
PRAM Algorithms 



Parallel Random Access Machine 
(PRAM) 

 Collection of numbered processors 
 Access shared memory 
 Each processor could have local 
     memory (registers) 
 Each processor can access any 
      shared memory cell in unit time 
 Input stored in shared memory 
     cells, output also needs to be stored 
      in shared memory 

 PRAM instructions execute in 3- 
      phase cycles 
 Read (if any) from a shared memory cell 
 Local computation (if any) 
 Write (if any) to a shared memory cell 
 Processors execute these 3-phase PRAM 

instructions synchronously 



Four Subclasses of PRAM 
 Four variations:  

 EREW:  Access to a memory location is exclusive. No concurrent read or 
write operations are allowed. Weakest PRAM model 

 
 CREW: Multiple read accesses to a memory location are allowed. 

Multiple write accesses to a memory location are serialized. 
 
 ERCW: Multiple write accesses to a memory location are allowed. 

Multiple read accesses to a memory location are serialized. Can simulate 
an EREW PRAM 

 
 CRCW: Allows multiple read and write accesses to a common memory 

location; Most powerful PRAM model; Can simulate both EREW PRAM 
and CREW PRAM 



Concurrent Write Access 
 arbitrary PRAM: if multiple processors write into a single shared 

memory cell, then an arbitrary processor succeeds in writing into this 
cell. 

 common PRAM: processors must write the same value into the shared 
memory cell. 

 priority PRAM: the processor with the highest priority (smallest or 
largest indexed processor) succeeds in writing. 

 combining PRAM: if more than one processors write into the same 
memory cell, the result written into it depends on the combining 
operator. If it is the sum operator, the sum of the values is written, if it 
is the maximum operator the maximum is written. 
 

Note: An algorithm designed for the common PRAM can be executed on 
a priority or arbitrary PRAM and exhibit similar complexity. The same 
holds for an arbitrary PRAM algorithm when run on a priority PRAM. 



A Basic PRAM Algorithm 
 n processors and 2n inputs, find the maximum 
 PRAM model: EREW 
 Construct a tournament where values are compared 
     Processor k is active in step j 
         if (k % 2j) == 0 
       At each step: 
           Compare two inputs, 
           Take max of inputs, 
           Write result into shared memory 
 Notes: Need to know who is the “parent” and whether you are left or 

right child; Write to appropriate input field 



Finding Maximum: CRCW 
Algorithm 

 Find the maximum of n elements A[0, n-1]. 
 With n2 processors, each processor (i,j) compare A[i] and A[j], for 

0<=i, j <=n-1. 
      n=length[A] 
for i =0 to n-1, in parallel 
     m[i] =true 
for i =0 to n-1 and j =0 to n-1, in parallel 
      if A[i] < A[j] 
         m[i] =false 
for i =0 to n-1, in parallel 
      if m[i] =true 
          max = A[i] 
return max 

 The running time: O(1). Note: there may be multiple maximum values, 
so their processors will write to max concurrently.  



PRAM Algorithm: Broadcasting 
 A message (say, a word) is stored in cell 0 of the shared memory. We 

would like this message to be read by all n processors of a PRAM.  
 On a CREW PRAM this requires one parallel step (processor i 

concurrently reads cell 0).  
 On an EREW PRAM broadcasting can be performed in O(log n) steps. The 

structure of the algorithm is the reverse of parallel sum. In log n steps the 
message is broadcast as follows. In step i each processor with index j less 
than 2i reads the contents of cell j and copies it into cell j + 2i. After log n 
steps each processor i reads the message by reading the contents of cell i. 

 A CREW PRAM algorithm that solves the broadcasting problem has 
performance P = O(n), T = O(1). 

 The EREW PRAM algorithm that solves the broadcasting problem has 
performance P = O(n), T = O(log n). 



