any
element in the background knowledge database, it is possible that it will not even be returned
in the top & results of the intermediate table. We wish to minimize the risk of such an anoma-
lous event occurring. Additionally, if the background knowledgethat is used is unrelated to the
text classification task, WHIRL -bg can degrade drastically. Consider the ridiculoussituation of
the NetVet classification task using the background knowledge from the physics data set; i.e.
a set of technical paper abstracts. If atest example consisting of a veterinary web page titles
cannot be compared to any of the abstracts then the background query will return nothing, and
the system will fall throughto WHIRL-nn to classify the instance. However, supposethat a test
example can be compared to an abstract, as meaningl ess as the compari son might be. We would

then have very misleading results. Thetest example:
russian horsesin the UK
when run in this case returns as a result:

n score predicted |abel



54

Table4.2: Comparison of accuracies of WHIRL -nn and WHIRL-bg with unrel ated background
knowledge

Data Set WHIRL-nn  WHIRL-bg

NetVet-20 535 36.5
NetVet-40 56.6 39.0
NetVet-60 58.7 40.3
NetVet-80 59.7 40.0
NetVet-100 60 40.9

00.0464414 dog 1 0.0434904 cow 2 0.0333697 rodent 30.0171406 bird 40.0145024
primate 5 0.0142586 horse

The scoresare extremely low, sincethe background knowledgeisnot closeto either thetrain
or the test set. This example, as expected, is misclassified as dog. If we run the NetVet data
using this background knowledge from the physics domain, WHIRL -bg performs much worse
than WHIRL-nn, as can be seen from Table 4.2. Table 4.2 givesthe average accuracy rates for
20, 40, 60, 80, and 100% of the NetVet data using WHIRL-nn, and using WHIRL -bg with the

incorrect background knowledge.

We wish to make our system more robust to the inclusion of misleading background knowl-
edge. Todothiswe create adisjunctivequery that combines both the standard text classification
using WHIRL with the WHIRL-bg approach.

SELECT Test.instance as instance
AND Train.label as predicted
FROM Train AND Test
WHERE Train.instance SIM Test.instance

SELECT Test.instance as instance
AND Train.label as predicted
FROM Train AND Test AND Background
WHERE Train.instance SIM Background.value
AND Test.instance SIM Background.value

Using thetwo queriesthat we presented above we can create intermediate tables of their results

separately, and project ontothetest instanceand |abel fields separately aswell. Thesetwo setsof
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results are then combined by defining a disunctiveview. This query selects atest instance and
label from the results of WHIRL-nn and also selects atest instance and label from the WHIRL-
bg query. (see Figure 4.14). Figure 4.14 defines three separate views using the inview command
in WHIRL. These three views are: label view WHIRL-nn, label view WHIRL-bg, and disjunc-
tion. The view digunctionisfirst made empty with the clear command, and then is defined to
be filled with the two previous inview commands to include the results from WHIRL-nn and
WHIRL-bg. Once these three views are defined, the materialize command is used to actually
fill the viewswith the datafrom the train, test, and back data.

When thisdisjunctivequery is materiaized (see Figure 4.15) once again there may be mul-
tiplelineswith the same label but with different scores. The noisy or is then used on this com-
bined tableto arrive at afinal result. Thisisequivalent to producing thetwo intermediate tables
of size k and applying the noisy or to all theresultsreturned by thosetwo tables. If either of the
two queriesreturns el ementswith very high scores, then thosewill dominate the noisy or opera-
tion. In empirical testing we have found that thisquery is comparative to the WHIRL-bg query
that is defined above; it improves upon learning without background knowledge. The main ad-
vantage of this query isthat when the background knowledgeis misleading and returns results
that are meaningless, the disjunction prevents the system from placing emphasis on these false

comparisons. Thetest example:
russian horsesin the UK

with the digunctive query, returns afinal results of:

n score predicted label

00.997777 horse 1 0.76109 dog 2 0.521918 cow 3 0.0333697 rodent 4 0.0171406
bird 5 0.0145024 primate

Thisisacombination of theresultsfrom WHIRL -bg (that was given above) and the resultsfrom

WHIRL-nn which were:
n score predicted label 0 0.997745 horse 1 0.749454 dog 2 0.50018 cow

Since the scores returned in the comparisons of WHIRL-nn were much larger, they dominate

the result, which is exactly what we would like. Table 4.3 shows a comparison between the



inview labd_view WHIRL-nn
from test

and train

where train.instance sim test
select test.VAL astest

and train.label aslabel

end

inview labd_view_WHIRL-bg

from test
and train
and back

where back.value sm test

and back.value sm train.instance
select test.VAL astest

and train.label aslabel

end

clear digunction
inview digunction
select WHIRL-bg.test
and WHIRL-bg.label
from WHIRL-bg
end

inview digunction
select WHIRL-nn.test
and WHIRL-nn.label
from WHIRL-nn
end

Figure 4.14: Specification of viewsin WHIRL for the disjunctive query
materialize label_view_WHIRL-nnas WHIRL-nn
materialize labd_view_WHIRL-bg as WHIRL-bg

materialize digunction as final_answer
browse final_answer 0 30

Figure 4.15: Materialization of view in WHIRL for the disjunctive query
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Table4.3: Comparison of accuracies of WHIRL -nn and WHIRL -diswith unrel ated background
knowledge

Data Set WHIRL-nn  WHIRL-dis

NetVet-20 535 51.5
NetVet-40 56.6 54.0
NetVet-60 58.7 57.1
NetVet-80 59.7 S57.7
NetVet-100 60 57.8

accuracy rates of WHIRL-nn and WHIRL-dis with unrelated background knowledge. As we
can see, the unrelated knowledge still hurts somewhat with WHIRL-dis, but not nearly as much

aswith WHIRL-bg (see Table 4.2).

In cases where the background knowledgeis very related to the problem, especialy if the
data consists of very short text strings, WHIRL-bg may be more useful than WHIRL-dis. This
is partly because the direct comparison part of the disjunctive query has only one conjunct,
whereasthe background part of the query hastwo conjuncts. SinceWHIRL multipliesthescores
of thetwo conjuncts, and these scores are | ess than one, the background part of the query often
has scores that are lower than the direct comparison part of the query. This reduces the utility
of the background knowledge when the two parts of the disunctive query is combined. This
phenomenon can be observed in the business name data set, where WHIRL-bg outperforms
WHIRL-dis (see Table 4.4). The direct comparison of WHIRL-dis often relies on words such
asinc or company that are not very informative, yet often provide higher scores than the back-
ground part of the WHIRL query, since the score of the background is the product of two con-
juncts. WHIRL -diswould therefore be a better choiceif the background knowledgeisnot from
areliable source, and is not known to be closely related to the problem; otherwise, WHIRL -bg

would be the appropriate choice.

We present atable (Table 4.5) with four of the data-sets that we described in Chapter 2, to
illustrate how the disjunctive query performs in the presence of misleading background knowl-
edge. The four data sets are the 2-class physics paper title problem, the NetVet problem, the

thesauruswords problem, and the businessname problem. We choose these four problems each
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Table 4.4: Comparison of accuracy of WHIRL-bg and WHIRL-dis with correct background
knowledge

Data Set-percent  WHIRL-bg WHIRL-dis

Business-20 35.6 23.0
Business-40 38.3 26.0
Business-60 394 27.7
Business-80 40.2 29.5
Business-100 40.3 29.3

time that we do further studies on our basic results, because each has a different type of back-
ground knowledge. The physics data has background knowledge that is of the same type as
the data, and the NetVet background knowledge is from the same domain as the data but of a
dightly different type. The thesaurus background knowledgeis very different than the data but
each pieceis only about one word, which islikethe training and test set, and the business data

has background of atotally different size and type than thetraining and test set.

Each result that is presented in (Table 4.5) is once again the average of five-fold cross val-
idation, and we show results for 20, 40, 60, 80, and 100% of the data. For each of these clas-
sification problems we present the accuracy rates of the WHIRL-bg query and the disjunctive
query, which wewill term WHIRL-dis. For the WHIRL-bg query and the disjunctive query we
present resultsfor the background knowledgethat isrelated to the task (as described in Chapter
2), for background knowledge that is a combination of the onerelated to the task aswell as one
unrelated (under the column heading mixed in the table), and for totally unrelated background
knowledge (under the column heading wrong in thetabl €). For the unrelated background know!-
edge we use the background set from the NetVet data for the other three tasks, and the physics
abstractsfor the NetVet task. The mixed background set consistsof all documentsin therelated

background set plusall documentsin the unrelated set of background knowledgefor each task.

