
September 13, 2017 16:29 Infinite Group Theory - 9in x 6in b3081-ch02 1st Reading page 19

Chapter 21

A Survey: Shamir Threshold Scheme and Its Enhancements

Chi Sing Chum1, Benjamin Fine2, and Xiaowen Zhang1,3
2

1Computer Science Dept., Graduate Center, CUNY3

365 Fifth Ave., New York, NY 10016, U.S.A.4

E-mail: cchum@gradcenter.cuny.edu5

2Mathematics Dept., Fairfield University6

1073 North Benson Road, Fairfield, CT 06824, U.S.A.7

E-mail: fine@fairfield.edu8

3Computer Science Dept., College of Staten Island, CUNY9

2800 Victory Blvd, Staten Island, NY 10314, U.S.A.10

E-mail: xiaowen.zhang@csi.cuny.edu11

ABSTRACT. This paper serves as an introduction to secret sharing scheme,12

and it provides the fundamental understandings to the scheme from various13

aspects. We first review the basics of a Shamir threshold scheme, and discuss14

various enhancements so that the scheme can be proactive and verifiable.15

We then show how a Shamir scheme can be extended to realize any general16

access structure. We also point out the relationship between a Shamir scheme17

and other topics such as error correction code, ramp scheme, information18

disposal algorithm and multiparty computation. Finally, we briefly discuss19

other platforms for its implementation.20

1. Introduction21

A secret sharing scheme is a method to distribute a secret among a22

group of participants by giving a share of the secret to each. The secret23

can be recovered only if a sufficient number of participants combines their24

shares.25

Formally we have the following. We have a secret K and a group of26

n participants. This group is called the access control group. A dealer
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allocates shares to each participant under given conditions. If a sufficient1

number of participants combine their shares, then the secret can be2

recovered. If t ≤ n then an (t, n)-threshold scheme is one with n total3

participants and in which any t participants can combine their shares4

and recover the secret but not fewer than t. The number t is called the5

threshold. It is a secure secret sharing scheme if given less than the6

threshold there is no chance to recover the secret. If a measure is placed on7

the set of secrets, and on the set of shares, security can be made precise by8

saying that when given less than the threshold, all secrets are equally likely,9

but when given the threshold, there is a unique secret. Secret sharing is an10

old idea but was formalized mathematically in independent papers in 197911

by Adi Shamir [26] and George Blakley [2].12

Shamir [26] proposed a beautiful (t, n) threshold scheme, based on13

polynomial interpolation, that has many desirable properties. We describe14

this in Section 3. It is now a standard method for solving the (t, n) secret15

sharing problem, although there are modifications for different situations16

that we will discuss in this paper. Blakley [2] in his original paper proposed17

a geometric solution based on hyperplanes that is less space efficient,18

for computer storage, than Shamir’s. In Blakley’s scheme the distributed19

shares are larger than the secret, whereas in Shamir’s scheme they are the20

same size.21

The protection of a private key in an encryption protocol provides22

strong motivation for the ideas of secret sharing. Based on Kerchhoffs’23

principle [18], only the private key in an encryption scheme is the secret24

and not the encryption method itself. When we examine the problem of25

maintaining sensitive information, we will consider two issues: availability26

and secrecy. If only one person keeps the entire secret, then there is a risk27

that the person might lose the secret or the person might not be available28

when the secret is needed. Hence, it is often wise to allow several people29

to have access to the secret. On the other hand, the higher the number of30

people who can access the secret, the higher the chance the secret will be31

leaked. A secret sharing scheme is designed to solve these issues by splitting32

a secret into multiple shares and distributing these shares among a group33

of participants. The secret can only be recovered when the participants of34

an authorized subset join together to combine their shares.35

A secret sharing scheme is a cryptographic primitive with many36

applications, such as in security protocols, multiparty computation (MPC),37

Pretty Good Privacy (PGP) key recovering, visual cryptography, threshold38

cryptography, threshold signature, etc.39
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The remainder of this paper is organized as follows. In Section 2, we1

give a brief review on entropy which is related to secret sharing schemes.2

In Section 3, we discuss the principles of share distribution and secret3

recovery of a Shamir threshold scheme and its properties. We further talk4

about different enhancements which make the original threshold scheme5

proactive or verifiable. In Section 4 we further show how to extend a Shamir6

threshold scheme to realize any general access structure. In Sections 57

to 8, we discuss the relationship between a Shamir threshold scheme and8

Reed-Solomon code, ramp scheme, information disposal algorithm, and9

multiparty computation, respectively. In Section 9, we gave an alternative10

to Shamir threshold scheme. In Section 10, we discuss another platform for11

its implementation. We conclude the paper in Section 11.12

2. Entropy13

In information theory, developed by Shannon [27, 28], entropy is a measure
of information or uncertainty. Also see [4, 14, 30] for the details. Let X be
a random variable with possible outcomes X and probability distribution
p(x), where p(x) ≥ 0,

∑
x∈X p(x) = 1. Then, the entropy of X is defined as

Ent(X) = −
∑

x∈X
p(x) log2 p(x). (1)

In probabilistic terms this is the expected value of − log2 p(x). We assume
p(x) log2 p(x) = 0, if p(x) = 0. This is justified because

lim
p(x)→0

p(x) log2 p(x) = 0. (2)

Example: Let X be a random variable of the event of an unbiased fair
coin flipping with the possible outcomes of X = {Head, Tail}, with p(X =
Head) = p(X = Tail) = 1/2, then:

Ent(X) = −p(X = Head) log2 p(X = Head)

