
PRAM Algorithms

Parallel Random Access Machine
(PRAM)

 Collection of numbered processors
 Access shared memory
 Each processor could have local
 memory (registers)
 Each processor can access any
 shared memory cell in unit time
 Input stored in shared memory
 cells, output also needs to be stored
 in shared memory

 PRAM instructions execute in 3-
 phase cycles
 Read (if any) from a shared memory cell
 Local computation (if any)
 Write (if any) to a shared memory cell
 Processors execute these 3-phase PRAM

instructions synchronously

Four Subclasses of PRAM
 Four variations:

 EREW: Access to a memory location is exclusive. No concurrent read or
write operations are allowed. Weakest PRAM model

 CREW: Multiple read accesses to a memory location are allowed.

Multiple write accesses to a memory location are serialized.

 ERCW: Multiple write accesses to a memory location are allowed.

Multiple read accesses to a memory location are serialized. Can simulate
an EREW PRAM

 CRCW: Allows multiple read and write accesses to a common memory

location; Most powerful PRAM model; Can simulate both EREW PRAM
and CREW PRAM

Concurrent Write Access
 arbitrary PRAM: if multiple processors write into a single shared

memory cell, then an arbitrary processor succeeds in writing into this
cell.

 common PRAM: processors must write the same value into the shared
memory cell.

 priority PRAM: the processor with the highest priority (smallest or
largest indexed processor) succeeds in writing.

 combining PRAM: if more than one processors write into the same
memory cell, the result written into it depends on the combining
operator. If it is the sum operator, the sum of the values is written, if it
is the maximum operator the maximum is written.

Note: An algorithm designed for the common PRAM can be executed on
a priority or arbitrary PRAM and exhibit similar complexity. The same
holds for an arbitrary PRAM algorithm when run on a priority PRAM.

A Basic PRAM Algorithm
 n processors and 2n inputs, find the maximum
 PRAM model: EREW
 Construct a tournament where values are compared
 Processor k is active in step j
 if (k % 2j) == 0
 At each step:
 Compare two inputs,
 Take max of inputs,
 Write result into shared memory
 Notes: Need to know who is the “parent” and whether you are left or

right child; Write to appropriate input field

Finding Maximum: CRCW
Algorithm

 Find the maximum of n elements A[0, n-1].
 With n2 processors, each processor (i,j) compare A[i] and A[j], for

0<=i, j <=n-1.
 n=length[A]
for i =0 to n-1, in parallel
 m[i] =true
for i =0 to n-1 and j =0 to n-1, in parallel
 if A[i] < A[j]
 m[i] =false
for i =0 to n-1, in parallel
 if m[i] =true
 max = A[i]
return max

 The running time: O(1). Note: there may be multiple maximum values,
so their processors will write to max concurrently.

PRAM Algorithm: Broadcasting
 A message (say, a word) is stored in cell 0 of the shared memory. We

would like this message to be read by all n processors of a PRAM.
 On a CREW PRAM this requires one parallel step (processor i

concurrently reads cell 0).
 On an EREW PRAM broadcasting can be performed in O(log n) steps. The

structure of the algorithm is the reverse of parallel sum. In log n steps the
message is broadcast as follows. In step i each processor with index j less
than 2i reads the contents of cell j and copies it into cell j + 2i. After log n
steps each processor i reads the message by reading the contents of cell i.

 A CREW PRAM algorithm that solves the broadcasting problem has
performance P = O(n), T = O(1).

 The EREW PRAM algorithm that solves the broadcasting problem has
performance P = O(n), T = O(log n).

Broadcasting
begin Broadcast (M)
1. i = 0 ; j = pid(); C[0]=M;
2. while (2i < P)
3. if (j < 2i)
5. C[j + 2i] = C[j];
6. i = i + 1;
6. end
7. Processor j reads M from C[j].
end Broadcast

Parallel Prefix
 Definition: Given a set of n values x0, x1, . . . , xn−1 and an associative

operator, say +, the parallel prefix problem is to compute the following
n results/“sums”.

 0: x0,
 1: x0 + x1,
 2: x0 + x1 + x2,
 . . .
 n − 1: x0 + x1 + . . . + xn−1.
 Parallel prefix is also called prefix sums or scan. It has many uses in

parallel computing such as in load-balancing the work assigned to
processors and compacting data structures such as arrays.

 We shall prove that computing ALL THE SUMS is no more difficult
that computing the single sum x0 + . . .xn−1.

Parallel Prefix Algorithm
 An algorithm for parallel prefix on an EREW PRAM would require

log n phases. In phase i, processor j reads the contents of cells j and j −
2i (if it exists) combines them and stores the result in cell j.

 The EREW PRAM algorithm that solves the parallel prefix problem
has performance P = O(n), T = O(log n).