In al four data sets, for any number of training examples, there is a mgjor discrepancy in
the accuracy rate of WHIRL-bg with the wrong set of background knowledge and WHIRL-dis
with the wrong set of background knowledge. In many cases, WHIRL-bg with the wrong set
of background knowledge had accuracy rates that were substantially lower even than WHIRL-

nn, without any background knowledge. For example, with the Physics data set, using 20% of
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Table 4.5: Accuracy: Comparisons of WHIRL-bg and WHIRL-dis with variations of back-
ground knowledge

Data Set WHIRL-bg WHIRL-bg WHIRL-bg WHIRL-dis WHIRL-dis WHIRL-dis
percent mixed wrong mixed wrong
thesaurus-20 389 37.3 24.6 38.7 36.5 24.8
thesaurus-40 434 421 26.1 441 431 29.2
thesaurus-60 459 46.5 26.2 47.6 474 314
thesaurus-80 48.7 48.6 275 50.5 51 34.1
thesaurus-100 514 51.7 26.8 53.0 53.1 35.6
NetVet-20 58.1 58.1 36.5 56.4 56.2 515
NetVet-40 60.0 61.2 39.0 59.5 59.6 54
NetVet-60 60.5 62 40.3 61.1 60.0 57.1
NetVet-80 60.5 61 40.0 61.1 62.4 57.7
NetVet-100 61.0 61.9 40.9 61.1 61.5 57.8
Physics-20 9.1 9.1 69.3 91.2 91.7 86.6
Physics-40 9.1 95 714 92.1 925 90.1
Physics-60 94.0 94.5 735 91.6 91.8 90.5
Physics-80 94.5 95.1 718 93.1 93.2 915
Physics-100 94.3 95 73.7 94.3 94.2 93.7
Business-20 35.6 25.8 15.9 23.0 234 22.2
Business-40 38.3 27.3 16.7 26.0 25.8 25.6
Business-60 394 28.6 174 27.7 27.2 27.1
Business-80 40.2 29.5 17.8 29.5 289 29.3
Business-100 40.3 28.7 18.1 29.3 29.5 30.1

the data, WHIRL-nn has an accuracy rate of 86.6%. WHIRL-bg achieves 94.1% accuracy with
the correct background knowledge as well as the mixed background knowledge; WHIRL-dis
achieves 91.2% accuracy for the correct and mixed background knowledge. For the wrong set
of background knowledge, the accuracy for WHIRL -disisthe same asfor WHIRL-nn, whichis
what wewould liketo occur. Theinappropriate background knowledge does not help learning,
but does not hurt it either. However, for WHIRL-bg with the wrong set of background know!-
edge, accuracy actually degrades sharply, achieving alevel of only 69%. This phenomenon can
be seen in dl the data sets, so we are convinced that WHIRL -dis minimizesthe effects of mis-
leading background knowledge. In thefirst three data sets presented, WHIRL-disand WHIRL -
bg perform similarly for the correct set of background knowledge; for the business name data

set, WHIRL -bg outperforms WHIRL-dis.
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45 Summary

We have presented a method to reduce error rates in text classification by using alarge body of
potentially uncoordinated background knowledge. In most of the data sets to which the system
was applied, we saw substantia reductionsin error rates, particularly when the set of labeled
examples was small. In many cases the use of background knowledge alowed for only a small
degradation in accuracy as the number of training examples was decreased. We presented two
different queries, WHIRL-bg and WHIRL-dis. WHIRL-bg would be the method of choice if
the background knowledgeis very closely related to the data, otherwise WHIRL -dis would be
preferable.
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Chapter 5

Using L SI with Background Knowledge

In Chapter 3 we discussed using background knowledge as a corpus of unlabeled examplesthat
is added to the text classification task. Each element of the background knowledge was then
labeled and used as part of thetraining set to increase the accuracy of a naive Bayes model that
that thelearner was creating. In Chapter 4 the background knowledgewas|ooked at asan inde-
pendent cor pus of information that was used to associate a test example with a set of examples
from the training data. The classification of the test datain Chapter 4 used a nearest neighbor
approach, with the definition of atraining example being aclose”neighbor” of thetest example

changing as the specification of the WHIRL query for classification changed.

In this chapter background knowledge is incorporated into the text classification task in a
new way. The system that we describe in this chapter neither classifies the background knowl-
edge, nor doesit directly compareit to any training or test examples. Instead, it exploitsthe fact
that knowing that certain words often co-occur may be helpful in learning, and that these word
co-occurrences could be discovered from large collections of text in the domain. Therefore, the
background knowledgeislooked at as alarge corpus of related datathat will give cluesto and

help find semantic conceptsin our training data.

To find these concepts that are helpful to learning we use Latent Semantic Indexing (LSI)
[18, 21, 22, 23, 24, 25]. L Sl isan automatic method that redescribestextual datain anew smaller
semantic space. LS| assumes that there exists some inherent semantic structure between docu-
ments and termsin acorpus. The new spacethat iscreated by LS| places documentsthat appear
related semantically in close proximity to each other. LS| is believed to be especialy useful in
combating polysemy (one word can have different meanings) and synonymy (different words

are used to describe the same concept), which can make text classification tasks more difficult.
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The key ideain this chapter is that we use the background text in the creation of this new re-

description of the data, rather than relying solely on the training data to do so.

We once again approach the classification task using the nearest neighbor paradigm. Asin
all nearest neighbor approaches, in order to classify atest example, the distance between the
training examples and the test exampleis computed, and the [abel of the nearest neighbor, or a
voteamong thelabel sof the k nearest neighborsdeterminesthefinal classificationlabel. Instead
of directly comparing atest exampleto thetraining data, wefirst redescribethe space of training
exampl es, using the background knowledge to help in thisredescription, and then subsequently
redescribe the test example in this same new space. The comparison between the training ex-
amples and thetest exampleisthen donein thissmaller space. The background knowledgeisin
a sense used in a preprocessing phase of the data, as opposed to during the actual comparisons
for classification. The background knowledgeis used to create a new semantic space, and then

this new space, but not the actual background examples, is used during classification.

In the next section we give areview of LS|, and describe how we use it for traditional text
classification as well as for classification in the presence of background text. We then present
and describe the results of the system on the different data sets, both with and without back-

ground knowledge.

5.1 Latent Semantic Indexing

Latent Semantic Indexing [22, 21, 23, 18] is based upon the assumption that there is an under-
lying semantic structure in textual data, and that the relationship between terms and documents
can beredescribed in thissemantic structureform. Textual documentsare represented asvectors
in avector space. Each positionin a vector represents aterm (typically aword), with the value
of apositioni equal to 0 if the term does not appear in the document, and having apositivevalue
otherwise. Based upon previousresearch [21] we represent the positivevaluesasalocal weight
of the term in thisdocument multiplied by a globa weight of theterm in the entire corpus. The
local weight of atermt in adocument d is based upon the log of the tota frequency of tin d.
Theglobal weight of aterm isthe entropy of that term in the corpus, and istherefore based upon

, . !
the number of occurrences of thisterm in each document. Theentropy equals1 —>", %9(%”;‘1)
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i Document

Term

Figure 5.1: A term by document matrix

wheren isthenumber of documentsand p; equal sthe number of timesthat ¢ occursin d divided
by the number of total number of timesthat ¢ occurs. Thisformula gives higher weightsto dis-
tinctiveterms. Once the weight of each term in every document is computed we can ook at the
corpus as a large term-by-document (¢ x d) matrix X, with each position z;; corresponding to
the absence or weighted presence of aterm (arow ¢) in adocument (acolumn 5) (seeFigure5.1).
Thismatrix istypically very sparse, as most documents contain only a small percentage of the

total number of terms seen in the full collection of documents.

Unfortunately, in thisvery large space many documentsthat are related to each other seman-
tically might not share any words and thus appear very distant, and occasionally documentsthat
are not related to each other might share common words and thus appear to be closer than they
actually are. Thisis due to the nature of text, where the same concept can be represented by
many different words, and words can have ambiguous meanings. LSl reduces this large space
to one that hopefully captures the true rel ationships between documents. To do this, LSl uses
the singular value decomposition of the term by document (¢ x d) matrix.

The singular value decomposition (SVD) of thet x d matrix, X, isthe product of three
matrices: TSD”, where T and D are the matrices of the |eft and right singular vectorsand S is
the diagona matrix of singular values. The diagonal elements of .S are ordered by magnitude,

and therefore these matrices can be simplified by setting the smallest & valuesin S to zero.!

The choice of the parameter k& can be very important. Previouswork has shown that a small number of factors
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The columns of 7" and D that correspond to the values of S that were set to zero are deleted.
The new product of these simplified three matrices is amatrix X that is an approximation of
the term-by-document matrix. Thisnew matrix represents the origina relationshipsas a set of
orthogonal factors. We can think of these factors as combining meanings of different terms and

documents; documents are then re-expressed using these factors.

511 LSl for Retrieval

When LSl isusedfor retrieval, aquery isrepresented in the same new small space that the doc-
ument collectionisrepresented in. Thisis done by multiplying the transpose of the term vector
of the query with matrices 7" and S —!. Once the query is represented this way, the distance be-
tween the query and documents can be computed using the cosine metric, which represents a
numerical similarity measurement between documents. LSI returns the distance between the
guery and all documents in the collection. Those documents that have higher cosine distance

value than some cutoff point can be returned as relevant to the query.