− p(X = Tail) log2 p(X = Tail) =
1
2

+
1
2

= 1. (3)

If the coin is biased with p(X = Head) = 1 and p(X = Tail) = 0, then14

Ent(X) = 0. In this case there is no uncertainty. We can use Ent(X) = 015

to infer that ∃xi ∈ X such that p(xi) = 1 and p(xj) = 0 for j ̸= i. !16
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Let X and Y be two random variables. The joint entropy H(X, Y ) is
defined as:

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x, y). (4)

Again, as in the case of a single random variable this is the expected1

value of − log2(p(x, y))2

The conditional entropy H(X |Y ) is defined as:

H(X |Y ) =
∑

y∈Y
p(y)H(X |Y = y)

= −
∑

y∈Y
p(y)

(
∑

x∈X
p(x|y) log2 p(x|y)

)

= −
∑

y∈Y

∑

x∈X
p(y)p(x|y) log2 p(x|y). (5)

However, if X and Y are independent, then

H(X |Y ) = −
∑

y∈Y
p(y)

(
∑

x∈X
p(x|y) log2 p(x|y)

)

=
∑

y∈Y
p(y)

(
−
∑

x∈X
p(x) log2 p(x)

)

= 1 · H(X) = H(X). (6)

3. Shamir (t, n) Threshold Scheme3

Given a secret K in general a (t, n) secret sharing threshold scheme is a4

cryptographic primitive in which a secret is split into pieces (shares) and5

distributed among n participants p1, p2, . . . , pn so that any group of t or6

more participants, with (t ≤ n), can recover the secret. Meanwhile, any7

group of t − 1 or fewer participants cannot recover the secret. By sharing8

a secret in this way, the availability and reliability issues can be solved.9

Distributing share and recovering secret [3, 14, 30] will be discussed as10

follows.11

The general idea of a Shamir (t, n) threshold scheme is the following.12

Let F be any field and (x1, y1), . . . , (xn, yn) be n points in F 2 with distinct13

xi. We say that a polynomial P (x) of degree less than or equal to n−1 over14

F interpolates these points if P (xi) = yi for i = 1, . . . , n. The relevant15
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theoretical result that we need is the following. We can see Atkinson [1] for1

a reference and for a proof.2

Theorem 3.1. Let F be any field and x1, . . . , xn be n distinct elements of3

F and y1, . . . , yn any elements of F . Then there exists a unique polynomial4

of degree ≤ n − 1 that interpolates the n points (xi, yi), i = 1, . . . , n.5

Using this theorem, a Shamir (t, n) threshold scheme is roughly this.6

We choose a field F . The secret is K ∈ F and we choose a polynomial P (x)7

of degree at most t − 1 with K as its constant term. We choose distinct8

x1, . . . , xn with no xi = 0 and distribute to each of the n participants a point9

(xi, P (xi)),i = 1, . . . , n. By the theorem above any t people can determine10

the interpolating polynomial P (x) and hence recover the secret K. Given11

an infinite field and fewer that t people there are infinitely polynomials of12

degree t that can interpolate the given points and hence finding the correct13

polynomial has probability zero.14

We now present a more explicit version of the Shamir scheme using the15

finite field Zq where q is a large prime. By using a finite field Shamir was16

able to place a finite measure on the set of plaintexts and ciphertexts and17

showed that with this scheme if there are fewer than t people all secrets are18

equally likely.19

Distributing share: Let K be the secret. The dealer generates a
polynomial P (x) of degree at most t−1 over Zq, where q is a prime number
> n as follows:

P (x) = a0 + a1x + . . . + at−1x
t−1 (mod q) (7)

where a0 = K is the secret, a1, . . . , at−1 ∈ Zq and are generated randomly.20

The dealer arbitrarily chooses different xi ∈ Zq − {0}, i = 1, 2, . . . , n.21

Usually, xi = i will be chosen for simplicity. The values x1, x2, . . . , xn are22

stored in a public area. The dealer calculates yi = P (xi) (mod q), i =23

1, 2, . . . , n, and distributes to the n participants via a secure channel so24

that each participant pi gets one share yi. For the rest of the paper, we25

will not repeat the criteria of the generation of the coefficient ai of the26

polynomial P (x) and the calculation of the shares P (xi).27

Recovering secret (i): When any t participants join together, we have
the following system of t equations. For simplicity, we assume p1, p2, . . . , pt
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join together.

y1 = P (x1) = a0 + a1x1 + . . . + at−1x
t−1
1 (mod q),

y2 = P (x2) = a0 + a1x2 + . . . + at−1x
t−1
2 (mod q),

. . . ,

yt = P (xt) = a0 + a1xt + . . . + at−1x
t−1
t (mod q). (8)

In matrix representation, it will be:
⎡

⎢⎢⎢⎢⎣

1 x1 · · · xt−1
1

1 x2 · · · xt−1
2

...
... · · ·

...
1 xt · · · xt−1

t

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a0

a1

...
at−1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

y1

y2

...
yt

⎤

⎥⎥⎥⎦
(mod q). (9)

Let M be the above t × t Vandermonde matrix. Its determinant is

det(M) =
t∏

1≤j<k≤t

(xk − xj) (mod q). (10)

Since we choose different points for the participants, i.e., different xi’s,1

det(M) ̸= 0, and this guarantees a unique solution. We can solve the system2

of equations by Gaussian elimination or Crammer’s rule. Hence the secret3

can be recovered.4

Recovering secret (ii): Another method is to use Lagrange interpolation.
We can construct the polynomial of degree at most t− 1 by any t different
points (x1, y1), . . . , (xt, yt) as

