Matrix Multiplication

Nur Dean

PhD Program in Computer Science The Graduate Center, CUNY

05/01/2017

Today, I will talk about matrix multiplication and 2 parallel algorithms to use for my matrix multiplication calculation.

Overview

- Background
 - Definition of A Matrix
 - Matrix Multiplication
- Sequential Algorithm
- Parallel Algorithms for Matrix Multiplication
 - Checkerboard
 - Fox's Algorithm
 - Example 3x3 Fox's Algorithm
 - Fox's Algorithm Psuedocode
 - Analysis of Fox's Algorithm
 - SUMMA:Scalable Universal Matrix Multiplication Algorithm
 - Example 3x3 SUMMA Algorithm
 - SUMMA Algorithm
 - Analysis of SUMMA

Definition of A Matrix

- A matrix is a rectangular two-dimensional array of numbers
- We say a matrix is $m \times n$ if it has m rows and n columns.
- We use a_{ij} to refer to the entry in i^{th} row and j^{th} column of the matrix A.

- Matrix multiplication is a fundamental linear algebra operation that is at the core of many important numerical algorithms.
- If A,B, and C are NxN matrices, then C = AB is also an NxNmatrix, and the value of each element in C is defined as:

$$C_{ij} = \sum_{k=0}^{N} A_{ik} B_{kj}$$

Algorithm 1 Sequential Algorithm

```
for (i=0; i < n; i++) do

for (j=0; i < n; j++) do

c[i][j] = 0;

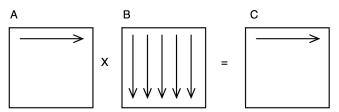
for (k=0; k < n; k++) do

c[i][j]+=a[i][k]*b[k][j]

end for

end for
```


- During the first iteration of loop variable i the first matrix A row and all the columns of matrix B are used to compute the elements of the first result matrix C row
- This algorithm is an iterative procedure and calculates sequentially the rows of the matrix C. In fact, a result matrix row is computed per outer loop (loop variable i) iteration.



As each result matrix element is a scalar product of the initial matrix A row and the initial matrix B column, it is necessary to carry out $n^2(2n-1)$ operations to compute all elements of the matrix C. As a result the time complexity of matrix multiplication is;

$$T_1 = n^2(2n-1)\tau$$

where au is the execution time for an elementary computational operation such as multiplication or addition.

Checkerboard

Most parallel matrix multiplication functions use a checkerboard distribution of the matrices. This means that the processes are viewed as a grid, and, rather than assigning entire rows or entire columns to each process, we assign small sub-matrices. For example, if we have four processes, we might assign the element of a 4x4 matrix as shown below, checkerboard mapping of a 4x4 matrix to four processes.

Process 0	Process 1
a ₀₀ a ₀₁	a ₀₂ a ₀₃
a ₁₀ a ₁₁	$a_{12} \ a_{13}$
Process 2	Process 3
a ₂₀ a ₂₁	a ₂₂ a ₂₃
a ₃₀ a ₃₁	a ₃₂ a ₃₃

Fox's Algorithm

Process 0	Process 1
a ₀₀ a ₀₁	a ₀₂ a ₀₃
$a_{10} \ a_{11}$	a ₁₂ a ₁₃
Process 2	Process 3
a ₂₀ a ₂₁	a ₂₂ a ₂₃
a ₃₀ a ₃₁	a ₃₂ a ₃₃

- Fox's algorithm is a one that distributes the matrix using a checkerboard scheme like the above.
- In order to simplify the discussion, lets assume that the matrices have order n, and the number of processes, p, equals n^2 . Then a checkerboard mapping assigns a_{ij} , b_{ij} , and c_{ij} to process (i,j).
- In a process grid like the above, the process (i,j) is the same as process p = i * n + j, or, loosely, process (i,j) using row major form in the process grid.

Cont. Fox's Algorithm

• Fox's algorithm takes n stages for matrices of order n one stage for each term $a_{ik}b_{kj}$ in the dot product

$$C_{ij} = a_{i0}b_{0j} + a_{i1}b_{1i} + \dots + a_{i,n-1}b_{n-1,j}$$

• Initial stage, each process multiplies the diagonal entry of A in its process row by its element of B:

Stage 0 on process
$$(i, j)$$
: $c_{ij} = a_{ii}b_{ij}$

 Next stage, each process multiplies the element immediately to the right of the diagonal of A by the element of B directly beneath its own element of B:

Stage 1 on process
$$(i,j)$$
: $c_{ij} = c_{ij} + a_{i,i+1}b_{i+1,j}$

• In general, during the k^{th} stage, each process multiplies the element k columns to the right of the diagonal of A by the element k rows below its own element of B:

Stage
$$k$$
 on process (i,j) : $c_{ij} = c_{ij} + a_{i,i+k}b_{i+k,j}$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Example of the Algorithm Applied to 2x2 Matrices

$$A = \begin{vmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{vmatrix} \quad B = \begin{vmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{vmatrix}$$

$$C = \begin{vmatrix} a_{00}b_{00} + a_{01}b_{10} & a_{00}b_{01} + a_{01}b_{11} \\ a_{10}b_{00} + a_{11}b_{10} & a_{10}b_{01} + a_{11}b_{11} \end{vmatrix}$$

Assume that we have n^2 processes, one for each of the elements in A, B, and C. Call the processes P_{00} , P_{01} , P_{10} , and P_{11} , and think of them as being arranged in a grid as follows:

P_{00}	P_{01}
P_{10}	P_{11}

- Stage 0
 - (a) We want $a_{i,i}$ on process $P_{i,j}$, so broadcast the diagonal elements of A across the rows, $(a_{ii} \rightarrow P_{ij})$ This will place $a_{0,0}$ on each $P_{0,j}$ and $a_{1,1}$ on each $P_{1,j}$. The A elements on the P matrix will be

a ₀₀	a ₀₀
a ₁₁	a ₁₁

(b) We want $b_{i,j}$ on process $P_{i,j}$, so broadcast B across the rows $(b_{ij} \rightarrow P_{ij})$ The A and B values on the P matrix will be

a ₀₀	a ₀₀
b_{00}	b ₀₁
a ₁₁	a ₁₁
b_{10}	b_{11}

(c) Compute $c_{ij} = AB$ for each process

a ₀₀	a ₀₀
b_{00}	b_{01}
$c_{00}=a_{00}b_{00}$	$c_{01}=a_{00}b_{01}$
a ₁₁	a ₁₁
b_{10}	b_{11}
$c_{10} = a_{11}b_{10}$	$c_{11} = a_{11}b_{11}$

We are now ready for the second stage. In this stage, we broadcast the next column (mod n) of A across the processes and shift-up (mod n) the B values.

- Stage 1
 - (a) The next column of A is $a_{0,1}$ for the first row and $a_{1,0}$ for the second row (it wrapped around, mod n). Broadcast next A across the rows

a ₀₁ b ₀₀	a ₀₁ b ₀₁
$c_{00} = a_{00}b_{00}$	$c_{01} = a_{00}b_{01}$
a ₁₀	a ₁₀
b_{10}	b_{11}
$c_{10}=a_{11}b_{10}$	$c_{11}=a_{11}b_{11}$

(b) Shift the B values up. $B_{1,0}$ moves up from process $P_{1,0}$ to process $P_{0,0}$ and $B_{0,0}$ moves up (mod n) from $P_{0,0}$ to $P_{1,0}$. Similarly for $B_{1,1}$ and $B_{0,1}$.

a ₀₁	a ₀₁
b_{10}	b_{11}
$c_{00}=a_{00}b_{00}$	$c_{01}=a_{00}b_{01}$
a ₁₀	a ₁₀
b ₀₀	b ₀₁
$c_{10}=a_{11}b_{10}$	$c_{11}=a_{11}b_{11}$

(c) Compute $C_{ij} = AB$ for each process

a ₀₁	a ₀₁
b_{10}	b_{11}
$c_{00}=c_{00}+a_{01}b_{10}$	$c_{01}=c_{01}+a_{01}b_{11}$
a ₁₀	a ₁₀
b_{00}	b_{01}
$c_{10}=c_{10}+a_{10}b_{00}$	$c_{11}=c_{11}+a_{10}b_{01}$

The algorithm is complete after n stages and process $P_{i,j}$ contains the final result for $c_{i,j}$.