5.1.2 LSl for Classification

We are using LSl for text classification, so we can henceforth refer to the document collection
as the training examples and the query as a test example. LS| allows the nearest neighbors of
atest example in the new space to be returned, even if the test example does not share any of
the raw terms with those nearest neighbors. Asasimple example, we can look at one run of the
WebKb data, where the training set and test set both consist of Web pages from universities. In
the example we present the training set has only one exampl e per classfor atotal of 4 examples:
one from each of the classes course, student, project, and faculty. With this small training set,
using thetest set discussedin Chapter 2 of 225 exampl es, astate-of-the-art nearest neighbor pro-
gram achieves 37% accuracy; LS| achieves 40% accuracy. The example Web pages presented
below have been pre processed to remove all HTML, and to remove all words except the 300
most informative according to the preprocessing that was done by other researchers[51], and to

change dl digits and numbers to some corresponding text [46]. An instance of atest example

(100-300) often achieves effective results. We discuss some of these results later in the chapter.
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of class course can be seen in Figure 5.2. LSl returnsthe correct classification of course, and

edu office rainbowthreedigit rainbowthreedigit rainbowthreedigit
rainbowthreedigit rainbowthreedigit rainbowtwodigit hours
rainbowonedigit rainbowonedigit rainbowonedigit
rainbowonedigit rainbowtime rainbowtime rainbowtime are are
be be be be course course course course home page page page
csrainbowthreedigit csrainbowthreedigit csrainbowthreedigit
csrainbowthreedigit algorithms spring thisthis this this for for for
and and and and and and and and and will will will of of of of of
of data data structures material problems problems prerequisite
information handouts you you you you pm pm thereisisisthat
topics not lecture notes at exams final final related description
description rainbowfourdigit university computer computer
science science department introduction fal fall fall program
ming programming programming programming programming
programming code here or if if any newsgroup newsgroup
assignments development problem solutions solutions should
high credit about know me analysis rainbowtwodigit pm principal

Figure 5.2: Test example of class course

nearest neighbor returnsthe incorrect classification of faculty. To see why nearest neighbor re-
turnsthe incorrect classification, we present the training example of class coursein Figure 5.3,
and the training example of class faculty in Figure 5.4. Counting simple overlap of words, the

office rainbowthreedigit rainbowthreedigit rainbowthreedigit
hours rainbowonedigit rainbowonedigit rainbowonedigit

note this for and of information homework homework
homework isisis class lecture notes exams grading description
rainbowfourdigit fall assignment welcome general syllabus
assignments project project announcementsit solutions

know systems systems me current

Figure 5.3: Training example of class course

be course home home page page spring for for for and and and of of of of design

room rainbowphonenum rainbowphonenum at at rainbowfourdigit rainbowfourdigit
rainbowfourdigit rainbowfourdigit university university computer computer computer
computer science edu edu rainbowthreedigit rainbowthreedigit rainbowthreedigit
rainbowthreedigit science science department department department programming
jprogramming programming programming programming programming welcome
materials associate am am professor phone systems computing ph current my college
paralel analysisfax rainbowfivedigit director interests researchers ny finger advisor
advisor

Figure 5.4: Training example of class faculty

test example from Figure 5.2 shares 26 words with the training exampl e of class course, but 40
wordswith thetraining example of classfaculty. Even when TFIDF with normalizationisused,
the nearest neighbor algorithm returns a cosine similarity for the test example with the training

example of classfaculty of 0.502452 and a similarity with the training example of class course
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of 0.404355, and hence misclassifies this example. Using LSI, on the other hand, changes the
gpacein such away that thetest exampleis closest to the training example of class course, with
acosine similarity of 0.797757 with the training exampl e of class course and of 0.703648 with

the training exampl e of class faculty.

The example given above was simplein the sense that the training set consisted of only one
example per class. However, thisis usually not the case, and often multiple neighbors of the
same class are returned by LSI. Asin all nearest neighbor paradigms, the number & of nearest
neighborsthat are to be combined, as well as the combination ruleitself are issuesthat must be
dealt with. We approach these decisionsin the same way as we did in Chapter 4 [14]. We can

look at the result of the LS| query as a table containing the tuples

(train-example, train-class cosine-distance)

with onelinein the table per document in the training collection. There are many linesin the
tablewith the same train-classval ue that must be combined to arrive at one scorefor each class.
We once again use the noisy-or operation to combine the similarity values that are returned by
LSl to arrive a one single value per class. If the cosine values for documents of a given class
are {s1,..., sy}, thefina score for that classis1 — [];—;(1 — s;). Whichever class has the
highest score is returned as the answer to the classification task. Based upon [63, 14] only the
thirty closest neighbors are kept and combined. Thismethod of nearest neighbor in conjunction

with LSl weterm LSI-nn.

5.2 Incorporating Background Knowledge

5.2.1 The Expanded Space

Thepower of LS| liesinthefact that it can place documentsthat do not actually share any words
in close proximity to each other. However, when thereislittle data LSl can suffer drastically.
Withfew training examples, there are many termsthat occur only once, hencelimiting the power

of LSl to create a space that reflects interesting properties of the data.

What ismost interesting to us about the singular value decompoasition transformation isthat
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it doesnot deal withthe classes of thetraining examplesat al. Thisgivesusan extremely flexi-
blelearner, for which the addition of background knowledgeisquiteeasy. Instead of simply cre-
ating the term-by-document matrix from the training examples alone, we combine the training
examples with other sources of knowledgeto create amuch larger term-by-“document” matrix,

X,,. Figure 5.5 shows a schematic view of this new matrix.

documents background

terms
in
documents

additional
terms from
background
text

Xn

Figure 5.5: The expanded matrix incorporating background knowledge

Singular value decomposition is run on this new term-by-document matrix to obtain X,,.
X,, isamodel of the space that was unobtainablewith the training examples alone. The larger
matrix containswords that did not occur in thetraining examplesat al; it also providesuswith
richer and more reliable patterns for datain the given domain. To classify atest example while
incorporating the background knowledgein the decision process, the test exampl eisredescribed
in the new space and then compared only to the columns of X, that correspond to the original
training examples. The scores that are obtained from this comparison are combined with the
noisy-or operation, to return afinal classfor classification. We term this method of incorporat-
ing background knowledge into the LS| process LSI-bg. Clearly, it isimportant for the back-
ground knowledge to be similar in content to the original training set that it is combined with.
If the background knowledgeistotally unrelated to the training corpus, for example, LSl might
successfully model the background knowledge, but the features would be unrel ated to the actual

classification task.
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To give a concrete example of how LS| with background can help, we can look at one test
examplein the NetVet domain [14]. Thetraining and test examples aretitles of Web pagesfrom
http://netvet.wustl .edu, and each piece of background knowledge consistsof thefirst 100 words
of the contents of Web pages that are not in the training or test set. The training data in the
example below consists of 277 documents. Removing all terms that occur only once creates a
t x d matrix with 109 terms. With the added 1158 entries in the background knowledge the
matrix growsto 4694 x 1435.

For the test example

british mule

of class horsethe three closest training document returned were:

livestock nutrient manag univers
manag of the foal mare purdu univers

avitech exot

which are of class cow, horse, and bird. (In thisexample stemming [52] isused to find the mor-
phological roots of thewordsin the documentsfor consistency of comparison with the WHIRL -
bg approach). Since LSl creates atotally new spaceit is not unusua to find, as in this sample,
that none of the original words from the test example are found in the three closest training ex-
amples. Thistest exampleis misclassified by LS| without background knowledge. Thisis not
surprising since theword mulein the test example does not occur in thetraining examplesat all.

Withthe addition of the background knowledge, the three closest trai ning examplesreturned are:

british columbia cattlemen
donkei

sicilian donkei preserv

of classes cow, horse, and horse. The correct classis returned. Notice that two of the closest
training examples have the word donkei which is related to both mule and horse. The addition

of the background knowledge allowed the learner to find this association.
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5.2.2 Reaultsof LSI-nn and L SI-bg

We obtained the Latent Semantic Indexing Package from Telcordia Technologies, Inc. (http://-
Isi.research.telcordia.com/) and al resultsare with use of thisL Sl package. In Figures5.6—5.15
wereport the classificationaccuracy for text classification using L SI bothwith and without back-

ground knowledge for al the data sets that were described in Chapter 2.

For al of thedomainswhenthe size of thetraining set issmall, L SI-bg outperforms L SI-nn.
For most of these domains the incorporation of background knowledge aided the classification
task for training sets of all sizes. In most of the data sets it is true as well that the accuracy
difference between L SI-nn and L SI-bg decreased as the training size increased. Also, although
accuracy for both L SI-nn and L SI-bg decreased as the training set size decreased, the accuracy
when using L SI-bg often changed very little as the size of the training set changed, as can be
seen by the flatness of the lines representing L SI-bg (see for example Figure 5.14). Thisleads
ustobelievethat theutility of background knowledgeisthat it compensatesfor thelimitedtrain-
ing data. Thisistruefor all systemsthat use background knowledge, as has been pointed out by
other researchers[51], but it can be particularly clear in the way that we use background knowl -
edgein thischapter. Thisisbecausealimited amount of training dataresultsinat x d matrix of
small dimensions, which doesnot allow the singular val ue decomposition processto find mean-
ingful semantic associations. Both the addition of more training examples, or alternatively the

addition of background knowledge, increases the size of the¢ x d matrix.
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Figure 5.6: LSI-nn and L SI-bg for 20 Newsgroups
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Figure 5.8: LSI-nn and L SI-bg for the advertisements problem
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Figure 5.11: LSI-nn and L SI-bg for the 3-class physicstitle problem
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Figure 5.12: LSI-nn and L SI-bg for the NetVet data
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Figure 5.13: LSI-nn and L SI-bg for the business name data
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Figure 5.15: LSI-nn and L SI-bg for the thesaurus problem
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Once again we wished to determine whether the difference in accuracy obtained using LS|
vsusing LSI-bg is statistically significant. From Figures 5.6-5.15 we can obtain 72 pairs of
numbers. Thefirst number in each pair representsthe accuracy of running LSl whilethe second
number is the accuracy of running LSI-bg on the same set of data. We used a paired t-test on
these 72 pairs of numbersto determine if the addition of background knowledge caused a sig-
nificant improvement in the accuracies, by checking the probability that the average difference
between the pairs of numbers is consistent with zero. The resulting p value was less than .01,
and hence we were able to conclude that significant improvements in accuracy are expected if
background knowledgeis added to the document matrix before singular value decompositionis
done.