P (x) =
t∑

i=1

yili(x), where li(x) =
t∏

j=1,j ̸=i

x − xj

xi − xj
(mod q). (11)

So, the secret a0 will be

a0 = P (0) =
t∑

i=1

yi

t∏

j=1,j ̸=i

−xj

xi − xj
(mod q). (12)

3.1. Access structure5

In a (t, n) threshold scheme, any group of t or more participants forms an6

authorized subset, since we assume it has the monotone property. A group7

of participants, which can recover the secret when they join together, is8

called an authorized subset. On the other hand, any group of participants9
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that cannot recover the secret is called an unauthorized subset. An access1

structure A is a set of all authorized subsets.2

Given any access structure A, A ∈ A is called a minimal authorized3

subset if A′ ! A then A′ /∈ A.4

We use A0 to denote the set of the minimal authorized subsets of A.
In a (t, n) threshold scheme, let P be the set of the participants:

A = {A|A ⊆ P and |A| ≥ t}, (13)

A0 = {A|A ⊆ P and |A| = t}. (14)

In secret sharing, we first define the access structure. Then, we realize5

the access structure by a secret sharing scheme.6

3.2. Perfect and ideal scheme7

A Shamir (t, n) threshold scheme allows no partial information to be given8

out even up to t − 1 participants joined together [9, 29]. In other words,9

any group of up to t − 1 participants cannot get more information about10

the secret than any outsider. A secret sharing scheme with this property is11

called a perfect scheme.12

In terms of entropy in information theory, we have

H(S|A) = 0, if A ∈ A (correctness), (15)

H(S|A) = H(S), if A /∈ A (privacy). (16)

The Eq. (15) says that for an authorized subset A the entropy is equal13

to zero (i.e., no uncertainty) and the secret S can be determined/recovered.14

The Eq. (16) says that for an unauthorized subset A the entropy remains15

unchanged and no information about the secret S is leaked out even if the16

participants pool all their shares together.17

Based on the information theory, the length of any share must be18

at least as long as the secret itself in order to have perfect secrecy. The19

argument is that up to t − 1 participants have zero information about the20

secret under perfect sharing scheme, but when one extra participant joins21

the group, the secret can be recovered. That means any participant has his22

share at least as long as the secret.23

Following [30], the information rate for participant pi, i = 1, . . . , n, is
defined as

ρi =
log2|K|
log2|Si|

, (17)
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where K is the key space, Si ⊆ S is the set of shares that pi has. The
information rate of the scheme is defined as

ρ = min {ρi : 1 ≤ i ≤ n}. (18)

For a perfect scheme, the information rate will be less than or equal to 1.1

If the shares and the secret come from the same domain, we call it an ideal2

scheme. In this case, the shares and the secret have the same size, i.e., the3

information rate is equal to 1.4

3.3. Proactive scheme5

In a secret sharing scheme, we need to consider the possibility that a smart6

adversary may find out all the shares in an authorized set to discover the7

secret eventually if he is given a very long time to gather the necessary8

information. This means that if the adversary can successfully break in t9

servers, in a (t, n) threshold scheme he can steal the secret. In order to10

prevent this from happening, we may try to reset the shares. We re-fresh11

and re-distribute all the shares to all the participants periodically. After12

finishing this phase, the old shares are erased safely and the secret remains13

unchanged. By doing so, an adversary has to get enough information of the14

shares within any two periodic resets in order to break the system. This15

would make it more difficult to achieve.16

Based on Shamir scheme, Herzberg, Jarecki, Krawczyk, and Yung [13]17

derived a proactive scheme, which uses the following method to reset the18

shares.19

Let P (x) be an arbitrary polynomial of degree at most t − 1 over Zq,
same as in the Shamir scheme,

P (x) = a0 + a1x + . . . + at−1x
t−1 (mod q), (19)

where q is a prime number, a0(secret) a1, . . . , at−1 ∈ Zq. For simplicity,
let P (1), . . . , P (n) be the shares of the participants p1, . . . , pn. The dealer
generates another polynomial Q(x) of degree at most t− 1 over Zq without
a constant term,

Q(x) = b1x + . . . + bt−1x
t−1 (mod q), (20)

where b1, . . . , bt−1 ∈ Zq. The dealer sends out Q(1), . . . , Q(n) to the
participants p1, . . . , pn, respectively. Each participant pi will update/renew
his share as S(i) = P (i) + Q(i) and destroy his old share P (i) safely. Here

S(x) = P (i) + Q(i) = a0 + c1x + . . . + ct−1x
t−1 (mod q), (21)
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where ci = ai + bi (mod q) for i = 1, . . . , t− 1. The scheme remains a (t, n)1

threshold scheme with the same original secret a0.2

The above technique can be extended so that each participant pi, by
turn, generates a polynomial Pi(x) of degree at most t − 1 without a
constant term and sends values of Pi(1), . . . , Pi(i−1), Pi(i+1), . . . , Pi(n) to
participants p1, . . . , pi−1, pi+1, . . . , pn, respectively. That means participant
pj will get Pi(j) from participant pi. After the above exchange process, each
participant pi resets his new shares as follows:

newshare = oldshare + P1(i) + . . . + Pn(i). (22)