Broadcasting 
begin Broadcast (M) 
1.   i = 0 ; j = pid(); C[0]=M; 
2.  while (2i < P) 
3.   if (j < 2i) 
5.    C[j + 2i] = C[j]; 
6.   i = i + 1; 
6.  end 
7.  Processor j reads M from C[j]. 
end Broadcast 



Parallel Prefix 
 Definition: Given a set of n values x0, x1, . . . , xn−1 and an associative 

operator, say +, the parallel prefix problem is to compute the following 
n results/“sums”. 

  0: x0, 
  1: x0 + x1, 
  2: x0 + x1 + x2, 
  . . . 
  n − 1: x0 + x1 + . . . + xn−1. 
 Parallel prefix is also called prefix sums or scan. It has many uses in 

parallel computing such as in load-balancing the work assigned to 
processors and compacting data structures such as arrays.  

 We shall prove that computing ALL THE SUMS is no more difficult 
that computing the single sum x0 + . . .xn−1. 

 



Parallel Prefix Algorithm 
 An algorithm for parallel prefix on an EREW PRAM would require 

log n phases. In phase i, processor j reads the contents of cells j and j − 
2i (if it exists) combines them and stores the result in cell j. 

 The EREW PRAM algorithm that solves the parallel prefix problem 
has performance P = O(n), T = O(log n). 

 



Parallel Prefix Example 
For visualization purposes, the second step is written in two different lines. When 

we write x1 + . . . + x5 we mean x1 + x2 + x3 + x4 + x5. 
 
    x1          x2                    x3                 x4                  x5                x6                 x7                x8 
1.              x1+x2             x2+x3            x3+x4           x4+x5          x5+x6           x6+x7         x7+x8 
2.                                   x1+(x2+x3)                   (x2+x3)+(x4+x5)             (x4+x5)+(x6+x7) 
2.                                                      (x1+x2)+(x3+x4)              (x3+x4)+(x5+x6)         (x5+x6+x7+x8) 
3.                                                                                 x1+...+x5                        x1+...+x7 
3.                                                                                                     x1+...+x6                        x1+...+x8 
Finally 
F. x1        x1+x2    x1+...+x3   x1+...+x4   x1+...+x5  x1+...+x6  x1+...+x7   x1+...+x8 



Parallel Prefix Example 
For visualization purposes, the second step is written in two different lines.  
When we write [1 : 5] we mean x1 +x2 + x3 + x4 + x5. 
We write below   [1:2] to denote x1+x2 
                         [i:j] to denote xi + ... + x5 
                         [i:i] is xi NOT xi+xi! 
                         [1:2][3:4]=[1:2]+[3:4]= (x1+x2) + (x3+x4) = x1+x2+x3+x4 
A * indicates value above remains the same in subsequent steps 
0    x1      x2               x3                x4              x5               x6               x7               x8 
0 [1:1]    [2:2]           [3:3]            [4:4]           [5:5]          [6:6]            [7:7]           [8:8] 
1    *  [1:1][2:2]    [2:2][3:3]     [3:3][4:4]    [4:4][5:5]    [5:5][6:6]    [6:6][7:7]    [7:7][8:8] 
1.   *      [1:2]           [2:3]            [3:4]           [4:5]            [5:6]          [6:7]            [7:8] 
2.   *        *           [1:1][2:3]    [1:2][3:4]    [2:3][4:5]     [3:4][5:6]    [4:5][6:7]    [5:6][7:8] 
2.   *        *              [1:3]            [1:4]           [2:5]            [3:6]          [4:7]            [5:8] 
3.   *        *                *                  *          [1:1][2:5]     [1:2][3:6]    [1:3][4:7]    [1:4][5:8] 
3.   *        *                *                  *              [1:5]            [1:6]          [1:7]            [1:8] 
   [1:1]   [1:2]          [1:3]             [1:4]            [1:5]           [1:6]          [1:7]             [1:8] 
     x1     x1+x2     x1+x2+x3      x1+...+x4    x1+...+x5    x1+...+x6    x1+...+x7    x1+...+x8 

 