The choice of the number of factors for the examples that were presented above was 100.
This choice of 100 factors was made based upon previousresearch in text classification [22]. It
has been shown that a small number of factors (between 50 and 300) is useful in using LSl for
test classification[22]. Weran L SI-bg using 50 factors, 100 factors, 200 factors and 300 factors
onthethesaurus, NetVet, and 2 classphysi cstitlesdata setsto ascertain the validity of our choice
of 100 factors. Table 5.1 presentsresultsfor 20, 40, 60, 80, and 100 percent of thedatafor all of
these datasets. We placed the highest valuein bold face to show that it varies across the columns,
however, as can be seen from thistabl e, thereisamost no differencein the accuracy ratesacross
the rows, except for in the business name data. For the business name data, the smaller number
of factors achieves higher accuracy than the larger numbers. Thisis probably the case because
the vocabulary size (of words that occur more than once) of the training and test datais small,

and the additional factors are probably simply modeling background information.

5.2.3 Incorporating the Test Examples

SinceL Sl isan unsupervisedlearner and it simply createsamodel of the domain based upon the
datathat it is given without regard to the classes of that data, there are a number of alternative
methods that we could use to enhance its power. One such method would be to include the test
examples in the creation of the reduced space. If the original set of training documentsis ex-
panded to include both thetraining set and thetest set, and SVD isrun on this expanded matrix,

hopefully more semantic associations would be found than if SVD was run on the training set
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Table5.1: Accuracy: Comparison of factor sizeswith LSI-bg

Data Set B0 factors 100 factors 200 factors 300 factors
thesaurus-20 32.87 33.07 34.17 3357
thesaurus-40 35.86 37.06 40.26 40.05
thesaurus-60 37.56 37.96 40.56 40.26
thesaurus-80 39.26 41.76 41.55 40.96
thesaurus-100 38.06 40.66 42.95 42.55
NetVet-20 62.13 61.53 60.86 59.77
NetVet-40 62.09 61.30 61.99 61.48
NetVet-60 61.13 61.46 61.74 61.59
NetVet-80 61.2 62.64 62.85 63.03
NetVet-100 62.28 62.97 63.16 63.46
Physics-20 92.44 92.55 92.13 92.76
Physics-40 92.76 92.66 92.02 92.76
Physics-60 92.03 92.24 92.55 92.23
Physics-80 92.34 92.55 92.86 91.92
Physics-100 92.65 92.45 92.76 92.76
Business-20 29.89 28.76 19.21 18.65
Business-40 31.43 28.68 20.55 20.79
Business-60 31.03 25.85 22.21 22.73
Business-80 32.36 26.94 23.87 23.75
Business-100 31.88 27.06 23.99 24.43

aone.

Thistype of learning is related to what is termed by Vapnik [61] as “transductivelearning.”
Instead of simply using the training data, transduction makes use of the test examplesin choos-
ing the hypothesis of the learner. In the case of the nearest neighbor algorithm that we present
in this chapter, we do not really find a hypothesisfor the learner. However, the recreation of the
space with the incorporation of the test examples does choose a representati on based upon the
test examples. Thisalows LSl to calculate entropy weights of words with the vocabulary and

examples and co-occurrences of wordsin the test examples available.

We name LS| using the expanded matrix of the training examples plus the test examples,
LSI-test. The singular value decomposition is done on this expanded matrix. To classify atest
example using its representation in this new space, thetest exampleiscompared to all thetrain-
ing examples in this new space. The 30 training examples that are closest to the test example

are then combined using the same noisy or operation that was described above. In Table 5.2 we
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Table5.2: Accuracy: Comparison of LSI-nn and L SI-test

Data Set LSI-nn  LSI-test
thesaurus-20 20.18 22.68
thesaurus-40 21.98 25.77
thesaurus-60 23.47 27.27
thesaurus-80 23.6 26.77
thesaurus-100  26.17 28.47

NetVet-20 4444 5123
NetVet-40 4504 5375
NetVet-60 4800 5414
NetVet-80 4773 54.96
NetVet-100 49.75  55.90
Physics-20 8541  87.72
Physics-40 8761 8961
Physics-60 88.66  90.24
Physics-80 8877  90.66

Physics-100 88.98 90.98
Business-20 13.39 19.38
Business-40 15.98 21.44
Business-60 18.29 22.69
Business-80 19.21 23.30
Business-100 20.14 2391

present the accuracy rates for LSI-nn and L SI-test on three data sets. As we can see from the

numbers presented, L Sl-test always outperforms L SI-nn, although often by a small amount.

A major drawback of thismethod isthat it assumesthat the entire corpus of test examplesis
available when SVD is done, which is not always the case. The power of LSI-bg, as described
above, isthat related background knowledgeis almost alwaysreadily available, or can be found
quite easily from a variety of sources. In the examples that we present, for instance, the test
sets are quite small in comparison with the size of the sets of background knowledge that we
used. In the physicstitles data set, the test set that was added for L SI-test consistsonly of 191
exampl es, while the background knowledge actually contains 1531 examples. In the NetVet set
the test set size is 358 examples; the background contained 1158 instances. The thesaurus test
set contained 200 examples, while the background knowledge contains 1007. The gains that
could be made in accuracy by adding thetest set into the singul ar value decomposition process

istherefore limited, because the number of test examplesthat are availableislimited. Also, in
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the case of training and test examples that are short text strings (as in the NetVet data set and
thesaurusdata set that we present) the number of termsthat are added when thetest examplesare
placed into the matrix is much smaller than when longer pieces of background knowledge are
used. However, despitethese deficiencies, it is still the case that we can look at the test set asan
external corpus of background knowledgeand useit aone, or in conjunction with other sources
of knowledgeto create the new semantic space. Thetest examples can be particularly useful in
the LS| approach, because since the test examples are most closely related to the training set,
we do not have to worry about modeling an unrelated concept that appears in the background
knowledge, but that does not appear in thetraining and test set. The incorporation of thetest set
also alowsthe SVD processto place emphasis on terms that will be useful in the classification

process, since they appear in the test set.

53 Summary

We have presented a method for incorporating background knowledgein text classification us-
ing LS. The singular value decompositionis performed on aterm-by-document matrix that in-
cludes both the training exampl es and background knowledge. This allowstest examplesto be
compared to the training examplesin anew space that reflects patternsin the text in the domain
that may not be found when confronted solely with training data. We have shown empirically

that thisincreases the accuracy rates in classification on range of problems.
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Chapter 6

Comparing the Methods

In Chapters 3-5 we have presented three methods of incorporating background knowledgeinto
the text classification task. Each of these methods uses the corpus of background knowledge
in adifferent way, yet empirically, on awide variety of text classification tasks we have shown
that accuracy ontest setscan beimproved whenincorporating background knowledgeinto these
systems. However, it isthe case that background knowledge can improve accuracy morein one
method than another for any specific domain. In this chapter we look at how well each of these
methods performed in comparison with the other methods. More importantly, we wish to point
out how the choice of background knowledge affected each method’s performance, and which

type of background knowledge is most useful for each specific method.

6.1 When Does Each System Perform Well?

An important i ssue that we must address, aside from the misclassification rates of each of these
systems on the various data sets, is an analysis of which examples are misclassified by the sys-
tems. Perhapsit isthe casethat each domain hasacertain percentage of “hard” problems, which
can never be classified correctly, regardless of the use of background knowledge or the type of
learning systemthat isused. Thisisnot alwaysthe case. We can ook at some concrete numbers
in the physics paper titles problem, which uses abstractsfrom physics papers as the background
knowledge. Using our method described in Chapter 3 of five-fold crossvalidation, the five test
setsconsist of 190 examples each. Using 100% of the remaining data asthetraining set for each
run, the average error rate for WHIRL-bg on this set is5.7%. LSI-bg has an average error rate
of 7.1%, and the EM method has an average error rate of 3.7%. If welook at the examplesthat
are misclassified by EM, WHIRL-bg and L SI-bg, they are often not the same, even though the

misclassification rates are very similar. If we look at the test examples that are misclassified
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by EM, which hasthe lowest error rate, an average of 55% of these misclassified examples are
misclassified by WHIRL-bg as well. Of those misclassified by EM, only an average of 16.6%
of these are misclassified by L SI-bg. Of the set that is misclassified by WHIRL-bg only 13.4%

are misclassified by L SI-bg aswell.