After the calculation of the new shares, all participants will destroy3

their old shares safely. In other words, all the participants can engage in4

the share renewing process. This method can eliminate all the work done5

by the dealer and be more secure.6

3.4. Verifiable scheme7

Shamir’s original sharing scheme assumes the dealer and all the participants8

are honest. However, in reality, we need to consider the situation that the9

dealer or some of the participants might be malicious. In this case, we need10

to set up a verifiable scheme so that the shares of the participants can be11

verified to be valid. In order to make this possible, additional information12

is required for the participants to verify their shares’ consistency.13

Feldman [8] presented a simple verifiable scheme that is based on14

Shamir scheme. It is based on the homomorphic properties of the expo-15

nentiation function xa+b = xa · xb.16

The idea is to find a cyclic group G of order q, where q is a prime. Since17

it is cyclic a generator of G, say g, exists. As other cryptographic protocols,18

we assume the parameters of G are carefully chosen so that the discrete19

logarithm problem is hard to solve in G.20

Let p, q be primes such that q|p − 1, g ∈ Z∗
p of order q. A polynomial

over Zq of degree at most t − 1 as a Shamir (t, n) threshold scheme is
generated as

P (x) = a0 + a1x + . . . + at−1x
t−1 (mod q), (23)

where a0, a1, . . . , at−1 ∈ Zq.21

The dealer sends out P (i) to participant i as before. In addi-22

tion, he broadcasts in a public channel the commitments ga0(mod p),23

ga1(mod p), . . . , gat−1(mod p) for the participants to verify.24
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Each participant Pi can verify if the following equation is true.

gP (i) = (ga0)(ga1)i(ga2)i2 . . . (gat−1)it−1
(mod p), i = 1, . . . , n. (24)

Based on the homomorphic properties of the exponentiation, the above1

condition will hold true if the dealer sends out consistent information. If2

this is the case, we conclude that the dealer is honest, and the scheme3

is verifiable. Later, when the participants return their shares for secret4

recovering, the dealer can verify their shares’ validity by the same method.5

Feldman’s scheme is not a perfect scheme since partial information,6

ga0(mod p), is leaked out. However, we assume it is difficult to get the7

secret a0 from ga0(mod p) if the discrete logarithm problem is hard to solve8

under G.9

3.5. Enhancements by one-way function and RSA10

In order to make secret sharing schemes practical, researchers have proposed11

to apply one-way functions [20], hash functions [17, 31] and RSA [7, 12, 23]12

cryptosystems in Shamir threshold scheme. These enhancements add13

proactive-ness, verifiability and other desired features to Shamir scheme.14

3.5.1. Applying one-way function in Shamir scheme15

Liu et al. [20] enhanced the Shamir (t, n) threshold scheme by applying a16

one-way function. Their scheme works as follows.17

Scheme setup: Suppose f : Zq → Zq is a collision-free one-way function,18

where Zq is a finite field and q > n is a large prime. (a) The dealer19

D randomly chooses n distinct elements s1, . . . , sn in Zq as shares for n20

participants, sends si to pi via a secure channel. (b) D randomly chooses an21

element α ∈ Zp and a polynomial P (x) of degree t−1, such that P (0) = K22

is the secret. Dealer computes yi = P (f(α + si)), i = 1, 2, . . . , n. (c) D23

publishes f , α and the sequence (y1, y2, . . . , yn) in a public area (such as a24

bulletin board). All evaluations for P (x) and f(x) are reduced by mod q.25

Secret recovery: Any t participants, say p1, p2, . . . , pt, can recover the26

secret K. Every pi gets α and their corresponding yi from the public area.27

With his private share si (only known to him), pi computes xi = f(α + si)28

and presents xi, the masked share, to a trusted agent TA. After collecting29

t pairs of (xi, yi), i = 1, . . . , t, TA uses Lagrange interpolation method to30

recover P (x), hence the secret K = P (0).31
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The collision-free property of the one-way function f guarantees that1

xi = f(α + si) will be distinct for distinct si, therefore TA will surely get2

t distinct points to recover the polynomial P (x). One-way function f also3

keeps share si private, a participant pi only needs to present his masked4

share xi. When the secret K needs to be replaced by a new secret K ′, D5

chooses element α′ (α′ ̸= α) and a new polynomial P ′(x) of degree (t − 1)6

such that K ′ = P ′(0), and new y′
i = P ′(f(α′ + si)), si remains the same7

and can be used unlimited number of times.8

The scheme can be made verifiable simply adding a verifying message9

vi = f(xi) in the public area for every participant pi. TA or a participant10

can verify the validity of any participants by this. When a new participant,11

say pn+1, is admitted to the scheme, D only needs to generate sn+1 and12

appends yn+1 = f(α+sn+1) to the yi sequence. When a participant pi needs13

to be removed from the scheme, D generates another polynomial P ′(x) of14

the same degree and let P ′(0) = K, and update the yi sequence with the15

new P ′(x).16

3.5.2. Using one-way functions and RSA in a Shamir scheme17

Fei and Wang [7] enhanced Shamir (t, n) threshold scheme by applying18

one-way function and RSA cryptosystem. Their scheme works as follows.19

Scheme setup: Suppose q > n is a big prime, g is a primitive element20

of finite field Zq, u, w are two RSA prime numbers and m = uw, and f21

is a one-way function. (a) Dealer D chooses a polynomial P (x) of degree22

t − 1 over Zq, such that K = P (0) is the secret to be shared among n23

participants p1, p2, . . . , pn. (b) D chooses an e, such that gcd(e, φ(m)) = 1,24

and computes d = e−1 mod φ(m) (here φ is Euler’s totient function), and25

publishes e. (c) D computes si = P (gi), vi = (f(si))d mod m, and sends si26

and vi to participant pi as his share and verifying message.27

Secret recovery: When a trusted agent TA receives t points (g1, s1),28

(g2, s2), . . . , (gt, st) from any t participants, TA uses Lagrange interpolation29

method to reconstruct the polynomial P (x), and hence the secret K = P (0).30

Participant pi can be verified by ve
i = f(si) mod m.31

4. Extension to Any General Access Structure32

Ito, Saito and Nishizeki [15, 16] showed how to extend a Shamir threshold
scheme to a multiple assignment scheme to realize any general access
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structure which fulfills the following monotone property:

A′ ∈ A and A′ ⊆ A′′ ⊆ P =⇒ A′′ ∈ A, (25)

B′ ∈ β and B′′ ⊆ B′ =⇒ B′′ ⊆ β (26)

where P is the set of the participants, A is the access structure. β = 2P −A1

will be the set of all unauthorized subsets.2

Following the notations in [15, 16], we give a brief discussion here. For
details, please refer to [15, 16]. The family of maximal sets in A is defined as

∂+A = {A ⊂ A : A " A′ ∀A′ ∈ A− {A}}. (27)

Let S be the set of shares. A multiple assignment scheme assigns a
subset Si ⊆ S to participant pi ∈ P as follows:

g : P → 2S or g(pi) = Si, ∀i = 1, . . . , n. (28)

Define

A(S, g, k) = {Q ⊆ P | |
⋃

p∈Q

g(p)| ≥ k}. (29)

That means if the number of distinct shares of the union of the participants3

in a subset Q of P is more than the threshold k, it is an authorized subset.4

For any access structure A⊆ 2P satisfying the monotone property,5

there exist a set of shares S, an assignment function g : P → 2S and a6

non-negative integer k such that A(S, g, k) = A.7

Proof: Let β = 2P − A. We determine ∂+β and set up a (k, k) threshold8

scheme, where k = |∂+β|.9

Construct a set of shares S so that |S| = k. We have ∂+β =
{β1, . . . , βk} and S = {s1, . . . , sk}. There exists a one-to-one correspondence
between S and ∂+β, say s1 ↔ β1, s2 ↔ β2, . . . , sk ↔ βk. That means
S = {Si, βi ∈ ∂+β, i = 1, . . . , k}. We also define g : P → 2S as follows:

g(p) = {Si, βi ∈ ∂+β, p ̸∈ βi, i = 1, . . . , k}. (30)

(i) A ⊆ A(S, g, k).10

Assume there exists Q ∈ A such that Q ̸∈ A(S, g, k), then |
S

p∈Q
g(p)| < k11

and hence
S

p∈Q
g(p) ̸= S. There exists si ∈ S −

S

p∈Q
g(p) for some i. So,12

for every p ∈ Q, si ̸∈ g(p) and therefore p ∈ βi. Hence Q ⊆ βi ∈ ∂+β.13

By monotone property, Q ∈ β. This contradicts Q ∈ A, since β =14

2P −A.15
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(ii) A(S, g, k) ⊆ A.1

Assume there exists Q ∈ A(S, g, k), but Q ̸∈ A. Since Q ̸∈ A, there exists2

βi ∈ ∂+β such that Q ∈ β. By the definition of the function g, si ̸∈ g(p)3

for all p ∈ Q.4

So, si ̸∈
S

p∈Q
g(p) and hence Q ̸∈ A(S, g, k). This contradicts the5

assumption.6

Example: Let P = {p1, p2, p3} be the set of participants. Suppose A =7

{{p1, p2}, {p1, p3}, {p1, p2, p3}}, then β = {{p1}, {p2}, {p3}, {p2, p3}}, then8

∂+β = {{p1}, {p2, p3}}.9

Since |∂+β| = 2 we set up a (2, 2) threshold scheme with S = {s1, s2}10

be the set of shares. s1 will be assigned to participant(s) p2, p3 [P −{p1}]; s211

will be assigned to participant(s) p1 [P − {p2, p3}]. It can be easily verified12

that all the following are unauthorized subsets {p2}, {p3}, {p2, p3} (with s113

only), {p1} (with s2 only).14

On the other hand, {p1, p2}, {p1, p3}, {p1, p2, p3} will have shares s1 and15

s2 to recover the secret.16

5. Relation with Reed-Solomon Code17

Here we discuss briefly error correction code, in particular, Reed-Solomon18

code. Then, we talk about the relationship or similarity between Reed-19

Solomon code and Shamir threshold scheme. Please refer to the textbooks20

for details in error correction code, for instance, [14, 21].21

A [m, q] code C is a mapping from a vector space of dimension m over
a finite field F into a vector space of dimension q (here q > m) over the
same field, i.e.,

C : Fm → F q; m < q. (31)

That means an information word a = (a0, . . . , am−1) ∈ Fm is mapped22

to a codeword c = (c0, . . . , cq−1) ∈ F q. There are q − m extra symbols to23

detect or correct the errors occurred during the transmission. We call q and24

m the length and the dimension of the code C, respectively.25

The Hamming distance between two codewords c1, c2 ∈ C is defined
as the number of the differences between the corresponding positions in c1

and c2. For example, let c1 = (0, 0, 1, 1), c2 = (1, 0, 1, 0). Since the first
and fourth positions are different, the Hamming distance d(c1, c2) = 2. The
minimum distance of C, d, is defined as

d = min{d(c1, c2)|c1, c2 ∈ C, and c1 ̸= c2}. (32)
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d is important that it tells us the minimum of errors that will convert a1