Example 3x3 Fox's Algorithm

Consider multiplying 3x3 block matrices:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 9 \\ 4 & 4 & 5 \\ 4 & 2 & 6 \end{bmatrix}$$

Stage 0:

Process	Broadcast
$(i, i \mod 3)$	along row i
(0,0)	a ₀₀
(1,1)	a ₁₁
(2,2)	a ₂₂

$$egin{array}{lll} a_{00}, b_{00} & a_{00}, b_{01} & a_{00}, b_{02} \ a_{11}, b_{10} & a_{11}, b_{11} & a_{11}, b_{12} \ a_{22}, b_{20} & a_{22}, b_{21} & a_{22}, b_{22} \ \end{array}$$

Process (i,j) computes:

$c_{00}=1 \times 1=1$	$c_{01}=1\times 0=0$	$c_{02}=1 \times 2=2$
$c_{10}=1 \times 2=2$	$c_{11}=1\times 0=0$	$c_{12}=1\times3=3$
$c_{20} = 1 \times 1 = 1$	$c_{21}=1 \times 2=2$	$c_{22} = 1 \times 1 = 1$

Shift-rotate on the columns of B

Stage 1:

Process		Broadcast
(i, (i+1)	mod3)	along row i
(0,1)		a ₀₁
(1,2)		a ₁₂
(2,0)		a ₂₀

$$egin{array}{lll} a_{01},\,b_{10} & a_{01},\,b_{11} & a_{01},\,b_{12} \ a_{12},\,b_{20} & a_{12},\,b_{21} & a_{12},\,b_{22} \ a_{20},\,b_{00} & a_{20},\,b_{01} & a_{20},\,b_{02} \ \end{array}$$

Process (i,j) computes:

$c_{00}=1+(2x2)=5$	$c_{01}=0+(2\times0)=0$	$c_{02}=2+(2x3)=8$
$c_{10}=2+(2x1)=4$	$c_{11}=0+(2\times 2)=4$	$c_{12}=3+(2\times1)=5$
$c_{20}=1+(1\times 1)=2$	$c_{21}=2+(1\times 0)=2$	$c_{22}=1+(1\times 2)=3$

Shift-rotate on the columns of B

Stage 2:

$(i, (i+2) \mod 3)$ along row i $(0,2)$ a_{02} $(1,0)$ a_{10}
-
(1.0)
$(1,0)$ a_{10}
$(2,1)$ a_{21}

$$egin{array}{lll} a_{02},\,b_{20} & a_{02},\,b_{21} & a_{02},\,b_{22} \ a_{10},\,b_{00} & a_{10},\,b_{01} & a_{10},\,b_{02} \ a_{21},\,b_{10} & a_{21},\,b_{11} & a_{21},\,b_{12} \ \end{array}$$

Process (i, j) computes:

$c_{00}=5+(1\times1)=6$	$c_{01}=0+(1\times 2)=2$	$c_{02}=8+(1\times1)=9$
$c_{10}=4+(0x1)=4$	$c_{11}=4+(0\times0)=4$	$c_{12}=5+(0\times2)=5$
$c_{20}=2+(1\times 2)=4$	$c_{21}=2+(1\times 0)=2$	$c_{22}=3+(1\times3)=6$

Algorithm 2 Fox's Algorithm Psuedocode

```
/* my process row = i , my process column = i */
q = sqrt(p);
dest = ((i-1) \mod q, j);
for (stage=0; stage<q; stage++ )
          k_bar = (i + stage) \mod q;
           (a) Broadcast A[i,k_bar] across process row i;
          (b) C[i,j] = C[i,j] + A[i,k_bar]*B[k_bar,j];
          (c) Send B[(k_bar+1) mod q, j] to dest;
           Receive B[(k_bar+1) \mod q, j] from source;
```

Analysis of Fox's Algorithm

- Let A, B be $n \times n$ matrices, and C = A * B, $C_{ij} = \sum_{k=0}^{q-1} A_{ik} B_{kj}$
- ullet Let $p=q^2$ number of processors organized in a q imes q grid
- Store $(i,j)^{th}$ $n/q \times n/q$ block of A, B, and C on process (i,j)
- Execution of the Fox algorithm requires q iterations, during which each processor multiplies its current blocks of the matrices A and B, and adds the multiplication results to the current block of the matrix C.With regard to the above mentioned assumptions,

Computation time:

$$q\left(\frac{n}{q}x\frac{n}{q}x\frac{n}{q}\right) = \frac{n^3}{q^2} = \frac{n^3}{p}$$

 As a result, the speedup and efficiency of the algorithm look as follows:

$$S_{p} = \frac{n^{3}}{n^{3}/p} = p$$

$$E_{p} = \frac{n^{3}}{p \cdot (n^{3}/p)} = 1$$

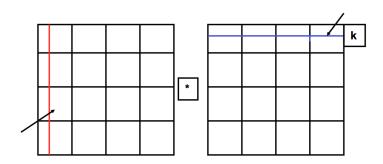
SUMMA:Scalable Universal Matrix Multiplication Algorithm

- Slightly less efficient, but simpler and easier to generalize.
- Uses a shift algorithm to broadcast