Interestingly enough, even within a specific system, the intersection of the set of examples
that are misclassified with the inclusion of background knowledge and the set of examples that
are miscl assified without the use of background knowledgeisoften not large either. Onceagain,
we can look at the statisticsin the physics paper title example. Only an average of 25% of the
test exampl es that were misclassified by WHIRL-bg are a so misclassified by WHIRL-nn. For
the other systems the intersection of the set of examples misclassified by the system with and
without background knowledge is larger. 63% of the examples misclassified by LSI-bg were
errorsfor LSI-nnaswell. 65% of the examples misclassified by EM were misclassified by naive
Bayes as well. Since EM uses the training examples to classify the background knowledge,
in a sense the background knowledge is used through the view of the training examples. Test
examplesthat cannot be correctly classified by EM most often cannot be correctly classified by
the training exampl es alone either, since the training examples are both usedin EM directly, and

have been used to classify the unlabeled examples.

However, in Latent Semantic Indexing the use of background knowledgeis completely dif-
ferent. LSI-nn creates anew space using only the training examples, and L SI-bg creates a new
space using the combination of the training examples and the background knowledge. These
two models of the data can be quite distinct and the reexpression of the training and test exam-
plesin these spaces can be very different aswell. For that reason, we do not necessarily expect
that the same test examples that are misclassified by LSI-bg are also errors for LSI-nn. How-
ever, when thereis alarge number of training examples, these spaces will be more similar and
there will be more overlap inthe error sets, asin the case of the physics paper titlesusing 100%
of thetraining data.

For the system built on WHIRL, we do not expect the same set of examples to be misclassi-
fied by WHIRL -nnand WHIRL -bg. Since WHIRL -bg forces the use of background knowledge
in thefinal decision for classification, WHIRL-bg relies more heavily than EM on the informa-

tion contained in the background knowledge. Even if there are training examplesthat are close
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to a specific test example, and WHIRL-nn would classify the test example correctly, it is pos-
siblethat it will be misclassified by WHIRL-bg because of the lack of background knowledge
that isrelated to that specific test example. Asanillustration of thispossibleoccurrence, we can
look at the Businessname data. One of the 126 classesis school, and thetest and training exam-
plesthat are names of universitiesare classified as school. WHIRL-nn has no problem correctly
classifying namesof universitiesas classschool, and thisclasshasvery low error. However, our
background knowledge, which istaken from another businesssite, includes no universities(ob-
viously the sitethat we obtai ned our background knowledge from does not consider universities
asbusinesses!). Thiscausesaproblem for WHIRL-bg inits attempt to classify test examples of
class school, and WHIRL -bg isforced to use background knowledge that does not really match
well with these test examples. Hence, many of the test examples of this class are misclassified
by WHIRL-bg.

These observations of the intersection of error setsleads usto believe that each of the sys-
tems have different strengths and weaknesses, allowing each system to classify problems cor-

rectly that other systems are unable to classify.

6.2 Comparisons of Results

The WHIRL-bg system performs best on the two problems where the form and size of the back-
ground knowledgeis substantially different than thetraining and test data. 1n the businessname
data, the training and test data consist of short text strings that are names of businesses taken
from the Hoovers (http://www.hoovers.com) site. Each piece of background knowledge, how-
ever, contains many different companies as well as descriptions of these companies, grouped
together by Yahoo! business pages. These background pieces of data are not really classifi-
able, in the sense that they do not necessarily belong to any specific class in the Hoovers hi-
erarchy. Since WHIRL-bg does not attempt to classify the background knowledge, but merely
uses it to index into the training corpus, it makes the best use of this background knowledge.
The same phenomenon is apparent in the advertisement data. The training and test data con-
sist of individual advertisements taken from the Courier Post. In contrast, each piece of back-

ground knowledge consists of all advertisements under a specific topic from another web site
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(http://classifieds.dailyrecord.com). These two different sources do not use the same hierarchy,
so not only are the background pieces of information of a different type, but they are not clas-
sifiablein the same way that the training and test datais. Once again WHIRL-bg outperforms

the other systemsin this domain.

For the data sets where the background knowledgefits very closely to the training and test
classificationtask, EM outperformsthe other systems. Thisisconsistentwiththeway EM makes
use of background knowledge. Since EM actually classifies the background knowledge, and
uses the background knowledgeto decide on the parameters of its generative model, the closer
the background knowledge is to the training and test sets, the better EM will perform. I1deally,
for EM, we wish the background knowledge to be generated from the same model as thetrain-
ing and test sets. The data setsthat EM performs best on include 20 Newsgroups and WebKb,
where the background knowledge is unlabeled examples, and hence of the exact same form as
the training and test set. This group aso includes the physics paper titles problems. Although
the training and test data are titles are titles of papers, and the background consists of abstracts
of papers, the background knowledge comes from the same site asthe training and test sets, and
is clearly classifiable in terms of which area of physics the associated paper belongsto. The
NetVet data, to some degree, fitsinto this category as well. The training, test and background
knowledge sets are all taken from the same web site, and each piece of background knowledge

is associated with a page from a specific classin the problem.

L SI-bg seems to be most effective when there is limited training data. On the smallest data
sets, LSI-bg outperforms all the other methods in many of the domains including 20 News-
groups, NetVet, and two variations of Clarinet news (that will be introduced shortly), and is
comparable to the best system for the smallest size training sets on some of the other data sets.
We believe that thisis so because LSI-bg is not dependent on the training data when creating
itsmodel. When very few training examples exist, L SI-bg can still build a space that correctly
model s the domain by using the availabl e background knowledge. EM and WHIRL-bg depend
more heavily on the small set of training datathat is available; EM usesthetraining set to clas-
sify the background instances, and WHIRL compares elements of the training set directly to

background instances. These two systems are therefore more affected by the limited training
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data. What is very interesting about LSI, is that with limited training data, L SI-nn often per-
forms much worse than any other system. Thisisbecause the smaller spacethat L SI-nn creates
can have very few factors and does not effectively model the domain. However, once the back-
ground knowledgeis added, L SI-bg outperforms al other systems. For example, the error rate
of naive Bayes on the 20 Newsgroups data with one training example per class is 20%, EM
boostsit to 35%. In contrast, LSI-nn achieves only 12% accuracy, but L SI-bg has 40% accu-
racy. With the business name data, L SI-bg and WHIRL-bg both achieve 29% accuracy on the
smallest data set, but L SI-nn has an accuracy of only 13%, while WHIRL-nn has an accuracy
of 23%.

6.3 The Utility of Background Knowledgein Short Text Classification Tasks

Theresultsthat we presented in Chapters 3, 4, and 5 validate what many other researchers have
found [51]: unlabeled data or background knowledgeis most useful when thereislittletraining
data. This can be seen graphically in the figures presented in Chapters 3, 4 and 5 by looking
at the distance between the lines that represent accuracy with and without background knowl-
edge. In most of the graphsthat we have shown, when the set of training datais small, the im-
provement upon the learning algorithm by including background knowledge is greater. Asthe
number of examplesin the training sets increase, the distance between the line that represents
accuracy without background knowledge, and the line that represents accuracy on the test set
with background knowledge decreases. A concrete example of why thisis so can be seen from
the Clarinet newsgroup dataset that was described in Chapter 2. Some test examples from this

domain (stemmed [52]) are:

instant replai fail again thi past weekend poor mike, sport. the career statist for the

player involv in todai , sport.

When only 20% of the data is used for training, the first test example listed above would be
misclassified to be of class bank. In this case, since there are only a few data pointsfor train-
ing, the words instant and replai do not even occur in the training corpusat al. Since theword
poor occursin training examples from the bank category (as Sandard and Poor) this example

ismisclassified. When background knowledge is used, and the words instant and replai occur
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often in the background knowledge in conjunction with other words from training examplesin
the sport category, this exampleis classified correctly.

Thereisanother interesting point that has not yet been discussed, on theissue of when back-
ground knowledge could be most useful. As opposed to our discussion above, let us assume
that we have a large number of training and test examples. However, co-occurrences of words
may not be able to be learned properly and vocabulary size of the training set can still be small
if each of the training and test examples themselves consist of very short strings. This might
cause the same problems as an insufficient number of training examples would cause. We can
intuitively understand that classification problems where the training and test data consist of
short text stringswill benefit most from the addition of background knowledge. Asan example,
we can look at the Business name data introduced in Chapter 2. Examples of training and test

strings are:

abcinc, broadcast. watson pharmaceutical inc, drug.

Itisclear from thetype of examplesin thetraining and test set that in thisparticular domain
often the training data will be insufficient to classify a new test example. When data pointsin
atext classification problem consist of only a few words each, it becomes hard for a learning
system to obtain accurate counts of co-occurrences of words, as well as a compl ete vocabulary

of words related to each class in the domain.

The Clarinet newsgroup problem described in Chapter 2 is a short-text classification prob-
lem that we created. Training, test and background knowledge sets are all taken from news ar-
ticlesin the two classes of bank and sport from Clarinet news. Although the training and test
and background documents all come from the same source, we chose thetraining and test docu-
mentsto be simply thefirst 9 wordsof the newsarticles. Thisreducesthe size of the vocabulary
that isin the training corpus, and a so reduces the sharing of words between different examples.
Since we chose each piece of background knowledgeto consist of the first 100 words of news
articles, each piece of background knowledge can overlap with many training or test examples

aswell aswith each other.