codeword c1 to another codeword c2.2

A code C can detect and correct up to t1 and t2 errors, respectively,3

if t1 ≤ d − 1 and 2t2 + 1 ≤ d. The error detection is based on the fact4

that fewer than d errors cannot convert a codeword to another codeword.5

The error correction is based on the nearest neighbor decoding principle.6

The received invalid word c′ will be converted to the codeword c such that7

d(c′, c) is the smallest.8

Reed-Solomon code, which is one type of error correcting codes with9

many applications such as compact disc (CD), spacecraft etc., was invented10

by Irving Reed and Gus Solomon in 1959 [25].11

Let F be a field with q elements. There exists a primitive element α such12

that the q elements in F can be represented as {0, α, α2, . . . , αq−1 = 1}.13

Given an information word a = (a0, . . . , am−1), we set up a polynomial
P (x) = a0 + a1x + . . . + am−1xm−1, where ai ∈ F . And the Reed-Solomon
code is the mapping of the information word a = (a0, . . . , am−1) to a
codeword c = (P (0), P (α), P (α2), . . . , P (αq−2), P (1)) as follows:

P (0) = a0,

P (α) = a0 + a1α + a2α
2 + . . . + am−1α

m−1,

P (α2) = a0 + a1α
2 + a2(α2)2 + . . . + am−1(α2)m−1,

. . . . . . . . . . . . (33)

P (αq−2) = a0 + a1α
q−2 + a2(αq−2)2 + . . . + am−1(αq−2)m−1,

P (1) = a0 + a1 + a2 + . . . + am−1.

Any m correct equations without error from Eq. (33) will determine a14

correctly. On the other hand, any m equations from Eq. (33) with one or15

more errors will determine a incorrectly.16

Suppose t errors occur during the transmission. There will be
(q−t

m

)

and
(t+m−1

m

)
sets of m equations that will give correct and incorrect

results, respectively. By taking the majority vote for determination of the
information word a, we can get the correct result if

(
q − t

m

)
>

(
t + m − 1

m

)
. (34)

That is t < q−m+1
2 . Please refer to [25] for details.17
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McEliece and Sarwate [22] pointed out that Shamir scheme is closely1

related to Reed-Solomon code. Suppose s pieces of Pi (Eq. (33)) are2

transmitted and t out of these s pieces are in error. Replacing q by s3

plus rearrangement and modifications in Eq. (34), we can recover a =4

(a0, a1, . . . , am−1) as long as s− 2t ≥ m. This is exactly a (m, s) threshold5

scheme with t = 0, and a0 of a is the secret and F = Zq (q is a prime),6

αi = i. Recall that the original Shamir threshold scheme assumes the dealer7

and the participants are honest and P (1), . . . , P (s) are the shares of the8

participants.9

6. Shamir Ramp Scheme10

Recall that in Shamir (t, n) threshold scheme, n shares P (x1), . . . , P (xn)
are distributed to n participants p1, . . . , pn so that any t out of these n
participants when joined together can recover the secret. Let q be a large
prime, x1, . . . , xn ∈ Zq − {0} are all different to each other (xi ̸= xj

if i ̸= j, 1 ≤ i, j ≤ n) and chosen arbitrarily. a0, . . . , at−1 ∈ Zq are
chosen randomly. For simplicity, suppose p1, . . . , pt join together and let
y1 = P (x1), y2 = P (x2), . . . , etc. We have the following t independent
equations. [Note: If yi is not available, let y′

i be its assumed value.]

y1 = a0 + a1x1 + a2x
2
1 + . . . + at−1x

t−1
1 (mod q); (35)

. . .

yt = a0 + a1xt + a2x
2
t + . . . + at−1x

t−1
t (mod q). (36)

From Eq. (35), rewrite at−1 in terms of a0, . . . , at−2 and substitute11

this into other equations, we reduce t equations in t unknowns into (t − 1)12

equations in (t − 1) unknowns. Continuing this way, we can reduce the13

system of t independent equations to one equation with one unknown a0.14

We can solve for a0, which is the secret.15

If only t − 1 participants, say p1, . . . , pt−1, join together, the last16

equation will have 2 unknowns left, namely, yt and a0. Any assumed or17

guessed value of the secret a′
0 ∈ Zq will lead to a corresponding valid share18

of the missing participant y′
t ∈ Zq, and vice versa. In other words, we can19

find a unique polynomial P ′(x) such that it will pass through all these t−120

points and the assumed secrets a′
0. P ′(0) = a′

0, P
′(1) = y1, . . . , P ′(t − 2) =21

yt−2, P ′(t− 1) = yt−1. Since we cannot rule out any possibility, the scheme22

is perfect. The secret a0 and the shares yi(i = 1, . . . , n) are elements of Zq,23

so it is ideal. From Eq. (17), it is obvious that the information rate is 2.24
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Suppose (a0, a1) is the secret. If (t − 2) participants p1, . . . , pt−2 join
together, we have 2 equations left:

y′
t−1 = in terms of a1 and a0,

y′
t = in terms of a1 and a0.