• The SUMMA algorithm computes *n* partial outer products:

for
$$k := 0$$
 to $n - 1$
 $C[:,:] += A[:,k] \cdot B[k,:]$

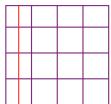
• Each row k of B contributes to the n partial outer products

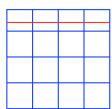


- Compute the sum of *n* outer products
- Each row and column (k) of A and B generates a single outer product

Column vector A[:,k] (nx1) and a vector B[k,:] (1xn)

for
$$k := 0$$
 to $n - 1$
 $C[:,:] += A[:,k] \cdot B[k,:]$

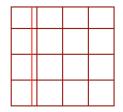


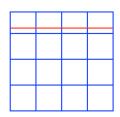


- Compute the sum of *n* outer products
- Each row and column (k) of A and B generates a single outer product

$$A[:, k+1] \cdot B[k+1, :]$$

for
$$k := 0$$
 to $n - 1$
 $C[:,:] += A[:,k] \cdot B[k,:]$

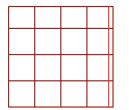


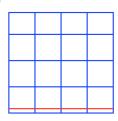


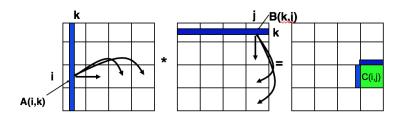
- Compute the sum of *n* outer products
- Each row and column (k) of A and B generates a single outer product

$$A[:, n-1] \cdot B[n-1, :]$$

for
$$k := 0$$
 to $n - 1$
 $C[:,:] += A[:,k] \cdot B[k,:]$







- For each k (between 0 and n-1),
- ullet Owner of partial row k broadcasts that row along its process column
- Owner of partial column k broadcasts that column along its process row

$$C(i,j) = C(i,j) + \sum_{k} A(i,k) * B(k,j)$$

• Assume a p_r by p_c processor grid ($p_r = p_c = 4$ above) Need not be square

Example 3x3 SUMMA Algorithm

Consider multiplying 3x3 block matrices:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 9 \\ 4 & 4 & 5 \\ 4 & 2 & 6 \end{bmatrix}$$

 Owner of partial row 0 broadcasts that row along its process column and owner of partial column 0 broadcasts that column along its process row

	1	0	2
1	1	0	2
0	0	0	0
1	1	0	2

 Owner of partial row 1 broadcasts that row along its process column and owner of partial column 1 broadcasts that column along its process row

	2	0	3
2	4	0	6
1	2	0	3
1	2	0	3

 Owner of partial row 2 broadcasts that row along its process column and owner of partial column 2 broadcasts that column along its process row

	1	2	1
1	1	2	1
2	2	4	2
1	1	2	1

• When we sum all the entries we get the following matrix:

Algorithm 3 SUMMA Algorithm

```
for k=0 to n-1 do
  for all i = 1 to p_r do
    owner of A(i, k) broadcasts it to whole processor row;
  end for
  for all i=1 to p_c do
    owner of B(k,j) broadcasts it to whole processor column;
  end for
  Receive A(i, k) into Acol
  Receive B(k, j) into Brow
  C_{myproc} = C_{myproc} + Acol * Brow
end for
```

• We can also take k = 0 to n/b - 1 where b is the block size = cols in A(i, k) and rows in B(k, j)

SUMMA Performance Model

• To simplify analysis only, assume $s=\sqrt{p}$

Algorithm 4 SUMMA Performance Model

```
for k = 0 to n/b - 1 do
  for all i = 1 to s do
     owner of A(i, k) broadcasts it to whole processor row;
     \%time = log s * (\alpha + \beta * b * n/s), using a tree
  end for
  for all i = 1 to s do
     owner of B(k,j) broadcasts it to whole processor column;
     \%time = log s * (\alpha + \beta * b * n/s), using a tree
  end for
  Receive A(i, k) into Acol
  Receive B(k,j) into Brow
  C_{myproc} = C_{myproc} + Acol * Brow
  \%time = 2 * (n/s)^2 * b
```

Analysis of SUMMA

•
$$T(p) = 2 * \frac{n^3}{p} + \alpha * \log p * \frac{n}{b} + \beta * \log p * \frac{n^2}{s}$$

• $E(p) = \frac{1}{(1 + \alpha * \log p * \frac{p}{(2 * b * n^2)} + \beta * \log p * \frac{s}{(2 * n)})}$

Where α is the start-up cost of a message, and β is the bandwidth

THANK YOU FOR YOUR ATTENTION TODAY!