To illustrate the effect that background knowledge has when the text classification problem

consists of short-text strings, we have created three new problems from the Clarinet domain.
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Table6.1: Clarinet resultson EM and Naive Bayes with different number of wordsinthetrain-
ing examples

Data Set 20%-Naive Bayes 20%-EM 100%-NaiveBayes 100%-EM
Clarinet-3words 774 89.0 85.2 91.3
Clarinet-9words 90.5 98.6 95.6 98.3

Instead of taking thefirst ninewordsfrom the newsarticlesfor thetraining and test data, wetake
thefirst 7 words, 5 wordsand 3 wordsto create the three new problems. We expect the problems
with the shorter text stringsto be hel ped more by theinclusion of background knowledge. A test

example from the Clarinet news problem with 9 words, such as:
winner of saturdai tennesse kentucki football game still will, sport .

will be classified correctly by WHIRL-nn, making the background knowledge unnecessary for
this particular test example. However, when only the first 3 words of the article are present the

test exampleis:
winner of saturdai, sport.

and thewords football and games are no longer part of thetext. Thiscauses WHIRL-nnto mis-
classify the problem, which can be compensated for by adding background knowledge, and the
test example is properly classified by WHIRL-bg.

We plot the results for naive Bayes and EM, WHIRL-nn and WHIRL-bg, and L SI-nn and
LSI-bg in the graphs where the problem names are caled 3-words, 5-words, 7-words and 9-
words, corresponding to the test and training set consisting of the first 3, 5, 7, or 9 words of
each article respectively. Figures 6.1-6.4 graph the results of running naive Bayes and EM on
these four problems. It is the case, as can be seen from the graphs, that EM improves upon
naive Bayes for al of these problems, for any percentage of the training datathat is used. As
expected, naive Bayes performs worst in the 3-words problem, with 20% of the data, and best
in the 9-words problem with 100% of the data. As can be seen from Table 6.1, the background
knowledge raises the accuracy rate of the 3-words problem with 20% of the data from 77.4%
to 89% and the 9-words problem with 20% of the data from 90.5% to 98.6%. With 100% of

the data, the background knowledge rai ses the accuracy of the 3-words problem from 85.2% to
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91.3% and the 9-words problem by only 2 percentage points, from 96.6% to 98.3%. We can
see that both the addition of training examples, as well as the addition of more words per each

training example, limits the usefulness of the background knowledge.
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Figure 6.1: Naive Bayes and EM for the Clarinet 3 words problem
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Figure 6.2: Naive Bayes and EM for the Clarinet 5 words problem

Resultsonthe Clarinet dataset for WHIRL-nn and WHIRL-bg are presented in Figures 6.5—
6.8. Asexpected, the smaller the number of wordsin each training and test example, the worse
both WHIRL -nn and WHIRL -bg performed. The addition of background knowledge was most
useful with the shorter strings in the test and training data as well. Thisis represented in Fig-
ures 6.5-6.8 by the point at which the two linesintersect. For strings of length 3, background

knowledge reduced the error rates, even when the entire set of training data was used. Asthe
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Figure 6.3: Naive Bayes and EM for the Clarinet 7 words problem
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Figure 6.4: Naive Bayes and EM for the Clarinet 9 words problem
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number of wordsin the training-test examplesincreased, the point at which background know!-
edge became helpful changed. For strings of length 9, background knowledge reduced error
rates only when less than 60 percent of the data was used. This gives empirical evidence that
the less informative the training datais, the greater the advantage in having a corpus of back-
ground knowledgeavailablefor use during classification. The size of thereduction in error rate

obtai ned by running WHIRL -bg was a so greater when therewere fewer wordsin each example.
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Figure 6.5: WHIRL-nn and WHIRL-bg for the Clarinet 3 words problem
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Figure 6.6: WHIRL-nn and WHIRL-bg for the Clarinet 5 words problem

Results for LSI-nn and L SI-bg on the four Clarinet problems are graphed in Figures 6.9—
6.12. On al four of the data sets the difference in the line representing LSI-nn and LSI-bg is
larger when the data set is smaller. The unlabeled data is more useful when there are fewer

training examples. However, it is also the case that the difference in the linesis greater for the
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Figure 6.7: WHIRL-nn and WHIRL-bg for the Clarinet 7 words problem
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Figure 6.8: WHIRL-nn and WHIRL-bg for the Clarinet 9 words problem
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Figure 6.9: LSI-nn and L SI-bg for the Clarinet 3 words problem
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Figure 6.10: LSI-nn and LSI-bg for the Clarinet 5 words problem
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Figure 6.11: LSI-nn and L SI-bg for the Clarinet 7 words problem
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Figure 6.12: LSI-nn and L SI-bg for the Clarinet 9 words problem
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shorter text problems. With 100% of the data on the three word problem, L SI-bg has an error
rate of 90%, and L SI-nn an error rate of 71%. Thisdifference is 19%. For the five word prob-
lem, the error rates are 77% and 96% for a difference of 19% as well. However, the 7 words
problem has error rates of 80% and 96% for a difference of 16% and the 9 words problem has
error rates of 84% and 98% for a difference of only 14%. The same phenomenon is noticeable
on al training set sizes, with the usefulness of background knowledge being more apparent in
the shorter text string problems as the training set size decreases. For 20% of the data, L SI-
bg boosts the accuracy rate by 11%, 6%, 5% and 5% for the 3-words, 5-words, 7-words and
9-words problems respectively. Thisis because a training data of short text string resultsin a
t x d matrix of small dimensions because of the smaller vocabulary size, which does not allow
the singular value decomposition process to find meaningful semantic associations. The expan-
sion of the training data to longer text strings, the addition of more training examples, or the
addition of background knowledge (or any combination of thesethree), increasesthe size of the

t X d matrix.

6.4 Unrelated Background Knowledge

In Chapter 4 we discussed the effect that unrelated background knowledge has on WHIRL -bg.
Since WHIRL-bg compares a training and test example only through a piece of background
knowledge, if the background knowledgeis unrelated to the task, the accuracy of WHIRL-bg
will often belower on thetest set than even WHIRL-nn. We introduced theidea of adisjunctive
query, which we termed WHIRL-dis, that can be used instead of WHIRL-bg if the background
knowledgeis not known to be from the same domain as the training and test sets. WHIRL-dis
includesacomparison between thetraining and test sets directly, and so minimizesthe negative
effect that unrelated background knowledge can cause. In this section, we present experiments

to seehow EM and LS| deal with unrelated or mixed background knowledge.

We present graphs on the four data setsthat we used to test WHIRL-dis: the thesaurus prob-
lem, the business names problem, the 2-class physics problem and the NetVet problem. We
ran each of these data sets without background knowledge, with the correct related set of back-

ground knowledge (as described in Chapter 2), with a mixed set of background knowledgethat
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contained both the correct background knowledge and additional unrelated background knowl-
edge and with only the unrel ated background knowledge. For the unrelated background knowl-
edge we use the background set from the NetVet datafor the other three tasks, and the physics
abstractsfor the NetVet task. The mixed background set consistsof all documentsin therelated
background set plusall documentsin the unrelated set of background knowledgefor each task.

Figures 6.13— 6.16 present the results of running WHIRL with different sets of background
knowledge. Each graph containsfive lines, onefor WHIRL-nn with no background knowledge,
WHIRL-bg with the correct set of background knowledge, WHIRL -bg with the mixed set of
background knowledge, WHIRL -bg with thewrong set of background knowledge, and for com-
parison sake, WHIRL -dis with the wrong set of background knowledge. As can be seen from
the accuracy curves, WHIRL-bg with the correct set of background knowledge outperforms all
other runs, asis expected. WHIRL-bg with unrelated background knowledge performs worse
than any other method, including WHIRL-nn. However, the curve for WHIRL -diswith the un-
related background knowledgeis very close (and even overlapping sometimes) to the curve for
WHIRL-nn. This revalidates our claim that WHIRL-dis reduces the degradation of accuracy
that unrelated background knowledge can cause with WHIRL-bg.
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Figure6.13: Using WHIRL with different setsof background knowledgeon the businessnames
data

Figures 6.17—6.20 present the results of running Naive Bayes and EM. Each graph consists
of four curves: onefor Naive Bayes, onefor EM withthe correct set of background knowledge,

one for EM with the mixed set of background knowledge, and one for EM with the wrong set
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Figure6.14: Using WHIRL with different setsof background knowledge on the physics2-class
data
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Figure 6.15: Using WHIRL with different sets of background knowledge on the thesaurus data
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Figure 6.16: Using WHIRL with different sets of background knowledge on the NetVet data
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of background knowledge. What isinteresting is that in all four cases, the mixed set of back-
ground knowledge does not cause accuracy to be worse than Naive Bayes. In the physics data
and thesaurus data, EM with mixed background performs as well as EM with the correct set of
background knowledge. Even with the wrong set of background knowledge, EM does not per-
form more poorly than Naive Bayes on the business names and physicsdata. If theiterationsin
EM do not classify the background knowledge as bel onging with high probability to any class,
it will minimize the effects that this background knowledge will have on the final model pa-
rameters. In the NetVet and thesaurus data sets, EM with the wrong background knowledge
does perform worse than Naive Bayes. However, our version of EM isthe straight forward and
simple one. Nigam et a. [51] present two extensionsto EM that might minimize the effect of
wrong background knowledge. Specifically, if theweightsof the unlabel ed examplesin terms of
their contributionto themodel parametersisreduced, misleading background knowledgewould

probably have less of an effect on accuracy.
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Figure6.17: Using EM with different sets of background knowledge on the businessnames data

We present the results of running LS| with different sets of background knowledgein Fig-
ures 6.21-6.24. Once again, each graph consistsof four curves, L SI-nn, L SI-bg with the correct
set of background knowledge, L SI-bg with the mixed set of background knowledgeand L SI-bg
with the wrong set of background knowledge. As can be seen from the graphs, the use of un-
related background knowledge can cause extreme resultswith the LS| approach. Thiswas not

surprising to us, since LS| uses the training set in combination with the background knowledge
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Figure6.18: Using EM with different sets of background knowledge on the physics 2-classdata
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Figure 6.19: Using EM with different sets of background knowledge on the thesaurus data
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Figure 6.20: Using EM with different sets of background knowledge on the NetVet data
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to create a new space. If the new space reflects the training set, or correct set of background

knowledge, then the comparisons between the training and test examples can provide accurate

results. However, if the new space reflects the unrelated background knowledge, and the train-

ing and test exampl esare re-expressed in this unrel ated space, compari sonsbetween thetraining

and test examples can be meaningless.