Parallel Prefix Algorithm 
 // We write below[1:2] to denote X[1]+X[2] 
 //                       [i:j] to denote X[i]+X[i+1]+...+X[j] 
 //                       [i:i] is X[i] NOT X[i]+X[i] 
 //                       [1:2][3:4]=[1:2]+[3:4]= (X[1]+X[2])+(X[3]+X[4])=X[1]+X[2]+X[3]+X[4] 
 // Input : M[j]= X[j]=[j:j] for j=1,...,n. 
 // Output: M[j]= X[1]+...+X[j] = [1:j] for j=1,...,n. 
   ParallelPrefix(n) 
1. i=1;                                     // At this step M[j]= [j:j]=[j+1-2**(i-1):j] 
2. while (i < n ) { 
3.  j=pid(); 
4.  if (j-2**(i-1) >0 ) { 
5.   a=M[j];              // Before this stepM[j] = [j+1-2**(i-1):j] 
6.  b=M[j-2**(i-1)];    // Before this stepM[j-2**(i-1)]= [j-2**(i-1)+1-2**(i-1):j-2**(i-1)] 
7.   M[j]=a+b;     // After this step M[j]= M[j]+M[j-2**(i-1)]=[j-2**(i-1)+1-2**(i-1):j-2**(i-1)] 
              // [j+1-2**(i-1):j] = [j-2**(i-1)+1-2**(i-1):j]=[j+1-2**i:j] 
8.  } 
9.  i=i*2; 
    } 
 
At step 5, memory location j − 2i−1 is read provided that j − 2i−1 ≥ 1. This is true for all times i ≤ tj = log(j 

− 1) + 1. For i > tj  the test of line 4 fails and lines 5-8 are not executed. 

 



Logical AND Operation 
Problem. Let X1 . . .,Xn be binary/boolean values. Find X = X1 ∧ X2 ∧ . . . ∧ Xn. 
 The sequential problem : T = O(n). 
 An EREW PRAM algorithm solution for this problem works the same way 

as the PARALLEL SUM algorithm and its performance is P = O(n), T = 
O(log n). 

 A CRCW PRAM algorithm: Let binary value Xi reside in the shared 
memory location i. We can find X = X1 ∧ X2 ∧ . . . ∧ Xn in constant time on a 
CRCW PRAM. Processor 1 first writes an 1 in shared memory cell 0. If Xi 
= 0, processor i writes a 0 in memory cell 0. The result X is then stored in 
this memory cell. 

 The result stored in cell 0 is 1 (TRUE) unless a processor writes a 0 in cell 0; 
then one of the Xi is 0 (FALSE) and the result X should be FALSE, 
 



Logical AND Operation 
begin Logical AND (X1 . . .Xn) 
1. Proc 1 writ1es in cell 0. 
2. if Xi = 0 processor i writes 0 into cell 0. 
end Logical AND 
 
Exercise: Give an O(1) CRCW algorithm for Logical OR 



Matrix Multiplication 
Matrix Multiplication 
 A simple algorithm for multiplying two n × n matrices on a CREW 

PRAM with time complexity T = O(log n) using P = n3 processors. For 
convenience, processors are indexed as triples (i, j, k), where i, j, k = 
1, . . . , n. In the first step processor (i, j, k) concurrently reads aij and 
bjk and performs the multiplication aijbjk. In the following steps, for all 
i, k the results (i, ∗, k) are combined, using the parallel sum algorithm 
to form cik = j aijbjk. After logn steps, the result cik is thus computed. 

 The same algorithm also works on the EREW PRAM with the same 
time and processor complexity. The first step of the CREW algorithm 
need to be changed only. We avoid concurrency by broadcasting 
element aij to processors (i, j, ∗) using the broadcasting algorithm of 
the EREW PRAM in O(log n) steps. Similarly, bjk is broadcast to 
processors (∗, j, k). 

 The above algorithm also shows how an n-processor EREW PRAM 
can simulate an n-processor CREW PRAM with an O(log n) 
slowdown. 