Any guessed values of the secret (a′
0, a

′
1) will lead to valid shares y′

t−1 ∈1

Zq and y′
t ∈ Zq of missing participants, and vice versa. So no partial2

information is given out here. The scheme is perfect.3

Now, assume (t − 1) participants p1, . . . , pt−1 join together. We have
one equation left:

y′
t = in terms of a0. (37)

As before, any guessed value of the share y′
t ∈ Zq gives a unique a′

0 ∈ Zq.4

However, once a′
0 is determined, all the a′

1, . . . , a
′
t−1 are determined. We5

can thus eliminate the possibilities from |Zq| × |Zq| to |Zq|. Hence, partial6

information is given out.7

The above can be summarized by Shamir ramp scheme. For more8

details, please refer to [30].9

A Shamir (t1, t2, n) ramp scheme, where t1 < t2 ≤ n, is one in which n10

shares of information are distributed to n participants so that11

(i) if t2 or more participants join together, the secret can be recovered.12

(ii) if up to t1 participants join together, the secret cannot be recovered13

and no partial information about the secret is leaked out.14

(iii) if t (t1 < t < t2) participants join together, the secret cannot be15

recovered. However, partial information will be leaked out. The larger16

the t, the more information will be leaked out.17

For a Shamir (t1, t2, n) ramp scheme, let l = t2 − t1 be the gap. The18

bigger the gap l, the more efficient the size of the share would be, but the19

lesser the secrecy the scheme will provide (see Figure 1-Right).20

One implementation for a ramp scheme is also by polynomial evaluation
and interpolation. Let s = (a0, a1, . . . , al−1) ∈ Z l

q. We create a polynomial
of degree of at most t2 − 1 as follows:

P (x) = a0 + a1x + . . . + al−1x
l−1 + alx

l + . . . + at2−1x
t2−1(mod q) (38)

where ai ∈ Zq will be generated randomly, i = l, . . . , t2−1. xi ∈ Zq−{0} will21

be chosen arbitrarily and P (xi) will be evaluated and sent to Pi, i = 1, . . . , n22

as his/her share. The information rate is equal to l.23
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Figure 1. A Shamir (t2, n) scheme is a (t2 − 1, t2, n) ramp scheme.

Let us fix t2 and n. That means any t2 out of n participants can recover1

the secret. One special case is as follows: A (t2 − 1, t2, n) ramp scheme is2

just the same as a (t2, n) threshold scheme. The information rate is equal3

to 1 but perfect secrecy is provided. The secret will be the constant term4

of the polynomial. Figure 1-Left is to illustrate this.5

7. Information Disposal Algorithm and Making6

Secret Short7

Rabin [24] proposed the information disposal algorithm (IDA) in 1989.8

IDA is a scheme to distribute a piece of information into n participants9

such that any t of these participants can recover the original information10

while up to (t − 1) participants cannot. One implementation is also by11

polynomial interpolation, same as the Shamir threshold scheme. In a12

Shamir threshold scheme, the constant term will be the secret. However,13

in IDA, the secret will be split into all the coefficients. In other words,14

the secret will be represented by the whole polynomial. This gives the15

optimal rate of information, but even one participant has some partial16

information.17

A (0, t2, n) ramp scheme is an information dispersal algorithm. The18

information rate is optimal. But no secrecy is provided. Any participant19

has some partial information. The secret is made up of all the coefficients20

of the polynomial, as Figure 2 illustrated.21

Krawczyk [19] showed a method to make the secret short and provides22

secrecy at the same time. Suppose we have a secure encryption (ENCK)23

and decryption (DECK) scheme and a symmetric key K will be chosen24

randomly from the key space K.25

(a) We first encrypt the secret S to give a ciphertext C, i.e. ENCK(S) = C.26

Then we use IDA to split C into C1, . . . , Cn shares and distribute them27
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Figure 2. A (t2, n) IDA is a (0, t2, n) ramp scheme.

to participants p1, . . . , pn so that each participant pi gets one share Ci,1

i = 1, . . . , n.2

(b) We use a perfect secret sharing scheme, say a Shamir (t, n) threshold3

scheme, to safeguard the key K. Each participant pi gets one share of4

the key Ki, i = 1, . . . , n.5

In this way any t participants can recover the key K and the ciphertext6

C. Then use K to get back the original secret S by DECK(C) = S.7

The information rate is optimal. IDA helps to make the size of the share8

short. But it does not provide secrecy. So we need a secure encryption and9

decryption scheme to protect it. In turn we need a perfect secret sharing10

scheme to safeguard the key.11

8. Secure Multiparty Computation12

Secure multiparty computation (MPC), a subfield of cryptography, was first13

introduced in Yao’s seminal two millionaire’s problem [32]. The goal is to14

create methods for parties to jointly compute a function over their inputs15

while keeping those inputs private. In MPC n parties p1, p2, . . . , pn join16

together to compute a public function f(x1, x2, . . . , xn), where xi is the17

private input held by party pi, i = 1, . . . , n. After the computation, each18

pi will know the correct function result, the value of f(x1, x2, . . . , xn), but19

he or she will not know the inputs of the other parties. For more MPC20

materials, please refer to [6].21

For security reason, instead of storing a secret in a single server, we22

split it as shares and store in different servers. That is why secret sharing23

schemes are important in multiparty computation. We also want to have24

the computations based on the shares of the parties instead of the secrets.25

Let p1, . . . , pn be the parties and pi holds A(i) and B(i) as shares for the26
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secrets a0 and b0, respectively. We want to calculate c0 = a0 + b0 based on1

(A(i), B(i)), i = 1, . . . , n.2

Since Shamir threshold scheme is linear, we can proceed as follows:

A(x) = a0 + a1x + . . . , at−1x
t−1, ai ∈ Zq, (39)

B(x) = b0 + b1x + . . . , bt−1x
t−1, bi ∈ Zq, and (40)

C(x) = A(x) + B(x) = c0 + c1x + . . . , ct−1xt−1, where

ci = ai + bi, 0 ≤ i ≤ t − 1. (41)

Any t parties (say 1, . . . , t) can join together to calculate C(i) = A(i)+3

B(i), 1 ≤ i ≤ t, and then recover c0 which is equal to a0 + b0, the sum of4

the original secrets.5

But for multiplication, it is different. Here,

D(x) = A(x)B(x) = a0b0 + . . . . (42)