100 ,

60 -

Accuracy

40 |

T T
LSl-nn <—
LSl-bg —+--
LSl-bg-mixed -&--
LSI-bg-wrong -

60 80
Percent of Data

100

Figure6.21: Using L Sl with different sets of background knowledge on the businessnames data
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Figure 6.23: Using LS| with different sets of background knowledge on the thesaurus data
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6.5 Summary

In thissection we analyzed when and where each method that we presented inthe previous chap-
tersperformed best. We showed that often examplesthat are misclassified by one method could
be properly classified by another method. We presented resultsfor al three methods on differ-
ent lengths of training and test data, to show that background knowledge helps most when the
classification task is one that deal s with short text strings. Finally, we discussed how irrel evant

background knowl edge affects the performance of each method.
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Chapter 7

Related Work

Throughout our thesiswe have discussed numerous pieces of related work that wasdirectly nec-
essary for the explanation and discussion of our innovativeideas. Chapter 3 givesadiscussion
of naive Bayesclassifiers, Chapter 4 discussesWHIRL and other text classificationtoolsthat are
used for comparisons, and Chapter 5 includes descriptions of related work in Latent Semantic
Indexing. However, there is other work that in the area of combining supervised and unsuper-
vised learning that must be mentioned.

Although the concept of background knowledge that we presented in this thesisis novel,
the ongoing work on the addition of unlabeled examples in supervised learning algorithmsis
very closely related to our research. Asamatter of fact, as we pointed out in Chapter 3, unla-
beled examples can be looked upon as alimited type of background knowledge in the context
of our experiments. Most of the work on unlabel ed examples has been empirical in nature, and
it can be shown that unlabeled examples can improve classification accuracy when added into
many different classifiers[51, 33, 31, 64, 65, 7, 6, 48]. Theoretically the usefulnessof unlabeled
examples is often unprovable even when dealing with unlabeled examples that are extremely
“similar” to thelabeled data. Since our methods make use of background knowledgethat is of -
ten qualitatively different than thetraining and test set there are no theoretical resultsthat can be
straight-forwardly applied to determine how useful this knowledge would be in classification.

Transduction, asintroduced by Vapnik [60, 61], makes use of the test examplesin choosing
the hypothesis by the learner. Joachims[33] presents an agorithm for transductive SVM that
chooses, from among all the possible hyper-surfaces, the one that correctly classifies the data
while maximizing the margin® of both the training and test data. In a sense the use of the test

data during the text classification task injects some prior knowledge of words that can be used

Themarginis definedto bethe distance between the hyper-surface and the nearest examplesof the given classes.
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in the decision of the choice of the hyperplane that would be used for classification. Joachims
presents results for text classification tasks that show the validity of this approach. Results by
others[2] make use of what they term a“working set”, which isessentially acorpus of unlabeled
data, in SVMs aswell. Their empirical results on ten data sets showed that transductive SVM
viaoverall risk minimization (large margins on boththetraining and test set, aswell as accuracy
on the training set) improved induction over structural risk minimization (large margins on the
training set, as well as accuracy on the training set) some of the time and never degraded the
learner. However, later results by others [66] question the efficacy of this approach. Wu et al.
[62] apply transduction to perceptron decision trees. Each node in these perceptron decision
trees represents a hyperplanein theinput space. These trees often suffer from overfitting and to
combat this problem often the trees are pruned to be made simpler. Wu et a. [62] show that by
choosing the decision nodes that both maximize the training accuracy and take into account the
margins on the training data, higher accuracy on the test data can be achieved. Although they
show that this margin maximization is useful in the inductive case for pruning and to reduce
overfitting, the benefits of transduction (i.e. the inclusion of the test set into the choice of the

hyperplanes) are less clear.

A different approach to combining labeled and unlabeled information istaken by Blum and
Chawla[5]. They create a graph from the examples by connecting all labeled examples to the
node corresponding to the class assignment and to each other based upon their similarities. Un-
labeled examples are connected to their nearest neighbors. The min-cut algorithm isthen used
to find the best division of the datainto positive and negative classes. 1ssues of how to measure
similarities and how many edges to connect to each unlabeled example are some of the direc-

tions of current research.

The co-training paradigm (Blum and Mitchell) [6] takes advantage of the fact that a data
set can often be expressed in more than one way. For example, a web page can be described
by the words on the page, or by words in hyper-links that point to that page. This structural
knowledge about the data can be exploited to use unlabeled data. Initialy, two hypothesis, H;
and H,, are formed on each of the views using the labeled data. A subset of the unlabeled data
isthen classified alternatively by hy and hy and added to the other view to be part of the labeled

set. Assumingthat the two views of the dataare conditionally independent of each other, Blum
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and Mitchell [6] provethat aweak initial predictor can be used with unlabeled datato PAC learn
[59] thetarget concepts. Nigam and Ghani [50] extend work on co-training and show that when
independent and redundant expressions of the data are available, co-training improves on other
algorithms. Even when no such expressions of the data are available, co-training is robust in
that it can improve learning when the features of the data are divided randomly between two
learners.

The co-boosting algorithm, an extension of the AdaBoost supervised classification algo-
rithm, is presented by Collinsand Singer [15] for the task of named entity representation. Once
again, the examples are expressed with different views. Goldman and Zhou [28] dispense with
the notion that two independent views must be created from the data, and instead use different
learners on the same view. They argue that although the data is the same for each of the al-
gorithms, by virtue of their very different natures, the two supervised learning algorithms can
complement each other and be combined in a useful way.

Unlabeled data has been used in text classification task where no labeled datais available,
but aclasshierarchy or set of keywordsper classisknown[44, 54]. Inthese cases, thekeywords
that are given for each class are used to assign preliminary label sto the documents. Theselabels
are then used as a starting point for expectation maximization and naive Bayes in conjunction
with unlabeled examplesto arrive at a set of parameters for a generative classifier.

Cohen [13] uses a concept that is somewhat similar to our idea of background knowledge.
Cohen [13] uses Web pagesin HTML to create new features for training and test examplesina
machine learning task. A group of Web pagesthat isrelated to the training and test datais used
to create tuples based uponthe HTML headers or positionsin the HTML document and values
under the header. New features are then are added to training and test examplesiif the values of
data in the examples are similar to values in the tuples. These Web pages can be looked at as

background knowledge that is used to aid the learning task.
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Chapter 8

Future Wor k and Conclusions

8.1 Evaluation of Background Knowledge

The nature and type of background knowledgethat is used to improvelearning is of central in-
terest to us. The data sets that we used in our experiments had background knowledge of dif-
ferent kinds, from a variety of sources. There are anumber of issuesthat we can look at in our

evaluation of different types of background knowledge.

¢ Areunlabeled examples more hel pful than background knowledgethat comes from adif-
ferent source? For unlabel ed examplesthe size of each piece of background knowledgeis
generally well-defined since each piece of background knowledgeis simply of the same
general size and type as the training and test examples. We can also be more assured of
the relationship between this type of unlabeled examples and the text classification task.
However, there is a disadvantage in the use of unlabeled examples when dealing with
short-text classification tasks. When the training and unlabeled set consist of examples
that have only afew words, aset of unlabel ed examples doesnot alow usto learn as many
co-occurrences and frequencies of words as a set of longer pieces of background know-

edgewould. Thislimitsthe usefulness of unlabel ed examples as background knowledge.

The use of unlabeled examples as background knowledge aso assumes the easy avail-
ability of unlabeled examples. Althoughiit is often the case that unlabeled examples are
plentiful, it isnot aways so. When unlabel ed examples are not available, our only choice

may be to use background knowledge from a different source.

e The choice of asourcefor the background knowledgeis crucia aswell. There has been
somework done by Dumaiset al. [24] in cross-language retrieval using Latent Semantic

Indexing. The work uses a corpus of textual documents, where each document consists
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of the text in both English and French. The semantic space represents words in both lan-
guages and queriesin either language can be represented and answered in either French
or English. Dumaiset a. [24] giveresultsof experimentsusing three different corporaof
translated documents. When the corpus of documents was different than the queries (us-
ing parliamentary papers as the corpus) the system performed worse than when the corpus
was more related to the queries (using the yellow pages as the corpus). |deally we would
like to be assured that the vocabulary of the background knowledge overlaps in a great
measure with the training and test sets. Thisis most crucial for the LS| method, as well

asfor the naive Bayes, but would be important for WHIRL as well.