Parallel Prefix Example
For visualization purposes, the second step is written in two different lines. When

we write x1 + . . . + x5 we mean x1 + x2 + x3 + x4 + x5.

 x1 x2 x3 x4 x5 x6 x7 x8
1. x1+x2 x2+x3 x3+x4 x4+x5 x5+x6 x6+x7 x7+x8
2. x1+(x2+x3) (x2+x3)+(x4+x5) (x4+x5)+(x6+x7)
2. (x1+x2)+(x3+x4) (x3+x4)+(x5+x6) (x5+x6+x7+x8)
3. x1+...+x5 x1+...+x7
3. x1+...+x6 x1+...+x8
Finally
F. x1 x1+x2 x1+...+x3 x1+...+x4 x1+...+x5 x1+...+x6 x1+...+x7 x1+...+x8

Parallel Prefix Example
For visualization purposes, the second step is written in two different lines.
When we write [1 : 5] we mean x1 +x2 + x3 + x4 + x5.
We write below [1:2] to denote x1+x2
 [i:j] to denote xi + ... + x5
 [i:i] is xi NOT xi+xi!
 [1:2][3:4]=[1:2]+[3:4]= (x1+x2) + (x3+x4) = x1+x2+x3+x4
A * indicates value above remains the same in subsequent steps
0 x1 x2 x3 x4 x5 x6 x7 x8
0 [1:1] [2:2] [3:3] [4:4] [5:5] [6:6] [7:7] [8:8]
1 * [1:1][2:2] [2:2][3:3] [3:3][4:4] [4:4][5:5] [5:5][6:6] [6:6][7:7] [7:7][8:8]
1. * [1:2] [2:3] [3:4] [4:5] [5:6] [6:7] [7:8]
2. * * [1:1][2:3] [1:2][3:4] [2:3][4:5] [3:4][5:6] [4:5][6:7] [5:6][7:8]
2. * * [1:3] [1:4] [2:5] [3:6] [4:7] [5:8]
3. * * * * [1:1][2:5] [1:2][3:6] [1:3][4:7] [1:4][5:8]
3. * * * * [1:5] [1:6] [1:7] [1:8]
 [1:1] [1:2] [1:3] [1:4] [1:5] [1:6] [1:7] [1:8]
 x1 x1+x2 x1+x2+x3 x1+...+x4 x1+...+x5 x1+...+x6 x1+...+x7 x1+...+x8

Parallel Prefix Algorithm
 // We write below[1:2] to denote X[1]+X[2]
 // [i:j] to denote X[i]+X[i+1]+...+X[j]
 // [i:i] is X[i] NOT X[i]+X[i]
 // [1:2][3:4]=[1:2]+[3:4]= (X[1]+X[2])+(X[3]+X[4])=X[1]+X[2]+X[3]+X[4]
 // Input : M[j]= X[j]=[j:j] for j=1,...,n.
 // Output: M[j]= X[1]+...+X[j] = [1:j] for j=1,...,n.
 ParallelPrefix(n)
1. i=1; // At this step M[j]= [j:j]=[j+1-2**(i-1):j]
2. while (i < n) {
3. j=pid();
4. if (j-2**(i-1) >0) {
5. a=M[j]; // Before this stepM[j] = [j+1-2**(i-1):j]
6. b=M[j-2**(i-1)]; // Before this stepM[j-2**(i-1)]= [j-2**(i-1)+1-2**(i-1):j-2**(i-1)]
7. M[j]=a+b; // After this step M[j]= M[j]+M[j-2**(i-1)]=[j-2**(i-1)+1-2**(i-1):j-2**(i-1)]
 // [j+1-2**(i-1):j] = [j-2**(i-1)+1-2**(i-1):j]=[j+1-2**i:j]
8. }
9. i=i*2;
 }

At step 5, memory location j − 2i−1 is read provided that j − 2i−1 ≥ 1. This is true for all times i ≤ tj = log(j

− 1) + 1. For i > tj the test of line 4 fails and lines 5-8 are not executed.

Logical AND Operation
Problem. Let X1 . . .,Xn be binary/boolean values. Find X = X1 ∧ X2 ∧ . . . ∧ Xn.
 The sequential problem : T = O(n).
 An EREW PRAM algorithm solution for this problem works the same way

as the PARALLEL SUM algorithm and its performance is P = O(n), T =
O(log n).

 A CRCW PRAM algorithm: Let binary value Xi reside in the shared
memory location i. We can find X = X1 ∧ X2 ∧ . . . ∧ Xn in constant time on a
CRCW PRAM. Processor 1 first writes an 1 in shared memory cell 0. If Xi
= 0, processor i writes a 0 in memory cell 0. The result X is then stored in
this memory cell.

 The result stored in cell 0 is 1 (TRUE) unless a processor writes a 0 in cell 0;
then one of the Xi is 0 (FALSE) and the result X should be FALSE,

Logical AND Operation
begin Logical AND (X1 . . .Xn)
1. Proc 1 writ1es in cell 0.
2. if Xi = 0 processor i writes 0 into cell 0.
end Logical AND

Exercise: Give an O(1) CRCW algorithm for Logical OR

Matrix Multiplication
Matrix Multiplication
 A simple algorithm for multiplying two n × n matrices on a CREW

PRAM with time complexity T = O(log n) using P = n3 processors. For
convenience, processors are indexed as triples (i, j, k), where i, j, k =
1, . . . , n. In the first step processor (i, j, k) concurrently reads aij and
bjk and performs the multiplication aijbjk. In the following steps, for all
i, k the results (i, ∗, k) are combined, using the parallel sum algorithm
to form cik = j aijbjk. After logn steps, the result cik is thus computed.