 



Matrix Multiplication 
                  CREW  EREW 
1. aij to all (i,j,*) procs   O(1)  O(logn) 
    bjk to all (*,j,k) procs    O(1)  O(logn) 
2. aij*bjk at (i,j,k) proc                    O(1)  O(1) 
3. parallel sumj aij *bjk (i,*,k) procs    O(logn)  O(logn) n procs participate 
4. cik = sumj aij*bjk                 O(1)    O(1) 
 
T=O(logn),P=O(n3 ) 



Parallel Sum 
(Compute x0 + x1 + . . . + xn−1) 

Algorithm Parallel Sum. 
M[0]          M[1]          M[2]          M[3]         M[4]      M[5]       M[6]         M[7] 
x0                 x1              x2             x3              x4          x5             x6            x7          t=0 
x0+x1                         x2+x3                       x4+x5                       x6+x7                       t=1 
x0+...+x3                                                    x4+...+x7                                                    t=2 
x0+...+x7                                                                                                                        t=3 

 
 This EREW PRAM algorithm consists of log n steps. In step i, if j can 

be exactly divisible by 2i, processor j reads shared-memory cells j and j 
+ 2i-1 combines (sums) these values and stores the result into memory 
cell j. After logn steps the sum resides in cell 0. Algorithm Parallel 
Sum has T = O(log n), P = n. 

Processing node used: 
P0, P2, P4, P6        t=1 
P0, P4                   t=2 
P0                        t=3 



Parallel Sum 
(Compute x0 + x1 + . . . + xn−1) 
// pid() returns the id of the processor issuing the call. 
begin Parallel Sum (n) 
1.   i = 1 ; j = pid(); 
2.  while (j mod 2i == 0) 
3.   a = C[j]; 
4.   b = C[j + 2i-1]; 
5.   C[j] = a + b; 
6.   i = i + 1; 
7.  end 
end Parallel Sum 



Parallel Sum 
(Compute x0 + x1 + . . . + xn−1) 
 Sequential algorithm: n − 1 additions. 
 A PRAM implementation: value xi is initially stored in shared memory 

cell i. The sum x0 + x1 + . . . + xn−1 is to be computed in T = logn 
parallel steps. Without loss of generality, let n be a power of two.  

 If a combining CRCW PRAM with arbitration rule sum is used to 
solve this problem, the resulting algorithm is quite simple. In the first 
step processor i reads memory cell i storing xi. In the following step 
processor i writes the read value into an agreed cell say 0. The time is 
T = O(1), and processor utilization is P = O(n). 

 A more interesting algorithm is the one presented below for the EREW 
PRAM. The algorithm consists of log n steps. In step i, processor j < n 
/ 2i reads shared-memory cells 2j and 2j +1 combines (sums) these 
values and stores the result into memory cell j. After logn steps the 
sum resides in cell 0. Algorithm Parallel Sum has T = O(log n), P = n. 



Parallel Sum 
(Compute x0 + x1 + . . . + xn−1) 

// pid() returns the id of the processor issuing the call. 
begin Parallel Sum (n) 
1.   i = 1 ; j = pid(); 
2.  while (j < n / 2i) 
3.   a = C[2j]; 
4.   b = C[2j + 1]; 
5.   C[j] = a + b; 
6.   i = i + 1; 
7.  end 
end Parallel Sum 



Parallel Sum Example 
M[0]              M[1]          M[2]          M[3]         M[4]      M[5]       M[6]         M[7] 
x0                    x1                x2             x3             x4         x5             x6            x7          t=0 
x0+x1            x2+x3         x4+x5       x6+x7                                                                     t=1 
x0+...+x3      x4+...+x7                                                                                                     t=2 
x0+...+x7                                                                                                            t=3 



Parallel Sum 
 Can be easily extended to the case where n is not a power of two. 
 The first instance of a sequential problem that has a trivial sequential but 

more complex parallel solution. 
  Any associative operator can be used. As associative operator ⊗ is one 

such that (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) 
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