Thequestionthat must be posedis: “How closeisthe background knowledgeto thetask?’
WHIRL (or any other k-NN algorithm) will allow usto determine the closeness of back-
ground knowledge to the training and test set. Our WHIRL-bg a gorithm actually incor-
porates this metric into its second-order approach. A question for future work that we
wishto exploreisif thismetric can be used to determine the closeness of the background
knowledgeto the task for other methods aswell. Perhapsit can it be used in some prepro-
cessing agorithmsto determine if the background knowledge will be useful, or at least
to figure out if background knowledge will not cause accuracy on thetest set to degrade.
These are issues that we are currently exploring. The “cleanliness’ of background text
can aso vary greatly, from encyclopediaentries at one end of the spectrum to ad hoc col-
lections obtained from uncoordinated Web sites or text obtai ned through speech recogni-
tion technology on the other. We would expect the cleanliness of the data to impact the

usefulness of the background knowledge as well.

Thegranularity, or amount of informationthat each individual piece of background knowl-
edge contains is also an important area to examine. In our advertisement data set and
Business names data set the pieces of background knowledge were of a very different
sizethan thetraining and test data. In each background piece of data contained many en-
tries that were similar to atraining or test example. Thistype of background knowledge
iseasier to obtain and download from the Web, as they do not have to be parsed as care-

fully as other types of background knowledgethat mimic theform of thetraining and test
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data. The granularity of the background knowledge also may help determine which type
of learning algorithm might be most useful. For instance, as the form of the background
knowledge deviates more from the form of the training and test data, the EM algorithm

might belessuseful, asit attemptsto treat the background knowledge as actual examples.

Another question concerns the combination of different sets of background knowledge.
In the simplest approach, if we obtain two sets of background knowledge (or two back-
ground knowledge databases), we can simply concatenate the two sets and use it as one
large body of background knowledge. If both setsare related to the task, thisissimply an
issue of enlarging the size of the background knowledge data base. However, suppose
we are more certain about one background knowledge set in the sense that it contains
more reliable information. For example, for the physics paper title problem, abstracts
from technical papers might contain information and words that are more reliable than
anewsgroup discussion about issuesin physics. We would therefore like to combine the
two sets of background knowledge by weighting one more highly than the other. Issues
in this area that we are exploring include how to add the weighting to the systems, and

how to explore a correct weight for each set of background knowledge.

A key issue that we have not addressed in this work is how we obtain the background
knowledge. In this thesis, we have manually chosen background knowledge for each
learning task that we explored. We have done some preliminary work on automatically
generating thisbackground knowl edgeviasearch utilitieson the Web. Onesimplemethod
that we havelooked at uses someimportant key wordsfromthedomain (e.g. intheNetVet
domain, these might be the names of the animals that are a so class names), and does a
Web search on each of thosewords. Pages returned from the searches are used as entries
in the background knowledge database. The problem with thisapproach is that the back-
ground knowledge comes from many different sources, with a wide vocabulary range.
This makes it harder for our systems to find patterns or co-occurrences, and our initia

empirical resultson this are mixed.
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8.2 Extensonsand Modifications

82.1 WHIRL-bg

It isinteresting to note that our use of background knowledgein aWHIRL query isin a sense
aform of query expansion [8]. Instead of directly searching for the training examples that are
closest to atest example we search for the training exampl es that are closest to the background
knowledge expansion of the test example. However, unlike standard query expansion, and be-
cause of our conjunctive conditions, the background knowledge expansion itself is chosen with
respect to the training example that it is closeto. This means that each query has multiple ex-

pansions, and all those that maximize the score of the conjunctive condition are combined.

Given aquery (or test example in our discussion) we can say that we expand the query by
substituting it with a piece of background knowledgethat it is closeto. Thisexpansionisonly
used if there al so existsone or more training examplesthat is closeto thisexpansion. We expand
the query in many different ways, substituting any background piece of knowledgefor the query
that has atraining examplethat iscloseto it as well. We leave the exploration of the use of our

WHIRL-bg approach for retrieval, as opposed to classification, for future work.
We will aso beginto look at further extensions of our approach. For example, consider the

query:

SELECT Test.instance, Train.label
FROM Train AND Test AND Background as B1
AND Background as B2
WHERE Train.instance SIM Bl.value
AND Test.instance SIM B2.value
AND Bl.vdue SIM B2.value

Thistype of query providesa different way for background knowledge to bridge gaps between
atraining example and the test example. Given that the test and training examples only have a
small bit of knowledge about the class to which they belong, this query allows each small bit of
knowledge to be mapped to larger pieces of background knowledge that can then be compared
to each other. Our current version of WHIRL-bg connectsatraining exampleand atest example

by using a bridge through a piece of background knowledge. This bridge can only be formed
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if theit same piece of background knowledgeis close to both the training and test example. If
the vocabulary of the background knowledge is much larger and more varied than that of the
training and test set, it is possible that one piece of background knowledge will not be close
to both a training example and the test example. However, it might still be the case that the
piece of background knowledgethat is closeto thetrai ning example and the piece of background
knowledgethat is closeto thetest exampl e share many words with each other. In asense, to use
the bridge analogy, this query creates a bridge with two steps by comparing the background

pieces of knowledgewith each other (Figure 8.1).

Training Background Test

— ]
1 ™
I
1

Figure 8.1: WHIRL query

8.2.2 LSl-bg

Therearedifferent waysof using nearest neighbor in conjunctionwith Latent Semantic Indexing
for the classification (or aternatively the text filtering ) task. Our approach has been to use the
noisy-or operation in combining the cosine similarity scores of the thirty nearest neighbors to
the test example. We have explored the number £ slightly, ranging it from 1 to 30. Setting k=1
and choosing the topmost was amost always inferior to the k£ = 30, there was little difference
in other numbers. Other combination rules such as £-NN using the majority class, or k-NN that
maximizes the sums of the cosine similarities[14, 63] can be explored as well.

Alternatively, we could use Latent Semantic Indexing with other learning paradigms. One
approach that we have explored has been that of Local LSI, as described by Hull [30], where
a separate reduced space is built for each class. We incorporated the background knowledge

into each of these separate spaces, and then re-described the test example into each of these
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separate spaces aswell. The test example was then compared to the training set in each space;
whichever it was closest to was returned as the final classification. Our preliminary results did
not show that Local LSl was more useful than our initial use of LSI. In our L SI-bg method the
background knowledgeis used to find factors that more accurately distinguish between classes.
In Local LS, since the same set of background knowledge is used in conjunction with each
smaller training set, we hoped that the factors that would be found would accurately describe

each class. However, in our empirical resultsthisdid not seem to be the case.

Aninterestingissuerelevant to LS| isthat if thetraining set is small compared to the back-
ground text, it may be sufficient to use only the background text, without training data, in X,.
SVD could be performed on the background text alone; both the training and test examples can
be re-described interms of thenew spaceusing X,,. Thismethod of updating SV Dsby “folding-
in” new documents, has been studied by the LSl community [3]. AlthoughthisSVD will not be
identical to the one of the training and background examples combined, our initial tests have
shown that classification accuracy does not significantly change. This might then provide a
mechani sm by which incremental learning is achievable — where anew example can be added
without requiring a new SVD calculation. Such a method for avoiding the often costly SVD
calculation would be one way to manage the otherwise costly work that would be necessary in

obtaining new training datain incremental learning scenarios.

8.3 Contributions

We have presented a novel concept of “background knowledge” to aid in text categorization.
Thisisstrongly related to the current and growing body of work on the use of unlabeled exam-
plesin thetext classification task. Rather than having alearner simply rely on labeled training
data to create a classifier for new test examples, we show that combining the labeled training
data with other forms of available related text alows for the creation of more accurate classi-
fiers. We have incorporated this concept of the addition of background knowledge into three
qualitatively different learners, in three very different ways. Yet from the results that we pre-
sented, we can see that in many different situations, the use of related datain text classification

tasks can provide enough additional information to alearner to reduce error rates on previously
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unseen examples.

We provide aframework for the incorporation of background knowledge into three distinct
text classification learners. In the first approach we show that background knowledge can be
used as a set of unlabeled examples in a generative model for text classification. Using the
methodol ogy of other researchersthat treat the classes of unlabel ed examples as missing val ues,
we show that although this background knowledge may be of adifferent form and typethan the
training and test sets, it can still be quite useful. Secondly, we view thetext classificationtask as
oneof information integration using WHIRL , atool that combines database functionalitieswith
techniquesfrom theinformation-retrieval literature. We treat thelabel ed data, test set and back-
ground knowledge as three separate databases and use the background knowledgeas a bridgeto
connect el ements from thetraining set to the test set. In thisway, training examples are related
to atest example in the context of the background knowledge. Lastly, we use Latent Seman-
tic Indexing in conjunction with background knowledge. In this case background knowledge
is used with the labeled examples to create a new space in which the training and test exam-
ples are re-described. This alows the system to incorporate information from the background

knowledgein the similarity comparisons between training and test examples.
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