 The same algorithm also works on the EREW PRAM with the same
time and processor complexity. The first step of the CREW algorithm
need to be changed only. We avoid concurrency by broadcasting
element aij to processors (i, j, ∗) using the broadcasting algorithm of
the EREW PRAM in O(log n) steps. Similarly, bjk is broadcast to
processors (∗, j, k).

 The above algorithm also shows how an n-processor EREW PRAM
can simulate an n-processor CREW PRAM with an O(log n)
slowdown.

Matrix Multiplication
 CREW EREW
1. aij to all (i,j,*) procs O(1) O(logn)
 bjk to all (*,j,k) procs O(1) O(logn)
2. aij*bjk at (i,j,k) proc O(1) O(1)
3. parallel sumj aij *bjk (i,*,k) procs O(logn) O(logn) n procs participate
4. cik = sumj aij*bjk O(1) O(1)

T=O(logn),P=O(n3)

Parallel Sum
(Compute x0 + x1 + . . . + xn−1)

Algorithm Parallel Sum.
M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
x0 x1 x2 x3 x4 x5 x6 x7 t=0
x0+x1 x2+x3 x4+x5 x6+x7 t=1
x0+...+x3 x4+...+x7 t=2
x0+...+x7 t=3

 This EREW PRAM algorithm consists of log n steps. In step i, if j can

be exactly divisible by 2i, processor j reads shared-memory cells j and j
+ 2i-1 combines (sums) these values and stores the result into memory
cell j. After logn steps the sum resides in cell 0. Algorithm Parallel
Sum has T = O(log n), P = n.

Processing node used:
P0, P2, P4, P6 t=1
P0, P4 t=2
P0 t=3

Parallel Sum
(Compute x0 + x1 + . . . + xn−1)
// pid() returns the id of the processor issuing the call.
begin Parallel Sum (n)
1. i = 1 ; j = pid();
2. while (j mod 2i == 0)
3. a = C[j];
4. b = C[j + 2i-1];
5. C[j] = a + b;
6. i = i + 1;
7. end
end Parallel Sum

Parallel Sum
(Compute x0 + x1 + . . . + xn−1)
 Sequential algorithm: n − 1 additions.
 A PRAM implementation: value xi is initially stored in shared memory

cell i. The sum x0 + x1 + . . . + xn−1 is to be computed in T = logn
parallel steps. Without loss of generality, let n be a power of two.

 If a combining CRCW PRAM with arbitration rule sum is used to
solve this problem, the resulting algorithm is quite simple. In the first
step processor i reads memory cell i storing xi. In the following step
processor i writes the read value into an agreed cell say 0. The time is
T = O(1), and processor utilization is P = O(n).

 A more interesting algorithm is the one presented below for the EREW
PRAM. The algorithm consists of log n steps. In step i, processor j < n
/ 2i reads shared-memory cells 2j and 2j +1 combines (sums) these
values and stores the result into memory cell j. After logn steps the
sum resides in cell 0. Algorithm Parallel Sum has T = O(log n), P = n.

Parallel Sum
(Compute x0 + x1 + . . . + xn−1)

// pid() returns the id of the processor issuing the call.
begin Parallel Sum (n)
1. i = 1 ; j = pid();
2. while (j < n / 2i)
3. a = C[2j];
4. b = C[2j + 1];
5. C[j] = a + b;
6. i = i + 1;
7. end
end Parallel Sum

Parallel Sum Example
M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
x0 x1 x2 x3 x4 x5 x6 x7 t=0
x0+x1 x2+x3 x4+x5 x6+x7 t=1
x0+...+x3 x4+...+x7 t=2
x0+...+x7 t=3

Parallel Sum
 Can be easily extended to the case where n is not a power of two.
 The first instance of a sequential problem that has a trivial sequential but

more complex parallel solution.
 Any associative operator can be used. As associative operator ⊗ is one

such that (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)

	PRAM Algorithms
	Parallel Random Access Machine (PRAM)
	Four Subclasses of PRAM
	Concurrent Write Access
	A Basic PRAM Algorithm
	Finding Maximum: CRCW Algorithm
	PRAM Algorithm: Broadcasting
	Broadcasting
	Parallel Prefix
	Parallel Prefix Algorithm
	Parallel Prefix Example
	Parallel Prefix Example
	Parallel Prefix Algorithm
	Logical AND Operation
	Logical AND Operation
	Matrix Multiplication
	Matrix Multiplication
	Parallel Sum�(Compute x0 + x1 + . . . + xn−1)
	Parallel Sum�(Compute x0 + x1 + . . . + xn−1)
	Parallel Sum�(Compute x0 + x1 + . . . + xn−1)
	Parallel Sum�(Compute x0 + x1 + . . . + xn−1)
	Parallel Sum Example
	Parallel Sum