D(x) will be a polynomial of degree (t − 1) + (t − 1) = 2t − 2. So we need6

2t − 1 parties to pull their shares to recover a0b0, which is the product of7

the original secrets a0 and b0. Obviously, 2t − 1 can not be greater than8

n. So Shamir threshold scheme is multiplicative provided that n ≥ 2t − 1.9

Also, a linear secret sharing scheme (LSSS) is strongly multiplicative if any10

subset A ⊆ P , such that P −A is not qualified, and the product a0b0 can be11

computed only from the values of A. In a Shamir (t, n) threshold scheme,12

the maximum size of an unauthorized subset is t − 1. So, a Shamir (t, n)13

threshold scheme will be strongly multiplicative if n− (t− 1) ≥ 2t− 1, i.e.,14

3t − 2 ≤ n.15

9. Private Information Retrieval and Shamir Scheme16

Private information retrieval (PIR) deals with the privacy of a user when17

he queries a public database. It was first introduced by Chor et al. [5] in18

1995. It is formalized as follows: given a database x which consists of n19

bits, x = x1 . . . xn, a user wants to inquire the ith bit without letting the20

database know any information about i. A trivial solution is to let the user21

download the entire database. In this case, the communication complexity,22

which is the number of bits transferred between the user and the database,23

is n. Chor et al. proved that this trivial solution turned out to be optimal24

for a single database in the information theoretic setting. However, Chor25

et al. further showed that if we had more than one non-colluding servers26
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with each having a complete database, we could reduce the communication1

complexity and preserve the perfect privacy as well.2

In PIR, a user sends out queries to a group of non-colluding databases,3

and then combines the answers from the databases to come up with4

the results. The answers from the databases act like shares from the5

participants, and based on that, the desired information somewhat like6

the secret can be obtained. In the literature, there are papers discussing7

the applications of secret sharing schemes to PIR. For example, Goldberg8

[10] proposed a Byzantine-robust PIR based on the Shamir secret sharing9

scheme.10

10. Practical Applications11

Many companies start to store their data outside their premises in cloud12

storage provided by various cloud providers, for instance, Amazon, Google,13

etc. The advantages to use cloud storage mainly include shorter setup time,14

lower implementation cost, easier scaling up/down, cheaper ongoing cost15

(pay-as-you-go). Big data has 3Vs characteristics, i.e., the velocity — the16

data go in and out or change very fast, the variety — different types of17

data (structured, semi-structured, and unstructured), and the volume -18

exponentially growing huge volume of data. This has been the trend for19

the last decade and will remain this way at least in the foreseeable future.20

Both cloud storage/computing and big data give rise to many big challenges21

to the existing data center infrastructure. They affect almost all areas to22

a certain extent. Here let us discuss some applications based on Shamir’s23

secret sharing scheme and its variants.24

Big data: In order to provide the data availability for the users, the25

traditional approach is to replicate one or more copies of data in different26

locations so that when one operating node goes down, the system can27

switch to another node so that the service will not be interrupted and28

is transparent to the users. However, under big data scenarios, this method29

is not feasible anymore. We need another efficient approach. By applying30

information dispersal algorithm, a large file can be separated into several31

smaller segments and a subset of these segments can combine to reconstruct32

the original file. This solves the problem of single point failure and as we33

saw before, the storage needed is the optimal.34

Cloud storage/computing: Even if we trust a company, the data would35

turn out to be stored outside the premises. Privacy is a big concern to cloud36

storage/computing.37
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11. Other Platforms1

Since many cryptographic protocols are based on the assumed hardness2

of certain mathematical problems, there is always a strong motivation3

to continue looking for harder problems especially after knowing that a4

powerful quantum computer could break RSA easily.5

Since 1990, there are new proposals coming up, by using multivari-6

ate polynomials, braid group cryptography, etc. For example, Habeeb,7

Kahrobaei and Shpilrain [11] proposed an (n, n) secret splitting scheme8

construction based on non-abelian groups using n secure channels. The9

(n, n) scheme combined with the Shamir’s idea can be further generalized10

to a (t, n) threshold scheme. Under this (t, n) threshold scheme, the shares11

of the secret are sent out to the participants over the open channels as12

integers in the form of tuples of words. The participants then use group-13

theoretic techniques to recover the integers as their shares. Then following14

polynomial interpolation as in Shamir’s threshold scheme, any t participants15

can recover the polynomial and the secret.16

As we mentioned earlier, Ito, Saito and Nishizeki [15, 16] showed how17

to extend a threshold scheme to a multiple assignment scheme to realize18

any general access structure, so this provides a new direction to set up any19

secret sharing scheme based on another platform, non-abelian groups.20

12. Conclusions and Future Research21

Based on a Shamir threshold scheme, many properties of secret sharing22

schemes can be easily demonstrated. It has a simple access structure. It is23

perfect and ideal. The shares distribution and secret recovery are through24

polynomial evaluation and polynomial interpolation, which are easy to25

follow. It can be further implemented as proactive or verifiable. A Shamir26

threshold scheme can be used as a building block to realize any general27

access structure. It is also closely related to Reed-Solomon code, a ramp28

scheme, an information dispersal algorithm and multiparty computation.29

Even though the Shamir scheme was introduced more than 30 years30

ago, we can still use it as a building block for other cryptographic primitives31

and/or protocols. It has many applications in different areas such as big data32

and cloud storage/computing. It still remains an important active research33

area in the future and is worth more attention.34

Another direction for research is to set up secret sharing schemes based35

on other alternative platforms as briefly mentioned in this paper, should36

this be proved more effective.37
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